

DRAM Controller Optimization for i.MX Application Processors AMF-DES-T1060

Mark Middleton, HW Applications Engineer, SMTS

External Use

Pressure, the Pressure top, ARVec, C-8, Code/TEST, Code/Warror, ColdFire, Co-Rev, the Energy Efficient Solutions top, Xineta, Magnit, mobileCT, PEB, PowerGUGG, Processer Expert, Carlo, Carlo Commerg, Dorive, Reeky Pee, SehAaane, the SalAkaase top, SterCore, Symphory, VortCa, Vybol and Xineto are todewarke of Pressule Semiconductor, Inc., Reg, U.S. Pat, & Tm. Off, Antat, BeeKG, BeeStani, ComMet, Field, Layerscape, MXC, Pattorni e Peckage, QUICC Engine, SMAPTINOS, Tureo, TartoLink and UMEUS are trademarke of Pressule Democraticity. Inc. All later product or service networks and the property of their networks or service. Beneficient, SMAPTINOS, Tureo, TartoLink and UMEUS are trademarke of Pressule Democraticity. Inc. All later product or service networks and the property of their networks or service. Beneficient And UMEUS are trademarke of Pressule Democraticity. Inc. All later product or service networks and the property of their networks or service. Beneficient and UMEUS are trademarke of Pressule.

Overview

- This presentation is covering the tools used by the factory to optimize and debug DRAM interface on i.MX
 - This is not a deep dive in to various i.MX DRAM controller designs
 - This is not a training on various DRAM technologies
 - Please refer to the JEDEC specs
- These tools are available for use by our customers through the assigned Freescale FAE's.
- New Information:
 - The Processor Expert tool will not be modified to perform the DDR Stress calibration routines and the actual stress testing.
 - Only the "unsupported" tools will be available.

Overview: Random But Important Facts

- The MMDC is the first part of the processor to be initialized in any boot/startup process.
 - If booting the processor from JTAG or the serial downloader, the MMDC is initialized using a script file.
 - Typically identified by .inc or .ds.
 - If booting from an operating system, the MMDC register settings are set apart in a header file. Typically:
 - DCD file
 - Flash header file

Overview: Random But Important Facts (Continued)

- The order of programming MMDC registers is <u>extremely</u> important.
 - Preliminary: Turn on all necessary clocks
 - Section 1: Program IOMUX Pad setting Registers.
 - Section 2: Program Calibrations Setting Registers.
 - Last line: Issue frc_msr to set calibration values in PHY.
 - Section 3: Program MMDC timing parameters in Core.
 - Last line: Turn on/Initialize core

External Use

- Section 4: Program DDR device Mode Registers
- Post: Program Miscellaneous Registers
 - Last line: Allows AXI bus to begin passing data to MMDC

Overview: IOMUX Pad Registers

- Registers are important because:
 - Sets the rough range of Drive Strength for dealing with specific DRAM types and voltages.
 - Sets a specific drive strength for the output signal to DDR.
 - Selects the method for determining values on incoming signals.
- Register range is not the same across the i.MX6 family:
 - i.MX 6DQ: 0x020E050C 0x020E05C4, 0x020E0748 0x020E07AC
 - i.MX 6SDL: 0x020E0424 0x020E04DC, 0x020E0748 0x020E078C
 - i.MX 6SL: 0x020E020C 0x020E0354, 0x020E05AC 0x020E05D8
 - i.MX 6SX: 0x020E02AC 0x020E0340, 0x020E05F4 0x020E0620
- Some register settings are overridden by Group Settings.

Overview: MMDC Timing Registers

- Registers are important because:
 - Defines the Memory Address Space available from Physical DRAM.
 - Sets timing parameters for Core/PHY to match timing of Physical DRAM.
 - Provides mechanism to program DRAM Mode Registers
 - Control Register turn on/initializes MMDC Controller.
- Register range is the same across the i.MX6 family:
 - MMDC1: 0x021B0000 0x021B0040
 - MMDC2: 0x021B4000 0x021B4040 (i.MX 6DQ and 6DL only)
- Settings for registers primarily come from DDR Datasheets.
- These registers must be updated for specific customer boards.
- MMDC2 registers are not programmed for DDR3 operations
 - Only necessary for LPDDR2 operations

Overview: MMDC Status/Debug Registers

- Registers are important because:
 - Allows for software interaction with MMDC once initialized.
 - Allows for debug of MMDC core operations.
 - Allows for changing Priorities of incoming data from AXI bus
- Register range is the same across the i.MX6 family:
 - MMDC1: 0x021B0400 0x021B0440
 - MMDC2: 0x021B4400 0x021B4440 (i.MX 6DQ and 6DL only)
- These registers are primarily used by software.
- These registers are not typically changed as part of initialization.

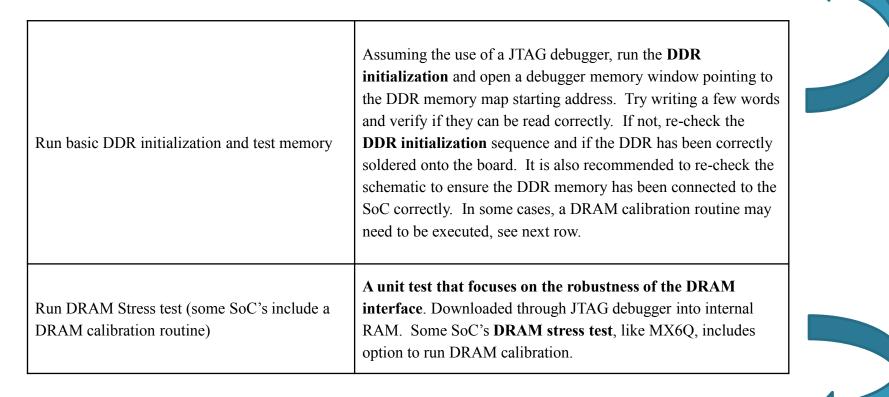
Overview: MMDC Calibration Registers

- Registers are important because:
 - Allows for adjusting timing parameters to customer specific boards.
 - Allows for adjusting drive strengths for current operating conditions.
 - Provides a method for determining correct calibration values.
- Register range is the same across the i.MX6 family:
 - MMDC1: 0x021B0800 0x021B08C0

External Use

- MMDC2: 0x021B4800 0x021B48C0 (i.MX 6DQ and 6DL only)
- Responsibility for determining correct calibration values is on customers and values will depend on customer designs.
- MMDC2 registers allow for entering calibration parameters for bytes 4 – 7, and SDCLK1.

- Board bring-up: where DRAM bring-up fits in
 Introduce the tools used for DRAM bring-up
- DRAM Register Programming Aid
 - Introduction/Overview
 - Walkthrough
- DRAM Stress Test
 - Introduction/Overview
 - How to build and run; deep dive into sub-tests
- DRAM Calibration Overview
- Case Study: MX508 and LPDDR2 Failure
- Board Design Considerations



Checklist Item	Details	owner	Findings & Status
	The following items need to be completed serially		
Visual Inspection	Check major components to make sure nothing has been misplaced or rotated before applying power.		
Verify all SoC voltage rails	Confirm that the voltages match to what is required in the data sheet. Be sure to check voltages not only at the voltage source, but also as close to the SoC as possible, like on a bypass capacitor. This will reveal any IR drops on the board which will later cause issues. Ideally all of the SoC voltage rails should be checked, but noteworthy voltages include those that power the core, internal logic, boot devices, and DRAM (which is often overlooked).		
Verify power up sequence	Verify that Power On Reset (POR) is de-asserted (high) after all power rails have come up and are stable. Refer to the SoC data sheet for details on power up sequencing. This is an important if not overlooked process as many complex processors may be very sensitive to the proper power up sequencing.		
Measure/probe input clocks (32kHz, 24MHz, others)	Without a properly running clock, the SoC will not function properly. Look for jitter and noise.		
JTAG connectivity (RV-ICE, Lauterbach, Macraigor, etc)	This is one of the most fundamental and basic access points to the SoC to allow the debug and execution of low level code.		
Access internal RAM	Verify basic operation of the SoC in system. The on chip internal RAM starts at an address defined in the reference manual (normally in the Memory Map chapter) and includes the density of the on chip RAM. A basic test would simply be to perform a write-read-verify to the internal RAM via a JTAG debugger. No software initialization should be necessary to access internal RAM.		
Run basic DDR initialization and test memory	Assuming the use of a JTAG debugger, run the DDR initialization and open a debugger memory window pointing to the DDR memory map starting address. Try writing a few words and verify if they can be read correctly. If not, re-check the DDR initialization sequence and if the DDR has been correctly soldered onto the board. It is also recommended to re-check the schematic to ensure the DDR memory has been connected to the SoC correctly. In some cases, a DRAM calibration routine may need to be executed, see next row.		
Run DRAM Stress test (some SoC's include a DRAM calibration routine)	A unit test that focuses on the robustness of the DRAM interface. Downloaded through JTAG debugger into internal RAM. Some SoC's DRAM stress test, like MX6Q, includes option to run DRAM calibration.		
The follow	ving items may be worked on in parallel with other bring up tasks		
Verify CLKO outputs (measure and verify default clock frequencies for desired clock output options); this assumes that the board design supports probing of the CLKO pin.	This ensures that the corresponding clock is working and that the PLLs are working. This step does require some chip initialization, for example via the JTAG debugger, to properly set up the IOMUX to output CLKO and to set up the Clock Control Module to output the desired clock. Refer to the External Signals and Pin Multiplexing, CCM, and IOMUX sections of the SoC's reference manual for further details.		
Measure boot mode frequencies (set the boot mode switch for each boot mode and measure the following, depending on what is available in the system): - NAND (probe CE to verify boot, measure RE frequency) - SPI-NOR (probe slave select and measure clock freq) - MMC/SD (measure clock freq)	This verifies connectivity (at least for a few signals) between the SoC and boot device and that the boot mode signals are properly set.		
Run other unit tests	Once the DRAM interface has been verified as stable, the next step is to run other stand-alone unit tests to ensure the robustness of other peripherals and external components.		

Tools for DRAM Bring-up and Debug

DRAM Register Programming aid

DRAM Stress Test

Agenda

- Board bring-up: where DRAM bring-up fits in
 - Introduce the tools used for DRAM bring-up
- DRAM Register Programming Aid
 - Introduction/Overview
 - Walkthrough
- DRAM Stress Test
 - Introduction/Overview
 - How to build and run; deep dive into sub-tests
- DRAM Calibration Overview
- Case Study: MX508 and LPDDR2 Failure
- Board Design Considerations

DRAM Register Programming Aid – Intro

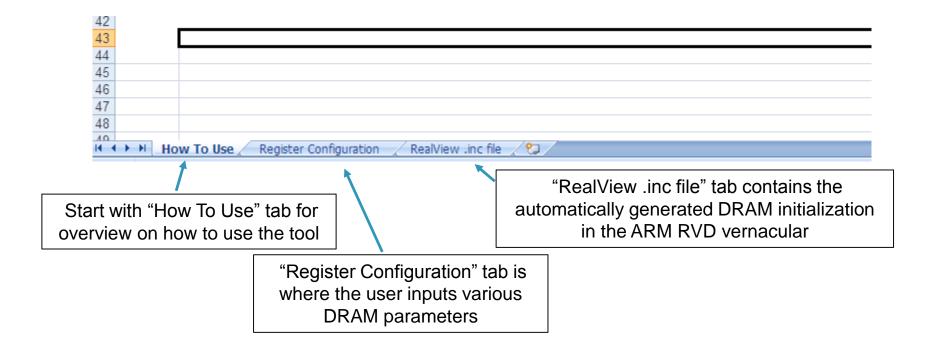
- Tool to help create DRAM init scripts for specific memory types
 - Mainly used to help program JEDEC timing parameters
 tRCD, tRC, tRFC, etc...
 - and for different DRAM parameters like rows, cols, and chip selects
 - Internal tool: Customers told to contact FAE for information
 - Excel spread sheet based, transparent, ease-of-use
 - "Automatically" creates RVD init script (.inc file)
 - To convert RVD to Lauterbach script format, Contact FAE.
 - How to modify *.inc script to *.ds for use with D5-Stream:
 - Change file name to *.ds
 - Substitute "mem set <reg_add> 32 <reg_val>"
 - For "set mem /32 <reg_add> = <reg_val>"

External Use

DRAM Register Programming Aid – Intro (Continued)

- Based on scripts provided by design/validation
- Anyone can use it, change it, fix it, etc...
- Each Programming Aid tool based on DRAM tech (DDR3, DDR2, LPDDR2, etc)
- What's been created to date:
 - MX7D: DDR3, LPDDR3
 - MX6DQ: DDR3, LPDDR2; MX6DL: DDR3,LPDDR2; MX6SL: DDR3,LPDDR2; MX6SX: DDR3, LPDDR2
 - MX50: mDDR, LPDDR2, DDR2
 - MX28: mDDR, DDR2
 - What about other i.MX? No plans yet, need to resource this if enough interest

DRAM Register Programming Aid – Intro (Continued)


- Originated due to Denali controller on MX28 and MX50
 - Denali controller complex, many registers to program
 - Required use of Denali-specific tools available only to factory engineers (due to Denali license); burden on factory support
 - Even with Denali tools, the DRAM init scripts required further "tweaking" due to i.MX design integration
 - Register programming aid takes into account any "tweaking" and incorporates i.MX design specifics (based on scripts from design/validation)
 - Register programming aid offers more visibility on how the DRAM controller is being programmed
- Register programming aid tool concept carried over to i.MX FIL base controllers, starting with MX53 and MX6 series
- Tools are available to customers through assigned FAE's

External Use | 14

DRAM Register Programming Aid – Usage Overview

- Programming aid tool Excel Spreadsheet based
 - There are three tabs (worksheets)

How to use the DRAM register programming aid outline

Step 1. Obtain the desired DRAM data sheet from the DRAM vendor

The following are to be completed in the Register Configuration Worksheet tab.

How To Use Register Configuration RealView .inc file

Step 2. Update the Device Information table to include the DRAM information and system usage

Device Information	A CARACTER STOLEN	
Memory type:	mDDR	
Manufacturer.	Micron	
Memory part number.	MT46H64M16LF-5	
Memory timing info:	5.0ns	
Total DRAM Density per CS (Gb)	1	1
Number of ROW Addresses	14	
Number of COLUMN Addresses	10	
Number of BANKS	4	
Number of Chip Selects used	1	
Total DRAM density (Gb)	1	
Bus Width	x16	
Clock Cycle Freq (MHz)	200	- 6
Clock Cycle Time (ns)	5	

Step 3. Go through the various shaded cells in the spread sheet to update with data from the DRAM sheet (take special note of the "Legend" table to ascertain the meaning of different shaded cells; in many cases, the cells may not need to be updated).

Instructions	Legend		
	On Register Configuration Tab, this color indicates the bitfields that would commonly require updating. On Register Configuration Tab, this color indicates the bitfields that may be updated, but should typically not require it.		Pay attention to shaded cells – this is where
Shaded cells may require updating per the DRAM memory data sheet parameters. Certain registers should not need to be modified by the user. If a register is not provided then it is assumed this parameter is not to be changed per the provided initialization script or that the	On Register Configuration Tab, this color indicates the bitfields that are updated automatically from setting provided in the "Device Information" table or other cells, and should not be changed manually	Automatically Updated Setting	you input data
register is read-only. Certain registers are provided though they may be noted as recommended to not change.	On Register Configuration Tab, an unshaded cell means that the value should remain as is and should not be modified. In these cases, the settings are provided for completeness.		Con't touch un-shaded cells
	On other tabs, this color indicates the cells that are affected by changes on the Register Configuration tab. Note, this cell shading should not used in this workshear Register Configuration tab. only in other tabs that are affected by cells in this tab.		This is relevant to the "RealView .inc file"

The following refers to the RealView .inc file Worksheet tab. In this tab, the entire DRAM initialization can be obtained. This initialization can be used as a RealView include file (see below) or are reference for the bootloader DRAM initialization.

Step 4. Go to the RealView .inc file Worksheet tab and copy and paste this into a text document (make sure to rename the document with a ".inc" file ending); this is ready to use with the RealView development system.

Step 5. This .inc file can also be used as a reference for other debugger tools and bootloaders.

External Use

How To Use Register Configuration RealView .inc file

Note, each spread sheet is for a specific i.MX SoC and DRAM memory type.

• These co inputs va	-							¥		binary setting			How To Use	Register Config	uration / R	ealView .ind	: file 🔪
_	dra	m para	amete	r	I	ns	▶ [clk		within reaiste	d	arameter escription		Register name	Register address (HEX)	Register	
Example tRC: 1. User inputs '55' (in 'ns')		TFAW (1F)	AW)		50			10		CAD00000	several mDDR data sh	eets. However, to of the mDDR initio 10 as it has no aff	alization, recommend to lect on performance or	HW_DRAM_CTL39	0×800E009C	0×0A000000	
2. Tool calculates that 55ns=11clks* 3. Then configures binary setting for register		TMRD (IM	RD)		2			2		82000000	DRAM TMRD paramet of cycles required betw This is the time require mode register. DDR data sheet does timing specifies the wa	er in cycles. Defin wen two mode re d to complete the not have a tINIT p it time after stabl	es the minimum numbe gister write commands r write operation to the arameter however, this e power up and stable	- HW_DRAM_CTL40	0x800E00A0	0×02009C40	 Registe values ar calculate automatica
4. Tool takes all binary settings to	_	TINIT (IIN	- 24	_	2000	00		0000		00009C40	clock before raising CF minimum of 200us. No DRAM TPDEX parame	need to change I					from use inputs
create final register value		TPDEX (t. RCD_INT (t	<u></u>		15			3		00020000	DRAM TRCD parameter CAS delay: in cycles DRAM TRC parameter		nes the DRAM RAS to	HW_DRAW_CTL41	0×800E00A4	0×0002030B	• These
* Clock: 200MHz.		TRC (IR)	C)		55			11		0000000B		nds for the same (for tRP, use the	bank, in cycles. This is				values ar also automatica
clock period: 5ns		MAX (tR/	1		7000			8		00368000	DRAM TRAS_MAX pa maximum row active to DRAM TRAS_MIN part	me, in cycles ameter in cycles:		HW_DRAM_CTL42	0x800E00A8	0×00368008	updated t
Example based on	18003	TRP (17)			15			3	1	00000006	DRAM TRP (single bar DRAM pre-charge com DRAM TRFC parameter	ik) parameter in c mand time: in cy	cles.				"RealView .inc file" ta
MX28		TRFC (R	FC)		110	<u>11</u>		22		00160000	command time, in cycl DRAM TREF parameter cycle (also called tRef maximum time allowed guarantee that a speci sert with a 64ms time specify this parameter this value may have to	es. T in cycles This T in some data si I between auto rei fied number of aut period The DDR in "us" (micro sei be calculated if ti f auto refresh com	is the auto refresh duty heets). This is the fresh commands to to refresh commands are data sheet should conds). In some cases, te DDR data sheet only mands in a 54ms time	HW_DRAM_CTL43	0x000E00AC	0x03160612	
ACTIVE-to-PRECHARGE command		'RAS	40	70,000	42	70,00	0 42	70,000	45	70,000	ns 22					\square	
ACTIVE to ACTIVE/ACTIV TO REFRESH command		١RC	55		58,2	7	60	-	67.5	-	ns		Example	Micron mE	DR dat	a sheet	spec
Active to read or write	delay	¹ RCD	15	-	16.2	-	18	-	22.5	+	ns						

• Changing device information, automatic update to register fields

How To Use Register Configuration RealView .inc file

1. Type in device parameters here Device Information DDR3 Memory type Manufacturer Micron control bit setting bit setting Register Memory part number: MT41J128M16HA-15E MMDC Control Parameter N/A (decimal) Register address Register value (HEX vithin registe Notes name Density of each DDR3 device (Gb): SDE 0 1 80000000 SDE_0: Enable Chip Select 0, set to 0 (disable) or 1 (enable) Number of DRAM devices per SDE 1 -1 40000000 SDE_1: Enable Chip Select 1, set to 0 (disable) or 1 (enable) chip select 4 ROW: number of ROW addresses. NOTE: this value is taken ROW 8 3 Density per chip select (Gb)1: 03000000 from the Device Information table above. Modify this value only in the table above. COL number of Column addresses. NOTE: : this value is taken MDCTL 0x021B0000 0xC31A0000 Number of Chip Selects used² 2 COL 00100000 from the Device Information table above. Modify this value only 1 16 Total DRAM density (Gb) in the table above. BL 1 00080000 BL: Burst length. For DDR3, set to 1 for burst length 8. Number of ROW Addresses² 14 DSIZ: Data bus size. Note: this value is taken from the Device Number of COLUMN DSI7 2 00020000 Information table above. Modify this value only in the table Addresses² 10 above Number of BANKS² Bus Width (input 16, 32, or 64 64 3. Final register setting here bits)2 2. Gets updated here Clock Cycle Freq (MHz)³ 533 Clock Cycle Time (ns) 1.876

Device Information		1. ROW	COLF	Bus width	are no	w changed from above			
Memory type:	DDR3		,			ir enangea nem aberte			
Manufacturer:	someone			1					
Memory part number:	something			control bit setting	bit setting		Register		
Density of each DDR3 device (Gb):	2	MMDC Control Parameter	N/A	(decimal)	within register	-	name	Register address	Register value (HEX
Number of DRAM devices per		SDE_0	-	1	8000000	SDE_0: Enable Chip Select 0, set to 0 (disable) or 1 (enable)			
chip select	4	SDE_1	-	1	4000000	SDE_1: Enable Chip Select 1, set to 0 (disable) or 1 (enable)			
Density per chip select (Gb)1:	8	ROW	-	4	04000000	ROW: number of ROW addresses. NOTE: this value is taken from the Device Information table above. Modify this value only	1		
Number of Chip Selects used ²	2	_				in the table above.	-		
Total DRAM density (Gb)	16	COL	-	2	0020000	COL number of Column addresses. NOTE: : this value is taken from the Device Information table above. Modify this value only in the table above.	MDCTL	0x021B0000	0xC4290000
Number of ROW Addresses ² Number of COLUMN	15	BL	-	1	00080000	BL: Burst length. For DDR3, set to 1 for burst length 8.			
Addresses ² Number of BANKS ²		DSIZ	-	1	00010000	DSIZ: Data bus size. Note: this value is taken from the Device Information table above. Modify this value only in the table above.			
Bus Width (input 16, 32, or 64 bits) ²	32					BTW, these cells	are not to	be touched	either, they
Clock Cycle Freq (MHz) ³	533	2. Gets update	ed here			are automatically	•	o 1	sly entered
Clock Cycle Time (ns)	1.876						parame	eters	

• Another detailed look...

How To Use Register Configuration RealView .inc file

Register setting gets automatically updated

• Let's say on MX6DQ, you had only one chip select populated (CS0)

Before, the MX6DQ register was as follows for the validation board which has DDR3 on both chip selects

MMDC Control Parameter	N/A	control bit setting (decimal)	bit setting within register	Notes	Register name	Register address	Register value (HEX)
SDE_0	-	1	80000000	SDE_0: Enable Chip Select 0, set to 0 (disable) or 1 (enable)			
SDE_1	-	1	40000000	SDE_1: Enable Chip Select 1, set to 0 (disable) or 1 (enable)			
ROW		3	03000000	ROW: number of ROW addresses. NOTE: this value is taken from the Device Information table above. Modify this value only in the table above.			
COL	-	1	00100000	COL number of Column addresses. NOTE: : this value is taken from the Device Information table above. Modify this value only in the table above.	MDCTL	0x021B0000	0xC31A0000
BL	-	1	00080000	BL: Burst length. For DDR3, set to 1 for burst length 8.			
DSIZ	-	2		DSIZ: Data bus size. Note: this value is taken from the Device Information table above. Modify this value only in the table above.			

Now, after the change to enable CS0 only, here's what the register looks like

		control bit setting	bit setting within		Ĩ,	Register	Register
MMDC Control Parameter	N/A	(decimal)	register	Notes	Register name	address	value (HEX)
SDE_0	-	1	80000000	SDE_0: Enable Chip Select 0, set to 0 (disable) or 1 (enable)		\sim	
SDE_1	-	(0)	00000000	SDE_1: Enable Chip Select 1, set to 0 (disable) or 1 (enable)		N	
ROW	-	3	03000000	ROW: number of ROW addresses. NOTE: this value is taken from the Device Information table above. Modify this value only in the table above.			
COL	- /	1	00100000	COL number of Column addresses. NOTE: : this value is taken from the Device Information table above. Modify this value only in the table above.	MDCTL	0x021B0000	0x831A0000
BL	-/	1 🔪	00080000	BL: Burst length. For DDR3, set to 1 for burst length 8.			
DSIZ		2	00020000	DSIZ: Data bus size. Note: this value is taken from the Device Information table above. Modify this value only in the table above.			

Clearing this means we are not enabling chip select 1

External Use

Don't touch. When BL cleared, burst length is 4 which is setting for LPDDR2

DDR Controller Regis	ters					How To Use 🖉 Reg	gister Configuration	RealView .	inc file
DDR Controller Regis Manufacturer: Device Part Number: Clock Freq.: Density per CS (Gb): Chip Selects: Number of Banks: Row address: Column address: etmem /32 etmem /32 etmem /32 etmem /32	Micron MT46H64M16LF- 200MHz	0x0000000 0x0000000 0x0000000 0x0000000	• Va Cor	alues in ye nfiguratior	alization automatically g ellow are automatically n" tab (previous slide) out required in this tab	jenerated per te	emplate	<u>, RealView</u> .	<u>inc file</u>
Milem 732 itmem 732	0x800E005C= 0x800E005C= 0x800E0060= 0x800E0064= 0x800E006C= 0x800E007C= 0x800E007C= 0x800E007C= 0x800E0080= 0x800E0084= 0x800E0084= 0x800E0084= 0x800E008C= 0x800E0080= 0x800E0090= 0x800E0094=	0x00000000 0x0000000 0x0000000 0x00010101 0x000f01 0x000f01 0x00000101 0x00000101 0x00000100 0x00000100 0x01000000 0x01000000 0x01010000 0x0000002		and add	ew slides back, we saw an e d how the tool created the fir dress 0x800E00A4. The val his location.	nal value for this re	egister		
stmem /32 stmem /32 stmem /32 stmem /32 stmem /32 stmem /32	0x800E0094= 0x800E0098= 0x800E009C= 0x800E00A0= 0x800E00A4= 0x800E00A8=	0x06000301 0x06000001 0x0A000000 0x02009C40 0x002030B 0x0036B008	,		DRAM TDDEV perspector in evelop. Thi	in the newsrature evit			
etmer TPC etmer TRCD etmer TRCD	DEX (tXP) INT (tRCD)	- 15 55	2 3 11	00020000 00000300 0000000B	DRAM TPDEX parameter in cycles. Thi time. DRAM TRCD parameter in cycles. Def CAS delay, in cycles. DRAM TRC parameter in cycles. Define between active commands for the same the sum of tRAS+tRP (for tRP, use the tRP_AB for safer margin)	ines the DRAM RAS to es the DRAM period e bank, in cycles. This is	HW_DRAM_CTL41	0x800E00A4	0×000
How To Use	Register Confi	numation DealVis	ew ,inc file 🖉 🖓						_

		control bit setting		Netes	Devision	Register	Register
MMDC Control Parameter	N/A	(decimal)	register	Notes	Register name	address	value (HEX)
SDE_0	-	1	80000000	SDE_0: Enable Chip Select 0, set to 0 (disable) or 1 (enable)			
SDE_1	-	1	4000000	SDE_1: Enable Chip Select 1, set to 0 (disable) or 1 (enable)			
ROW	-	3		ROW: number of ROW addresses. NOTE: this value is taken from the Device Information table above. Modify this value only in the table above.			
COL	-	1	00100000	COL number of Column addresses. NOTE: : this value is taken from the Device Information table above. Modify this value only in the table above.	MDCTL	0x021B0000	0xC31A0000
BL	-	1	00080000	BL: Burst length. For DDR3, set to 1 for burst length 8.			
DSIZ	-	2	00020000	DSIZ: Data bus size. Note: this value is taken from the Device Information table above. Modify this value only in the table above.			

This example from the MX6DQ DDR3 register programming aid illustrates that the register value for MDCTL in the "RealView .inc file" tab is taken directly from the MDCTL Register value cell in the "Register Configuration" tab

Image: setting in the settin		te: this value is taken fr					
124 setmem /32 0x021b0004 = 0x0002036 // MMDC0_MDPDC 125 setmem /32 0x021b0008 = 0x09444040 // MMDC0_MDCFG0 126 setmem /32 0x021b000c = 0x555A7975 // MMDC0_MDCFG0 127 setmem /32 0x021b0010 = 0xFF538F64 // MMDC0_MDCFG1 128 setmem /32 0x021b0014 = 0x01FF00DB // MMDC0_MDCFG2 129 setmem /32 0x021b001c = 0x000881740 // MMDC0_MDSCR_set the 130	ove.	Modify this value only i	n the table				
124 setmem /32 0x021b0004 = 0x0002036 // MMDC0_MDPDC 125 setmem /32 0x021b0008 = 0x09444040 // MMDC0_MDCFG0 126 setmem /32 0x021b000c = 0x555A7975 // MMDC0_MDCFG0 127 setmem /32 0x021b0010 = 0xFF538F64 // MMDC0_MDCFG1 128 setmem /32 0x021b0014 = 0x01FF00DB // MMDC0_MDCFG2 129 setmem /32 0x021b001c = 0x000881740 // MMDC0_MDSCR_set the 130	17.0						\square
125 setmem /32 0x021b0008 = 0x09444040 // MMDC0_MDCTC 126 setmem /32 0x021b000c = 0x555A7975 // MMDC0_MDCFG0 127 setmem /32 0x021b0010 = 0xFF538F64 // MMDC0_MDCFG1 128 setmem /32 0x021b0014 = 0x01FF00DB // MMDC0_MDCFG2 129 setmem /32 0x021b001c = 0x00081740 // MMDC0_MDSCR_set the 130			0x021b0004 =		0x00020036	// MMDC0 N	
126 setmem /32 0x021b000c = 0x555A7975 // MMDC0_MDCFG0 127 setmem /32 0x021b0010 = 0xFF538F64 // MMDC0_MDCFG1 128 setmem /32 0x021b0014 = 0x01FF00DB // MMDC0_MDCFG2 129 setmem /32 0x021b0016 = 0x00081740 // MMDC0_MDCFG2 130 0 0 0x0008000 // MMDC0_MDSCR_set thr 132 setmem /32 0x021b002c = 0x00002622 // MMDC0_MDRVD; recon 133 setmem /32 0x021b0030 = 0x005A0E21 // MMDC0_MDCMDRVD; recon 134 setmem /32 0x021b0000 = 0x00000007 // CS0_END 135 setmem /32 0x021b001c = 0x00000007 // MMDC0_MDSCR_MR2 v 138 setmem /32 0x021b001c = 0x00008033 // MMDC0_MDSCR_MR3 v 139 setmem /32 0x021b001c = 0x004088030 // MMDC0_MDSCR_MR0 v 140 setmem /32 0x021b001c = 0x04008030 // MMDC0_MDSCR_MR0 v 141 setmem /32 0x021b001c = 0x0400803A							
127 setmem /32 0x021b0010 = 0xFF538F64 // MMDC0_MDCFG1 128 setmem /32 0x021b0014 = 0x01FF00DB // MMDC0_MDCFG2 129 setmem /32 0x021b0018 = 0x00081740 // MMDC0_MDSCR_SET 130 0 0 0x0016000 // MMDC0_MDSCR_set thr 131 setmem /32 0x021b001c = 0x00008000 // MMDC0_MDSCR_set thr 132 setmem /32 0x021b002c = 0x0005A0E21 // MMDC0_MDRVD; recon 133 setmem /32 0x021b000 = 0x0005A0E21 // MMDC0_MDCR_NDCR_set thr 134 setmem /32 0x021b001c = 0x00000007 // CS0_END 135 setmem /32 0x021b001c = 0x04088032 // MMDC0_MDSCR_MR2 v 138 setmem /32 0x021b001c = 0x00008033 // MMDC0_MDSCR_MR3 v 139 setmem /32 0x021b001c = 0x04088030 // MMDC0_MDSCR_MR0 v 140 setmem /32 0x021b001c = 0x04088030 // MMDC0_MDSCR_MR0 v 141 setmem /32 0x021b001c = 0x04008	126	setmem /32	0x021b000c =		0x555A7975		
129 setmem /32 0x021b0018 = 0x00081740 // MMDC0_MDMISC 130 131 setmem /32 0x021b001c = 0x0008000 // MMDC0_MDSCR_set the 132 setmem /32 0x021b002c = 0x000026d2 // MMDC0_MDRWD; recon 133 setmem /32 0x021b0030 = 0x005A0E21 // MMDC0_MDRWD; recon 133 setmem /32 0x021b0040 = 0x00000027 // CS0_END 135 setmem /32 0x021b001c = 0x04088032 // MMDC0_MDSCR, MR2 v 136 // Mode register writes 137 setmem /32 0x021b001c = 0x00008033 // MMDC0_MDSCR, MR2 v 138 setmem /32 0x021b001c = 0x000488032 // MMDC0_MDSCR, MR3 v 139 setmem /32 0x021b001c = 0x00408030 // MMDC0_MDSCR, MR1 v 140 setmem /32 0x021b001c = 0x04088030 // MMDC0_MDSCR, MR2 v 143 setmem /32 0x021b001c = 0x0408803A // MMDC0_MDSCR, MR2 v 144 setmem /32 0x021b001c = 0x0408803A // MMDC0_MDSCR, MR3 v <td>127</td> <td>setmem /32</td> <td>0x021b0010 =</td> <td></td> <td>0xFF538F64</td> <td></td> <td></td>	127	setmem /32	0x021b0010 =		0xFF538F64		
130 0x021b001c = 0x00008000 // MMDC0_MDSCR_set the 131 setmem /32 0x021b002c = 0x00002622 // MMDC0_MDRVD; recon 133 setmem /32 0x021b0030 = 0x005A0E21 // MMDC0_MDRVD; recon 133 setmem /32 0x021b0040 = 0x00000027 // CS0_END 135 setmem /32 0x021b0000 = 0xC31A0000 // MMDC0_MDCTL 136 // Mode register writes 0x021b001c = 0x00008033 // MMDC0_MDSCR, MR2 v 138 setmem /32 0x021b001c = 0x00008033 // MMDC0_MDSCR, MR3 v 139 setmem /32 0x021b001c = 0x004088030 // MMDC0_MDSCR, MR1 v 140 setmem /32 0x021b001c = 0x04008030 // MMDC0_MDSCR, MR0 v 141 setmem /32 0x021b001c = 0x04008040 // MMDC0_MDSCR, MR2 v 143 setmem /32 0x021b001c = 0x0408803A // MMDC0_MDSCR, MR2 v 144 setmem /32 0x021b001c = 0x04008803A // MMDC0_MDSCR, MR3 v	128	setmem /32	0x021b0014 =		0x01FF00DB	// MMDC0_N	IDCFG2
131 setmem /32 0x021b001c = 0x00008000 // MMDC0_MDSCB_set the 132 setmem /32 0x021b002c = 0x00026d2 // MMDC0_MDRVD; recon 133 setmem /32 0x021b0030 = 0x005A0E21 // MMDC0_MDRVD; recon 134 setmem /32 0x021b0040 = 0x00000027 // CS0_END 135 setmem /32 0x021b000 = 0xC31A0000 // MMDC0_MDSCR, MR2 v 136 // Mode register writes // MMDC0_MDSCR, MR2 v 138 setmem /32 0x021b001c = 0x00008033 // MMDC0_MDSCR, MR3 v 139 setmem /32 0x021b001c = 0x004088030 // MMDC0_MDSCR, MR1 v 140 setmem /32 0x021b001c = 0x04008000 // MMDC0_MDSCR, MR0 v 141 setmem /32 0x021b001c = 0x04008040 // MMDC0_MDSCR, MR2 v 143 setmem /32 0x021b001c = 0x0408803A // MMDC0_MDSCR, MR2 v 144 setmem /32 0x021b001c = 0x0400803B // MMDC0_MDSCR, MR3 v	129	setmem /32	0x021b0018 =		0x00081740	// MMDC0_N	IDMISC
132 setmem /32 0x021b002c = 0x000026d2 // MMDC0_MDRVD; recon 133 setmem /32 0x021b0030 = 0x005A0E21 // MMDC0_MDOR 134 setmem /32 0x021b0040 = 0x00000027 // CS0_END 135 setmem /32 0x021b0000 = 0xC31A0000 // MMDC0_MDCTL 136 // Mode register writes // // MMDC0_MDSCR, MR2 v 138 setmem /32 0x021b001c = 0x00008033 // MMDC0_MDSCR, MR3 v 139 setmem /32 0x021b001c = 0x00048031 // MMDC0_MDSCR, MR1 v 140 setmem /32 0x021b001c = 0x04088030 // MMDC0_MDSCR, MR0 v 141 setmem /32 0x021b001c = 0x04008040 // MMDC0_MDSCR, ZQ ca 142 0x021b001c = 0x0408803A // MMDC0_MDSCR, MR2 v 143 setmem /32 0x021b001c = 0x0408803A // MMDC0_MDSCR, MR3 v 144 setmem /32 0x021b001c = 0x0408803A // MMDC0_MDSCR, MR3 v	130						
133 setmem /32 0x021b0030 = 0x005A0E21 // MMDC0_MDOR 134 setmem /32 0x021b0040 = 0x00000027 // CS0_END 135 setmem /32 0x021b0000 = 0xC31A0000 // MMDC0_MDCTL 136 // Mode register writes // MMDC0_MDSCR, MR2 v // MMDC0_MDSCR, MR2 v 138 setmem /32 0x021b001c = 0x00008033 // MMDC0_MDSCR, MR3 v 139 setmem /32 0x021b001c = 0x00048031 // MMDC0_MDSCR, MR1 v 140 setmem /32 0x021b001c = 0x04088030 // MMDC0_MDSCR, MR0 v 141 setmem /32 0x021b001c = 0x04088030 // MMDC0_MDSCR, ZQ ca 142 0x021b001c = 0x0408803A // MMDC0_MDSCR, MR2 v 143 setmem /32 0x021b001c = 0x0408803A // MMDC0_MDSCR, MR2 v 144 setmem /32 0x021b001c = 0x0000803B // MMDC0_MDSCR, MR3 v	131	setmem /32	0x021b001c =		0x00008000	// MMDC0_N	IDSCR, set the
134 setmem /32 0x021b0040 = 0x00000027 // C80_END 135 setmem /32 0x021b0000 = 0xC31A0000 // MMDC0_MDCTL 136 // Mode register writes // MMDC0_MDSCR, MR2 v // MMDC0_MDSCR, MR2 v 138 setmem /32 0x021b001c = 0x00008033 // MMDC0_MDSCR, MR3 v 139 setmem /32 0x021b001c = 0x00048031 // MMDC0_MDSCR, MR1 v 140 setmem /32 0x021b001c = 0x04088030 // MMDC0_MDSCR, MR0 v 141 setmem /32 0x021b001c = 0x04088030 // MMDC0_MDSCR, ZQ ca 142 0x021b001c = 0x0408803A // MMDC0_MDSCR, MR2 v 143 setmem /32 0x021b001c = 0x0408803A // MMDC0_MDSCR, MR2 v 144 setmem /32 0x021b001c = 0x0408803A // MMDC0_MDSCR, MR3 v	132	setmem /32	0x021b002c =		0x000026d2	// MMDC0_N	IDRWD; recon
135 setmem /32 0x021b0000 = 0xC31A0000 7/ MMDC0_MDCTL 136 // Mode register writes // MMDC0_MDSCR, MR2 v 137 setmem /32 0x021b001c = 0x04088032 // MMDC0_MDSCR, MR2 v 138 setmem /32 0x021b001c = 0x00008033 // MMDC0_MDSCR, MR3 v 139 setmem /32 0x021b001c = 0x00048031 // MMDC0_MDSCR, MR1 v 140 setmem /32 0x021b001c = 0x09408030 // MMDC0_MDSCR, MR0 v 141 setmem /32 0x021b001c = 0x04008040 // MMDC0_MDSCR, ZQ ca 142 0x021b001c = 0x0408803A // MMDC0_MDSCR, MR2 v 143 setmem /32 0x021b001c = 0x0408803A // MMDC0_MDSCR, MR2 v 144 setmem /32 0x021b001c = 0x0000803B // MMDC0_MDSCR, MR3 v	133	setmem /32	0x021b0030 =		0x005A0E21	// MMDCO_K	IDOR
136 // Mode register writes // MMDC0_MDSCR, MR2 v 137 setmem /32 0x021b001c = 0x04088032 // MMDC0_MDSCR, MR2 v 138 setmem /32 0x021b001c = 0x00008033 // MMDC0_MDSCR, MR3 v 139 setmem /32 0x021b001c = 0x00048031 // MMDC0_MDSCR, MR1 v 140 setmem /32 0x021b001c = 0x09408030 // MMDC0_MDSCR, MR0 v 141 setmem /32 0x021b001c = 0x04008040 // MMDC0_MDSCR, ZQ ca 142 0x021b001c = 0x0408803A // MMDC0_MDSCR, MR2 v 143 setmem /32 0x021b001c = 0x0400803A // MMDC0_MDSCR, MR2 v 144 setmem /32 0x021b001c = 0x0000803B // MMDC0_MDSCR, MR3 v	134	setmem /32	0x021b0040 =	_	0×00000027	// C80_END	
137 setmem /32 0x021b001c = 0x04088032 // MMDC0_MDSCR, MR2 v 138 setmem /32 0x021b001c = 0x00008033 // MMDC0_MDSCR, MR3 v 139 setmem /32 0x021b001c = 0x00048031 // MMDC0_MDSCR, MR1 v 140 setmem /32 0x021b001c = 0x09408030 // MMDC0_MDSCR, MR1 v 141 setmem /32 0x021b001c = 0x04008040 // MMDC0_MDSCR, ZQ ca 142 0x021b001c = 0x0408803A // MMDC0_MDSCR, MR2 v 143 setmem /32 0x021b001c = 0x0408803A // MMDC0_MDSCR, MR2 v 144 setmem /32 0x021b001c = 0x0000803B // MMDC0_MDSCR, MR3 v	135	setmem /32	0x021b0000 =		0xC31A0000	7/ MMDC0_N	IDCTL
138 setmem /32 0x021b001c = 0x00008033 // MMDC0_MDSCR, MR3 v 139 setmem /32 0x021b001c = 0x00048031 // MMDC0_MDSCR, MR1 v 140 setmem /32 0x021b001c = 0x09408030 // MMDC0_MDSCR, MR1 v 141 setmem /32 0x021b001c = 0x04008040 // MMDC0_MDSCR, ZQ ca 142 0x021b001c = 0x0408803A // MMDC0_MDSCR, ZQ ca 143 setmem /32 0x021b001c = 0x0408803A // MMDC0_MDSCR, MR2 v 144 setmem /32 0x021b001c = 0x0000803B // MMDC0_MDSCR, MR3 v	136	// Mode register writes					
139 setmem /32 0x021b001c = 0x00048031 // MMDC0_MDSCR, MR1 v 140 setmem /32 0x021b001c = 0x09408030 // MMDC0_MDSCR, MR0 v 141 setmem /32 0x021b001c = 0x04008040 // MMDC0_MDSCR, ZQ ca 142 0x021b001c = 0x04008040 // MMDC0_MDSCR, ZQ ca 143 setmem /32 0x021b001c = 0x0400803A // MMDC0_MDSCR, MR2 v 144 setmem /32 0x021b001c = 0x0000803B // MMDC0_MDSCR, MR3 v	137	setmem /32	0x021b001c =		0x04088032	// MMDC0_N	IDSCR, MR2 v
140 setmem /32 0x021b001c = 0x09408030 // MMDC0_MDSCR, MR0 v 141 setmem /32 0x021b001c = 0x04008040 // MMDC0_MDSCR, ZQ ca 142 0x021b001c = 0x0400803A // MMDC0_MDSCR, MR2 v 143 setmem /32 0x021b001c = 0x0400803A // MMDC0_MDSCR, MR2 v 144 setmem /32 0x021b001c = 0x0000803B // MMDC0_MDSCR, MR3 v	138	setmem /32	0x021b001c =		0x00008033	// MMDC0_N	IDSCR, MR3 v
141 setmem /32 0x021b001c = 0x04008040 // MMDC0_MDSCR, ZQ ca 142	139	setmem /32	0x021b001c =		0x00048031	// MMDC0_N	IDSCR, MR1 v
142	140	setmem /32	0x021b001c =		0x09408030	// MMDC0_N	IDSCR, MR0 v
143 setmem /32 0x021b001c = 0x0408803A // MMDC0_MDSCR, MR2 v 144 setmem /32 0x021b001c = 0x0000803B // MMDC0_MDSCR, MR3 v	141	setmem /32	0x021b001c =		0x04008040	// MMDC0_N	IDSCR, ZQ ca
144 setmem /32 0x021b001c = 0x0000803B // MMDC0_MDSCR, MR3 v							
145 setmem /32 0x021b001c = 0x00048039 // MMDC0 MDSCR MR1 v							
	145	setmem /32	0x021b001c =		0x00048039	// MMDC0_N	IDSCR, MR1 v

DRAM Register Programming Aid Walkthrough. MX6DQ DDR3 Example (based on DDR3 validation board)

111

-

Instructions Shaded cells may require updating per the DRAM mem register is not provided then it is assumed this parametr though they may be noted as recommended to not char	er is not to be change	For Sa		ded provided in the "Device Information" table of cells, and should not be changed manually On Register Configuration Tab, an unshad means that the value should remain as is a table medicing in these access the sections.	ting. dicates the pically not dicates the n setting r other Automatically Updated Setting ad cell nd should s are that are		
Device Information Memory type: Manufacturer: Memory part number: Density of each DDR3 device (Gb): Number of DRAM devices per chip select Density per chip select (Gb)': Number of Chip Selects used ² Total DRAM density (Gb) Number of ROW Addresses ² Number of COLUMN Addresses ² Number of BANKS ² Bus Width (input 16, 32, or 64 bits) ² Clock Cycle Freq (MHz) ³ Clock Cycle Time (ns) 1. Important: it is necessary to populate this field with the density in calculation. This field is cacluated from the previous two fields. The	DDF Micro MT41J128M 2 4 4 8 2 16 16 14 10 8 64 533 533 533 6bits as it is used later in user can also simply type	on 16HA-15É 6 6 6 6 6	User inputs clock spee "Clock Cycle (ns)" will change accordingly, val used throughout tool	UE (IWR), IWOD). 0.3 - fixed DDR_4_BANK description 0.2 - grammactical corrections 0.1 - initial	n the Register Configuration tab to to file tab ET pad, changed MR1 write 11). with validation scripts ming option	Jal	
as well in this field. 2. Important, these fields need to be filled out correctly as these va settings. 3. Even though i.MX6Q runs at 528MHz, set timings according to 5	lues are used later in this	tool for register	Pull down menu for DS		000 DIBABLED Output driver di 001 2400HM -240 0hm 010 1200HM 120 0hm 011 1200HM 90 0hm 100 800HM 60 0hm 101 480HM 60 0hm 111 480HM 40 0hm		Pad Register value
DRAM Pad Name	Field (i.e. DSE)	Binary Setting	bit setting within register	Notes	111 840HM - 34 Ohm		(HEX)
SDQS[7:0]	DSE	111	00000038	000: output driver disabled 001: Weakest 111: Strongest	IOMUXC_SW_PAD_CTL_F AD_DRAM_SDQS[7:0]	0x020e0518 0x020e050c 0x020e05b8	0x0000038
	DDR_INPUT	1	00000000	0: CMOS mode (recommended) 1: Differential input mode		0x020e05c0 0x020e05ac 0x020e05b4 0x020e0528	
DQM[7:0]	505		00000030	000: output driver disabled 001: Weakest 111: Strongest	IOMUXC_SW_PAD_CTL_F AD_DRAM_DQM[7:0]	0x020e0520 0x020e0514 0x020e0510 0x020e05bc 0x020e05c4	0x00000030
	External	Use 23					

	DDR_INPUT	0	00000000	0: CMOS mode (recommended) 1: Differential input mode	IOMUXC_SV_PAD_CTL_PAD DRAM_SDCLK_0	0x020e0588		
SDCLK_0, SDCLK_1	DSE	110	0000030	000: output driver disabled 001: Weakest 111: Strongest	IOMUXC_SV_PAD_CTL_PAD DRAM_SDCLK_1		0x0000030	
	DDR_SEL	11	00000000	DDR Select Field Select one out of next values for pad: DRAM_RESET. 00 Reserved 01 Reserved 10 LPDDR2 mode (240Dhm driver unit calibration, 240, 120, 80, 60, 48, 40, 32 0hm drive strengths at				UX part" of ramming aid
DRAM_RESET				12V) 11 DDR3 mode (2400hm driver unit calibration, 240, 420, 80, 60, 48, 40, 32 Ohm drive strengths at 1.5V	IOMUXC_SV_PAD_CTL_PAD DRAM_RESET)0x020e057c	0x000C0030	
	DDR_INPUT	0	00000000	0: CMOS mode (recommended) 1: Differential input mode				
	DSE	110 🧲	00000030	000: output driver disabled 001: Weakest 				ds with only ve found we ca
	DDR_INPUT	0	00000000	111: Strongest 0: CMOS mode (recommended) 1: Differential input mode				DSE to 101
	HYS	0	00000000	0: Hysteresis disable (recommended) 1: Hysteresis enable				
SDCKE0, SDCKE1	PUS	0	0000000	Pull Up / Down Config. Field 00: 100KOhm Pull Down (recommended) 01: 47KOhm Pull Up 10: 100KOhm Pull Up 11: 22KOhm Pull Up	IOMUXC_SV_PAD_CTL_PAD DRAM_SDCKE0)		
(DSE (drive strength) configured in CTLDS)	PUE	1	00002000	Pull / Keep Select Field 0: Keeper	IOMUXC_SV_PAD_CTL_PAD		0x00003000	
0.220)	PKE	1	00001000	Pull / Keep Enable Field 0: Pull/Keeper Disabled 1: Pull/Keeper Enabled (recommended)	DRAM_SDCKE1	-		
	ОДТ	000	0000000	1: Full Respect Enabled (Recommended) On Die Termination Field 000: 100 (Recommended) 001:100 Ohm ODT 110:20 Ohm ODT 111 RESERVED				
	DDR_INPUT	0	00000000	0: CMOS mode (recommended) 1: Differential input mode				
	HYS	0	00000000	0: Hysteresis disable (recommended) 1: Hysteresis enable				
	PUS	0	0000000	Pull Up / Down Config. Fi ⁶ ld 00: 100KOhm Pull Down (recommended) 01: 47KOhm Pull Up 10: 100KOhm Pull Up 11: 22KOhm Pull Up				
	PUE	1	00002000	Pull / Keep Select Field 0: Keeper	IOMUXC_SV_PAD_CTL_PAD DRAM_SDODT0)		
SDODT0, SDODT1	PKE	1	00001000	Pull / Keep Enable Field 0: Pull/Keeper Disabled 1: Pull/Keeper Enabled (recommended)	IOMUXC_SV_PAD_CTL_PAD DRAM_SDODT1		0x00003030	
	ODT	000	0000000	On Die Termination Field 000: off (recommended) 001120 Ohm ODT 				
	DSE	110 K	0000030	III has been veided 000: output driver disabled 001: Weakest "" 111: Strongest				

Continuation of "IOMUX part" of

М	lany IO's are ç	grouped together			ster Programming aid		
_							
BODS, B1DS, B2DS, B3DS, B4DS, B5DS, B6DS, B7DS (DRAM data byte groups)	DSE	110	0000030	000: output driver disabled 001: Weakest 111: Strongest	IOMUXC_SW_PAD_CTL_PAD_ DRAM_B(7:0)DS	0x020e0784 0x020e0788 0x020e0794 0x020e079c 0x020e07a0 0x020e07a4 0x020e07a8 0x020e07a8	0×0000030
ADDDS (DRAM Address pads A[15:0] and SDBA[2:0])	DSE	110	0000030	000: output driver disabled 001: Weakest 111: Strongest	IOMUXC_SW_PAD_CTL_PAD_ DRAM_ADDDS	0x020e074c	0x0000030
CTLDS CTLDS (DRAM Control pads CS0, CS1, SDBA2, SDCKE0, SDCKE1, SDWE)	DSE	110	0000030	000: output driver disabled 001: Weakest 111: Strongest	IOMUXC_SW_PAD_CTL_GRP_ CTLDS	0x020e078c	0×00000030
DDRMODE_CTL	DDR_INPUT	1	00020000	DDR / CMOS Input Mode Field Select one out of next values for group: DDRMODE_CTL (Pads: DRAM_SDQS0 DRAM_SDQS1 DRAM_SDQS2 DRAM_SDQS3 DRAM_SDQS4 DRAM_SDQS5 DRAM_SDQS6 DRAM_SDQS7). 0: CMOS input type 1: Differential input mode (recommended)	IOMUXC_SV_PAD_CTL_GRP_ DDRMODE_CTL	0x020e0750	0×00020000
DDRMODE	DDR_INPUT	1	00020000	DDR / CMOS Input Mode Field Select one out of next values for group: DDRMODE (Pads: DRAM_D[63:0]) 0: CMOS input type 1: Differential input mode (recommended)). IOMUXC_SW_PAD_CTL_GRP_ DDRMODE	0x020e0774	0x00020000
DDR_TYPE	DDR_SEL	11	000C0000	DDR Select Field Select one out of next values for group: DDR_TYPE for all DDR address, data, and control pads 00: reserved 01: reserved 10: LPDDR2 mode (2400hm driver unit calibration, 240, 120, 80, 60, 48, 40, 34 0hm drive strengths) at 1.2V power 11: DDR3 mode (2400hm driver unit calibration, 240, 120, 80, 60, 48, 40, 34 Ohr drive strengths) at 1.5V power (required for DDR3)		0x020e0798	0×000C0000
DDRPKE	PKE	0	0000000	Pull / Keep Enable Field for DDR pads 0: Pull/Keeper Disabled (recommended) 1: Pull/Keeper Enabled	IOMUXC_SW_PAD_CTL_GRP_ DDRPKE	0x020e0758	0x0000000

					Jpulateu, we		
			bit setting	need to clear this bit (SDE_1)		Desister	Device
MMDC Control Parameter	N/A	control bit setting (decimal)	within register	Notes	Register name	Register address	Register value (HEX)
SDE_0	-	1	8000000	SDE_0: Enable Chip Select 0, set to 0 (disable) or 1 (enable)			
SDE_1	-	1 📕	40000000	SDE_1: Enable Chip Select 1, set to 0 (disable) or 1 (enable)			
ROW	-	3	0300000	ROW: number of ROW addresses. NOTE: this value is taken from the Device Information table above. Modify this value only in the table above.			
COL	-	1	00100000	COL number of Column addresses. NOTE: : this value is taken from the Device Information table above. Modify this value only in the table above.	MDCTL	0x021B0000	0xC31A0000
BL	-	1	00080000	BL: Burst length. For DDR3, set to 1 for burst length 8.		1	•
DSIZ	-	2	00020000	DSIZ: Data bus size. Note: this value is taken from the Device Information table above. Modify this value only in the table above.	 These are aut from previous 	•	•

MMDC timing parameter (DDR device timing parameter)	value from DDR data sheet (ns)	Clock Cycle or Binary Setting	bit setting within register	Notes	Register name	Register address (HEX)	Register value (HEX)
tCKE	5.625	3	00020000	ItCKSDX This field determines the amount of old	are two separate se	•	
tCKSRX	10	6	00000030	selfrefresh exit. Obtain this value from DDR3 dat first fo	initialization, the se	econd	0x00020036
tCKSRE	10	6	00000006	ItCKSRE - This field determines the amount of clo	s power savings, it at end of initializati	• I \	
PWDT_1	-	5	00005000	Power Down Timer - Chip Select 1. Freescale validation determined a value of 5 was the most optimal. For systems w only one chip select with devices on CS0, thess bits don't app but keeping them set will allow backwards compatibility with systems with two chip selects.		0x021B0004	7
PWDT_0	-	5	00000500	Power Down Timer - Chip Select 0. Freescale validation determined a value of 5 was the most optimal.			0x00025576
BOTH_CS_PD		1 5	00000040	Parallel power down entry to both chip selects. Leave this se that both chip selects will enter power down together. For systems with only one chip select, this bit doesn't apply, but keeping it set will allow backwards compatibility with systems with two chip selects.	so		
BOIII_C3_FD	-		00000040	with two only selects.			

JEDEC standard timing parameters, obtain value from DDR3 data sheet

For Sabre boards with CS1 not populated, we can keep these parameters untouched as they have no adverse affect and will minimize differences between init scripts

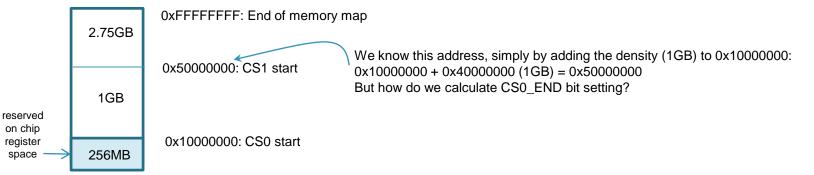
For Sabre boards with CS1 not populated we

tAOFPD	2	2	08000000	tAOFPD - This field determines the time between termination cuircuit starts to turn off the ODT resistance till termination has reached high impedance. Obtain this value from DDR3 data sheet.			
				tAONPD - This field determines the time between termination cuircuit gets out of high impedance and begins to turn on till ODT			
tAONPD	2	2	01000000	resistance are fully on. Obtain this value from DDR3 data sheet.			
				tANPD - Asynchronous ODT to power down entry delay. In DDR3			
			N	should be set to tCWL-1. Obtain this value from DDR3 data sheet.			
tANPD	-	5	00400000	This is also calcuated from MDCGFG1[tCWL].	MDOTC	0x021B0008	0x09444040
				tAXPD - Asynchronous ODT to power down exit delay. In DDR3 should be set to tCWL-1. Obtain this value from DDR3 data sheet.			
tAXPD	-	5	00040000	This is also calcuated from MDCGFG1[tCWL].			
			K	tODTLon - This field determines the delay between ODT signal and			
				the associated RTT, where according to JEDEC standard it equals			1
				WL(write latency) - 2. Therefore, the value that is configured to	These are auto	matically u	pdated
				tODTLon field should correspond the value that is configured to MDCGFG1[tCWL]. Obtain this value from DDR3 data sheet. This is	from other para	meter sett	inas
tODTLon	-	4	00004000	also calcuated from MDCGFG1[tCWL].			
				memory ODT off. Obtain this value from DDR3 data sheet. Usually			
tODT_idle_off	-	4	00000040	just tCWL-2.			
				tRFC - Refresh command to Active or Refresh command time.			
tRFC	160	86	5500000	Obtain this value from DDR3 data sheet.			
tXS	170	91	005A0000	tXS - Exit self refresh to non READ command. Obtain this value from DDR3 data sheet.			
0.0			003,0000	tXP - Exit power down with DLL-on to any valid command. Obtain			
tXP	6	4	00006000	this value from DDR3 data sheet.			
					MDCFG0	0x021B000C	0x555A7975
tXPDLL	24	13	00001800	tXDPLL - Exit precharge power down with DLL frozen to			
CAPULL	24	15	00001800	commands requiring DLL. Obtain this value from DDR3 data sheet. tFAW - Four Active Window (all banks). Obtain this value from			
tFAW	45	24	00000170	DDR3 data sheet.			
tCL	13.5	8	00000005	tCL - CAS Read Latency. Obtain this value from DDR3 data sheet.			

JEDEC standard timing parameters, obtain value from DDR3 data sheet

×			JEDEC	standard timing	parameters, obtain	valu	ie from DDR3 c	lata sheet	
tRCD	13.5	8			· ·				
122	10.5		1000000		iod (same bank). Obtain this value fro	m			
tRP	13.5	8	1C000000	DDR3 data sheet.	sh command period (same bank). Obt	oin			
tRC	49.5	27	03400000	this value from DDR3 data she		am			
					nmand period (same bank). Obtain th	is			
tRAS	36	20	00130000	value from DDR3 data sheet.			NDOFO4	0.00400040	0
					I period. Obtain this value from DDR3	data	MDCFG1	0x021B0010	0xFF538F64
tRPA	-	1	00008000	sheet.	ame bank). Obtain this value from DD	D 2			
tWR	15	8	00000E00	data sheet.	ame bank). Obtain this value from DD	кз			
			00000200		nmand cycle (all banks). Obtain this va	alue			
	-	12			3 mode this field shoud be set to max	۲ (
tMRD			00000160	(tMRD,tMOD).					
tCWL	-	6	00000004	tCWL - CAS Write Latency. Ob	and the second				
tDLLK	-	512	01FF0000	tDLLK - DLL locking time. 512	MMDC pin		Chip select 0 pin	Chip sele	ct 1 pin
tRTP	7.5	4	00000000	tRTP - Internal READ comman	A3	A3		A4	
tRTP	7.5	4	000000C0	bank). Obtain this value from L tWTR - Internal WRITE to REA	A4	A4		A3	
tWTR	7.5	4	00000018	value from DDR3 data sheet.	A5	A5		A6	
				tRRD - Active to Active comma	A6	A6		A5	
tRRD	6	4	0000003	from DDR3 data sheet.		-			
	170	91	005A0000	tXPR - Obtain this value from [A7	A7		A8	
SDE_to_RST RST to CKE	-	13 32	00000E00 00000021	SDE_to_RST RST to CKE	A8	A8		A7	
KOT_IO_CKL	-	32	0000021		80	B0		B1	
		I control bit setting	I bit setting within		R1	181		80	
MMDC Control Parameter	N/A	control bit setting (decimal)	bit setting within register		B1	B1		BO	
MMDC Control Parameter	N/A			CALIB_PER_CS: determines v	which chip select the associated calibr	ation		80	
	N/A		register	CALIB_PER_CS: determines v is targetted to. Set to 0 for CS0	which chip select the associated calibred or 1 for CS1. Note if both chip select:	ation	4	80	
MMDC Control Parameter	N/A 			CALIB_PER_CS: determines v is targetted to. Set to 0 for CS0 populated_recommend to set to	which chip select the associated calibr or 1 for CS1. Note if both chip selects	ation s are	1	80	
	N/A 		register	CALIB_PER_CS: determines v is targetted to. Set to 0 for CS0 populated_recommend to set to ADDR_MIRROR: for DDR3, ac	which chip select the associated calibred or 1 for CS1. Note if both chip select:	ration s are 4],	1	80	
	N/A -		register	CALIB_PER_CS: determines v is targetted to. Set to 0 for CS0 populated_recommend to set tr ADDR_MIRROR: for DDR3, ac [A5,A6], [A7,A8], [B0,B1] are su routing of the DDR device on C	which chip select the associated calib or 1 for CS1. Note if both chip select of dress bits in the following pairs [A3,A wapped from the MMDC to CS1 to aid S1. As DDR devices on CS1 are plac	ation s are [4], I in ced on	Needs to align		d lavout
	N/A -		register	CALIB_PER_CS: determines v is targetted to. Set to 0 for CS0 populated_recommend_to_set to ADDR_MIRROR: for DDR3, ac [A5,A6], [A7,A8], [B0,B1] are su routing of the DDR device on C the opposite side of the board	which chip select the associated calib or 1 for CS1. Note if both chip select on Idress bits in the following pairs [A3,A wapped from the MMDC to CS1 to aic S1. As DDR devices on CS1 are plac from CS0, swapping these signals aid	ration s are 4], l in ced on s in	Needs to align	n with boar	
CALIB PER CS	N/A 		<u>register</u>	CALIB_PER_CS: determines v is targetted to. Set to 0 for CS0 populated recommend to set it ADDR_MIRROR: for DDR3, ac [A5,A6], [A7,A8], [B0,B1] are so routing of the DDR device on C the opposite side of the board I the board routing. If the board	which chip select the associated calibit or 1 for CS1. Note if both chip select: o defress bits in the following pairs [A3,A wapped from the MMDC to CS1 to aic cS1. As DDR devices on CS1 are plac from CS0, swapping these signals aid enables this feature and routes these	ration s are 4], l in ced on ls in	•	n with boar	
	N/A - -		register	CALIB_PER_CS: determines v is targetted to. Set to 0 for CS0 populated recommend to set to ADDR_MIRROR: for DDR3, ac [A5,A6], [A7,A8], [B0,B1] are su routing of the DDR device on C the opposite side of the board f the board routing. If the board signals accordingly, then set th	which chip select the associated calib or 1 for CS1. Note if both chip select on Idress bits in the following pairs [A3,A wapped from the MMDC to CS1 to aic S1. As DDR devices on CS1 are plac from CS0, swapping these signals aid	ration s are 4], l in ced on ls in	Sabre boards	n with boar don't popu	
CALIB PER CS	N/A - - -		<u>register</u>	CALIB_PER_CS: determines v is targetted to. Set to 0 for CS0 populated_recommend to set it ADDR_MIRROR: for DDR3, ac [A5,A6], [A7,A8], [B0,B1] are sv routing of the DDR device on C the opposite side of the board signals accordingly, then set th LHD. Latency hiding disable. R latency hiding and improve per	which chip select the associated calibi- or 1 for CS1. Note if both chip select: on deress bits in the following pairs [A3,A wapped from the MMDC to CS1 to aid S1. As DDR devices on CS1 are place from CS0, swapping these signals aid enables this feature and routes these is bit. Otherwise, this bit should be de ecommend to clear this bit to enable formance.	ration s are 4], l in ced on ls in eared.	•	n with boar don't popu	
CAUB PER CS	N/A 	(decimal)	register	CALIB_PER_CS: determines v is targetted to. Set to 0 for CS0 populated recommend to set it ADDR_MIRROR: for DDR3, ac [A5,A6], [A7,A8], [B0,B1] are sv routing of the DDR device on C the opposite side of the board I the board routing. If the board signals accordingly, then set th CHD: Latency finding of sable. R latency hiding and improve per WALAT: Write Additional latence	which chip select the associated calibit or 1 for CS1. Note if both chip select: a0 defress bits in the following pairs [A3,A wapped from the MMDC to CS1 to air cS1. As DDR devices on CS1 are place from CS0, swapping these signals air enables this feature and routes these is bit. Otherwise, this bit should be cle recommend to clear this bit to enable formance. cy. Recommend to clear these bits. Pl	ration s are 4], L in ced on ls in eared.	Sabre boards	n with boar don't popu	
CAUB PER CS	N/A 	(decimal)	register	CALIB_PER_CS: determines v is targetted to. Set to 0 for CS0 populated, recommend to set it ADDR_MIRROR: for DDR3, ac [A5,A6], [A7,A8], [B0,B1] are su routing of the DDR device on C the opposite side of the board signals accordingly, then set th CHD. Latency hiding disable. R latency hiding and improve per WALAT: Write Additional latence board design should ensure this	which chip select the associated calibits on 1 for CS1. Note if both chip select on dress bits in the following pairs [A3,A wapped from the MMDC to CS1 to aic (S1. As DDR devices on CS1 are plac from CS0, swapping these signals aid enables this feature and routes these is bit. Otherwise, this bit should be cle recommend to clear this bit to enable formance. cy. Recommend to clear these bits. Pri at the DDR3 devices are placed close	ation s are 4], Lin bed on ls in beared.	Sabre boards CS1, so clear	with boar don't popu this bit	ulate
ADDR_MIRROR	N/A 	(decimal)	register 00000000 00080000 00000000	CALIB_PER_CS: determines v is targetted to. Set to 0 for CS0 nopulated_recommend to set it ADDR_MIRROR: for DDR3, ac [A5,A6], [A7,A8], [B0,B1] are su routing of the DDR device on C the opposite side of the board signals accordingly, then set th CHD. Latency hiding oisable. R latency hiding and improve per WALAT: Write Additional latent board design should ensure the enough to the MMDC to ensure	which chip select the associated calibit or 1 for CS1. Note if both chip select: a0 defress bits in the following pairs [A3,A wapped from the MMDC to CS1 to air cS1. As DDR devices on CS1 are place from CS0, swapping these signals air enables this feature and routes these is bit. Otherwise, this bit should be cle recommend to clear this bit to enable formance. cy. Recommend to clear these bits. Pl	ation s are 4], Lin bed on ls in beared.	Sabre boards	n with boar don't popu	
CAUB PER CS	N/A 	(decimal)	register	CALIB_PER_CS: determines v is targetted to. Set to 0 for CS0 populated_recommend to set ti ADDR_MIRROR: for DDR3, ac [A5,A6], [A7,A8], [B0,B1] are sv routing of the DDR device on C the opposite side of the board signals accordingly, then set th LHD. Latency hiding disable. R latency hiding and improve per WALAT: Write Additional latence board design should ensure the enough to the MMDC to ensure than 1 cycle.	which chip select the associated calibits on 1 for CS1. Note if both chip select on dress bits in the following pairs [A3,A wapped from the MMDC to CS1 to aic (S1. As DDR devices on CS1 are plac from CS0, swapping these signals aid enables this feature and routes these is bit. Otherwise, this bit should be cle recommend to clear this bit to enable formance. cy. Recommend to clear these bits. Pri at the DDR3 devices are placed close	ation s are 4], l in sed on s in sared.	Sabre boards CS1, so clear	with boar don't popu this bit	ulate
ADDR_MIRROR LHD WALAT BI_ON	N/A 	(decimal) 0 1 0 0	register 00000000 00080000 00000000 00000000 000000	CALIB_PER_CS: determines v is targetted to. Set to 0 for CSO opulated_recommend to set in ADDR_MIRROR: for DDR3, ac [A5,A6], [A7,A8], [B0,B1] are su routing of the DDR device on C the opposite side of the board is the board routing. If the board signals accordingly, then set the CHD: Latency hiding onsable. R latency hiding and improve per WALAT: Write Additional latence board design should ensure the enough to the MMDC to ensure than 1 cycle. BL_ON: Bank Interleaving On. I interleaving; improves perform	which chip select the associated calibits on 1 for CS1. Note if both chip selects on dress bits in the following pairs [A3,A wapped from the MMDC to CS1 to aic (S1. As DDR devices on CS1 are place from CS0, swapping these signals aid enables this feature and routes these is bit. Otherwise, this bit should be cle eccommend to clear these bits. Pi at the DDR3 devices are placed close at the shew between CLK and DQS is Recommend to set this bit to enable b ance.	ation s are 4], l in sed on s in sared.	Sabre boards CS1, so clear	with boar don't popu this bit	ulate
ADDR_MIRROR LHD WALAT	N/A 	(decimal)	register	CALIB_PER_CS: determines v is targetted to. Set to 0 for CS0 populated_recommend to set it ADDR_MIRROR: for DDR3, ac [A5,A6], [A7,A8], [B0,B1] are su routing of the DDR device on C the opposite side of the board of the board routing. If the board signals accordingly, then set th CHD. Latency hiding disable: R latency hiding and improve per WALAT: Write Additional latence board design should ensure the enough to the MMDC to ensure than 1 cycle. BI_ON: Bank Interleaving On. I interleaving; improves performs Set to 0; not applicable to DDR	which chip select the associated callob or 1 for CS1. Note if both chip select: on dress bits in the following pairs [A3,A wapped from the MMDC to CS1 to aic S1. As DDR devices on CS1 are plac from CS0, swapping these signals aid enables this feature and routes these is bit. Otherwise, this bit should be cle ecommend to clear this bit to enable formance. cy. Recommend to clear these bits. Pi at the DDR3 devices are placed close to the shew between CLK and DQS is Recommend to set this bit to enable b ance. 3.	ation s are 4], l in zed on ls in zared.	Sabre boards CS1, so clear	with boar don't popu this bit	ulate
ADDR_MIRROR LHD WALAT BI_ON LPDDR2_S2	N/A 	(decimal) 0 1 0 0 1 0	register 00000000 00080000 00000000 00000000 000000	CALIB_PER_CS: determines v is targetted to. Set to 0 for CS0 populated, recommend to set to ADDR_MIRROR: for DDR3, ac [A5,A6], [A7,A8], [B0,B1] are su routing of the DDR device on C the opposite side of the board the board routing. If the board signals accordingly, then set th LHD. Latency hiding disable. R latency hiding and improve per WALAT: Write Additional latency board design should ensure the enough to the MMDC to ensure than 1 cycle. BI_ON: Bank Interleaving On. I interleaving; improves performs Set to 0; not applicable to DDR MIF3_MODE: Command predi	which chip select the associated calibits on 1 for CS1. Note if both chip selects on dress bits in the following pairs [A3,A wapped from the MMDC to CS1 to aic (S1. As DDR devices on CS1 are place from CS0, swapping these signals aid enables this feature and routes these is bit. Otherwise, this bit should be cle eccommend to clear these bits. Pi at the DDR3 devices are placed close at the shew between CLK and DQS is Recommend to set this bit to enable b ance.	ation s are 4], l in zed on ls in zared.	Sabre boards CS1, so clear	with boar don't popu this bit	ulate
ADDR_MIRROR LHD WALAT BI_ON LPDDR2_S2 MIF3_MODE	N/A 	(decimal) 0 1 0 0 1 0 1 0 3	register 00000000 00080000 00000000 00000000 000000	CALIB_PER_CS: determines v is targetted to. Set to 0 for CS0 populated_recommend to set ti ADDR_MIRROR: for DDR3, ac [A5,A6], [A7,A8], [B0,B1] are su routing of the DDR device on C the opposite side of the board signals accordingly, then set th LHD. Larency hiding disable. R latency hiding and improve per WALAT: Write Additional latent board design should ensure the enough to the MMDC to ensure than 1 cycle. BI_ON: Bank Interleaving On. f interleaving; improves perform Set to 0; not applicable to DDR MIF3_MODE: Command predii performance.	which chip select the associated callob or 1 for CS1. Note if both chip select: on deress bits in the following pairs [A3,A wapped from the MMDC to CS1 to aid SS1. As DDR devices on CS1 are place irom CS0, swapping these signals aid enables this feature and routes these is bit. Otherwise, this bit should be cle ecommend to clear this bit to enable formance. cy. Recommend to clear these bits. Pl at the DDR3 devices are placed close to the bDR3 devices are placed close to the shew between CLK and DQS is Recommend to set this bit to enable b ance. 3. ction working mode; set to 0x3 for opt	ation s are 4], l in sed on s in pared. roper less ank imal	Sabre boards CS1, so clear	with boar don't popu this bit	ulate
ADDR_MIRROR LHD WALAT BI_ON LPDDR2_S2	N/A 	(decimal) 0 1 0 0 1 0	register 00000000 00080000 00000000 00000000 000000	CALIB_PER_CS: determines v is targetted to. Set to 0 for CS0 populated, recommend to set it ADDR_MIRROR: for DDR3, ac [A5,A6], [A7,A8], [B0,B1] are su routing of the DDR device on C the opposite side of the board of the board routing. If the board signals accordingly, then set th CHD. Latency hiding disable. R latency hiding and improve per WALAT: Write Additional latence board design should ensure thi- enough to the MMDC to ensure than 1 cycle. BL_ON: Bank Interleaving On. I interleaving; improves performs Set to 0; not applicable to DDR MIF3_MODE: Command predi- performance. RALAT: Read Additional Laten	which chip select the associated calibits on 1 for CS1. Note if both chip selects on dress bits in the following pairs [A3,A wapped from the MMDC to CS1 to aic (S1. As DDR devices on CS1 are placed from CS0, swapping these signals aid enables this feature and routes these is bit. Otherwise, this bit should be cle recommend to clear these bits. Pri at the DDR3 devices are placed close a the shew between CLK and DQS is Recommend to set this bit to enable b ance. 3. ction working mode; set to 0x3 for opti- cy. Set to 0x5 for optimal performance	ation s are 4], lin zed on ls in <u>sared.</u> less ank imal	Sabre boards CS1, so clear	o with boar don't popu this bit 0x021B0018	0x00081740
ADDR_MIRROR LHD WALAT BI_ON LPDDR2_S2 MIF3_MODE	N/A 	(decimal) 0 1 0 0 1 0 1 0 3	register 00000000 00080000 00000000 00000000 000000	CALIB_PER_CS: determines v is targetted to. Set to 0 for CSO nopulated_recommend to set it ADDR_MIRROR: for DDR3, ac [A5,A6], [A7,A8], [B0,B1] are su routing of the DDR device on C the opposite side of the board of the board routing. If the board signals accordingly, then set the CHD: Latency finding disable: R latency hiding and improve per WALAT: Write Additional latence board design should ensure the enough to the MMDC to ensure than 1 cycle. BI_ON: Bank Interleaving On. I interleaving; improves performa Set to 0; not applicable to DDR MIF3_MODE: Command predii performance. RALAT: Read Additional Latence DDR_4_BANK: set to 0 for 8 b	which chip select the associated calib or 1 for CS1. Note if both chip select on dress bits in the following pairs [A3,A wapped from the MMDC to CS1 to aic (S1. As DDR devices on CS1 are plac from CS0, swapping these signals aid enables this feature and routes these is bit. Otherwise, this bit should be cle eccommend to clear these bits. Pi at the DDR3 devices are placed close a the shew between CLK and DQS is Recommend to set this bit to enable b ance. 3. ction working mode; set to 0x3 for opt cy. Set to 0x5 for optimal performance anks, 1 for 4 banks. NOTE: this value	ation s are 4], lin sed on s in pared. less ank imal a: is	Sabre boards CS1, so clear	o with boar don't popu this bit 0x021B0018	0x00081740
ADDR_MIRROR LHD WALAT BI_ON LPDDR2_S2 MIF3_MODE	N/A 	(decimal) 0 1 0 0 1 0 1 0 3	register 00000000 00080000 00000000 00000000 000000	CALIB_PER_CS: determines v is targetted to. Set to 0 for CSO nopulated_recommend to set it ADDR_MIRROR: for DDR3, ac [A5,A6], [A7,A8], [B0,B1] are su routing of the DDR device on C the opposite side of the board of the board routing. If the board signals accordingly, then set the CHD: Latency finding disable: R latency hiding and improve per WALAT: Write Additional latence board design should ensure the enough to the MMDC to ensure than 1 cycle. BI_ON: Bank Interleaving On. I interleaving; improves performa Set to 0; not applicable to DDR MIF3_MODE: Command predii performance. RALAT: Read Additional Latence DDR_4_BANK: set to 0 for 8 b	which chip select the associated calibits on 1 for CS1. Note if both chip selects on dress bits in the following pairs [A3,A wapped from the MMDC to CS1 to aic (S1. As DDR devices on CS1 are placed from CS0, swapping these signals aid enables this feature and routes these is bit. Otherwise, this bit should be cle recommend to clear these bits. Pri at the DDR3 devices are placed close a the shew between CLK and DQS is Recommend to set this bit to enable b ance. 3. ction working mode; set to 0x3 for opti- cy. Set to 0x5 for optimal performance	ation s are 4], lin sed on s in pared. less ank imal a: is	Sabre boards CS1, so clear MDMISC	with boar don't popu this bit 0x021B0018	ulate 0x00081740 arameter
CALIB_PER_CS ADDR_MIRROR LHD WALAT BI_ON LPDDR2_S2 MIF3_MODE RALAT DDR_4_BANK DDR_TYPE	N/A 	(decimal) 0 1 0 0 1 0 1 0 3 5 0 0 0 0	register 00000000 00080000 00000000 00000000 000000	CALIB_PER_CS: determines v is targetted to. Set to 0 for CS0 nopulated_recommend to set it ADDR_MIRROR: for DDR3, ac [A5,A6], [A7,A8], [B0,B1] are su routing of the DDR device on C the opposite side of the board it the board routing. If the board signals accordingly, then set th CHD: Latency hiding disable: R latency hiding and improve per WALAT: Write Additional latence board design should ensure the enough to the MMDC to ensure than 1 cycle. BL_ON: Bank Interleaving On. F interleaving; improves perform Set to 0; not applicable to DDR MIF3_MODE: Command predii performance. RALAT: Read Additional Laten DDR_4_BANK: set to 0 for 8 bit taken from the Device Informat the table above. DDR3 mode - set to 0. Do not	which chip select the associated calibi- or 1 for CS1. Note if both chip select: a 0 dress bits in the following pairs [A3,A wapped from the MMDC to CS1 to aic (S1. As DDR devices on CS1 are plac from CS0, swapping these signals aid enables this feature and routes these is bit. Otherwise, this bit should be cle eccommend to clear these bits. Pi at the DDR3 devices are placed close the shew between CLK and DQS is Recommend to set this bit to enable b ance. 3. ction working mode; set to 0x3 for opt cy. Set to 0x5 for optimal performance anks, 1 for 4 banks. NOTE: this value ion table above. Modify this value onl change.	ation s are 4], lin sed on s in pared. less ank imal a: is	Sabre boards CS1, so clear	with boar don't popu this bit 0x021B0018	ulate 0x00081740 arameter
ADDR_MIRROR LHD WALAT BI_ON LPDDR2_S2 MIF3_MODE RALAT DDR_4_BANK	- - - - - - - - - - - - - - - - - - -	(decimal) 0 1 0 0 1 0 1 0 3 5 0	register 00000000 00080000 00000000 00000000 000000	CALIB_PER_CS: determines v is targetted to. Set to 0 for CSO populated_recommend to set to ADDR_MIRROR: for DDR3, ac [A5,A6], [A7,A8], [B0,B1] are su routing of the DDR device on C the opposite side of the board the board routing. If the board signals accordingly, then set th LHD. Latency hiding disable. R latency hiding and improve per WALAT: Write Additional latent board design should ensure this enough to the MMDC to ensure than 1 cycle. BL_ON: Bank Interleaving On. I interleaving; improves perform Set to 0; not applicable to DDR MIF3_MODE: Command predii performance. RALAT: Read Additional Latent DDR_4_BANK: set to 0 for 8 b taken from the Device Informat the table above.	which chip select the associated calibi- or 1 for CS1. Note if both chip select: a 0 dress bits in the following pairs [A3,A wapped from the MMDC to CS1 to aic (S1. As DDR devices on CS1 are plac from CS0, swapping these signals aid enables this feature and routes these is bit. Otherwise, this bit should be cle eccommend to clear these bits. Pi at the DDR3 devices are placed close the shew between CLK and DQS is Recommend to set this bit to enable b ance. 3. ction working mode; set to 0x3 for opt cy. Set to 0x5 for optimal performance anks, 1 for 4 banks. NOTE: this value ion table above. Modify this value onl change.	ation s are 4], lin sed on s in pared. less ank imal a: is	Sabre boards CS1, so clear MDMISC	with boar don't popu this bit 0x021B0018	ulate 0x00081740 arameter

Because this is a dedicated DDR3 programming aid, these values are pre-set and not to be changed


MMDC Parameter	Calculated End Address (starting at offset 0x10000000)	control bit setting (decimal)	bit setting within register	Notes	Register name	Register address	Register (HEX
						-	
				Note: DO NOT change the values directly in these cells, instead, program the Density of			
				each DDR device and number of devices in the cells at the top of the page. End Address			
				is calculated from cells above: Density of each DDR device multiplies by the number of	MDASP	0x021B0040	0x00000
				devices per chip select, then add offset of 256MB. Note that the total DDR density on CS0			
CS0 END	0	20	0000027	is offset by 0x1000000, which is the starting address of the CS0 memory region. Hence the CS0 END is the sum of the DDR density on CS0 with offset 0x10000000.			
CSU_END	0x5000000	39	0000027	Ine CS0_END is the sum of the DDR density on CS0 with dirset 0x10000000.			
			bit setting within				Register
MMDC Control Parameter	N/A	control bit setting (decimal)	register	Notes	Register name	Register address	(HE
1		i i		On chip ODT byte3 resistor- This field determines the Rtt_Nom of the on chip ODT byte3		i i	1
				resistor during read accesses. For x64 configuration, this applies to byte 7 with register			
				address at 0x021B4818.			
				000 Rtt Nom Disabled.			
	1			001 Rtt Nom 120 Ohm/75 Ohm			
	1			010 Rtt_Nom 60 Ohm/150 Ohm (default setting for FSL boards)			
	1			011 Rtt_Nom 40 Ohm/50 Ohm			1
	1			100 Rtt_Nom 30 Ohm/37.5 Ohm			
	1			101 Rtt Nom 24 Ohm/30 Ohm			1
	1			110 Rtt Nom 20 Ohm/25 Ohm			
ODT3 INT RES		1	00020000	111 Rtt Nom 17 Ohm/21 Ohm			
		1	00020000	On chip ODT byte2 resistor - This field determines the Rtt_Nom of the on chip ODT byte2			
	1						
	1		00000000	resistor during read accesses. For x64 configuration, this applies to byte 6 with register		1	1
ODT2_INT_RES		1	00002000	address at 0x021B4818.			
	1			On chip ODT byte1 resistor - This field determines the Rtt_Nom of the on chip ODT byte1			1
	1			resistor during read accesses. For x64 configuration, this applies to byte 5 with register		1	1
ODT1_INT_RES		1	00000200	address at 0x021B4818.			1
	1			On chip ODT byte0 resistor - This field determines the Rtt_Nom of the on chip ODT byte0			
	1			resistor during read accesses. For x64 configuration, this applies to byte 4 with register			
ODT0_INT_RES		1	0000020	address at 0x021B4818.			
	1			Active read CS ODT enable. The bit determines if ODT pin of the active CS will be			
	1			asserted during read accesses.	\ \		
	1			0 Active CS ODT pin is disabled during read access.	\		
	1			1 Active CS ODT pin is enabled during read access.		0x021B0818	
ODT_RD_ACT_EN		0	00000000	This is generally not set for Freescale boards	MPODTCTRL	0102100010	0x0001
				Inactive read CS ODT enable. The bit determines if ODT pin of the inactive CS will be	WFODIGIRE	0x021B4818	0,0001
	1			asserted during read accesses.		0x02104010	
	1			0 Inactive CS ODT pin is disabled during read accesses to other CS.			
	1			1 Inactive CS ODT pin is enabled during read accesses to other CS.			
	1			For Freescale boards with devices on both chip selects, this bit is generally set as the			
	1			board layout considers termination applied for the non-active chip select device. For			
	1			boards with a device on only one chip select, this bit can be cleared, however, leaving it			
ODT_RD_PAS_EN	-	1	00000004	set should not cause any issues.		1	1
				Active write CS ODT enable. The bit determines if ODT pin of the active CS will be			1
	1			asserted during write accesses.			1
	1			0 Active CS ODT pin is disabled during write access.			1
	1			1 Active CS ODT pin is enabled during write access.	1	1	1
				For Freescale boards with devices on both chip selects, this bit is generally set. In some	I		
	1			cases, the board may be designed to account for the termination of only the other	/ /	1	1
1	1			(passive) device during writes, hence this bit can be cleared. However, even in such a	/	1	1
	1			case, leaving it set does not cause any issues. For boards with only one chip select	/		
		1	0000002	populated, it is recommended to set this bit. Hence, by default, this bit remains set.	/	1	1
ODT_WR_ACT_EN	1				/	1	1
ODT_WR_ACT_EN	1			Inactive write CS ODT enable. The bit determines if ODT pin of the inactive CS will be		1	1
ODT_WR_ACT_EN				Inactive write CS ODT enable. The bit determines if ODT pin of the inactive CS will be asserted during write accesses.	/		
ODT_WR_ACT_EN				asserted during write accesses.	/		
ODT WR ACT EN				asserted during write accesses. 0 Inactive CS ODT pin is disabled during write accesses to other CS.	/		
ODT_WR_ACT_EN				asserted during write accesses. 0 Inactive CS ODT pin is disabled during write accesses to other CS. 1 Inactive CS ODT pin is enabled during write accesses to other CS.			
ODT WR ACT EN				asserted during write accesses. 0 Inactive CS ODT pin is disabled during write accesses to other CS. 1 Inactive CS ODT pin is enabled during write accesses to other CS. For Freescale boards with devices on both chip selects, this bit is generally set as the			
ODT WR ACT EN				asserted during write accesses. 0 Inactive CS ODT pin is disabled during write accesses to other CS. 1 Inactive CS ODT pin is enabled during write accesses to other CS. For Freescale boards with devices on both chip selects, this bit is generally set as the board layout considers termination applied for the non-active chip select device. For			
ODT WR ACT EN		1	00000001	asserted during write accesses. 0 Inactive CS ODT pin is disabled during write accesses to other CS. 1 Inactive CS ODT pin is enabled during write accesses to other CS. For Freescale boards with devices on both chip selects, this bit is generally set as the			
ODT VIR PAS EN		1		asserted during write accesses. 0 Inactive CS ODT pin is disabled during write accesses to other CS. 1 Inactive CS ODT pin is enabled during write accesses to other CS. For Freescale boards with devices on both chip selects, this bit is generally set as the board layout considers termination applied for the non-active chip select device. For boards with a device on only one chip select, this bit can be cleared, however, leaving it set should not cause any issues.			
ODT VIR PAS EN	alculated fr	om the "density		asserted during write accesses. 0 Inactive CS ODT pin is disabled during write accesses to other CS. 1 Inactive CS ODT pin is enabled during write accesses to other CS. For Freescale boards with devices on both chip selects, this bit is generally set as the board layout considers termination applied for the non-active chip select device. For boards with a device on only one chip select, this bit can be cleared, however, leaving it set should not cause any issues.			
ODT WR PAS EN			parameter	asserted during write accesses. 0 Inactive CS ODT pin is disabled during write accesses to other CS. 1 Inactive CS ODT pin is enabled during write accesses to other CS. For Freescale boards with devices on both chip selects, this bit is generally set as the board layout considers termination applied for the non-active chip select device. For boards with a device on only one chip select, this bit can be cleared, however, leaving it set should not cause any issues. The per chip select "(cell C21).	Mara	dotaile of the	
ODT WR PAS EN			parameter	asserted during write accesses. 0 Inactive CS ODT pin is disabled during write accesses to other CS. 1 Inactive CS ODT pin is enabled during write accesses to other CS. For Freescale boards with devices on both chip selects, this bit is generally set as the board layout considers termination applied for the non-active chip select device. For boards with a device on only one chip select, this bit can be cleared, however, leaving it set should not cause any issues. The per chip select "(cell C21).	More	details of th	is in tl
odt WR PAS EN This gets o You can c	lick on the c	ells to see the fo	parameter ollowing fo	asserted during write accesses. 0 Inactive CS ODT pin is disabled during write accesses to other CS. 1 Inactive CS ODT pin is enabled during write accesses to other CS. For Freescale boards with devices on both chip selects, this bit is generally set as the board layout considers termination applied for the non-active chip select device. For boards with a device on only one chip select, this bit can be cleared, however, leaving it set should not cause any issues. The per chip select "(cell C21). rmulas:	More		is in tl
odt WR PAS EN This gets o You can c	lick on the c	ells to see the fo	parameter ollowing fo	asserted during write accesses. 0 Inactive CS ODT pin is disabled during write accesses to other CS. 1 Inactive CS ODT pin is enabled during write accesses to other CS. For Freescale boards with devices on both chip selects, this bit is generally set as the board layout considers termination applied for the non-active chip select device. For boards with a device on only one chip select, this bit can be cleared, however, leaving it set should not cause any issues. The per chip select "(cell C21).	More	details of th next slide	is in ti
ODT VIR PAS EN This gets of You can c ="0x"&DE	lick on the c EC2HEX(((ells to see the for 221*1024*102	parameter ollowing fo 4*1024)/	asserted during write accesses. 0 Inactive CS ODT pin is disabled during write accesses to other CS. 1 Inactive CS ODT pin is enabled during write accesses to other CS. For Freescale boards with devices on both chip selects, this bit is generally set as the board solution considers termination applied for the non-active chip select device. For boards with a device on only one chip select, this bit can be cleared, however, leaving it set should not cause any issues. r per chip select "(cell C21). rmulas: '8+ 256*1024*1024), 8)	More		is in ti
ODT VIR PAS EN This gets of You can c ="0x"&DE	lick on the c EC2HEX(((ells to see the for 221*1024*102	parameter ollowing fo 4*1024)/	asserted during write accesses. 0 Inactive CS ODT pin is disabled during write accesses to other CS. 1 Inactive CS ODT pin is enabled during write accesses to other CS. For Freescale boards with devices on both chip selects, this bit is generally set as the board layout considers termination applied for the non-active chip select device. For boards with a device on only one chip select, this bit can be cleared, however, leaving it set should not cause any issues. The per chip select "(cell C21). rmulas:	More		is in t
ODT VIR PAS EN This gets of You can c ="0x"&DE	lick on the c EC2HEX((((0*C20*1024	ells to see the for 221*1024*102	parameter ollowing fo 4*1024)/	asserted during write accesses. 0 Inactive CS ODT pin is disabled during write accesses to other CS. 1 Inactive CS ODT pin is enabled during write accesses to other CS. For Freescale boards with devices on both chip selects, this bit is generally set as the board solution considers termination applied for the non-active chip select device. For boards with a device on only one chip select, this bit can be cleared, however, leaving it set should not cause any issues. r per chip select "(cell C21). rmulas: '8+ 256*1024*1024), 8)	More		is in tl

• MDASP: CS0_END defines the <u>absolute</u> last address associated with CS0 with increments of 256Mb (32MB) CS0_END bit settings:

<u>Register bit setting</u> 0000000 - 256Mb(32MB) 0000001 - 512Mb 0000010 - 768Mb . . . 0011111 - 8Gb (1GB) 0111111 - 16Gb (2GB) 1111111 - 32Gb (4GB)

> Note, these offsets start from address 0x0, in general CS0 starts at 0x10000000; these are not offsets from 0x10000000!

- > So, a CS0_END setting of 0000000 means that CS0 ends at 0x02000000 (before it begins).. Yeah, this setting is meaningless
 - Actually, any setting from 0000000 to 0000111 is meaningless (0000111 is 256MB (2Gb) which is 0x10000000)
 - Example, assume there is 1GB (8Gbits) of DDR3 memory on CS0

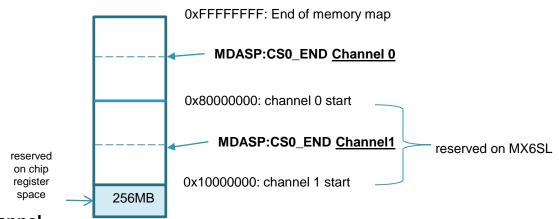
To calculate CS0_END setting, first remember this is the absolute address starting from 0x0.

Next, as seen in the figure above, calculate the end address of CS0 by adding the DRAM density to 0x10000000. Now that we have the end (absolute) address, take this value and divide by 256MB (32MB) then subtract 1 (since CS0_END = 0 starts at 256Mb).

```
Taking the example above, density = 1GB, so CS0 end is 0x1000000 + 0x4000000 = 0x50000000
(0x50000000 / 0x2000000) - 1 = 39 decimal (or 0x27) (or 0100111)
```

Generically: [(0x1000000 + density_MB) / 0x2000000] - 1 = CS0_END setting

32MB = 0x2000000



- DDR mapping to MMDC controller ports
 - Section 2.3 of the Reference Manual
 - Specifies the DDR setting used by the Network Interconnect Bus System
 - Must be set correctly for the AXI bus (or buses) to work with the MMDCs.
 - Allowed values:
 - '00 Fixed memory Map for use with DDR3 memory (Default)
 - '01 Fixed memory Map for use with LPDDR2 memory
 - '10 Interleaved memory Map for use with 2-channel LPDDR2 memory.
- Can be set by customer in one of two ways:
 - BTCFG3[5:4] pins EIM_A20 (bit4), EIM_A21 (bit5)
 - Blow internal OTP fuses for BTCFG3[5:4]
 - Un-documented register 0x00B00000 allows Freescale to override external settings.
- Interleaving is done internal to the NIC-301 controller
 - Memory enters MMDC already addressed for 2-channel mode, except:
 - Channel 0 starts at 0x88000000
 - Channel 1 starts at 0x08000000

MDASP: CS0_END 2-channel LPDDR2: "Fixed Mode"

- Each channel has a set starting address
 - Channel 0: 0x80000000
 - Channel 1: 0x1000000
- You can use a 1-channel LPDDR2 device, need to pick a channel (channel 0 is most common choice)
 - MX6SL (aka Megrez) only has channel 0, so MMDC DRAM memory space starts at 0x80000000
- For MX6DQ (Arik) and MX6DL (Rigel), there are two MDASP:CS0_END, one for each LPDDR2 channel

• Calculate CS0_END for each channel

- Channel 0: [(0x8000000 + density_MB) / 0x2000000] - 1

Example1: 2 chip select, each with 512MB, CS0_END=[(0x8000000+0x2000000)/0x2000000]-1=0x4F Example2: 2 chip select, each with 256MB, CS0_END=[(0x8000000+0x10000000)/0x2000000]-1=0x47

- Channel 1: [(0x1000000 + density_MB) / 0x2000000] - 1 (not for MX6SL)

Example1: 2 chip select, each with 512MB, CS0_END=[(0x1000000+0x2000000)/0x2000000]-1=0x17

Example2: 2 chip select, each with 256MB, CS0_END=[(0x1000000+0x1000000)/0x2000000]-1=0xF

MDASP: CS0_END 2-channel LPDDR2: "Interleaved Mode"

Slightly different.

- Each channel has a set starting address
 - Channel 0: 0x88000000
 - Channel 1: 0x08000000

Calculate CS0_END for each channel

- Channel 0: [(0x88000000 + density_MB) / 0x2000000] - 1

Example1: 2 chip select, each with 512MB, CS0_END=[(0x88000000+0x20000000)/0x2000000]-1=0x53 Example2: 2 chip select, each with 256MB, CS0_END=[(0x88000000+0x10000000)/0x2000000]-1=0x4B

- Channel 1: [(0x08000000 + density_MB) / 0x2000000] - 1

Example1: 2 chip select, each with 512MB, CS0_END=[(0x0800000+0x2000000)/0x2000000]-1=0x13 Example2: 2 chip select, each with 256MB, CS0_END=[(0x0800000+0x10000000)/0x2000000]-1=0xB

DDR3 MR2 Parameter or MMDC MDSCR Parameter	N/A	control bit setting (decimal)	bit setting within register	Notes	Register name	Register address	Register value (HEX
				Dynamic ODT (RTT(WR)). 00-disable; 01-RZQ/4; 10-RZQ/2; 11-			
MR2: RTT	-	2	0400000	reserved (RZQ=240ohm)		inter II	
MR2: SRT	-	0	00000000	SRT: Self refresh temperature, set to 0 for normal operation	Mode Reg	ister #	
MR2: ASR	-	0	00000000	ASR: Auto self refresh, set to 0 for normal operation			
				CAS Write Latency. This value is taken from the MMDC tOWL	Ĩ		
				parameter setting above. Denot modify this bit as it is	MDSCR	0x021B001C	0x0408803
MR2: CWL	-	6	00080000	automatically programmed.	MDSCK	0x02100010	0,0400003
CON_REQ	-	1	0008000	Configuration request - set to 1 for this operation.			
WL_EN	-	0	90000000	Set to 0; not applicable to mode register programming.			
CMD	-	3	0000030	CMD: set to 0x3 for load mode register command.			
CMD CS		0	00000000	Determines which chip select command is targetted to.	1		
CMD BA		2	00000002	CMD_BA - set to 0x2 for MR2			
DDR3 MR3 Parameter or MMDC		control bit setting	bit setting				Deviator
MDSCR Parameter	N/A			Notes	De sister nome		Register
		(decimal)	within register		Register name	Register address	
MR3: MPR	-	0		MPR enable - set to 0 for normal operation	-		
MR3: MPR_RF	-	0	00000000	Set to 0 for normal operation	4		
CON_REQ	-		00008000	Configuration request - set to 1 for this operation.			
WL_EN	-	0	00000000	Set to 0; not applicable to mode register programming.	MDSCR	0x021B001C	0x0000803
CMD	· ·	3	0000030	CMD: set to 0x3 for load mode register command.			
CMD_CS		0	00000000	Determines which chip select command is targeted to.			
CMD_BA	-	3	0000003	CMD_BA - set to 0x3 for MR3			
DDR3 MR1 Parameter or MMDC		control bit setting	bit setting				Register
MDSCR Parameter	N/A	(decimal)	within register	Notes	Register name	Register address	
MR1: Q Off	IN/A			Set to 0 for normal operation	Register name	Register address	
MRT: Q UI	-	0	00000000		-		
MD4 TD00		0	00000000	Termination data strobe (TDQS) is a function of the x8 DDR3			
MR1: TDQS	-	-		SDRAM configuration; set to 0 for x16 and x32 memories	-		
MR1: RTT (M9)	-	0	00000000	On-die termination (ODT) resistance RTT. 000-disabled; 001-			
MR1: RTT (M6)	-	0		RZQ/4; 010-RZQ/2; 011-RZQ/6; 100-RZQ/12; 101-RZQ/8;			
MR1: RTT (M2)	-	1	00040000	110&111-reserved (RZQ=240ohm)			
MR1: WL	-	0	0000000	Write leveling enable - set to 0 for normal operation			
MR1: ODS (M5)	-	0	00000000	Output Drive Strength: 00-RZQ/6 (40ohm); 01-RZQ/7 (34ohm);	MDSCR	0x021B001C	0x0004803
MR1: ODS (M1)	-	0	00000000	10&11-reserved	MDOOR	0x02100010	0,0004003
MR1: AL	-	0	00000000	AL: Additive Latency, set to 0			
MR1:DLL	- /	0	00000000	DLL Enable - set to 0			
CON_REQ	· · /	1	0008000	Configuration request - set to 1 for this operation.			
WL EN	-/	0	00000000	Set to 0; not applicable to mode register programming.			
CMD	-	3	0000030	CMD: set to 0x3 for load mode register command.			
CMD CS	· ·	0	00000000	Determines which chip select command is targeted to.			
CMD BA	-	1	00000001	CMD BA - set to 0x1 for MR1	1		
DDR3 MR0 Parameter or MMDC		a antiral kit	1				Decisi
MDSCR Parameter or MMDC	N/A	control bit setting (decimal)	bit setting within register	Notes	Register name	Register address	Register value (HEX
					Register name	Register address	
MR0: PD	-	0	00000000	Precharge power-down (PD) - set to 0 for normal operation	1		
				Write recovery. 000-16; 001-5; 010-6; 011-7; 100-8; 101-10; 110-			1
MR0: WR	-	4	08000000	12; 111-14. Make sure to match MMDC tWR.	4		
MR0: DLL	-	1		DLL reset - set to 1 to reset DLL; self clearing	4		
MR0: BT	-	0		Burst type: set to 0			
MR0: CL (M6)	-	1	00400000				
MR0: CL (M5)	-	0	00000000	CAS latency: 0010-5; 0100-6;0110-7;1000-8; 1010-9; 1100-10;			
MR0: CL (M4)	-	0	00000000	1110-11; 0001-12; 0011-13. Make sure to match CAS to MMDC	MDSCR	0x021B001C	0x0940803
MR0: CL (M2)	-	0	00000000	tCL			
MR0:BL	-	0	00000000	Burst length - set to 00 for fixed 8 burst length	1		
CON REQ	-	1	00008000	Configuration request - set to 1 for this operation.	1		1
WL EN	-	0	00000000	Set to 0; not applicable to mode register programming.	1		
	-	3	00000030	CMD: set to 0x3 for load mode register command.	1		1
CMD CS		0	00000000	Determines which chip select command is targeted to.	1		
	-	U U	00000000		1	1	1
CMD BA		0	00000000	CMD BA - set to 0x0 for MR0			

If CS1 populated				· · · · · · · · · · · · · · · · · · ·			
DDR3 MR2 Parameter or MMDC MDSCR Parameter	N/A	control bit setting (decimal)	bit setting within register	Notes	Register name	Register address	Register value (HEX)
						- i	
MR2: RTT	-	2		Dynamic ODT (RTT(WR)). 00-disable; 01-RZQ/4; 10-RZQ/2; 11- reserved (RZQ=240ohm)			
MR2: SRT	-	0		SRT: Self refresh temperature, set to 0 for normal operation			
MR2: ASR	-	0		ASR: Auto self refresh, set to 0 for normal operation			
				CAS Write Latency. This value is taken from the MMDC tCWL			
				paramter setting above. Do not modify this bit as it is automatically	MDOOD	0.00400040	0.04000004
MR2: CWL	-	6	00080000	programmed.	MDSCR	0x021B001C	0x0408803A
CON_REQ	-	1	0008000	Configuration request - set to 1 for this operation.			
WL_EN	-	0	00000000	Set to 0; not applicable to mode register programming.			
CMD	-	3	0000030	CMD: set to 0x3 for load mode register command.			
CMD_CS	-	1	0000008	Determines which chip select command is targetted to.			
CMD_BA	-	2	0000002	CMD_BA - set to 0x2 for MR2			
						_	-
DDR3 MR3 Parameter or MMDC MDSCR Parameter	N/A	control bit setting (decimal)	bit setting within register	Notes	Register name	Register address	Register value (HEX)
				•			

Rest of CS1 mode register programming is exactly the same as CS0

If board doesn't populate CS1, can still perform mode register writes to CS1 even though nothing there, but preferably...
Other option, remove CS1 mode register writes in "RealView .inc file" tab:

// Mode register writes			
setmem /32	0x021b001c =	0x04088032	// MMDC0_MDSCR, MR2 write, CS0
setmem /32	0x021b001c =	0x00008033	// MMDC0_MDSCR, MR3 write, CS0
setmem /32	0x021b001c =	0x00048031	// MMDC0_MDSCR, MR1 write, CS0
setmem /32	0x021b001c =	0x09408030	// MMDC0_MDSCR, MR0 write, CS0
setmem /32	0x021b001c =	0x04008040	// MMDC0_MDSCR, ZQ calibration command sent to device on CS0
setmem /32	0x021b001c =	0x0408803A	// MMDC0_MDSCR, MR2 write, CS1
setmem /32	0x021b001c =	0x0000803B	// MMDC0_MDSCR, MR3 write, CS1
setmem /32	0x021b001c =	0x00048039	// MMDC0_MDSCR, MR1 write, CS1
setmem /32	0x021b001c =	0x09408038	// MMDC0_MDSCR, MR0 write, CS1
setmem /32	0x021b001c =	0x04008048	// MMDC0_MDSCR, ZQ calibration command sent to device on CS1
setmem /32	0x021b0020 =	0x00005800	// MMDC0_MDREF
setmem /32	0x021b0818 =	0x00022227	// DDR_PHY_P0_MPODTCTRL
setmem /32	0x021b4818 =	0x00022227	// DDR PHY P1 MPODTCTRL

DRAM Register Programming Aid - Walkthrough

The final configurable parameters in the Register Configuration tab – calibration values

External Use 36

	Register name	Register address	Register value (HEX)	
	MPDGCTRL0 PHY0	0x021b083c	0x434b0350	
	MPDGCTRL1 PHY0	0x021b0840	0x034c0359	 Read DQS gating
The second state and the second state of the second state of the state of the second s	MPDGCTRL0 PHY1	0x021b483c	0x434b0350	rioda Dao gaing
These parameters are determined after running calibration. The parameters provided here are from Freescale's development board and will work as	MPDGCTRL1 PHY1	0x021b4840	0x03650348	Read delay line:
initial values. Update these values after running calibration.	MPRDDLCTL PHY0	0x021b0848	0x4436383b	read DQS-to-DQ delay
	MPRDDLCTL PHY1	0x021b4848	0x39393341	
	MPWRDLCTL PHY0	0x021b0850	0x35373933	 Write delay line:
	MPWRDLCTL PHY1	0x021b4850	0x48254a36	write DQS-to-DQ delay
	MPWLDECTRL0 PHY0	0x021b080c	0x001F001F	while DQS-10-DQ delay
These are for write leveling calibration, which is needed for fly-by board	MPWLDECTRL1 PHY0	0x021b0810	0x001F001F	- Write leveling
layout topology	MPWLDECTRL0 PHY1	0x021b480c	0x00440044	white leveling
	MPWLDECTRL1 PHY1	0x021b4810	0x00440044	
you value	run calibration, then can update these es with the values and in calibration		Ĵ	
		mor	e on calib	ration later

Agenda

- Board bring-up: where DRAM bring-up fits in
 - Introduce the tools used for DRAM bring-up
- DRAM Register Programming Aid
 - Introduction/Overview
 - Walkthrough
- DRAM Stress Test
 - Introduction/Overview
 - How to build and run; deep dive into sub-tests
- DRAM Calibration Overview
- Case Study: MX508 and LPDDR2 Failure
- Board Design Considerations

DRAM Stress Test – Overview and History

- Took years to develop, constantly evolving to catch elusive DRAM failures
- Compilation of various DRAM sub tests
 - Each sub test contains various data patterns/methods to stress the DRAM interface
 - Started with a few tests using memcpy and various data patterns (1's and 0's; A's and 5's; pseudo-random, etc)
 - Each new SoC/board presented new DRAM challenges/issues
 - New tests were created to debug
 - Historically, each test was run one-by-one, took time
 - Tests were compiled together into one overall test
 - Each test now called sub-test, executed through a function call
 - Marked beginning of 'stress test', sub-tests run in a loop, overnight
 - Cache enabled important, needed to mimic OS-type transactions; more stress
 - Increment DRAM frequency method to stress interface accounting for variations in PVT
 - How much above frequency max is considered ample?
 - Historically 30MHz or more seemed good

External Use

Useful for gathering statistical data; outliers may point to other issues

DRAM Stress Test – Overview and History

(Continued)

- Non-OS test to exercise DRAM interface
 - Non-OS: easier than OS to catch/debug DRAM failures
 - Used by factory as part of DRAM validation
 - Helps diagnose but doesn't fix DDR problems
- Purpose: Root out potential signal integrity issues due to inadequate board layout
 - Primarily uses sequential bursts of back-to-back data looking for simultaneous switching noise (SSN)
 - Validation vehicle that reports how robust DRAM interface is given current set of parameters (i.e. drive strength settings, timing parameters, board layout, etc)
- Runs from internal RAM
 - Device under test is DRAM itself, don't execute out of same memory being tested
 - Download to IRAM via JTAG debugger tools (RVD, Lauterbach, Macraigor)
 - Now available in a USB version.
- FAE's are able to provide tailored code if necessary.
 - Any debugger that supports specific SoC ARM core and elf should work
 - Factory not responsible to test every debugger or debug it if doesn't work on other debuggers

DRAM Stress Test – Overview and History (Continued)

- Once DRAM stress test passes with ample margin, are we guaranteed the OS will never fail due to DRAM issues?
 - High degree of confidence DRAM robust enough, but...
 - OS is still the most stressful, particularly an OS stress test like Bonnie++
 - Recommend to run any OS stress tests to double check
 - Currently Supported SoC:
 - MX28, MX508, MX51, MX53, MX6DQ (Arik) MX6DL (Rigel), MX6SL (Megrez), MX6SX (Pele), MX7D
 - No plans to back port to older legacy processors

External Use 40

- Issues encountered as some only have 16KB of IRAM
- Challenges
 - Test becoming too big to fit inside IRAM (128KB becoming a limiting factor)
 - When new sub-tests are created, no plan in place to back port to older processors

DRAM Stress Test – How to Run Debugger Setup

- Stress test outputs .elf; can be run from various debuggers
 - Debuggers necessary for new SoC bring up; highly useful for new board bring up
 - Debuggers don't rely on bootloaders or on anything running
 - Simply having a debugger connect means the SoC is powered up and running
 - Debuggers allow user to quickly test fundamental DRAM init
 - Open a debugger memory window to perform simple write-read-verify
 - There are less expensive debugger options than ARM (like Macraigor)
 - May give up some functionality, but good enough to download and run stress test
- To run from a debugger
 - Run DRAM init (.inc,.ds,.cmm,.mac)

External Use

- Refer to DRAM Register Programming Aid tool
- Load and run the .elf file

DRAM Stress Test – How to Run Serial Port Setup

- DRAM Stress Test uses serial port output (UART) for user interaction
- Terminal program needed on the Host PC
 - Host PC: Tera Term or Hyperterminal
 - Ensure the correct COM port usage
 - Set up:

```
BAUD RATE - 115200
DATA - 8 bit
PARITY- none
STOP - 1bit
FLOW CONTROL - none
```

- Once test runs, look for output messages on the terminal
 - Various run control options
 - DRAM density to test, frequency range, etc

DRAM Stress Test – How to Run USB Option

- Makes use of *.bin file output.
- Need all in the same windows folder:
 - USB executable file (DDR_Stress_Tester)
 - *.bin file generated from source code (ddr-stress-test-<TGT>.bin)
 - *.inc script file (from Register Programming Aid)
- Enter at the command prompt:
 - DDR_STRESS_TESTER -t <tgt> -df <prog_aid> -usb
 - DDR_STRESS_TESTER -- h (Help Menu)
- Allowable targets are:
 - mx53
 - mx6x
- Test runs from Windows command prompt just like Serial UART Terminal.

DRAM Stress Test – Interpreting DRAM Failures

- Failures observed may help narrow down a root cause; following are some pointers:
- Bit wise failures
 - Normally indicates one or more data lines experiencing glitch due to signal integrity issues (too slow rise/fall time, or too fast rise and fall time attributing to ringing)
 - Varying temperature is one method to narrow down the root cause
 - If cooling down the part causes more failures, then it is likely the drive strength is too high causing more overshoots and undershoots
 - If heating up the part causes more failures, then the drive strength is too low and the signals may not rise/fall fast enough
 - Playing around with drive strengths often help (start with i.MX side and then try DRAM side)

Byte wise failures

- This is usually indicative of a problem with the DQS signals: too slow a rise/fall time, there is a glitch, or over/under shoots (signal integrity issues)
- Temperature testing (see bit-wise failures) to assist in narrowing down the issue with the DQS signal
- Playing around with drive strengths help; also try playing around with DQS to data timing
- Entire word is wrong or random
 - This may indicate something more catastrophic either in the logic of the DRAM controller, or some issue with address and/or command signals
 - Could be a problem with board layout
 - Try playing around with DRAM controller's timings like 'RALAT'

External Use

DRAM Stress Test – Interpreting DRAM Failures (Continued)

- Keep in mind that these are only pointers to help diagnose DRAM related memory failures. In the past, DRAM failures were attributed to:
 - Poor board layout resulting in simultaneous switching noise (SSN) causing glitches.
 - Inadequate IO PAD design often the IO PAD has poorly controlled impedance (either too high or too low a drive strength). This can be easily proven when observing a data signal or DQS signal being sourced by the DRAM memory (read access) or by the SoC (write access). One will often times observe that the DRAM memory provides a much cleaner waveform than that of the SoC.
 - Internal package issues (poor routing of power/ground signals, not providing proper ground returns, ground bounce, etc.)
 - DRAM controller logic bugs, often found in corner use cases where an internal bus master causes a transaction or series of subsequent transactions that were not anticipated or verified during the design process
 - Jitter on the SDCLK lines due to poor PLL design, or noise induced on the clock source itself (outside of the SoC from an external crystal or oscillator).
 - For LPDDR2, make sure i.MX IOMUX has pull down enabled for DQS signals

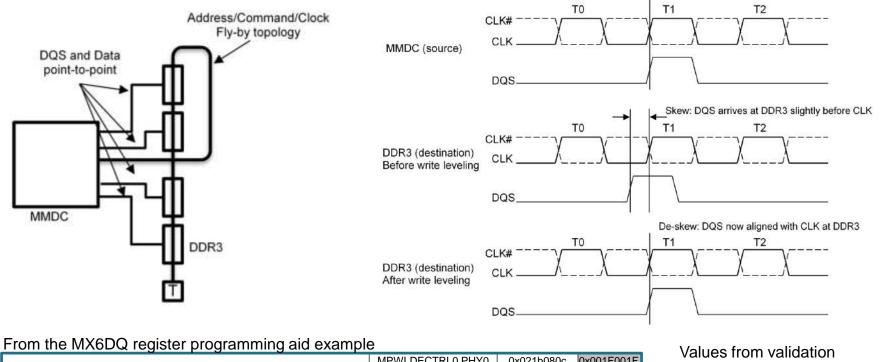
External Use

Always remember to double-check DRAM initialization (DRAM register programming aid)

Agenda

- Board bring-up: where DRAM bring-up fits in
 - Introduce the tools used for DRAM bring-up
- DRAM Register Programming Aid
 - Introduction/Overview
 - Walkthrough
- DRAM Stress Test
 - Introduction/Overview
 - How to build and run; deep dive into sub-tests
- DRAM Calibration Overview
- Case Study: MX508 and LPDDR2 Failure
- Board Design Considerations

DRAM Calibration in the DRAM Stress Test


- MX6 MMDC Calibration App Note (ANXXXX): highly recommended reading to understand calibration concepts
- MX6 series DRAM controller (MMDC) features HW supported calibration methods:
 - Read DQS Gating calibration
 - Read DQS delay calibration
 - Write DQS delay calibration
 - Write-leveling calibration
- Previous i.MX SoC did not have this support in HW (with the exception of MX53)
 - That doesn't mean someone didn't come along and write their own type of SW calibration code for previous parts
- · ZQ calibration is something simply enabled, no user interaction
 - Exception is MX508 where this requires a manual SW ZQ calibration routine
 - This routine is part of the MX508 DRAM Stress Test
 - This routine was obtained directly from design/validation and re-used in stress test
- · DRAM Stress Tests that support calibration in some form or fashion:
 - MX6: Read DQS gating; read and write calibration; write-leveling
 - MX6 Calibration app note describes other calibration methods, but these are manual or for fine tuning and are not commonly performed and are not supported in the stress test
 - MX508: manual ZQ calibration
 - MX53: Read DQS gating; read and write calibration

External Use

- All code received directly from design/validation and ported to stress test

DRAM Calibration Conceptual Overview Write Leveling Calibration

	MPWLDECTRL0 PHY0	0x021b080c	0x001F001F
These are for write leveling calibration, which is needed for fly-by board	MPWLDECTRL1 PHY0	0x021b0810	0x001F001F
layout topology	MPWLDECTRL0 PHY1	0x021b480c	0x00440044
	MPWLDECTRL1 PHY1	0x021b4810	0x00440044

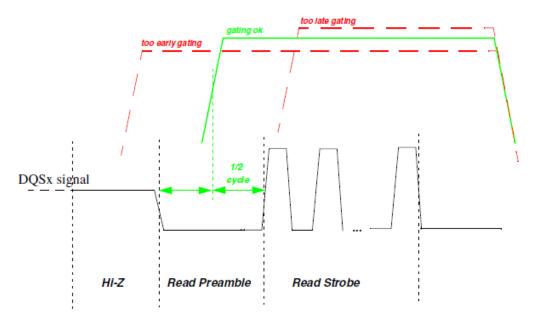

Values from validation board. For Sabre boards, which is routed point-topoint, can set all values to 0x1F.

- Compensates for CLK-to-DQS skew incurred from fly-by topology
 - Point-to-point memory layouts don't need this
 - Point-to-point memory layouts normally don't use terminations, like FSL development boards
- Relevant to DDR3 memories only (not supported with LPDDR2)
- Write Leveling Calibration code in MX6 DRAM Stress Test

DRAM Stress Test – Calibration Routines

- The DDR Stress test can used to determine Write Leveling Parameters
- To run stress test, need *.inc file from Register programming Aid.
- When test first starts up, answer preliminary questions:
 - What core speed would you like to use?
 - What DDR density would you like to use?
 - Anything less than physically available memory is acceptable.
 - What DDR Frequency would you like to use?

External Use | 49


DRAM Stress Test – Calibration Routines

- The next question from the DDR Stress test is:
- Do you want to run the Write Leveling Calibration. Press 'y'
- The test will ask you to enter the four digit Mode Register 1 setting that you used in your initialization script.
- Once the MR1 setting is entered, the Stress Test will complete the Write Leveling Calibration Routine and report back the calibration values:

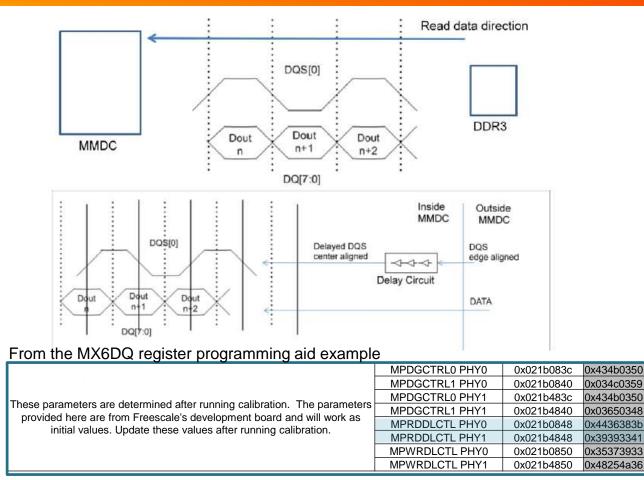
Administrator: CMD - Shortcut - DDR_Stress_Tester_V1.03.exe -t mx6x -df MX6Q.inc -usb	x
Would you like to run the write leveling calibration? (y/n) Please enter the MR1 value on the initilization script This will be re-programmed into MR1 after write leveling calibration Enter as a 4-digit HEX value, example 0004, then hit enter 0004 You have entered: 0x0004 Start write leveling calibration Write leveling calibration completed MMDC_MPWLDECTRL0 ch0 after write level cal: 0x00280023	
MMDC_MPWLDECTRL1 ch0 after write level cal: 0x0026002A MMDC_MPWLDECTRL0 ch1 after write level cal: 0x001B0028 MMDC_MPWLDECTRL1 ch1 after write level cal: 0x00140028 Would you like to run the DQS gating, read/write delay calibration? (y/n) =	-

DRAM Calibration Conceptual Overview Read DQS Gating Calibration

From the MX6DQ register programming aid example

	MPDGCTRL0 PHY0	0x021b083c	0x434b0350
	MPDGCTRL1 PHY0	0x021b0840	0x034c0359
These recorders are determined often municipal collibustion. The record state	MPDGCTRL0 PHY1	0x021b483c	0x434b0350
These parameters are determined after running calibration. The parameters provided here are from Freescale's development board and will work as	MPDGCTRL1 PHY1	0x021b4840	0x03650348
initial values. Update these values after running calibration.	MPRDDLCTL PHY0	0x021b0848	0x4436383b
	MPRDDLCTL PHY1	0x021b4848	0x39393341
	MPWRDLCTL PHY0	0x021b0850	0x35373933
	MPWRDLCTL PHY1	0x021b4850	0x48254a36

- Not a JEDEC standard; controls i.MX internal DQS gate timing parameters
- Mechanism for our DRAM controllers to correctly sample incoming read DQS signal
- Relevant to DDR3 memories only (not supported with LPDDR2)
- Calibration code in MX6 and MX53 DRAM Stress Test


DRAM Stress Test – Calibration Routines

- The DQS Gating, Read/Write delay calibration tests are next.
- Would you like to run the DQS gating, read/write delay calibration tests: Press 'y'
- Test will automatically run and provide results when finished:

<pre>Starting DQS gating calibration BYTE 0: Start:</pre>			the DQS gating, read/write delay calibrati	on? (y∕n)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	• • • • •			
End: HC-0040 ABS 0.057 End-0.5*tCK: HC-0020 ABS 0.057 End-0.5*tCK: HC-0000 ABS 0.057 End-0.5*tCK: HC-0000 ABS 0.00 End: HC-0000 ABS 0.00 End: HC-0000 ABS 0.00 End: HC-0000 ABS 0.00 End-0.5*tCK: HC-00000 ABS 0.00 End-0.5*tCK: HC-00000 ABS 0.00 En	BYTE Ø			
Mean: iC-0x02 iBS-0x57 Final: HC-0x03 ABS-0x30 Final: HC-0x04 ABS-0x30 BYTE 1: Start: HC-0x04 ABS-0x18 BWTE 2: End=0.5*tCK: HC-0x04 ABS-0x18 BWTE 2: Start: HC-0x04 ABS-0x0C End=0.5*tCK: HC-0x04 ABS-0x0C End=0.5*tCK: HC-0x04 ABS-0x0C End: HC-0x04 ABS-0x0C End: HC-0x03 ABS-0x0C End: HC-0x03 ABS-0x0C End=0.5*tCK: HC-0x03 ABS-0x0C End=0.5*tCK: HC-0x03 ABS-0x0C End: HC-0x03 ABS-0x14 BVTE 5: Start: HC-0x03 ABS-0x14				
Final: HC=0x03 ABS=0x30 BYTE 1: Start: HC=0x02 ABS=0x0C End: HC=0x04 ABS=0x18 Hean: HC=0x03 ABS=0x18 Final: HC=0x03 ABS=0x18 BYTE 2: Start: HC=0x02 ABS=0x0C End: HC=0x04 ABS=0x0C End: HC=0x04 ABS=0x0C End=0.5*tCK: HC=0x03 ABS=0x0C Final: HC=0x03 ABS=0x0C End=0.5*tCK: HC=0x03 ABS=0x0C End: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x14 End: HC=0x03 ABS=0x14 End: HC=0x03 ABS=0x14 End: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x14 End: HC=0x03 ABS=0x14 End: HC=0x03 ABS=0x14 End: HC=0x03 ABS=0x14 End: HC=0x03 ABS=0x14 End: HC=0x03 ABS=0x14 End: HC=0x03 ABS=0x10 End=0.5*tCK: HC=0x03 ABS=0x10 End=0.5*tCK: HC=0x03 ABS=0x10 End=0.5*tCK: HC=0x03 ABS=0x10 End=0.5*tCK: HC=0x03 ABS=0x10 End=0.5*tCK: HC=0x03 ABS=0x14 End: HC=0x03 ABS=0x14 End: HC=0x03 ABS=0x14 End: HC=0x03 ABS=0x14 End: HC=0x04 ABS=0x14 End: HC=0x03 ABS=0x14 End=0.5*tCK: HC=0x03 ABS=0x14 End: HC=0x03 ABS=0x14 End=0.5*tCK: HC=0x03 ABS=0x14 End=0x03 ABS=0x14 End=0x0x03 ABS=0x14 End=0x0x03 ABS=0x14				
$\begin{array}{llllllllllllllllllllllllllllllllllll$				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	RVTE 1 -	Final:	HC=0×03 BB2=0×30	
$\begin{array}{c} Mean: & HC=0x03 \ ABS=0x12 \\ End=0.5*tCK: & HC=0x03 \ ABS=0x18 \\ Final: & HC=0x03 \ ABS=0x0C \\ End: & HC=0x04 \ ABS=0x0C \\ End: & HC=0x03 \ ABS=0x0C \\ End=0.5*tCK: & HC=0x03 \ ABS=0x14 \\ Mean: & HC=0x04 \ ABS=0x14 \\ Final: & HC=0x03 \ ABS=0x16 \\ End: & HC=0x03 \ ABS=0x16 \\ Final: & HC=0x02 \ ABS=0x16 \\ Final: & HC=0x02 \ ABS=0x16 \\ Final: & HC=0x02 \ ABS=0x16 \\ Final: & HC=0x03 \ ABS=0x16 \\ Final: & HC=0x03 \ ABS=0x16 \\ Final: & HC=0x03 \ ABS=0x16 \\ Final: & HC=0x02 \ ABS=0x16 \\ Final: & HC=0x03 \ ABS=0x14 \\ F$,			
End=0.5*tCK: HC=0x03 ABS=0x18 Final: HC=0x03 ABS=0x18 Start: HC=0x04 ABS=0x0C End: HC=0x04 ABS=0x0C Mean: HC=0x03 ABS=0x0C Final: HC=0x03 ABS=0x0C Final: HC=0x03 ABS=0x0C End=0.5*tCK: HC=0x03 ABS=0x0C End=0.5*tCK: HC=0x03 ABS=0x14 Mean: HC=0x04 ABS=0x14 Final: HC=0x04 ABS=0x14 End: HC=0x03 ABS=0x14 BYTE 4: Start: HC=0x03 ABS=0x24 Mean: HC=0x03 ABS=0x24 Mean: HC=0x03 ABS=0x24 Final: HC=0x03 ABS=0x10 End=0.5*tCK: HC=0x03 ABS=0x24 Mean: HC=0x04 ABS=0x24 Final: HC=0x04 ABS=0x10 End=0.5*tCK: HC=0x03 ABS=0x24 Final: HC=0x04 ABS=0x10 End=0.5*tCK: HC=0x03 ABS=0x24 BYTE 5: BYTE 5: BYTE 6: BYTE 6: Start: HC=0x03 ABS=0x10 End=0.5*tCK: HC=0x03 ABS=0x10 End=0.5*tCK: HC=0x03 ABS=0x10 Final: HC=0x04 ABS=0x54 Mean: HC=0x03 ABS=0x54 Final: HC=0x04 ABS=0x54 Mean: HC=0x02 ABS=0x54 Final: HC=0x02 ABS=0x54 Mean: HC=0x03 ABS=0x54 Mean: HC=0x03 ABS=0x54 Mean: HC=0x03 ABS=0x54 Final: HC=0x03 ABS=0x54 Mean: HC=0x03 ABS=0x54 Mean: HC=0x03 ABS=0x54 Mean: HC=0x03 ABS=0x54 Final: HC=0x03 ABS=0x54 Mean: HC=0x03 ABS=0x10 Start: HC=0x03 ABS=0x54 Final: HC=0x03 ABS=0x54 Mean: HC=0x03 ABS=0x54 Final: HC=0x03 ABS=0x14 BYTE 7: BYTE 7: BYTE 7: BYTE 7: BYTE 7: BYTE 7: BYTE 9: DYTE			HC=0×04 ABS=0×18	
Final: $HC=0x03$ ABS=0x18 BYTE 2: Start: $HC=0x03$ ABS=0x0C End: $HC=0x04$ ABS=0x0C End: $HC=0x03$ ABS=0x0C End=0.5*tCK: $HC=0x03$ ABS=0x0C Final: $HC=0x04$ ABS=0x0C BYTE 3: Start: $HC=0x04$ ABS=0x04 End: $HC=0x04$ ABS=0x14 Mean: $HC=0x04$ ABS=0x14 Final: $HC=0x04$ ABS=0x14 Final: $HC=0x04$ ABS=0x14 End: $HC=0x04$ ABS=0x14 Final: $HC=0x03$ ABS=0x14 End: $HC=0x04$ ABS=0x14 Final: $HC=0x03$ ABS=0x24 Final: $HC=0x03$ ABS=0x10 BYTE 5: Start: $HC=0x03$ ABS=0x10 Mean: $HC=0x03$ ABS=0x10 BYTE 6: Start: $HC=0x03$ ABS=0x10 BYTE 7: Start: $HC=0x03$ ABS=0x54 Hean: $HC=0x04$ ABS=0x54 Final: $HC=0x04$ ABS=0x54 Final: $HC=0x04$ ABS=0x54 Mean: $HC=0x04$ ABS=0x54 Mean: $HC=0x04$ ABS=0x14 Hean: $HC=0x04$ ABS=0x54 Final: $HC=0x04$ ABS=0x10 BYTE 7: Start: $HC=0x04$ ABS=0x14 Hean: $HC=0x04$ ABS=0x54 Final: $HC=0x04$ ABS=0x14 Hean: $HC=0x04$ ABS=0x54 Final: $HC=0x04$ ABS=0x14 Hean: $HC=0x04$				
$\begin{array}{llllllllllllllllllllllllllllllllllll$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SYTE 2:	Stant:	HC=0x02 ABS=0x0C	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		End:	$HC = 0 \times 04$ ABS $= 0 \times 0C$	
Final: HC= $\theta \times \theta 3$ ABS= $\theta \times \theta C$ BYTE 3: Start: HC= $\theta \times \theta 3$ ABS= $\theta \times \theta 4$ End: HC= $\theta \times \theta 3$ ABS= $\theta \times \theta 4$ HC= $\theta \times \theta 3$ ABS= $\theta \times \theta 4$ HC= $\theta \times \theta 3$ ABS= $\theta \times 14$ Final: HC= $\theta \times \theta 3$ ABS= $\theta \times 14$ Final: HC= $\theta \times \theta 3$ ABS= $\theta \times 14$ Final: HC= $\theta \times \theta 3$ ABS= $\theta \times 14$ HC= $\theta \times \theta 3$ ABS= $\theta \times 24$ HC= $\theta \times \theta 3$ ABS= $\theta \times 24$ Final: HC= $\theta \times \theta 3$ ABS= $\theta \times 24$ Final: HC= $\theta \times \theta 3$ ABS= $\theta \times 10$ HC= $\theta \times \theta 3$ ABS= $\theta \times 10$ HC= $\theta \times \theta 3$ ABS= $\theta \times 10$ HC= $\theta \times \theta 3$ ABS= $\theta \times 10$ Final: HC= $\theta \times \theta 3$ ABS= $\theta \times 10$ Final: HC= $\theta \times \theta 3$ ABS= $\theta \times 54$ HC= $\theta \times \theta 3$ ABS= $\theta \times 54$ HC= $\theta \times \theta 3$ ABS= $\theta \times 54$ HC= $\theta \times \theta 3$ ABS= $\theta \times 54$ Final: HC= $\theta \times \theta 2$ ABS= $\theta \times 54$ Final: HC= $\theta \times \theta 2$ ABS= $\theta \times 54$ Final: HC= $\theta \times \theta 3$ ABS= $\theta \times 14$ HC= $\theta \times \theta 3$ ABS= $\theta \times 14$ HC= $\theta \times \theta 3$ ABS= $\theta \times 14$ HC= $\theta \times \theta 3$ ABS= $\theta \times 14$ Final: HC= $\theta \times \theta 3$ ABS= $\theta \times 14$ HC= θ				
$\begin{array}{llllllllllllllllllllllllllllllllllll$				
End: $HC=0x04$ ABS=0x14 Mean: $HC=0x03$ ABS=0x14 Final: $HC=0x03$ ABS=0x14 Final: $HC=0x03$ ABS=0x14 BYTE 4: Start: $HC=0x04$ ABS=0x10 End: $HC=0x04$ ABS=0x14 Hean: $HC=0x03$ ABS=0x24 Final: $HC=0x03$ ABS=0x24 Final: $HC=0x03$ ABS=0x24 Final: $HC=0x03$ ABS=0x24 Final: $HC=0x03$ ABS=0x24 BYTE 5: Start: $HC=0x03$ ABS=0x0C End: $HC=0x03$ ABS=0x10 Mean: $HC=0x03$ ABS=0x10 Final: $HC=0x03$ ABS=0x10 Final: $HC=0x03$ ABS=0x48 End: $HC=0x03$ ABS=0x10 Final: $HC=0x02$ ABS=0x48 End: $HC=0x03$ ABS=0x54 Hean: $HC=0x02$ ABS=0x54 End: $HC=0x02$ ABS=0x54 Final: $HC=0x02$ ABS=0x54 Mean: $HC=0x02$ ABS=0x54 Final: $HC=0x02$ ABS=0x54 Mean: $HC=0x02$ ABS=0x54 Final: $HC=0x02$ ABS=0x54 Mean: $HC=0x02$ ABS=0x54 Final: $HC=0x03$ ABS=0x14 Mean: $HC=0x03$ ABS=0x14 Final: $HC=0x03$ ABS=0x14 Mean: $HC=0x03$ ABS=0x14 Mean: $HC=0x03$ ABS=0x14 Final: $HC=0x03$ ABS=0x14 Final: $HC=0x03$ ABS=0x14	BYTE 3:			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
Final: $HC=0\times03$ $ABS=0\times14$ Start: $HC=0\times02$ $ABS=0\times10$ End: $HC=0\times03$ $ABS=0\times10$ End: $HC=0\times03$ $ABS=0\times24$ Mean: $HC=0\times03$ $ABS=0\times24$ Final: $HC=0\times03$ $ABS=0\times24$ Final: $HC=0\times03$ $ABS=0\times24$ End: $HC=0\times03$ $ABS=0\times24$ End: $HC=0\times04$ $ABS=0\times0C$ End: $HC=0\times04$ $ABS=0\times10$ Mean: $HC=0\times03$ $ABS=0\times10$ Final: $HC=0\times03$ $ABS=0\times10$ Start: $HC=0\times03$ $ABS=0\times48$ End: $HC=0\times03$ $ABS=0\times54$ End: $HC=0\times02$ $ABS=0\times54$ Final: $HC=0\times02$ $ABS=0\times54$ End: $HC=0\times02$ $ABS=0\times54$ Final: $HC=0\times02$ $ABS=0\times54$ Start: $HC=0\times02$ $ABS=0\times54$ Final: $HC=0\times02$ $ABS=0\times54$ Start: $HC=0\times02$ $ABS=0\times54$ Start: $HC=0\times02$ $ABS=0\times54$ Final: $HC=0\times02$ $ABS=0\times10$ Start: $HC=0\times02$ $ABS=0\times54$ Final: $HC=0\times02$ $ABS=0\times14$ Final: $HC=0\times03$ $ABS=0\times14$ Final: $HC=0\times03$ $ABS=0\times14$ Final: $HC=0\times03$ $ABS=0\times14$ Final: $HC=0\times03$ $ABS=0\times14$ End=0.5×tCK: $HC=0\times03$ $ABS=0\times14$ Final: $HC=0\times03$ $ABS=0\times14$				
BYTE 4: Start: $HC=0\times02$ ABS= 0×10 End: $HC=0\times04$ ABS= 0×24 Mean: $HC=0\times03$ ABS= 0×24 Final: $HC=0\times03$ ABS= 0×24 Final: $HC=0\times03$ ABS= 0×24 BYTE 5: Start: $HC=0\times02$ ABS= $0\times0C$ End: $HC=0\times03$ ABS= $0\times0C$ End: $HC=0\times03$ ABS= $0\times0E$ End= $0.5\timestCK$: $HC=0\times03$ ABS= 0×10 Final: $HC=0\times03$ ABS= 0×10 BYTE 6: Start: $HC=0\times03$ ABS= 0×48 End: $HC=0\times02$ ABS= 0×54 Mean: $HC=0\times02$ ABS= 0×54 Mean: $HC=0\times02$ ABS= 0×54 Final: $HC=0\times02$ ABS= 0×14 HC= $0.5\timestCK$: $HC=0\times03$ ABS= 0×14 Mean: $HC=0\times03$ ABS= 0×14 Final: $HC=0\times0$				
Start: HC=0x02 ABS=0x10 End: HC=0x03 ABS=0x14 Hean: HC=0x03 ABS=0x24 Final: HC=0x03 ABS=0x24 BYTE 5: Start: HC=0x03 ABS=0x0C End: HC=0x03 ABS=0x10 Mean: HC=0x03 ABS=0x0C End: HC=0x03 ABS=0x0C End: HC=0x03 ABS=0x0C End: HC=0x03 ABS=0x0C Final: HC=0x03 ABS=0x0C BYTE 6: Start: BYTE 6: Start: BYTE 6: HC=0x02 ABS=0x0E End: HC=0x03 ABS=0x48 End: HC=0x02 ABS=0x54 Mean: HC=0x02 ABS=0x54 Mean: HC=0x02 ABS=0x54 Start: HC=0x02 ABS=0x54 Final: HC=0x02 ABS=0x54 BYTE 7: Start: Start: HC=0x03 ABS=0x14 Mean: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x14 Mean: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x14 Mean: HC=0x03 ABS=0x14	RYTE 4:	Final:	HC=0×03 HBS=0×14	
Mean: HC=0×03 ABS=0×14 End=0.5*tCK: Final: HC=0×03 ABS=0×24 BYTE 5: Start: BYTE 5: HC=0×02 ABS=0×0C End: HC=0×03 ABS=0×10 Mean: HC=0×03 ABS=0×10 Hean: HC=0×03 ABS=0×10 Final: HC=0×03 ABS=0×10 BYTE 6: HC=0×03 ABS=0×10 BYTE 6: HC=0×03 ABS=0×10 BYTE 6: HC=0×02 ABS=0×54 Bend: HC=0×02 ABS=0×54 Final: HC=0×02 ABS=0×54 Foral: HC=0×02 ABS=0×54 BYTE 7: Start: HC=0×02 ABS=0×14 BYTE 7: Start: HC=0×03 ABS=0×14 BYTE 7: HC=0×03 ABS=0×14 BYTE 7: Start: HC=0×03 ABS=0×14 Final: HC=0×03 ABS=0×				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
BYTE 5: Start: HC=0x02 ABS=0x0C End: HC=0x03 ABS=0x10 Mean: HC=0x03 ABS=0x10 Final: HC=0x03 ABS=0x10 BYTE 6: Start: BYTE 7: HC=0x02 ABS=0x0E End: HC=0x03 ABS=0x48 End: HC=0x02 ABS=0x54 Mean: HC=0x02 ABS=0x54 BYTE 7: Start: BYTE 7: Start: HC=0x02 ABS=0x14 Mean: HC=0x02 ABS=0x14 Mean: HC=0x02 ABS=0x14 Final: HC=0x03 ABS=0x14 Mean: HC=0x03 ABS=0x14 Mean: HC=0x03 ABS=0x14 Mean: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x14 Mean: HC=0x03 ABS=0x14 Mean: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x14 Mean: HC=0x03 ABS=0x14 Final:			HC=0x03 ABS=0x24	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Final:	HC=0×03 ABS=0×24	
End: HC=0x04 ABS=0x10 Mean: HC=0x03 ABS=0x0E End=0.5*tCK: HC=0x03 ABS=0x10 Final: HC=0x03 ABS=0x10 Start: HC=0x03 ABS=0x10 BYTE 6: Start: HC=0x04 ABS=0x48 End: HC=0x02 ABS=0x6E End=0.5*tCK: HC=0x02 ABS=0x6E Final: HC=0x02 ABS=0x54 Start: HC=0x02 ABS=0x54 Final: HC=0x02 ABS=0x14 Mean: HC=0x03 ABS=0x14 Mean: HC=0x03 ABS=0x14 Mean: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x14 Mean: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x16 Final: HC=0x03 ABS=0x16 Final: HC=0x03 ABS=0x16 Final: HC=0x03 ABS=0x16 Final: HC	SYIE 5:	Start:	HC=0×02 ABS=0×0C	
End-0.5*tCK: HC=0x03 ABS=0x10 Final: HC=0x03 ABS=0x10 BYTE 6: Start: HC=0x00 ABS=0x48 End: HC=0x02 ABS=0x54 Mean: HC=0x02 ABS=0x54 Final: HC=0x02 ABS=0x54 BYTE 7: Start: HC=0x02 ABS=0x54 End: HC=0x02 ABS=0x54 End: HC=0x02 ABS=0x54 End: HC=0x03 ABS=0x14 Mean: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x14		End:	HC=0x04 ABS=0x10	
Final: HC=0x03 ABS=0x10 BYTE 6: Start: HC=0x00 ABS=0x48 End: HC=0x02 ABS=0x48 Mean: HC=0x02 ABS=0x6E End=0.5*tCK: HC=0x02 ABS=0x54 Final: HC=0x02 ABS=0x54 Start: HC=0x02 ABS=0x14 Mean: HC=0x03 ABS=0x14 Mean: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x14 End=0.5*tCK: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x14				
Start: HC=0×00 ABS=0×48 End: HC=0×03 ABS=0×54 Mean: HC=0×02 ABS=0×54 End-0.5×tCK: HC=0×02 ABS=0×54 Final: HC=0×02 ABS=0×54 BYTE 7: Start: HC=0×02 ABS=0×14 Mean: HC=0×03 ABS=0×14 Mean: HC=0×03 ABS=0×14 Final: HC=0×03 ABS=0×14				
End: HC=0x03 ABS=0x54 Mean: HC=0x02 ABS=0x0E End=0.5×tCK: HC=0x02 ABS=0x54 Final: HC=0x02 ABS=0x54 BYTE 7: HC=0x02 ABS=0x54 Mean: HC=0x02 ABS=0x54 BYTE 7: Start: Mean: HC=0x02 ABS=0x10 End: HC=0x03 ABS=0x14 Mean: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x14	BYTE 6:	84	110-0.00 ADC-0.40	
Mean: HC=0x02 ABS=0x0E End=0.5*tCK: HC=0x02 ABS=0x54 Final: HC=0x02 ABS=0x54 BYTE 7: Start: HC=0x02 ABS=0x0C End: HC=0x03 ABS=0x14 Mean: HC=0x03 ABS=0x10 End=0.5*tCK: HC=0x03 ABS=0x14 Mean: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x14 OQS calibration MMDC0 MPDGCTRL0 = 0x43180330, MPDGCTRL1 = 0x0314030C				
Final: HC=0x02 ABS=0x54 BYTE 7: Start: HC=0x02 ABS=0x0C End: HC=0x04 ABS=0x14 Mean: HC=0x03 ABS=0x14 End=0.5*tCK: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x14 DQS calibration MMDC0 MPDGCTRL0 = 0x43180330, MPDGCTRL1 = 0x0314030C		Mean:	HC=0x02 ABS=0x0E	
BYTE 7: Start: HC=0x02 ABS=0x0C End: HC=0x04 ABS=0x14 Mean: HC=0x03 ABS=0x10 End-0.5*tCK: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x14 DQS calibration MMDC0 MPDGCTRL0 0x43180330, MPDGCTRL1 0x0314030C				
End: HC=0x04 ABS=0x14 Mean: HC=0x03 ABS=0x10 End=0.5*tCK: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x14 DQS calibration MMDC0 MPDGCTRL0 = 0x43180330, MPDGCTRL1 = 0x0314030C	BYTE 7:			
Mean: HC=0x03 ABS=0x10 End=0.5*tCK: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x14 OQS calibration MMDC0 MPDGCTRL0 = 0x43180330, MPDGCTRL1 = 0x0314030C				
End-0.5*tCK: HC=0x03 ABS=0x14 Final: HC=0x03 ABS=0x14 DQS calibration MMDC0 MPDGCTRL0 = 0x43180330, MPDGCTRL1 = 0x0314030C				
DQS calibration MMDC0 MPDGCTRL0 = 0x43180330, MPDGCTRL1 = 0x0314030C		End-0.5*tCK:	$HC = 0 \times 03$ $ABS = 0 \times 14$	
		Final:	HC=0x03 HBS=0x14	
DOC as Libustian MMDC1 MDDCCTDIA - $\alpha_{\rm V}$ (2) ($\alpha_{\rm C}$) MDDCCTDI1 - $\alpha_{\rm V}$ (2) ($\alpha_{\rm C}$)	DQS cali	ibration MMDC0	MPDGCTRL0 = 0x43180330, MPDGCTRL1 = 0x0314	030C
MAS CATINFACTON MENGI MENGGIRLO - 0X43100324, MENGGIRLI <u>- 0X03140234</u>	DQS cali	ibration MMDC1	MPDGCTRL0 = 0×43100324 , MPDGCTRL1 = 0×0314	0254

DRAM Calibration Conceptual Overview Read DQS Delay Calibration (Continued)

- Used to adjust read-DQS within read-data byte
- Relevant to DDR3 and LPDDR2 memories
- Calibration code in MX6 and MX53 DRAM Stress Test

DRAM Stress Test – Calibration Routines

- The Read calibration test is run begins next.
- "Waterfall" display shows visual of delay settings that allow for correct data readings.
 - Correct return marked with a '0'
- Test finds center of valid window and reports result at bottom.

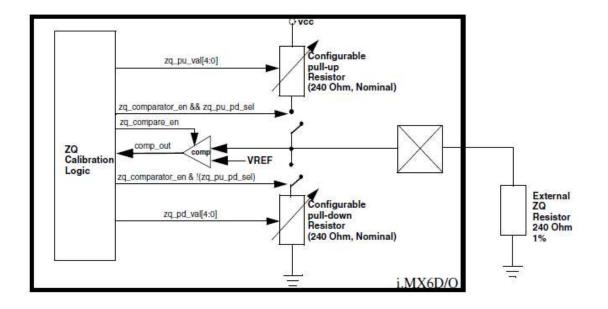
Administrator: CMD - Shortcut - DDR_Stress_Tester_V1.03.exe -t mx6x -... Note: Array result[] holds the DRAM test result of each byte. 0: test pass. 1: test fail 4 bits respresent the result of 1 byte. result 0000001:byte 0 fail. result 00000011:byte 0, 1 fail. Starting Read calibration... ABS_OFFSET =0x00000000 result[00]=0x11111 ABS_0FFSET =0x04040404 result[01]=0x111 ABS_0FFSET=0x08080808 result[02]=0x11 ABS_OFFSET=0x0C0C0C0C result[03]=0x110 ABS_OFFSET=0x10101010 result[04]=0x1101 OFFSET=0x14141414 result[05]=0x11011 ABS OFFSET=0x18181818 result[06]=0x00011 ABS OFFSET=Øx1C1C1C1C result[07]=0x00011000 ABS_OFFSET =0x20202020 result[08]=0x00000000 ABS_OFFSET=0x24242424 result[09]=0x00000000 ABS OFFSET=0x28282828 result[0A]=0x00000000 _0FFSET=0x2C2C2C2C result[0B]=0x00000000 ABS_OFFSET=0x30303030 result[0C]=0x00000000 ABS 0FFSET=0x34343434 result[0D]=0x00000000 ABS_OFFSET=0x38383838 result[0E]=0x00000000 ABS_OFFSET=Øx3C3C3C3C result[0F]=0x00000000 ABS_0FFSET =0x40404040 result [10]=0x00000000 ABS_0FFSET=0x44444444 result[1 1]=0x00000000 OFFSET=0x48484848 result[12]=0x00000000 ABS_OFFSET=Øx4C4C4C4C result[13]=0x00000000 ABS_OFFSET=0x50505050 [14]=0×00000000 result. ABS_OFFSET=0x54545454 result[15]=0x00000000 ABS_OFFSET=0x58585858 result[16]=0x0000 ABS_OFFSET=0x5C5C5C5C [17]=0×00100000 ABS_OFFSET=0x60606060 result[18]=0x01 ABS_OFFSET=0x64646464 result[19]=0x111 ABS_OFFSET =0x68686868 wesult[10]=0v11 ABS_OFFSET=Øx6C6C6C6C result[1 ABS_OFFSET=0x70707070 result[1C]=0x11 ABS_OFFSET=0x74747474 ABS_OFFSET =0x78787878 result[1E]=0x11 ABS_OFFSET=0x7C7C7C7C result[1F]=0x11 MMDCØ MPRDDLCTL = Øx46383C3E. MMDC1 MPRDDLCTL = Øx3C3A3242

DRAM Calibration Conceptual Overview Write DQS Delay Calibration

From the MX6DQ register programming aid example

	MPDGCTRL0 PHY0	0x021b083c	0x434b0350
	MPDGCTRL1 PHY0	0x021b0840	0x034c0359
These parameters are determined after running calibration. The parameters provided here are from Freescale's development board and will work as initial values. Update these values after running calibration.	MPDGCTRL0 PHY1	0x021b483c	0x434b0350
	MPDGCTRL1 PHY1	0x021b4840	0x03650348
	MPRDDLCTL PHY0	0x021b0848	0x4436383b
	MPRDDLCTL PHY1	0x021b4848	0x39393341
	MPWRDLCTL PHY0	0x021b0850	0x35373933
	MPWRDLCTL PHY1	0x021b4850	0x48254a36

- Used to center output write-DQS within write-data byte
- Relevant to DDR3 and LPDDR2 memories
- Calibration code in MX6 and MX53 DRAM Stress Test


DRAM Stress Test – Calibration Routines

- The Write calibration test is run last.
- Test uses the same display as for the Read calibration test.
- Test finds center of valid window and reports result at bottom.

Administrator: CMD - Shortcut	- DDR_Stress_Tester_V1.03.exe -t mxбx 💷 💷 🗮 🗙	
MMDCØ MPRDDLCTL = Ø×463	83C3E, MMDC1 MPRDDLCTL = Øx3C3A3242	^
Starting Write calibrat:	ion	
ABS_OFFSET=0x00000000 ABS_OFFSET=0x04040404 ABS_OFFSET=0x08080808 ABS_OFFSET=0x00000000 ABS_OFFSET=0x10101010 ABS_OFFSET=0x14141414 ABS_OFFSET=0x18181818 ABS_OFFSET=0x18181818 ABS_OFFSET=0x1C1C1C1C ABS_OFFSET=0x20202020	result[00]=0x1111111 result[01]=0x1011111 result[02]=0x10111111 result[03]=0x10101111 result[04]=0x10100110 result[05]=0x1010010 result[07]=0x0000000 result[08]=0x0000000	
ABS_OFFSET=0x24242424 ABS_OFFSET=0x28282828 ABS_OFFSET=0x22222222 ABS_OFFSET=0x30303030 ABS_OFFSET=0x34343434 ABS_OFFSET=0x3838383838 ABS_OFFSET=0x323232322 ABS_OFFSET=0x323232322	result[09]=0x0000000 result[0A]=0x00000000 result[0B]=0x00000000 result[0C]=0x00000000 result[0D]=0x00000000 result[0E]=0x00000000 result[0F]=0x00000000 result[0F]=0x00000000	
ABS_OFFSET=0x44444444 ABS_OFFSET=0x48484848 ABS_OFFSET=0x4C4C4C4C ABS_OFFSET=0x50505050 ABS_OFFSET=0x54545454 ABS_OFFSET=0x58585858 ABS_OFFSET=0x5C5C5C5C ABS_OFFSET=0x60606060	result[11]=0x0000000 result[12]=0x0000000 result[13]=0x00000000 result[14]=0x00000000 result[15]=0x0000000 result[16]=0x00000000 result[17]=0x00000000 result[18]=0x01001000	=
ABS_OFFSET=0x64646464 ABS_OFFSET=0x68686868 ABS_OFFSET=0x66666666 ABS_OFFSET=0x70707070 ABS_OFFSET=0x74747474 ABS_OFFSET=0x78787878 ABS_OFFSET=0x767777777	result[19]=0x01001000 result[1A]=0x11011000 result[1B]=0x11011000 result[1C]=0x11111100 result[1D]=0x1111111 result[1E]=0x1111111 result[1F]=0x1111111	
	E4440,MMDC1 MPWRDLCTL = 0x3E304438	Ŧ
•	4	.::

DRAM Calibration Conceptual Overview ZQ Calibration

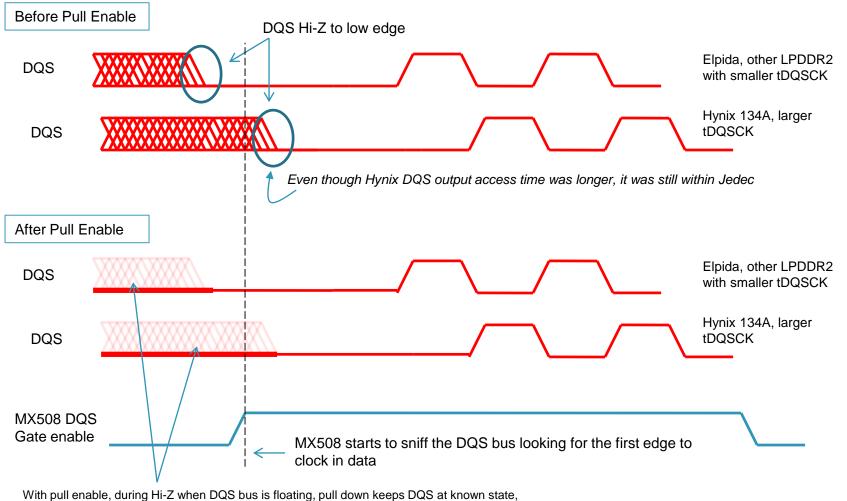
- Feature of both i.MX* and DRAM (DDR3 and LPDDR2)
- Used to calibrate the pull-up/pull-down resistors of DRAM IO pads (tighter control of pad impedance)
- · ZQ calibration occurs automatically, simply just need to enable it
 - Except on MX508, there's a SW routine to do this (in stress test)

* Only i.MX parts that support DDR3 and/or LPDDR2: MX6, MX53, MX508

Agenda

- Board bring-up: where DRAM bring-up fits in
 - Introduce the tools used for DRAM bring-up
- DRAM Register Programming Aid
 - Introduction/Overview
 - Walkthrough
- DRAM Stress Test
 - Introduction/Overview
 - How to build and run; deep dive into sub-tests
- DRAM Calibration Overview
- Case Study: MX508 and LPDDR2 Failure
- Board Design Considerations

Case Study: MX508 and LPDDR2 Failure Overview


- Major customer reported issues with MX508 and LPDDR2
 - Previous LPDDR2 vendor Elpida showed no problems
 - When switching to Hynix, customer reported Linux boot failures at 266MHz
- Failure could only be re-produced by booting Linux (it would crash)
 - Booting uboot showed no problems
 - When Hynix LPDDR2 placed on FSL MX508 EVK, could re-pro failure
- · DRAM Stress Test did not originally catch this failure
 - Eventually new test was written that could catch this (row hop read)
- Problem further complicated due to lack of knowledge/experience with Denali DRAM controller
 - Denali support contact had ended, but FSL was able to extend
- Approx 6 weeks of debug before resolution

External Use

- Tried multitude of internal Denali controller-to-phy timing variations
- Ultimately, internal DQS gate timing parameters led to resolution enable pull down on DQS

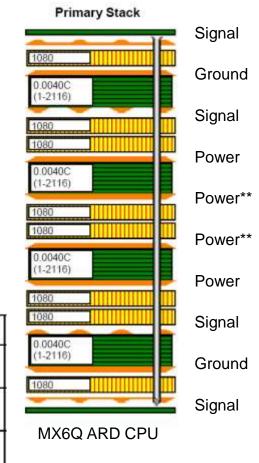
Case Study: MX508 and LPDDR2 Failure Illustration of Fix

avoiding Hi-Z to low edges (same concept applies to DQS_b, but with pull up)

Agenda

- Board bring-up: where DRAM bring-up fits in
 - Introduce the tools used for DRAM bring-up
- DRAM Register Programming Aid
 - Introduction/Overview
 - Walkthrough
- DRAM Stress Test
 - Introduction/Overview
 - How to build and run; deep dive into sub-tests
- DRAM Calibration Overview
- Case Study: MX508 and LPDDR2 Failure

Board Design Considerations


External Use 61

8-Layer Board Stack-up

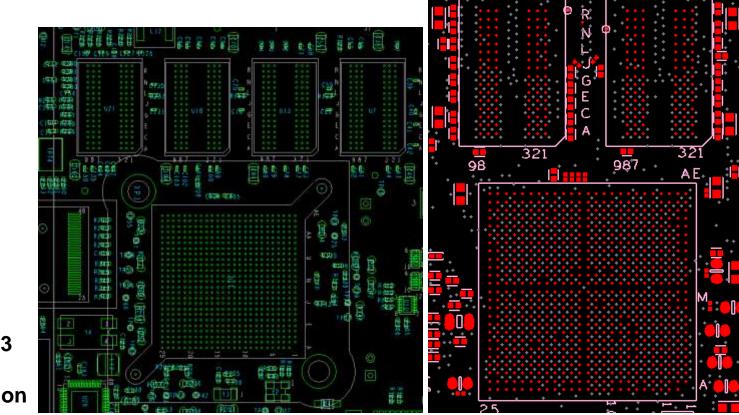
- Board stack-up critical for high-speed signal quality.
- Impedances must be pre-planned.
- High-speed signals must have a reference plane on an adjacent layer to minimize cross-talk.
- FSL Reference design = Isola 370HR
- Power** additional power plane to support MX6Q to MX6Solo power options only.

Impedance Type	Layer	Design	Actual	Pitch	Plane	Target	Tol (ohms)
1 mean Surface MS	L1	0.00470	0.0045		-		
	(#		÷:	(a)	L2	50	5.0
2 EC Microstrip	L1	0.00370	0.0038	0.0090		90	9.0
	-	0.00370	0.0038	-	L2		
3 📥 EC Microstrip	L1	0.00450	0.00325	0.0100		0.552	10000
		0.00450	0.00325		L2	100	10.0

- Swapping DDR3 Data lines within bytes facilitates routing
 - Write Leveling lowest order bit within byte lane must remain on lowest order bit of byte lane
 - For example D0, D8, D16, ... fixed, other data lines free to swap within byte lane
 - JEDEC DDR3 memory restriction.
- No restrictions for complete byte lane swapping
 - DQS and DQM must follow lanes

- Data re-assignment facilitates routing
 - Data re-assigned within byte group
 - Byte Groups can be reassigned

i.MX Contact	Memory Contact	
DRAM_D0	DQ8	Lowest order bit
DRAM_D1	DQ15	
DRAM_D2	DQ10	
etc	etc	
DRAM_D7	DQ9	
SDQS0	DQS1	
DQM0	DM1	



DDR (64-bit) routing configurations can be routed as:

- "T" configurations
 - Termination resistors not required
 - Accomplished with short routing lengths and on-chip drive strength control
 - Design limited to one chip select (4 x16 DDR's)
 DDR3, 2 GBytes using latest memories (4 GBytes coming)
- "Fly-by" configuration
 - MX6 DDR controller provides Address mirroring when using 2 chip selects. Aids routing for memories on both sides of board.
 - Bus termination resistors required
 - Proven design method, easy to simulate

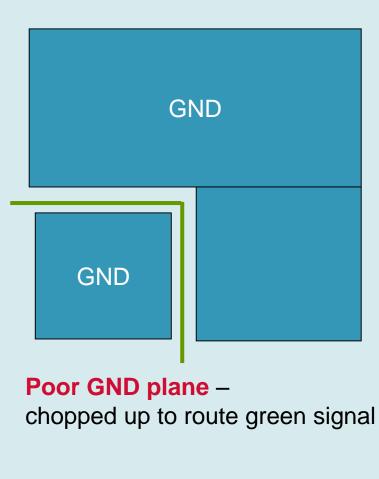
- Prototype boards should plan for DDR signal breakout boards from Agilent or other.
 - Allows probing signal quality
 - Alternate Remove one memory to probe bus

MX6Q DDR3 "Fly-by" Configuration

MX6Q DDR3 "T" Configuration

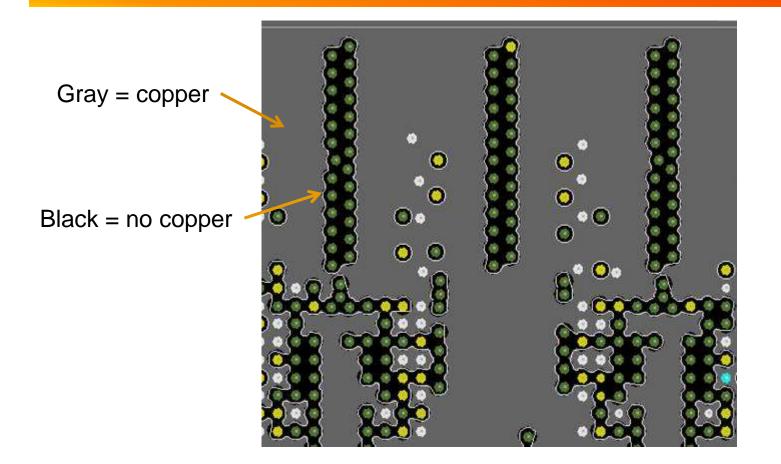
Fly-By Topology vs. T Route

- Fly-By Topology Advantages:
 - Easier to route
 - Less chance for reflection in Address and Command traces.
 - Parallel termination resistors go at end of traces.
- T Route Advantages:
 - Less power consumption
 - Traces not pulled up to VREF.
 - Better performance.
 - Don't lose extra clock cycle to reads and writes.

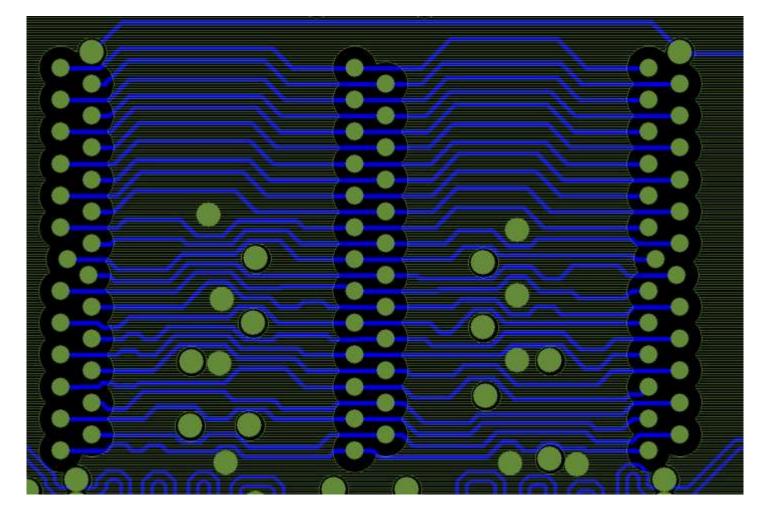

Layout considerations for high-speed signals

- High-speed signals must not cross reference plane gaps
- Avoid creating slots, voids, and splits in reference planes. Review via voids to ensure they do not create splits (space out vias).
- Clocks or Strobes on same layer need at least 2.5x spacing from adjacent trace (2.5x height from reference plane) to control crosstalk.
- All Synchronous modules should have bus length matching and relative clock length control.
 - CLK should be longer than the longest signal in the Data/Addr/Control group (+5 mils)
 - Many web resources

Power Grid Pontential Errors

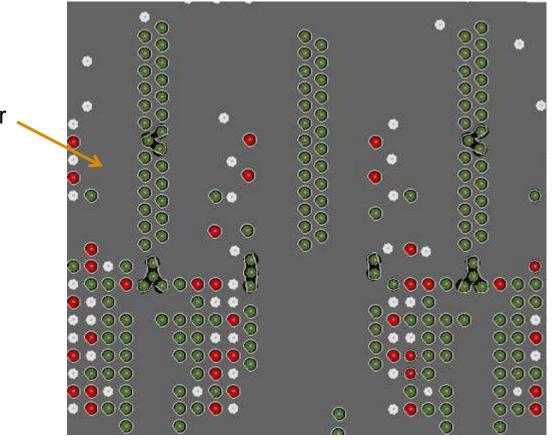

 Chopping up planes reduces effectiveness

DRAM GND Plane – Poor Layout



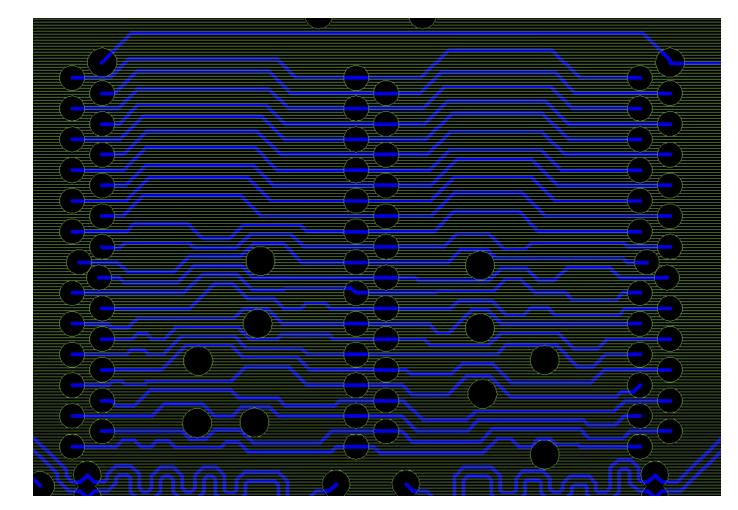
GND Plane of Previous Slide – Poor Layout Detail

- Vias too close together
- Horizontal current flow blockage



External Use 71

GND Plane - Good Layout

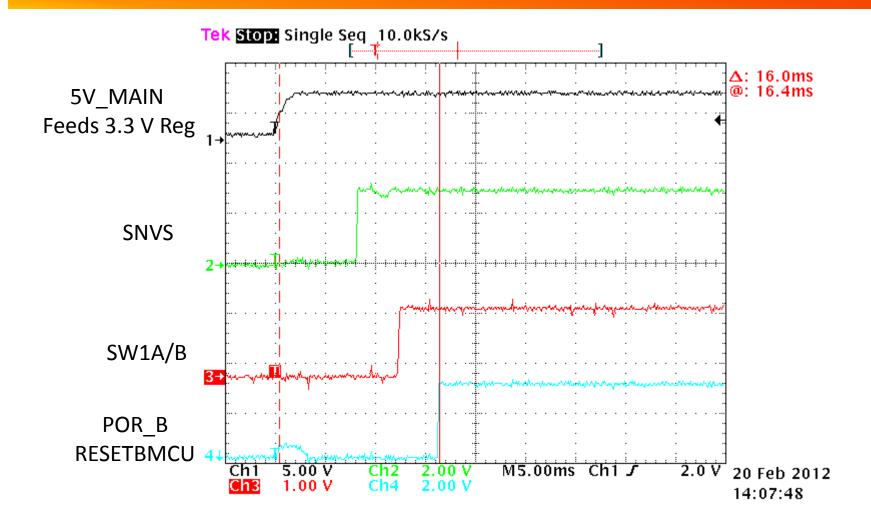

Gray = copper

GND Plane of Previous Slide – Good Layout Detail

- Vias spaced apart
- Facilitates horizontal current flow

High-Speed Signal Impedance

Signal Group	Impedance	Layout Tolerance (+/-)
All signals, unless specified	50 Ohm SE	2%
USB Diff signals	90 Ohm Diff	2%
Diff signals: LVDS, SATA, HDMI, DDR, PCIE, MIPI (CSI & DSI), MLB, Phy IC to Ethernet Connector	100 Ohm Diff (85 ohm PCI)	2%


Bring-Up: Power – Example Voltage Report Board Name: ______ Serial #: _____ Data Collected by: _____

Date:

Source	Net Name	Expected (V)	Measured (V)	Measured Point	Comment
Main	5V0	5.0	5.103	C5.1	
3.3 V discrete reg	3V3_DELAYED	3.35	3.334	SH1	Requires LDO3 to enable
PMIC Switcher 1	VDDARM	1.375	1.377	SH2	
PMIC Switcher 2	VDDSOC	1.375	1.376	SH3	
PMIC Switcher 3	1V5_DDR	1.5	1.501	SH4	
PMIC LDO1	1V8	1.8	1.802	TP9	
PMIC LDO2	2V5	2.5	0.3	TP5	
VREFDDR	0V75_REFDDR	0.75	0.751	C8.1	50% of 1V5_DDR
Coin Cell	3V0_STBY	3.0	3.006	TP1	
MX6	VDDARM_CAP	1.1	1.114	C6.1	
MX6	VDDHIGH_CAP	2.5	2.515	SH5	
MX6	VDDSNVS_CAP	1.0	1.016	TP2	

Bring-Up: Power-Up Sequence

Summary

- Overview of tools used by the factory to optimize and debug DRAM interface
 - Excel spread sheet based register programming aid
 - DRAM stress test using open source compiler
- DRAM Calibration app note available from Freescale
 Introduction of DRAM calibration concepts
- Case study of DRAM debug efforts

External Use

Links to Useful DRAM Documents

• JEDEC

DDR3 Specification:

http://www.jedec.org/sites/default/files/docs/JESD79-3E.pdf

DDR3L Amendment:

http://www.jedec.org/sites/default/files/docs/JESD79-3-1_1.pdf

LPDDR3 Specification:

http://www.jedec.org/sites/default/files/docs/JESD209-3.pdf

WidelO SDR Specification:

http://www.jedec.org/sites/default/files/docs/JESD229.pdf

LPDDR2 Specification:

http://www.jedec.org/sites/default/files/docs/JESD209-2E.pdf

Micron Documentation

External Use

DRAM Support Site:

http://www.micron.com/products/dram/ddr3-sdram#documentation_support

References

- FTF Session FTF-ENT-F0039 Designing Transmission Lines in High-Speed Printed Circuit Boards: Preventing Potential Problems
 - Go to freescale.com → Freescale Technology Forum, Training, tools,
 ... → FTF Americas → Technical Sessions Library → FTF-ENT-F0039
- Books recommended from the session:
 - Right the First Time: A Practical Handbook on High Speed PCB and System Design, Volumes I & II, Lee W. Ritchey. Speeding Edge, ISBN 0-9741936-0-7
 - Signal and Power Integrity Simplified (2nd Edition), Eric Bogatin. Prentice Hall, ISBN 0-13-703502-0
 - High Speed Digital Design: A Handbook of Black Magic, Howard W. Johnson & Martin Graham. Prentice Hall, ISBN 0-13-395724-1

www.Freescale.com

© 2015 Freescale Semiconductor, Inc. | External Use