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1. Introduction 

High accuracy metering is an essential feature of an 

electronic power meter application. Metering 

accuracy is a most important attribute because 

inaccurate metering can result in substantial amounts 

of lost revenue. Moreover, inaccurate metering can 

also undesirably result in overcharging to customers. 

The common sources of metering inaccuracies, or 

error sources in a meter, include the sensor devices, 

the sensor conditioning circuitry, the Analog Front-

End (AFE), and the metering algorithm executed 

either in a digital processing engine or a 

microcontroller. 
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The critical task for a digital processing engine or a microcontroller in a metering application is accurate 

computation of active energy, reactive energy, active power, reactive power, apparent power, RMS 

voltage, and RMS current. The active and reactive energies are sometimes referred to as billing 

quantities. Their computations must be compliant with the EN50470-1 and EN50470-3 European 

standards for electronic meters of active energy class B and C, and IEC 62053-21 and IEC 62052-11 

international standards for electronic meters of active energy classes 2 and 1, and the IEC 62053-23 

international standard for static meters of reactive energy classes 2 and 3.  

The remaining quantities are calculated for informative purposes and they are referred as non-billing. 

The metering algorithms perform computation in either time or frequency domain. This application note 

describes an accurate and scalable metering algorithm that is intended for use in electronic meters, 

further referred to as the Filter-Based Metering Algorithm. This algorithm calculates all billing and non-

billing quantities in the time domain, with extensive support of the Finite Impulse Response (FIR) and 

Infinite Impulse Response (IIR) digital filters [1] and [2]. 

The Filter-Based Metering Algorithm can be easily integrated into an electronic power meter 

application. The algorithm requires only instantaneous voltage and current samples to be provided at 

constant sampling intervals. These instantaneous voltage and current samples are usually measured by 

an AFE with the help of a resistor divider, in the case of a phase voltage measurement, and a shunt 

resistor, current transformer or a Rogowski coil in the case of a phase current measurement. All current 

measurement sensors introduce a phase shift into current measurement. Therefore, it is necessary to 

align the phases of the instantaneous voltage and current samples using either software phase correction 

method included in the Filter-Based Metering Algorithm or with the aid of delayed sampling before 

using them.  

The software configuration tool is available to easily set up the Filter-Based Metering Algorithm. The 

tool is intended to tune digital filters to match the required performance and to generate a C-header file 

with configuration data specific to the power meter type. The tool automates the procedure of the 

algorithm setup and optimization, while providing a rough estimate of the required computational load. 

There further follows a block diagram and a brief description of the Filter-Based Metering Algorithm in 

a one-phase power meter configuration. 

2. Block diagram 

The following figure shows a block diagram of the Filter-Based Metering Algorithm in a typical one-

phase power meter application. The current and voltage measurements are represented by 𝑖(𝑡) and 𝑢(𝑡) 

signal sources. These sources provide phase-aligned instantaneous current and voltage samples at 

constant sampling intervals. The new voltage and current samples trigger a recalculation of all the 

algorithm blocks. After each recalculation, new billing and non-billing quantities will become available. 

All calculated quantities are usually displayed on the LCD and archived in a database for post-

processing and reading through the Automated Meter Reading (AMR) communication interface. In 

addition, active and reactive energies also drive their respective pulse output LEDs for calibration and 

testing purposes. 
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 Block diagram of the filter-based metering algorithm 

The algorithm consists of several blocks mostly comprising the Infinite Impulse Response (IIR) and 

Finite Impulse Response (FIR) digital filters.  

The first block in the signal flow is the samples processing. This block removes offset from the 

instantaneous voltage and current samples, performs optional sensor phase shift correction, and returns 

the order of voltage waveform sequences in a three-phase system. If the Direct Current (DC) offset was 

stable and deterministic, its removal would be performed by simple subtraction. However, in a real 

application, most analog components unintentionally insert a DC offset as part of the signal 

conditioning, amplification, and analog-to-digital circuits. Since the DC offset of the analog circuits is 

not constant but varies with the process, supply voltage, and temperature, a robust algorithm must be 

used for its removal. Due to this fact, this block represents the high-pass first order IIR filters, which 

remove any DC and low-frequency components from the alternating voltage and current measurements. 

For more information, refer to Infinite impulse response filter. 

The second block is essential for reactive energy calculation, and is called the 90-degree phase shifter. 

This block represents two special FIR filters, the first is the N-Tap FIR filter that is an approximation of 

the Hilbert transformer, and the second is the M-Tap FIR filter that compensates for the group delay 

introduced by the first N-Tap FIR filter. For more information, refer to Ideal Hilbert transformer. 

Following blocks in the signal flow diagram are the active and reactive energy computing and pulse 

generators. These blocks calculate and smooth the active and reactive energies. The smoothing filters are 

sometimes required to suppress the 100 Hz (120 Hz) component caused by the multiplication of the 

instantaneous 50 Hz (60 Hz) voltage and current waveforms. The smoothed energy waveforms result in 

lower jitter of the generated pulses, and thus, a shortening of the power meter testing and calibration 

time. 

The explicit RMS converters are present to transform alternating voltage and current waveforms into 

RMS values. This method for the RMS value computation requires the numerical square, average, and 
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square root functions be called every time a new sample of the analyzed signal is available (see Explicit 

RMS converter). 

Finally, the average power converters calculate the active and reactive powers from the new unbiased 

phase voltage and phase current samples. This power calculation method leverages the low-pass first 

order IIR filters extensively (see Average power converter). 

The Filter-Based Metering Algorithm allows the use of two sampling intervals. Introducing a short and 

long sampling interval for calculating billing and non-billing quantities, respectively, will lead to 

significant savings in the computational power. 

The general setting of the algorithm can be easily performed by the configuration tool (see 

Configuration tool). This tool allows the user to tune the metering algorithm interactively with respect to 

the power meter hardware and firmware capabilities. The configuration session should always terminate 

by generating a C-header file containing all the configurations and by saving this file to the hard drive. 

3. Theory 

The Filter-Based Metering Algorithm comprises of several blocks. These blocks represent the Infinite 

Impulse Response (IIR) and Finite Impulse Response (FIR) digital filters. The digital filters and other 

calculations performed by the algorithm are based on elementary fractional and integer calculations, 

such as addition, subtraction, integration, multiplication and square root. 

In order to understand these blocks, the basics and tricks of 2’s complement integer and fractional 

arithmetic are explained in the following section. 

 Basics of fixed-point arithmetic 

This section explains how numbers are represented in a microcontroller and processed by the Filter-

Based Metering Algorithm. The microcontrollers are integrated with an AFE, which converts an analog 

input signal into its digital representation and stores it in a result register. This figure shows the result 

register implementation specific to the Kinetis M microcontroller family of devices: 

01

SDRSIGN

2345678910111213141516171819202122232425262728293031

 

 Kinetis M - AFE result register format 

These devices are integrated with a powerful AFE that produces a digital output scale based on the 

Oversampling Ratio (OSR). The digital output of each channel is then truncated to a 24-bit signed 2's 

complement result, which is stored in corresponding channel's result register: 

 Kinetis M - AFE result register fields 

Field Description 

[31:23] Sign Bits 

SIGN This field represents sign bits (bits 31 to 23 are filled with sign bits). 

[22:0] Sample Data Result 

SDR This field represents valid sample value in 2’s complement form. 

The 2’s complement representation is convenient in implementing DSP algorithms such as IIR and FIR 

filters. All operations can be performed using 2’s-complement integer or fractional arithmetic [3], [4], 

and [5]. 
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 Signed integer 

This format is used for processing data as integers. In this format, the N-bit operand is represented using 

the Q(N-1).01 format (N integer bits). The range of signed integer numbers is as follows: 

−𝟐(𝑵−𝟏) ≤ 𝑰𝒏𝒕𝒆𝒈𝒆𝒓 ≤ [𝟐(𝑵−𝟏) − 𝟏]  
 

Eq. 1 

For example, the most negative, signed word that can be represented is –32,768 ($8000), and the most 

negative, signed long word is –2,147,483,648 (0x80000000). The most positive signed word is 32,767 

(0x7FFF), and the most positive signed long word is 2,147,483,647.  

Signed integer data format is typically used in controller code, array indexing and address computations, 

peripheral set-up and handling, bit manipulation, bit-exact algorithms, and other general-purpose tasks. 

 Signed fractional 

In this format, the N-bit operand is represented using the Q0.(N–1) format (1 sign bit, N–1 fractional 

bits). Signed fractional numbers lie in the following range: 

−𝟏. 𝟎 ≤ 𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏𝒂𝒍 ≤ [+𝟏 − 𝟐−(𝑵−𝟏)]  
 

Eq. 2 

For example, the most negative word that can be represented is –1.0, whose internal representation is 

0x8000 (word) or 0x80000000 (long word). The most positive word is 1.0-2-15 (0x7FFF), and the most 

positive long word is 1.0-2-31 (0x7FFFFFFF). 

Using 2's complement signed integers is not convenient for handling to implement digital filters. For 

example, if two 32-bit words are multiplied, 64 bits are needed to store the result. The size of the 

required word length increases without bounds as we further multiply numbers together. Although not 

impossible, it becomes complicated to handle this increase in word-length using signed integer 

arithmetic. 

The problem can be easily handled by using signed fractional numbers in the range −1.0 and 1.0-2-[N-1], 

instead of signed integers, because the product of two numbers in the range [−1, 1.0-2-[N-1]] will always 

be in the same range. Signed fractional data format and arithmetic is typically required for computation-

intensive algorithms, such as digital filters, speech coders, vector and array processing, digital control, 

and other signal processing tasks. 

The relationship between the integer interpretation of an N-bit value and the corresponding fractional 

interpretation is: 

𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏𝒂𝒍 = 𝑰𝒏𝒕𝒆𝒈𝒆𝒓 𝟐(𝑵−𝟏)⁄   
 

Eq. 3 

The arithmetic operations required by the Filter-Based Metering Algorithm, such as addition, 

subtraction, multiplication, and square root are discussed in the following subsections.  

                            
 
1 The Q notation is written as Qm.n, where: Q designates that the number is in the Q format notation (the Texas 
Instruments representation for signed fixed-point numbers), m is the number of bits set aside to designate the 2’s 
complement integer portion of the number, and n is the number of bits used to designate the fractional portion of 
the number. 
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 Addition and subtraction 

Addition, subtraction, and comparison operations are performed identically for both fractional and 

integer representations. The Arithmetic Logic Unit (ALU) of the microcontroller does not have to 

distinguish between the data types for these operations. The source code of the L_add() function that 

implements 32-bit integer (Q31.0) and fractional (Q0.31) addition, is shown in the following code: 

 Function for 32-bit Integer and Fractional Addition 
static inline frac32 L_add (register frac32 lsrc1, register frac32 lsrc2) 
{ 
  return lsrc1+lsrc2;    
} 

 

Typical examples of additions are shown in the following table:  

 Examples of 32-bit addition 

Format 
X Y Addition, Z=X+Y 

Signed Fractional Hexadecimal Signed Fractional Hexadecimal Signed Fractional Hexadecimal 

Q0.31 

0.5 0x40000000 0.25 0x20000000 0.75 0x60000000 

0.5 0x40000000 -0.25 0xE0000000 0.25 0x20000000 

-0.5 0xC0000000 -0.25 0xE0000000 -0.75 0xA0000000 

 

The source code of the L_sub() function that implements 32-bit integer and fractional subtraction is 

shown in the following code: 

 Function for 32-bit Integer and Fractional Subtraction 
static inline frac32 L_sub (register frac32 lsrc1, register frac32 lsrc2) 
{ 
  return lsrc1-lsrc2;    
} 

 

The following table shows typical examples of subtraction operations: 

 Examples of 32-bit subtraction 

Format 
X Y Subtraction, Z=X-Y 

Signed Fractional Hexadecimal Signed Fractional Hexadecimal Signed Fractional Hexadecimal 

Q0.31 

0.5 0x40000000 0.25 0x20000000 0.25 0x20000000 

0.5 0x40000000 -0.25 0xE0000000 0.75 0x60000000 

-0.5 0xC0000000 -0.25 0xE0000000 -0.25 0xE0000000 
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NOTE 

Addition and subtraction can generate values that are larger than the data 

format. For example, adding two fractional Q0.15 numbers X=0.55 

(0x4666) and Y=0.55(0x4666) causes overflow X+Y= -0.9(0x8CCC). The 

solution is saturation or data limiting, which is implemented on some 

DSPs and guarantees that values are always within a given range. On 

microcontrollers with no hardware support for saturation and data limiting, 

one has to ensure that algorithms are implemented in a way to prevent 

overflows. The Filter-Based Metering Algorithm solve this phenomena by 

using input signals of the phase voltage and phase current samples in 24-

bit fractional representation (Q0.23) while performing all mathematical 

operations in 32-bit fractional format (Q0.31). In this way, the dynamic 

range for additions and subtractions is extended by eight bits. 

 Multiplication 

The multiplication operation is not same for integer and fractional arithmetic. The result of a fractional 

multiplication differs from the result of an integer multiplication. The difference amounts to a 1-bit shift 

of the final result, as illustrated in Figure 3. 

Any binary multiplication of two N-bit signed numbers generates a signed result that is 2N–1 bits in 

length. This (2N–1)-bit result must be properly placed in a field of 2N bits to fit correctly into the on-

chip registers. For correct integer multiplication, an extra sign bit is inserted in the MSB to generate a 

2N-bit result. For correct fractional multiplication, an extra zero bit is inserted in the LSB to generate a 

2N-bit result. 

S
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 Comparison of integer and fractional multiplication 

Some DSPs have dedicated instructions to perform integer and fractional multiplication [3]. On general 

purpose microcontrollers, fractional multiplication can be emulated easily using integer arithmetic. The 

following code shows the source code of the L_mul() function that implements 32x32=32-bit fractional 

multiplication in C-language: 

 Function for 32-bit Fractional Multiplication 
static inline frac32 L_mul (register frac32 lsrc1, register frac32 lsrc2) 
{ 
  register frac64 tmp = ((frac64)lsrc1*(frac64)lsrc2);   
  return (tmp+tmp)>>32; 
}  
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Typical examples of fractional multiplications are shown in the following table: 

 Examples of 32-bit fractional multiplication 

Format 
X Y Multiplication, Z=X*Y 

Signed Fractional Hexadecimal Signed Fractional Hexadecimal Signed Fractional Hexadecimal 

Q0.31 

0.5 0x40000000 0.25 0x20000000 0.125 0x10000000 

0.5 0x40000000 -0.25 0xE0000000 -0.125 0xF0000000 

-0.5 0xC0000000 -0.25 0xE0000000 0.125 0x10000000 

 Square root 

Similarly to the multiplication operation described in previous subsection, square root calculation is also 

not same for integer and fractional values. The relationship between square root of the fractional and 

integer N-bit radicands can be expressed as follows: 

√𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏𝒂𝒍 = √𝑰𝒏𝒕𝒆𝒈𝒆𝒓 √𝟐(𝑵−𝟏)⁄   
 

Eq. 4 

The Filter-Based Metering Algorithm uses square root function for calculating the RMS current and 

voltage. The square root computation is limited to positive fractional numbers and is based on the Non-

restoring Method [6]. This method only uses addition, subtraction, and compare operations. The square 

root is calculated from the known radicand X, the unknown quotient Q,  and the unknown remainder Rn, 

which all satisfy the relation. 

𝑹𝒏 = 𝑿 − 𝑸𝟐  
 

Eq. 5 

The method employs a root extractor that is either added to or subtracted from the partial remainder. The 

root extractor in the non-restoring method is a function of the quotient digits and constants. The first 

operation is always subtraction of a constant (0.25). The subsequent operation subtracts or adds the root 

extractor, depending on whether the remainders are positive or negative. This leads to a new partial 

remainder. The process continues until the remainder is zero or the desired number of the quotient digit 

is obtained.  

 Algorithm for the binary square root by the non-restoring method 

First Reminder 𝑅1 = 𝑋 − 0.25  

Reminder 𝑅𝑛+1 = {
𝑅𝑛 − 2−𝑛[∑ 𝑞𝑖 + 1.25 × 2−𝑛𝑛−1

𝑖=1 ], 𝑅𝑛 ≥ 0

𝑅𝑛 + 2−𝑛[∑ 𝑞𝑖 + 0.75 × 2−𝑛𝑛−1
𝑖=1 ], 𝑅𝑛 < 0

  

Quotient 

𝑄 = ∑ 𝑞𝑖
𝑛
𝑖=1   

𝑞𝑖 = {
2−𝑖 , 𝑅𝑖+1 ≥ 0

0, 𝑅𝑖=1 < 0
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The C-language along with a preprocessor guarantees an efficient calculation of the binary square root 

algorithm on a microcontroller. The source code of the L_sqr() function that implements the 32-bit 

fractional (Q0.31) square root by the non-restoring method is as follows: 

 Function for the 32-bit Square Root Calculation by the Non-restoring Method 
#define LSQR_STEP(k)                                      \ 
{                                                         \ 
  if(r1>=0)                                               \ 
  {                                                       \ 
    r1-=((q1+(frac32)FRAC32(1.25/(((frac32)1)<<k)))>>k);  \ 
    q1+=((frac32)FRAC32(0.5)>>(k-1));                     \ 
  }                                                       \ 
  else                                                    \ 
  {                                                       \ 
    r1+=((q1+(frac32)FRAC32(0.75/(((frac32)1)<<k)))>>k);  \ 
  }                                                       \ 
} 
 
frac32 L_sqr (register frac32 x) 
{ 
  register frac32 q1 = 0l; 
  register frac32 r1 = x-(frac32)FRAC32(0.25); 
   
  /* input parameter conditions                                                */ 
  if (x <= 0l) { return FRAC32(0.0); } 
   
  /* square root calculation using non-restoring method                        */ 
  LSQR_STEP( 1); LSQR_STEP( 2); LSQR_STEP( 3); LSQR_STEP( 4); LSQR_STEP( 5);  
  LSQR_STEP( 6); LSQR_STEP( 7); LSQR_STEP( 8); LSQR_STEP( 9); LSQR_STEP(10);  
  LSQR_STEP(11); LSQR_STEP(12); LSQR_STEP(13); LSQR_STEP(14); LSQR_STEP(15);  
  LSQR_STEP(16); LSQR_STEP(17); LSQR_STEP(18); LSQR_STEP(19); LSQR_STEP(20);  
  LSQR_STEP(21); LSQR_STEP(22); LSQR_STEP(23); LSQR_STEP(24); LSQR_STEP(25);  
  LSQR_STEP(26); LSQR_STEP(27); LSQR_STEP(28); LSQR_STEP(29); LSQR_STEP(30);  
  LSQR_STEP(31); 
   
  return q1;   
} 

 

Typical examples of the square root computation for fractional radicands are shown in the following 

table: 

 Examples of 32-bit square root 

Format 
X Square Root, Z=SQRT(X) 

Signed Fractional Hexadecimal Signed Fractional Hexadecimal 

Q0.31 

0.5 0x40000000 0.7071068 0x5A827999 

0.25 0x20000000 0.5000000 0x40000000 

0.125 0x10000000 0.3535534 0x2D413CCC 

 

The digital filter theory and derivation formulas for calculation of the filter coefficients are discussed in 

subsequent section. 

 Infinite impulse response filter 

Infinite Impulse Response (IIR) digital filters have a transfer function of the form: 

𝑯(𝒛) =
𝒂𝟎 + 𝒂𝟏𝒛−𝟏 + ⋯ + 𝒂𝑴𝒛−𝑴

𝟏 + 𝒃𝟏𝒛−𝟏 + ⋯ + 𝒃𝑵𝒛−𝑵
  

 

Eq. 6 

where, H(z) is the z-Transform, N is filter order and M ≤ N. 
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The most common technique used for designing IIR digital filters involves the following steps: 

1. The designing of an analog prototype filter. 

2. Transforming the prototype to the digital representation. 

The most common designs for the analog filter are Butterworth, Chebyshev, and Elliptic. The 

Chebyshev and Elliptic filters are characterized by more rapid transitions from pass-band to stop-band 

than the Butterworth filter. 

In a metering application, the monotonic and smooth overall filter response is preferred so as not to 

distort the magnitudes of the phase voltage and current harmonics in the band of interest.  

In addition, neither an attenuation slope nor a sharp transition from the pass-band to the stop-band is 

critical. Obviously, moderate attenuation and transition band of the filter will cause slight magnitude 

error at frequency of the mains 50 Hz (60 Hz). This filter error along with other inaccuracies of the 

power meter's measurement and calculation chain are calibrated on the production line. Due to relaxed 

requirements on a steep attenuation slope but the necessity of a smooth overall filter response, both the 

low-pass and high-pass first order digital filters were derived from the transfer function H(s) of the 

normalized first order Butterworth analog filter.  

𝑯(𝒔) =
𝟏

𝒔 + 𝟏
  

 

Eq. 7 

The normalized transfer function H(s) represents the case for the cut-off frequency ωC = 1 [rad/s]. To 

obtain Butterworth filters with different cut-off frequencies, it is convenient to use the normalized 

transfer function H(s) as prototype and apply the analog-to-analog transformations s → s/ωC. By 

applying this transformation, we get the transfer function for the low-pass first order Butterworth filter. 

𝑯𝑳𝑷(𝒔) =
𝝎𝒄

𝒔 + 𝝎𝒄
  

 

Eq. 8 

where, ωc is the low-pass filter cut-off frequency in [rad/s]. 

The following figure shows magnitude and phase responses of the low-pass first order Butterworth filter 

for ωc = 1 [rad/s]. In electronics, the frequency responses are often described in terms of "per decade". 

The example Bode plot shows a slope of -20 dB/decade in the stop-band, which means that for every 

factor-of-ten increase in frequency (going from 10 rad/s to 100 rad/s in the figure), the gain decreases by 

20 dB. 



Theory 

 

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016 

NXP Semiconductors  11 

 

 Bode diagram of the low-pass first order Butterworth filter 

The low-pass filter step response cLP(s) to unit step function L{u(t)} = 1 s⁄  is as follows: 

𝑪𝑳𝑷(𝒔) =
𝟏

𝒔

𝝎𝒄

𝒔 + 𝝎𝒄
  

 

Eq. 9 

Taking the Inverse Laplace transform, the step response is given by: 

𝒄𝑳𝑷(𝒕) = 𝟏 − 𝒆−𝝎𝒄𝒕  
 

Eq. 10 

The filter settling time is defined as the time of the step response to reach, and stay within, 2% of its 

final value 1.0. Thus, solving Eq. 10 for the time parameter the low-pass filter settling time t is 

expressed as follows: 

𝒕 = [
−𝟐𝒍𝒐𝒈(√𝟏 − 𝒄𝑳𝑷(𝒕))

𝝎𝒄
]

𝒄𝑳𝑷(𝒕)=𝟎.𝟗𝟖

  

 

Eq. 11 

Similarly, to the previously derived low-pass filter, the high-pass first order Butterworth filter 

can be derived by applying the analog-to-analog transformation s → ωC/s. 
 

𝑯𝑯𝑷(𝒔) =
𝒔

𝝎𝒄 + 𝒔
  

 

Eq. 12 

where, ωc is the high-pass filter cut-off frequency in [rad/s]. 

The following figure shows magnitude and phase responses of the high-pass first order Butterworth 

filter for ωc = 1 [rad/s]. The example Bode plot shows a slope of -20 dB/decade in the stop-band, 

which means that for every factor-of-ten decrease in frequency (going from 0.1 rad/s to 0.01 rad/s in the 

figure), the gain decreases by 20 dB. 
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 Bode diagram of the high-pass first order Butterworth filter 

Also, the settling time of the high-pass filter is defined as the time of the response to reach, and stay 

within, 2% of its final value 0.0. By Inverse Laplace transform of the high-pass filter transfer function 

Eq. 12, combined with the unit step function L{u(t)} = 1 s⁄  and solving the equation for the time 

parameter, the settling time is given by 

𝒕 = [
−𝒍𝒐𝒈(𝒄𝑯𝑷(𝒕))

𝝎𝒄
]

𝒄𝑯𝑷(𝒕)=𝟎.𝟎𝟐

  

 

Eq. 13 

The magnitude responses of the high-pass and low-pass Butterworth filters are monotonic overall with 

magnitude |HLP(jω)| =|HHP(jω)| = 1 √2⁄   (magnitude down by 3 dB) at ωc = 1. 

Further in this section, the digital representation of analog filters will be derived. The analog filter 

prototypes given by Eq. 8 and Eq. 12 must be transformed into a digital representation using analog-to-

digital mapping. This generally involves a transformation between the s-plane and the z-plane mapping. 

Several transformations exist, see [1].  

This section outlines the bilinear transformation that transforms H(s) into H(z) via the relation: 

𝑯(𝒛) = [𝑯(𝒔)]𝒔=(𝟐 𝑻⁄ )(𝟏−𝒛−𝟏) (𝟏+𝒛−𝟏)⁄   
 

Eq. 14 

where, T is the sampling period in seconds. 

The next step is to obtain the discrete transfer function of the low-pass first order Butterworth filter by 

applying a bilinear transformation to the low-pass analog filter transfer function Eq. 8.  

𝑯(𝒛) =
(

𝝎𝑪𝑻
𝟐 + 𝝎𝑪

) 𝒛 + (
𝝎𝑪𝑻

𝟐 + 𝝎𝑪𝑻
)

𝒛 − (
𝟐 − 𝝎𝑪𝑻
𝟐 + 𝝎𝑪𝑻

)
  

 

Eq. 15 
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In order to match the magnitude responses of the digital filter transfer function Eq. 15 and the analog 

filter prototype transfer function Eq. 8, the cut-off frequency of the analog filter ωC must be shifted 

relative to the digital filter cut-off frequency ωD [6]. 

𝝎𝑪 =
𝟐

𝑻
𝐭𝐚𝐧 (

𝝎𝑫𝑻

𝟐
)  

 

Eq. 16 

The difference equation of the first order filter expressed in a general form is: 

𝒚(𝒏) = 𝒃𝟏𝒙(𝒏) + 𝒃𝟐𝒙(𝒏 − 𝟏) − 𝒂𝟐𝒚(𝒏 − 𝟏)  
 

Eq. 17 

Substituting the frequency pre-warping Eq. 16 into Eq. 15, and by further applying the Inverse z-

transform, the coefficients of the difference equation representing the low-pass first order Butterworth 

digital filter can be calculated: 

𝒃𝟏 = 𝟐 𝐭𝐚𝐧(𝝎𝑫𝑻 𝟐⁄ ) [𝟐 + 𝟐 𝐭𝐚𝐧(𝝎𝑫𝑻 𝟐⁄ )]⁄   
 

Eq. 18 

𝒃𝟐 = 𝟐 𝐭𝐚𝐧(𝝎𝑫𝑻 𝟐⁄ ) [𝟐 + 𝟐 𝐭𝐚𝐧(𝝎𝑫𝑻 𝟐⁄ )]⁄   
 

Eq. 19 

𝒂𝟐 = [𝟐 𝐭𝐚𝐧(𝝎𝑫𝑻 𝟐⁄ ) − 𝟐] [𝟐 + 𝟐 𝐭𝐚𝐧(𝝎𝑫𝑻 𝟐⁄ )]⁄   
 

Eq. 20 

where, ωD = 2πfD is the cut-off frequency of the digital filter in [rad/s], and T is the sampling period 

in seconds.  

Similarly, by substitution of the bilinear transformation into the high-pass analog filter transfer function 

(Eq. 12), applying frequency prewarping and the Inverse z-transform, the coefficients of the difference 

equation for the high-pass first order Butterworth digital filter can be derived: 

𝒃𝟏 = 𝟐 [𝟐 + 𝟐 𝐭𝐚𝐧(𝝎𝑫𝑻 𝟐⁄ )]⁄   
 

Eq. 21 

𝒃𝟐 = −𝟐 [𝟐 + 𝟐 𝐭𝐚𝐧(𝝎𝑫𝑻 𝟐⁄ )]⁄   
 

Eq. 22 

𝒂𝟐 = [𝟐 𝐭𝐚𝐧(𝝎𝑫𝑻 𝟐⁄ ) − 𝟐] [𝟐 + 𝟐 𝐭𝐚𝐧(𝝎𝑫𝑻 𝟐⁄ )]⁄   
 

Eq. 23 

 Explicit RMS converter 

The Root Mean Square (RMS) is a fundamental measurement of the magnitude of an alternating signal. 

In mathematics, the RMS is known as the standard deviation, which is a statistical measure of the 

magnitude of a varying quantity. It measures only the alternating portion of the signal as opposed to the 

RMS value, which measures both the direct and alternating components. In electrical engineering, the 

RMS or effective value of a current (IRMS) is, by definition, such that the heating effect is the same for 

equal values of alternating or direct current. The basic equation for straightforward computation of the 

RMS current from the signal function is: 

𝑰𝑹𝑴𝑺 = √
𝟏

𝑻
∫ [𝒊(𝒕)]𝟐

𝑻

𝟎

𝒅𝒕  

 

Eq. 24 

where, i(t) denotes the function of the analyzed waveform in the time domain, and the period T is the 

time it takes for one complete signal cycle to be produced. 
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The proposed solution for RMS current calculation overcomes the inherent limitation of the 

straightforward computation Eq. 24, such as the need for determining precisely the limits for the finite 

integration. It is known in technical literature as an explicit RMS converter, and has been used for many 

years primarily for monolithic RMS/DC converters [7] and [8]. 

LPF1

 X
2

i(t)
2

AVG[i(t)
2
] AVG[i(t)

2
]i(t)

LPF1
IRMS

 

 Explicit RMS current converter 

This method for computing the RMS value requires numerical square, average and square root functions 

to be called every time a new sample of the analyzed signal is obtained. Figure 6 shows the explicit 

RMS converter implementation for RMS current computation. 

The Filter-Based Metering Algorithm uses the explicit RMS converter method for calculating the RMS 

current (IRMS) and RMS voltage (URMS). The next section describes a similar method for the 

calculation of active and reactive power. 

 Average power converter 

As opposed to the RMS current, where the heating effect is the same for equal values of alternating or 

direct current, the RMS value of power is not equivalent to heating power and, in fact, it does not 

represent any useful physical quantity. The equivalent heating power of a waveform is the average 

power and can be calculated using the average power converter. This converter can calculate both the 

active (P) and reactive (Q) powers. 

The active power (P) is measured in watts (W) and is expressed as the product of the voltage and the in-

phase component of the alternating current. In fact, the average power of any whole number of cycles is 

the same as the average power value of just one cycle. So, we can easily find the average power of a 

very long-duration periodic waveform simply by calculating the average value of one complete cycle. 

𝑷 =
𝟏

𝑻
∫ 𝒖(𝒕)

𝑻

𝟎

𝒊(𝒕)𝒅𝒕  

 

Eq. 25 

where, u(t) and i(t) denote alternating voltage and current waveforms, and the time T is the waveform 

period. 

The average power converter is, to some extent, similar to the explicit RMS converter. The power is 

calculated by multiplying instantaneous voltage and current samples and passing the product through a 

two-stage low-pass first order Butterworth filter as shown in the following figure: 

X
P=AVG[p(t)]

LPF1

u(t)

i(t)

p(t)
LPF1

 

 Average active power converter 
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The Filter-Based Metering Algorithm uses the average power converter for calculation of active power 

(P) and reactive power (Q). The reactive power (Q) is measured in units of volt-amperes-reactive (VAR) 

and is the product of the voltage and current and the sine of the phase angle between them. The reactive 

power (Q) is calculated in the same manner as active power (P), but in reactive power the voltage input 

waveform is 90 degrees shifted with respect to the current input waveform. 

The Hilbert filter, a special FIR filter for shifting a phase voltage waveform by 90 degrees, is explained 

in the following section. 

 Ideal Hilbert transformer 

The Ideal Hilbert transformer is a special class of transformation which is characterized by phase 

shifting all the pass-band frequencies of the input signal by 90 degrees. 

𝑯(𝒆𝒋𝝎) = {
−𝒋, 𝟎 < 𝝎 < 𝝅

  𝒋, −𝝅 > 𝝎 > 𝟎
  

 

Eq. 26 

The following figure shows the magnitude and phase response of the Ideal Hilbert transformer. The 

frequency response of the ideal analog Hilbert transformer has unity magnitude, a phase angle of − π 2⁄  

for 0 < 𝜔 < 𝜋 and a phase angle + π 2⁄  for −π < 𝜔 < 0. 

│H(ejω)│
1

ω
  

-π/2

arg(H(ejω))

π/2

ωωs/2

 

(a)                 (b) 

 Magnitude and phase responses of the ideal Hilbert transformer 

The impulse response h(n) of the Ideal Hilbert transformer is [3] and [9]. 

𝒉[𝒏] = {
𝟐

𝝅

𝐬𝐢𝐧𝟐(𝛑 𝐧 𝟐⁄ )

𝒏
, 𝒏 ≠ 𝟎

𝟎, 𝒏 = 𝟎

  

 

Eq. 27 

The impulse response infinitely extends in both directions (see Figure 9). Moreover, the output of the 

Ideal Hilbert transformer starts responding to the Dirac Impulse in advance. The infinite length and 

predictive nature of the impulse response mean that the ideal Hilbert transformation cannot be 

implemented in practice - an approximation is therefore necessary. 
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 Ideal Hilbert transformer impulse response 

The Filter-Based Metering Algorithm uses FIR approximation and Kaiser Window to restrict the 

impulse response length of the Ideal Hilbert transformer. This procedure can be compared to placing a 

window of width N = 2M + 1 over all of the coefficients. All the coefficients within the window are 

retained and multiplied with the window weight coefficient, and all coefficients outside the window are 

discarded.  

The Kaiser Window coefficients of the Hilbert FIR filter of length N are expressed by equation: 

𝒘[𝒏] = {
𝑰𝟎 {𝜷√(𝟏 − [(𝒏 − 𝒏𝒅) 𝒏𝒅⁄ ]𝟐)}

𝑰𝟎{𝜷}
, 𝟎 ≤ 𝒏 ≤ 𝑵 − 𝟏

𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

  

 

Eq. 28 

where, nd = M 2⁄ , I0 is the zeroth order Modified Bessel function of the first kind, β is an arbitrary real 

number that determines the shape of the Kaiser Window, and N = 2M + 1 is the length of the Hilbert 

FIR filter. 

Furthermore, the impulse response is shifted by a constant group delay to make the system casual. The 

Hilbert FIR filter, the closest approximation of the Ideal Hilbert transformer, with a finite number of 

coefficients shifted by constant group delay M, is shown in the following figure: 

 

 FIR approximation of the ideal Hilbert transformer impulse response 
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Typically, FIR filters are implemented as causal filters, so the actual phase response of the Hilbert FIR 

filter will be the approximate Hilbert phase response plus a linear phase term with a slope equal to M 

considering filter length N = 2M + 1. 

Therefore, when a signal passes through such a Hilbert FIR filter, the output is not the Hilbert transform 

of the input, but rather it is the Hilbert transform of the input delayed by M samples. If the filter length is 

even, this will yield a non-integer sample delay. Thus, an odd-valued filter length is usually desirable so 

that the input signal x[n] can be passed both through the Hilbert FIR filter and through an integer sample 

delay to yield two signals y90[n] and ydel[n] that are related through the Hilbert transform as shown in 

the following figure: 

Hilbert Transformer FIR 

Approximation

z
-[(N-1)/2]

N-Tap
 
FIR

x[n] ydel[n]

y90[n]

 

 FIR approximation block of the ideal Hilbert transformer 

The magnitude and phase response of the FIR Hilbert filter designed using a Kaiser Window (𝑁=23 and 

𝛽 =0, 4 and 8) is shown in the following figure. 
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 FIR approximation block magnitude and phase response 

NOTE 

The case with β = 0 corresponds to use of the Rectangular Window with 

all the weights within the window set to one and the remaining weights 

outside the window set to zero. 



Theory 

 

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016 

18  NXP Semiconductors 

As already indicated, the Hilbert FIR filter is used by the Filter-Based Metering Algorithm to phase shift 

the voltage input waveform by 90 degrees with respect to the current input waveform. The shifted 

waveforms are then used for calculating the reactive power (Q) and reactive energy (kVARh). 

 Rogowski coil sensor signal processing 

Rogowski coils, typically represented by an air core coil, provide linear measurement within a high 

current dynamic range. The voltage that is induced in the Rogowski coil is proportional to the rate of 

change (derivative) of the measured current. Because the output from the Rogowski coil is a derivative 

of current di/dt, an integrator is needed to convert it back to the original format i(t) [10]. 

z
di/dt

HPF HPF

i(t)
Integrator

 

 Rogowski coil digital integrator 

Figure 13 shows the calculation path of the digital integrator implemented by the Filter-Based Metering 

Algorithm. The calculation path comprises an integrator block and two high-pass first order IIR filter 

blocks. The first high-pass filter in the computation chain is required to prevent the periodic overflows 

of the integrator which would otherwise occur due to DC offset of the input signal.  

As already indicated, the integrator block converts a derivative of the current back to the original format. 

In the frequency domain, an output of the integrator block can be viewed as a -20dB/decade attenuation 

and a constant –90° phase shift (see Figure 14).  

 

 Magnitude response of the integrator block from 1 to 250 Hz with gain 0 dB at 50 Hz 

The second high-pass filter is required to remove DC offset from the output of the integrator block.  
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When both high-pass filters are used, then the output signal of the digital integrator is proportional to the 

input current, even if Rogowski coil outputs are distorted by DC offset or by slowly varying signals. The 

only difference between the measured current and the Rogowski coil output voltage processed by the 

digital integrator is in the small phase shift. The small phase shift error is caused by the high-pass filters 

in the calculation path together with the integrator block, and may be corrected by propagating the phase 

voltage samples through the same high-pass filters. 

di/dt
HPF HPF

i(t)
Integrator

u(t)
HPF HPF

u’(t)

Algorithm extension 

for Rogowski coil 

processing
 

 Offset removal block combined with a Rogowski coil digital integrator  

Figure 15 shows an offset removal block combined with a Rogowski coil digital integrator. This block 

removes DC offset from the input signal samples and converts the rate of change of the current, 

measured by the Rogowski coil sensor, into the original format. 

NOTE 

Even if other current sensor types, such as a current transformer or shunt 

resistor are used, it is always recommended to eliminate DC offset and 

slowly varying signals before energy computing. In such cases, neither the 

integrator block nor the pair of high-pass IIR filters is required, and thus 

the relatively complex block, for Rogowski coil processing, transforms 

into a high-pass first order IIR filter in each signal path. 

4. Power meter application development 

Mastering a power meter application and achieving the accuracy classes with minimal computational 

resources and a low-power budget might be a never-ending process. More than designer diligence, 

usually it’s the time to market that drives power meter development milestones. Specifically, the 

metrology portion of the power meter must be robust and behave deterministically under all conditions. 

Therefore, in order to accelerate power meter development, the designers may familiarize themselves 

with algorithms offered by the semiconductor vendors and select and adopt the best solution. 

Besides the Filter-Based Metering Algorithm theory, this application note also describes the software 

functions which serve as an interface into the algorithm and its capabilities. All software functions are 

built into the metering library that must be integrated within the firmware application during project 

compilation and linking. These software functions shall be called preferably at fixed sampling intervals. 

In fact, existing implementation allows the use of two sampling intervals. Introducing short and long 

sampling intervals for calculating billing and non-billing quantities, respectively, will lead to significant 

savings in the computational power. Recalculating all non-billing quantities at a lower update rate is 

technically acceptable and highly recommended.  
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NOTE 

The application note is delivered together with the metering library and 

test applications. The library is provided in object format and the test 

applications in C-source code. 

The general setting of the algorithm can be easily performed by the configuration tool. This tool runs on 

a personal computer and it allows the user to tune algorithm behavior in an interactive way and 

matching the required performance. The configuration session completes by generating a C-header file 

with algorithm configuration data specific to the selected power meter topology. 

  

 Power meter development and user interactions 

The software needed to perform basic metering functionality can be divided into two parts: 

• Application software – this part includes configuration of the on-chip peripheral modules for 

high-precision analog measurement and low jitter pulse output generation, reading phase voltage 

and current samples and passing them to the metering library functions. 

 

/**************************************************************************************

* General parameters and scaling coefficients

**************************************************************************************/

#define POWER_METER               1PH  /*!< Power meter topology                      */

#define CURRENT_SENSOR   PROPORTIONAL  /*!< Current sensor output characteristic      */

#define LIBRARY_PREFIX       METERLIB  /*!< Library prefix; high-performance library  */

#define I_MAX                 141.421  /*!< Maximal current I-peak in amperes         */

#define U_MAX                 350.000  /*!< Maximal voltage U-peak in volts           */

#define F_NOM                      50  /*!< Nominal frequency in Hz                   */

#define COUNTER_RES             10000  /*!< Resolution of energy counters in inc/kWh  */

#define IMP_PER_KWH             50000  /*!< Impulses per kWh                          */

#define IMP_PER_KVARH           50000  /*!< Impulses per kVARh */

#define DECIM_FACTOR                2  /*!< Auxiliary calculations decimation factor  */

#define KWH_CALC_FREQ        1200.000  /*!< Sample frequency in Hz                    */

#define KVARH_CALC_FREQ      1200.000  /*!< Sample frequency in Hz                    */

/**************************************************************************************

* Filter-based metering algorithm configuration structure

**************************************************************************************/

#define METERLIB1PH_CFG                                                               \

{                                                                                     \

U_MAX,                                                                              \

I_MAX,

Application SW– main.c

Metering library SW– meterlib.c, meterlib.h

Header file - meterlib1ph_cfg.h

METERLIB1PH_CalcAuxiliary()

Recalculating non-billing quantities

METERLIB1PH_CalcVarHours()

Calculating and reading 
volt-ampere-reactive hours

METERLIB1PH_CalcWattHours()

Calculating and reading watt hours

METERLIB1PH_ReadResults()

Reading non-billing quantities

METERLIB1PH_ProcSamples()

Removing DC bias and phase shift 

correction

Data structure initialized by the  
configuration tool

voltage, current 
sample

watt-hour 
counter

volt-ampere-
reactive counter

Non-billing 
quantities

Configuration Tool

METERLIB1PH_DATA

(internal data 

structure)

#include "meterlib.h"

#include "meterlib1ph_cfg.h“

static volatile tMETERLIB1PH_DATA mlib = METERLIB1PH_CFG;

void main(void)

{

/* initialize AFE */

...

while (1)

{

/* read results in a slow software loop */

METERLIB1PH_ReadResults (((tMETERLIB1PH_DATA*)&mlib, ...);

}

}

void AFE_EndOfConvISR(void)

{

/* read conversion samples */

/* recalculate algorithm   */

METERLIB1PH_ProcSamples  ((tMETERLIB1PH_DATA*)&mlib, ...);

METERLIB1PH_CalcWattHours((tMETERLIB1PH_DATA*)&mlib, ...);

METERLIB1PH_CalcVarHours ((tMETERLIB1PH_DATA*)&mlib, ...);

if (!(cycle % DECIM_FACTOR))

METERLIB1PH_CalcAuxiliary((tMETERLIB1PH_DATA*)&mlib);

cycle++;  

}

Auto-generated 
C-header file
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• Metering library – comprises a set of highly optimized functions for calculating the billing and 

non-billing quantities from the measured phase voltage and current samples. The behavior of the 

Filter-Based Metering Algorithm is configured with the help of configuration tool. 

Figure 16 depicts usage of the metering library and configuration tool in a simple one-phase power 

meter test application.  

Initially, necessary hardware initialization, including the AFE, is performed in the main() function.  

Consecutively, all processing takes place in the AFE_ EndOfConvISR() interrupt service routine (ISR). 

In this routine, the phase voltage and phase current samples are read from AFE and passed to the 

metering algorithm via the METERLIB1PH_ProcSamples() function.  

The following two functions, METERLIB1PH_CalcWattHours() and METERLIB1PH_CalcVarHours(), 

can be called whenever new conversion samples are available. Practically, these functions shall be called 

at least 1200 times per second in order to calculate active and reactive energies in the frequency 

bandwidth up to 10th harmonic. The increasing calling frequency of these functions makes sense only if 

the billing quantities need to be calculated over a higher frequency bandwidth. In a standard power 

meter application, the frequency bandwidth of calculations up to 10th harmonics is usually sufficient 

and a further increasing sampling rate will not bring any advantage. 

The additional function METERLIB1PH_CalcAuxiliary() is called at a lower update rate and it 

recalculates all non-billing quantities. The calling frequency for this particular function is even less 

demanding than for calculating billing quantities. 

Finally, the information stored within the metering library’s internal data structure can be read by the 

METERLIB1PH_ReadResults() function. This function is usually called from the main() function or 

from a low-frequent software task. The typical calling frequency is in the range from 100 to 250 

milliseconds depending on the update rate of non-billing quantities on the LCD.  

Figure 16 shows that the metering library operates almost independently, it only requires that conversion 

samples of the phase voltage and phase current waveforms be provided by the user application. Due to 

this design methodology, the library can be very easily incorporated into various power meter 

applications. Further advantages come along with the configuration tool. This tool allows metering 

algorithms to be set up and filters tuned in an interactive way. The configuration shall be stored in the C-

header file (for example, meterlib1ph_cfg.h) which is included in the compilation process of the 

application and defines algorithm behavior. 

The metering library and configuration tool support one-phase, two-phase (Form-12S) and three-phase 

power meter applications. These deliverables are discussed in the following sections.  

 Metering libraries 

This section describes the metering library’s implementation of the Filter-Based Metering Algorithm. 

The library comprises several functions with a unique Application Programming Interface (API) for the 

most frequent power meter topologies; that is, one-phase, two-phase (Form-12S), and three-phase. More 

precisely, two function sets are available. The first function set is optimized to compute metering 

quantities at high precision, generating a significant computational load. The second function set has 

been designed to support low-power applications. It computes metering quantities at a moderate to low 

precision, but generates only 35% of the computation load required by the high-precision functions. 

Both the high-precision and low-power function sets are accessible from the meterlib.lib and 
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meterliblp.lib library files, respectively. Similarly to library files, the function prototypes and internal 

data structures of both function sets are also declared in the meterlib.h and meterliblp.h header files. 

NOTE 

The IAR Embedded Workbench for ARM® (version 7.40.1) tool was used 

to obtain performance data for all library functions. The code was 

compiled with full optimization for execution speed for the MKM34Z128, 

an ARM® Cortex®-M0+ core based target [11]. The device was clocked 

at 48 MHz using the Frequency-Locked Loop (FLL) module operating in 

FLL Engaged External (FEE) mode, driven by an external 32.768 kHz 

crystal. Measured execution times were recalculated to core clock cycles. 

The flash and RAM requirements are represented in bytes. 

The simple block diagrams of the computing process, split by the functions realized by the high-

precision and low-power libraries in a typical one-phase power meter application, are depicted in the 

following figures. 
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  Block diagram of the one-phase power meter computing using the high-precision library 
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 Block diagram of the one-phase power meter computing using the low-power library  

The low-power library functions are implemented using 16-bit fractional math to the contrary of the 

high-precision library, which performs most of computation using either 32-bit or 64-bit fractional math. 

Additional performance savings of the low-power library were achieved by not computing the energy 

smoothing “LPF2” low-pass filter. This filter helps to speed up power meter calibration by eliminating 

energy ripples at twice the load frequency, developed by the multiplication of two 50/60 Hz sinusoidal 

waveforms. If this filter is not computed then energy accuracy during power meter calibration and the 

testing phases must be measured by accumulating the energy output pulses in a 5 to 10 second window. 

A detailed description of the libraries’ exported data types, their functions and APIs, is given in the 

following subsections. The “METERLIB” or “METERLIBLP” prefix to a function name indicates 

membership of the function to either the high-precision library file meterlib.lib or the low-power library 

file meterliblp.lib.  
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NOTE 

Use exclusively high-precision or low-power library functions in your 

application. An attempt to call a low-power library function with a high-

precision library internal data structure argument, or vice versa, is not 

allowed and will terminate by an error in the project compilation phase. 

 Core architecture and compiler support 

The high-precision and low-power libraries support ARM® Cortex®-M0+ and Cortex-M4 cores. In 

addition to standard cores, the libraries also support the Memory-Mapped Arithmetic Unit (MMAU), a 

hardware math module designed by Freescale to accelerate the execution of specific metering 

algorithms.  

The default installation folder of the filter-based metering libraries and the graphical configuration tool 

is C:\Freescale\METERLIB_R4_1_0.  

The following table lists all the necessary header files, library files, and their locations, relative to the 

default installation folder. Add these files and paths into your project workspace to successfully 

integrate the high-precision metering library into your application. 

 High-precision library integration 

 

  

Cortex-M0+ w/o MMAU Cortex-M0+ w/   MMAU Cortex-M4
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The following table lists all the necessary header and library files together with their relative paths to 

add into your project workspace to successfully integrate the low-power metering library into your 

application. 

 Low-power library integration 

 

 High-precision library function API 

This section summarizes the functions’ API defined in the high-precision metering library meterlib.lib. 

Prototypes of all functions and internal data structures are declared in the meterlib.h header file. 

 One-Phase power meter 

• void METERLIB1PH_ProcSamples  (tMETERLIB1PH_DATA *p, frac24 u1Q, frac24 i1Q, 

frac16 *shift); 

Remove DC bias from phase voltage and phase current samples, together with performing an 

optional sensor phase shift correction. 

• void METERLIB1PH_CalcWattHours (tMETERLIB1PH_DATA *p, tENERGY_CNT  

*pCnt, frac64 puRes);  

Recalculate active energy using new voltage and current samples. 

• void METERLIB1PH_CalcVarHours  (tMETERLIB1PH_DATA *p, tENERGY_CNT  

*pCnt, frac64 puRes);  

Recalculate reactive energy. 
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• void METERLIB1PH_CalcAuxiliary (tMETERLIB1PH_DATA *p); 

Recalculate auxiliary variables; IRMS, URMS, P, Q, and S. 

• void METERLIB1PH_CalcURMS (tMETERLIB1PH_DATA *p); 

Recalculate URMS. 

• void METERLIB1PH_CalcIRMS (tMETERLIB1PH_DATA *p); 

Recalculate IRMS. 

• void METERLIB1PH_CalcPAVG (tMETERLIB1PH_DATA *p); 

Recalculate PAVG. 

• void METERLIB1PH_ReadResults (tMETERLIB1PH_DATA *p, double *urms, double 

*irms, double *pavg, double *qavg, double *s);  

Return non-billing measurements: IRMS, URMS, PAVG, QAVG, and S. 

• void METERLIB1PH_ReadURMS (tMETERLIB1PH_DATA *p, double *urms1);  

Return URMS. 

• void METERLIB1PH_ReadIRMS (tMETERLIB1PH_DATA *p, double *irms1);  

Return IRMS. 

• void METERLIB1PH_ReadPAVG (tMETERLIB1PH_DATA *p, double *pavg1);  

Return PAVG. 

• void METERLIB1PH_ReadS (tMETERLIB1PH_DATA *p, double *s1);  

Return S. 

 Two-Phase power meter 

• void METERLIB2PH_ProcSamples  (tMETERLIB2PH_DATA *p, frac24 u1Q, frac24 i1Q, 

frac24 u2Q, frac24 i2Q, frac16 *shift); 

Remove DC bias from phase voltage and phase current samples, together with performing an 

optional sensor phase shift correction. 

• void METERLIB2PH_CalcWattHours (tMETERLIB2PH_DATA *p, tENERGY_CNT  

*pCnt, frac64 puRes);  

Recalculate active energy using new voltage and current samples. 

• void METERLIB2PH_CalcVarHours  (tMETERLIB2PH_DATA *p, tENERGY_CNT  

*pCnt, frac64 puRes);  

Recalculate reactive energy. 

• void METERLIB2PH_CalcAuxiliary (tMETERLIB2PH_DATA *p); 

Recalculate auxiliary variables; IRMS, URMS, P, Q, and S. 

• void METERLIB2PH_CalcURMS (tMETERLIB2PH_DATA *p); 

Recalculate URMS. 

• void METERLIB2PH_CalcIRMS (tMETERLIB2PH_DATA *p); 

Recalculate IRMS. 

• void METERLIB2PH_CalcPAVG (tMETERLIB2PH_DATA *p); 

Recalculate PAVG. 
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• void METERLIB2PH_ReadResultsPh1 (tMETERLIB2PH_DATA *p, double *urms, double 

*irms, double *pavg, double *qavg, double *s);  

Return non-billing measurements for Phase1: IRMS, URMS, PAVG, QAVG, and S. 

• void METERLIB2PH_ReadResultsPh2 (tMETERLIB2PH_DATA *p, double *urms, double 

*irms, double *pavg, double *qavg, double *s);  

Return non-billing measurements for Phase2: IRMS, URMS, PAVG, QAVG, and S. 

• void METERLIB2PH_ReadURMS (tMETERLIB2PH_DATA *p, double *urms1, double 

*urms2);  

Return URMS. 

• void METERLIB2PH_ReadIRMS (tMETERLIB2PH_DATA *p, double *irms1, double 

*irms2);  

Return IRMS. 

• void METERLIB2PH_ReadPAVG (tMETERLIB2PH_DATA *p, double *pavg1, double 

*pavg2);  

Return PAVG. 

• void METERLIB2PH_ReadS (tMETERLIB2PH_DATA *p, double *s1, double *s2); 

Return S. 

 Three-Phase power meter 

• int METERLIB3PH_ProcSamples  (tMETERLIB3PH_DATA *p, frac24 u1Q, frac24 i1Q, 

frac24 u2Q, frac24 i2Q, frac24 u3Q, frac24 i3Q, frac16 *shift); 

Remove DC bias from phase voltage and phase current samples, together with determining the 

phase sequence and performing an optional sensor phase shift correction. 

• void METERLIB3PH_CalcWattHours (tMETERLIB3PH_DATA *p, tENERGY_CNT  

*pCnt, frac64 puRes);  

Recalculate active energy using new voltage and current samples. 

• void METERLIB3PH_CalcVarHours  (tMETERLIB3PH_DATA *p, tENERGY_CNT  

*pCnt, frac64 puRes);  

Recalculate reactive energy. 

• void METERLIB3PH_CalcAuxiliary (tMETERLIB3PH_DATA *p); 

Recalculate auxiliary variables; IRMS, URMS, P, Q, and S. 

• void METERLIB3PH_CalcURMS (tMETERLIB3PH_DATA *p); 

Recalculate URMS. 

• void METERLIB3PH_CalcIRMS (tMETERLIB3PH_DATA *p); 

Recalculate IRMS. 

• void METERLIB3PH_CalcPAVG (tMETERLIB3PH_DATA *p); 

Recalculate PAVG. 

• void METERLIB3PH_ReadResultsPh1 (tMETERLIB3PH_DATA *p, double *urms, double 

*irms, double *pavg, double *qavg, double *s);  

Return non-billing measurements for Phase1: IRMS, URMS, PAVG, QAVG, and S. 
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• void METERLIB3PH_ReadResultsPh2 (tMETERLIB3PH_DATA *p, double *urms, double 

*irms, double *pavg, double *qavg, double *s);  

Return non-billing measurements for Phase2: IRMS, URMS, PAVG, QAVG, and S. 

• void METERLIB3PH_ReadResultsPh3 (tMETERLIB3PH_DATA *p, double *urms, double 

*irms, double *pavg, double *qavg, double *s);  

Return non-billing measurements for Phase3: IRMS, URMS, PAVG, QAVG, and S. 

• void METERLIB3PH_ReadURMS (tMETERLIB3PH_DATA *p, double *urms1, double 

*urms2, double *urms3);  

Return URMS. 

• void METERLIB3PH_ReadIRMS (tMETERLIB3PH_DATA *p, double *irms1, double 

*irms2, double *irms3);  

Return IRMS. 

• void METERLIB3PH_ReadPAVG (tMETERLIB3PH_DATA *p, double *pavg1, double 

*pavg2, double *pavg3);  

Return PAVG. 

• void METERLIB3PH_ReadS (tMETERLIB3PH_DATA *p, double *s1, double *s2, double 

*s3);  

Return S. 

 Auxiliary macros 

• #define METERLIB_KWH_PD (p);  

Return fine delay of the active energy pulse output transition… 

• #define METERLIB_KWH_PS (p);  

Return raw state of the active energy pulse output. 

• #define METERLIB_KVARH_PD (p);  

Return fine delay of the reactive energy pulse output transition… 

• #define METERLIB_KVARH_PS (p);  

Return raw state of the reactive energy pulse output. 

• #define METERLIB_KWH_PR (x);  

This macro converts imp/kWh number to numeric representation required by the high-precision 

library. 

• #define METERLIB_KVARH_PR (x);  

This macro converts imp/kVARh number to numeric representation required by the high-

precision library. 

• #define METERLIB_DEG2SH (x,fn);  

This macro converts U-I phase shift in degrees to a 16-bit fractional number. 

• #define METERLIB_RAD2SH (x,fn);  

This macro converts U-I phase shift in radians to a 16-bit fractional number. 
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 Low-power library function API 

This section summarizes functions API defined in the low-power metering library meterliblp.lib. 

Prototypes of all functions and internal data structures are declared in the meterliblp.h header file. 

 One-Phase power meter 

• void METERLIBLP1PH_ProcSamples  (tMETERLIBLP1PH_DATA *p, frac24 u1Q, frac24 

i1Q, frac16 *shift); 

Remove DC bias from phase voltage and phase current samples, together with performing an 

optional sensor phase shift correction. 

• void METERLIBLP1PH_CalcWattHours (tMETERLIBLP1PH_DATA *p, tENERGY_CNT  

*pCnt, frac64 puRes);  

Recalculate active energy using new voltage and current samples. 

• void METERLIBLP1PH_CalcVarHours  (tMETERLIBLP1PH_DATA *p, tENERGY_CNT  

*pCnt, frac64 puRes);  

Recalculate reactive energy. 

• void METERLIBLP1PH_CalcAuxiliary (tMETERLIBLP1PH_DATA *p); 

Recalculate auxiliary variables; IRMS, URMS, P, Q, and S. 

• void METERLIBLP1PH_CalcURMS (tMETERLIBLP1PH_DATA *p); 

Recalculate URMS. 

• void METERLIBLP1PH_CalcIRMS (tMETERLIBLP1PH_DATA *p); 

Recalculate IRMS. 

• void METERLIBLP1PH_CalcPAVG (tMETERLIBLP1PH_DATA *p); 

Recalculate PAVG. 

• void METERLIBLP1PH_ReadResults (tMETERLIBLP1PH_DATA *p, double *urms, double 

*irms, double *pavg, double *qavg, double *s);  

Return non-billing measurements: IRMS, URMS, PAVG, QAVG, and S. 

• void METERLIBLP1PH_ReadURMS (tMETERLIBLP1PH_DATA *p, double *urms);  

Return URMS. 

• void METERLIBLP1PH_ReadIRMS (tMETERLIBLP1PH_DATA *p, double *irms);  

Return IRMS. 

• void METERLIBLP1PH_ReadPAVG (tMETERLIBLP1PH_DATA *p, double *pavg);  

Return PAVG. 

• void METERLIBLP1PH_ReadS (tMETERLIBLP1PH_DATA *p, double *s);  

Return S. 
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 Two-Phase power meter 

• void METERLIBLP2PH_ProcSamples  (tMETERLIBLP2PH_DATA *p, frac24 u1Q, frac24 

i1Q, frac24 u2Q, frac24 i2Q, frac16 *shift); 

Remove DC bias from phase voltage and phase current samples, together with performing an 

optional sensor phase shift correction. 

• void METERLIBLP2PH_CalcWattHours (tMETERLIBLP2PH_DATA *p, tENERGY_CNT  

*pCnt, frac64 puRes);  

Recalculate active energy using new voltage and current samples. 

• void METERLIBLP2PH_CalcVarHours  (tMETERLIBLP2PH_DATA *p, tENERGY_CNT  

*pCnt, frac64 puRes);  

Recalculate reactive energy. 

• void METERLIBLP2PH_CalcAuxiliary (tMETERLIBLP2PH_DATA *p); 

Recalculate auxiliary variables; IRMS, URMS, P, Q, and S. 

• void METERLIBLP2PH_CalcURMS (tMETERLIBLP2PH_DATA *p); 

Recalculate URMS. 

• void METERLIBLP2PH_CalcIRMS (tMETERLIBLP2PH_DATA *p); 

Recalculate IRMS. 

• void METERLIBLP2PH_CalcPAVG (tMETERLIBLP2PH_DATA *p); 

Recalculate PAVG. 

• void METERLIBLP2PH_ReadResultsPh1 (tMETERLIBLP2PH_DATA *p, double *urms, 

double *irms, double *pavg, double *qavg, double *s);  

Return non-billing measurements for Phase1: IRMS, URMS, PAVG, QAVG, and S. 

• void METERLIBLP2PH_ReadResultsPh2 (tMETERLIBLP2PH_DATA *p, double *urms, 

double *irms, double *pavg, double *qavg, double *s);  

Return non-billing measurements for Phase2: IRMS, URMS, PAVG, QAVG, and S. 

• void METERLIBLP2PH_ReadURMS (tMETERLIBLP2PH_DATA *p, double *urms1, 

double *urms2);  

Return URMS. 

• void METERLIBLP2PH_ReadIRMS (tMETERLIBLP2PH_DATA *p, double *irms1, double 

*irms2);  

Return IRMS. 

• void METERLIBLP2PH_ReadPAVG (tMETERLIBLP2PH_DATA *p, double *pavg1, 

double *pavg2);  

Return PAVG. 

• void METERLIBLP2PH_ReadS (tMETERLIBLP2PH_DATA *p, double *s1, double *s2);  

Return S. 
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 Three-Phase power meter 

• int METERLIBLP3PH_ProcSamples  (tMETERLIBLP3PH_DATA *p, frac24 u1Q, frac24 

i1Q, frac24 u2Q, frac24 i2Q, frac24 u3Q, frac24 i3Q, frac16 *shift); 

Remove DC bias from phase voltage and phase current samples, together with determining the 

phase sequence and performing an optional sensor phase shift correction. 

• void METERLIBLP3PH_CalcWattHours (tMETERLIBLP3PH_DATA *p, tENERGY_CNT  

*pCnt, frac64 puRes);  

Recalculate active energy using new voltage and current samples. 

• void METERLIBLP3PH_CalcVarHours  (tMETERLIBLP3PH_DATA *p, tENERGY_CNT  

*pCnt, frac64 puRes);  

Recalculate reactive energy. 

• void METERLIBLP3PH_CalcAuxiliary (tMETERLIBLP3PH_DATA *p); 

Recalculate auxiliary variables; IRMS, URMS, P, Q, and S. 

• void METERLIBLP3PH_CalcURMS (tMETERLIBLP3PH_DATA *p); 

Recalculate URMS. 

• void METERLIBLP3PH_CalcIRMS (tMETERLIBLP3PH_DATA *p); 

Recalculate IRMS. 

• void METERLIBLP3PH_CalcPAVG (tMETERLIBLP3PH_DATA *p); 

Recalculate PAVG. 

• void METERLIBLP3PH_ReadResultsPh1 (tMETERLIBLP3PH_DATA *p, double *urms, 

double *irms, double *pavg, double *qavg, double *s);  

Return non-billing measurements for Phase1: IRMS, URMS, PAVG, QAVG, and S. 

• void METERLIBLP3PH_ReadResultsPh2 (tMETERLIBLP3PH_DATA *p, double *urms, 

double *irms, double *pavg, double *qavg, double *s);  

Return non-billing measurements for Phase2: IRMS, URMS, PAVG, QAVG, and S. 

• void METERLIBLP3PH_ReadResultsPh3 (tMETERLIBLP3PH_DATA *p, double *urms, 

double *irms, double *pavg, double *qavg, double *s);  

Return non-billing measurements for Phase3: IRMS, URMS, PAVG, QAVG, and S. 

• void METERLIBLP3PH_ReadURMS (tMETERLIBLP3PH_DATA *p, double *urms1, 

double *urms2, double *urms3);  

Return URMS. 

• void METERLIBLP3PH_ReadIRMS (tMETERLIBLP3PH_DATA *p, double *irms1, double 

*irms2, double *irms3);  

Return IRMS. 

• void METERLIBLP3PH_ReadPAVG (tMETERLIBLP3PH_DATA *p, double *pavg1, 

double *pavg2, double *pavg3);  

Return PAVG. 

• void METERLIBLP3PH_ReadS (tMETERLIBLP3PH_DATA *p, double *s1, double *s2, 

double *s3);  

Return S. 
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 Auxiliary macros 

• #define METERLIBLP_KWH_PD (p);  

Return fine delay of the active energy pulse output transition… 

• #define METERLIBLP_KWH_PS (p);  

Return raw state of the active energy pulse output. 

• #define METERLIBLP_KVARH_PD (p);  

Return fine delay of the reactive energy pulse output transition… 

• #define METERLIBLP_KVARH_PS (p);  

Return raw state of the reactive energy pulse output. 

• #define METERLIBLP_KWH_PR (x);  

This macro converts imp/kWh number to numeric representation required by the low-power 

library. 

• #define METERLIBLP_KVARH_PR (x);  

This macro converts imp/kVARh number to numeric representation required by the low-power 

library. 

• #define METERLIBLP_DEG2SH (x,fn);  

This macro converts U-I phase shift in degrees to a 16-bit fractional number. 

• #define METERLIBLP_RAD2SH (x,fn);  

This macro converts U-I phase shift in radians to a 16-bit fractional number. 

 Data structures 

This section describes the data structures for accessing those state variables calculated by both the high-

precision and low-power metering libraries. 

 tCNT 

Structure containing energy counter. 

Reference 
#include “meterlib.h” 
#include “meterliblp.h” 

Data fields 

Type Name Description 

unsigned long ex Counter for exported energy. 

unsigned long im Counter for imported energy. 

unsigned long Q[4] Reactive energy counters in four quadrant system 
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 tENERGY_CNT 

Structure containing energy counters for three three-phase system. 

Reference 
#include “meterlib.h” 
#include “meterliblp.h” 

Data fields 

Type Name Description 

tCNT ph[3] Energy counters in phases of the three-phase system. 

 METERLIB_ProcSamples  

These functions remove DC bias from measured phase voltage and phase current samples, together with 

performing an optional sensor phase shift correction. In addition, the function for three-phase system 

determines and returns the phase sequence.  

Syntax 
#include “meterlib.h” 
void METERLIB1PH_ProcSamples (tMETERLIB1PH_DATA *p, frac24 u1Q, frac24 i1Q, frac16 *shift); 
void METERLIB2PH_ProcSamples (tMETERLIB2PH_DATA *p, frac24 u1Q, frac24 i1Q, frac24 u2Q, 
frac24 i2Q, frac16 *shift); 
int  METERLIB3PH_ProcSamples (tMETERLIB3PH_DATA *p, frac24 u1Q, frac24 i1Q, frac24 u2Q, 
frac24 i2Q, frac24 u3Q, frac24 i3Q, frac16 *shift); 
 
#include “meterliblp.h” 
void METERLIBLP1PH_ProcSamples (tMETERLIBLP1PH_DATA *p, frac24 u1Q, frac24 i1Q, frac16 
*shift); 
void METERLIBLP2PH_ProcSamples (tMETERLIBLP2PH_DATA *p, frac24 u1Q, frac24 i1Q, frac24 u2Q, 
frac24 i2Q, frac16 *shift); 
int  METERLIBLP3PH_ProcSamples (tMETERLIBLP3PH_DATA *p, frac24 u1Q, frac24 i1Q, frac24 u2Q, 
frac24 i2Q, frac24 u3Q, frac24 i3Q, frac16 *shift); 

  



Power meter application development 

 

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016 

NXP Semiconductors  35 

Arguments 

Type Name Direction Description 

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA. 

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA. 

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA. 

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA. 

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

frac24 u1Q in Phase 1 instantaneous voltage sample in Q0.31 data format. 

frac24 i1Q in Phase 1 instantaneous current sample in Q0.31 data format. 

frac24 u2Q in Phase 2 instantaneous voltage sample in Q0.31 data format. 

frac24 i2Q in Phase 2 instantaneous current sample in Q0.31 data format. 

frac24 u3Q in Phase 3 instantaneous voltage sample in Q0.31 data format. 

frac24 i3Q in Phase 3 instantaneous current sample in Q0.31 data format. 

frac16 shift in 

Pointer to the values for U-I phase shift correction. Set each value in 

the range -32768...32767 to phase shift the voltage with resolution of 

1/(32768*KWH_CALC_FREQ) seconds – for more details, refer to 

METERLIBLP_DEG2SH() and METERLIBLP_RAD2SH() macros. 

Use the NULL pointer to disable software sensor phase shift correction. 

Return 

Only a function for three-phase system returns the phase sequence. Functions for 1- and two-phase 

systems do not return any arguments. 

Description 

These functions remove the DC offset and low-frequency drift from the measured phase voltage and 

phase current samples. They also perform an optional sensor phase shift correction. In addition, the 

functions for three-phase system determine and return the phase sequence. 

Figure 19 shows block diagram of the METERLIB1PH_ProcSamples() function defined by the high-

precision metering library. 

METERLIB1PH_DATA

Q0.31

HPF

Q0.31

HPF

Q0.31

Q0.31
iQfilt[n]

uQfilt[n]

iQ[n]

uQ[n]
Q0.31

shift
 

 METERLIB1PH_ProcSamples function block diagram 

Figure 20 shows block diagram of the METERLIBLP1PH_ProcSamples() function defined by the low-

power metering library. 
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METERLIBLP1PH_DATA
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Q0.15
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 METERLIBLP1PH_ProcSamples function block diagram 

These functions are specific to a one-phase power meter. They process phase current samples iQ[n] and 

phase voltage samples uQ[n]  in Q0.31 format to attenuate any DC offsets and low-frequency drifts. The 

“HPF” blocks represent the high-pass first order Butterworth IIR filters (see Infinite impulse response 

filter). The physical quantities of the phase voltage u[n] and phase current i[n] are greater than one, 

therefore, substitutions are introduced to allow use of fractional arithmetic. The actual phase voltage and 

phase current are scaled into fractional representation by U_MAX and I_MAX. 

𝒖𝑸 =
𝒖

𝑼_𝑴𝑨𝑿
  

 

Eq. 29 

𝒊𝐐 =
𝒊

𝑰_𝑴𝑨𝑿
  

 

Eq. 30 

where, U_MAX and I_MAX are the maximum physical values of the phase voltage and phase current that 

correspond to the full AFE analog input range. 

NOTE 

The fractional representation of the phase voltage uQ and phase current iQ 

can be read directly from the AFE, provided data in the result registers is 

represented in the right justified 2's complement 32-bit data format 

(see Figure 2). 

Performance 

Function Code size Stack size Clock cycles2 

METERLIB1PH_ProcSamples  936 72 448 (535) 

METERLIB2PH_ProcSamples 1880 72 872 (1048) 

METERLIB3PH_ProcSamples 2982 120 1429 (1699) 

METERLIBLP1PH_ProcSamples 294 28 132 (215) 

METERLIBLP2PH_ProcSamples 664 48 274 (483) 

METERLIBLP3PH_ProcSamples 1044 44 442 (745) 

 METERLIB_CalcWattHours 

These functions recalculate active energy using new unbiased phase voltage and phase current samples. 

                            
 
2 Clock cycles in brackets denote function execution time with sensor phase shift correction enabled; i.e. “shift” 
pointer is not NULL but points to values in frac16 representation. 
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Syntax 
#include “meterlib.h” 
void METERLIB1PH_CalcWattHours (tMETERLIB1PH_DATA *p, tENERGY_CNT  *pCnt, frac64 puRes); 
void METERLIB2PH_CalcWattHours (tMETERLIB2PH_DATA *p, tENERGY_CNT  *pCnt, frac64 puRes); 
void METERLIB3PH_CalcWattHours (tMETERLIB3PH_DATA *p, tENERGY_CNT  *pCnt, frac64 puRes); 
 
#include “meterliblp.h” 
void METERLIBLP1PH_CalcWattHours (tMETERLIBLP1PH_DATA *p, tENERGY_CNT  *pCnt, frac64 puRes); 
void METERLIBLP2PH_CalcWattHours (tMETERLIBLP2PH_DATA *p, tENERGY_CNT  *pCnt, frac64 puRes); 
void METERLIBLP3PH_CalcWattHours (tMETERLIBLP3PH_DATA *p, tENERGY_CNT  *pCnt, frac64 puRes); 

Arguments 

Type Name Direction Description 

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA. 

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA. 

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA. 

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA. 

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

tENERGY_CNT   pCnt out Pointer to LCD active energy counter structure. 

frac64 puRes in Pulse output resolution; calculated by METERLIB_KWH_PR() macro. 

Return 

These functions do not return any arguments. 

Description 

These functions compute active energy in watt-hours (Wh) and return the state of active energy pulse 

output. The active energy in a typical one-phase power meter application is computed as an infinite 

integral of the unbiased instantaneous phase voltage u(t) and phase current i(t) waveforms. 

𝑾𝒉 =
𝟏

𝟑𝟔𝟎𝟎
∫ 𝒖(𝒕)

∞

𝟎

𝒊(𝒕)𝒅𝒕  

 

Eq. 31 

The Backward Euler approximation of the integral term will transform the basic equation Eq. 31 into a 

difference form: 

𝑾𝒉[𝒏] = 𝑾𝒉[𝒏 − 𝟏] +
𝒖[𝒏] ∗ 𝒊[𝒏] ∗ ∆𝒕

𝟑𝟔𝟎𝟎
  

 

Eq. 32 

where, ∆t = 1 fs⁄  is the sampling interval, index [n] represents the current value and index [n − 1] 
represents the previous value calculated in the previous calculation step. 

In equation Eq. 32, the physical quantities u[n], i[n], Wh[n] and Wh[n − 1] are scaled by U_MAX, 

I_MAX and ∆t to allow implementation of fractional arithmetic. 

𝑾𝒉𝑸[𝒏] = 𝑾𝒉𝑸[𝒏 − 𝟏] + 𝒖𝑸[𝒏] ∗ 𝒊𝑸[𝒏]  
 

Eq. 33 

The active energy in fractional representation is mapped into the fractional range −1 ≤ WhQ ≤ 1 −

2(N−1) using scaling: 
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𝑾𝒉𝑸 = 𝑾𝒉
𝟑𝟔𝟎𝟎 ∗ 𝒇𝒔

𝑼_𝑴𝑨𝑿 ∗ 𝑰_𝑴𝑨𝑿
  

 

Eq. 34 

Figure 21 shows a block diagram of the METERLIB1PH_CalcWattHours() function defined by the 

high-precision library and the way of calculating active energy in a typical one-phase power meter.  

METERLIB1PH_DATA

Q0.63Q0.63 Q16.47
WhQ[n]X

56 bits 
To 

24 bits

56 bits 
To 

24 bits

METERLIB1PH_DATA

iQfilt[n]

uQfilt[n]

Q0.31

Q0.31



LPF2

 

 METERLIB1PH_CalcWattHours function block diagram 

The new active energy sample WhQ[n] is computed according to Eq. 33 using fractional addition and 

multiplication functions. The “Multiplier” block represents a 32x32=64 bit fractional multiplication and 

an “Integrator” block represents a 64+64=64 bit fractional addition. The new active energy sample is 

smoothed by the “LPF2” low-pass first order Butterworth IIR filter. This low-pass filter attenuates the 

alternating active energy component that is developed by multiplication of two 50/60 Hz sinusoidal 

waveforms, the alternating instantaneous voltage and current, and that ripples at twice the load 

frequency (100/120 Hz). 

Figure 22 shows a block diagram of the METERLIBLP1PH_CalcWattHours() function defined by the 

low-power library. The new active energy sample WhQ[n] is also computed according to Eq. 33 using 

fractional addition and multiplication functions. The “Multiplier” block represents a 16x16=32 bit 

fractional multiplication and an “Integrator” block represents a 64+64=64 bit fractional addition. The 

new active energy sample is not smoothed to save computation power.  

METERLIBLP1PH_DATA

Q0.31 Q32.32
WhQ[n]X

56 bits 
To 

24 bits

56 bits 
To 

24 bits

METERLIBLP1PH_DATA

iQfilt[n]

uQfilt[n]

Q0.15

Q0.15



 

 METERLIBLP1PH_CalcWattHours function block diagram 

NOTE 

The active energy calculations in two-phase (Form-12S) and three-phase 

power meters are performed in a similar way as in the one-phase power 

meter, with the one exception that the infinite integral is calculated over 

the sum of the unbiased instantaneous phase voltage u(t) and phase 

current i(t) waveforms of all the phases. 
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Performance 

Function Code size Stack size Clock cycles 

METERLIB1PH_CalcWattHours  710 104 893 

METERLIB2PH_CalcWattHours 1124 112 1439 

METERLIB3PH_CalcWattHours 1496 120 2052 

METERLIBLP1PH_CalcWattHours  472 56 450 

METERLIBLP2PH_CalcWattHours 678 88 594 

METERLIBLP3PH_CalcWattHours 900 64 704 

 METERLIB_CalcVarHours 

These functions recalculate the reactive energy using new phase voltage and phase current samples.  

Syntax 
#include “meterlib.h” 
void METERLIB1PH_CalcVarHours (tMETERLIB1PH_DATA *p, tENERGY_CNT  *pCnt, frac64 puRes); 
void METERLIB2PH_CalcVarHours (tMETERLIB2PH_DATA *p, tENERGY_CNT  *pCnt, frac64 puRes); 
void METERLIB3PH_CalcVarHours (tMETERLIB3PH_DATA *p, tENERGY_CNT  *pCnt, frac64 puRes); 
 
#include “meterliblp.h” 
void METERLIBLP1PH_CalcVarHours (tMETERLIBLP1PH_DATA *p, tENERGY_CNT  *pCnt, frac64 puRes); 
void METERLIBLP2PH_CalcVarHours (tMETERLIBLP2PH_DATA *p, tENERGY_CNT  *pCnt, frac64 puRes); 
void METERLIBLP3PH_CalcVarHours (tMETERLIBLP3PH_DATA *p, tENERGY_CNT  *pCnt, frac64 puRes); 

Arguments 

Type Name Direction Description 

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA. 

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA. 

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA. 

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA. 

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

tENERGY_CNT   pCnt out Pointer to LCD reactive energy counter structure. 

frac64 puRes in Pulse output resolution; calculated by METERLIB_KVARH_PR() macro. 

Return 

These functions do not return any arguments. 

Description  

These functions compute reactive energy in the unit of volt-ampere-reactive hours (VARh) and return the 

state of reactive energy pulse output. The reactive energy in a typical one-phase power meter is 

computed as an infinite integral of the unbiased instantaneous shifted phase voltage u(t − 90°) and 

phase current i(t) waveforms. 

𝑽𝑨𝑹𝒉 =
𝟏

𝟑𝟔𝟎𝟎
∫ 𝒖(𝒕 − 𝟗𝟎°)

∞

𝟎

𝒊(𝒕)𝒅𝒕  

 

Eq. 35 
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The Backward Euler approximation of the integral term will transform the basic equation Eq. 35 into a 

difference form: 

𝑽𝑨𝑹𝒉[𝒏] = 𝑽𝑨𝑹𝒉[𝒏 − 𝟏] +
𝒖𝟗𝟎[𝒏] ∗ 𝒊𝒅𝒆𝒍[𝒏] ∗ ∆𝒕

𝟑𝟔𝟎𝟎
  

 

Eq. 36 

where, ∆t = 1 fs⁄  is the sampling time, index [n] represents the current value and index [n − 1] 
represents the old value calculated in the previous calculation step. 

In equation Eq. 37, the physical quantities u90[n], idel[n], VARh[n], and VARh[n − 1] are scaled by 

U_MAX, I_MAX, and ∆t to allow usage of fractional arithmetic. 

𝑽𝑨𝑹𝒉𝑸[𝒏] = 𝑽𝑨𝑹𝒉𝑸[𝒏 − 𝟏] + 𝒖𝟗𝟎𝑸[𝒏] ∗ 𝒊𝒅𝒆𝒍𝑸[𝒏]  
 

Eq. 37 

The reactive energy in fractional representation is mapped into the fractional range −1 ≤ VARhQ ≤ 1 −

2(N−1) using scaling: 

𝑽𝑨𝑹𝒉𝑸 = 𝑽𝑨𝑹𝒉
𝟑𝟔𝟎𝟎 ∗ 𝒇𝒔

𝑼_𝑴𝑨𝑿 ∗ 𝑰_𝑴𝑨𝑿
  

 

Eq. 38 

NOTE 

Reactive energy Eq. 37 can be efficiently computed on the microcontroller 

using fractional addition and multiplication functions. The phase voltage 

instantaneous sample u90Q[n] is shifted by 90-degrees from the delayed 

phase current instantaneous sample idelQ[n] using the Hilbert transformer. 

Figure 23 shows a block diagram of the METERLIB1PH_CalcVarHours() function defined by the 

high-precision metering library. 
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 METERLIB1PH_CalcVarHours function block diagram 

Figure 24 shows a block diagram of the METERLIBLP1PH_CalcVarHours() function defined by the 

low-power metering library. 
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 METERLIBLP1PH_CalcVarHours function block diagram 

These functions calculate reactive energy in a typical one-phase power meter application. The Hilbert 

transformer block represents an N-Tap FIR filter with a 90-degree constant phase response plus a linear 
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phase response with the group delay M = (N − 1)/2. Therefore, when the phase voltage instantaneous 

sample uQ[n] passes through the N-Tap FIR filter, the output sample u90Q[n] is related to the delayed 

phase current sample idelQ[n] through the Hilbert transform (for more information, refer Ideal Hilbert 

transformer). The reactive energy VARhQ[n] is computed according to Eq. 37. Similarly to the active 

energy processing, the reactive energy is also smoothed using a low-pass filter to attenuate the 

alternating energy component. 

 

The high-precision metering library defines three functions for calculating reactive energy. The first, 

METERLIB1PH_CalcVarHours() function is intended to calculate reactive energy in a one-phase power 

meter application. Others, METERLIB2PH_CalcVarHours() and METERLIB3PH_CalcVarHours() 

functions shall be called in two-phase (Form-12S) and three-phase metering power meter use cases. The 

low-power metering library defines the same set of functions. 

NOTE 

Functions for calculating reactive energy in multiple phases calculate the 

Hilbert transform and reactive energy contribution of each phase and 

return the sum of all reactive energies. 

Performance  

Function Code size Stack size Clock cycles3 

METERLIB1PH_CalcVarHours  882 104 3463 

METERLIB2PH_CalcVarHours 1484 112 6578 

METERLIB3PH_CalcVarHours 2128 136 9730 

METERLIBLP1PH_CalcVarHours  630 64 2088 

METERLIBLP2PH_CalcVarHours 1050 72 3849 

METERLIBLP3PH_CalcVarHours 1428 72 5608 

 METERLIB_CalcAuxiliary 

These functions recalculate non-billing variables such as active power (P), reactive power (Q), RMS 

voltage (URMS), and RMS current (IRMS). 

Syntax 
#include “meterlib.h” 
void METERLIB1PH_CalcAuxiliary (tMETERLIB1PH_DATA *p); 
void METERLIB2PH_CalcAuxiliary (tMETERLIB2PH_DATA *p); 
void METERLIB3PH_CalcAuxiliary (tMETERLIB3PH_DATA *p); 
 
#include “meterliblp.h” 
void METERLIBLP1PH_CalcAuxiliary (tMETERLIBLP1PH_DATA *p); 
void METERLIBLP2PH_CalcAuxiliary (tMETERLIBLP2PH_DATA *p); 
void METERLIBLP3PH_CalcAuxiliary (tMETERLIBLP3PH_DATA *p); 

  

                            
 
3 Performance obtained for 49-Tap FIR filter (default filter length for 1200 Hz sampling frequency). 



Power meter application development 

 

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016 

42  NXP Semiconductors 

Arguments 

Type Name Direction Description 

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA. 

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA. 

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA. 

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA. 

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

Return 

These functions do not return any arguments. 

Description 

These functions calculate active power (P), reactive power (Q), RMS voltage (URMS), and RMS current 

(IRMS) in one-phase, two-phase (Form-12S), and three-phase power meter applications. 

The active power is measured in watts (W) and is symbolized by the capital letter P. The reactive power 

is measured in volt-amperes-reactive (VAR) and is symbolized by the capital letter Q. The library 

function uses the average power converter to calculate active and reactive powers (see Average power 

converter).  

The following figure shows block diagram of the METERLIB1PH_CalcAuxiliary() function (power 

calculation portion) defined by the high-precision metering library. 
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 METERLIB1PH_CalcAuxiliary function block diagram – powers calculation 

This figure shows block diagram of the METERLIBLP1PH_CalcAuxiliary() function (power 

calculation portion) defined by the low-power metering library: 
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 METERLIBLP1PH_CalcAuxiliary function block diagram – powers calculation 

These portions update the active power PQ[n] and reactive power QQ[n] samples based on new unbiased 

phase voltage and phase current samples. Needless to say, both powers are in fractional data format to 

accelerate and simplify the calculations. They are mapped into the physical representation using scaling: 

𝑷𝑸 =
𝑷

𝑼_𝑴𝑨𝑿 ∗ 𝑰_𝑴𝑨𝑿
  

 

Eq. 39 

𝑸𝑸 =
𝑸

𝑼_𝑴𝑨𝑿 ∗ 𝑰_𝑴𝑨𝑿
  

 

Eq. 40 

The RMS values are calculated using the explicit RMS converter approach (see Explicit RMS 

converter). This figure shows block diagram of the METERLIB1PH_CalcAuxiliary() function (RMS 

calculation portion) defined by the high-precision metering library: 
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 METERLIB1PH_CalcAuxiliary function block diagram – RMS calculation 

This figure shows block diagram of the METERLIBLP1PH_CalcAuxiliary() function (RMS calculation 

portion) defined by the low-power metering library: 
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 METERLIBLP1PH_CalcAuxiliary function block diagram – RMS calculation 
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Both implementations are based on fractional data format and use of fractional multiplication, addition, 

and square-root functions. The library implementations differ in dynamic range of calculations. The 

high-precision library uses 32 and 64 bit fractional data types. On the contrary, the low-power library 

uses 16 and 32 bit fractional data types. Both implementations use square root calculation based on the 

Non-restoring Method (see Square root). 

These functions calculate the RMS voltage and RMS current samples in fractional data format, denoted 

as URMSQ[n] and IRMSQ[n], respectively. They are mapped into the physical representation using 

scaling: 

𝑼𝑹𝑴𝑺𝑸 =
𝑼𝑹𝑴𝑺

𝑼_𝑴𝑨𝑿
  

 

Eq. 41 

𝑰𝑹𝑴𝑺𝑸 =
𝑰𝑹𝑴𝑺

𝑰_𝑴𝑨𝑿
  

 

Eq. 42 

The high-precision metering library defines three functions for calculating non-billing quantities. The 

first, METERLIB1PH_CalcAuxiliary() function is intended to calculate non-billing quantities in a one-

phase power meter application. 

Others, METERLIB2PH_ CalcAuxiliary () and METERLIB3PH_ CalcAuxiliary () functions shall be 

called in two-phase (Form-12S) and three-phase power meter use cases. The low-power metering library 

defines the same set of functions. 

Performance  

Function Code size Stack size Clock cycles 

METERLIB1PH_CalcAuxiliary  1522 128 3427 

METERLIB2PH_CalcAuxiliary 3252 144 6851 

METERLIB3PH_CalcAuxiliary 4828 144 10190 

METERLIBLP1PH_CalcAuxiliary  738 48 997 

METERLIBLP2PH_CalcAuxiliary 1460 48 1991 

METERLIBLP3PH_CalcAuxiliary 2128 64 2939 

 METERLIB_CalcURMS 

These functions recalculate RMS voltage (URMS). 

Syntax 
#include “meterlib.h” 
void METERLIB1PH_CalcURMS (tMETERLIB1PH_DATA *p); 
void METERLIB2PH_CalcURMS (tMETERLIB2PH_DATA *p); 
void METERLIB3PH_CalcURMS (tMETERLIB3PH_DATA *p); 
 
#include “meterliblp.h” 
void METERLIBLP1PH_CalcURMS (tMETERLIBLP1PH_DATA *p); 
void METERLIBLP2PH_CalcURMS (tMETERLIBLP2PH_DATA *p); 
void METERLIBLP3PH_CalcURMS (tMETERLIBLP3PH_DATA *p); 
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Arguments  

Type Name Direction Description 

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA. 

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA. 

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA. 

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA. 

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

Return 

These functions do not return any arguments. 

Description 

These functions calculate RMS voltage (URMS) in one-phase, two-phase (Form-12S), and three-phase 

power meter applications. These functions are complementary to METERLIB_CalcAuxiliary() functions 

that calculates all non-billing variables including active power (P), reactive power (Q), RMS voltage 

(URMS) and RMS current (IRMS).  

This figure shows block diagram of the METERLIB1PH_CalcURMS() function defined by the 

high-precision metering library: 
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 METERLIB1PH_CalcURMS function block diagram 

This figure shows block diagram of the METERLIBLP1PH_CalcURMS() function defined by the 

low-power metering library: 
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 METERLIBLP1PH_CalcURMS function block diagram 

Both implementations are based on fractional data format and use of fractional multiplication, addition, 

and square-root functions. These functions calculate the RMS voltage samples in fractional data format, 

denoted as URMSQ[n]. They are mapped into the physical representation using scaling: 

𝑼𝑹𝑴𝑺𝑸 =
𝑼𝑹𝑴𝑺

𝑼_𝑴𝑨𝑿
  

 

Eq. 43 

The high-precision metering library defines three functions for calculating RMS voltages. The first, 

METERLIB1PH_CalcURMS() function is intended to calculate RMS voltage in a one-phase power 

meter application. Others, METERLIB2PH_CalcURMS() and METERLIB3PH_CalcURMS() functions 
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shall be called in two-phase (Form-12S) and three-phase metering power meter use cases. The low-

power metering library defines the same set of functions. 

Performance  

Function Code size Stack size Clock cycles 

METERLIB1PH_CalcURMS 364 96 1148 

METERLIB2PH_CalcURMS 688 96 2244 

METERLIB3PH_CalcURMS 1040 96 3336 

METERLIBLP1PH_CalcURMS 170 24 386 

METERLIBLP2PH_CalcURMS 354 32 769 

METERLIBLP3PH_CalcURMS 498 32 1105 

 METERLIB_CalcIRMS 

These functions recalculate RMS current (IRMS). 

Syntax 
#include “meterlib.h” 
void METERLIB1PH_CalcIRMS (tMETERLIB1PH_DATA *p); 
void METERLIB2PH_CalcIRMS (tMETERLIB2PH_DATA *p); 
void METERLIB3PH_CalcIRMS (tMETERLIB3PH_DATA *p); 
 
#include “meterliblp.h” 
void METERLIBLP1PH_CalcIRMS (tMETERLIBLP1PH_DATA *p); 
void METERLIBLP2PH_CalcIRMS (tMETERLIBLP2PH_DATA *p); 
void METERLIBLP3PH_CalcIRMS (tMETERLIBLP3PH_DATA *p); 

Arguments  

Type Name Direction Description 

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA. 

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA. 

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA. 

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA. 

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

Return 

These functions do not return any arguments. 

Description 

These functions calculate RMS current (IRMS) in one-phase, two-phase (Form-12S), and three-phase 

power meter applications. These functions are complementary to METERLIB_CalcAuxiliary() functions 

that calculates all non-billing variables including active power (P), reactive power (Q), RMS voltage 

(URMS) and RMS current (IRMS). 

This figure shows block diagram of the METERLIB1PH_CalcIRMS() function defined by the high-

precision metering library: 
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   METERLIB1PH_CalcIRMS function block diagram 

This figure shows block diagram of the METERLIBLP1PH_CalcIRMS() function defined by the 

low-power metering library: 
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   METERLIBLP1PH_CalcIRMS function block diagram 

Both implementations are based on fractional data format and use extensively fractional multiplication, 

addition, and square-root functions to calculate RMS values. These functions calculate the RMS current 

samples in fractional data format, denoted as IRMSQ[n]. They are mapped into the physical 

representation using scaling: 

𝑰𝑹𝑴𝑺𝑸 =
𝑰𝑹𝑴𝑺

𝑰_𝑴𝑨𝑿
  

 

Eq. 44 

The high-precision metering library defines three functions for calculating RMS currents. The first, 

METERLIB1PH_CalcIRMS() function is intended to calculate RMS current in a one-phase power meter 

application. Others, METERLIB2PH_CalcIRMS() and METERLIB3PH_CalcIRMS() functions shall be 

called in two-phase (Form-12S) and three-phase metering power meter use cases. The low-power 

metering library defines the same set of functions. 

Performance  

Function Code size Data size Clock cycles 

METERLIB1PH_CalcIRMS 364 96 1137 

METERLIB2PH_CalcIRMS 690 96 2231 

METERLIB3PH_CalcIRMS 1042 96 3314 

METERLIBLP1PH_CalcIRMS 170 24 366 

METERLIBLP2PH_CalcIRMS 354 32 744 

METERLIBLP3PH_CalcIRMS 500 32 1069 

 METERLIB_CalcPAVG 

These functions recalculate active power (P). 

Syntax 
#include “meterlib.h” 
void METERLIB1PH_CalcPAVG (tMETERLIB1PH_DATA *p); 
void METERLIB2PH_CalcPAVG (tMETERLIB2PH_DATA *p); 
void METERLIB3PH_CalcPAVG (tMETERLIB3PH_DATA *p); 
 
#include “meterlibLP.h” 
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void METERLIBLP1PH_CalcPAVG (tMETERLIBLP1PH_DATA *p); 
void METERLIBLP2PH_CalcPAVG (tMETERLIBLP2PH_DATA *p); 
void METERLIBLP3PH_CalcPAVG (tMETERLIBLP3PH_DATA *p); 
 
 

Arguments  

Type Name Direction Description 

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA. 

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA. 

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA. 

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA. 

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

Return 

These functions do not return any arguments. 

Description 

These functions calculate active power (P) in one-phase, two-phase (Form-12S), and three-phase power 

meter applications. The active power is measured in watts (W) and is symbolized by the capital letter P. 

The library function uses the average power converter to calculate active and reactive powers 

(see Average power converter). 

This figure shows block diagram of the METERLIB1PH_CalcPAVG() function defined by the high-

precision metering library: 

Q0.63METERLIB1PH_DATA

iQfilt[n]

uQfilt[n]

METERLIB1PH_DATA

PQ[n]

LPF1
Q0.31

Q0.31

Q0.31

Q0.31

X

 

 METERLIB1PH_CalcPAVG function block diagram  

This figure shows block diagram of the METERLIBLP1PH_CalcPAVG() function defined by the low-

power metering library: 
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 METERLIBLP1PH_CalcPAVG function block diagram 
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These functions update the active power PQ[n] samples based on new unbiased phase voltage and phase 

current samples. The active power samples are represented in fractional data format and they’re mapped 

into the physical representation using scaling: 

𝑷𝑸 =
𝑷

𝑼_𝑴𝑨𝑿 ∗ 𝑰_𝑴𝑨𝑿
  

 

Eq. 45 

 

The high-precision metering library defines three functions for calculating active powers. The first, 

METERLIB1PH_CalcPAVG() function is intended to calculate active power in a one-phase power 

meter application. Others, METERLIB2PH_CalcPAVG() and METERLIB3PH_CalcPAVG() functions 

shall be called in two-phase (Form-12S) and three-phase metering power meter use cases. The low-

power metering library defines the same set of functions for computing active power in various power 

meters. 

Performance  

Function Code size Stack size Clock cycles 

METERLIB1PH_CalcPAVG 400 96 633 

METERLIB2PH_CalcPAVG 778 96 1249 

METERLIB3PH_CalcPAVG 1150 96 1845 

METERLIBLP1PH_CalcPAVG 186 20 129 

METERLIBLP2PH_CalcPAVG 388 28 283 

METERLIBLP3PH_CalcPAVG 542 24 379 

 METERLIB_ReadResults 

There are three “reading” functions defined in the high-precision and low-power metering libraries. 

Each function is intended to read non-billing quantities from the internal data structure of the respective 

metering library and power meter type. The variables returned by the functions are already scaled to the 

physical representation. 

Syntax 
#include “meterlib.h” 
void METERLIB1PH_ReadResults    (tMETERLIB1PH_DATA *p, double *urms, double *irms, double 
*pavg, double *qavg, double *s); 
void METERLIB2PH_ReadResultsPh1 (tMETERLIB2PH_DATA *p, double *urms, double *irms, double 
*pavg, double *qavg, double *s); 
void METERLIB2PH_ReadResultsPh2 (tMETERLIB2PH_DATA *p, double *urms, double *irms, double 
*pavg, double *qavg, double *s); 
void METERLIB3PH_ReadResultsPh1 (tMETERLIB3PH_DATA *p, double *urms, double *irms, double 
*pavg, double *qavg, double *s); 
void METERLIB3PH_ReadResultsPh2 (tMETERLIB3PH_DATA *p, double *urms, double *irms, double 
*pavg, double *qavg, double *s); 
void METERLIB3PH_ReadResultsPh3 (tMETERLIB3PH_DATA *p, double *urms, double *irms, double 
*pavg, double *qavg, double *s); 
 
#include “meterliblp.h” 
void METERLIBLP1PH_ReadResults    (tMETERLIBLP1PH_DATA *p, double *urms, double *irms, double 
*pavg, double *qavg, double *s); 
void METERLIBLP2PH_ReadResultsPh1 (tMETERLIBLP2PH_DATA *p, double *urms, double *irms, double 
*pavg, double *qavg, double *s); 
void METERLIBLP2PH_ReadResultsPh2 (tMETERLIBLP2PH_DATA *p, double *urms, double *irms, double 
*pavg, double *qavg, double *s); 



Power meter application development 

 

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016 

50  NXP Semiconductors 

void METERLIBLP3PH_ReadResultsPh1 (tMETERLIBLP3PH_DATA *p, double *urms, double *irms, double 
*pavg, double *qavg, double *s); 
void METERLIBLP3PH_ReadResultsPh2 (tMETERLIBLP3PH_DATA *p, double *urms, double *irms, double 
*pavg, double *qavg, double *s); 
void METERLIBLP3PH_ReadResultsPh3 (tMETERLIBLP3PH_DATA *p, double *urms, double *irms, double 
*pavg, double *qavg, double *s); 

Arguments 

Type Name Direction Description 

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA. 

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA. 

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA. 

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA. 

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

double urms out Pointer to RMS voltage in volts. 

double irms out Pointer to RMS current in amperes. 

double pavg out Pointer to active power in watts. 

double qavg out Pointer to reactive power in volt-amperes-reactive. 

double s out Pointer to apparent power in volt-amperes. 

Return  

These functions do not return any arguments. 

Description  

These functions retrieve active power (P), reactive power (Q), RMS voltage (URMS), and RMS current 

(IRMS) from the internal data structure of the respective metering library. All quantities are scaled to the 

physical representation and returned in double floating point precision. The powers and RMS values are 

scaled by U_MAX and I_MAX.  

𝑷 = 𝑷𝑸 ∗ 𝑼_𝑴𝑨𝑿 ∗ 𝑰_𝑴𝑨𝑿  
 

Eq. 46 

𝑸 = 𝑸𝑸 ∗ 𝑼_𝑴𝑨𝑿 ∗ 𝑰_𝑴𝑨𝑿  
 

Eq. 47 

𝑰𝑹𝑴𝑺 = 𝑰𝑹𝑴𝑺𝑸 ∗ 𝑰_𝑴𝑨𝑿  
 

Eq. 48 

𝑼𝑹𝑴𝑺 = 𝑼𝑹𝑴𝑺𝑸 ∗ 𝑼_𝑴𝑨𝑿  
 

Eq. 49 
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This figure shows block diagram of the METERLIB1PH_ReadResults() functions for reading non-

billing quantities from the METERLIB1PH_DATA high-precision library internal data structure:  
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 METERLIB1PH_ReadResults function block diagram 

This figure shows block diagram of the METERLIBLP1PH_ReadResults() functions for reading non-

billing quantities from the METERLIBLP1PH_DATA low-power library internal data structure: 
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 METERLIBLP1PH_ReadResults function block diagram 

NOTE 

All reading functions perform several calculations in double precision 

format. Due to this fact, and also for practical reasons, the reading 

functions shall be called in an interrupt which is intended to update non-

billing information on the LCD. It is sufficient to update the LCD and call 

reading functions every 250 milliseconds or so. With such a low update 

rate the processor load caused by the reading functions will be almost 

negligible. 
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Performance 

Function Code size Stack size Clock cycles 

METERLIB1PH_ReadResults  240 32 2557 

METERLIB2PH_ReadResultsPh1 

METERLIB2PH_ReadResultsPh2 
236 32 5083 

METERLIB3PH_ReadResultsPh1 

METERLIB3PH_ReadResultsPh2 

METERLIB3PH_ReadResultsPh3 

240 32 7605 

METERLIBLP1PH_ReadResults  232 32 2526 

METERLIBLP2PH_ReadResultsPh1 

METERLIBLP2PH_ReadResultsPh2 
232 32 5008 

METERLIBLP3PH_ReadResultsPh1 

METERLIBLP3PH_ReadResultsPh2 

METERLIBLP3PH_ReadResultsPh3 

232 32 7473 

 METERLIB_ReadURMS 

These functions read RMS voltages from the internal data structure. 

Syntax 
#include “meterlib.h” 
void METERLIB1PH_ReadURMS (tMETERLIB1PH_DATA *p, double *urms1); 
void METERLIB2PH_ReadURMS (tMETERLIB2PH_DATA *p, double *urms1, double *urms2); 
void METERLIB3PH_ReadURMS (tMETERLIB3PH_DATA *p, double *urms1, double *urms2, double 
*urms3); 
 
#include “meterliblp.h” 
void METERLIBLP1PH_ReadURMS (tMETERLIBLP1PH_DATA *p, double *urms1); 
void METERLIBLP2PH_ReadURMS (tMETERLIBLP2PH_DATA *p, double *urms1, double *urms2); 
void METERLIBLP3PH_ReadURMS (tMETERLIBLP3PH_DATA *p, double *urms1, double *urms2, double 
*urms3); 

Arguments 

Type Name Direction Description 

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA. 

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA. 

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA. 

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA. 

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

double urms1 out Pointer to phase 1 RMS voltage value in volts. 

double urms2 out Pointer to phase 2 RMS voltage value in volts. 

double urms3 out Pointer to phase 3 RMS voltage value in volts. 

Return  

These functions do not return any arguments. 
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Description  

These functions retrieve RMS voltage (URMS) from the internal data structure of the respective 

metering library. The RMS voltages are scaled by U_MAX to the physical representation and returned in 

double floating point precision.  

𝑼𝑹𝑴𝑺 = 𝑼𝑹𝑴𝑺𝑸 ∗ 𝑼_𝑴𝑨𝑿  
 

Eq. 50 

A block diagram of the METERLIB1PH_ReadURMS() function defined in the high-precision metering 

library is shown in this figure:  
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 METERLIB1PH_ReadURMS function block diagram 

A block diagram of the METERLIBLP1PH_ReadURMS() function defined in the low-power metering 

library is shown in this figure:  
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 METERLIBLP1PH_ReadURMS function block diagram 

Performance 

Function Code size Stack size Clock cycles 

METERLIB1PH_ReadURMS  42 16 502 

METERLIB2PH_ReadURMS 72 16 990 

METERLIB3PH_ReadURMS 118 24 1464 

METERLIBLP1PH_ReadURMS  40 16 489 

METERLIBLP2PH_ReadURMS 72 16 965 

METERLIBLP3PH_ReadURMS 112 24 1427 
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 METERLIB_ReadIRMS 

These functions read RMS currents from the internal data structure. 

Syntax 
#include “meterlib.h” 
void METERLIB1PH_ReadIRMS (tMETERLIB1PH_DATA *p, double *irms1); 
void METERLIB2PH_ReadIRMS (tMETERLIB2PH_DATA *p, double *irms1, double *irms2); 
void METERLIB3PH_ReadIRMS (tMETERLIB3PH_DATA *p, double *irms1, double *irms2, double 
*irms3); 
 
#include “meterliblp.h” 
void METERLIBLP1PH_ReadIRMS (tMETERLIBLP1PH_DATA *p, double *irms1); 
void METERLIBLP2PH_ReadIRMS (tMETERLIBLP2PH_DATA *p, double *irms1, double *irms2); 
void METERLIBLP3PH_ReadIRMS (tMETERLIBLP3PH_DATA *p, double *irms1, double *irms2, double 
*irms3); 

Arguments 

Type Name Direction Description 

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA. 

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA. 

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA. 

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA. 

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

double irms1 out Pointer to phase 1 RMS current value in amperes. 

double irms2 out Pointer to phase 2 RMS current value in amperes. 

double irms3 out Pointer to phase 3 RMS current value in amperes. 

Return  

These functions do not return any arguments. 

Description  

These functions retrieve RMS current (IRMS) from the internal data structure. The RMS currents are 

scaled by I_MAX to the physical representation and returned in double floating point precision.  

𝑰𝑹𝑴𝑺 = 𝑰𝑹𝑴𝑺𝑸 ∗ 𝑰_𝑴𝑨𝑿  
 

Eq. 51 

A block diagram of the METERLIB1PH_ReadIRMS() function defined in the high-precision metering 

library is shown in this figure: 
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 METERLIB1PH_ReadIRMS function block diagram 
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A block diagram of the METERLIBLP1PH_ReadIRMS() function defined in the low-power metering 

library is shown in this figure: 
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 METERLIBLP1PH_ReadIRMS function block diagram 

Performance 

Function Code size Stack size Clock cycles 

METERLIB1PH_ReadIRMS  44 16 556 

METERLIB2PH_ReadIRMS 76 16 1082 

METERLIB3PH_ReadIRMS 124 24 1608 

METERLIBLP1PH_ReadIRMS  42 16 505 

METERLIBLP2PH_ReadIRMS 78 24 985 

METERLIBLP3PH_ReadIRMS 110 24 1461 

 METERLIB_ReadPAVG 

These functions read active powers from the internal data structure. 

Syntax 
#include “meterlib.h” 
void METERLIB1PH_ReadPAVG (tMETERLIB1PH_DATA *p, double *pavg1); 
void METERLIB2PH_ReadPAVG (tMETERLIB2PH_DATA *p, double *pavg1, double *pavg2); 
void METERLIB3PH_ReadIAVG (tMETERLIB3PH_DATA *p, double *pavg1, double *pavg2, double 
*pavg3); 
 
#include “meterliblp.h” 
void METERLIBLP1PH_ReadPAVG (tMETERLIBLP1PH_DATA *p, double *pavg1); 
void METERLIBLP2PH_ReadPAVG (tMETERLIBLP2PH_DATA *p, double *pavg1, double *pavg2); 
void METERLIBLP3PH_ReadIAVG (tMETERLIBLP3PH_DATA *p, double *pavg1, double *pavg2, double 
*pavg3); 

Arguments 

Type Name Direction Description 

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA. 

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA. 

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA. 

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA. 

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

double pavg1 out Pointer to phase 1 active power in watts. 

double pavg2 out Pointer to phase 2 active power in watts. 

double pavg3 out Pointer to phase 3 active power in watts. 
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Return 

These functions do not return any arguments. 

Description  

These functions retrieve active power (PAVG) from the internal data structure. The active powers are 

scaled by U_MAX and I_MAX to the physical representation and returned in double floating point 

precision.  

𝑷 = 𝑷𝑸 ∗ 𝑼_𝑴𝑨𝑿 ∗ 𝑰_𝑴𝑨𝑿  
 

Eq. 52 

A block diagram of the METERLIB1PH_ReadPAVG() function defined in the high-precision metering 

library is shown in this figure:  
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 METERLIB1PH_ReadPAVG function block diagram 

A block diagram of the METERLIBLP1PH_ReadPAVG() function defined in the low-power metering 

library is shown in this figure: 
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 METERLIBLP1PH_ReadPAVG function block diagram 

Performance 

Function Code size Stack size Clock cycles 

METERLIB1PH_ReadPAVG  52 16 734 

METERLIB2PH_ReadPAVG 96 16 1436 

METERLIB3PH_ReadPAVG 156 24         2163 

METERLIBLP1PH_ReadPAVG  50 16 722 

METERLIBLP2PH_ReadPAVG 96 16 1414 

METERLIBLP3PH_ReadPAVG 150 24 2127 
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 METERLIB_ReadS 

These functions read apparent powers from the internal data structure. 

Syntax 
#include “meterlib.h” 
void METERLIB1PH_ReadS (tMETERLIB1PH_DATA *p, double *s1); 
void METERLIB2PH_ReadS (tMETERLIB2PH_DATA *p, double *s1, double *s2); 
void METERLIB3PH_ReadS (tMETERLIB3PH_DATA *p, double *s1, double *s2, double *s3); 
 
#include “meterliblp.h” 
void METERLIBLP1PH_ReadS (tMETERLIBLP1PH_DATA *p, double *s1); 
void METERLIBLP2PH_ReadS (tMETERLIBLP2PH_DATA *p, double *s1, double *s2); 
void METERLIBLP3PH_ReadS (tMETERLIBLP3PH_DATA *p, double *s1, double *s2, double *s3); 

Arguments 

Type Name Direction Description 

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA. 

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA. 

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA. 

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA. 

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

double s1 out Pointer to phase 1 apparent power in volt-amperes. 

double s2 out Pointer to phase 2 apparent power in volt-amperes. 

double s3 out Pointer to phase 3 apparent power in volt-amperes. 

Return  

These functions do not return any arguments. 

Description 

These functions retrieve apparent power (S) from the internal data structure. The apparent powers are 

scaled by U_MAX and I_MAX to the physical representation and returned in double floating point 

precision.  

𝑺 = 𝑰𝑹𝑴𝑺𝑸 ∗ 𝑼𝑹𝑴𝑺𝑸 ∗ 𝑼_𝑴𝑨𝑿 ∗ 𝑰_𝑴𝑨𝑿  
 

Eq. 53 

A block diagram of the METERLIB1PH_ReadS() function defined in the high-precision metering 

library is shown in this figure: 
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 METERLIB1PH_ReadS function block diagram 
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A block diagram of the METERLIBLP1PH_ReadS() function defined in the low-power metering library 

is shown in this figure: 
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 METERLIBLP1PH_ReadS function block diagram 

Performance 

Function Code size Stack size Clock cycles 

METERLIB1PH_ReadS  64 16 787 

METERLIB2PH_ReadS 120 16 1552 

METERLIB3PH_ReadS 192 24 2320 

METERLIBLP1PH_ReadS  60 16 777 

METERLIBLP2PH_ReadS 116 16 1530 

METERLIBLP3PH_ReadS 180 24 2304 

 METERLIB_KWH_PD 

This macro returns a fine delay of the active energy pulse output transition. 

Syntax 
#include “meterlib.h” 
#define METERLIB_KWH_PD(p)     (frac16)(p)->wh.puDly 
 
#include “meterliblp.h” 
#define METERLIBLP_KWH_PD(p)   (frac16)(p)->wh.puDly  
 

Arguments 

Type Name Direction Description 

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA. 

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA. 

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA. 

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA. 

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

Return  

This macro returns a fine delay in range from 0x0000 to 0x7fff in case of the active energy pulse output 

transition. The fine delay is scaled to the calculation step (1/KWH_CALC_FREQ). If active energy 

pulse output doesn’t change then macro returns -1 (0x8000). 
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 METERLIB_KVARH_PD 

This macro returns a fine delay of the reactive energy pulse output transition. 

Syntax 
#include “meterlib.h” 
#define METERLIB_KVARH_PD(p)     (frac16)(p)->varh.puDly  
 
#include “meterliblp.h” 
#define METERLIBLP_KVARH_PD(p)   (frac16)(p)->varh.puDly  

Arguments 

Type Name Direction Description 

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA. 

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA. 

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA. 

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA. 

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

Return  

This macro returns a fine delay in range from 0x0000 to 0x7fff in case of the reactive energy pulse 

output transition. The fine delay is scaled to the calculation step (1/KVARH_CALC_FREQ). If reactive 

energy pulse output doesn’t change then macro returns -1 (0x8000). 

 METERLIB_KWH_PS 

This macro returns a raw state of the active energy pulse output. 

Syntax 
#include “meterlib.h” 
#define METERLIB_KWH_PS(p)     (frac16)(p)->wh.puOut  
 
#include “meterliblp.h” 
#define METERLIBLP_KWH_PS(p)     (frac16)(p)->wh.puOut  

Arguments 

Type Name Direction Description 

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA. 

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA. 

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA. 

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA. 

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

Return  

This macro returns a raw state of the active energy pulse output.  
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 METERLIB_KVARH_PS 

This macro returns a raw state of the reactive energy pulse output. 

Syntax 
#include “meterlib.h” 
#define METERLIB_KVARH_PS(p)     (frac16)(p)->varh.puOut  
 
#include “meterliblp.h” 
#define METERLIBLP_KVARH_PS(p)  (frac16)(p)->varh.puOut  

Arguments 

Type Name Direction Description 

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA. 

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA. 

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA. 

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA. 

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA. 

Return  

This macro returns a raw state of the reactive energy pulse output.  

 METERLIB_KWH_PR 

This macro converts imp/kWh number to pulse output resolution required by metering libraries. 

Syntax 
#include “meterlib.h” 
#define METERLIB_KWH_PR(x)     FRAC48(((5e2/(x))/(U_MAX*I_MAX/3600/KWH_CALC_FREQ)))  
 
#include “meterliblp.h” 
#define METERLIBLP_KWH_PR(x)    FRAC32(((5e2/(x))/(U_MAX*I_MAX/3600/KWH_CALC_FREQ)))  

Arguments 

Type Name Direction Description 

int x in User defined imp/kWh number.  

Return  

This macro returns an active energy pulse output resolution. 

 METERLIB_KVARH_PR 

This macro converts imp/kVARh number to pulse output resolution required by metering libraries. 

Syntax 
#include “meterlib.h” 
#define METERLIB_KVARH_PR(x)   FRAC48(((5e2/(x))/(U_MAX*I_MAX/3600/KVARH_CALC_FREQ))) 
 



Power meter application development 

 

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016 

NXP Semiconductors  61 

#include “meterliblp.h” 
#define METERLIBLP_KVARH_PR(x) FRAC32(((5e2/(x))/(U_MAX*I_MAX/3600/KVARH_CALC_FREQ))) 

Arguments 

Type Name Direction Description 

int x in User defined imp/kVARh number. 

Return  

This macro returns a reactive energy pulse output resolution. 

 METERLIB_DEG2SH 

This macro converts U-I phase shift in degrees to a 16-bit fractional number with resolution of 

(fn*360/(32768*KWH_CALC_FREQ)) degrees. 

Syntax 
#include “meterlib.h” 
#define METERLIB_DEG2SH(x,fn)  FRAC16((float)(x)*KWH_CALC_FREQ/((float)fn*360.0)) 
 
#include “meterliblp.h” 
#define METERLIBLP_DEG2SH(x,fn)  FRAC16((float)(x)*KWH_CALC_FREQ/((float)fn*360.0)) 

Arguments 

Type Name Direction Description 

double x in U-I phase shift in degrees.  

double fn in Nominal frequency in Hz. 

Return  

This macro returns converted U-I phase shift in a 16-bit fractional representation. 

 METERLIB_RAD2SH 

This macro converts U-I phase shift in radians to a 16-bit fractional number with resolution of 

(fn*2*Pi/(32768*KWH_CALC_FREQ)) radians. 

Syntax 
#include “meterlib.h” 
#define METERLIB_RAD2SH(x,fn) 
 FRAC16((float)(x)*KWH_CALC_FREQ/((float)fn*2.0*3.14159265358979323846)) 
 
#include “meterliblp.h” 
#define METERLIBLP_RAD2SH(x,fn) 
 FRAC16((float)(x)*KWH_CALC_FREQ/((float)fn*2.0*3.14159265358979323846)) 

Arguments 

Type Name Direction Description 

double x in U-I phase shift in radians.  

double fn in Nominal frequency in Hz. 
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Return  

This macro returns converted U-I phase shift in 16-bit fractional representation. 

 Configuration tool 

This section describes the configuration tool workspace and all its features. The configuration tool is 

primarily intended to tune the filters to match the required performance and to generate the C-header file 

that contains the source code with the parameters describing the behavior of the Filter-Based Metering 

Algorithm. It automatizes the procedure of the algorithm setup and optimization, while providing a 

rough estimate of the required computational load. The tool generates the C-code for configuring of 

32-bit metering algorithms and supports one-phase, two-phase (Form-12S), and three-phase power 

meter topologies. 

It is recommended to be familiar with the workspace, because this is where your time is spent when 

using the configuration tool to design a file with the parameters for the Filter-Based Metering Algorithm 

(see Figure 45). 

 
A – General and configuration panel, B – 90-degree phase shifter configuration panel, C – Block diagram panel,  

D – Performance estimator panel, E – Code generator panel, F – Algorithm simulator panel 

 Configuration tool 
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The configuration tool comprises six configuration and visualization panels: the general configuration 

panel, the 90-degree phase shifter configuration panel, the block diagram panel, the performance 

estimator panel, the code generator panel, and the algorithm simulator panel. 

 General configuration panel 

The general configuration panel is where you configure the basic parameters of your power meter 

application.  

 Parameters of the general configuration panel 

Parameter Unit Default Min. Max. Description 

Configuration — — — — 
The name of the structure containing the 

configuration parameters. 

Sampling rate Hz 1200 1000 12000 The filter sampling rate. 

Decimation 

factor 
— 1 1 10 

The decimator factor for the computation of 

non-billing quantities. 

Maximal current A 141.421 — — The peak current scaled to the full ADC input range. 

Maximal voltage V 395.980 — — The peak voltage scaled to the full ADC input range. 

Nominal 

frequency 
Hz 50 50 60 The nominal frequency of the power meter. 

Counters 

resolution 
Inc/kWh 10 000 100 

100 

000 

The resolution of the active and reactive energy 

counters. 

Power sense 

threshold 
W 0.5 0.0 2.0 

The power threshold for clearing the RMS current 

and power values. This threshold does not influence 

the accumulation of the active and reactive energies. 

Starting current A 0.02 0.0 1.0 

The RMS current threshold for clearing the RMS 

current and power values. If the RMS current in the 

phase is below this threshold, then the active and 

reactive energies also do not accumulate. 

Active power 

offset4 
W 0.0 0.0 9.9999 Used for zero-load active power residue cancellation. 

Reactive power 

offset4 
VAR 0.0 0.0 9.9999 

Used for zero-load reactive power residue 

cancellation. 

Current sensor — Proportional — — 

The sensor output characteristic: proportional (current 

transformer or shunt resistor), derivative 

(Rogowski coil). 

Power meter — three-phase — — 
Number of phases: one-phase, two-phase, or three-

phase. 

Library prefix — METERLIB — — 
METERLIB: high-precision library, METERLIBLP: 

low-power library. 

Check and modify the default settings of the offset-removal configuration panel. The offset-removal 

block uses the high-pass IIR filters to remove the DC offset from the measured waveforms. By default, 

                            
 
4 Both the “active” and “reactive” power offsets are intended to compensate for sensors and PCB cross-talks. Use 
them whenever a library outputs a non-zero power measurement at a no-load condition. Use the following steps 
to set up the power offsets in the configuration tool: 1) calibrate the power meter with the “power sense threshold”, 
“starting current threshold” and “power offsets” parameters set to zero, 2) put the calibrated power meter under a 
no-load test condition and monitor the measured “active” and “reactive” powers until a steady state, 3) write the 
steady state “active” and “reactive” powers with negative signs into the respective “power offset” controls, 
4) update the library configuration header file, recompile the project, and download the application into your power 
meter. After the recalibration, the accuracy of the power meter in lower currents improves. 
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the cut-off frequency of these high-pass IIR filters is set to 0.3 Hz. This default setting works for most 

applications. 

 Parameters of the offset-removal configuration panel 

Parameter Unit Default Min. Max. Description 

HPF cut-off 

frequency 
Hz 0.3 0.1 29.9 High-pass filter cut-off frequency. 

The RMS and the power converter blocks are represented by a cascade of two low-pass IIR filters. 

The characteristics of these filters are defined by the cut-off frequency setting in the RMS and power 

converters configuration panel. By default, the cut-off frequency of the low-pass IIR filter is set to 

0.5 Hz. 

 Parameters of the RMS and power converters configuration panel 

Parameter Unit Default Min. Max. Description 

LPF1 cut-off 

frequency 
Hz 0.5 0.2 29.9 Low-pass filter cut-off frequency. 

Finally, check and adjust the setting of the pulse output generation. The configuration tool and the 

metering libraries support the generation of two pulse outputs. The pulse outputs are used to calibrate 

the measurement accuracy of the active and reactive energies using a reference meter. This very popular 

method of calibration uses a power source, a meter pulse output, and an external reference meter to 

determine the required compensation. Set the parameters of the meter pulse output (such as the number 

of pulses per energy quanta and the smoothing factor) in the pulse generation configuration panel. 

  Parameters of the pulse generation configuration panel 

Parameter Unit Default Min. Max. Description 

Active energy Imp/kWh 50 000 100 5e6 
Number of pulses generated by the power meter for 

one kWh. 

Reactive 

energy 
Imp/kVARh 50 000 100 5e6 

Number of pulses generated by the power meter for 

one kVARh. 

Energy 

attenuation 

factor 

% 0.0 0 10.0 

Attenuation of the energy calculation paths. Used 

mainly with the low-power libraries to improve the 

balance between the energy and non-billing 

computation paths. 

LPF2 cut-off 

frequency 
Hz 3.0 2.0 5.0 

Pulse output ripple cancellation low-pass filter cut-off 

frequency. 

 90-degree phase shifter panel 

The 90-degree phase shifter block is represented by the Hilbert FIR filter. Modify the Hilbert FIR filter 

characteristics using the 90-degree phase shifter configuration panel. The default setting of this complex 

FIR filter is computed with the aim to achieve a unity gain of the 90-degree shifted output waveforms in 

the frequency bandwidth above the nominal frequency of 50 Hz (60 Hz), and below the half of the 

sampling frequency. 
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 Parameters of the 90-degree phase shifter configuration panel 

Parameter Unit Default Min. Max. Description 

Kaiser window 

beta 
— 6.0672 0.0 9.9999 Kaiser window coefficient. 

Kaiser window 

gain 
— 1.0 0.5 2.0 Kaiser window gain. 

Adjust FIR filter 

taps 
— 0 100 100 Increase or lower the number of filter taps manually.  

Select clock after 

decimation 
— — — — Hilbert FIR filter computation frequency. 

To make the setting of the Hilbert FIR filter easier, leverage the “Knob Control” object (a graphical 

panel for a precise adjustment of parameters). This panel is hidden by default, and you can activate it 

using the CTRL+K keyboard shortcut. For more information about the “Knob Control” usage, see Using 

the configuration tool. 

 Block diagram panel 

The procedure for computing of metering quantities depends on the library configurations. 

The configuration tool is designed to track your changes within the library configurations, analyze their 

impact on the computation algorithm, and to display the most up-to-date computation block diagram, 

together with the estimated computational load of the selected MCU core architecture.  

 Performance estimator panel 

This panel shows the estimated core clock frequency (in MHz) that is required to compute the metering 

algorithms. The core clock frequency is computed for the selected MCU core architecture and for 

specific library configurations. 

 Code generator panel 

This panel shows a real-time preview of the data structure containing the most up-to-date library 

configuration (see the following figure). For more information about integrating the library 

configuration structure into your project, see Configuration tool.  

 

 Code generator visualization panel 
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Start working with the configuration tool either by creating a new library configuration data structure or 

by opening an existing one. Store the library configuration data structure in a C header file if you want 

to make a reference to it from within your project. This figure shows the menu of all commands for 

handling the library configuration files. 

 

 Handling library configuration structure 

 Algorithm simulator panel 

The algorithm simulator panel is by default hidden by the configuration tool. Show/hide it using the 

CTRL+A keyboard shortcut. The algorithm simulator panel is capable of analyzing the performance of 

the metering library preset using your specific configuration. The algorithm simulator panel comprises 

four blocks: A—signal generator block, B—overview visualization block, C—errors visualization block, 

and D—simulation time slider: 

 
A – Signal generator block, B – Overview visualization block, C – Errors visualization block, D – Simulation time slider,  

E – Energies visualization block  

 Algorithm simulator panel 

The algorithm simulator panel is updated after each change in the library configuration. It simulates the 

dynamic response of the metering library based on the user configuration during the first 10 seconds of 

operation. Use the simulation time slider (D) to select the computation step of interest. For the selected 

computation step, the overview (B), errors (C), and energies visualization blocks are updated with the 

actual simulated values. 

 

A
B

C

D

E
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NOTE 

Use the “Knob Control” pop-up panel to set up all parameters of the signal 

generator block (A), and to control the simulation time slider (D). 

Bring up the “Knob Control” pop-up panel using the CTRL+K keyboard 

shortcut. 

On the contrary to the physical quantities displayed in the overview visualization panel, the errors 

visualization panel displays the deviations of quantities from the steady-state values in percentages: 

 

 Errors visualization panel 

The error limit [%] control is visible in both the overview (B) and error (C) visualization blocks. 

It enables you to preset the error margin as a percentage. When the simulated quantity fits into the 

specified error margin, the background color of the respective control is grayed out. When the deviation 

of the simulated quantity for a given computation step doesn’t fit into the specified error margin, the 

background color of the respective control turns red. 

You can quickly check whether your selected and configured library (high-precision or low-power) is 

accurate enough by simply predefining the error limit [%] of your interest and looking at the background 

colors of the simulated quantities, while changing the computation step using the simulation time 

slider (D). You can also find a computation step where all non-billing quantities settle and where their 

accuracies start to fit into the predefined error margin [%]. 

The simulation engine (integrated within the configuration tool) uses metering libraries (including data 

representation) that are compiled for the target MCU platforms. The simulations performed by the 

configuration tool directly on the PC provide bit-accurate results and the responses to the input 

waveforms generated by the signal generator block (A).  

Toying with the simulator gives you a good insight into the algorithm performance and accuracy. Test 

the behavior of metering algorithms using the algorithm simulator panel (e.g., when the input current 

waveform is below the starting current threshold). Investigate the difference in accuracies of the 

high-precision and low-power metering libraries for the given input voltage and current waveforms 

within several clicks. 

The following figure shows the panel for displaying the results of energy counting. This panel shows the 

values of all energy counters supported by the library.  
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 Energies visualization panel 

The filter-based metering libraries track the changes of the active and reactive energies independently 

for each phase. The metering libraries compute the imported and exported active and reactive energies, 

as well as the reactive energies in four quadrants. The energy counters are accumulated at each 

calculation step with the resolution defined by the value in the “Counters resolution” dialog box. 

The only energy counters updated by the metering library are those based on the location of the apparent 

power phase phasor (S) within the distribution diagram: 

 

 Energies distribution diagram 

This table summarizes the energy counters supported by the metering library and their updating based 

on the apparent power phase phasor (S) location within the distribution diagram: 

 Dependencies of updated energy counters update 

Counter name Counter description Apparent power phase phasor sector 

kWh imp Active energy import Q1 or Q4 

kWh exp Active energy export Q2 or Q3 

kVARh imp Reactive energy import Q1 or Q2 

kVARh exp Reactive energy export Q3 or Q4 

kVARh Qn 
Reactive energy in Qn 

quadrant, n=1,2,3, and 4 
Qn 

kWh exp
active energy export

+

+-

-

P
Q

S
ϕ

Q2

Q3 Q4

kWh imp
active energy import

kVARh imp
reactive energy import

kVARh exp
reactive energy export
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The following figure demonstrates the performance of the phase sequence detection. The simulator 

returns the phase sequence for a three-phase system. The phase sequence is indicated by the color of the 

decoration panel in the “Overview” and “Errors” visualization panels. The phase sequence 1-2-3 

(clockwise rotation) is indicated by the green color and the phase sequence 3-2-1 (counter-clockwise 

rotation) by the dark-blue color, respectively. The hidden decoration panel in the three-phase system 

means that the phase sequence cannot be decoded properly.   

 

 

 Phase sequence detection 

NOTE 

Select either the calibrated or the un-calibrated simulator output to 

evaluate the accuracy of Filter-Based Metering Algorithms after or before 

the calibration. The graphical configuration tool selects the calibrated 

output of the simulator by default. In the calibrated mode, the simulator 

shows the values computed by the algorithms with corrections for the 

high-pass filter amplitude characteristics at the nominal frequency. As 

opposed to the calibrated mode, you must select the un-calibrated mode 

manually, and the simulator does not compensate for the filter 

characteristics in this mode. The un-calibrated simulator output is less 

accurate than the calibrated simulator output. 
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 Using the configuration tool 

The example described in this section shows the procedure of configuring the Filter-Based Metering 

Algorithm for a typical one-phase power meter application. The application runs on the MKM34Z128 

32-bit Kinetis-M MCU. This device is based on the ARM Cortex-M0+ core and integrated with a 

powerful 24-bit AFE. The 32-bit core, powerful 4-channel 24-bit AFE, and the additional 16-bit SAR 

ADC make this family of MCUs ideal for one-phase, two-phase (Form-12S), and three-phase power-

meter applications. 

These information about the target hardware platform, application firmware, and power meter features 

and capabilities are needed for the configuration: 

• Hardware platform: 

— Power meter type: one-phase 

— Mains frequency: 50 Hz 

— Resolution of the active energy counter: 0.1 Wh 

— Resolution of the reactive energy counter: 0.1 VARh 

— Current scaling (I_MAX): 141.42 A 

— Voltage scaling (U_MAX): 325.27 V 

• Application firmware:  

— Update rate for billing quantities (decimated from the 6-kHz AFE output rate): 1200 Hz 

— Decimation ratio (update rate) for non-billing quantities: ↓2 (600 Hz) 

— Power sensitivity threshold (for zeroing of non-billing quantities): 0.5 W  

• Power meter features: 

— Active energy pulse output rate: 50 000 imp/kWh 

— Reactive energy pulse output rate: 50 000 imp/kVARh 

— Active and reactive energy accuracies: from 49 Hz to 250 Hz (0.5 %) 

— Starting current threshold (according to IEC50470-3): 20 mA 

Initially, the parameters describing the hardware platform and the application firmware are entered into 

the respective dialogue boxes of the general setting panel (see Figure 53). The name of the configuration 

structure containing all the algorithm configurations is stored in the meterlib1ph_cfg.h file, and referred 

to in the application code as “METERLIB1PH_CFG”. 

NOTE 

The only limitation in selecting the update rate for non-billing quantities is 

the signal bandwidth required for their calculation, and it must be at least 

1200 Hz (or higher). The configuration tool enables you to enter an integer 

number as the decimation ratio to calculate the non-billing quantities. 

Implement this lower update rate into the software by skipping the 

non-billing calculations for a given number of times. 
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 General Setting 

Set the parameter of the offset removal block, as shown in the following figure. This block is 

represented by the high-pass first-order Butterworth filter, whose cut-off frequency must be chosen 

appropriately. It is recommended to use the default setting of 0.3 Hz, which guarantees an effective 

offset removal. Set the high-pass filter cut-off frequency in the range from 0.1 Hz to 5.0 Hz. 

 

 

 Offset Removal 

The RMS and power converters comprising the low-pass first-order Butterworth filters are configured. 

This configuration is very straightforward, and requires you to select the filter cut-off frequency in the 

range from 0.3 Hz to 5.0 Hz. Using the default cut-off frequency of 0.5 Hz is recommended, unless you 

need a faster or smoother dynamic response. 

 

 

 RMS and Power Converters 

You must understand the default setting of the 90-degree phase shifter. Setting this block, which 

represents the Hilbert FIR filter with numerous coefficients to set up, is almost impossible without the 

configuration tool and/or high-level simulation tools (such as Matlab/Simulink). The configuration tool 

provides an intuitive way to parameterize this block (similar to operating an oscilloscope) when using 

the “Knob Control” panel. According to the technical requirements, the accuracy of the reactive energy 

must be 0.5 % (in the frequency range from 49 Hz to 250 Hz). 

The following figure shows the default setting of the block and the magnitude response of the FIR 

Hilbert filter. It is evident that the accuracy of the reactive energy resulting from the default setting is in 

the range of 0.1 % (in the given frequency range). 
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 Default setting of the 90-degree phase shifter 

The default Hilbert FIR filter has a length of 49 taps for the given sampling rate of 1200 Hz, and the 

mains frequency of 50 Hz. The group delay of the filter is 20 ms. Optimize the filter length, beta, and 

gain parameters of the Kaiser Window manually (using the “Knob Control” pop-up panel) to further 

lower the computational requirements. 

 

 Optimal setting of the 90-degree phase shifter 

Figure 57 shows the magnitude response of the optimized FIR Hilbert filter. The length of the filter is 39 

taps, and its group delay is 15.83 ms. After the optimization, the computational requirements of the FIR 

Hilbert filter drops by approximately 20 %. The magnitude response of the filter fits into the required 

accuracy class of 0.5 %.  

NOTE 

Even the ±0.5 % accuracy target for the reactive energy is somewhat high. 

The most demanding requirement for the reactive energy is given by the 

IEC 62053-23 international standard, which defines the accuracy of 

reactive energy measurement of ±2.0 %. Such accuracy can be achieved 
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with a 29-tap FIR filter with just 60 % of the computational performance, 

when compared to the default setting. 

Configure the active and reactive pulse outputs and their low-pass filters. This is performed in several 

dialogue boxes, as shown in the following figure. To improve the jitter of the pulse output, the low-pass 

first-order Butterworth filter is used to filter out the energy ripples. It is recommended to use the default 

filter cut-off frequency of 3 Hz, which achieves the attenuation of the ripple energy by 33.3 dB in a 

relatively short time (0.281 s). The active and reactive energy pulse output numbers are set to 

50 000 imp/kWh and 50 000 imp/kVARh, respectively. 

 

 Pulse generation     

After the configuration is complete, save it to the hard drive. An example of the configuration file 

generated by the configuration tool for the one-phase power meter application is shown in Appendix A.  

NOTE 

The configuration is stored in a C header file in the format of initialization 

data for the configuration structure of the particular power meter type. 

The configuration structures for all supported power meter topologies are 

defined in the meterlib.h header file. 

The configuration file is an essential part of the power meter firmware application. A simple test 

application that includes a configuration file is shown in Appendix B. For the sake of simplicity, this 

application does not measure the phase voltage and phase current samples, but emulates these signals 

by software.  
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NOTE 

Open the configuration file using the configuration tool for printing and 

parameter adjustment. For example, the configuration file specific to the 

one-phase power meter can be easily modified and used as the base for 

generating two-phase (Form-12S) and/or three-phase power meter 

configurations (and vice-versa). After making changes in the configuration 

file, recompile the firmware application and rebuild the whole project. 

Upload the new firmware code to the MCU and test the new algorithm 

configuration. Repeat the above steps until the algorithm matches the 

required performance. 

The performance of the metering library was thoroughly tested. Real tests were carried out on the 

one-phase power meter reference designs. The results of the performance testing are described in the 

following section. 

5. Accuracy and performance testing 

The performance of the metering library was tested on the one-phase Kinetis M power meter reference 

design [12]. The MKM34Z128 device (32-bit Kinetis M MCU) at the heart of the reference design is 

based on the ARM Cortex-M0+ core. This efficient processor core, with support for 32-bit mathematics, 

enables fast execution of the Filter-Based Metering Algorithm. 

 Single phase KM3x power meter specification 

Type of meter   Single phase residential 

Type of measurement 4-quadrant 

Metering algorithm Filter-based 

Precision (accuracy)  IEC50470-3 class C, 0.5% (for active and reactive energy) 

Voltage range   90…265 VRMS 

Current Range   0…up to 120 ARMS (5 A is nominal current, peak current is up to 152 A) 

Frequency range   47…53 Hz 

Meter constant (imp/kWh, imp/kVArh) 

500, 1000, 2000, 5000, 10000, 20000 (default), 50000, 100000, 200000, 

500000, 1000000, 2000000, 4000000 and 6000000. Note that pulse 

numbers above 50000 are aplicable only for low current measurement. 

Functionality   
V, A, kW, kVAr, kVA, kWh (import/export), kVARh (lead/lag), Hz, time, 

date 

Voltage sensor   Voltage divider 

Current sensor  Shunt down to 120 μΩ 

Energy output pulse interface two red LEDs (active and reactive energy) 

Energy output pulse parameters: 

 Maximum frequency 

 On-Time 

 Jitter 

 

600 Hz 

20 ms (50% duty cycle for frequencies above 25 Hz) 

 10 s at constant power  

Optoisolated pulse output (optional)  optocoupler (active or reactive energy) 

User interface (HMI)  LCD, one push-button, one user LED (red) 

Tamper detection two hidden buttons (terminal cover and main cover) 

Infrared interface 4800/8-N-1 FreeMASTER interface 

Isolated RS232 serial interface (optional only) 19200/8-N-1 

RF interface (optional only)
 

2.4 GHz RF 1322x-LPN internal daughter card 
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 Single phase KM3x power meter specification 

Internal battery (for RTC) 3.6 V 

Power consumption @ 3.3V and 22 °C: 

Measurement mode (powered from mains) 

Run/Menu list mode (mains disconnected) 

Standby (4kB system RAM back-up) 

 

10.88 mA 

245 A 

5.6 A (both cover closed), 4.4 A (covers opened) 

Internal battery (for RTC) 3.6 V 

NOTE 

The one-phase Kinetis M power meter used for performance testing was 

populated with a 140 µΩ shunt resistor for current measurement. 

Additional power meter settings and capabilities are summarized in Table 

15. 

Figure 59 shows the accuracy errors obtained during performance testing and validation. It is evident 

that both active and reactive energies at all power factors fit within the accuracy limit 0.2% in the 

current dynamic range 2400:15. 

 

 

                            
 
5
 MKM34Z128 system and bus clocked by 12.288 MHz, AFE clocked by 6.144 MHz, Current scaling: I_MAX= 
152A @ PGA gain=16, Voltage scaling: U_MAX= 286.0 V. 
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 Performance of the Kinetis M one-phase power meter reference design 

The measured accuracy margin, measurement repeatability, and current dynamic range, make both the 

MKM34Z128 Kinetis MCU and the Filter-Based Metering Algorithm suitable for modern high-

performance power meters. The achieved accuracy is compliant with the EN50470-1 and EN50470-3 

European standards for electronic meters of active energy classes B and C, IEC 62053-21 and IEC 

62052-11 international standards for electronic meters of active energy classes 2 and 1, and the IEC 

62053-23 international standard for static meters of reactive energy classes 2 and 3. 

6. Summary 

This application note describes a metering library that implements the Filter-Based Metering Algorithm. 

The presented algorithm is simple and highly accurate. It has been designed specifically for devices 

featuring sigma-delta converters, which have a fixed measurement sample rate. 

The presented Filter-Based Metering Algorithm can be easily integrated into electronic meters and 

requires only instantaneous phase voltage and current samples to be provided to their inputs. All 

available sensing circuitries, such as a voltage divider, in the case of phase voltage measurement, or a 

shunt resistor, current transformer, and Rogowski coil for phase current measurement, are supported. 

The presented algorithms are intended for post-processing instantaneous phase voltage and current 

samples after phase shift compensation.  

The theoretical section explains fixed-point arithmetic and the theory of digital filters and applications 

on a level necessary to understand the metering algorithm. Setting up of the Filter-Based Metering 

Algorithm can be realized by the configuration tool. This tool is designed to update configuration data 

directly in the configuration C-header file. The changes in the C-header file are reflected after code re-

compilation. The configuration tool automates the procedure of the algorithm setup and optimization, 

and it supports one-phase, two-phase (Form-12S), and three-phase power meter applications. 

The performance of the metering library has been tested in the one-phase Kinetis M power meter 

reference design – the accuracy of the measurement was in the range 0.2 % in the current dynamic 

range 2400:1.  

Sometimes, the lower power consumption is preferred over high accuracy. The existing metering library 

is characterized by high accuracy and exploiting fractional calculations in Q0.31 (32-bit) and even 

Q0.63 (64-bit) fractional data format. Such high accuracy requires adequate core performance and a 

system clock in the range 10 MHz and above. The future development and expansion of the metering 

library will focus on lowering computational resources while performing calculations of billing 

quantities at the accuracy level mandated by IEC, MID, and ANSI-C12.20 standards. 
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The following documents are useful when using the Filter Based Algorithm for Metering Applications. 

1. Handbook for Digital Signal Processing, Sanjit K. Mitra, James F. Kaiser (John Wiley & Sons, 

1993, USA) 

2. Discrete-Time Signal Processing, Alan V. Oppenheim, Ronald W. Schafer (Prentice Hall, 1989, 

USA) 

3. Fractional and Integer Arithmetic - DSP56000 Family of General-Purpose Digital Signal 

Processors, (Motorola 1993, USA) 

4. Q (number format), en.wikipedia.org/wiki/Q_(number_format) 

5. Digital Computer Design Fundamentals, Yaohan Chu (1962 by McGraw-Hill, New York, USA) 

6. Otázky a odpovedě z mikroprocesorov a mikropočítačov, Zdeněk Sobotka (Alfa, 1986, Slovakia) 

7. RMS to DC Conversion Application Guide, Charles Kitchin, Lew Counts (2nd Edition, Analog 

Devices, 1986, USA) 

8. Linear Circuit Design Handbook,  Hank Zumbahlen (editor) (Elsevier-Newnes, 1st Edition, 

2008, USA) 

9. Analytic Signal Generation-Tips and Traps, Andrew Reilly, Gordon Frazer, and Boualem 

Boashash (IEEE Transactions on Signal Processing, vol. 42. No. 11, November 1994) 

10. Current Sensing for Energy Metering, William Koon, Analog Devices, USA 

The following documents can be found on www.nxp.com. Additional documents not listed here can be 

found on the Kinetis M Series product page. 

11. DSP56800E and DSP56800EX Digital Signal Controller Cores Reference Manual 

(document DSP56800ERM) 

12. Kinetis-M One-Phase Power Meter Reference Design (document DRM143) 

8. Revision History 

Revision number Date Substantial changes 

0 08/2013 Initial release 

1 12/2013 Changed Section 7 - References 

2 11/2014 Added Section 3.6 - Rogowski coil sensor signal processing 

Changed Section 4 - Power meter application development 

Changed Section 4.2 - Configuration tool 

3 06/2015 Changed Section 4.1 - Metering libraries 

Added Section 4.1.1 - Core architecture and compiler support 

Changed Section 4.2 - Configuration tool 

4 04/2016 Changed Section 4.2 - Configuration tool 
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Appendix A. C-Header file  
/************************************************************************************** 
 * Filter-Based Metering Library Configuration File, Created: Sun May 31 09:38:33 2015 
 ************************************************************************************** 
 * @TAGNAME       = METERLIB1PH_CFG 
 * @LOCKED        =         0 
 * @FSAMPLE       =      1200 
 * @DFACTOR       =         2 
 * @IMAX          =  141.4214 
 * @UMAX          =  350.0000 
 * @FREQ          =        50 
 * @COUNTERS_RES  =     10000 
 * @PWR_THRESHOLD =    0.1000 
 * @I_STARTING    =    0.0200 
 * @APWR_OFS      =    0.0000 
 * @RPWR_OFS      =    0.0000 
 * @ENERGY_ATT    =    0.0000 
 * @IMP_PER_KWH   =     50000 
 * @IMP_PER_KVARH =     50000 
 * @HPF_FCUT      =    0.3000 
 * @LPF1_FCUT     =    0.5000 
 * @LPF2_FCUT     =    3.0000 
 * @KWIN_BETA     =    6.0672 
 * @KWIN_GAIN     =    1.0000 
 * @FIR_TAPS_CHG  =         0 
 * @FIR_FREQ_MOD  =         0 
 * @CUR_SENSOR    =         1 
 * @LIB_TYPE      =         1 
 * @MATH_TYPE     =         1 
 * @KWH_ONLY      =         0 
 * @SW_PH_CORR    =         0 
 * @MCU_CORE      =         1 
 **************************************************************************************/ 
#ifndef __METERLIB1PH_CFG_H 
#define __METERLIB1PH_CFG_H 
 
/************************************************************************************** 
 * General parameters and scaling coefficients 
 **************************************************************************************/ 
#define POWER_METER               1PH  /*!< Power meter topology                      */ 
#define CURRENT_SENSOR   PROPORTIONAL  /*!< Current sensor output characteristic      */ 
#define LIBRARY_PREFIX       METERLIB  /*!< Library prefix; high-performance library  */ 
#define I_MAX                 141.421  /*!< Maximal current I-peak in amperes         */ 
#define U_MAX                 350.000  /*!< Maximal voltage U-peak in volts           */ 
#define F_NOM                      50  /*!< Nominal frequency in Hz                   */ 
#define COUNTER_RES             10000  /*!< Resolution of energy counters inc/kWh  */ 
#define IMP_PER_KWH             50000  /*!< Impulses per kWh                          */ 
#define IMP_PER_KVARH           50000  /*!< Impulses per kVARh                        */ 
#define DECIM_FACTOR                2  /*!< Auxiliary calculations decimation factor  */ 
#define KWH_CALC_FREQ        1200.000  /*!< Sample frequency in Hz                    */ 
#define KVARH_CALC_FREQ      1200.000  /*!< Sample frequency in Hz                    */ 
/************************************************************************************** 
 * Filter-based metering algorithm configuration structure 
 **************************************************************************************/ 
#define METERLIB1PH_CFG                                                               \ 
{                                                                                     \ 
  U_MAX,                                                                              \ 
  I_MAX,                                                                              \ 
  FRAC32(((+0.1000)/(U_MAX*I_MAX/2.0))),                                              \ 
  FRAC32((+0.0200)/I_MAX),                                                            \ 
  1,                                                                                  \ 
  {{0l,0l,0l},{0l,0l,0l}},                                                            \ 
  {{FRAC32(+0.99921521804155),FRAC32(-0.99921521804155),FRAC32(-0.99843043608309)}},  \ 
  {{FRAC32(+0.13165249758740),FRAC32(+0.13165249758740),FRAC32(-1.0)}},               \ 
  {{0l,0ll},{0l,0ll}},                                                                \ 
  {0l,0ll},                                                                           \ 
  {{0l,0ll},{0l,0ll}},                                                                \ 
  {  49,                                                                              \ 
    {                                                                                 \ 
      FRAC32(0.0),FRAC32(-0.00073728465714),FRAC32(0.0),FRAC32(-0.00196750272687),    \ 
      FRAC32(0.0),FRAC32(-0.00411945802255),FRAC32(0.0),FRAC32(-0.00756839142185),    \ 
      FRAC32(0.0),FRAC32(-0.01278720365088),FRAC32(0.0),FRAC32(-0.02040684105768),    \ 
      FRAC32(0.0),FRAC32(-0.03136483560542),FRAC32(0.0),FRAC32(-0.04728105184137),    \ 
      FRAC32(0.0),FRAC32(-0.07151114503989),FRAC32(0.0),FRAC32(-0.11276139617420),    \ 
      FRAC32(0.0),FRAC32(-0.20318408017719),FRAC32(0.0),FRAC32(-0.63356345988777),    \ 
      FRAC32(0.0),FRAC32(+0.63356345988777),FRAC32(0.0),FRAC32(+0.20318408017719),    \ 
      FRAC32(0.0),FRAC32(+0.11276139617420),FRAC32(0.0),FRAC32(+0.07151114503989),    \ 
      FRAC32(0.0),FRAC32(+0.04728105184137),FRAC32(0.0),FRAC32(+0.03136483560542),    \ 
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      FRAC32(0.0),FRAC32(+0.02040684105768),FRAC32(0.0),FRAC32(+0.01278720365088),    \ 
      FRAC32(0.0),FRAC32(+0.00756839142185),FRAC32(0.0),FRAC32(+0.00411945802255),    \ 
      FRAC32(0.0),FRAC32(+0.00196750272687),FRAC32(0.0),FRAC32(+0.00073728465714),    \ 
      FRAC32(0.0)                                                                     \ 
    },                                                                                \ 
     25,                                                                              \ 
    {                                                                                 \ 
      FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),        \ 
      FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),        \ 
      FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),        \ 
      FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),        \ 
      FRAC16(-1.0)                                                                    \ 
    }                                                                                 \ 
  },                                                                                  \ 
  {                                                                                   \ 
    {                                                                                 \ 
      0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,  \ 
      0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l            \ 
    },                                                                                \ 
    0ll,                                                                              \ 
    {                                                                                 \ 
      0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l,0l      \ 
    },                                                                                \ 
    0l                                                                                \ 
  },                                                                                  \ 
  {                                                                                   \ 
    {FRAC32(+0.00261116383261),FRAC32(+0.00261116383261),FRAC32(-0.99477767233478)},  \ 
    {FRAC32(+0.00261116383261),FRAC32(+0.00261116383261),FRAC32(-0.99477767233478)},  \ 
  },                                                                                  \ 
  {0ll,0ll,0l,0ll},                                                                   \ 
  {0ll,0ll,0l,0ll},                                                                   \ 
  {0ll,0ll,0l,0ll},                                                                   \ 
  {0ll,0ll,0l,0ll},                                                                   \ 
  {                                                                                   \ 
    FRAC48((+0.0000/(U_MAX*I_MAX))),FRAC32(+1.0000),  METERLIB_KWH_DR(   10000),      \ 
    {0ll,0ll,0ll},0ll,0l,FRAC16(-1.0),                                                \ 
    {FRAC32(+0.00779293629195),FRAC32(+0.00779293629195),FRAC32(-0.98441412741610)},  \ 
    {0ll,0ll,0ll},{0ll,0ll,0ll}                                                       \ 
  },                                                                                  \ 
  {                                                                                   \ 
    FRAC48((+0.0000/(U_MAX*I_MAX))),FRAC32(+1.0000),METERLIB_KVARH_DR(   10000),      \ 
    {0ll,0ll,0ll},0ll,0l,FRAC16(-1.0),                                                \ 
    {FRAC32(+0.00779293629195),FRAC32(+0.00779293629195),FRAC32(-0.98441412741610)},  \ 
    {0ll,0ll,0ll},{0ll,0ll,0ll}                                                       \ 
  }                                                                                   \ 
} 
#endif  /* __METERLIB1PH_CFG_H */ 
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Appendix B.  Test application 
#include <math.h> 
#include "drivers.h" 
 
#include "fraclib.h" 
#include "meterlib.h" 
#include "meterlib1ph_cfg.h" 
 
#include "appconfig.h" 
 
#define _PI   3.14159265358979323846 /* pi */ 
 
/* static data definitions                                                    */ 
static tMETERLIB1PH_DATA mlib = METERLIB1PH_CFG; 
static volatile frac32  u24_sample, i24_sample; 
static tENERGY_CNT wh_cnt, varh_cnt; 
static double  time = 0.0, U_RMS, I_RMS, P, Q, S, U_ANGLE = (45.0/180.0)*_PI, 
                                                  I_SHIFT = (-5.5/180.0)*_PI; 
 
static int     cycle = 0; 
 
static frac16  shift = METERLIB_DEG2SH(-5.5, 50.0); 
 
#if defined(__ICCARM__) 
  #pragma diag_suppress=Pa082 
#endif 
void main (void) 
{ 
  while (1) 
  { 
    /* calculate phase voltage and phase current waveforms                    */ 
    time = time+(1.0/KWH_CALC_FREQ); 
    u24_sample = FRAC24(((sin(2*_PI*50.0*time+U_ANGLE)*230.0*sqrt(2)+0.0)/U_MAX)); 
    i24_sample = FRAC24(((sin(2*_PI*50.0*time+I_SHIFT)*5.0*sqrt(2)+0.0)/I_MAX)); 
 
    METERLIB1PH_ProcSamples(&mlib,u24_sample,i24_sample,&shift); 
    METERLIB1PH_CalcWattHours(&mlib,&wh_cnt,METERLIB_KWH_PR(IMP_PER_KWH)); 
 
    /* functions below might be called less frequently - please refer to      */ 
    /* KWH_CALC_FREQ, KVARH_CALC_FREQ and DECIM_FACTOR constants              */ 
    if (!(cycle % (int)(KWH_CALC_FREQ/KVARH_CALC_FREQ))) 
    { 
      METERLIB1PH_CalcVarHours (&mlib,&varh_cnt,METERLIB_KVARH_PR(IMP_PER_KVARH)); 
    } 
 
    if (!(cycle % DECIM_FACTOR)) 
    { 
      METERLIB1PH_CalcAuxiliary(&mlib); 
    } 
 
    METERLIB1PH_ReadResults (&mlib,&U_RMS,&I_RMS,&P,&Q,&S); 
    cycle++; 
  } 
} 
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