FREESCALE
TECHNOLOGY
FORUM 2015

FTF

AlOP: Programming Model,
Enablement Software and Integration

FTF-DES-F1378

Howard Owens | Software Architects
Michael Kardonik | Software Architects
Peter Newton | Software Architects

JUNE.2015

Z “freescale

External Use

Franscaie. e Fresacen 1500, ATVee, -8, CodeTEST, CodeiVirrcr, Coufive, CotPues, G- wm, 0 Evagy Efickent Schuters jogu. Onetn, Magn moised T, PEC, PowsrGLAGE
Sroimtect Exjurt, Qurld Qe Quewmge Crwvvvm, Moty s Sefnhansn Tw Selatasirs g SerCure. Spvamaory. Vorttla VWirkl ssd fhirso sre Tedermwis of Frosscels
Serwoontuaior W, Fag LS Pal & Tie OF Avtaar, Baei(e, Rascitecs, Donhiet. Flaia. Lapsaonss, MXC. Plationm & o Package, QUET Engre, SMASTVOS, Tower, Tertolish
et LVEMS 3w of Prwwscale 196 AT sther Grackant o SerVice (ATEE S the 20cpety of el INEectve awrers. © 2013 Framcale Bemscondusion, ine

Agenda NN B

- Why AIOP ?

- Integration models and customers
- Block diagram

- Memory model

- Task and scheduler

- Synchronization and ordering

- Frame operations

- Architecture of AIOP software

- Tools

L £

<&
: - freescale i External Use 1 #FTFZOlS

Why AIOP ?

General purpose processors sub-optimal for

packet processing

Low packet processing locality underutilizes cache and
pipeline and suffers from high DDR latency

Increasing single thread performance causes super-
linear power increase

Performance and complexity of software hiding latency
of asynchronous access to accelerators

Many cycles are wasted for standard procedures —
search, parse, operations on frame, timers, statistics
etc)

Performance and complexity of software ordering and
synchronization

AIOP approach

Specialized memory hierarchy and explicit DMA
operations instead of cache allow deterministic
performance.

Parallelism with more “small”’ cores

Hardware scheduler based multitasking
environment hides access latency

Hardware accelerators for common tasks: lookups,
parse, frame operations, timers

Functions are provided by hardware scheduler

Why AIOP ?

Typical NPU: efficient but not easy to use AIOP approach

Proprietary languages (data flow oriented, Standard ‘C’ language following procedural

assembler etc). Sometimes restricted ‘C’ is used programming paradigm.
Modularity is supported thru standard language
methods

Tightly coupled to control processor that has Possible to build self-contained network nodes.

intimate knowledge of NPU Data/control structures are not shared enabling
independence

Congestion management is complicated because Congestion management is centralized into

of need to handle it within stages of pipeline network interface that handles it before AIOP
task start

L

L 4
Z " freescale : srTE2015

AIOP Architecture Block Diagram

BMan |IFace
Work Sched
prioritize H
To Net -
Ifaces\ X =)
rioritize H _5;
To 0 =
GPP—— cmds [o
Cores I: Timer Ev [
Timer Mgr
R -
- .
Z " freescale

External Use 4

#FTF2015

To DDRs
Shared SRAM I-RAM Accelerators
|
i Stats
e200 Core Frame -
I-cache Invoke DMA arse
s Accel
Workspace o Context TLU
Per Memory \ DMA SEC To
\ I
TaSk__ : oo Proxy SEC
Ctxt - RunJob ' 73
. Workspace -—=x \‘y Y Accel Job Completes
\ Memory
A Task Sched
\
v _Accept “Work™ _ __ __ >[| Task State Order
Create Task Mgmt — Scope
EPID Thl Register Ctx Mgmt
el —| Mutex

AIOP Memory Model

Stack, Thread Local Workspace memory, very fast and relatively
small

Static Shared RAM

Dynamic DDR, Express memory, accessed with DMA

Static/Shared RAM

struct arp_server arp serwvers[MAX_NUM ARP SERVERST;—

_.TASK int somecval;

/ {
Code is in
IRAM by
default
Can be
placed in
DDR,
SrlRAM etc

Thread/Workspace
arp_remove_entry(struct arp_server® arp_server, uint32_t ip addr)
union ctlu_key ctlu_rule_ key;
struct ctlu_lookup result lockgp—resuli; Stac k/WO rkS pace
int status;
struct arp_entry arp_entry;
struct arp_server_ext_info arp_server_ext _info; [)pvq/\ fr()rr]

L DDR to
cdma_read(&arp_server_ext_info, arp_server-:more_inTo, sizeof(arp_server_ext_info

1);
/* Remove it from table */ Workspace

(uint32_t)ctlu_rule_key.key em.key = ip_addr;

/* reference counter increments here, at this point it is at least 2 */
status = ctlu_table lockup by key(arp server-:table id, &ctlu rule key, 4, &lockup result);
if(status != @)

return status;

L 4
Z“freescale 5 scTE2015

AIOP: Works, Tasks and Jobs

- Tasks are created by work scheduler to accomplish Work
- Processing elements: cores, accelerators.

- Job — minimal schedulable part of task that are executed by
processing elements

- Task Is a sequence of Jobs that share a context
TASK =Job —Job —Job — *** — Job —Job

- HW-based scheduler causes the Jobs to be scheduled to
processing elements

L £

<&
: - freescale i External Use 6 #FTFZOlS

‘C’ sequential program and accelerators call

int arp_remove_entry(struct arp_server* arp_server, uint32 t ip addr)
1
union table key desc desc;
ct table_result tbr;
struct arp_server_ext_info arp_server_ext_info;
cdma_read(&arp_server_ext_info, arp_server-:more_info, sizeof({arp_server ext _info));
/* Remove it from table */
(uint32_t)desc.em.key = ip_addr;
tahle_rule_delete{TABLE_AC(EL_ID_CTLU4*N\ F*FCTLU accelator ID*/
i
i
F
F

arp_server->table_id, f*Active table id*/

&desc, '*key desc containing the key to be deleted*/

sizeof(uint32_t), *key size®/

&tbr *Fresult®/

E
slab_release(arp_server_ext _info.arp_seryer slab, tbr.op@ rp{r_clp.reference_pointer);
return @;

v
TASK =Job— Job—Job — Job — Job — Job

Task Scheduler

L

L 4
: - freesca,e i External Use 7 #FTF2015

AIOP Task Scheduler Design

- Task scheduler is invoked on job boundaries to schedule jobs

- The AIOP scheduling and execution model is hardware based “SMP”.
Jobs can execute on any processing element of right type

- Task scheduler is non-preemptive, based on a strict priority equal to
task age

- Work scheduler accepts tasks according to sophisticated
prioritization

- Latency of accelerator jobs is hidden by AIOP scheduling jobs from
other tasks to keep processing element fully utilized

- Tasks do not know about each other; they cannot initiate or control
each other directly

- Tasks do not know names or counts of processing element, and are
never architecturally affine

L

: < freescale i External Use 8 #FTFZO 15

Simple reflector code and trace

.HOT _CODE static void app_reflector(void)

int errj

sl _prolog(};

if (!PARSER_TIS OUTER_IPV4 DEFAULT()) {
/* Discard non IPV4 frame and terminate task */
fdma_discard_default_frame(FDMA_DIS_NO_FLAGS);
fdma_terminate_task();

¥
/* Swap source & destination addresses for L2 and IP protocols */
12 ip src_dst_swap();

fdma_modify default segment_full data();

/* Restore order for frames from the same flow */
osm_scope_transition_to_exclusive_with_increment_scope_id();
err = dpni_drv_send(dpni_get_receive_niid()});

— if (lerr)

—— fdma_terminate_task();

if (err == -ENOMEM)
fdma_discard_default_frame(FDMA_DIS_NO_FLAGS);
else /* (err == -EBUSY) */

fdma_discard_fd(({struct ldpaa_fd *)HWC_FD_ADDRESS,
FDMA_DIS_NO_FLAGS);

pr_err("Failed to send frame\n™);
fdma_terminate_task();

Task 221

Task 222

Task 223

Task 236

Task 237

Task 238

Task 239

Task 250

Task 251

Task 252

Task 253

Task 254

Task 255

<&
: < freesca,e i External Use 9 #FTFZOlS

Simple reflector code and trace

static inline void 12 ip src_dst swap(void)

1

struct parse_result *pr = (struct parse_result *)HWC_PARSE_RES_ADDRESS;

uints t *ethhdr = PARSER GET_ETH_POINTER DEFAULT();

uintd t dst_addr[NET HDR_FLD ETH ADDR SIZE];

struct ipvdhdr *ipv4 hdr;

uint32_t ip_src_addr;

uintd t *eth_src, *eth_dst;

/* get ETH source and destination addresses */

eth_dst = (uint8 t *)({uint32 t)PARSER GET ETH_POINTER DEFAULT());

eth_src = (uint8 t *)({uint32 t)PARSER GET ETH_POINTER DEFAULT() +

NET_HDR_FLD ETH_ADDR_SIZE);

/* store MAC_DST */

*((uint32_t *)&dst_addr[@]) = *(({uint32_t *)eth_dst);

*((uintle_t *)&dst_addr[4]) = *((uintle_t *)(eth_dst + 4));

/* set ETH destination address */

*((uint32_t *)(ðhdr[@])) = *((uint32 t *)(eth_src));

*((uintle_t *)(Zethhdr[4])) = *((uintle_t *)(eth_src + 4));

/* set ETH source address */

*((uint32_t *)(ðhdr[6])) = *(({uint32_t *)&dst addr[e]);

*((uintle_t *)(ðhdr[1@])) = *((uintl6_t *)&dst_addr[4]);

/* get IPv4 header */

ipvd hdr = (struct ipvdhdr *)({{uintd t *)

PRC_GET_SEGMENT_ADDRESS() +
(uintl6é t)PARSER_GET_OUTER_IP OFFSET_DEFAULT());

/* store IP source address before changing it */

ip_src_addr = ipwv4_hdr->src_addr;

/* swap IP source & destinaticn addresses */

ipv4 hdr-:src_addr = ipwv4 hdr-:dst_addr;

ipv4 hdr->dst_addr = ip_src_addr;

/* we do not need to update nor the IP, nor the L4 checksum, because
* the IP source & destination addresses were swapped and not replaced
* with other values */

1

o

<&
: - freesca,e i External Use 10 #FTFZOlS

Service Layer example

inline int fdma_store_and_enqueue_default_frame_qd(
struct fdma_gqueueing_destination_params *qdp,
uint32_t flags)

/* command parameters and results */

uint32_t argl, arg2, arg3;

intd_t resl;

/* storage profile ID */

uintd t spid = *((uintd_t *) HWC_SPID ADDRESS);

/* prepare command parameters */

flags &= ~FDMA_EN_EIS_BIT;

argl = FDMA_ENQUEUE_WF_ARG1{spid, PRC_GET HANDLES(), flags);
arg? = FOMA_ENQUEUE_WF_QD_ARG2(qdp-»qd_priority, gdp-»qd);
arg3 = FDMA_ENQUEUE_WF_QD_ARG3(qdp->qdbin);

/* store command parameters */

_ stdw(argl, arg2, HWC_ACC_IN_ADDRESS, 8);

#((uint32_t *)(HWC_ACC_IN_ADDRESS3)) = arg3;

/*_stqw(argl, arg2, arg3, @, HWC_ACC_IN_ADDRESS, @);*/

/* call FDMA Accelerator */

e _hwacceli (FODMA_ACCEL_ID);

/* load command results */

resl = *({int8_t *) (FDMA STATUS ADDR));

if (resl == FDMA_SUCCESS)
return SUCCESS;
else if (resl == FDMA_ENQUEUE_FAILED ERR)
return -EBUSY:
else if (resl == FOMA_BUFFER_POOL_DEPLETION_ERR)
return -ENOMEM;
else
fdma_exception_handler(FOMA STORE AND ENQUEUE DEFAULT FRAME_QD,
__LINE__, (int32_t)resl);

return (int32_t)(resl);

¥

inline void fdma_terminate task(void)

1
/* command parameters and results */
uint32 t argl;
/* prepare command parameters */
argl = FOMA_TERM TASK_CMD ARGL():
*((uint32_t *)(HWC_ACC_IN_ADDRESS)) = argl;
/* call FDMA Accelerator */
_e_hwacceli (FODMA_ACCEL_ID);

-
<

< freesca,e i External Use 11 #FTF2015

L <
<

Interfaces and Work Scheduler

- Work Scheduler role’s is to accept work to AIOP

- Work scheduling in AIOP supports following features:
- Bandwidth partitioning
- Priority of different traffic within bandwidth partition
- High priority traffic has special channel
- Congestion control on queues

- Implementation:
- QMAN Channels for bandwidth isolation
- Interface is connected to one channel only
- Intra-channel (WQs) for different CoTs
- High priority channels for emergency traffic

L

: < freescale i External Use 12 #FTFZO 15

Work Scheduler role’s is to accept work to AIOP

AIOP
Work Scheduler
40% Share of AIOP 30% Share of AIOP 30% Share of AIOP
cores cores cores
DPCONS5
>WQ OPro
>WQ 1 Pr1
:>mé§2pri\ DPCONO DPCON1 TMAN
WOQ 3 pr2 — ~ound (CH 0) (CH 1)
Q r Robin Hiah Priori
WQ 4 Pr 2_< Igh Priority
Q DUl Round T\
WQ6 Pr3 ™ Robin
Q7Pr3
DPNI3 DPN4 [DPNI1] [DPNI2
MAC2 MAC3 DEMUX (optional)

MAC1

L £

L 4
: < freesca,e i External Use 13 #FTFZOlS

Operations on Frame (FDMA)

Workspace Logical View

fdma_presentation _t

Presented data

- Frame and presentation objects are created in task workspace (local, fast
memory) on packet reception

- fdma_presentation_t object contains copy of specific area of frame in
workspace and provides methods that allow committing changes made by
user on that copy, inserting and deleting of new data. One can insert data
Into presentation, remove data, write data

- It is possible to have multiple presentations at the same time

<

“freescale’ 1. srTE2015

Operations on Frame (FDMA)

- Create new presentation in workspace
(done automatically for initial frame)

- This function will commit changes that
were made in workspace back to frame

- Copy and paste data from workspace to

presentation

- Close frame and send to frame queue

L

Z “freescale’

External Use

15

#FTF2015

int32_t fdma_create_presentation(
fdma_frame_t* const fh,
uintle_t initial_ offset,
fdma_presentaticon_t* presentation)

int32_t fdma_commit_data_to_presentation(
fdma_presentation_t* fdma_presentation,
vold *starting_address,
uintlé t size)

int32_t fdma_copy_paste_data_to_presentation(
fdma_presentation_t *fdma_presentation,
1cl addr_t src_addr,
uintlé t src_size,
uintlé t dst offset,
uintle_t dst_size

)

int32 t fdma_close_and enqueue frame to fqid(
fdma_frame_t *frame,
uint32_t fgqid,
uint32_t flags)

Operations on Frame (Parser)

- Parses the frame. The parse results

updated

L £

Z “freescale’

External Use

16

#FTF2015

int

parse_data(

char* const data,

int size,

enum parser_starting_hxs_code starting_hxs,
struct parse_result® results)

DMA operations

- Write from workspace memory to void cdma_write(

uinte4 _t ext address,

external address void *ws_src,

uintle_t size);

- Read from external memory to void cdma_read(

vold *ws_dst,

workspace address vintiet sy

struct arp_server_ext_info arp_server_ext_info;

cdma_read(&arp_server_ext_info, arp_server-zmore_info, sizeof(arp_server_ext_info));

L £

L 4
: < freescale i External Use 17 #FTFZO 15

Table operations

° LOOkup an entry based on key int table lookup by key(enum table hw_accel id acc_id,

uintle_t table_id,

union table lookup key desc key desc,
uintd_t key size,

struct table lockup result *lockup result);

L £

L 4
: < freescale i External Use 18 #FTFZO 15

Synchronization

- Mutexes
- Mutual exclusion

- RCU
- Garbage collection

- Ordering Scope Manager (OSM)
- Mutual exclusion and Ordering

L

: < freescale i External Use 19 #FTFZO 15

Mutexes

- Mutexes are used to prevent race conditions between different
tasks using the same resource (e.g. updating/reading the same
memory structures in external memory)

- Two types of locks

- Several readers are allowed in mutually exclusive section and only one

writer is allowed:

Updating task — only
one task can update
variables
cdma_mutex_lock take(mac_addr_ddr, WRITE_LOCK);

cdma_write(&mac_addr, mac_addr_ddr, 6);
cdma_mutex_lock release(mac_addr_ddr);

L

Z “freescale

External Use 20

#FTF2015

Reading task - several
reading tasks may take
lock simultaneously

cdma_mutex_lock_take(mac_addr_ddr, READ_LOCK);
cdma_read (&mac_addr, mac_addr_ddr, 6);

/lIDo something with it
cdma_mutex_lock_release(mac_addr_ddr);

RCU

- rcu_read_lock(): Marks an RCU-protected data structure so that it
won't be reclaimed for the full duration of that critical section. In our
case, this function typically done on task creation time.

- rcu_read_unlock(): Used by a reader to inform the reclaimer that
the reader is exiting an RCU read-side critical section.

- synchronize_rcu(): It blocks until all pre-existing RCU read-side
critical sections on all CPUs have completed.

L

: < freescale i External Use 21 #FTFZO 15

Ordering is about queues, queues cross AIOP

- Some packets pass through

AIOP for near wire rate
processing

- A queue within AIOP is identified AOP|
by ScopelD —11 -
- AIOP applications manipulate

ScopelD to enable concurrency
while maintaining order

- Packets which transition through
the same queues (ScopelDs)
remain ordered

L

L 4
: < freesca,e i External Use 22 #FTFZOlS

Scope construction/transformation

- Scopes can be a hash of header fields
(classification)

- Initial automatic on arrival to AIOP é
- Vocabulary of transformations into new
32b ScopelD

scopes from old scopes

- Or reclassify with new hash l

- Software controls “steps” of a program

- Each step is a queue and as always a
sequence of queues define order l

- Software does not need to know the

absolute value, only the step of a flow 32b ScopelD

L

L 4
: - freesca,e i External Use 23 #FTF2015

Tasks follow rules with ScopelD (queue)

« A taSk’S pOSition in a queue iS Running concur\r/snlt_ -
called TPOS aiting to transition

—
- A task’s position within a sub-
gueue for exclusivity is called
XPOS

Exclusive
- Tasks may wait for exclusivity (red)

or walt to transition to the next
gqueue (pUTp'G) Waiting for exclusive
e WX->SXX->XC->WT Running exclusive

- All tasks not waiting are running
concurrently

- One task knows it is exclusive
- Queues are always FIFO

L £

L 4
: - freescale i External Use 24 #FTFZOlS

Possible application design

- Start concurrent, TLU access to gather flow data structure

- Transition to exclusive to access/modify flow data

- Relinquish exclusivity to perform remain work (stats perhaps)
- Transition to exclusive to forward packet in order

osm_scope transition to exclusive with increment scope id();

osm_scope relinquish exclusivity();

osm_scope transition to exclusive with increment scope id();

i

Example:ScopelD 0x85462500 0x85462501 0x85462502

L

L 4
: < freesca,e i External Use 25 #FTFZOlS

Age priority versus order constraint

- Cores have task slots, WRKS assigns packets to task slots, it is static (no migration)

- Tasks are assigned a global age tracked in a global age record

- Tasks are a sequence of software and hardware jobs to be run by cores or accelerators
- Each core has a scheduler (CTS) to schedule software jobs based on age (priority)

- Accelerators have a single scheduler to schedule hardware jobs based on age (priority)

- OSM tracks order constraints of tasks (illusion of queues) and inhibits them from being scheduled
as needed (inhibits scheduling)

- But software must inform OSM when it wants to move from (ordering) queue to queue within AIOP

WRKS

Example:ScopelD

L

L 4
Z " freescale » #ETE2015

Example of Ordering Constraint in Trace

Task blocks waiting for exclusivity Task resumes running exclusive

7311413 735889 7406366 (7453843 75013.2 7548797

Idle
Task created
Running on core

Running on accelerator

E Waiting for core
E Waiting for accelerator

Blocked on a mutex

@ Aowaiting O5M decision

E Waiting to transition from ar
@ Waiting for exclusivity in an

Y |

Task terminates releasing exclusivity

<&
: < freesca,e i External Use 27 #FTFZOlS

AIOP Packet Processor Details for LS2085A

- Cores
- 16 e200z490 32-hbit cores (4 clusters of 4 cores each) with 256 hardware threads
- 8 KB I-cache per core, 32 KB Workspace SRAM per core partitioned between up to 16 tasks
- 128 KB shared IRAM per cluster of 4 cores
- 256 KB Shared SRAM shared across AIOP tile

- Accelerators:

Table Look-up Unit, support 17MSPS LPM, 51MSPS EM and 17MSPS ACL (10K rules in PEB)
operations concurrently

= EM key size up to 124B; LPM key sizes, 4 byte EM + 4 byte LPM (IPv4) or 4byte EM + 16 byte LPM (IPv6)

= ACL key size up to 56B

Parse/Classify, 30MOPS

Frame DMA,Context DMA, 17MPPS packet presentation/enqueue with 3 context DMA operation
combined

Timer Manager, Millions of timer supported
Stats Engine, 32 in-flight stats command executed concurrently with buffers up to 2K commands.
- Schedulers:

- Accelerator Scheduler, Work Scheduler, Ordering Scope Manager, per Core Task Scheduler

L

: < freescale i External Use 28 #FTFZO 15

LS2085 Packet Processing Performance Goals

Use-cases / Benchmarks LS2085 Target

Netflow (IPFIX) Packet Processing 20Gbps @ 128B

Simple IPSec Fwd 15Gbps @ 390B

<

L 4
Z " freescale » #rTE2015

AIOP boot process

run_aiop();
Sends
ARM load_aiop(image_addr); command to
Complex| Sends a command to MC MC
MC initializes memory
windows of AIOP in
DDR, loads image to
Management AIOP’s memory and MC releases
Complex releases AIOP cores AIOP cores

AIOP Cores 0-15

Each core
initializes
its
environme
nt

All cores,
except of core
0 enable its
scheduler and
yields

Enable task
scheduler and
let to MC know
that AIOP is up

L

Z “freescale’

External Use 30

#FTF2015

AIOP Software: Building Blocks

P i® F @

<

L 4
Z“freescale s srTE2015

AIOP integration — depends on specific application !

- AIOP — network node with
network interfaces and
command control interfaces.

- AIOP is generally easier to
program for efficient packet
processing then GPP

- AIOP program looks and acts
very similar to general
purpose processor program
(“sequential” ‘C’)

ARM complex

L £

L 4
: - freescale i External Use 32 #FTFZOlS

Specialized “Network Application” - Monitoring

ARM complex ARM complex

[ETH-OAM }

=)

NetFlow

N\ A

,
ETH-OAM

-
- Some network application that is typically executing on host but is not
part of normal packet processing.
- Examples include monitoring, ARP server etc.

L £

L 4
: - freescale i External Use 33 #FTFZOlS

Management/Control and Data plane Architecture

- Forwarding plane is

ARM complex
decoupled from Control Management
control plane thru Plane Plane
well defined API .

o EXampIeS: :IWeIIdefined ‘C’ API
Open FIOW SWltCh Gata Plane \

ex. OpenFlow

Switch

L £

L 4
: < freescale i External Use 34 #FTFZO 15

Management/Control in ARM and Data plane in AIOP

- AIOP is built
especially to make
easy and efficient
Implementation of
data plane

- It is possible to retain
the same API
between Control
Plane and Data Plane

ARM complex

Control Management
— Plane
Plane E—

Data Plane
OpenFlow Switch

AIOP

L £

L 4
: - freescale i External Use 35 #FTFZOlS

AIOP Enablement options

Use Freescale Adjust Freescale | Integrate by
Integration Integration yourself

Use MKT ready AIOP is “black
apps , / / Box”

Adjust Freescale

applications* , , ,

Write your own - - -

* Freescale services organization may help with this work

L

L 4
Z " freescale x #cTE2015

Z “freescale

www.Freescale.com

© 2015 Freescale Semiconductor, Inc. | External Use

http://www.freescale.com/
http://www.freescale.com/
https://twitter.com/Freescale
https://twitter.com/Freescale
https://twitter.com/Freescale
https://twitter.com/Freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale

