
External Use

TM

Freescale MQX™ RTOS

Introduction

A U G . 2 0 1 5

Stanley Huang | Sr. MCU FAE

APF-DES-T1635

TM

External Use 1

Agenda

• What is an RTOS?

• MQX Basics: Tasks

• MQX Basics: Scheduling

• MQX Basics: Task Synchronization
− Semaphores
− Events and Messages

• MQX Intermediate
− Libraries

− Interrupts

− BSP

• Additional Resources

• Review

TM

External Use 3

Operating Systems

• The term “operating system” can
be used to describe the collection
of software that manages a
system’s hardware resources

• This software might include a file
system module, a GUI and other
components

• Often times, a “kernel” is understood
to be a subset of such a collection

• Characteristics

 Resource management

 Interface between application and hardware

 Library of functions for the application

HARDWARE

Application

User

Operating System

TM

External Use 4

Real Time Operating Systems

• Fusion of the application and the OS to one unit.

• Code of the OS and the application mostly reside in ROM.

• A real-time operating system (RTOS) manages the time of a
microprocessor or microcontroller.

• Features of an RTOS:

Allows multi-tasking

Scheduling of the tasks with priorities

Synchronization of the resource access

Inter-task communication

Time predictable

Interrupt handling
HARDWARE

User

Operating System + Application

TM

External Use 5

Why use an RTOS?

• Plan to use drivers that are available with an RTOS

• Would like to spend your time developing application code and not

creating or maintaining a scheduling system

• Multi-thread support with synchronization

• Portability of application code to other CPUs

• Resource handling

• Add new features without affecting higher priority functions

• Support for upper layer protocols such as:

 TCP/IP, USB, Flash Systems, Web Servers,

 CAN protocols, Embedded GUI, SSL, SNMP

TM

External Use 6

Freescale MQX

• We will be using Freescale MQX to demonstrate these RTOS

concepts.

• Freescale MQX Software can be downloaded:

 http://www.freescale.com/mqx

• Default Freescale MQX folder:

 C:\Freescale\Freescale_MQX_4_2

http://www.freescale.com/mqx

TM

External Use 7

Freescale MQX RTOS 4.2

New Board Support Packages Added
− Latest Kinetis K-Series MCUs such as K22, K24, K65

New Features and Updates
− MFS Updates – Multiple read/write support, improvements in directory & file search/seek,

and general speed and code-size optimizations

− New USB Stack (Select MCUs only) – Simplified API, improved performance, reduced
memory footprint, composite device support, more robust Hub support

− Driver Updates and Other Features

 New TLSF memory allocator (optional) for higher determinism / lower fragmentation

− RTCS Updates

 New Features – Websockets, Link-Local Multicast Name Resolution (LLMNR), GPRS
modem example, iperf performance example, Secure webserver (HTTPs) example

 Sockets API updated for improved Berkeley Sockets compatibility

 New IPv6 protocols – DHCPv6 Client, Telnet Client, TFTP Client/Server, FTP Client [add-
on for purchase]

 CyaSSL TLS/SSL [free add-on for evaluation]

Released

May 6, 2015

TM

External Use 8

Freescale MQX RTOS 4.2

• 22 Complimentary BSPs covering all

Kinetis K-Series and Vybrid

• Windows & Linux installers

• Tools support

− KDS, CW, IAR, Keil, ARM® DS-5™,

and GNU tools for ARM® (Windows and

Linux)

VYBRID

TWR-VF65GS10 (M4&A5) 

EVB-VF522R3 (M4&A5) 

KINETIS

TWR-K20D50M 

TWR-K20D72M 

TWR-K21D50M 

TWR-K21F120M 

FRDM-K22F NEW 

TWR-K22F120M NEW 

TWR-K24F120M NEW 

TWR-K40X256 

TWR-K40D100M 

KWIKSTICK (K40) 

TWR-K53N512 

TWR-K60D100M 

TWR-K60F120M 

TWR-K60N512 

TWR-K64F120M 

FRDM-K64F 

TWR-K65F180M NEW 

TWR-K70120M 

PLATFORM MQX 4.2

Numerous additional BSPs for legacy devices available

free of charge in earlier MQX versions, or for purchase

TM

External Use 9

MQX RTOS for Kinetis KDS 3.0.0

New Features and Updates

− General Updates

 RAM footprint optimizations

 New MQX Lite application examples

− MFS Updates – Multiple read/write support, improvements in directory & file search/seek,

and general speed and code-size optimizations

− RTCS Updates

 New Features – Websockets, Link-Local Multicast Name Resolution (LLMNR), Secure

webserver (HTTPs) example

 Sockets API updated for improved Berkeley Sockets compatibility

 New IPv6 protocols – DHCPv6 Client, Telnet Client, TFTP Client/Server, FTP Client [add-

on for purchase]

 CyaSSL TLS/SSL [free add-on for evaluation]

Released

May 6, 2015

TM

External Use 10

MQX Directory Structure

• Described in the MQX Release Notes

• Folders are:

 config

 demo

 doc

 lib

 mqx

 tools

 And then the RTCS, USB, and MFS

stacks

TM

External Use 11

MQX Directory Structure (Cont.)

• The “mqx” directory is heart of

MQX

• Folders are:

 build

 examples

 source

 bsp

 io

 psp

 MQX API source

TM

External Use 12

Agenda

• What is an RTOS?

• MQX Basics: Tasks

• MQX Basics: Scheduling

• MQX Basics: Task Synchronization
− Semaphores
− Events and Messages

• MQX Intermediate
− Libraries

− Interrupts

− BSP

• Additional Resources

• Review

TM

External Use 14

MQX RTOS Tasks

• A system consists of multiple tasks

• Tasks take turns running

• Only one task is active (has the processor) at any given time

• MQX manages how the tasks share the processor (context switching)

• Task Context

− Data structure stored for each task, including registers and a list of owned

resources

O.S

Task 1

Task 2

Task 3

Task 4

Ram

TM

External Use 15

Typical Task Coding Structure

TM

External Use 16

Task States

• A task is in one of these logical states:

 blocked

 the task is blocked and therefore not ready

 it’s waiting for a condition to be true

 active

 the task is ready and is running because it’s the highest-priority ready

task

 ready

 the task is ready, but it’s not running because it isn’t the highest-priority

ready task

 terminated

 the task has finished all its work, or was explicitly destroyed

Learn more at: www.freescale.com/MQX

http://www.freescale.com/KDS

TM

External Use 17

Active

Ready

Blocked
Context Switch

Blocking

Call

Object

Available

Timeout Expires

Terminated

Higher-priority Task

becomes Ready

Time Slice Expires

Interrupt comes in

Task Finishes

Explicit

Termination

Task

Starts

Task States

TM

External Use 18

Agenda

• What is an RTOS?

• MQX Basics: Tasks

• MQX Basics: Scheduling

• MQX Basics: Task Synchronization
− Semaphores
− Events and Messages

• MQX Intermediate
− Libraries

− Interrupts

− BSP

• Additional Resources

• Review

TM

External Use 19

MQX Basics: Scheduling

TM

External Use 20

Priorities

• Priorities run from 0 to N

− Priority 0 means interrupts disabled, 1 is most important task

• N(11) is set by the highest priority number in the MQX_Template_List

− Idle task runs at N+1

• MQX creates one ready queue for each priority up to the lowest priority
(highest number)

− So must make sure priorities are consecutive

• Able to change priority of a task during runtime
− _task_set_priority()

• Any tasks at priority below 7 means it masks certain levels of interrupts.
So user tasks should start at 8 or above.

8 9 10 11

TM

External Use 21

Scheduler

• There are several scheduling policies that MQX supports.

• Common Scheduling Configurations:

 FIFO (also called priority-based preemptive)

 The active task is the highest-priority task that has been ready the

longest

 Round Robin

 The active task is the highest-priority task that has been ready the

longest without consuming its time slice

TM

External Use 22

Priority Based FIFO Scheduling

priority lowhigh

FIFO

list of

ready

tasks

CPU

processor timeScheduler

active

R
e
a
d
y

TM

External Use 23

Priority Based FIFO Scheduling

priority lowhigh

FIFO

list of

ready

tasks

CPU

processor timeScheduler

active

TM

External Use 24

Priority Based FIFO Scheduling

priority lowhigh

FIFO

list of

ready

tasks

CPU

processor timeScheduler

active

TM

External Use 25

Round-Robin Scheduling

time50ms 100ms 150msT0 200ms

75ms

Task 1

50ms

Task 2

60ms

Task 3

Time Slice = 50ms

Task 1 = First In

Task1 Task2 Task3 Task1 Task3

R
e
a
d
y

time

Same

Priority

175ms 185ms

TM

External Use 26

MQX Tasks

• Tasks can be automatically created
when MQX Starts; also, any task can
create another task by calling
_task_create() or

_task_create_blocked()

• The function _task_create() puts
the child task in the ready state and
the scheduler puts the higher priority
task to run

• If _task_create_blocked is used
the task is not ready until
_task_ready() is called

Terminated

_task_create

Active

Ready

Blocked

_task_abort

_task_destroy

_task_block

_task_ready

TM

External Use 27

Creating a Task

• When creating a task you have to:

 Make the task prototype and index definition

 Add the task in the Task Template List

Using the init_task example:

#define INIT_TASK 5

extern void init_task(uint_32);

TASK_TEMPLATE_STRUCT MQX_template_list[] =

{

{ TASK_INDEX, TASK, STACK, TASK_PRIORITY,

TASK_NAME, TASK_ATTRIBUTES, CREATION_PARAMETER,

TIME_SLICE}

}

TASK_TEMPLATE_STRUCT MQX_template_list[] =

{

{INIT_TASK, init_task, 100, 9, "init",

MQX_AUTO_START_TASK, 0, 0},

}

TM

External Use 28

Creating a Task (Continue)

 TASK_INDEX: is usually a Define with an index number.

 TASK: Refers to the function name; C compiler takes the address pointer of the function

name.

 STACK is the defines stack size.

 TASK_PRIORITY; the lower number, the higher priority. Task with priority 0 disables all the

interrupts ,Priorities 0 to 7 are used by the OS Kernel.

TASK_TEMPLATE_STRUCT MQX_template_list[] =

{

{TASK_INDEX, TASK, STACK, TASK_PRIORITY, TASK_NAME,

TASK_ATTRIBUTES, CREATION_PARAMETER, TIME_SLICE}

}

TM

External Use 29

Creating a Task (Continue)

 TASK_NAME is a string that helps to identify the task. It is also used to get the task ID.

 TASK_ATTRIBUTES.

• Auto start — when MQX starts, it creates one instance of the task.

• DSP — MQX saves the DSP co-processor registers as part of the task’s context.

• Floating point — MQX saves floating-point registers as part of the task’s context.

• Time slice — MQX uses round robin scheduling for the task. Default is FIFO.

 CREATION_PARAMETER: is the parameter to be passed to this task, when created.

 TIME_SLICE: Time slice (in milliseconds) used for the task when using round-robin

scheduling. Ex:150 ms.

TASK_TEMPLATE_STRUCT MQX_template_list[] =

{

{TASK_INDEX, TASK, STACK, TASK_PRIORITY, TASK_NAME,

TASK_ATTRIBUTES, CREATION_PARAMETER, TIME_SLICE}

}

TM

External Use 30

Creating a Task (Continue)

• When creating a task you have to:

 Make the task definition

 During execution time, create the task using

(if it is not an auto start task)

void init_task(void)

{

/* Put the Task Code here */

}

task_create()

TM

External Use 31

MQX_Template_List

{ WORLD_ID, world_task, 150, 9,

"world_task",

MQX_AUTO_START_TASK, 0, 0},

{ HELLO_ID, hello_task, 100, 8,

“hello_task",

MQX_TIME_SLICE_TASK, 0, 100},

{ LED_ID, led_task, 125, 10,

“LED Task",

MQX_AUTO_START_TASK |

MQX_TIME_SLICE_TASK, 0, 50},

At least one task must be set to MQX_AUTO_START_TASK.

TM

External Use 32

void init_task(void)

{

_task_create(0,TASK_A,0);

...

_task_ready(Task_B);

...

}

MQX - Task Management Example

{INIT_TASK,

init_task, 100, 11,

"init",

MQX_AUTO_START_TASK,

0, 0},

void Task_B(void)

{

...

_task_abort(TASK_B);

}

void Task_A(void)

{

...

_task_create_blocked(0,TASK_B,0);

...
_task_abort(TASK_A);

}

CPU Time

init_task is

created when

MQX starts

{TASK_A,

Task_A, 100, 10,

“Task A",

0,

0, 0},

{TASK_B,

Task_B, 100, 9,

“Task B",

0,

0, 0},

TM

External Use 33

Agenda

• What is an RTOS?

• MQX Basics: Tasks

• MQX Basics: Scheduling

• MQX Basics: Task Synchronization
− Semaphores
− Events and Messages

• MQX Intermediate
− Libraries

− Interrupts

− BSP

• Additional Resources

• Review

TM

External Use 35

Competence Condition

• What happens if two tasks access the same resource at the same

time?

 We call this “competence condition”. When two or more tasks read or

write on share a resource at a certain moment

• Why the “competence condition” can be a problem?

 Memory corruption

 Wrong results

 Unstable application

 Device conflicts

TM

External Use 36

Why Synchronization?

• Synchronization may be used to solve:

 Mutual Exclusion

 Control Flow

 Data Flow

 Synchronization Mechanisms include:

 Semaphores

 Events

 Mutexs

 Message Queues

• The correct synchronization mechanism depends on the

synchronization issue being addressed

EF

M

TM

External Use 37

Mutual Exclusion

• Allowing only one task at a time to access a shared resource

• Resource may be devices, files, memory, drivers, code…

• Mutual exclusion locks the resource

Lock

do work

Unlock

TASK 1

Lock

do work

Unlock

TASK 2

Protected Resource

Lock

do work

Unlock

TASK 3

Lock

do work

Unlock

TASK 4
M

TM

External Use 40

Semaphores

• A semaphore is a protocol mechanism offered by most multitasking
kernels. Semaphores are used to:

 Control access to a shared resource
(mutual exclusion)

 Signal the occurrence of an event

 Allow two tasks to synchronize their activities

• Semaphore has two types

(a) Binary semaphore, (resource Only one).

(b) Counting semaphore

• If the semaphore is already in use, the requesting task is suspended until
the semaphore is released by its current owner

TM

External Use 41

How Semaphores Work

• A semaphore has:

 counter — maximum number of concurrent accesses

 queue — for tasks that wait for access

• If a task waits for a semaphore

 if counter > 0

counter is decremented by 1

task gets the semaphore and can do work

else

task is put in the queue

• If a task releases (post) a semaphore

 if at least one task is in the semaphore queue

appropriate task is readied, according to the queuing policy

else

counter is incremented by 1

TM

External Use 42

Synchronization Mechanisms

• Synchronization may be used to solve:

 Mutual Exclusion

 Control Flow

 Data Flow

 Synchronization Mechanisms include:

 Semaphores

 Events

 Mutexs

 Message Queues

• The correct synchronization mechanism depends on the

synchronization issue being addressed

EF

M

TM

External Use 43

Events

• Tasks can wait for a combination of event bits to
become set. A task can set or clear a combination of
event bits.

• Events can be used to synchronize a task with
another task or with an ISR.

• The event component consists of event groups, which
are groupings of event bits.
− 32 event bits per group (mqx_unit)

• Tasks can wait for all or any set of event bits in an
event group (with an optional timeout)

• Event groups can be identified by name or by index
(fast event groups)

Ex: MotorStarEvent = user_pressed+

Mcurrent zero + Speed 0

TM

External Use 44

Messages Passing by Message Queue

• Tasks can communicate with each other by

exchanging messages

(e.g Clipboard in windows, or copy in mobile phone)

• Tasks send messages to queues opened by system
(system message pool, broadcast)

or other tasks,

Receive messages from owned message queues.

• Messages can be assigned a priority or marked urgent

• Messages are an optional component in MQX.

TM

External Use 45

Message passing example

• _msgpool_create()

• _msg_alloc()

Address the message and
add data

• _msgq_send()

• _msgq_open()

• _msgq_receive()

Blocking wait…

Read the message

• _msg_free()OR

• _msgq_send()
(forward to any task,
including Task A)

Owner

Owner

Sending changes ownership

• Message must “travel” in a loop:

– Allocate it from a pool

– Use it

– Return it to pool (i.e. free it)

Task A Task B

TM

External Use 46

Message Format

• Messages are areas of memory divided into a header and a data area

• Application data is user-defined

Header

Application

data

SIZE

Target QID

Source QID

Control

MESSAGE_HEADER_

STRUCT

TM

External Use 47

Message Queues

• Each task can have one (or more) messages queues associated with it

• Messages are always addressed to queues, not tasks

• Queues are identified by _queue_id

− This is a combination of queue number and CPU number

• Create a queue using _msgq_open()

TaskB
Task A

TM

External Use 48

MQX Interrupts

• Embedded systems are based on ISR

• Usually an ISR is used for signal an event

• The most common actions on an ISR are:

− Post a semaphore

− Send a message

− Set an event

− Clear an error condition

• Important: ISRs are not tasks

• Remember: ISR should be short and should not use blocking functions.

TM

External Use 49

Agenda

• What is an RTOS?

• MQX Basics: Tasks

• MQX Basics: Scheduling

• MQX Basics: Task Synchronization
− Semaphores
− Events and Messages

• MQX Intermediate
− Working Sets

− Recompile

− Clone Wizard

• Additional Resources

• Review

TM

External Use 51

Import Whole Working Sets (*.wsd)

TM

External Use 52

Import Whole Working Sets (*.wsd)

The IEEE1588 protocol is for end products like Telecom, audio video

bridging, smart grid and financial services that need differing precision,

resolution and stability to better than a microsecond-level accuracy

through network.

TM

External Use 53

Recompile

TM

External Use 54

Re-Compiling

• Anytime a change is made to user_config.h the libraries should be

re-compiled. This over-writes all the files in lib for that board.

• Anytime a change is made in the library source code, the library

should be re-compiled.

• To re-compile the libraries, open up the library projects for the

board.

TM

External Use 55

Clone

wizard

TM

External Use 57

MQX Board Support Package

• Initializes microprocessor and board

− PLL and clocks, memory interface, core

registers

• Defines board specific parameters

− Clocks, memory parameters, interrupt usage,

driver parameters/enabling, MQX limits,

IO pin definitions, ENET interfaces, etc.

• Presents board-specific API to I/O drivers and application

− Timer ISR functions used by MQX scheduler, I/O pin initializations

• Installs and initializes device drivers (selected by user_config.h)

BSP

RTOS

Stacks (TCP/IP,USB,etc)

Application

TM

External Use 60

Agenda

• What is an RTOS?

• MQX Basics: Tasks

• MQX Basics: Scheduling

• MQX Basics: Task Synchronization
− Semaphores
− Events and Messages

• MQX Intermediate
− Libraries

− Interrupts

− BSP

• Additional Resources

• Review

TM

External Use 61

Additional Resources

TM

External Use 62

Kinetis MQX Quick Start Demos

• Source code and lab guide available online for both K40 SLCD and K60 Web
server demos (IAR and CW10.1)

− http://freescale.com/twr-k40x256

− http://freescale.com/twr-k60n512

• Showcases Ethernet, SLCD, SD Card, USB, I2C, ADC, TSI, RNG, UART, RTC,
Flash, and GPIO features on Kinetis.

• TWR-K40X256

− Display seconds, hours and minutes, potentiometer, and temperature

− http://youtu.be/4sSRHyYyilA

• TWR-K60N512

− Interactive web server and touch memory game

− http://youtu.be/gkL4n2b5RU4

Learn more at: www.freescale.com/MQX

http://freescale.com/twr-k40x256
http://freescale.com/twr-k60n512
http://youtu.be/4sSRHyYyilA
http://youtu.be/gkL4n2b5RU4
http://www.freescale.com/KDS

TM

External Use 63

Watch the K60 quick start video

• (a) Assembly

• (b) OS console

• (c) SD card access & File system.

• (d) USB mouse

• (e) Ethernet Web server

TM

External Use 64

Further Reading and Training

• Webinnar at www.freescale.com/tower

− Introduction to Tower, CodeWarrior 10, and MQX

− TWR-K60N512 and TWR-K40X256 Quick Start Demos

• Videos: www.freescale.com/mqx

− Getting started with MQX

− And more

• vFTF technical session videos www.freescale.com/vftf

− Introducing a modular system, Serial-to-Ethernet V1 ColdFire® MCU and
Complimentary MQX™ RTOS

− Writing First MQX Application

− Implementing Ethernet Connectivity with the complimentary Freescale
MQX™ RTOS

http://www.freescale.com/tower
http://www.freescale.com/mqx
http://www.freescale.com/vftf

TM

External Use 65

Further Reading and Training (Continue)

• MQX Release Notes

• MQX User’s Guide

• Writing First MQX Application (AN3905)

• Using MQX: RTCS, USB, and MFS (AN3907)

• How to Develop I/O Drivers for MQX (AN3902)

• IP Camera and USB Snapshot with MQX (AN4022)

• Supporting New Toolchains with Freescale MQX RTOS (4190)

• Motor Control Under the Freescale MQX Operating System

(AN4254)

• MQX Board Support Package Porting Guide (AN4287)

TM

© 2015 Freescale Semiconductor, Inc. | External Use

www.Freescale.com

http://www.freescale.com/
http://www.freescale.com/
https://twitter.com/Freescale
https://twitter.com/Freescale
https://twitter.com/Freescale
https://twitter.com/Freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale

