

Design with QorlQ T2081 and T1040 Processor Families APF-SNT-T1360

Xiaobo Xie Chun Chang | Application Engineer A U G . 2 0 1 5

External Use

Presents, the Pressure top, AllVec, C-8, Code/TEST, Code/Verror, ColdPire, Co-New, the Energy Efficient Solutions top, Kinetis, Magn/K mobileDT, PED, PowerQLGG, Processer Expert, Carlo, Carlo Commerg, Dorive, Newly Pier, SelbAsane, the SalaAssare top, Sterbine, Styrephory, VertiCa, Vytol and Kineto are todernarks of Pressula Semiconductor, Inv., Reg, U.S. Pat, & Tm. Off, Antal, BeeKG, BeeStack, Danklet, Field, Layerscape, MXC, Partorn in a Package, QUEC Engine, SMAPTINOS, Tawer, TartoLink and UMEUS are trademarks of Pressula Demiconductor, Inc. All later product or service normal and the property of their sepacetion service. B 2015 Pressula Beniconductor, Inc.

Session Introduction

- This session is relevant for customers designing with
 Freescale T2081 and T1040 family of QorlQ processors
 - Details the commonalities and differences
 - Examines the problems and solutions of common board design and migration from T1040 to T2081
 - Provides practical examples based on existing Freescale designs

Session Objectives

- After completing this session you will be able to:
 - Identify the design collateral that exists to assist with T1040 and T2081 designs
 - Recognize the major design issues for the common board design and how they can be overcome
 - Use our design tips for high-speed interface design (eSDHC and SerDes)
 - Know where to go for assistance

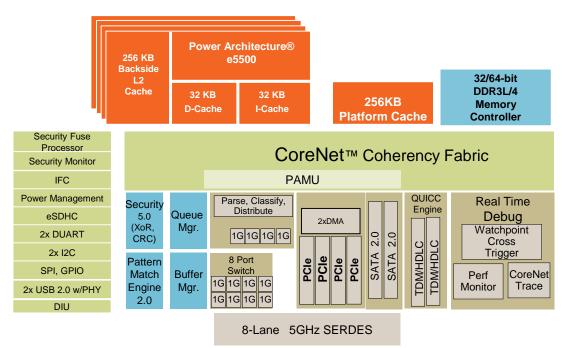
Agenda

- T1040 and T2081 Overview
- Hardware Compatibility
- Software Compatibility
- Pinout Comparison
- Supporting Tools

External Use

3

Reference Documentation



Agenda

- T1040 and T2081 Overview
 - T1040 Block Diagram
 - T2081 Block Diagram
 - Device Comparison
 - Commonalities and Differences

T1040

Device

- 780-pin FC-PBGA package
- 23x23mm, 0.8mm pitch

Power targets

 Enable Convection cooled system design

Datapath Acceleration

- SEC- crypto acceleration
- PME- Reg-ex Pattern Matcher

Processor

- 4x e5500, 64b, up to 1.4GHz
- Each with 256KB backside L2 cache
- 256KB Shared Platform Cache w/ECC
- Supports up to 64GB addressability (36 bit physical addressing)

Memory Subsystem

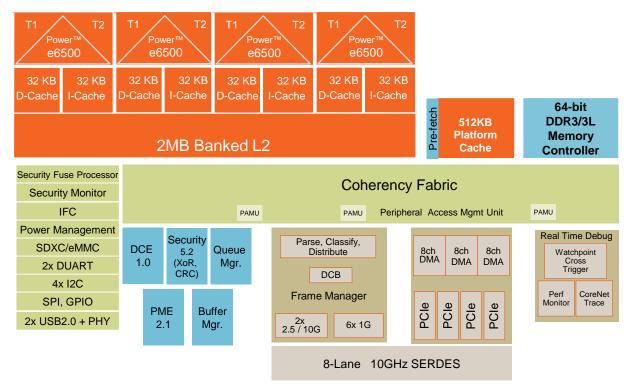
32/64b DDR3L/4 Controller up to 1600MHz

CoreNet Switch Fabric High Speed Serial IO

- 4x PCIe Gen2 (5Gbps) Controllers
- 2x SATA 2.0, 3Gbps
- 2x USB 2.0 with PHY

Network IO

- FMan packet Parse/Classify/Distribute
- Lossless Flow Control, IEEE 1588
- Up to 4x 10/100/1000 Ethernet Controllers
- 8-Port Gigabit Ethernet Switch
- QUICC Engine
 - HDLC, 2x TDM


Green Energy Operation

- Fanless operation quad-core 1.4GHz
- Packet lossless deepsleep
 - Programmable wake-on-packet
 - Wake-on-timer/GPIO/USB/IRQ

QorlQ T2081 Block Diagram

Datapath Acceleration

- SEC- crypto acceleration 10Gbps
- DCE Data Compression Engine 17.5Gbps
- PME Pattern Matching Engine to 10Gbps

Processor

- 4x e6500, 64b, 1.5 1.8GHz
- Dual threaded, with 128b AltiVec
- 2MB shared L2; 256KB per thread

Memory Subsystem

- 512KB Platform Cache w/ECC
- 1x DDR3/3L Controllers up to 2.1GHz
- Up to 1TB addressability (40 bit physical addressing)
- · HW Data Pre-fetching

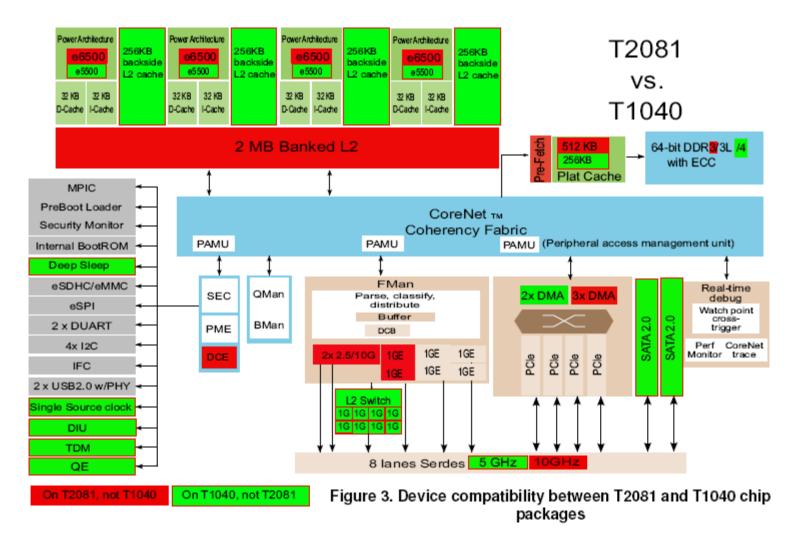
Switch Fabric

High Speed Serial IO

- 4 PCIe Controllers: one at Gen3, three at Gen2
 - 1 with SR-IOV support
 - x8 Gen2
- 2 USB 2.0 with PHY

Network IO

- Up to 25Gbps Simple PCD each direction
- 8 MACs multiplexed over:
 - 2x 10GE, 2x 2.5Gb/s SGMII, 7x GE
 - XFI, 10GBase-KR, SGMII, RGMII, 1000Base-KX


Device

- TSMC 28HPM Process
- 23x23mm, 780pins, 0.8mm pitch, pin compatible with T1042
- Power estimated at 18.7–24.4W (thermal) depending on frequency

Schedule: samples: 2H-2014; qual Q1-15

Device Comparison – T1040 and T2081

Commonalities and Differences

Features	T2081	T1040	T1042				
	Cores						
Number of cores	4 × e6500 dual threaded Power Architecture	4 × e5500 Power Architecture	4 × e5500 Power Architecture				
Architecture width	64-bit	64-bit	64-bit				
Max frequency (MHz)	1800	1400	1400				
DMIPS/MHz	6	3	3				
	Memo	ry Size					
L1 Cache	32KB I/D	32KB I/D	32KB I/D				
L2 Cache	2 MB shared	256KB / core backside	256KB / core backside				
CPC	512KB frontside	256KB frontside	256KB front side				
Cache line size	64 Bytes	64 Bytes	64 Bytes				
Memory Type	DDR3/3L @2133 MT/s	DDR3L/4 @1600 MT/s	DDR3L/4 @1600 MT/s				
Maximum size of main memory	32 GB (1Gbit x8 device)	32 GB (1Gbit x8 device)	32 GB (1Gbit x8 device)				

Commonalities and Differences (contd...)

Features	T2081	T1040	T1042					
	I/O							
Ethernet controllers	2× XFI 6x SGMII 2x 2.5Gbps SGMII 2x RGMII	2× 5Gbps QSGMII 6x 1Gbps SGMII 2x RGMII 1x MII	6x 1Gbps SGMII 2x 2.5Gbps SGMII 2x RGMII 1x MII					
SerDes lanes	8 lanes at up to 10GHz	8 lanes at up to 5 GHz	8 lanes at up to 5 GHz					
PCI Express controllers	3 × Gen 2.0 controllers 1 × Gen 3.0 controllers	4 × Gen 2.0 controllers	4 × Gen 2.0 controllers					
SATA	None	2 x SATA controllers	2 x SATA controllers					
ТDМ	None	Full duplex serial	Full duplex serial					
DIU	None	12 bit RGB	12 bit RGB					
CoreNet	700MHz at 256 bits	600MHz at 128 bits	600MHz at 128 bits					
Ethernet switch	None	8 port	None					
QE	None	HDLC, UART, TDM/SI	HDLC, UART, TDM/SI					

Commonalities and Differences (contd...)

Features	T2081	T1040	T1042					
	I/O							
Integrated Flash Controller (IFC)	8-/16-bit data width, 32-bit address width	8-/16-bit data width, 32-bit address width	8-/16-bit data width, 32-bit address width					
	Clocking							
Single source clocking None		Diff_SYSCLK/DIFF_S YSCLK_B supported VSCLK_B support						
	Power Ma	inagement						
Deep Sleep None		Supported	Supported					
Package								
780 FC-PBGA 23 mm x 23 mm		23 mm x 23 mm	23 mm x 23 mm					

Agenda

- T1040 and T2081 Overview
- Hardware Compatibility
 - Identical Interfaces
 - DDR Controller
 - eSDHC Controller
 - TEST_SEL _B pin
 - Sense Pins
 - Power Sequencing
 - Power Supply
 - Clock Difference

Identical Interfaces

The following interfaces are identical between the T2081 and T1040:

Integrated Flash Controller (IFC)

Enhanced SPI Controller (eSPI)

DUART Controller

External Use

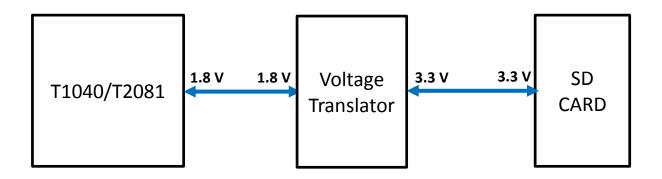
DDR Controller

- T2081 supports DD3/3L DDR controller.
- T1040 supports DDR3L/4.
- As DDR3L is common to both devices, it should be used for the common board design.

DDR Calibration Resistor Values

	MDIC [0]	MDIC[1]
T1040	162 ohm 1%	162 ohm 1%
T2081	187 ohm 1%	187 ohm 1%

eSDHC Controller

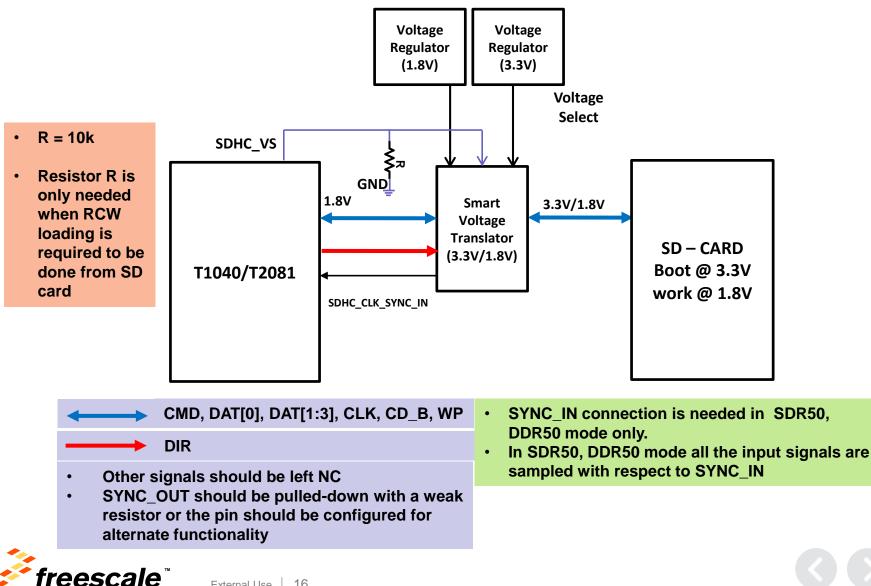

eSDHC Controller Recommendations

External Use

- Both T1 and T2 supports SD 3.0 specification introducing higher capacity up to 2 TB and frequency up to 208 MHz.
- A dynamic switching of I/O voltage from 3.3 V to 1.8V is required.
- T2081 doesn't support the dynamic switch, so the board level shifters are required for common board design.

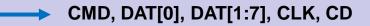
SD Card Connections for T1/T2 Compatibility (DS and HS Modes)

CMD, DAT[0], DAT[1:3], CLK, CD_B, WP


Other signals should be left NC

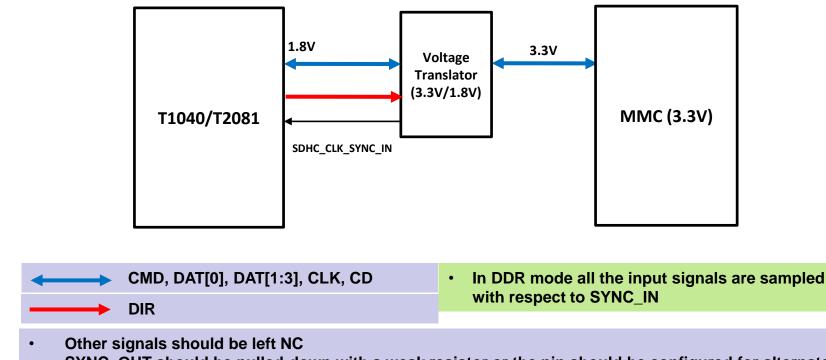
External Use | 15

• SYNC_OUT should be pulled-down with a weak resistor or the pin should be configured for alternate functionality



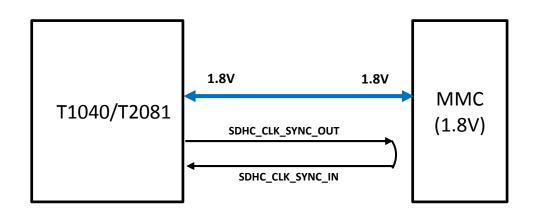
SD Connections for T1/T2 Compatibility (SDR12, 25, 50, 104 and DDR50 Modes)

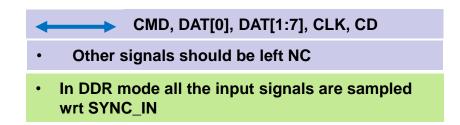
MMC Card Connections for T1/T2 Compatibility (DS, HS, HS200 Modes)


Other signals should be left NC

External Use | 17

- SYNC_OUT should be pulled-down with a weak resistor or the pin should be configured for alternate functionality
- Voltage translator is not needed for 1.8V MMC.


MMC (3.3V) Connections for T1/T2 Compatibility (DDR Mode)



- SYNC_OUT should be pulled-down with a weak resistor or the pin should be configured for alternate functionality
- Voltage translator is not needed for 1.8V MMC.

MMC (1.8V) Connections for T1/T2 Compatibility (DDR Mode)

TEST_SEL_B Pin

• The requirement is different for T1040 and T2081.

Device	TEST_SEL_B Requirement
T1040, T1042	Pull up to O1VDD
T1020, T1022	Pull down to GND
T2081	Pull up to OVDD

External Use | 20

Sense Pins

• If the sense pins are used for the regulators, SENSEVDD should be used. SENSEVDDC can be left floating.

Ball Location	T2081	T1040
G19	SENSEVDD	SENSEVDD
AB9	RSVD28	SENSEVDDC

External Use 21

Power sequencing requirements

- T1040 requires its power rails to rampup in a specific sequence, whereas T2081 has no such requirement.
- Common board should follow T1040 hardware specification for the Power sequencing requirements.

Case: Power ON

- Step 1 I/O supplies should ramp up (1.8V, 2.5V, 3.3V).
 - PORESET should be asserted when VDDC/VDD rampup
- Step 2 Core supplies (1.0V), USB_SVDD
 - I/O power should ramp before core power
- Step 3 DDR supplies (G1VDD, X1VDD)
 - VDD should ramp before G1VDD

Power Supply for Core

- Core Power Island Requirements
- T1040 has VDD and VDDC power domains for core and platform.
- T2081 has only VDD power domain for core and platform.

23

External Use

 The common board design should use a single rail for VDD and VDDC in T1040.

T2081	T1040	Recommendation
VDD	VDD, VDDC	VDD and VDD should be connected to a common rail.

Power Supply for I/O

Supply	T2081	T1040	Recommendation for a common board design	Interface wise recommendation	Interfaces
O1V _{DD}	_	1.8V	Use Single regulator for OV _{DD}	eSDHC interface of T2081 is on	Common: MPIC, GPIO,
OV _{DD}	1.8V	1.8V	and O1V _{DD} on T1040 at 1.8V	OV_{DD} supply while IO power supply of eSDHC in T1040 is fed by EV_{DD} . If eSDHC is used, EV_{DD} and OV_{DD} should be connected to 1.8V. On board level shifters are required to support SD 3.0 modes.	System Control, Debug, Clocks, JTAG I/O, IFC, RTC and power management I/O's, T2081 only: eSDHC
DV _{DD}	2.5V 1.8V	3.3V 2.5V 1.8V	Use 2.5V or 1.8V only for DV _{DD} supply	DIU and TDM are supported at 3.3V so voltage translators may be required on a common board. QE interface is supported at 2.5V and 3.3V, restricting DV _{DD} to 2.5V for common board.	Common: DUART, I2C, DMA, MPIC T1040 only: QE, TDM, DIU
CVDD	2.5V 1.8V	3.3V 1.8V	Use 1.8V for CV _{DD} supply	_	Common: eSPI, SDHC_DAT[4:7]
EV _{DD}	_	3.3V 1.8V	Use OV _{DD} supply for EV _{DD}	SDHC_DAT[0:3], SDHC_CMD and SDHC_CLK are the signals on EV_{DD} supply in T1040. These signals are on OV_{DD} supply in T2081. See OV_{DD} supply for details.	Common: eSDHC See Note
G1V _{DD}	1.5V 1.35V	1.35V 1.2V	Use G1V _{DD} at 1.35V	Use DDR3L only	Common:DDR3L T1040: DDR4 T2081: DDR3
L1V _{DD}	_	3.3V 2.5V 1.8V	Use Single regulator for LV _{DD} and L1V _{DD} on T1040 It can support 2.5V or 1.8V	Use RGMII interface at 2.5V only.	Common:GPIO, RGMII@2.5V T1040: MII, RGMII@1.8V
LV _{DD}	2.5V 1.8V	3.3V 2.5V 1.8V			

Clocking Difference

 T1040 supports the differential pair of SYSCLK, the common board design leaves it as floating or connect through 10K Ohm resistor to GND.

Clocking scheme	T2081	T1040	Recommendation
Single Reference clock mode	No	Yes	T1040: Supported through DIFF_SYSCLK/DIFF_SYSCLK_B clock input pair
Multiple reference clock mode	Yes	Yes	Through separate oscillators for SYSCLK, DDRCLK, USBCLK, SDREF_CLKn inputs. Recommended mode for common board design.

Exceptions

Product	PCle	MII on EC1	QE (TDM HDLC)	Starlite TDM	QSGMII	GE Switch	XFI	SATA	DIU	Deep Sleep
T1040	4 Gen 2	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes
T2081	1 Gen3 3 Gen 2	NO	NO	NO	NO	NO	Yes	NO	NO	NO

Agenda

- T1040 and T2081 Overview
- Hardware Compatibility
- Software Compatibility
 - e6500 and e5500 Compatibility
 - RGMII
 - SerDes Configuration
 - RCW
 - Difference in driver

External Use

27

e6500 and e5500 Compatibility

- User code runs equally well on e6500 or e5500
 - Interrupts per thread
 - Soft reset per thread (hard reset per core only)
 - Debug state per thread
- Changes are hidden by OS
 - L2 initialization uses a different register
 - Cache locking controlled differently
- Additional enablement for new features not present on e5500:
 - 64b, drowsy power manager, Altivec

e5500/e6500 Caching Structure Differences

	e5500	e6500	Implication
L1	32KB. Can lock per core	32kB. Can lock per core	e6500 doesn't lock per thread
L2	128KB per core	2MB shared	There will be a somewhat different latency profile, overall improved for e6500
L3	256KB	512kB	prome, overall improved for e6500

- Cache changes are transparent to user application
- L1 locking is less granular in e6500

RGMII

- The two RGMII interfaces are pin compatible, the configurations for RGMII mode are different between the T2081 and T1040 devices.
- T1040 also supports MII interface on EC1 Interface. When using MII interface, L1VDD and LVDD are restricted to 3.3V and RGMII cannot be supported on EC1 or EC2.

Configuration	RGMII assignment			
conngulation	T2081	081 T1040		
RCW[EC1] = 0b00	FMan MAC3	FMan MAC4	MAC2_GMII_SEL = 0b0	
		FMan MAC2	MAC2_GMII_SEL = 0b1	
RCW[EC2] = 0b00	FMan MAC4	FMan MAC5	_	
RCW[EC2] = 0b01	FMan MAC10	—		

T1/T2 compatible Serdes Configurations

T1040 SRDS_PRCTL_S1	A	В	с	D	E	F	G	н	T2081 SRDS_PRTCL_S1	
0x00 (2 RGMII; FMAN MAC4 & MAC5)			X1 2/5)		PEX2 (5/2.5)				0xAA (2 RGMII; FMAN MAC3 & MAC4/10)	
	PEX3 (5/2.5)				PEX4 (8/5/2.5)				MACS & MAC4/10/	
0x40 (2 RGMII; FMAN		EX1 2.5)	sg.m1 (1.25)	sg.m2 (1.25)	PEX2 (5/2.5)			0xBC (2 RGMII; FMAN MAC3 & MAC4/10)		
MAC4 & MAC5)		X3 2.5)	SG1 (1.25)	SG2 (1.25)	PEX4 (8/5/2.5)					
0xA5 (0 RGMII)	PEX1 (5/2.5)	sg.m3 (1.25)	sg.m1 (3.125)	sg.m2 (3.125)		X2 2.5)	sg.m4 (1.25)	sg.m5 (1.25)	0xC8	
	PEX3 SG10 SG1 (5/2.5) (1.25) (3.125)		SG1 (3.125)	SG2 (3.125)	PE (5/2		SG5 1.25)	SG6 (1.25)	(2 RGMII; FMAN MAC3 & MAC4)	
0xAA (0 RGMII)	PEX1 (5/2.5)	sg.m3 (1.25)	sg.m1 (3.125)	sg.m2 (3.125)	PEX2 (5/2.5)	PEX3 (5/2.5)	sg.m4 (1.25)	sg.m5 (1.25)	0xFA (2 RGMII; FMAN	
	PEX3 (5/2.5)	SG10 (1.25)	SG1 (3.125)	SG2 (3.125)	PEX4 (5/2.5)	PEX1 (5/2.5)	SG5 (1.25)	SG6 (1.25)	MAC3 & MAC4)	
0x85 (0 RGMII)	PEX1 (5/2.5)	sg.m3 (1.25)	sg.m1 (1.25)	sg.m2 (1.25)		X2 2.5)	sg.m4 (1.25)	sg.m5 (1.25)	0xD6 (2 RGMII; FMAN	
	PEX3 (5/2.5)	SG10 (1.25)	SG1 (1.25)	SG2 (1.25)	PE (8/5/		SG5 (1.25)	SG6 (1.25)	MAC3 & MAC4)	

T1/T2 compatible SerDes Configurations (continue)

T1040 SRDS_PRCTL_S1	Α	В	с	D	E	F	G	н	T2081 SRDS_PRTCL_S1
0x87 (1 RGMII; FMAN MAC4)	PEX1 (5/2.5)	sg.m3 (1.25)	sg.m1 (1.25)	sg.m2 (1.25)	PEX2 (5/2.5)	PEX3 (5/2.5)	PEX4 (5/2.5)	sg.m5 (1.25)	0xF2 (2 RGMII; FMAN MAC3 & MAC4)
	PEX3 (5/2.5)	SG10 (1.25)	SG1 (1.25)	SG2 (1.25)	PEX4 (8/5/2.5)	PEX1 (5/2.5)	PEX2 (5/2.5)	SG6 (1.25)	
0xA7 (1 RGMII; FMAN MAC4)	PEX1 (5/2.5)	sg.m3 (1.25)	sg.m1 (3.125)	sg.m2 (3.125)	PEX2 (5/2.5)	PEX3 (5/2.5)	PEX4 (5/2.5)	sg.m5 (1.25)	0xF8 (2 RGMII; FMAN MAC3 & MAC4)
	PEX3 (5/2.5)	SG10 (1.25)	SG1 (3.125)	SG2 (3.125)	PEX4 (5/2.5)	PEX1 (5/2.5)	PEX2 (5/2.5)	SG6 (1.25)	
0x8D* (Using L2 switch) (2 RGMII; FMAN MAC4 & MAC5)	PEX1 (5/2.5)	sg.s3 (1.25)	sg.s1 (1.25)	sg.s2 (1.25)	PEX2 (5/2.5)	sg.s6 (1.25)	sg.s4 (1.25)	sg.s5 (1.25)	0xCA (1 RGMII; FMAN MAC3)
	PEX3 (5/2.5)	SG10 (1.25)	SG1 (3.125)	SG2 (3.125)	PEX4 (5/2.5)	SG4 (1.25)	SG5 1.25)	SG6 (1.25)	
0x06* (2 RGMII; FMAN MAC4 & MAC5)	PEX1 (5/2.5)				PEX2 (5/2.5)	PEX3 (5/2.5)	PEX4 (5/2.5)	SATA1	0x DE
	PEX3 (5/2.5)				PEX4 (8/5/2.5)	PEX1 (5/2.5)	PEX2 (5/2.5)	SG6 (1.25)	(2 RGMII; FMAN MAC3 & MAC4/10)
0x08* (2 RGMII; FMAN MAC4 & MAC5)	PEX1 (5/2.5)				PEX2 (5/2.5)	PEX3 (5/2.5)	SATA2	SATA1	0xE0
	PEX3 (5/2.5)			PEX4 (8/5/2.5)	PEX1 (5/2.5)	SG5 (1.25)	SG6 (1.25)	(2 RGMII; FMAN MAC3 & MAC4/10)	

Reset Configuration Word

- RCW are mostly compatible. Detail listed in T1040 and T2080 reference manual.

RCW bits	T1	T2	Notes		
10-15	MEM_PLL_CFG		Cutoff frequencies for the T1 and T2 differ. 24:1 async mode setting is available for T1.		
176-177	SRDS_DIV_PEX		T1: 00 Train up to 5G T2: 00 Train up to 8G		
190-191	DDR_FDBK_ MUL	Reserved			
242	SYS_PLL_SPD	Reserved			
321	UC1_CTSB_ CDB_SEL	Reserved			
418-419	EC1		Using different MAC. T1: MAC #4 and #2 T2: MAC #3		
420-421	EC2		Using different MAC. T1: MAC #5 T2: MAC #4, #10		

Difference in driver

To limit driver configuration issues, take the following actions to simplifying the driver configuration.

- Number of cores
 - T1040: 4 single-threaded e5500 cores running at 1000MHz/1200MHz/1400MHz
 - T2080: 4 dual-threaded e6500 cores(8 virtual cores) running at 1200MHz/1533MHz/1800MHz
 Using 1200MHz for both core
- CPC size
 - T1040: 256-Kbyte, 8-way set associative, 64-byte coherency granule
 - T2080: 512-Kbyte, 16-way set associative, 64-byte coherency granule Use 256-Kbyte, 8-way set associative, 64-byte coherency granule
- L2 size
 - T1040: 256KB per e5500 core, total 1MB.
 - T2080: 2MB shared by 4 e6500 cores

Use 256KB per thread

Difference in driver (continue...)

- DDR
 - T1040: one 32-/64-bit DDR3L/DDR4 SDRAM memory controller with ECC and interleaving support
 - T2080: one 32-/64-bit DDR3/3L SDRAM memory controller with ECC and interleaving support and Memory pre-fetch engine

Select cfg_dram_type = 1 to choose DDR3L.

- Ethernet
 - T1040: 4 MACs from FMan and 8 MAC from Ethernet Switch. It supports two RGMII ports using MAC4 & MAC5.
 - T2080: 8 MACs from FMan(four 1G and four 1/2.5/10G) running with various combinations with different SerDes procotols. Two RGMII ports using MAC3 & MAC4, 4 XFI ports using MAC9,MAC10,MAC1,MAC2.

Using RGMII requires the software driver to remap the different MACs between T1 and T2,

choose a pin compatible configuration for SerDes option.

- · PCle
 - T1040: four PCI Express 2.0 controllers/ports running at up to 2.5/5GHz.
 - T2080: two PCI Express 2.0 running at 2.5/5GHz and two PCI Express 3.0 controllers/ports running at 2.5/5/8GHz.

Using 2.5/5GHz only.

Difference in driver (continue...)

- SATA
 - T1040 and T2080 have same two SATA controllers supporting 1.5 and 3.0 Gbps operation, there is no defference in software configuration.
- QE
 - T1040: support QE with two TDM interfaces. u-boot doesn't support TDM.
 - T2080: no support.
- DIU
 - T1040: support LCD and HDMI interface (DIU) with 12 bit dual data rate.
 - T2080: no support.

Difference in driver (continue...)

- PAMU
 - no changes in S/W.
- DMA
 - 3 in T2081 vs 2 in T1040.
- GE switch
 - if used on board add if config, only for T1040.
- IFC
 - same so no changes.
- Single Source Clocking: USB considerations, only for T1040.
- Deep sleep: only for T1040.

Agenda

- T1040 and T2081 Overview
- Hardware Compatibility
- Software Compatibility
- Pinout Comparision
- Supporting Tools
- Reference Documentation

38

External Use

This table details the differences in pinout between the T2081 and T1040 processor family and how to resolve this difference. Unless explicitly stated otherwise, the pins on the T2081 can be connected as if a T1040 is populated.

Pin	T2081	T1040	Compatible connection				
Ethernet MI 2 pins							
L6	EMI2_MDC	RSVD10	All the Ethernet PHY's to be used with T1040 should be managed through the EMI1 interface.				
M6	EMI2_MDIO	RSVD11					
Ethernet Cont. 1 pins							
AC4	RSVD34	EC1_TX_ER	EC1 Interface on T1040 also supports MII interface (see Section 3.8, "Ethernet MACs options")This output pin can be left floating if not used.				
AC2	RSVD33	EC1_RX_ER	Tie low through a 2-10 kohm resistor if not used.				
AC1	RSVD32	EC1_COL					
Differential SYSCLK pins (see Section 4, "Internal clocking differences")							
G14	RSVD07	DIFF_SYSCLK	Differential SYSCLK input is available only in T1040. These can be left floating or connected to GND if unused.				
F14	RSVD05	DIFF_SYSCLK_B					

		DMA/TDM pins	•			
U5	DMA1_DACK0_B/GIPIO4_05	DMA1_DACK0_B/GIPIO4_05/ TDM_TFS	Additional TDM functionality is available in T1040 over DMA pins. When used, software needs to manage the interface on T2081			
R5	DMA1_DDONE0_B/GPIO4_06	DMA1_DDONE0_B/GPIO4_06/TDM_TCK				
P5	DMA1_DREQ0_B/GPIO4_04	DMA1_DREQ0_B/GPIO4_04/TDM_TXD				
AA5	DMA2_DACK0_B/GIPIO4_08/E VT7_B	DMA2_DACK0_B/GIPIO4_08/EVT7_B/ TDM _ RFS				
Y5	DMA2_DDONE0_B/GPIO4_09/ EVT8_B	DMA2_DDONE0_B/GPIO4_09/EVT8_B/ TD M_RCK				
V5	DMA2_DREQ0_B/GPIO4_07	DMA2_DREQ0_B/GPIO4_07/TDM_RXD	*			
I2C 3 & 4 pins						
V2	IIC3_SCL/GPIO4_00	IIC3_SCL/GPIO4_00/QE_SI1_STROBE0	Additional QE functionality is available in T1040 over I2C pins.			
WЗ	IIC3_SDA/GPIO4_01	IIC3_SDA/GPIO4_01/QE_SI1_STROBE1				
ААЗ	IIC4_SCL/GPIO4_02/EVT5_B	IIC4_SCL/GPIO4_02/EVT5_B/DIU_HSYNC	Additional DIU functionality is available in T1040 over I2C pins.			
AB3	IIC4_SDA/GPIO4_03/EVT6_B	IIC4_SDA/GPIO4_03/EVT6_B/DIU_VSYNC				

QE/DIU pins							
Pin	T2081	T1040	Compatible connection				
P4	RSVD15	CLK09/GPIO4_15/BRG02/DIU_D10	QE and DIU are only available on				
P3	RSVD14	CLK10/GPIO4_22/BRG03/DIU_D11	T1040. If unused, configure the pins as GPIO and leave as NC				
N4	RSVD13	CLK11/GPIO4_16/BRG04/DIU_DE	-				
M4	RSVD12	CLK12/GPIO4_23/BRG01/DIU_CLK_OUT					
R2	RSVD17	TDMA_RQ/GPIO4_14/DIU_D4/UC1_CDB_ RXER					
U1	RSVD23	TDMA_RSYNC/GPIO4_11/DIU_D1/UC1_CT SB_RXDV	-				
U2	RSVD24	TDMA_RXD/GPIO4_10/DIU_D0/UC1_RXD7					
R1	RSVD16	TDMA_TSYNC/GPIO4_13/UC1_RTSB_TXE N/DIU_D3					
T1	RSVD20	TDMA_TXD/GPIO4_12/UC1_TXD7/DIU_D2	1				
R4	RSVD19	TDMB_RQ/GPIO4_21/DIU_D9/UC3_CDB_ RXER					
ТЗ	RSVD21	TDMB_RSYNC/GPIO4_18/DIU_D6/UC3_CT SB_RXDV	-				
U4	RSVD25	TDMB_RXD/GPIO4_17/DIU_D5/UC3_RXD7	1				
R3	RSVD18	TDMB_TSYNC/GPIO4_20/UC3_RTSB_TXE N/DIU_D8	†				
T4	RSVD22	TDMB_TXD/GPIO4_19/UC3_TXD7/DIU_D7	Ť				

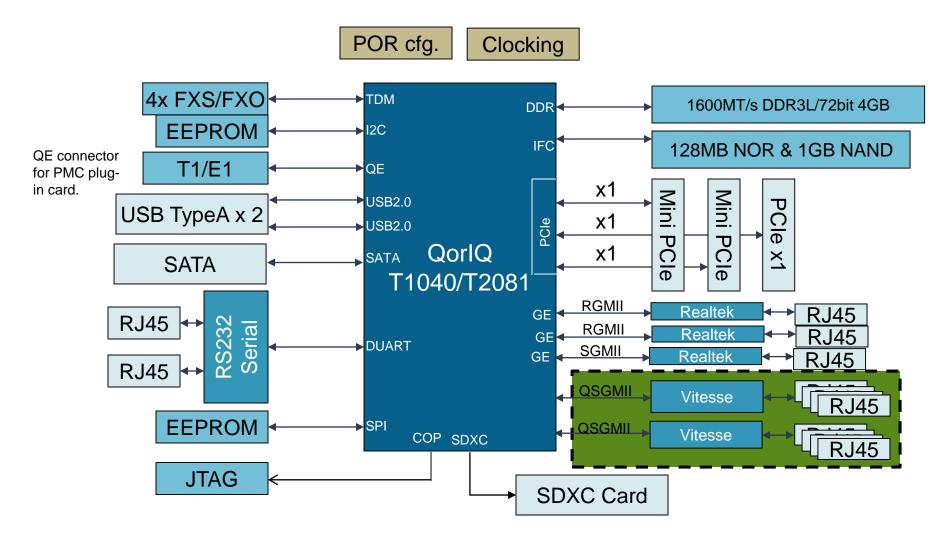
LP_Trust pin						
R6	LP_TMP_DETECT_B	RSVD15	LP_Trust is only supported by T2081 Connect LP_TMP_DETECT_B to OVDD through a 10K resistor Pull up through a 10K resistor to 1.0V			
P6	V _{DD} _LP	RSVD13				
SENSE pins						
AB9	RSVD28	SENSEVDDC	Use SENSEV _{DD} and SENSEGND			
AB10	RSVD29	SENSEGNDC				
por_config pins						
D13	IFC_WE0_B	cfg_eng_use[0]	Used in T1040 for selection of single source clocking option. Do not use for common board.			

Agenda

- T1040 and T2081 Overview
- Hardware Compatibility
- Software Compatibility
- Pinout Comparision
- Supporting Tools

T1040/T2081 Software & Tools at a Glance

- Two Reference Design Boards
 - T1040RDB
 - T1042RDB
- Software Support
 - Yocto based SDK
 - SDK support includes
 - Legacy features (refer SDK 1.4 release notes)
 - New features
 - FMAN and QE microcode
 - Linux based QE drivers for TDM, UART and HDLC
- QorIQ Configuration Suite
- CodeWarrior based debugger, flash programmer



T1040/T2081 RDB System

T1040/T2081 RDB Block Diagram

46

Agenda

- T1040 and T2081 Overview
- Hardware Compatibility
- Software Compatibility
- Pinout Comparision
- Supporting Tools

External Use

47

Reference Documentation

Reference Documentation

T1040 Hardware Specification and Reference Manual

T2081 Hardware Specification and Reference Manual

Application Note (AN4733) T1040 to T2081 Migration Guide

T1040/T2081 Design Checklist

T1040 RDB User Manual

T1040 RDB Schematic

Session Closing

• By now, you should be able to:

External Use

- Use Freescale's design collateral to aid your own T1040 and T2081 designs
- Understand the commonalities and differences between these devices
- Understand the unique challenges facing T1040 and T2081 common design and the solutions to overcome them

Introducing The QorlQ LS2 Family

Breakthrough, software-defined approach to advance the world's new virtualized networks New, high-performance architecture built with ease-of-use in mind Groundbreaking, flexible architecture that abstracts hardware complexity and enables customers to focus their resources on innovation at the application level

Optimized for software-defined networking applications

Balanced integration of CPU performance with network I/O and C-programmable datapath acceleration that is right-sized (power/performance/cost) to deliver advanced SoC technology for the SDN era

Extending the industry's broadest portfolio of 64-bit multicore SoCs

Built on the ARM® Cortex®-A57 architecture with integrated L2 switch enabling interconnect and peripherals to provide a complete system-on-chip solution

External Use

50

QorlQ LS2 Family

Key Features

.....

200302 ****

Wireless Access

SDN/NFV

Switching

Data

Center

Unprecedented performance and ease of use for smarter, more capable networks

High performance cores with leading interconnect and memory bandwidth

- 8x ARM Cortex-A57 cores, 2.0GHz, 4MB L2 cache, w Neon SIMD
- 1MB L3 platform cache w/ECC
- 2x 64b DDR4 up to 2.4GT/s

A high performance datapath designed with software developers in mind

- New datapath hardware and abstracted acceleration that is called via standard Linux objects
- 40 Gbps Packet processing performance with 20Gbps acceleration (crypto, Pattern Match/RegEx, Data Compression)
- Management complex provides all init/setup/teardown tasks

Leading network I/O integration

- 8x1/10GbE + 8x1G, MACSec on up to 4x 1/10GbE
- Integrated L2 switching capability for cost savings
- 4 PCIe Gen3 controllers, 1 with SR-IOV support
- 2 x SATA 3.0, 2 x USB 3.0 with PHY

Use a Common Board

- With the introduction of the T1040 and T2081, customers can now create common boards for both devices
 - T1040 and T2081 are pin compatible
 - One common board design would reduce design time and save cost
 - Make migration much faster and easier

www.Freescale.com

© 2015 Freescale Semiconductor, Inc. | External Use