
Shawn A. Prestridge, Senior Field Applications Engineer

Lower Your Software Development

Costs through Code Analysis

IAR SYSTEMS – A GLOBAL LEADING VENDOR

168 Employees with HQ in Uppsala, Sweden

Listed in Stockholm/Nasdaq

R&D investment 32% of revenue

32 years in the industry

Uppsala

Munich

Sao Paulo

Tokyo

Seoul

Shanghai

London

Paris

San Francisco

Dallas

Boston

Los Angeles

+Distributor representation in

43 countries

24 hour technical support in

13 languages

Stability and growth

0%

5%

10%

15%

20%

25%

0

2

4

6

8

10

12

14

16

18

20

2010 2011 2012 2013 2014
License # Operating Margin

Licenses

thousands

Operating

margin2010-2014

LARGE AND LOYAL CUSTOMER BASE WORLDWIDE

www.iar.com

Market Leading
for

46,000+ customers
95% recurring customers

65% customers with more than one product

22,000+ support agreements

385+ enterprise agreements

200,000+ newsletter subscribers

100,000+ web visitors per month

10,000+ downloads per month

450+ partners in ecosystem

IAR EMBEDDED WORKBENCH WITH INTEGRATED

ANALYSIS TOOLS

We enable developers to take full control of their development and gain
efficient, adaptable workflows delivering dependable products.”

Editor

Project manager

Library builder

Librarian

Simulator driver

Hardware system drivers

Power debugging

RTOS plug-ins

IAR C/C++ Compiler

Assembler

Linker

IDE tools
IAR C-SPY

Debugger
Build tools

Fully

integrated

runtime

and static

analysis

Fully

integrated

runtime

and static

analysis

Detailed and flexible

runtime error information

Detailed and flexible

runtime error information

Maximized performance by compiler expertsMaximized performance by compiler experts

Detailed and flexible static

analysis results

Detailed and flexible static

analysis results

How can Code Analysis lower my costs?

Many successful embedded software companies use “Mean Time to Failure”

(MTTF) to determine the quality of their software

•Will not release the product until it meets a minimum MTTF

• Basically says the number of hours you can use the product without encountering a bug

• Depending on your system, you may need an MTTF in the 10-100,000 hour range (or more!)

The way an MTTF curve is calculated, you are really hurt by having many bugs

at the start of formal testing

• Is done at compile-time

• Looks for common causes

of errors in the source code

• Flags potential issues for

review by the developer

• Most common type of code

analysis

• Available from many

sources

• Is done at run-time

• Involves instrumenting

source code by placing

wrappers to check for

boundary and error

conditions

• Very few false-positives

• Harder to implement due to

code size/performance

issues

• Available from fewer

sources

Runtime analysisStatic analysis

Two types of code analysis

Static analysis

Static analysis can find many bug patterns, including:

• Null pointer dereferencing

• Infinite recursion loops

• Dead code

• Out-of-bounds array references (if index can be determined at compile-
time)

• Arithmetic errors

• Divide by 0

• Floating point comparisons using == or !=

• Overflow/underflow of numbers for specified type

• Dangling else statements

Continued on next slideE

What can static analysis do for me?

• Assignment-as-condition in if/while/do statements

• Negative integers cast to unsigned integers

• Dead code

• Misuse of runtime library:

• Buffer overruns

• Heap corruption

• Pointer misuse

• Identifies redundant code

• Finds dereferences to resource pointers

• Code side-effects due to conditional statements

And many other violations!

What can static analysis do for me?

Examples

By examining the boundaries on the for loop, you quickly see that this will never

execute! This indicates you may have made a mistake in assigning the

boundaries.

Examples

As you can see, we write to a variable and then immediately overwrite the value

with something else. This indicates that we may have some missing code

between the statements or that we may have assigned one of the statements’

return values to the wrong variable.

Examples

In this case, C-STAT knows from the source that your array has nine elements

but sees that by only shifting right 18 places, the index may be from 0 to 15. It

implies that you probably meant to shift down one more place.

Examples

C-STAT scans your code to make sure that your pointers have been properly

initialized and warns you when you are using one that isn’t.

Static analysis can also ensure that your code conforms to

coding standards

• Promotes reusability within your organization (lowers

development costs on future projects)

• Helps to constrain effects of code/spec changes (lowers

development costs by only testing what has changed)

• Makes code easier to read and understand during
walkthroughs

Static analysis should be used at the start of your project!

What can static analysis do for me?

Runtime analysis

Runtime analysis can also find many bug patterns, including:

• Out-of-bounds detection for pointers/arrays

• Heap consistency checking

•Multiple deallocation calls for same memory block

•Tracking down memory leaks

• Arithmetic error checks

• Integer over/underflows

• Integer conversion failures during casting

•Division by 0

•Unhandled switch cases

What can runtime analysis do for me?

Certifications are easier to achieve when you can prove that your

code conforms to a coding standard.

Testing reports show that the overall number of defects in the

software is low, despite many hours of testing and proves maturity of

your development organization

Code analysis also shows that your results are repeatable

because you have a process in place to find and fix defects.

Speeding the path to safety certifications

Release the application

Let C-STAT analyze your code

Investigate runtime errors

100011001100011

110010101110011

101010110011001

01001

01110

01011

10011

11001

0011010111010

0011001100011

1100101011110

1010110011001

0101010101101

10001

00011

10010

10111

00111

Let C-RUN analyze your project

Requirements Design Implementation Verification Maintenance

Build and debug the application

IAR Systems C-STAT and C-RUN solutions

Implement your design in code

Review potential issues

Analysis of C and C++ code

Intuitive and easy-to-use settings with flexible rule selection

Checks compliance with rules as defined by MISRA C:2004, MISRA C++:2008

and MISRA C:2012

Includes ~250 checks mapping to hundreds of issues covered by

CWE and CERT C/C++

Over 500 rules!

C-STAT STATIC ANALYSIS
ADD-ON PRODUCT AVAILABLE FOR IAR EMBEDDED WORKBENCH

C-RUN RUNTIME ANALYSIS
ADD-ON PRODUCT AVAILABLE FOR IAR EMBEDDED WORKBENCH

Support for C and C++ code

Intuitive and easy-to-use settings

Code correlation and graphical feedback in editor

Bounds checking to ensure accesses to arrays and other objects are
within boundaries

Heap and memory leaks checking

Comprehensive and detailed
runtime error information

Release the application

Let C-STAT analyze your code

Investigate runtime errors

100011001100011

110010101110011

101010110011001

01001

01110

01011

10011

11001

0011010111010

0011001100011

1100101011110

1010110011001

0101010101101

10001

00011

10010

10111

00111

Let C-RUN analyze your project

Requirements Design Implementation Verification Maintenance

Build and debug the application

Demonstration of seamless workflow

Implement your design in code

Review potential issues

SUMMARY

Why finding bugs early is important

What defects can be found with static analysis

How runtime analysis instruments your code

Speeding the path to safety certification

Seamless integration into your workflow

Extensive customer support

Code analysis is for every developer and every

organization!

