

From Concept to Product: Get Your Wearable to Market

FTF-HCW-F1138

Robert Thompson | i.MX Ecosystem Architect

JUNE.2015

External Use

Prescule, the Prescule tops, AIVAn; G-5, GodeTEST, GodeMerov, CollFine, GoldFinex, G-Nam, the Emergy Efficient Solutions tops, Kinetis, Magnik, mobileCT, FEG, PowerGLAGG, Processer Espen, Quint, Gorid Camerge, Darive, Ready Pag, Salakasan, the Salakasan tops, SterCine, Styrephony, Vertilla, Vythet and Xinnak are trademarks of Presseals Semicontaction: (in, Reju, U.S. Pat, & Th. CH. Antat, BeeK), Bashkasan, Fers (Salakasan, Kork, SterCine, Symphony, Vertilla, Vythet and Xinnak are trademarks of Presseals Semicontaction: Fund, Reju, U.S. Pat, & Th. CH. Antat, BeeK), Bashkasan, Fers (Layerson, MXC, Parform in a Fackage, QUCC). Engine, SAMATINOS, Tuesc: TrateLink and UMEMS are trademarks of Presscale Beniconductor, Inc. All other product or service nerves are the property of their respective owners. © 2015 Presscale Beniconductor, Inc.

Agenda

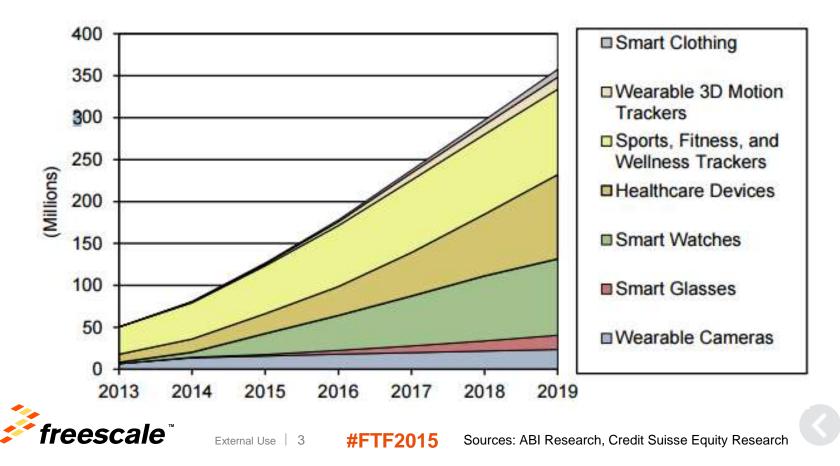
Part 1:

- Concept: Understanding the Wearable Market
- From Concept to Prototype: Wearable Reference Designs
- Prototype to Production: When is a Prototype Ready

Part 2:

 Freescale and Partner Boards: From Concept to Product

Concept: **Understanding The Wearable** Market and the Customer



Wearable market Forecast. Why are we here?

By 2019

- 455M devices generating \$46.5B
- Healthcare devices biggest category 121 M units
- Smartwatches generate the most revenue, \$21B

Wearables.. One Size does not fit all

External Use | 4

#FTF2015

 $\langle \rangle$

Wearables...A Diverse Market

Vertical	Categories			
Fitness & Wellness	Sports & Heart Rate Monitors Pedometers, Activity Monitors Smart Sport Glasses Smart Clothing Sleep Monitors Emotional Measurements			
Healthcare & Medical	CGM (Continuous Glucose Monitoring) ECG Monitoring Pulse Oximetry Blood Pressure Monitors Drug Delivery (Insulin Pumps) Wearable Patches (ECG, HRM, SpO2)			
Infotainment	Smart Watches Augmented Reality Headsets Smart Glasses Wearable Imaging Devices			
Industrial & Military	Hand-worn Terminals Augmented Reality Headsets Smart Clothing			

Data Collection

- How long has this machine been working?
- What is its efficiency percentage?
- When will one of its parts break/need replacing?

- How long has the employee been working?
- What is their efficiency percentage?

External Use 7

How fatigued are they?


Start at the End (user.)

 Are you developing something people will value
 Does your cost enable an end price that will meet customers perceived value
 How will you differentiate, is that differentiation sustainable, WWAD?
 Will funding for wearables dry up Does the supply chain for your device already exist ?

Concept To Prototype

Pi is the Answer?

Great tool but,

- Not open source
- Subsidized
- · Limited ability to productize

External Use | 10

Wearable Reference Designs?

Raspberry Pi

Arduino

ToQ

WaRP

Beagle Bone

Ingenic Newton 2

SensoPlex SP-10C

Udoo Neo

Intel Edison

Intel Curie

RioT

Pico

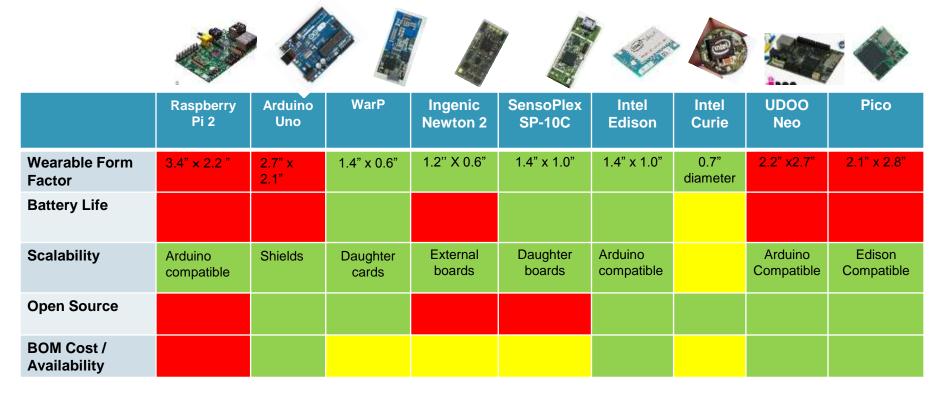
External Use | 11 **#FTF2015**

Wearable Reference Designs - Key Features

First decision: Microcontroller or Application Processor

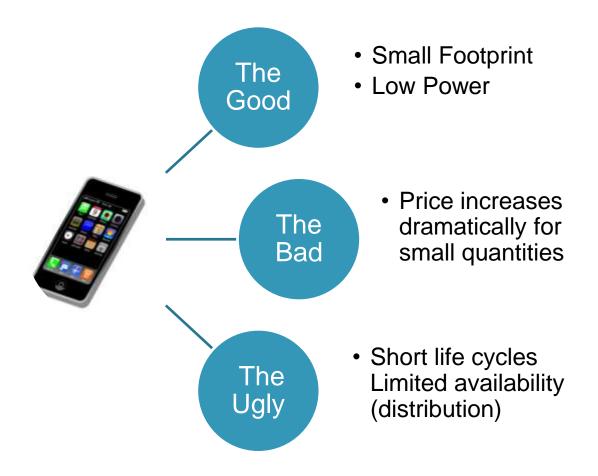
Key Features

- 1. Wearable Form Factor
- 2. Battery Management
- 3. Ease of Use/Scalability
- 4. Open Source Community
- 5. BOM Cost & Availability


| 12

External Use

Wearable Reference Designs



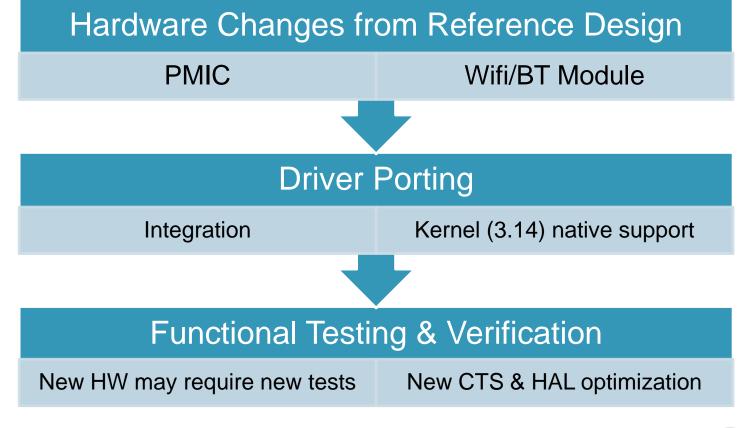
 $\langle \rangle$

Design with the Right Components

External Use | 14

Components make up over 60% of your entire business costs

Prototype To Production



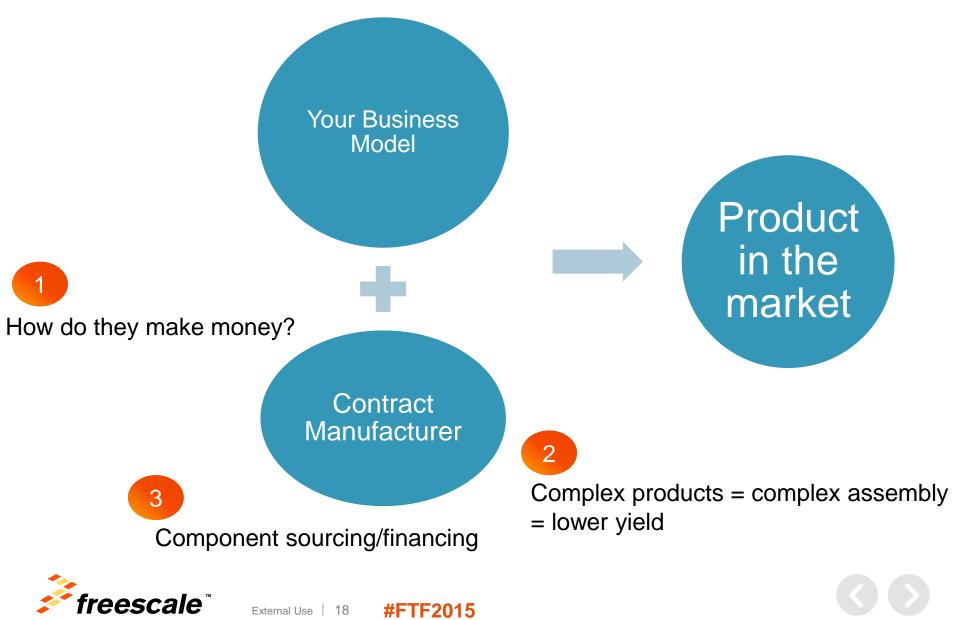
Software: From Reference Design to Production

About half the way there...

Android is a framework it takes a considerable effort (develop & test) to deliver a system!

External Use | 16

"No hardware plan survives contact with a factory"


Cyril Ebersweiler, Founder of HAXLR8R

Your Factory is your most Important Partner

Concept To Prototype Freescale's Participation

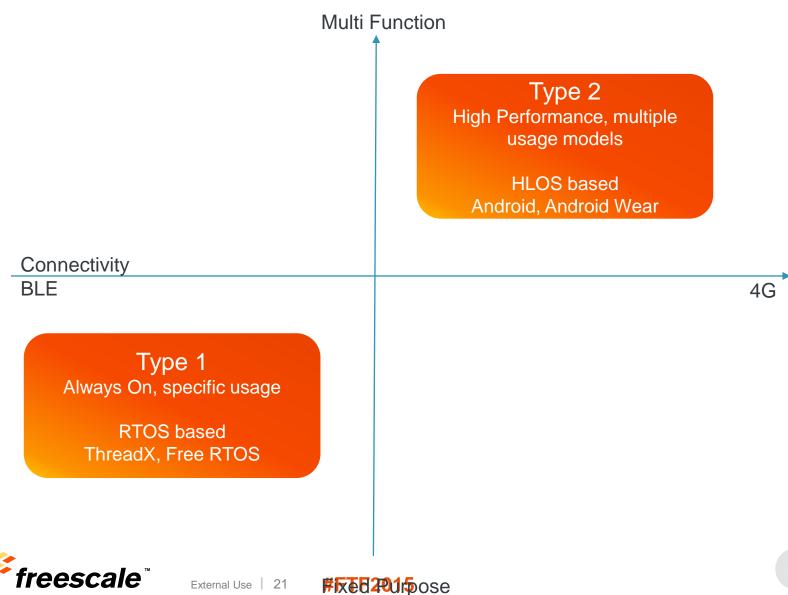
Speeds and eases development for creating wearable devices by addressing key technology challenges

External Use

20

#FTF2015

Wearable Form Factor


Maximizing Battery Life

Maximize Usability

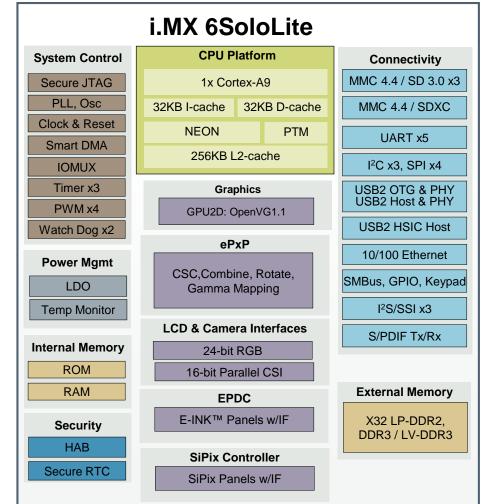
Low cost BOM

Market Segmentation

Concept To Prototype

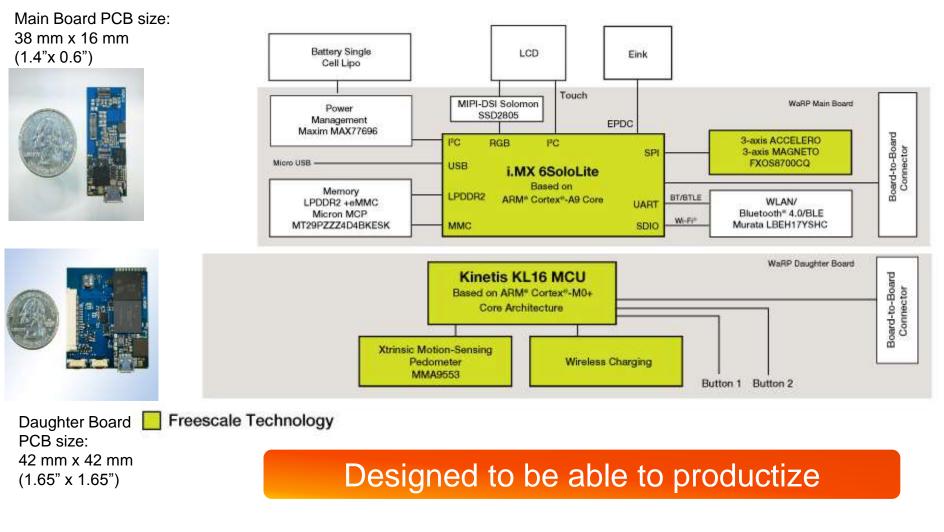
K

External Use | 22


i.MX 6SoloLite Multimedia Processor

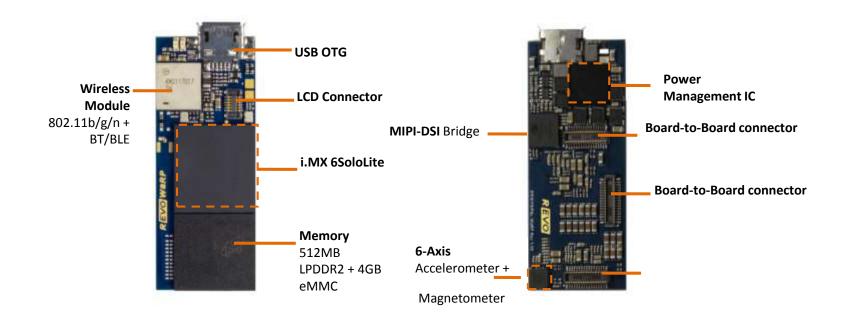
Specifications

- CPU: ARM® Cortex®-A9 @ 1GHz
- Package: 0.5mm 13x13 MAPBGA


WaRP Use Case

- Idle: 4.9 mW, Suspend 0.93 mW
 - Clock/power gating
- EPD /LCD Controller & 2D GPU
- x32 LP-DDR2 & managed NAND

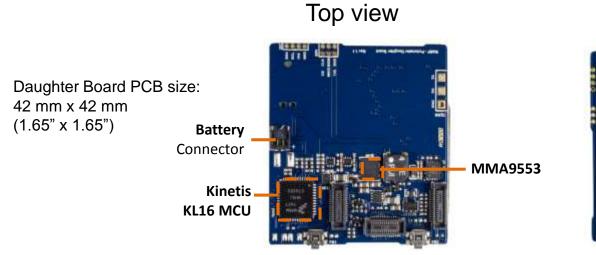
WaRP Block Diagram

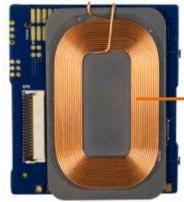


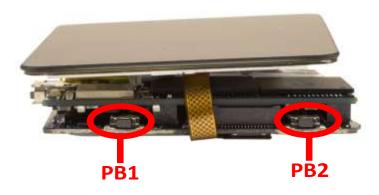
External Use 24

Wearable Form Factor.. WaRP Board

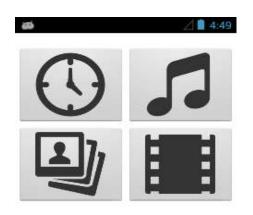
• Main Board PCB size: 38 mm x 16 mm (1.4" x 0.6")

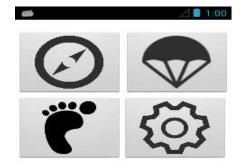



Battery Management/Scalability


Bottom View

Qi Wireless charging coil




Usability

Open Source/ Community

Wearable Reference Platform

Community Where to Buy About Us Home Press Technical Features

WaRPboard.org is a nonprofit community based organization providing service and support for the wearables reference platform (WaRP). The solution's hardware and software will be open sourced and community driven. No closed development tools or licensing fees are required when used in conjunction with open source resources.

WaRPboard implements a hybrid architecture to address the evolving needs of the wearables market. The platform consists of a main board and an example daughtercard with the ability to add additional daughtercards for different usage models. In this hybrid architecture, the guts of the design is done on the main board with Freescale's i.MX 6SoloLite applications processor, and a secondary microcontroller, Freescale's Kinetis KL16 MCU, is implemented on the daughtercard, which is used as a sensor hub as well as a wireless charging MCU.

See the Technical Features page for additional board photos.

Technical Features

Availability...Bill Of Materials

Comment	Description	Designator	LibRef	Qty	Value	Footprint	Part No.
2450AT07A0100	Johanson Technology Inc 1mm x 0.5mm 2.4GHz Ultra Mini Chip Antenna	ANTI	2450AT07A0100	1		2450AT07A0100	2450AT07A0100
Coax RF		ANT2	Coax RF	1		W.FL-R-SMT-1	W.FL-R-SMT-1
Header 2	Header, 2-Pin	BAT	Header 2	1		Small Solder Pads	
CapacitorSM	Capacitor	C1, C4, C7, C11, C15, C56, C61, C75, C76, C77, C81	CapacitorSM	11	22uF	0603 (1608) Cap High Density	GRM188C80G226MEA0 D
CapacitorSM	Capacitor	C2, C8, C9, C13, C18, C20, C21, C24, C27, C32, C33, C36, C43, C45, C49, C72, C73, C89, C112, C115, C117, C118	CapacitorSM	22	4.7uF	0402 (1005) Cap High Density	C1005X5R0J475M050BC
CapacitorSM	Capacitor	C3, C5, C6, C10, C12, C14, C16, C17, C19, C22, C23, C25, C26, C28, C29, C30, C31, C37	CapacitorSM	18	0.22uF	0201 (0603) Cap High Density	C0603X5R0J224K030BB
Capacitor	Capacitor	C34, C35, C119, C120	Capacitor	4	8pF	0201 (0603) Cap High Density	C0603C0G1E080D030BA
CapacitorSM	Capacitor	C38, C39, C40, C41, C44, C46, C47, C48, C52, C53, C54, C57, C58, C59, C62, C63, C64, C65, C68, C70, C91, C94, C95, C109, C110, C111, C113, C114, C116, C121, C134	CapacitorSM	31	0.1uF	0201 (0603) Cap High Density	GRM033R60J104ME19D
CapacitorSM	Capacitor	C42, C55, C60, C66, C67, C69, C71	CapacitorSM	7	0.01uF	0201 (0603) Cap High Density	GRM033R70J103KA01D
CapacitorSM	Capacitor	C50, C51, C79	CapacitorSM	3	4.7uF	0603 (1608) Cap High Density	GRM188R60J475ME19D
CapacitorSM	Capacitor	C74, C82, C84, C85, C87, C88, C93, C106, C107, C123, C124, C126, C127, C131, C132	CapacitorSM	15	1uF	0201 (0603) Cap High Density	C0603X5R0J105M030BC
CapacitorSM	Capacitor	C78, C80, C86, C122, C133	CapacitorSM	5	2.2uF	0402 (1005) Cap High Density	LMK105BJ225MV-F
CapacitorSM	Capacitor	C83, C96, C98, C102, C104, C125	CapacitorSM	6	1uF	0402 (1005) Cap High Density	C1005X5R1V105M050BC

Wearable Reference Design: WarP Score Card

Key Features	Score
Wearable Form Factor	
Battery Management	
Ease Of Use/Scalability	
Open Source/Community	
BOM Cost /Availability	

Wearables...One size does not fit all

External Use 31

Future Predications...

In 2017 a third of all wearables will come from...

Companies that don't exist today

External Use | 32 **#FTF2015**

www.Freescale.com

© 2015 Freescale Semiconductor, Inc. | External Use