
External Use

TM

Freescale MQX™ RTOS

Introduction

M A R . 2 0 1 5

Stanley Huang, Sr. MCU FAE

TM

External Use 1

Agenda

• What is an RTOS?

• MQX Basics: Tasks

• MQX Basics: Scheduling

• MQX Basics: Task Synchronization
− Semaphores
− Events and Messages

• MQX Intermediate
− Libraries

− Interrupts

− BSP

• Additional Resources

• Review

TM

External Use 2

What is an RTOS

TM

External Use 3

Operating Systems

• The term “operating system” can
be used to describe the collection
of software that manages a
system’s hardware resources

• This software might include a file
system module, a GUI and other
components

• Often times, a “kernel” is understood
to be a subset of such a collection

• Characteristics

 Resource management

 Interface between application and hardware

 Library of functions for the application

HARDWARE

Application

User

Operating System

TM

External Use 4

Real Time Operating Systems

• Fusion of the application and the OS to one unit.

• Code of the OS and the application mostly reside in ROM.

• A real-time operating system (RTOS) manages the time of a
microprocessor or microcontroller.

• Features of an RTOS:

Allows multi-tasking

Scheduling of the tasks with priorities

Synchronization of the resource access

Inter-task communication

Time predictable

Interrupt handling
HARDWARE

User

Operating System + Application

TM

External Use 5

Why use an RTOS?

• Plan to use drivers that are available with an RTOS

• Would like to spend your time developing application code and not

creating or maintaining a scheduling system

• Multi-thread support with synchronization

• Portability of application code to other CPUs

• Resource handling

• Add new features without affecting higher priority functions

• Support for upper layer protocols such as:

 TCP/IP, USB, Flash Systems, Web Servers,

 CAN protocols, Embedded GUI, SSL, SNMP

TM

External Use 6

Freescale MQX

• We will be using Freescale MQX to demonstrate these RTOS

concepts.

• Freescale MQX Software can be downloaded:

 http://www.freescale.com/mqx

• Default Freescale MQX folder:

 C:\Freescale\Freescale_MQX_4_0

http://www.freescale.com/mqx

TM

External Use 7

MQX Directory Structure

• Described in the MQX Release Notes

• Folders are:

 config

 demo

 doc

 lib

 mqx

 tools

 And then the RTCS, USB, and MFS stacks

TM

External Use 8

MQX Directory Structure (Cont.)

• The “mqx” directory is heart of

MQX

• Folders are:

 build

 examples

 source

 bsp

 io

 psp

 MQX API source

TM

External Use 9

Agenda

• What is an RTOS?

• MQX Basics: Tasks

• MQX Basics: Scheduling

• MQX Basics: Task Synchronization
− Semaphores
− Events and Messages

• MQX Intermediate
− Libraries

− Interrupts

− BSP

• Additional Resources

• Review

TM

External Use 10

MQX Basics: Tasks

TM

External Use 11

MQX RTOS Tasks

• A system consists of multiple tasks

• Tasks take turns running

• Only one task is active (has the processor) at any given time

• MQX manages how the tasks share the processor (context switching)

• Task Context

− Data structure stored for each task, including registers and a list of owned

resources

O.S

Task 1

Task 2

Task 3

Task 4

Ram

TM

External Use 12

Typical Task Coding Structure

TM

External Use 13

Task States

• A task is in one of these logical states:

 blocked

 the task is blocked and therefore not ready

 it’s waiting for a condition to be true

 active

 the task is ready and is running because it’s the highest-priority ready

task

 ready

 the task is ready, but it’s not running because it isn’t the highest-priority

ready task

 terminated

 the task has finished all its work, or was explicitly destroyed

Learn more at: www.freescale.com/MQX

http://www.freescale.com/KDS

TM

External Use 14

Active

Ready

Blocked
Context Switch

Blocking

Call

Object

Available

Timeout Expires

Terminated

Higher-priority Task

becomes Ready

Time Slice Expires

Interrupt comes in

Task Finishes

Explicit

Termination

Task

Starts

Task States

TM

External Use 15

Agenda

• What is an RTOS?

• MQX Basics: Tasks

• MQX Basics: Scheduling

• MQX Basics: Task Synchronization
− Semaphores
− Events and Messages

• MQX Intermediate
− Libraries

− Interrupts

− BSP

• Additional Resources

• Review

TM

External Use 16

MQX Basics: Scheduling

TM

External Use 17

Priorities

• Priorities run from 0 to N

− Priority 0 means interrupts disabled, 1 is most important task

• N is set by the highest priority number in the MQX_Template_List

− Idle task runs at N+1

• MQX creates one ready queue for each priority up to the lowest priority
(highest number)

− So must make sure priorities are consecutive

• Able to change priority of a task during runtime
− _task_set_priority()

• Any tasks at priority below 6 means it masks certain levels of interrupts.
So user tasks should start at 7 or above.

1 2 3 4 5

TM

External Use 18

Scheduler

• Common Scheduling Configurations:

 FIFO (also called priority-based preemptive)

 The active task is the highest-priority task that has been ready the

longest

 Round Robin

 The active task is the highest-priority task that has been ready the

longest without consuming its time slice

TM

External Use 19

Priority Based FIFO Scheduling

priority lowhigh

FIFO

list of

ready

tasks

CPU

processor timeScheduler

active

R
e
a
d
y

TM

External Use 20

Priority Based FIFO Scheduling

priority lowhigh

FIFO

list of

ready

tasks

CPU

processor timeScheduler

active

TM

External Use 21

Priority Based FIFO Scheduling

priority lowhigh

FIFO

list of

ready

tasks

CPU

processor timeScheduler

active

TM

External Use 22

Round-Robin Scheduling

time50ms 100ms 150msT0 200ms

75ms

Task 1

50ms

Task 2

60ms

Task 3

Time Slice = 50ms

Task 1 = First In

Task1 Task2 Task3 Task1 Task3

R
e
a
d
y

time

Same

Priority

175ms 185ms

TM

External Use 23

MQX Tasks

• Tasks can be automatically created
when MQX Starts; also, any task can
create another task by calling
_task_create() or

_task_create_blocked()

• The function _task_create() puts
the child task in the ready state and
the scheduler puts the higher priority
task to run

• If _task_create_blocked is used
the task is not ready until
_task_ready() is called

Terminated

_task_create

Active

Ready

Blocked

_task_abort

_task_destroy

_task_block

_task_ready

TM

External Use 24

Creating a Task

• When creating a task you have to:

 Make the task prototype and index definition

 Add the task in the Task Template List

Using the init_task example:

#define INIT_TASK 5

extern void init_task(uint_32);

TASK_TEMPLATE_STRUCT MQX_template_list[] =

{

{ TASK_INDEX, TASK, STACK, TASK_PRIORITY,

TASK_NAME, TASK_ATTRIBUTES, CREATION_PARAMETER,

TIME_SLICE}

}

TASK_TEMPLATE_STRUCT MQX_template_list[] =

{

{INIT_TASK, init_task, 100, 9, "init",

MQX_AUTO_START_TASK, 0, 0},

}

TM

External Use 25

Creating a Task (Continue)

 TASK_INDEX: is usually a Define with an index number.

 TASK: Refers to the function name; C compiler takes the address pointer of the function

name.

 STACK is the defines stack size.

 TASK_PRIORITY; the lower number, the higher priority. Task with priority 0 disables all the

interrupts ,Priorities 0 to 8 are used by the OS Kernel.

 TASK_NAME is a string that helps to identify the task. It is also used to get the task ID.

 TASK_ATTRIBUTES.

• Auto start — when MQX starts, it creates one instance of the task.

• DSP — MQX saves the DSP co-processor registers as part of the task’s context.

• Floating point — MQX saves floating-point registers as part of the task’s context.

• Time slice — MQX uses round robin scheduling for the task. Default is FIFO.

 CREATION_PARAMETER: is the parameter to be passed to this task, when created.

 TIME_SLICE: Time slice (in milliseconds) used for the task when using round-robin

scheduling.

TM

External Use 26

Creating a Task (Continue)

• When creating a task you have to:

 Make the task definition

 During execution time, create the task using

(if it is not an autostart task)

void init_task(void)

{

/* Put the Task Code here */

}

task_create()

TM

External Use 27

MQX_Template_List

{ WORLD_ID, world_task, 150, 9,

"world_task",

MQX_AUTO_START_TASK, 0, 0},

{ HELLO_ID, hello_task, 100, 8,

“hello_task",

MQX_TIME_SLICE_TASK, 0, 100},

{ LED_ID, led_task, 125, 10,

“LED Task",

MQX_AUTO_START_TASK |

MQX_TIME_SLICE_TASK, 0, 50},

TM

External Use 28

void init_task(void)

{

_task_create(0,TASK_A,0);

...

_task_ready(Task_B);

...

}

MQX - Task Management Example

{INIT_TASK,

init_task, 100, 11,

"init",

MQX_AUTO_START_TASK,

0, 0},

void Task_B(void)

{

...

_task_abort(TASK_B);

}

void Task_A(void)

{

...

_task_create_blocked(0,TASK_B,0);

...
_task_abort(TASK_A);

}

CPU Time

init_task is

created when

MQX starts

{TASK_A,

Task_A, 100, 10,

“Task A",

0,

0, 0},

{TASK_B,

Task_B, 100, 9,

“Task B",

0,

0, 0},

TM

External Use 29

Agenda

• What is an RTOS?

• MQX Basics: Tasks

• MQX Basics: Scheduling

• MQX Basics: Task Synchronization
− Semaphores
− Events and Messages

• MQX Intermediate
− Libraries

− Interrupts

− BSP

• Additional Resources

• Review

TM

External Use 30

MQX Basics: Task Synchronization

TM

External Use 31

Competence Condition

• What happens if two tasks access the same resource at the same

time?

 We call this “competence condition”. When two or more tasks read or

write on share a resource at a certain moment

• Why the “competence condition” can be a problem?

 Memory corruption

 Wrong results

 Unstable application

 Device conflicts

TM

External Use 32

Why Synchronization?

• Synchronization may be used to solve:

 Mutual Exclusion

 Control Flow

 Data Flow

 Synchronization Mechanisms include:

 Semaphores

 Events

 Mutexs

 Message Queues

• The correct synchronization mechanism depends on the

synchronization issue being addressed

EF

M

TM

External Use 33

Mutual Exclusion

• Allowing only one task at a time to access a shared resource

• Resource may be devices, files, memory, drivers, code…

• Mutual exclusion locks the resource

Lock

do work

Unlock

TASK 1

Lock

do work

Unlock

TASK 2

Protected Resource

Lock

do work

Unlock

TASK 3

Lock

do work

Unlock

TASK 4
M

TM

External Use 34

Control Flow

• Control Flow provides a mechanism for a task or ISR to resume

execution of one or more other tasks

− Mutual exclusion is used to prevent another task from running

− Control Flow is used to allow another task to run

• Not all synchronization objects are suitable for control flow:

− Good: Non-strict Semaphores, Events, Messages, Task Qs

− Bad: Mutexes, Strict Semaphores

TM

External Use 35

Agenda

• What is an RTOS?

• MQX Basics: Tasks

• MQX Basics: Scheduling

• MQX Basics: Task Synchronization
− Semaphores
− Events and Messages

• MQX Intermediate
− Libraries

− Interrupts

− BSP

• Additional Resources

• Review

TM

External Use 36

Semaphores

• A semaphore is a protocol mechanism offered by most multitasking

kernels. Semaphores are used to:

 Control access to a shared resource

(mutual exclusion)

 Signal the occurrence of an event

 Allow two tasks to synchronize their activities

• A semaphore is a token that your code acquires in order to

continue execution

• If the semaphore is already in use, the requesting task is

suspended until the semaphore is released by its current owner

TM

External Use 37

How Semaphores Work

• A semaphore has:

 counter — maximum number of concurrent accesses

 queue — for tasks that wait for access

• If a task waits for a semaphore

 if counter > 0

counter is decremented by 1

task gets the semaphore and can do work

else

task is put in the queue

• If a task releases (post) a semaphore

 if at least one task is in the semaphore queue

appropriate task is readied, according to the queuing policy

else

counter is incremented by 1

TM

External Use 38

Agenda

• What is an RTOS?

• MQX Basics: Tasks

• MQX Basics: Scheduling

• MQX Basics: Task Synchronization
− Semaphores
− Events and Messages

• MQX Intermediate
− Libraries

− Interrupts

− BSP

• Additional Resources

• Review

TM

External Use 39

Events

• Tasks can wait for a combination of event bits to become set. A task can
set or clear a combination of event bits.

• Events can be used to synchronize a task with another task or with an
ISR.

• The event component consists of event groups, which are groupings of
event bits.

− 32 event bits per group (mqx_unit)

• Tasks can wait for all or any set of event bits in an event group (with an
optional timeout)

• Event groups can be identified by name or by index (fast event groups)

If (EventBit == 0x03)

:

Else

:

TM

External Use 40

Messages Passing

• Tasks can communicate with each other by exchanging

messages

(e.g Clipboard in windows, or mobile phone)

• Tasks send messages to message queues, and receive

messages from message queues

• Messages can be assigned a priority or marked urgent

• Tasks can send broadcast messages

TM

External Use 41

Message passing example

• _msgpool_create()

• _msg_alloc()

Address the message
and add data

• _msgq_send()

• _msgq_open()

• _msgq_receive()

Blocking wait…

Read the message

• _msg_free()OR

• _msgq_send()
(forward to any task,
including Task A)

Owner

Owner

Sending changes ownership

• Message must “travel” in a loop:

– Allocate it from a pool

– Use it

– Return it to pool (i.e. free it)

Task A Task B

TM

External Use 42

Message Format

• Messages are areas of memory divided into a header and a data area

• Application data is user-defined

Header

Application

data

SIZE

Target QID

Source QID

Control

MESSAGE_HEADER_

STRUCT

TM

External Use 43

Message Queues

• Each task can have one (or more) messages queues associated with it

• Messages are always addressed to queues, not tasks

• Queues are identified by _queue_id

− This is a combination of queue number and CPU number

• Create a queue using _msgq_open()

TaskB
Task A

TM

External Use 44

MQX Interrupts

• Embedded systems are based on ISR

• Usually an ISR is used for signal an event

• The most common actions on an ISR are:

− Post a semaphore

− Send a message

− Set an event

− Clear an error condition

• Important: ISRs are not tasks

• Remember: ISR should be short and should not use blocking functions.

TM

External Use 45

Agenda

• What is an RTOS?

• MQX Basics: Tasks

• MQX Basics: Scheduling

• MQX Basics: Task Synchronization
− Semaphores
− Events and Messages

• MQX Intermediate
− Libraries

− Interrupts

− BSP

• Additional Resources

• Review

TM

External Use 46

MQX Intermediate

TM

External Use 47

Re-Compiling Libraries

• MQX is structured so that the applications get the MQX information from pre-

compiled libraries located in the lib folder (ending in .a)

TM

External Use 48

Re-Compiling Libraries

• Anytime a change is made to user_config.h the libraries should be re-compiled.

This over-writes all the files in lib for that board.

• Anytime a change is made in the library source code, the library should be re-

compiled.

• To re-compile the libraries, open up the library projects for the board.

TM

External Use 49

TM

External Use 50

Clone

wizard

TM

External Use 51

MQX Boot-Up

• What is a Board Support Package

(BSP)?

− Startup Code for the processor

− Initialize memory, clock, interrupt

controller

− All the drivers needed with the proper

settings

BSP

RTOS

Stacks (TCP/IP,USB,etc)

Application

TM

External Use 52

MQX Board Support Package

• Initializes microprocessor and board

− PLL and clocks, memory interface, core registers

• Defines board specific parameters

− Clocks, memory parameters, interrupt usage, driver parameters/enabling, MQX

limits, IO pin definitions, ENET

interfaces, etc.

• Presents board-specific API to I/O drivers and application

− Timer ISR functions used by MQX scheduler, I/O pin initializations

• Installs and initializes device drivers (selected by user_config.h)

TM

External Use 53

Board-specific Folders in MQX

Lib, Config and MQX folders contain folders for each board

• The \lib\ folder contains the Library outputs

• The \config\ folder has the user_config.h file and the Build_libs projects

• The \mqx\source\bsp\ folder has the source code specific to any board

TM

External Use 54

BSP Source Directory Overview

• Key BSP project files
− bsp.h and <board_name>.h – main BSP header files, configuration constants etc.

− <target_name>.lcf – linker command files (one for each memory configuration)

− init_hw.c (bsp_init.c in older BSPs) – PLL, memory, FlexBus initialization

− init_bsp.c – BSP timer, watchdog and IO drivers initialization

− gpio_init.c – IO pin initialization routines called by IO drivers

− vectors.c – startup code (boot vector) and initial interrupt table

• Parameter Files
− init_<dev>.c – default initialization parameters structures for given IO device driver

− enet_ini.c – ethernet specific initialization structures and functions

− mqx_init.c – default MQX initialization parameters structure

TM

External Use 55

MQX RTOS Source Code

“PSP” library compiled as mqx.a
e.g. /mqx/build/psp_m52259evb.mcp -> /lib/m52259evb.cw/mqx/mqx.a

“BSP” library <board>.a
e.g. /lib/m52259evb.cw/mqx/m52259evb.a

config/<board>

User Configuration

Included by all MQX files

lib/<board>/mqx

lib/<board>/*

Binary Libraries

linked by apps.

Linked library files and

related public header files

MQX RTOS

mqx/source/* (except bsp, psp

and io)

Generic RTOS Kernel

(platform- and device-independent

ANSI C Code)|

mqx/source/psp/<platform>

PSP: Platform-specific Code
(e.g. ColdFire-specific low-level routines, assembler-

optimized parts of scheduler, interrupt context

save/restore, cache control, ...)

PSP: Device-dependent Code
(e.g. mcf5225.h register structures and macros)

mqx/source/io/*

IO Drivers
(each driver is typically

split to device-

independent code and

code specific to device or

family of devices)

mqx/source/bsp/<bo

ard>

BSP: Device- and

Board-specific code
(startup, vector table, device,

memoryand board initialization,

starting _mqx,installing IO

drivers)

TM

External Use 56

Agenda

• What is an RTOS?

• MQX Basics: Tasks

• MQX Basics: Scheduling

• MQX Basics: Task Synchronization
− Semaphores
− Events and Messages

• MQX Intermediate
− Libraries

− Interrupts

− BSP

• Additional Resources

• Review

TM

External Use 57

Additional Resources

TM

External Use 58

Kinetis MQX Quick Start Demos

• Source code and lab guide available online for both K40 SLCD and K60 Web
server demos (IAR and CW10.1)

− http://freescale.com/twr-k40x256

− http://freescale.com/twr-k60n512

• Showcases Ethernet, SLCD, SD Card, USB, I2C, ADC, TSI, RNG, UART, RTC,
Flash, and GPIO features on Kinetis.

• TWR-K40X256

− Display seconds, hours and minutes, potentiometer, and temperature

− http://youtu.be/4sSRHyYyilA

• TWR-K60N512

− Interactive web server and touch memory game

− http://youtu.be/gkL4n2b5RU4

Learn more at: www.freescale.com/MQX

http://freescale.com/twr-k40x256
http://freescale.com/twr-k60n512
http://youtu.be/4sSRHyYyilA
http://youtu.be/gkL4n2b5RU4
http://www.freescale.com/KDS

TM

External Use 59

Watch the K60 quick start video

• (a) Assembly

• (b) OS console

• (c) SD card access & File system.

• (d) USB mouse

• (e) Ethernet Web server

TM

External Use 60

Further Reading and Training

• Webinnar at www.freescale.com/tower

• Introduction to Tower, CodeWarrior 10, and MQX

• TWR-K60N512 and TWR-K40X256 Quick Start Demos

• Videos: www.freescale.com/mqx

• Getting started with MQX

• And more

• vFTF technical session videos www.freescale.com/vftf

• Introducing a modular system, Serial-to-Ethernet V1 ColdFire® MCU and

Complimentary MQX™ RTOS

• Writing First MQX Application

• Implementing Ethernet Connectivity with the complimentary Freescale MQX™ RTOS

http://www.freescale.com/vftf

TM

External Use 61

Further Reading and Training (Continue)

• MQX Release Notes

• MQX User’s Guide

• Writing First MQX Application (AN3905)

• Using MQX: RTCS, USB, and MFS (AN3907)

• How to Develop I/O Drivers for MQX (AN3902)

• IP Camera and USB Snapshot with MQX (AN4022)

• Supporting New Toolchains with Freescale MQX RTOS (4190)

• Motor Control Under the Freescale MQX Operating System (AN4254)

• MQX Board Support Package Porting Guide (AN4287)

TM

© 2015 Freescale Semiconductor, Inc. | External Use

www.Freescale.com

http://www.freescale.com/
http://www.freescale.com/
https://twitter.com/Freescale
https://twitter.com/Freescale
https://twitter.com/Freescale
https://twitter.com/Freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale

