
External Use

TM

AIOP: Programming Model,

Enablement Software and Integration

FTF-DES-F1378

J U N E . 2 0 1 5

Howard Owens | Software Architects

Michael Kardonik | Software Architects

Peter Newton | Software Architects

TM

External Use 1 #FTF2015

Agenda

• Why AIOP ?

• Integration models and customers

• Block diagram

• Memory model

• Task and scheduler

• Synchronization and ordering

• Frame operations

• Architecture of AIOP software

• Tools

TM

External Use 2 #FTF2015

Why AIOP ?

General purpose processors sub-optimal for

packet processing

Low packet processing locality underutilizes cache and

pipeline and suffers from high DDR latency

Increasing single thread performance causes super-

linear power increase

Performance and complexity of software hiding latency

of asynchronous access to accelerators

Many cycles are wasted for standard procedures –

search, parse, operations on frame, timers, statistics

etc)

Performance and complexity of software ordering and

synchronization

AIOP approach

Specialized memory hierarchy and explicit DMA

operations instead of cache allow deterministic

performance.

Parallelism with more “small” cores

Hardware scheduler based multitasking

environment hides access latency

Hardware accelerators for common tasks: lookups,

parse, frame operations, timers

Functions are provided by hardware scheduler

TM

External Use 3 #FTF2015

Why AIOP ?

Typical NPU: efficient but not easy to use

Proprietary languages (data flow oriented,

assembler etc). Sometimes restricted ‘C’ is used

Tightly coupled to control processor that has

intimate knowledge of NPU

Congestion management is complicated because

of need to handle it within stages of pipeline

AIOP approach

Standard ‘C’ language following procedural

programming paradigm.

Modularity is supported thru standard language

methods

Possible to build self-contained network nodes.

Data/control structures are not shared enabling

independence

Congestion management is centralized into

network interface that handles it before AIOP

task start

TM

External Use 4 #FTF2015

AIOP Architecture Block Diagram

Per

Task

Ctxt

e200 Core

I-cache

Workspace

Memory

*
*

*

Workspace

Memory

I-RAMShared SRAM

Order

Scope

Mgmt

Task Sched

Task State

Mgmt

Register Ctx

Mgmt
Mutex

Stats

Context

DMA

Frame

DMA

TLU

Parse

SEC

Proxy

Timer Mgr

BMan IFace

Accept “Work”

Create Task

To

SEC

Run Job
Accel Job Completes

Invoke

Accel

To DDRs

Accelerators

EPID Tbl

Work Sched

**
*

prioritize

cmds

Timer Ev

prioritize

p
rio

ritiz
e

To Net

Ifaces

To

GPP

Cores

TM

External Use 5 #FTF2015

Stack/Workspace

Static/Shared RAM

Thread/Workspace

DMA from

DDR to

workspace

‘C’ variable AIOP

Stack, Thread Local Workspace memory, very fast and relatively

small

Static Shared RAM

Dynamic DDR, Express memory, accessed with DMA

Code is in

IRAM by

default

Can be

placed in

DDR,

ShRAM etc

AIOP Memory Model

TM

External Use 6 #FTF2015

AIOP: Works, Tasks and Jobs

• Tasks are created by work scheduler to accomplish Work

• Processing elements: cores, accelerators.

• Job – minimal schedulable part of task that are executed by

processing elements

• Task is a sequence of Jobs that share a context

• HW-based scheduler causes the Jobs to be scheduled to

processing elements

TASK = Job Job Job * * * Job Job

TM

External Use 7 #FTF2015

TASK = Job Job Job Job Job Job

Task Scheduler

Cores CDMA TLU

‘C’ sequential program and accelerators call

TM

External Use 8 #FTF2015

• Task scheduler is invoked on job boundaries to schedule jobs

• The AIOP scheduling and execution model is hardware based “SMP”.

Jobs can execute on any processing element of right type

• Task scheduler is non-preemptive, based on a strict priority equal to

task age

• Work scheduler accepts tasks according to sophisticated

prioritization

• Latency of accelerator jobs is hidden by AIOP scheduling jobs from

other tasks to keep processing element fully utilized

• Tasks do not know about each other; they cannot initiate or control

each other directly

• Tasks do not know names or counts of processing element, and are

never architecturally affine

AIOP Task Scheduler Design

TM

External Use 9 #FTF2015

Simple reflector code and trace

TM

External Use 10 #FTF2015

Simple reflector code and trace

TM

External Use 11 #FTF2015

Service Layer example

TM

External Use 12 #FTF2015

Interfaces and Work Scheduler

• Work Scheduler role’s is to accept work to AIOP

• Work scheduling in AIOP supports following features:

− Bandwidth partitioning

− Priority of different traffic within bandwidth partition

− High priority traffic has special channel

− Congestion control on queues

• Implementation:

− QMAN Channels for bandwidth isolation

− Interface is connected to one channel only

− Intra-channel (WQs) for different CoTs

− High priority channels for emergency traffic

TM

External Use 13 #FTF2015

MAC1

MAC2 MAC3 DEMUX (optional)

DPNI1 DPNI2DPNI3 DPNI4

DPCON0

(CH 0)

High Priority

DPCON1

(CH 1)

AIOP

Work Scheduler

DPCON5

WQ 0 Pr 0

WQ 1 Pr 1

WQ 2 Pr 2

WQ 3 Pr 2

WQ 4 Pr 2

WQ 5 Pr 3

WQ 6 Pr 3

WQ 7 Pr 3

Round

Robin

Round

Robin

30% Share of AIOP

cores
30% Share of AIOP

cores
40% Share of AIOP

cores

TMAN

Work Scheduler role’s is to accept work to AIOP

TM

External Use 14 #FTF2015

Workspace FDMA Logical View

frame

Data

DDR

Buffer1

BufferN

fdma_presentation_t

Presented data

Operations on Frame (FDMA)

• Frame and presentation objects are created in task workspace (local, fast
memory) on packet reception

• fdma_presentation_t object contains copy of specific area of frame in
workspace and provides methods that allow committing changes made by
user on that copy, inserting and deleting of new data. One can insert data
into presentation, remove data, write data

• It is possible to have multiple presentations at the same time

TM

External Use 15 #FTF2015

• Create new presentation in workspace

(done automatically for initial frame)

• This function will commit changes that

were made in workspace back to frame

• Copy and paste data from workspace to

presentation

• Close frame and send to frame queue

Operations on Frame (FDMA)

TM

External Use 16 #FTF2015

• Parses the frame. The parse results

updated

Operations on Frame (Parser)

TM

External Use 17 #FTF2015

• Write from workspace memory to

external address

• Read from external memory to

workspace address

DMA operations

TM

External Use 18 #FTF2015

• Lookup an entry based on key

Table operations

TM

External Use 19 #FTF2015

• Mutexes

− Mutual exclusion

• RCU

− Garbage collection

• Ordering Scope Manager (OSM)

− Mutual exclusion and Ordering

Synchronization

TM

External Use 20 #FTF2015

• Mutexes are used to prevent race conditions between different

tasks using the same resource (e.g. updating/reading the same

memory structures in external memory)

• Two types of locks

− Several readers are allowed in mutually exclusive section and only one

writer is allowed:

Mutexes

cdma_mutex_lock_take(mac_addr_ddr, READ_LOCK);

cdma_read (&mac_addr, mac_addr_ddr, 6);

///Do something with it

cdma_mutex_lock_release(mac_addr_ddr);

cdma_mutex_lock_take(mac_addr_ddr, WRITE_LOCK);

cdma_write(&mac_addr, mac_addr_ddr, 6);

cdma_mutex_lock_release(mac_addr_ddr);

Updating task – only

one task can update

variables

Reading task - several

reading tasks may take

lock simultaneously

TM

External Use 21 #FTF2015

RCU

• rcu_read_lock(): Marks an RCU-protected data structure so that it

won't be reclaimed for the full duration of that critical section. In our

case, this function typically done on task creation time.

• rcu_read_unlock(): Used by a reader to inform the reclaimer that

the reader is exiting an RCU read-side critical section.

• synchronize_rcu(): It blocks until all pre-existing RCU read-side

critical sections on all CPUs have completed.

TM

External Use 22 #FTF2015

Ordering is about queues, queues cross AIOP

• Some packets pass through

AIOP for near wire rate

processing

• A queue within AIOP is identified

by ScopeID

• AIOP applications manipulate

ScopeID to enable concurrency

while maintaining order

• Packets which transition through

the same queues (ScopeIDs)

remain ordered

packet packet Packet

AIOP

TM

External Use 23 #FTF2015

Scope construction/transformation

• Scopes can be a hash of header fields

(classification)

− Initial automatic on arrival to AIOP

• Vocabulary of transformations into new

scopes from old scopes

• Or reclassify with new hash

• Software controls “steps” of a program

• Each step is a queue and as always a

sequence of queues define order

• Software does not need to know the

absolute value, only the step of a flow

32b ScopeID

XFRM

32b ScopeID

packet

hash

TM

External Use 24 #FTF2015

Tasks follow rules with ScopeID (queue)

• A task’s position in a queue is
called TPOS

• A task’s position within a sub-
queue for exclusivity is called
XPOS

• Tasks may wait for exclusivity (red)
or wait to transition to the next
queue (purple)

• WX->XX->XC->WT

• All tasks not waiting are running
concurrently

• One task knows it is exclusive

• Queues are always FIFO

xpos

Exclusive

Access

tpos

Waiting for exclusive

Running exclusive

Running concurrent

Waiting to transition

TM

External Use 25 #FTF2015

Possible application design

• Start concurrent, TLU access to gather flow data structure

• Transition to exclusive to access/modify flow data

• Relinquish exclusivity to perform remain work (stats perhaps)

• Transition to exclusive to forward packet in order

xpos

forward

tpos

xpos

Flow

data

tpostpos

terminate

osm_scope_relinquish_exclusivity();

osm_scope_transition_to_exclusive_with_increment_scope_id();

osm_scope_transition_to_exclusive_with_increment_scope_id();

0x85462500 0x85462501 0x85462502Example:ScopeID

TM

External Use 26 #FTF2015

Age priority versus order constraint

• Cores have task slots, WRKS assigns packets to task slots, it is static (no migration)

• Tasks are assigned a global age tracked in a global age record

• Tasks are a sequence of software and hardware jobs to be run by cores or accelerators

• Each core has a scheduler (CTS) to schedule software jobs based on age (priority)

• Accelerators have a single scheduler to schedule hardware jobs based on age (priority)

• OSM tracks order constraints of tasks (illusion of queues) and inhibits them from being scheduled
as needed (inhibits scheduling)

− But software must inform OSM when it wants to move from (ordering) queue to queue within AIOP

Example:ScopeID

OSM

AGE

CTS
AAS

WRKS
CTS

CTS

inhibit

TM

External Use 27 #FTF2015

Example of Ordering Constraint in Trace

Task blocks waiting for exclusivity

Task terminates releasing exclusivity

Task resumes running exclusive

TM

External Use 28 #FTF2015

AIOP Packet Processor Details for LS2085A

• Cores

− 16 e200z490 32-bit cores (4 clusters of 4 cores each) with 256 hardware threads

− 8 KB I-cache per core, 32 KB Workspace SRAM per core partitioned between up to 16 tasks

− 128 KB shared IRAM per cluster of 4 cores

− 256 KB Shared SRAM shared across AIOP tile

• Accelerators:

− Table Look-up Unit, support 17MSPS LPM, 51MSPS EM and 17MSPS ACL (10K rules in PEB)

operations concurrently

 EM key size up to 124B; LPM key sizes, 4 byte EM + 4 byte LPM (IPv4) or 4byte EM + 16 byte LPM (IPv6)

 ACL key size up to 56B

− Parse/Classify, 30MOPS

− Frame DMA,Context DMA, 17MPPS packet presentation/enqueue with 3 context DMA operation

combined

− Timer Manager, Millions of timer supported

− Stats Engine, 32 in-flight stats command executed concurrently with buffers up to 2K commands.

• Schedulers:

− Accelerator Scheduler, Work Scheduler, Ordering Scope Manager, per Core Task Scheduler

TM

External Use 29 #FTF2015

LS2085 Packet Processing Performance Goals

Use-cases / Benchmarks LS2085 Target

Complex Fwd Packet Processing
• 10K Algorithmic Access Control List (ACL) Rules

• 5 classification stages per frame

1. Virtual Interface Lookup (exact match - EM)

2. IP SA Spoof Check (EM)

3. Policy Based Routing – Access Control List (ACL)

4. IP Forward - Longest Prefix Match (LPM)

5. ARP Table Lookup (EM)

20Gbps @128B Packet Size (on track for

production silicon)

L2 Switch – Physical

80Gbps @64B Packet Size (on track for

production silicon)

Netflow (IPFIX) Packet Processing 20Gbps @ 128B

Simple IP Fwd
20Gbps @64B Packet Size (on track for

production silicon)

Simple IPSec Fwd 15Gbps @ 390B

Early performance validation results confirm that LS2085r1 samples meet

performance expectations for applications highlighted in green.

The other applications are currently tested in the lab.

TM

External Use 30 #FTF2015

AIOP boot process

ARM

Complex

Management

Complex

AIOP Cores 0-15

load_aiop(image_addr);

Sends a command to MC

MC initializes memory

windows of AIOP in

DDR, loads image to

AIOP’s memory and

releases AIOP cores

run_aiop();

Sends

command to

MC

MC releases

AIOP cores

Each core

initializes

its

environme

nt

All cores,

except of core

0 enable its

scheduler and

yields

Enable task

scheduler and

let to MC know

that AIOP is up

TM

External Use 31 #FTF2015

AIOP Software: Building Blocks

AIOP Application Layer

Service Routines Debug/ProfileNetwork I/OBoot/Shutdown

TCP GRO, TSO

IPSec

Firewall, NAT NetflowBFD

IP Forward

App Infrastructure (NF Infra)

Auto response
ARP, ND, ICMP

AIOP Service Layer

EthOAM

…Network libs

CAPWAP DTLS VxLAN

Openflow GTP-U PDCP

NVGRE

‘C’ run time lib

A

I

O

P

IP Forward API ARP/ND APIFirewall APIIPSec API

NF API Layer

OVSNAT API Netflow API

G

P

P

TM

External Use 32 #FTF2015

AIOP integration – depends on specific application !

AIOP

ARM complex

i

f

i

f

Host

i

f

i

f

ci

ci

Network

if

if

• AIOP – network node with

network interfaces and

command control interfaces.

• AIOP is generally easier to

program for efficient packet

processing then GPP

• AIOP program looks and acts

very similar to general

purpose processor program

(“sequential” ‘C’)

TM

External Use 33 #FTF2015

Specialized “Network Application” - Monitoring

• Some network application that is typically executing on host but is not
part of normal packet processing.

• Examples include monitoring, ARP server etc.

if

ARM complex

NetFlow

if NetFlow

ci

ci

ARM complex

Network

Network

AIOP

BFD

ETH-OAM

BFD

ETH-OAM

TM

External Use 34 #FTF2015

Management/Control and Data plane Architecture

ARM complex

Data Plane

ex. OpenFlow

Switch
i

f

i

f

i

f

i

f

Control

Plane

Management

Plane

Network

Host

Well defined ‘C’ API

• Forwarding plane is

decoupled from

control plane thru

well defined API

• Examples:

OpenFlow Switch

TM

External Use 35 #FTF2015

Management/Control in ARM and Data plane in AIOP

AIOP

ARM complex

Data Plane

OpenFlow Switch

i

f

i

f

Host

i

f

i

f

ci

ci

Control

Plane

Management

Plane

Network

• AIOP is built

especially to make

easy and efficient

implementation of

data plane

• It is possible to retain

the same API

between Control

Plane and Data Plane

TM

External Use 36 #FTF2015

AIOP Enablement options

* Freescale services organization may help with this work

Use Freescale

Integration

Adjust Freescale

Integration

Integrate by

yourself

Use MKT ready

apps

Adjust Freescale

applications*

Write your own

AIOP is “black

Box”

AIOP is “white

box”

AIOP is your own

TM

© 2015 Freescale Semiconductor, Inc. | External Use

www.Freescale.com

http://www.freescale.com/
http://www.freescale.com/
https://twitter.com/Freescale
https://twitter.com/Freescale
https://twitter.com/Freescale
https://twitter.com/Freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale

