

© 2016 NXP B.V.

Filter-Based Algorithm for Metering

Applications

By: Martin Mienkina

1. Introduction

High accuracy metering is an essential feature of an

electronic power meter application. Metering

accuracy is a most important attribute because

inaccurate metering can result in substantial amounts

of lost revenue. Moreover, inaccurate metering can

also undesirably result in overcharging to customers.

The common sources of metering inaccuracies, or

error sources in a meter, include the sensor devices,

the sensor conditioning circuitry, the Analog Front-

End (AFE), and the metering algorithm executed

either in a digital processing engine or a

microcontroller.

NXP Semiconductors Document Number: AN4265

Application Note Rev. 4 , 04/2016

Contents

1. Introduction .. 1
2. Block diagram .. 2
3. Theory .. 4

3.1. Basics of fixed-point arithmetic 4
3.2. Infinite impulse response filter 9
3.3. Explicit RMS converter ... 13
3.4. Average power converter 14
3.5. Ideal Hilbert transformer 15
3.6. Rogowski coil sensor signal processing 18

4. Power meter application development 19
4.1. Metering libraries .. 21
4.2. Configuration tool ... 62

5. Accuracy and performance testing 74
6. Summary .. 76
7. References .. 77
8. Revision History ... 77
Appendix A. C-Header file .. 78
Appendix B. Test application .. 80

Block diagram

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

2 NXP Semiconductors

The critical task for a digital processing engine or a microcontroller in a metering application is accurate

computation of active energy, reactive energy, active power, reactive power, apparent power, RMS

voltage, and RMS current. The active and reactive energies are sometimes referred to as billing

quantities. Their computations must be compliant with the EN50470-1 and EN50470-3 European

standards for electronic meters of active energy class B and C, and IEC 62053-21 and IEC 62052-11

international standards for electronic meters of active energy classes 2 and 1, and the IEC 62053-23

international standard for static meters of reactive energy classes 2 and 3.

The remaining quantities are calculated for informative purposes and they are referred as non-billing.

The metering algorithms perform computation in either time or frequency domain. This application note

describes an accurate and scalable metering algorithm that is intended for use in electronic meters,

further referred to as the Filter-Based Metering Algorithm. This algorithm calculates all billing and non-

billing quantities in the time domain, with extensive support of the Finite Impulse Response (FIR) and

Infinite Impulse Response (IIR) digital filters [1] and [2].

The Filter-Based Metering Algorithm can be easily integrated into an electronic power meter

application. The algorithm requires only instantaneous voltage and current samples to be provided at

constant sampling intervals. These instantaneous voltage and current samples are usually measured by

an AFE with the help of a resistor divider, in the case of a phase voltage measurement, and a shunt

resistor, current transformer or a Rogowski coil in the case of a phase current measurement. All current

measurement sensors introduce a phase shift into current measurement. Therefore, it is necessary to

align the phases of the instantaneous voltage and current samples using either software phase correction

method included in the Filter-Based Metering Algorithm or with the aid of delayed sampling before

using them.

The software configuration tool is available to easily set up the Filter-Based Metering Algorithm. The

tool is intended to tune digital filters to match the required performance and to generate a C-header file

with configuration data specific to the power meter type. The tool automates the procedure of the

algorithm setup and optimization, while providing a rough estimate of the required computational load.

There further follows a block diagram and a brief description of the Filter-Based Metering Algorithm in

a one-phase power meter configuration.

2. Block diagram

The following figure shows a block diagram of the Filter-Based Metering Algorithm in a typical one-

phase power meter application. The current and voltage measurements are represented by 𝑖(𝑡) and 𝑢(𝑡)

signal sources. These sources provide phase-aligned instantaneous current and voltage samples at

constant sampling intervals. The new voltage and current samples trigger a recalculation of all the

algorithm blocks. After each recalculation, new billing and non-billing quantities will become available.

All calculated quantities are usually displayed on the LCD and archived in a database for post-

processing and reading through the Automated Meter Reading (AMR) communication interface. In

addition, active and reactive energies also drive their respective pulse output LEDs for calibration and

testing purposes.

Block diagram

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 3

 Block diagram of the filter-based metering algorithm

The algorithm consists of several blocks mostly comprising the Infinite Impulse Response (IIR) and

Finite Impulse Response (FIR) digital filters.

The first block in the signal flow is the samples processing. This block removes offset from the

instantaneous voltage and current samples, performs optional sensor phase shift correction, and returns

the order of voltage waveform sequences in a three-phase system. If the Direct Current (DC) offset was

stable and deterministic, its removal would be performed by simple subtraction. However, in a real

application, most analog components unintentionally insert a DC offset as part of the signal

conditioning, amplification, and analog-to-digital circuits. Since the DC offset of the analog circuits is

not constant but varies with the process, supply voltage, and temperature, a robust algorithm must be

used for its removal. Due to this fact, this block represents the high-pass first order IIR filters, which

remove any DC and low-frequency components from the alternating voltage and current measurements.

For more information, refer to Infinite impulse response filter.

The second block is essential for reactive energy calculation, and is called the 90-degree phase shifter.

This block represents two special FIR filters, the first is the N-Tap FIR filter that is an approximation of

the Hilbert transformer, and the second is the M-Tap FIR filter that compensates for the group delay

introduced by the first N-Tap FIR filter. For more information, refer to Ideal Hilbert transformer.

Following blocks in the signal flow diagram are the active and reactive energy computing and pulse

generators. These blocks calculate and smooth the active and reactive energies. The smoothing filters are

sometimes required to suppress the 100 Hz (120 Hz) component caused by the multiplication of the

instantaneous 50 Hz (60 Hz) voltage and current waveforms. The smoothed energy waveforms result in

lower jitter of the generated pulses, and thus, a shortening of the power meter testing and calibration

time.

The explicit RMS converters are present to transform alternating voltage and current waveforms into

RMS values. This method for the RMS value computation requires the numerical square, average, and

Process

Samples

Active Energy

Computing and

Pulse Generator

Reactive Energy

Computing and

Pulse Generator

90-Degree Phase

Shifter

Average Power

Converters

Explicit RMS

Converters

P

Q

URMS

IRMS

kVARh

kWh

Current {i(t)}

Voltage {u(t)}

Theory

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

4 NXP Semiconductors

square root functions be called every time a new sample of the analyzed signal is available (see Explicit

RMS converter).

Finally, the average power converters calculate the active and reactive powers from the new unbiased

phase voltage and phase current samples. This power calculation method leverages the low-pass first

order IIR filters extensively (see Average power converter).

The Filter-Based Metering Algorithm allows the use of two sampling intervals. Introducing a short and

long sampling interval for calculating billing and non-billing quantities, respectively, will lead to

significant savings in the computational power.

The general setting of the algorithm can be easily performed by the configuration tool (see

Configuration tool). This tool allows the user to tune the metering algorithm interactively with respect to

the power meter hardware and firmware capabilities. The configuration session should always terminate

by generating a C-header file containing all the configurations and by saving this file to the hard drive.

3. Theory

The Filter-Based Metering Algorithm comprises of several blocks. These blocks represent the Infinite

Impulse Response (IIR) and Finite Impulse Response (FIR) digital filters. The digital filters and other

calculations performed by the algorithm are based on elementary fractional and integer calculations,

such as addition, subtraction, integration, multiplication and square root.

In order to understand these blocks, the basics and tricks of 2’s complement integer and fractional

arithmetic are explained in the following section.

 Basics of fixed-point arithmetic

This section explains how numbers are represented in a microcontroller and processed by the Filter-

Based Metering Algorithm. The microcontrollers are integrated with an AFE, which converts an analog

input signal into its digital representation and stores it in a result register. This figure shows the result

register implementation specific to the Kinetis M microcontroller family of devices:

01

SDRSIGN

2345678910111213141516171819202122232425262728293031

 Kinetis M - AFE result register format

These devices are integrated with a powerful AFE that produces a digital output scale based on the

Oversampling Ratio (OSR). The digital output of each channel is then truncated to a 24-bit signed 2's

complement result, which is stored in corresponding channel's result register:

 Kinetis M - AFE result register fields

Field Description

[31:23] Sign Bits

SIGN This field represents sign bits (bits 31 to 23 are filled with sign bits).

[22:0] Sample Data Result

SDR This field represents valid sample value in 2’s complement form.

The 2’s complement representation is convenient in implementing DSP algorithms such as IIR and FIR

filters. All operations can be performed using 2’s-complement integer or fractional arithmetic [3], [4],

and [5].

Theory

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 5

 Signed integer

This format is used for processing data as integers. In this format, the N-bit operand is represented using

the Q(N-1).01 format (N integer bits). The range of signed integer numbers is as follows:

−𝟐(𝑵−𝟏) ≤ 𝑰𝒏𝒕𝒆𝒈𝒆𝒓 ≤ [𝟐(𝑵−𝟏) − 𝟏]

Eq. 1

For example, the most negative, signed word that can be represented is –32,768 ($8000), and the most

negative, signed long word is –2,147,483,648 (0x80000000). The most positive signed word is 32,767

(0x7FFF), and the most positive signed long word is 2,147,483,647.

Signed integer data format is typically used in controller code, array indexing and address computations,

peripheral set-up and handling, bit manipulation, bit-exact algorithms, and other general-purpose tasks.

 Signed fractional

In this format, the N-bit operand is represented using the Q0.(N–1) format (1 sign bit, N–1 fractional

bits). Signed fractional numbers lie in the following range:

−𝟏. 𝟎 ≤ 𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏𝒂𝒍 ≤ [+𝟏 − 𝟐−(𝑵−𝟏)]

Eq. 2

For example, the most negative word that can be represented is –1.0, whose internal representation is

0x8000 (word) or 0x80000000 (long word). The most positive word is 1.0-2-15 (0x7FFF), and the most

positive long word is 1.0-2-31 (0x7FFFFFFF).

Using 2's complement signed integers is not convenient for handling to implement digital filters. For

example, if two 32-bit words are multiplied, 64 bits are needed to store the result. The size of the

required word length increases without bounds as we further multiply numbers together. Although not

impossible, it becomes complicated to handle this increase in word-length using signed integer

arithmetic.

The problem can be easily handled by using signed fractional numbers in the range −1.0 and 1.0-2-[N-1],

instead of signed integers, because the product of two numbers in the range [−1, 1.0-2-[N-1]] will always

be in the same range. Signed fractional data format and arithmetic is typically required for computation-

intensive algorithms, such as digital filters, speech coders, vector and array processing, digital control,

and other signal processing tasks.

The relationship between the integer interpretation of an N-bit value and the corresponding fractional

interpretation is:

𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏𝒂𝒍 = 𝑰𝒏𝒕𝒆𝒈𝒆𝒓 𝟐(𝑵−𝟏)⁄

Eq. 3

The arithmetic operations required by the Filter-Based Metering Algorithm, such as addition,

subtraction, multiplication, and square root are discussed in the following subsections.

1 The Q notation is written as Qm.n, where: Q designates that the number is in the Q format notation (the Texas
Instruments representation for signed fixed-point numbers), m is the number of bits set aside to designate the 2’s
complement integer portion of the number, and n is the number of bits used to designate the fractional portion of
the number.

Theory

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

6 NXP Semiconductors

 Addition and subtraction

Addition, subtraction, and comparison operations are performed identically for both fractional and

integer representations. The Arithmetic Logic Unit (ALU) of the microcontroller does not have to

distinguish between the data types for these operations. The source code of the L_add() function that

implements 32-bit integer (Q31.0) and fractional (Q0.31) addition, is shown in the following code:

 Function for 32-bit Integer and Fractional Addition
static inline frac32 L_add (register frac32 lsrc1, register frac32 lsrc2)
{
 return lsrc1+lsrc2;
}

Typical examples of additions are shown in the following table:

 Examples of 32-bit addition

Format
X Y Addition, Z=X+Y

Signed Fractional Hexadecimal Signed Fractional Hexadecimal Signed Fractional Hexadecimal

Q0.31

0.5 0x40000000 0.25 0x20000000 0.75 0x60000000

0.5 0x40000000 -0.25 0xE0000000 0.25 0x20000000

-0.5 0xC0000000 -0.25 0xE0000000 -0.75 0xA0000000

The source code of the L_sub() function that implements 32-bit integer and fractional subtraction is

shown in the following code:

 Function for 32-bit Integer and Fractional Subtraction
static inline frac32 L_sub (register frac32 lsrc1, register frac32 lsrc2)
{
 return lsrc1-lsrc2;
}

The following table shows typical examples of subtraction operations:

 Examples of 32-bit subtraction

Format
X Y Subtraction, Z=X-Y

Signed Fractional Hexadecimal Signed Fractional Hexadecimal Signed Fractional Hexadecimal

Q0.31

0.5 0x40000000 0.25 0x20000000 0.25 0x20000000

0.5 0x40000000 -0.25 0xE0000000 0.75 0x60000000

-0.5 0xC0000000 -0.25 0xE0000000 -0.25 0xE0000000

Theory

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 7

NOTE

Addition and subtraction can generate values that are larger than the data

format. For example, adding two fractional Q0.15 numbers X=0.55

(0x4666) and Y=0.55(0x4666) causes overflow X+Y= -0.9(0x8CCC). The

solution is saturation or data limiting, which is implemented on some

DSPs and guarantees that values are always within a given range. On

microcontrollers with no hardware support for saturation and data limiting,

one has to ensure that algorithms are implemented in a way to prevent

overflows. The Filter-Based Metering Algorithm solve this phenomena by

using input signals of the phase voltage and phase current samples in 24-

bit fractional representation (Q0.23) while performing all mathematical

operations in 32-bit fractional format (Q0.31). In this way, the dynamic

range for additions and subtractions is extended by eight bits.

 Multiplication

The multiplication operation is not same for integer and fractional arithmetic. The result of a fractional

multiplication differs from the result of an integer multiplication. The difference amounts to a 1-bit shift

of the final result, as illustrated in Figure 3.

Any binary multiplication of two N-bit signed numbers generates a signed result that is 2N–1 bits in

length. This (2N–1)-bit result must be properly placed in a field of 2N bits to fit correctly into the on-

chip registers. For correct integer multiplication, an extra sign bit is inserted in the MSB to generate a

2N-bit result. For correct fractional multiplication, an extra zero bit is inserted in the LSB to generate a

2N-bit result.

S

Integer multiplication

S

S S

N N-1

2N Bits
 Sign extension

S

Fractional multiplication

x

S

S.

N

2N Bits

Zero fill

MSP LSP 0MSP LSP

N-1

x

 Comparison of integer and fractional multiplication

Some DSPs have dedicated instructions to perform integer and fractional multiplication [3]. On general

purpose microcontrollers, fractional multiplication can be emulated easily using integer arithmetic. The

following code shows the source code of the L_mul() function that implements 32x32=32-bit fractional

multiplication in C-language:

 Function for 32-bit Fractional Multiplication
static inline frac32 L_mul (register frac32 lsrc1, register frac32 lsrc2)
{
 register frac64 tmp = ((frac64)lsrc1*(frac64)lsrc2);
 return (tmp+tmp)>>32;
}

Theory

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

8 NXP Semiconductors

Typical examples of fractional multiplications are shown in the following table:

 Examples of 32-bit fractional multiplication

Format
X Y Multiplication, Z=X*Y

Signed Fractional Hexadecimal Signed Fractional Hexadecimal Signed Fractional Hexadecimal

Q0.31

0.5 0x40000000 0.25 0x20000000 0.125 0x10000000

0.5 0x40000000 -0.25 0xE0000000 -0.125 0xF0000000

-0.5 0xC0000000 -0.25 0xE0000000 0.125 0x10000000

 Square root

Similarly to the multiplication operation described in previous subsection, square root calculation is also

not same for integer and fractional values. The relationship between square root of the fractional and

integer N-bit radicands can be expressed as follows:

√𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏𝒂𝒍 = √𝑰𝒏𝒕𝒆𝒈𝒆𝒓 √𝟐(𝑵−𝟏)⁄

Eq. 4

The Filter-Based Metering Algorithm uses square root function for calculating the RMS current and

voltage. The square root computation is limited to positive fractional numbers and is based on the Non-

restoring Method [6]. This method only uses addition, subtraction, and compare operations. The square

root is calculated from the known radicand X, the unknown quotient Q, and the unknown remainder Rn,

which all satisfy the relation.

𝑹𝒏 = 𝑿 − 𝑸𝟐

Eq. 5

The method employs a root extractor that is either added to or subtracted from the partial remainder. The

root extractor in the non-restoring method is a function of the quotient digits and constants. The first

operation is always subtraction of a constant (0.25). The subsequent operation subtracts or adds the root

extractor, depending on whether the remainders are positive or negative. This leads to a new partial

remainder. The process continues until the remainder is zero or the desired number of the quotient digit

is obtained.

 Algorithm for the binary square root by the non-restoring method

First Reminder 𝑅1 = 𝑋 − 0.25

Reminder 𝑅𝑛+1 = {
𝑅𝑛 − 2−𝑛[∑ 𝑞𝑖 + 1.25 × 2−𝑛𝑛−1

𝑖=1], 𝑅𝑛 ≥ 0

𝑅𝑛 + 2−𝑛[∑ 𝑞𝑖 + 0.75 × 2−𝑛𝑛−1
𝑖=1], 𝑅𝑛 < 0

Quotient

𝑄 = ∑ 𝑞𝑖
𝑛
𝑖=1

𝑞𝑖 = {
2−𝑖 , 𝑅𝑖+1 ≥ 0

0, 𝑅𝑖=1 < 0

Theory

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 9

The C-language along with a preprocessor guarantees an efficient calculation of the binary square root

algorithm on a microcontroller. The source code of the L_sqr() function that implements the 32-bit

fractional (Q0.31) square root by the non-restoring method is as follows:

 Function for the 32-bit Square Root Calculation by the Non-restoring Method
#define LSQR_STEP(k) \
{ \
 if(r1>=0) \
 { \
 r1-=((q1+(frac32)FRAC32(1.25/(((frac32)1)<<k)))>>k); \
 q1+=((frac32)FRAC32(0.5)>>(k-1)); \
 } \
 else \
 { \
 r1+=((q1+(frac32)FRAC32(0.75/(((frac32)1)<<k)))>>k); \
 } \
}

frac32 L_sqr (register frac32 x)
{
 register frac32 q1 = 0l;
 register frac32 r1 = x-(frac32)FRAC32(0.25);

 /* input parameter conditions */
 if (x <= 0l) { return FRAC32(0.0); }

 /* square root calculation using non-restoring method */
 LSQR_STEP(1); LSQR_STEP(2); LSQR_STEP(3); LSQR_STEP(4); LSQR_STEP(5);
 LSQR_STEP(6); LSQR_STEP(7); LSQR_STEP(8); LSQR_STEP(9); LSQR_STEP(10);
 LSQR_STEP(11); LSQR_STEP(12); LSQR_STEP(13); LSQR_STEP(14); LSQR_STEP(15);
 LSQR_STEP(16); LSQR_STEP(17); LSQR_STEP(18); LSQR_STEP(19); LSQR_STEP(20);
 LSQR_STEP(21); LSQR_STEP(22); LSQR_STEP(23); LSQR_STEP(24); LSQR_STEP(25);
 LSQR_STEP(26); LSQR_STEP(27); LSQR_STEP(28); LSQR_STEP(29); LSQR_STEP(30);
 LSQR_STEP(31);

 return q1;
}

Typical examples of the square root computation for fractional radicands are shown in the following

table:

 Examples of 32-bit square root

Format
X Square Root, Z=SQRT(X)

Signed Fractional Hexadecimal Signed Fractional Hexadecimal

Q0.31

0.5 0x40000000 0.7071068 0x5A827999

0.25 0x20000000 0.5000000 0x40000000

0.125 0x10000000 0.3535534 0x2D413CCC

The digital filter theory and derivation formulas for calculation of the filter coefficients are discussed in

subsequent section.

 Infinite impulse response filter

Infinite Impulse Response (IIR) digital filters have a transfer function of the form:

𝑯(𝒛) =
𝒂𝟎 + 𝒂𝟏𝒛−𝟏 + ⋯ + 𝒂𝑴𝒛−𝑴

𝟏 + 𝒃𝟏𝒛−𝟏 + ⋯ + 𝒃𝑵𝒛−𝑵

Eq. 6

where, H(z) is the z-Transform, N is filter order and M ≤ N.

Theory

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

10 NXP Semiconductors

The most common technique used for designing IIR digital filters involves the following steps:

1. The designing of an analog prototype filter.

2. Transforming the prototype to the digital representation.

The most common designs for the analog filter are Butterworth, Chebyshev, and Elliptic. The

Chebyshev and Elliptic filters are characterized by more rapid transitions from pass-band to stop-band

than the Butterworth filter.

In a metering application, the monotonic and smooth overall filter response is preferred so as not to

distort the magnitudes of the phase voltage and current harmonics in the band of interest.

In addition, neither an attenuation slope nor a sharp transition from the pass-band to the stop-band is

critical. Obviously, moderate attenuation and transition band of the filter will cause slight magnitude

error at frequency of the mains 50 Hz (60 Hz). This filter error along with other inaccuracies of the

power meter's measurement and calculation chain are calibrated on the production line. Due to relaxed

requirements on a steep attenuation slope but the necessity of a smooth overall filter response, both the

low-pass and high-pass first order digital filters were derived from the transfer function H(s) of the

normalized first order Butterworth analog filter.

𝑯(𝒔) =
𝟏

𝒔 + 𝟏

Eq. 7

The normalized transfer function H(s) represents the case for the cut-off frequency ωC = 1 [rad/s]. To

obtain Butterworth filters with different cut-off frequencies, it is convenient to use the normalized

transfer function H(s) as prototype and apply the analog-to-analog transformations s → s/ωC. By

applying this transformation, we get the transfer function for the low-pass first order Butterworth filter.

𝑯𝑳𝑷(𝒔) =
𝝎𝒄

𝒔 + 𝝎𝒄

Eq. 8

where, ωc is the low-pass filter cut-off frequency in [rad/s].

The following figure shows magnitude and phase responses of the low-pass first order Butterworth filter

for ωc = 1 [rad/s]. In electronics, the frequency responses are often described in terms of "per decade".

The example Bode plot shows a slope of -20 dB/decade in the stop-band, which means that for every

factor-of-ten increase in frequency (going from 10 rad/s to 100 rad/s in the figure), the gain decreases by

20 dB.

Theory

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 11

 Bode diagram of the low-pass first order Butterworth filter

The low-pass filter step response cLP(s) to unit step function L{u(t)} = 1 s⁄ is as follows:

𝑪𝑳𝑷(𝒔) =
𝟏

𝒔

𝝎𝒄

𝒔 + 𝝎𝒄

Eq. 9

Taking the Inverse Laplace transform, the step response is given by:

𝒄𝑳𝑷(𝒕) = 𝟏 − 𝒆−𝝎𝒄𝒕

Eq. 10

The filter settling time is defined as the time of the step response to reach, and stay within, 2% of its

final value 1.0. Thus, solving Eq. 10 for the time parameter the low-pass filter settling time t is

expressed as follows:

𝒕 = [
−𝟐𝒍𝒐𝒈(√𝟏 − 𝒄𝑳𝑷(𝒕))

𝝎𝒄
]

𝒄𝑳𝑷(𝒕)=𝟎.𝟗𝟖

Eq. 11

Similarly, to the previously derived low-pass filter, the high-pass first order Butterworth filter

can be derived by applying the analog-to-analog transformation s → ωC/s.

𝑯𝑯𝑷(𝒔) =
𝒔

𝝎𝒄 + 𝒔

Eq. 12

where, ωc is the high-pass filter cut-off frequency in [rad/s].

The following figure shows magnitude and phase responses of the high-pass first order Butterworth

filter for ωc = 1 [rad/s]. The example Bode plot shows a slope of -20 dB/decade in the stop-band,

which means that for every factor-of-ten decrease in frequency (going from 0.1 rad/s to 0.01 rad/s in the

figure), the gain decreases by 20 dB.

Frequency (rad/sec)

P
h
a
s
e
 (
d
e
g
)

Bode Diagrams

-50

-40

-30

-20

-10

0

10-3 10-2 10-1 100 101 102
-100

-80

-60

-40

-20

0

M
a
g
n
it
u
d
e
 (

d
B

)

Cut-off frequency

Slope: -20dB

decade

Theory

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

12 NXP Semiconductors

 Bode diagram of the high-pass first order Butterworth filter

Also, the settling time of the high-pass filter is defined as the time of the response to reach, and stay

within, 2% of its final value 0.0. By Inverse Laplace transform of the high-pass filter transfer function

Eq. 12, combined with the unit step function L{u(t)} = 1 s⁄ and solving the equation for the time

parameter, the settling time is given by

𝒕 = [
−𝒍𝒐𝒈(𝒄𝑯𝑷(𝒕))

𝝎𝒄
]

𝒄𝑯𝑷(𝒕)=𝟎.𝟎𝟐

Eq. 13

The magnitude responses of the high-pass and low-pass Butterworth filters are monotonic overall with

magnitude |HLP(jω)| =|HHP(jω)| = 1 √2⁄ (magnitude down by 3 dB) at ωc = 1.

Further in this section, the digital representation of analog filters will be derived. The analog filter

prototypes given by Eq. 8 and Eq. 12 must be transformed into a digital representation using analog-to-

digital mapping. This generally involves a transformation between the s-plane and the z-plane mapping.

Several transformations exist, see [1].

This section outlines the bilinear transformation that transforms H(s) into H(z) via the relation:

𝑯(𝒛) = [𝑯(𝒔)]𝒔=(𝟐 𝑻⁄)(𝟏−𝒛−𝟏) (𝟏+𝒛−𝟏)⁄

Eq. 14

where, T is the sampling period in seconds.

The next step is to obtain the discrete transfer function of the low-pass first order Butterworth filter by

applying a bilinear transformation to the low-pass analog filter transfer function Eq. 8.

𝑯(𝒛) =
(

𝝎𝑪𝑻
𝟐 + 𝝎𝑪

) 𝒛 + (
𝝎𝑪𝑻

𝟐 + 𝝎𝑪𝑻
)

𝒛 − (
𝟐 − 𝝎𝑪𝑻
𝟐 + 𝝎𝑪𝑻

)

Eq. 15

Frequency (rad/sec)

P
h
a
s
e
 (
d
e
g
)

Bode Diagrams

-80

-70

-60

-50

-40

-30

-20

-10

0

10-3 10-2 10-1 100 101 102
0

20

40

60

80

100

M
a
g
n
it
u
d
e
 (

d
B

)

Cut-off frequency

Slope: -20dB

decade

Theory

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 13

In order to match the magnitude responses of the digital filter transfer function Eq. 15 and the analog

filter prototype transfer function Eq. 8, the cut-off frequency of the analog filter ωC must be shifted

relative to the digital filter cut-off frequency ωD [6].

𝝎𝑪 =
𝟐

𝑻
𝐭𝐚𝐧 (

𝝎𝑫𝑻

𝟐
)

Eq. 16

The difference equation of the first order filter expressed in a general form is:

𝒚(𝒏) = 𝒃𝟏𝒙(𝒏) + 𝒃𝟐𝒙(𝒏 − 𝟏) − 𝒂𝟐𝒚(𝒏 − 𝟏)

Eq. 17

Substituting the frequency pre-warping Eq. 16 into Eq. 15, and by further applying the Inverse z-

transform, the coefficients of the difference equation representing the low-pass first order Butterworth

digital filter can be calculated:

𝒃𝟏 = 𝟐 𝐭𝐚𝐧(𝝎𝑫𝑻 𝟐⁄) [𝟐 + 𝟐 𝐭𝐚𝐧(𝝎𝑫𝑻 𝟐⁄)]⁄

Eq. 18

𝒃𝟐 = 𝟐 𝐭𝐚𝐧(𝝎𝑫𝑻 𝟐⁄) [𝟐 + 𝟐 𝐭𝐚𝐧(𝝎𝑫𝑻 𝟐⁄)]⁄

Eq. 19

𝒂𝟐 = [𝟐 𝐭𝐚𝐧(𝝎𝑫𝑻 𝟐⁄) − 𝟐] [𝟐 + 𝟐 𝐭𝐚𝐧(𝝎𝑫𝑻 𝟐⁄)]⁄

Eq. 20

where, ωD = 2πfD is the cut-off frequency of the digital filter in [rad/s], and T is the sampling period

in seconds.

Similarly, by substitution of the bilinear transformation into the high-pass analog filter transfer function

(Eq. 12), applying frequency prewarping and the Inverse z-transform, the coefficients of the difference

equation for the high-pass first order Butterworth digital filter can be derived:

𝒃𝟏 = 𝟐 [𝟐 + 𝟐 𝐭𝐚𝐧(𝝎𝑫𝑻 𝟐⁄)]⁄

Eq. 21

𝒃𝟐 = −𝟐 [𝟐 + 𝟐 𝐭𝐚𝐧(𝝎𝑫𝑻 𝟐⁄)]⁄

Eq. 22

𝒂𝟐 = [𝟐 𝐭𝐚𝐧(𝝎𝑫𝑻 𝟐⁄) − 𝟐] [𝟐 + 𝟐 𝐭𝐚𝐧(𝝎𝑫𝑻 𝟐⁄)]⁄

Eq. 23

 Explicit RMS converter

The Root Mean Square (RMS) is a fundamental measurement of the magnitude of an alternating signal.

In mathematics, the RMS is known as the standard deviation, which is a statistical measure of the

magnitude of a varying quantity. It measures only the alternating portion of the signal as opposed to the

RMS value, which measures both the direct and alternating components. In electrical engineering, the

RMS or effective value of a current (IRMS) is, by definition, such that the heating effect is the same for

equal values of alternating or direct current. The basic equation for straightforward computation of the

RMS current from the signal function is:

𝑰𝑹𝑴𝑺 = √
𝟏

𝑻
∫ [𝒊(𝒕)]𝟐

𝑻

𝟎

𝒅𝒕

Eq. 24

where, i(t) denotes the function of the analyzed waveform in the time domain, and the period T is the

time it takes for one complete signal cycle to be produced.

Theory

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

14 NXP Semiconductors

The proposed solution for RMS current calculation overcomes the inherent limitation of the

straightforward computation Eq. 24, such as the need for determining precisely the limits for the finite

integration. It is known in technical literature as an explicit RMS converter, and has been used for many

years primarily for monolithic RMS/DC converters [7] and [8].

LPF1

 X
2

i(t)
2

AVG[i(t)
2
] AVG[i(t)

2
]i(t)

LPF1
IRMS

 Explicit RMS current converter

This method for computing the RMS value requires numerical square, average and square root functions

to be called every time a new sample of the analyzed signal is obtained. Figure 6 shows the explicit

RMS converter implementation for RMS current computation.

The Filter-Based Metering Algorithm uses the explicit RMS converter method for calculating the RMS

current (IRMS) and RMS voltage (URMS). The next section describes a similar method for the

calculation of active and reactive power.

 Average power converter

As opposed to the RMS current, where the heating effect is the same for equal values of alternating or

direct current, the RMS value of power is not equivalent to heating power and, in fact, it does not

represent any useful physical quantity. The equivalent heating power of a waveform is the average

power and can be calculated using the average power converter. This converter can calculate both the

active (P) and reactive (Q) powers.

The active power (P) is measured in watts (W) and is expressed as the product of the voltage and the in-

phase component of the alternating current. In fact, the average power of any whole number of cycles is

the same as the average power value of just one cycle. So, we can easily find the average power of a

very long-duration periodic waveform simply by calculating the average value of one complete cycle.

𝑷 =
𝟏

𝑻
∫ 𝒖(𝒕)

𝑻

𝟎

𝒊(𝒕)𝒅𝒕

Eq. 25

where, u(t) and i(t) denote alternating voltage and current waveforms, and the time T is the waveform

period.

The average power converter is, to some extent, similar to the explicit RMS converter. The power is

calculated by multiplying instantaneous voltage and current samples and passing the product through a

two-stage low-pass first order Butterworth filter as shown in the following figure:

X
P=AVG[p(t)]

LPF1

u(t)

i(t)

p(t)
LPF1

 Average active power converter

Theory

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 15

The Filter-Based Metering Algorithm uses the average power converter for calculation of active power

(P) and reactive power (Q). The reactive power (Q) is measured in units of volt-amperes-reactive (VAR)

and is the product of the voltage and current and the sine of the phase angle between them. The reactive

power (Q) is calculated in the same manner as active power (P), but in reactive power the voltage input

waveform is 90 degrees shifted with respect to the current input waveform.

The Hilbert filter, a special FIR filter for shifting a phase voltage waveform by 90 degrees, is explained

in the following section.

 Ideal Hilbert transformer

The Ideal Hilbert transformer is a special class of transformation which is characterized by phase

shifting all the pass-band frequencies of the input signal by 90 degrees.

𝑯(𝒆𝒋𝝎) = {
−𝒋, 𝟎 < 𝝎 < 𝝅

 𝒋, −𝝅 > 𝝎 > 𝟎

Eq. 26

The following figure shows the magnitude and phase response of the Ideal Hilbert transformer. The

frequency response of the ideal analog Hilbert transformer has unity magnitude, a phase angle of − π 2⁄

for 0 < 𝜔 < 𝜋 and a phase angle + π 2⁄ for −π < 𝜔 < 0.

│H(ejω)│
1

ω

-π/2

arg(H(ejω))

π/2

ωωs/2

(a) (b)

 Magnitude and phase responses of the ideal Hilbert transformer

The impulse response h(n) of the Ideal Hilbert transformer is [3] and [9].

𝒉[𝒏] = {
𝟐

𝝅

𝐬𝐢𝐧𝟐(𝛑 𝐧 𝟐⁄)

𝒏
, 𝒏 ≠ 𝟎

𝟎, 𝒏 = 𝟎

Eq. 27

The impulse response infinitely extends in both directions (see Figure 9). Moreover, the output of the

Ideal Hilbert transformer starts responding to the Dirac Impulse in advance. The infinite length and

predictive nature of the impulse response mean that the ideal Hilbert transformation cannot be

implemented in practice - an approximation is therefore necessary.

Theory

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

16 NXP Semiconductors

 Ideal Hilbert transformer impulse response

The Filter-Based Metering Algorithm uses FIR approximation and Kaiser Window to restrict the

impulse response length of the Ideal Hilbert transformer. This procedure can be compared to placing a

window of width N = 2M + 1 over all of the coefficients. All the coefficients within the window are

retained and multiplied with the window weight coefficient, and all coefficients outside the window are

discarded.

The Kaiser Window coefficients of the Hilbert FIR filter of length N are expressed by equation:

𝒘[𝒏] = {
𝑰𝟎 {𝜷√(𝟏 − [(𝒏 − 𝒏𝒅) 𝒏𝒅⁄]𝟐)}

𝑰𝟎{𝜷}
, 𝟎 ≤ 𝒏 ≤ 𝑵 − 𝟏

𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

Eq. 28

where, nd = M 2⁄ , I0 is the zeroth order Modified Bessel function of the first kind, β is an arbitrary real

number that determines the shape of the Kaiser Window, and N = 2M + 1 is the length of the Hilbert

FIR filter.

Furthermore, the impulse response is shifted by a constant group delay to make the system casual. The

Hilbert FIR filter, the closest approximation of the Ideal Hilbert transformer, with a finite number of

coefficients shifted by constant group delay M, is shown in the following figure:

 FIR approximation of the ideal Hilbert transformer impulse response

-∞ 0
-1

-0.5

0

0.5

1
Hilbert Transformer Impulse Response

∞

Window length: N=2M+1

coefficients

-5 0 5 10 15 20 25
-1

-0.5

0

0.5

1
FIR Approximation of the Ideal Hilbert Transformer Impulse Response

coefficients

Window length: N=2M+1

M = group delay

Theory

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 17

Typically, FIR filters are implemented as causal filters, so the actual phase response of the Hilbert FIR

filter will be the approximate Hilbert phase response plus a linear phase term with a slope equal to M

considering filter length N = 2M + 1.

Therefore, when a signal passes through such a Hilbert FIR filter, the output is not the Hilbert transform

of the input, but rather it is the Hilbert transform of the input delayed by M samples. If the filter length is

even, this will yield a non-integer sample delay. Thus, an odd-valued filter length is usually desirable so

that the input signal x[n] can be passed both through the Hilbert FIR filter and through an integer sample

delay to yield two signals y90[n] and ydel[n] that are related through the Hilbert transform as shown in

the following figure:

Hilbert Transformer FIR

Approximation

z
-[(N-1)/2]

N-Tap

FIR

x[n] ydel[n]

y90[n]

 FIR approximation block of the ideal Hilbert transformer

The magnitude and phase response of the FIR Hilbert filter designed using a Kaiser Window (𝑁=23 and

𝛽 =0, 4 and 8) is shown in the following figure.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-80

-60

-40

-20

0

Normalized frequency (Nyquist == 1)

P
h

a
s
e

 (
d

e
g

re
e

s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-40

-30

-20

-10

0

10

Normalized frequency (Nyquist == 1)

M
a

g
n

it
u

d
e

 R
e

s
p

o
n

s
e

 (
d

B
)

β=0

β=4

β=8

 FIR approximation block magnitude and phase response

NOTE

The case with β = 0 corresponds to use of the Rectangular Window with

all the weights within the window set to one and the remaining weights

outside the window set to zero.

Theory

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

18 NXP Semiconductors

As already indicated, the Hilbert FIR filter is used by the Filter-Based Metering Algorithm to phase shift

the voltage input waveform by 90 degrees with respect to the current input waveform. The shifted

waveforms are then used for calculating the reactive power (Q) and reactive energy (kVARh).

 Rogowski coil sensor signal processing

Rogowski coils, typically represented by an air core coil, provide linear measurement within a high

current dynamic range. The voltage that is induced in the Rogowski coil is proportional to the rate of

change (derivative) of the measured current. Because the output from the Rogowski coil is a derivative

of current di/dt, an integrator is needed to convert it back to the original format i(t) [10].

z
di/dt

HPF HPF

i(t)
Integrator

 Rogowski coil digital integrator

Figure 13 shows the calculation path of the digital integrator implemented by the Filter-Based Metering

Algorithm. The calculation path comprises an integrator block and two high-pass first order IIR filter

blocks. The first high-pass filter in the computation chain is required to prevent the periodic overflows

of the integrator which would otherwise occur due to DC offset of the input signal.

As already indicated, the integrator block converts a derivative of the current back to the original format.

In the frequency domain, an output of the integrator block can be viewed as a -20dB/decade attenuation

and a constant –90° phase shift (see Figure 14).

 Magnitude response of the integrator block from 1 to 250 Hz with gain 0 dB at 50 Hz

The second high-pass filter is required to remove DC offset from the output of the integrator block.

100 101 102 103

-20

-10

0

10

20

30

40

Frequency (Hz)

M
a
g
n
itu

d
e
 (

d
B

)

Magnitude: 0 dB

at 50 Hz

Slope: -20dB

decade

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 19

When both high-pass filters are used, then the output signal of the digital integrator is proportional to the

input current, even if Rogowski coil outputs are distorted by DC offset or by slowly varying signals. The

only difference between the measured current and the Rogowski coil output voltage processed by the

digital integrator is in the small phase shift. The small phase shift error is caused by the high-pass filters

in the calculation path together with the integrator block, and may be corrected by propagating the phase

voltage samples through the same high-pass filters.

di/dt
HPF HPF

i(t)
Integrator

u(t)
HPF HPF

u’(t)

Algorithm extension

for Rogowski coil

processing

 Offset removal block combined with a Rogowski coil digital integrator

Figure 15 shows an offset removal block combined with a Rogowski coil digital integrator. This block

removes DC offset from the input signal samples and converts the rate of change of the current,

measured by the Rogowski coil sensor, into the original format.

NOTE

Even if other current sensor types, such as a current transformer or shunt

resistor are used, it is always recommended to eliminate DC offset and

slowly varying signals before energy computing. In such cases, neither the

integrator block nor the pair of high-pass IIR filters is required, and thus

the relatively complex block, for Rogowski coil processing, transforms

into a high-pass first order IIR filter in each signal path.

4. Power meter application development

Mastering a power meter application and achieving the accuracy classes with minimal computational

resources and a low-power budget might be a never-ending process. More than designer diligence,

usually it’s the time to market that drives power meter development milestones. Specifically, the

metrology portion of the power meter must be robust and behave deterministically under all conditions.

Therefore, in order to accelerate power meter development, the designers may familiarize themselves

with algorithms offered by the semiconductor vendors and select and adopt the best solution.

Besides the Filter-Based Metering Algorithm theory, this application note also describes the software

functions which serve as an interface into the algorithm and its capabilities. All software functions are

built into the metering library that must be integrated within the firmware application during project

compilation and linking. These software functions shall be called preferably at fixed sampling intervals.

In fact, existing implementation allows the use of two sampling intervals. Introducing short and long

sampling intervals for calculating billing and non-billing quantities, respectively, will lead to significant

savings in the computational power. Recalculating all non-billing quantities at a lower update rate is

technically acceptable and highly recommended.

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

20 NXP Semiconductors

NOTE

The application note is delivered together with the metering library and

test applications. The library is provided in object format and the test

applications in C-source code.

The general setting of the algorithm can be easily performed by the configuration tool. This tool runs on

a personal computer and it allows the user to tune algorithm behavior in an interactive way and

matching the required performance. The configuration session completes by generating a C-header file

with algorithm configuration data specific to the selected power meter topology.

 Power meter development and user interactions

The software needed to perform basic metering functionality can be divided into two parts:

• Application software – this part includes configuration of the on-chip peripheral modules for

high-precision analog measurement and low jitter pulse output generation, reading phase voltage

and current samples and passing them to the metering library functions.

/**

* General parameters and scaling coefficients

**/

#define POWER_METER 1PH /*!< Power meter topology */

#define CURRENT_SENSOR PROPORTIONAL /*!< Current sensor output characteristic */

#define LIBRARY_PREFIX METERLIB /*!< Library prefix; high-performance library */

#define I_MAX 141.421 /*!< Maximal current I-peak in amperes */

#define U_MAX 350.000 /*!< Maximal voltage U-peak in volts */

#define F_NOM 50 /*!< Nominal frequency in Hz */

#define COUNTER_RES 10000 /*!< Resolution of energy counters in inc/kWh */

#define IMP_PER_KWH 50000 /*!< Impulses per kWh */

#define IMP_PER_KVARH 50000 /*!< Impulses per kVARh */

#define DECIM_FACTOR 2 /*!< Auxiliary calculations decimation factor */

#define KWH_CALC_FREQ 1200.000 /*!< Sample frequency in Hz */

#define KVARH_CALC_FREQ 1200.000 /*!< Sample frequency in Hz */

/**

* Filter-based metering algorithm configuration structure

**/

#define METERLIB1PH_CFG \

{ \

U_MAX, \

I_MAX,

Application SW– main.c

Metering library SW– meterlib.c, meterlib.h

Header file - meterlib1ph_cfg.h

METERLIB1PH_CalcAuxiliary()

Recalculating non-billing quantities

METERLIB1PH_CalcVarHours()

Calculating and reading
volt-ampere-reactive hours

METERLIB1PH_CalcWattHours()

Calculating and reading watt hours

METERLIB1PH_ReadResults()

Reading non-billing quantities

METERLIB1PH_ProcSamples()

Removing DC bias and phase shift

correction

Data structure initialized by the
configuration tool

voltage, current
sample

watt-hour
counter

volt-ampere-
reactive counter

Non-billing
quantities

Configuration Tool

METERLIB1PH_DATA

(internal data

structure)

#include "meterlib.h"

#include "meterlib1ph_cfg.h“

static volatile tMETERLIB1PH_DATA mlib = METERLIB1PH_CFG;

void main(void)

{

/* initialize AFE */

...

while (1)

{

/* read results in a slow software loop */

METERLIB1PH_ReadResults (((tMETERLIB1PH_DATA*)&mlib, ...);

}

}

void AFE_EndOfConvISR(void)

{

/* read conversion samples */

/* recalculate algorithm */

METERLIB1PH_ProcSamples ((tMETERLIB1PH_DATA*)&mlib, ...);

METERLIB1PH_CalcWattHours((tMETERLIB1PH_DATA*)&mlib, ...);

METERLIB1PH_CalcVarHours ((tMETERLIB1PH_DATA*)&mlib, ...);

if (!(cycle % DECIM_FACTOR))

METERLIB1PH_CalcAuxiliary((tMETERLIB1PH_DATA*)&mlib);

cycle++;

}

Auto-generated
C-header file

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 21

• Metering library – comprises a set of highly optimized functions for calculating the billing and

non-billing quantities from the measured phase voltage and current samples. The behavior of the

Filter-Based Metering Algorithm is configured with the help of configuration tool.

Figure 16 depicts usage of the metering library and configuration tool in a simple one-phase power

meter test application.

Initially, necessary hardware initialization, including the AFE, is performed in the main() function.

Consecutively, all processing takes place in the AFE_ EndOfConvISR() interrupt service routine (ISR).

In this routine, the phase voltage and phase current samples are read from AFE and passed to the

metering algorithm via the METERLIB1PH_ProcSamples() function.

The following two functions, METERLIB1PH_CalcWattHours() and METERLIB1PH_CalcVarHours(),

can be called whenever new conversion samples are available. Practically, these functions shall be called

at least 1200 times per second in order to calculate active and reactive energies in the frequency

bandwidth up to 10th harmonic. The increasing calling frequency of these functions makes sense only if

the billing quantities need to be calculated over a higher frequency bandwidth. In a standard power

meter application, the frequency bandwidth of calculations up to 10th harmonics is usually sufficient

and a further increasing sampling rate will not bring any advantage.

The additional function METERLIB1PH_CalcAuxiliary() is called at a lower update rate and it

recalculates all non-billing quantities. The calling frequency for this particular function is even less

demanding than for calculating billing quantities.

Finally, the information stored within the metering library’s internal data structure can be read by the

METERLIB1PH_ReadResults() function. This function is usually called from the main() function or

from a low-frequent software task. The typical calling frequency is in the range from 100 to 250

milliseconds depending on the update rate of non-billing quantities on the LCD.

Figure 16 shows that the metering library operates almost independently, it only requires that conversion

samples of the phase voltage and phase current waveforms be provided by the user application. Due to

this design methodology, the library can be very easily incorporated into various power meter

applications. Further advantages come along with the configuration tool. This tool allows metering

algorithms to be set up and filters tuned in an interactive way. The configuration shall be stored in the C-

header file (for example, meterlib1ph_cfg.h) which is included in the compilation process of the

application and defines algorithm behavior.

The metering library and configuration tool support one-phase, two-phase (Form-12S) and three-phase

power meter applications. These deliverables are discussed in the following sections.

 Metering libraries

This section describes the metering library’s implementation of the Filter-Based Metering Algorithm.

The library comprises several functions with a unique Application Programming Interface (API) for the

most frequent power meter topologies; that is, one-phase, two-phase (Form-12S), and three-phase. More

precisely, two function sets are available. The first function set is optimized to compute metering

quantities at high precision, generating a significant computational load. The second function set has

been designed to support low-power applications. It computes metering quantities at a moderate to low

precision, but generates only 35% of the computation load required by the high-precision functions.

Both the high-precision and low-power function sets are accessible from the meterlib.lib and

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

22 NXP Semiconductors

meterliblp.lib library files, respectively. Similarly to library files, the function prototypes and internal

data structures of both function sets are also declared in the meterlib.h and meterliblp.h header files.

NOTE

The IAR Embedded Workbench for ARM® (version 7.40.1) tool was used

to obtain performance data for all library functions. The code was

compiled with full optimization for execution speed for the MKM34Z128,

an ARM® Cortex®-M0+ core based target [11]. The device was clocked

at 48 MHz using the Frequency-Locked Loop (FLL) module operating in

FLL Engaged External (FEE) mode, driven by an external 32.768 kHz

crystal. Measured execution times were recalculated to core clock cycles.

The flash and RAM requirements are represented in bytes.

The simple block diagrams of the computing process, split by the functions realized by the high-

precision and low-power libraries in a typical one-phase power meter application, are depicted in the

following figures.

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 23

Hilbert

Transformer

Q0.31

HPF

Q0.31

HPF

Q0.31

Q0.31

METERLIB1PH_DATA

iQfilt[n]

uQfilt[n]

Q16.47

WhQ[n]

X

Q0.31

iQfilt[n]

uQfilt[n]

z
-[(N-1)/2]

N-Tap

FIR

FILTER

Q0.31 Q0.31

Q0.31

Q0.63Q0.63 Q16.47

VARhQ[n]



LPF2

Q0.31

LPF1
Q0.31

LPF1

Q0.31

QAVGQ[n]

Q0.63

Q0.31

Q0.31

PAVGQ[n]

IRMSQ[n]

QAVGQ[n]

URMSQ[n]

Q0.31

Q0.31

U_MAX*I_MAX

U_MAX*I_MAX

Q0.31
U_MAX

Q0.31
I_MAX

double

double

double

double

X

d
o

u
b

le

d
o

u
b

le

U
_

M
A

X

I_
M

A
X

URMSQ[n]

IRMSQ[n]

PACGQ[n]

METERLIB1PH_ProcSamples() METERLIB1PH_CalcVarHours()

METERLIB1PH_ReadResults()

Q0.63

LPF1
Q0.63

X
2iQfilt[n]

uQfilt[n] X
2

LPF1

Q0.31 Q0.63

LPF1
Q0.63

LPF1

Q0.31Q0.31

Q0.31

METERLIB1PH_CalcAuxiliary()

Q0.63Q0.63
X

iQfilt[n]

uQfilt[n]

Q0.31

Q0.31



LPF2

Q0.63

LPF1
Q0.31

LPF1

METERLIB1PH_CalcWattHours()

PAVG

QAVG

URMS

IRMS

S

iQ[n]

uQ[n]

METERLIB1PH_CalcIRMS()

METERLIB1PH_CalcURMS()

METERLIB1PH_CalcPAVG()

METERLIB1PH_ReadPAVG()

METERLIB1PH_ReadURMS()

METERLIB1PH_ReadIRMS()

METERLIB1PH_ReadS()

Q0.31

Optional sensor phase shift correction

 Block diagram of the one-phase power meter computing using the high-precision library

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

24 NXP Semiconductors

Hilbert

Transformer

METERLIBLP1PH_DATA

Q32.31

WhQ[n]

X

Q0.15

iQfilt[n]

uQfilt[n]

z
-[(N-1)/2]

N-Tap

FIR

FILTER

Q0.15 Q0.15

Q0.15

Q0.31 Q32.31

VARhQ[n]



Q0.31

LPF1
Q0.15

LPF1

Q0.31

QAVGQ[n]

Q0.31

Q0.31

Q0.31

PAVGQ[n]

IRMSQ[n]

QAVGQ[n]

URMSQ[n]

Q0.31

Q0.31

U_MAX*I_MAX

U_MAX*I_MAX

Q0.31
U_MAX

Q0.31
I_MAX

double

double

double

double

X

d
o

u
b

le

d
o

u
b

le

U
_

M
A

X

I_
M

A
X

URMSQ[n]

IRMSQ[n]

PAVGQ[n]

METERLIBLP1PH_CalcVarHours()

METERLIBLP1PH_ReadResults()

Q0.31

LPF1
Q0.31

X
2iQfilt[n]

uQfilt[n] X
2

LPF1

Q0.15 Q0.31

LPF1
Q0.31

LPF1

Q0.15Q0.15

Q0.15

METERLIBLP1PH_CalcAuxiliary()

Q0.31
X

iQfilt[n]

uQfilt[n]

Q0.15

Q0.15



Q0.31

LPF1
Q0.15

LPF1

METERLIBLP1PH_CalcWattHours()

PAVG

QAVG

URMS

IRMS

S

METERLIBLP1PH_CalcIRMS()

METERLIBLP1PH_CalcURMS()

METERLIBLP1PH_CalcPAVG()

METERLIBLP1PH_ReadPAVG()

METERLIBLP1PH_ReadURMS()

METERLIBLP1PH_ReadIRMS()

METERLIBLP1PH_ReadS()

Q0.31>>8

HPF

Q0.31

HPF

Q0.15

Q0.15
iQfilt[n]

uQfilt[n]

METERLIBLP1PH_ProcSamples()

iQ[n]

uQ[n]
Q0.31>>8

Optional sensor phase shift correction

 Block diagram of the one-phase power meter computing using the low-power library

The low-power library functions are implemented using 16-bit fractional math to the contrary of the

high-precision library, which performs most of computation using either 32-bit or 64-bit fractional math.

Additional performance savings of the low-power library were achieved by not computing the energy

smoothing “LPF2” low-pass filter. This filter helps to speed up power meter calibration by eliminating

energy ripples at twice the load frequency, developed by the multiplication of two 50/60 Hz sinusoidal

waveforms. If this filter is not computed then energy accuracy during power meter calibration and the

testing phases must be measured by accumulating the energy output pulses in a 5 to 10 second window.

A detailed description of the libraries’ exported data types, their functions and APIs, is given in the

following subsections. The “METERLIB” or “METERLIBLP” prefix to a function name indicates

membership of the function to either the high-precision library file meterlib.lib or the low-power library

file meterliblp.lib.

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 25

NOTE

Use exclusively high-precision or low-power library functions in your

application. An attempt to call a low-power library function with a high-

precision library internal data structure argument, or vice versa, is not

allowed and will terminate by an error in the project compilation phase.

 Core architecture and compiler support

The high-precision and low-power libraries support ARM® Cortex®-M0+ and Cortex-M4 cores. In

addition to standard cores, the libraries also support the Memory-Mapped Arithmetic Unit (MMAU), a

hardware math module designed by Freescale to accelerate the execution of specific metering

algorithms.

The default installation folder of the filter-based metering libraries and the graphical configuration tool

is C:\Freescale\METERLIB_R4_1_0.

The following table lists all the necessary header files, library files, and their locations, relative to the

default installation folder. Add these files and paths into your project workspace to successfully

integrate the high-precision metering library into your application.

 High-precision library integration

Cortex-M0+ w/o MMAU Cortex-M0+ w/ MMAU Cortex-M4

iar

armcc

gcc

iar

..\lib\fraclib\inc

..\lib\fraclib\inc\cm0p_mmau

..\lib\fraclib\inc\cm0p_mmau\iar

..\lib\meterlib\inc

armcc

..\lib\fraclib\inc

..\lib\fraclib\inc\cm0p_mmau

..\lib\fraclib\inc\cm0p_mmau\armcc

..\lib\meterlib\inc

gcc

..\lib\fraclib\inc

..\lib\fraclib\inc\cm0p_mmau

..\lib\fraclib\inc\cm0p_mmau\gcc

..\lib\meterlib\inc

iar
fraclib_cm0p_iar.a

meterlib_cm0p_iar.a

fraclib_cm0p_mmau_iar.a

meterlib_cm0p_mmau_iar.a

fraclib_cm4_iar.a

meterlib_cm4_iar.a

armcc
fraclib_cm0p_armcc.lib

meterlib_cm0p_armcc.lib

fraclib_cm0p_mmau_armcc.lib

meterlib_cm0p_mmau_armcc.lib

fraclib_cm4_armcc.lib

meterlib_cm4_armcc.lib

gcc
fraclib_cm0p_gcc.a

meterlib_cm0p_gcc.a

fraclib_cm0p_mmau_gcc.a

meterlib_cm0p_mmau_gcc.a

fraclib_cm4_gcc.a

meterlib_cm4_gcc.a

iar

armcc

gcc

library

files

paths
..\lib\fraclib

..\lib\meterlib

Include files and

libraries

METERLIB

include

files
fraclib.h

meterlib.h

paths

..\lib\fraclib\inc

..\lib\fraclib\inc\cm0p

..\lib\meterlib\inc

..\lib\fraclib\inc

..\lib\fraclib\inc\cm4

..\lib\meterlib\inc

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

26 NXP Semiconductors

The following table lists all the necessary header and library files together with their relative paths to

add into your project workspace to successfully integrate the low-power metering library into your

application.

 Low-power library integration

 High-precision library function API

This section summarizes the functions’ API defined in the high-precision metering library meterlib.lib.

Prototypes of all functions and internal data structures are declared in the meterlib.h header file.

 One-Phase power meter

• void METERLIB1PH_ProcSamples (tMETERLIB1PH_DATA *p, frac24 u1Q, frac24 i1Q,

frac16 *shift);

Remove DC bias from phase voltage and phase current samples, together with performing an

optional sensor phase shift correction.

• void METERLIB1PH_CalcWattHours (tMETERLIB1PH_DATA *p, tENERGY_CNT

*pCnt, frac64 puRes);

Recalculate active energy using new voltage and current samples.

• void METERLIB1PH_CalcVarHours (tMETERLIB1PH_DATA *p, tENERGY_CNT

*pCnt, frac64 puRes);

Recalculate reactive energy.

Cortex-M0+ w/o MMAU Cortex-M0+ w/ MMAU Cortex-M4

iar

armcc

gcc

iar

..\lib\fraclib\inc

..\lib\fraclib\inc\cm0p_mmau

..\lib\fraclib\inc\cm0p_mmau\iar

..\lib\meterliblp\inc

armcc

..\lib\fraclib\inc

..\lib\fraclib\inc\cm0p_mmau

..\lib\fraclib\inc\cm0p_mmau\armcc

..\lib\meterliblp\inc

gcc

..\lib\fraclib\inc

..\lib\fraclib\inc\cm0p_mmau

..\lib\fraclib\inc\cm0p_mmau\gcc

..\lib\meterliblp\inc

iar
fraclib_cm0p_iar.a

meterliblp_cm0p_iar.a

fraclib_cm0p_mmau_iar.a

meterliblp_cm0p_mmau_iar.a

fraclib_cm4_iar.a

meterliblp_cm4_iar.a

armcc
fraclib_cm0p_armcc.lib

meterliblp_cm0p_armcc.lib

fraclib_cm0p_mmau_armcc.lib

meterliblp_cm0p_mmau_armcc.lib

fraclib_cm4_armcc.lib

meterliblp_cm4_armcc.lib

gcc
fraclib_cm0p_gcc.a

meterliblp_cm0p_gcc.a

fraclib_cm0p_mmau_gcc.a

meterliblp_cm0p_mmau_gcc.a

fraclib_cm4_gcc.a

meterliblp_cm4_gcc.a

iar

armcc

gcc

METERLIBLP

fraclib.h

meterliblp.h

..\lib\fraclib\inc

..\lib\fraclib\inc\cm0p

..\lib\meterliblp\inc

..\lib\fraclib\inc

..\lib\fraclib\inc\cm4

..\lib\meterliblp\inc

..\lib\fraclib

..\lib\meterliblp

Include files and

libraries

include

files

paths

library

files

paths

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 27

• void METERLIB1PH_CalcAuxiliary (tMETERLIB1PH_DATA *p);

Recalculate auxiliary variables; IRMS, URMS, P, Q, and S.

• void METERLIB1PH_CalcURMS (tMETERLIB1PH_DATA *p);

Recalculate URMS.

• void METERLIB1PH_CalcIRMS (tMETERLIB1PH_DATA *p);

Recalculate IRMS.

• void METERLIB1PH_CalcPAVG (tMETERLIB1PH_DATA *p);

Recalculate PAVG.

• void METERLIB1PH_ReadResults (tMETERLIB1PH_DATA *p, double *urms, double

*irms, double *pavg, double *qavg, double *s);

Return non-billing measurements: IRMS, URMS, PAVG, QAVG, and S.

• void METERLIB1PH_ReadURMS (tMETERLIB1PH_DATA *p, double *urms1);

Return URMS.

• void METERLIB1PH_ReadIRMS (tMETERLIB1PH_DATA *p, double *irms1);

Return IRMS.

• void METERLIB1PH_ReadPAVG (tMETERLIB1PH_DATA *p, double *pavg1);

Return PAVG.

• void METERLIB1PH_ReadS (tMETERLIB1PH_DATA *p, double *s1);

Return S.

 Two-Phase power meter

• void METERLIB2PH_ProcSamples (tMETERLIB2PH_DATA *p, frac24 u1Q, frac24 i1Q,

frac24 u2Q, frac24 i2Q, frac16 *shift);

Remove DC bias from phase voltage and phase current samples, together with performing an

optional sensor phase shift correction.

• void METERLIB2PH_CalcWattHours (tMETERLIB2PH_DATA *p, tENERGY_CNT

*pCnt, frac64 puRes);

Recalculate active energy using new voltage and current samples.

• void METERLIB2PH_CalcVarHours (tMETERLIB2PH_DATA *p, tENERGY_CNT

*pCnt, frac64 puRes);

Recalculate reactive energy.

• void METERLIB2PH_CalcAuxiliary (tMETERLIB2PH_DATA *p);

Recalculate auxiliary variables; IRMS, URMS, P, Q, and S.

• void METERLIB2PH_CalcURMS (tMETERLIB2PH_DATA *p);

Recalculate URMS.

• void METERLIB2PH_CalcIRMS (tMETERLIB2PH_DATA *p);

Recalculate IRMS.

• void METERLIB2PH_CalcPAVG (tMETERLIB2PH_DATA *p);

Recalculate PAVG.

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

28 NXP Semiconductors

• void METERLIB2PH_ReadResultsPh1 (tMETERLIB2PH_DATA *p, double *urms, double

*irms, double *pavg, double *qavg, double *s);

Return non-billing measurements for Phase1: IRMS, URMS, PAVG, QAVG, and S.

• void METERLIB2PH_ReadResultsPh2 (tMETERLIB2PH_DATA *p, double *urms, double

*irms, double *pavg, double *qavg, double *s);

Return non-billing measurements for Phase2: IRMS, URMS, PAVG, QAVG, and S.

• void METERLIB2PH_ReadURMS (tMETERLIB2PH_DATA *p, double *urms1, double

*urms2);

Return URMS.

• void METERLIB2PH_ReadIRMS (tMETERLIB2PH_DATA *p, double *irms1, double

*irms2);

Return IRMS.

• void METERLIB2PH_ReadPAVG (tMETERLIB2PH_DATA *p, double *pavg1, double

*pavg2);

Return PAVG.

• void METERLIB2PH_ReadS (tMETERLIB2PH_DATA *p, double *s1, double *s2);

Return S.

 Three-Phase power meter

• int METERLIB3PH_ProcSamples (tMETERLIB3PH_DATA *p, frac24 u1Q, frac24 i1Q,

frac24 u2Q, frac24 i2Q, frac24 u3Q, frac24 i3Q, frac16 *shift);

Remove DC bias from phase voltage and phase current samples, together with determining the

phase sequence and performing an optional sensor phase shift correction.

• void METERLIB3PH_CalcWattHours (tMETERLIB3PH_DATA *p, tENERGY_CNT

*pCnt, frac64 puRes);

Recalculate active energy using new voltage and current samples.

• void METERLIB3PH_CalcVarHours (tMETERLIB3PH_DATA *p, tENERGY_CNT

*pCnt, frac64 puRes);

Recalculate reactive energy.

• void METERLIB3PH_CalcAuxiliary (tMETERLIB3PH_DATA *p);

Recalculate auxiliary variables; IRMS, URMS, P, Q, and S.

• void METERLIB3PH_CalcURMS (tMETERLIB3PH_DATA *p);

Recalculate URMS.

• void METERLIB3PH_CalcIRMS (tMETERLIB3PH_DATA *p);

Recalculate IRMS.

• void METERLIB3PH_CalcPAVG (tMETERLIB3PH_DATA *p);

Recalculate PAVG.

• void METERLIB3PH_ReadResultsPh1 (tMETERLIB3PH_DATA *p, double *urms, double

*irms, double *pavg, double *qavg, double *s);

Return non-billing measurements for Phase1: IRMS, URMS, PAVG, QAVG, and S.

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 29

• void METERLIB3PH_ReadResultsPh2 (tMETERLIB3PH_DATA *p, double *urms, double

*irms, double *pavg, double *qavg, double *s);

Return non-billing measurements for Phase2: IRMS, URMS, PAVG, QAVG, and S.

• void METERLIB3PH_ReadResultsPh3 (tMETERLIB3PH_DATA *p, double *urms, double

*irms, double *pavg, double *qavg, double *s);

Return non-billing measurements for Phase3: IRMS, URMS, PAVG, QAVG, and S.

• void METERLIB3PH_ReadURMS (tMETERLIB3PH_DATA *p, double *urms1, double

*urms2, double *urms3);

Return URMS.

• void METERLIB3PH_ReadIRMS (tMETERLIB3PH_DATA *p, double *irms1, double

*irms2, double *irms3);

Return IRMS.

• void METERLIB3PH_ReadPAVG (tMETERLIB3PH_DATA *p, double *pavg1, double

*pavg2, double *pavg3);

Return PAVG.

• void METERLIB3PH_ReadS (tMETERLIB3PH_DATA *p, double *s1, double *s2, double

*s3);

Return S.

 Auxiliary macros

• #define METERLIB_KWH_PD (p);

Return fine delay of the active energy pulse output transition…

• #define METERLIB_KWH_PS (p);

Return raw state of the active energy pulse output.

• #define METERLIB_KVARH_PD (p);

Return fine delay of the reactive energy pulse output transition…

• #define METERLIB_KVARH_PS (p);

Return raw state of the reactive energy pulse output.

• #define METERLIB_KWH_PR (x);

This macro converts imp/kWh number to numeric representation required by the high-precision

library.

• #define METERLIB_KVARH_PR (x);

This macro converts imp/kVARh number to numeric representation required by the high-

precision library.

• #define METERLIB_DEG2SH (x,fn);

This macro converts U-I phase shift in degrees to a 16-bit fractional number.

• #define METERLIB_RAD2SH (x,fn);

This macro converts U-I phase shift in radians to a 16-bit fractional number.

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

30 NXP Semiconductors

 Low-power library function API

This section summarizes functions API defined in the low-power metering library meterliblp.lib.

Prototypes of all functions and internal data structures are declared in the meterliblp.h header file.

 One-Phase power meter

• void METERLIBLP1PH_ProcSamples (tMETERLIBLP1PH_DATA *p, frac24 u1Q, frac24

i1Q, frac16 *shift);

Remove DC bias from phase voltage and phase current samples, together with performing an

optional sensor phase shift correction.

• void METERLIBLP1PH_CalcWattHours (tMETERLIBLP1PH_DATA *p, tENERGY_CNT

*pCnt, frac64 puRes);

Recalculate active energy using new voltage and current samples.

• void METERLIBLP1PH_CalcVarHours (tMETERLIBLP1PH_DATA *p, tENERGY_CNT

*pCnt, frac64 puRes);

Recalculate reactive energy.

• void METERLIBLP1PH_CalcAuxiliary (tMETERLIBLP1PH_DATA *p);

Recalculate auxiliary variables; IRMS, URMS, P, Q, and S.

• void METERLIBLP1PH_CalcURMS (tMETERLIBLP1PH_DATA *p);

Recalculate URMS.

• void METERLIBLP1PH_CalcIRMS (tMETERLIBLP1PH_DATA *p);

Recalculate IRMS.

• void METERLIBLP1PH_CalcPAVG (tMETERLIBLP1PH_DATA *p);

Recalculate PAVG.

• void METERLIBLP1PH_ReadResults (tMETERLIBLP1PH_DATA *p, double *urms, double

*irms, double *pavg, double *qavg, double *s);

Return non-billing measurements: IRMS, URMS, PAVG, QAVG, and S.

• void METERLIBLP1PH_ReadURMS (tMETERLIBLP1PH_DATA *p, double *urms);

Return URMS.

• void METERLIBLP1PH_ReadIRMS (tMETERLIBLP1PH_DATA *p, double *irms);

Return IRMS.

• void METERLIBLP1PH_ReadPAVG (tMETERLIBLP1PH_DATA *p, double *pavg);

Return PAVG.

• void METERLIBLP1PH_ReadS (tMETERLIBLP1PH_DATA *p, double *s);

Return S.

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 31

 Two-Phase power meter

• void METERLIBLP2PH_ProcSamples (tMETERLIBLP2PH_DATA *p, frac24 u1Q, frac24

i1Q, frac24 u2Q, frac24 i2Q, frac16 *shift);

Remove DC bias from phase voltage and phase current samples, together with performing an

optional sensor phase shift correction.

• void METERLIBLP2PH_CalcWattHours (tMETERLIBLP2PH_DATA *p, tENERGY_CNT

*pCnt, frac64 puRes);

Recalculate active energy using new voltage and current samples.

• void METERLIBLP2PH_CalcVarHours (tMETERLIBLP2PH_DATA *p, tENERGY_CNT

*pCnt, frac64 puRes);

Recalculate reactive energy.

• void METERLIBLP2PH_CalcAuxiliary (tMETERLIBLP2PH_DATA *p);

Recalculate auxiliary variables; IRMS, URMS, P, Q, and S.

• void METERLIBLP2PH_CalcURMS (tMETERLIBLP2PH_DATA *p);

Recalculate URMS.

• void METERLIBLP2PH_CalcIRMS (tMETERLIBLP2PH_DATA *p);

Recalculate IRMS.

• void METERLIBLP2PH_CalcPAVG (tMETERLIBLP2PH_DATA *p);

Recalculate PAVG.

• void METERLIBLP2PH_ReadResultsPh1 (tMETERLIBLP2PH_DATA *p, double *urms,

double *irms, double *pavg, double *qavg, double *s);

Return non-billing measurements for Phase1: IRMS, URMS, PAVG, QAVG, and S.

• void METERLIBLP2PH_ReadResultsPh2 (tMETERLIBLP2PH_DATA *p, double *urms,

double *irms, double *pavg, double *qavg, double *s);

Return non-billing measurements for Phase2: IRMS, URMS, PAVG, QAVG, and S.

• void METERLIBLP2PH_ReadURMS (tMETERLIBLP2PH_DATA *p, double *urms1,

double *urms2);

Return URMS.

• void METERLIBLP2PH_ReadIRMS (tMETERLIBLP2PH_DATA *p, double *irms1, double

*irms2);

Return IRMS.

• void METERLIBLP2PH_ReadPAVG (tMETERLIBLP2PH_DATA *p, double *pavg1,

double *pavg2);

Return PAVG.

• void METERLIBLP2PH_ReadS (tMETERLIBLP2PH_DATA *p, double *s1, double *s2);

Return S.

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

32 NXP Semiconductors

 Three-Phase power meter

• int METERLIBLP3PH_ProcSamples (tMETERLIBLP3PH_DATA *p, frac24 u1Q, frac24

i1Q, frac24 u2Q, frac24 i2Q, frac24 u3Q, frac24 i3Q, frac16 *shift);

Remove DC bias from phase voltage and phase current samples, together with determining the

phase sequence and performing an optional sensor phase shift correction.

• void METERLIBLP3PH_CalcWattHours (tMETERLIBLP3PH_DATA *p, tENERGY_CNT

*pCnt, frac64 puRes);

Recalculate active energy using new voltage and current samples.

• void METERLIBLP3PH_CalcVarHours (tMETERLIBLP3PH_DATA *p, tENERGY_CNT

*pCnt, frac64 puRes);

Recalculate reactive energy.

• void METERLIBLP3PH_CalcAuxiliary (tMETERLIBLP3PH_DATA *p);

Recalculate auxiliary variables; IRMS, URMS, P, Q, and S.

• void METERLIBLP3PH_CalcURMS (tMETERLIBLP3PH_DATA *p);

Recalculate URMS.

• void METERLIBLP3PH_CalcIRMS (tMETERLIBLP3PH_DATA *p);

Recalculate IRMS.

• void METERLIBLP3PH_CalcPAVG (tMETERLIBLP3PH_DATA *p);

Recalculate PAVG.

• void METERLIBLP3PH_ReadResultsPh1 (tMETERLIBLP3PH_DATA *p, double *urms,

double *irms, double *pavg, double *qavg, double *s);

Return non-billing measurements for Phase1: IRMS, URMS, PAVG, QAVG, and S.

• void METERLIBLP3PH_ReadResultsPh2 (tMETERLIBLP3PH_DATA *p, double *urms,

double *irms, double *pavg, double *qavg, double *s);

Return non-billing measurements for Phase2: IRMS, URMS, PAVG, QAVG, and S.

• void METERLIBLP3PH_ReadResultsPh3 (tMETERLIBLP3PH_DATA *p, double *urms,

double *irms, double *pavg, double *qavg, double *s);

Return non-billing measurements for Phase3: IRMS, URMS, PAVG, QAVG, and S.

• void METERLIBLP3PH_ReadURMS (tMETERLIBLP3PH_DATA *p, double *urms1,

double *urms2, double *urms3);

Return URMS.

• void METERLIBLP3PH_ReadIRMS (tMETERLIBLP3PH_DATA *p, double *irms1, double

*irms2, double *irms3);

Return IRMS.

• void METERLIBLP3PH_ReadPAVG (tMETERLIBLP3PH_DATA *p, double *pavg1,

double *pavg2, double *pavg3);

Return PAVG.

• void METERLIBLP3PH_ReadS (tMETERLIBLP3PH_DATA *p, double *s1, double *s2,

double *s3);

Return S.

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 33

 Auxiliary macros

• #define METERLIBLP_KWH_PD (p);

Return fine delay of the active energy pulse output transition…

• #define METERLIBLP_KWH_PS (p);

Return raw state of the active energy pulse output.

• #define METERLIBLP_KVARH_PD (p);

Return fine delay of the reactive energy pulse output transition…

• #define METERLIBLP_KVARH_PS (p);

Return raw state of the reactive energy pulse output.

• #define METERLIBLP_KWH_PR (x);

This macro converts imp/kWh number to numeric representation required by the low-power

library.

• #define METERLIBLP_KVARH_PR (x);

This macro converts imp/kVARh number to numeric representation required by the low-power

library.

• #define METERLIBLP_DEG2SH (x,fn);

This macro converts U-I phase shift in degrees to a 16-bit fractional number.

• #define METERLIBLP_RAD2SH (x,fn);

This macro converts U-I phase shift in radians to a 16-bit fractional number.

 Data structures

This section describes the data structures for accessing those state variables calculated by both the high-

precision and low-power metering libraries.

 tCNT

Structure containing energy counter.

Reference
#include “meterlib.h”
#include “meterliblp.h”

Data fields

Type Name Description

unsigned long ex Counter for exported energy.

unsigned long im Counter for imported energy.

unsigned long Q[4] Reactive energy counters in four quadrant system

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

34 NXP Semiconductors

 tENERGY_CNT

Structure containing energy counters for three three-phase system.

Reference
#include “meterlib.h”
#include “meterliblp.h”

Data fields

Type Name Description

tCNT ph[3] Energy counters in phases of the three-phase system.

 METERLIB_ProcSamples

These functions remove DC bias from measured phase voltage and phase current samples, together with

performing an optional sensor phase shift correction. In addition, the function for three-phase system

determines and returns the phase sequence.

Syntax
#include “meterlib.h”
void METERLIB1PH_ProcSamples (tMETERLIB1PH_DATA *p, frac24 u1Q, frac24 i1Q, frac16 *shift);
void METERLIB2PH_ProcSamples (tMETERLIB2PH_DATA *p, frac24 u1Q, frac24 i1Q, frac24 u2Q,
frac24 i2Q, frac16 *shift);
int METERLIB3PH_ProcSamples (tMETERLIB3PH_DATA *p, frac24 u1Q, frac24 i1Q, frac24 u2Q,
frac24 i2Q, frac24 u3Q, frac24 i3Q, frac16 *shift);

#include “meterliblp.h”
void METERLIBLP1PH_ProcSamples (tMETERLIBLP1PH_DATA *p, frac24 u1Q, frac24 i1Q, frac16
*shift);
void METERLIBLP2PH_ProcSamples (tMETERLIBLP2PH_DATA *p, frac24 u1Q, frac24 i1Q, frac24 u2Q,
frac24 i2Q, frac16 *shift);
int METERLIBLP3PH_ProcSamples (tMETERLIBLP3PH_DATA *p, frac24 u1Q, frac24 i1Q, frac24 u2Q,
frac24 i2Q, frac24 u3Q, frac24 i3Q, frac16 *shift);

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 35

Arguments

Type Name Direction Description

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA.

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA.

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA.

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA.

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

frac24 u1Q in Phase 1 instantaneous voltage sample in Q0.31 data format.

frac24 i1Q in Phase 1 instantaneous current sample in Q0.31 data format.

frac24 u2Q in Phase 2 instantaneous voltage sample in Q0.31 data format.

frac24 i2Q in Phase 2 instantaneous current sample in Q0.31 data format.

frac24 u3Q in Phase 3 instantaneous voltage sample in Q0.31 data format.

frac24 i3Q in Phase 3 instantaneous current sample in Q0.31 data format.

frac16 shift in

Pointer to the values for U-I phase shift correction. Set each value in

the range -32768...32767 to phase shift the voltage with resolution of

1/(32768*KWH_CALC_FREQ) seconds – for more details, refer to

METERLIBLP_DEG2SH() and METERLIBLP_RAD2SH() macros.

Use the NULL pointer to disable software sensor phase shift correction.

Return

Only a function for three-phase system returns the phase sequence. Functions for 1- and two-phase

systems do not return any arguments.

Description

These functions remove the DC offset and low-frequency drift from the measured phase voltage and

phase current samples. They also perform an optional sensor phase shift correction. In addition, the

functions for three-phase system determine and return the phase sequence.

Figure 19 shows block diagram of the METERLIB1PH_ProcSamples() function defined by the high-

precision metering library.

METERLIB1PH_DATA

Q0.31

HPF

Q0.31

HPF

Q0.31

Q0.31
iQfilt[n]

uQfilt[n]

iQ[n]

uQ[n]
Q0.31

shift

 METERLIB1PH_ProcSamples function block diagram

Figure 20 shows block diagram of the METERLIBLP1PH_ProcSamples() function defined by the low-

power metering library.

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

36 NXP Semiconductors

METERLIBLP1PH_DATA

Q0.31>>8

HPF

Q0.31

HPF

Q0.15

Q0.15
iQfilt[n]

uQfilt[n]

iQ[n]

uQ[n]
Q0.31>>8

shift

 METERLIBLP1PH_ProcSamples function block diagram

These functions are specific to a one-phase power meter. They process phase current samples iQ[n] and

phase voltage samples uQ[n] in Q0.31 format to attenuate any DC offsets and low-frequency drifts. The

“HPF” blocks represent the high-pass first order Butterworth IIR filters (see Infinite impulse response

filter). The physical quantities of the phase voltage u[n] and phase current i[n] are greater than one,

therefore, substitutions are introduced to allow use of fractional arithmetic. The actual phase voltage and

phase current are scaled into fractional representation by U_MAX and I_MAX.

𝒖𝑸 =
𝒖

𝑼_𝑴𝑨𝑿

Eq. 29

𝒊𝐐 =
𝒊

𝑰_𝑴𝑨𝑿

Eq. 30

where, U_MAX and I_MAX are the maximum physical values of the phase voltage and phase current that

correspond to the full AFE analog input range.

NOTE

The fractional representation of the phase voltage uQ and phase current iQ

can be read directly from the AFE, provided data in the result registers is

represented in the right justified 2's complement 32-bit data format

(see Figure 2).

Performance

Function Code size Stack size Clock cycles2

METERLIB1PH_ProcSamples 936 72 448 (535)

METERLIB2PH_ProcSamples 1880 72 872 (1048)

METERLIB3PH_ProcSamples 2982 120 1429 (1699)

METERLIBLP1PH_ProcSamples 294 28 132 (215)

METERLIBLP2PH_ProcSamples 664 48 274 (483)

METERLIBLP3PH_ProcSamples 1044 44 442 (745)

 METERLIB_CalcWattHours

These functions recalculate active energy using new unbiased phase voltage and phase current samples.

2 Clock cycles in brackets denote function execution time with sensor phase shift correction enabled; i.e. “shift”
pointer is not NULL but points to values in frac16 representation.

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 37

Syntax
#include “meterlib.h”
void METERLIB1PH_CalcWattHours (tMETERLIB1PH_DATA *p, tENERGY_CNT *pCnt, frac64 puRes);
void METERLIB2PH_CalcWattHours (tMETERLIB2PH_DATA *p, tENERGY_CNT *pCnt, frac64 puRes);
void METERLIB3PH_CalcWattHours (tMETERLIB3PH_DATA *p, tENERGY_CNT *pCnt, frac64 puRes);

#include “meterliblp.h”
void METERLIBLP1PH_CalcWattHours (tMETERLIBLP1PH_DATA *p, tENERGY_CNT *pCnt, frac64 puRes);
void METERLIBLP2PH_CalcWattHours (tMETERLIBLP2PH_DATA *p, tENERGY_CNT *pCnt, frac64 puRes);
void METERLIBLP3PH_CalcWattHours (tMETERLIBLP3PH_DATA *p, tENERGY_CNT *pCnt, frac64 puRes);

Arguments

Type Name Direction Description

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA.

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA.

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA.

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA.

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

tENERGY_CNT pCnt out Pointer to LCD active energy counter structure.

frac64 puRes in Pulse output resolution; calculated by METERLIB_KWH_PR() macro.

Return

These functions do not return any arguments.

Description

These functions compute active energy in watt-hours (Wh) and return the state of active energy pulse

output. The active energy in a typical one-phase power meter application is computed as an infinite

integral of the unbiased instantaneous phase voltage u(t) and phase current i(t) waveforms.

𝑾𝒉 =
𝟏

𝟑𝟔𝟎𝟎
∫ 𝒖(𝒕)

∞

𝟎

𝒊(𝒕)𝒅𝒕

Eq. 31

The Backward Euler approximation of the integral term will transform the basic equation Eq. 31 into a

difference form:

𝑾𝒉[𝒏] = 𝑾𝒉[𝒏 − 𝟏] +
𝒖[𝒏] ∗ 𝒊[𝒏] ∗ ∆𝒕

𝟑𝟔𝟎𝟎

Eq. 32

where, ∆t = 1 fs⁄ is the sampling interval, index [n] represents the current value and index [n − 1]
represents the previous value calculated in the previous calculation step.

In equation Eq. 32, the physical quantities u[n], i[n], Wh[n] and Wh[n − 1] are scaled by U_MAX,

I_MAX and ∆t to allow implementation of fractional arithmetic.

𝑾𝒉𝑸[𝒏] = 𝑾𝒉𝑸[𝒏 − 𝟏] + 𝒖𝑸[𝒏] ∗ 𝒊𝑸[𝒏]

Eq. 33

The active energy in fractional representation is mapped into the fractional range −1 ≤ WhQ ≤ 1 −

2(N−1) using scaling:

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

38 NXP Semiconductors

𝑾𝒉𝑸 = 𝑾𝒉
𝟑𝟔𝟎𝟎 ∗ 𝒇𝒔

𝑼_𝑴𝑨𝑿 ∗ 𝑰_𝑴𝑨𝑿

Eq. 34

Figure 21 shows a block diagram of the METERLIB1PH_CalcWattHours() function defined by the

high-precision library and the way of calculating active energy in a typical one-phase power meter.

METERLIB1PH_DATA

Q0.63Q0.63 Q16.47
WhQ[n]X

56 bits
To

24 bits

56 bits
To

24 bits

METERLIB1PH_DATA

iQfilt[n]

uQfilt[n]

Q0.31

Q0.31



LPF2

 METERLIB1PH_CalcWattHours function block diagram

The new active energy sample WhQ[n] is computed according to Eq. 33 using fractional addition and

multiplication functions. The “Multiplier” block represents a 32x32=64 bit fractional multiplication and

an “Integrator” block represents a 64+64=64 bit fractional addition. The new active energy sample is

smoothed by the “LPF2” low-pass first order Butterworth IIR filter. This low-pass filter attenuates the

alternating active energy component that is developed by multiplication of two 50/60 Hz sinusoidal

waveforms, the alternating instantaneous voltage and current, and that ripples at twice the load

frequency (100/120 Hz).

Figure 22 shows a block diagram of the METERLIBLP1PH_CalcWattHours() function defined by the

low-power library. The new active energy sample WhQ[n] is also computed according to Eq. 33 using

fractional addition and multiplication functions. The “Multiplier” block represents a 16x16=32 bit

fractional multiplication and an “Integrator” block represents a 64+64=64 bit fractional addition. The

new active energy sample is not smoothed to save computation power.

METERLIBLP1PH_DATA

Q0.31 Q32.32
WhQ[n]X

56 bits
To

24 bits

56 bits
To

24 bits

METERLIBLP1PH_DATA

iQfilt[n]

uQfilt[n]

Q0.15

Q0.15



 METERLIBLP1PH_CalcWattHours function block diagram

NOTE

The active energy calculations in two-phase (Form-12S) and three-phase

power meters are performed in a similar way as in the one-phase power

meter, with the one exception that the infinite integral is calculated over

the sum of the unbiased instantaneous phase voltage u(t) and phase

current i(t) waveforms of all the phases.

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 39

Performance

Function Code size Stack size Clock cycles

METERLIB1PH_CalcWattHours 710 104 893

METERLIB2PH_CalcWattHours 1124 112 1439

METERLIB3PH_CalcWattHours 1496 120 2052

METERLIBLP1PH_CalcWattHours 472 56 450

METERLIBLP2PH_CalcWattHours 678 88 594

METERLIBLP3PH_CalcWattHours 900 64 704

 METERLIB_CalcVarHours

These functions recalculate the reactive energy using new phase voltage and phase current samples.

Syntax
#include “meterlib.h”
void METERLIB1PH_CalcVarHours (tMETERLIB1PH_DATA *p, tENERGY_CNT *pCnt, frac64 puRes);
void METERLIB2PH_CalcVarHours (tMETERLIB2PH_DATA *p, tENERGY_CNT *pCnt, frac64 puRes);
void METERLIB3PH_CalcVarHours (tMETERLIB3PH_DATA *p, tENERGY_CNT *pCnt, frac64 puRes);

#include “meterliblp.h”
void METERLIBLP1PH_CalcVarHours (tMETERLIBLP1PH_DATA *p, tENERGY_CNT *pCnt, frac64 puRes);
void METERLIBLP2PH_CalcVarHours (tMETERLIBLP2PH_DATA *p, tENERGY_CNT *pCnt, frac64 puRes);
void METERLIBLP3PH_CalcVarHours (tMETERLIBLP3PH_DATA *p, tENERGY_CNT *pCnt, frac64 puRes);

Arguments

Type Name Direction Description

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA.

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA.

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA.

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA.

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

tENERGY_CNT pCnt out Pointer to LCD reactive energy counter structure.

frac64 puRes in Pulse output resolution; calculated by METERLIB_KVARH_PR() macro.

Return

These functions do not return any arguments.

Description

These functions compute reactive energy in the unit of volt-ampere-reactive hours (VARh) and return the

state of reactive energy pulse output. The reactive energy in a typical one-phase power meter is

computed as an infinite integral of the unbiased instantaneous shifted phase voltage u(t − 90°) and

phase current i(t) waveforms.

𝑽𝑨𝑹𝒉 =
𝟏

𝟑𝟔𝟎𝟎
∫ 𝒖(𝒕 − 𝟗𝟎°)

∞

𝟎

𝒊(𝒕)𝒅𝒕

Eq. 35

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

40 NXP Semiconductors

The Backward Euler approximation of the integral term will transform the basic equation Eq. 35 into a

difference form:

𝑽𝑨𝑹𝒉[𝒏] = 𝑽𝑨𝑹𝒉[𝒏 − 𝟏] +
𝒖𝟗𝟎[𝒏] ∗ 𝒊𝒅𝒆𝒍[𝒏] ∗ ∆𝒕

𝟑𝟔𝟎𝟎

Eq. 36

where, ∆t = 1 fs⁄ is the sampling time, index [n] represents the current value and index [n − 1]
represents the old value calculated in the previous calculation step.

In equation Eq. 37, the physical quantities u90[n], idel[n], VARh[n], and VARh[n − 1] are scaled by

U_MAX, I_MAX, and ∆t to allow usage of fractional arithmetic.

𝑽𝑨𝑹𝒉𝑸[𝒏] = 𝑽𝑨𝑹𝒉𝑸[𝒏 − 𝟏] + 𝒖𝟗𝟎𝑸[𝒏] ∗ 𝒊𝒅𝒆𝒍𝑸[𝒏]

Eq. 37

The reactive energy in fractional representation is mapped into the fractional range −1 ≤ VARhQ ≤ 1 −

2(N−1) using scaling:

𝑽𝑨𝑹𝒉𝑸 = 𝑽𝑨𝑹𝒉
𝟑𝟔𝟎𝟎 ∗ 𝒇𝒔

𝑼_𝑴𝑨𝑿 ∗ 𝑰_𝑴𝑨𝑿

Eq. 38

NOTE

Reactive energy Eq. 37 can be efficiently computed on the microcontroller

using fractional addition and multiplication functions. The phase voltage

instantaneous sample u90Q[n] is shifted by 90-degrees from the delayed

phase current instantaneous sample idelQ[n] using the Hilbert transformer.

Figure 23 shows a block diagram of the METERLIB1PH_CalcVarHours() function defined by the

high-precision metering library.

Hilbert

Transformer
X

Q0.31

METERLIB1PH_DATA

iQfilt[n]

uQfilt[n]

z
-[(N-1)/2]

N-Tap

FIR

FILTER

Q0.31 Q0.31

Q0.31

Q0.63Q0.63 Q16.47

METERLIB1PH_DATA

VARhQ[n]

LPF2

 METERLIB1PH_CalcVarHours function block diagram

Figure 24 shows a block diagram of the METERLIBLP1PH_CalcVarHours() function defined by the

low-power metering library.

Hilbert

Transformer
X

Q0.15

METERLIBLP1PH_DATA

iQfilt[n]

uQfilt[n]

z
-[(N-1)/2]

N-Tap

FIR

FILTER

Q0.15 Q0.15

Q0.15

Q0.31 Q32.31

METERLIBLP1PH_DATA

VARhQ[n]

 METERLIBLP1PH_CalcVarHours function block diagram

These functions calculate reactive energy in a typical one-phase power meter application. The Hilbert

transformer block represents an N-Tap FIR filter with a 90-degree constant phase response plus a linear

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 41

phase response with the group delay M = (N − 1)/2. Therefore, when the phase voltage instantaneous

sample uQ[n] passes through the N-Tap FIR filter, the output sample u90Q[n] is related to the delayed

phase current sample idelQ[n] through the Hilbert transform (for more information, refer Ideal Hilbert

transformer). The reactive energy VARhQ[n] is computed according to Eq. 37. Similarly to the active

energy processing, the reactive energy is also smoothed using a low-pass filter to attenuate the

alternating energy component.

The high-precision metering library defines three functions for calculating reactive energy. The first,

METERLIB1PH_CalcVarHours() function is intended to calculate reactive energy in a one-phase power

meter application. Others, METERLIB2PH_CalcVarHours() and METERLIB3PH_CalcVarHours()

functions shall be called in two-phase (Form-12S) and three-phase metering power meter use cases. The

low-power metering library defines the same set of functions.

NOTE

Functions for calculating reactive energy in multiple phases calculate the

Hilbert transform and reactive energy contribution of each phase and

return the sum of all reactive energies.

Performance

Function Code size Stack size Clock cycles3

METERLIB1PH_CalcVarHours 882 104 3463

METERLIB2PH_CalcVarHours 1484 112 6578

METERLIB3PH_CalcVarHours 2128 136 9730

METERLIBLP1PH_CalcVarHours 630 64 2088

METERLIBLP2PH_CalcVarHours 1050 72 3849

METERLIBLP3PH_CalcVarHours 1428 72 5608

 METERLIB_CalcAuxiliary

These functions recalculate non-billing variables such as active power (P), reactive power (Q), RMS

voltage (URMS), and RMS current (IRMS).

Syntax
#include “meterlib.h”
void METERLIB1PH_CalcAuxiliary (tMETERLIB1PH_DATA *p);
void METERLIB2PH_CalcAuxiliary (tMETERLIB2PH_DATA *p);
void METERLIB3PH_CalcAuxiliary (tMETERLIB3PH_DATA *p);

#include “meterliblp.h”
void METERLIBLP1PH_CalcAuxiliary (tMETERLIBLP1PH_DATA *p);
void METERLIBLP2PH_CalcAuxiliary (tMETERLIBLP2PH_DATA *p);
void METERLIBLP3PH_CalcAuxiliary (tMETERLIBLP3PH_DATA *p);

3 Performance obtained for 49-Tap FIR filter (default filter length for 1200 Hz sampling frequency).

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

42 NXP Semiconductors

Arguments

Type Name Direction Description

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA.

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA.

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA.

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA.

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

Return

These functions do not return any arguments.

Description

These functions calculate active power (P), reactive power (Q), RMS voltage (URMS), and RMS current

(IRMS) in one-phase, two-phase (Form-12S), and three-phase power meter applications.

The active power is measured in watts (W) and is symbolized by the capital letter P. The reactive power

is measured in volt-amperes-reactive (VAR) and is symbolized by the capital letter Q. The library

function uses the average power converter to calculate active and reactive powers (see Average power

converter).

The following figure shows block diagram of the METERLIB1PH_CalcAuxiliary() function (power

calculation portion) defined by the high-precision metering library.

Hilbert

Transformer

Q0.63

LPF1
Q0.31

X
Q0.31

METERLIB1PH_DATA

iQfilt[n]

uQfilt[n]

z
-[(N-1)/2]

N-Tap

FIR

FILTER

Q0.31

X

METERLIB1PH_DATA

QQ[n]

PQ[n]

LPF1
Q0.31

Q0.31

Q0.31

Q0.63

LPF1
Q0.31

LPF1
Q0.31

 METERLIB1PH_CalcAuxiliary function block diagram – powers calculation

This figure shows block diagram of the METERLIBLP1PH_CalcAuxiliary() function (power

calculation portion) defined by the low-power metering library:

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 43

Hilbert

Transformer

Q0.31

LPF1
Q0.15

X
Q0.15

METERLIBLP1PH_DATA

iQfilt[n]

uQfilt[n]

z
-[(N-1)/2]

N-Tap

FIR

FILTER

Q0.15

X

METERLIBLP1PH_DATA

QQ[n]

PQ[n]

LPF1
Q0.31

Q0.15

Q0.15

Q0.31

LPF1
Q0.15

LPF1
Q0.31

X

 METERLIBLP1PH_CalcAuxiliary function block diagram – powers calculation

These portions update the active power PQ[n] and reactive power QQ[n] samples based on new unbiased

phase voltage and phase current samples. Needless to say, both powers are in fractional data format to

accelerate and simplify the calculations. They are mapped into the physical representation using scaling:

𝑷𝑸 =
𝑷

𝑼_𝑴𝑨𝑿 ∗ 𝑰_𝑴𝑨𝑿

Eq. 39

𝑸𝑸 =
𝑸

𝑼_𝑴𝑨𝑿 ∗ 𝑰_𝑴𝑨𝑿

Eq. 40

The RMS values are calculated using the explicit RMS converter approach (see Explicit RMS

converter). This figure shows block diagram of the METERLIB1PH_CalcAuxiliary() function (RMS

calculation portion) defined by the high-precision metering library:

Q0.63

LPF1
Q0.63

X
2

METERLIB1PH_DATA

iQfilt[n]

uQfilt[n] X
2

METERLIB1PH_DATA

IRMSQ[n]

URMSQ[n]

LPF1
Q0.31

Q0.31 Q0.63

LPF1
Q0.63

LPF1
Q0.31

Q0.31Q0.31

Q0.31

 METERLIB1PH_CalcAuxiliary function block diagram – RMS calculation

This figure shows block diagram of the METERLIBLP1PH_CalcAuxiliary() function (RMS calculation

portion) defined by the low-power metering library:

Q0.31

LPF1
Q0.31

X
2

METERLIBLP1PH_DATA

iQfilt[n]

uQfilt[n] X
2

METERLIBLP1PH_DATA

IRMSQ[n]

URMSQ[n]

LPF1
Q0.31

Q0.15 Q0.31

LPF1
Q0.31

LPF1
Q0.31

Q0.15Q0.15

Q0.15

 METERLIBLP1PH_CalcAuxiliary function block diagram – RMS calculation

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

44 NXP Semiconductors

Both implementations are based on fractional data format and use of fractional multiplication, addition,

and square-root functions. The library implementations differ in dynamic range of calculations. The

high-precision library uses 32 and 64 bit fractional data types. On the contrary, the low-power library

uses 16 and 32 bit fractional data types. Both implementations use square root calculation based on the

Non-restoring Method (see Square root).

These functions calculate the RMS voltage and RMS current samples in fractional data format, denoted

as URMSQ[n] and IRMSQ[n], respectively. They are mapped into the physical representation using

scaling:

𝑼𝑹𝑴𝑺𝑸 =
𝑼𝑹𝑴𝑺

𝑼_𝑴𝑨𝑿

Eq. 41

𝑰𝑹𝑴𝑺𝑸 =
𝑰𝑹𝑴𝑺

𝑰_𝑴𝑨𝑿

Eq. 42

The high-precision metering library defines three functions for calculating non-billing quantities. The

first, METERLIB1PH_CalcAuxiliary() function is intended to calculate non-billing quantities in a one-

phase power meter application.

Others, METERLIB2PH_ CalcAuxiliary () and METERLIB3PH_ CalcAuxiliary () functions shall be

called in two-phase (Form-12S) and three-phase power meter use cases. The low-power metering library

defines the same set of functions.

Performance

Function Code size Stack size Clock cycles

METERLIB1PH_CalcAuxiliary 1522 128 3427

METERLIB2PH_CalcAuxiliary 3252 144 6851

METERLIB3PH_CalcAuxiliary 4828 144 10190

METERLIBLP1PH_CalcAuxiliary 738 48 997

METERLIBLP2PH_CalcAuxiliary 1460 48 1991

METERLIBLP3PH_CalcAuxiliary 2128 64 2939

 METERLIB_CalcURMS

These functions recalculate RMS voltage (URMS).

Syntax
#include “meterlib.h”
void METERLIB1PH_CalcURMS (tMETERLIB1PH_DATA *p);
void METERLIB2PH_CalcURMS (tMETERLIB2PH_DATA *p);
void METERLIB3PH_CalcURMS (tMETERLIB3PH_DATA *p);

#include “meterliblp.h”
void METERLIBLP1PH_CalcURMS (tMETERLIBLP1PH_DATA *p);
void METERLIBLP2PH_CalcURMS (tMETERLIBLP2PH_DATA *p);
void METERLIBLP3PH_CalcURMS (tMETERLIBLP3PH_DATA *p);

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 45

Arguments

Type Name Direction Description

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA.

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA.

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA.

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA.

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

Return

These functions do not return any arguments.

Description

These functions calculate RMS voltage (URMS) in one-phase, two-phase (Form-12S), and three-phase

power meter applications. These functions are complementary to METERLIB_CalcAuxiliary() functions

that calculates all non-billing variables including active power (P), reactive power (Q), RMS voltage

(URMS) and RMS current (IRMS).

This figure shows block diagram of the METERLIB1PH_CalcURMS() function defined by the

high-precision metering library:

Q0.63

LPF1
Q0.63

METERLIB1PH_DATA

uQfilt[n] X
2

METERLIB1PH_DATA

URMSQ[n]

LPF1
Q0.31Q0.31Q0.31

 METERLIB1PH_CalcURMS function block diagram

This figure shows block diagram of the METERLIBLP1PH_CalcURMS() function defined by the

low-power metering library:

Q0.31

LPF1
Q0.31

METERLIBLP1PH_DATA

uQfilt[n] X
2

METERLIBLP1PH_DATA

URMSQ[n]

LPF1
Q0.31Q0.15Q0.15

 METERLIBLP1PH_CalcURMS function block diagram

Both implementations are based on fractional data format and use of fractional multiplication, addition,

and square-root functions. These functions calculate the RMS voltage samples in fractional data format,

denoted as URMSQ[n]. They are mapped into the physical representation using scaling:

𝑼𝑹𝑴𝑺𝑸 =
𝑼𝑹𝑴𝑺

𝑼_𝑴𝑨𝑿

Eq. 43

The high-precision metering library defines three functions for calculating RMS voltages. The first,

METERLIB1PH_CalcURMS() function is intended to calculate RMS voltage in a one-phase power

meter application. Others, METERLIB2PH_CalcURMS() and METERLIB3PH_CalcURMS() functions

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

46 NXP Semiconductors

shall be called in two-phase (Form-12S) and three-phase metering power meter use cases. The low-

power metering library defines the same set of functions.

Performance

Function Code size Stack size Clock cycles

METERLIB1PH_CalcURMS 364 96 1148

METERLIB2PH_CalcURMS 688 96 2244

METERLIB3PH_CalcURMS 1040 96 3336

METERLIBLP1PH_CalcURMS 170 24 386

METERLIBLP2PH_CalcURMS 354 32 769

METERLIBLP3PH_CalcURMS 498 32 1105

 METERLIB_CalcIRMS

These functions recalculate RMS current (IRMS).

Syntax
#include “meterlib.h”
void METERLIB1PH_CalcIRMS (tMETERLIB1PH_DATA *p);
void METERLIB2PH_CalcIRMS (tMETERLIB2PH_DATA *p);
void METERLIB3PH_CalcIRMS (tMETERLIB3PH_DATA *p);

#include “meterliblp.h”
void METERLIBLP1PH_CalcIRMS (tMETERLIBLP1PH_DATA *p);
void METERLIBLP2PH_CalcIRMS (tMETERLIBLP2PH_DATA *p);
void METERLIBLP3PH_CalcIRMS (tMETERLIBLP3PH_DATA *p);

Arguments

Type Name Direction Description

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA.

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA.

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA.

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA.

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

Return

These functions do not return any arguments.

Description

These functions calculate RMS current (IRMS) in one-phase, two-phase (Form-12S), and three-phase

power meter applications. These functions are complementary to METERLIB_CalcAuxiliary() functions

that calculates all non-billing variables including active power (P), reactive power (Q), RMS voltage

(URMS) and RMS current (IRMS).

This figure shows block diagram of the METERLIB1PH_CalcIRMS() function defined by the high-

precision metering library:

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 47

Q0.63

LPF1
Q0.63

METERLIB1PH_DATA

iQfilt[n] X
2

METERLIB1PH_DATA

IRMSQ[n]

LPF1
Q0.31Q0.31Q0.31

 METERLIB1PH_CalcIRMS function block diagram

This figure shows block diagram of the METERLIBLP1PH_CalcIRMS() function defined by the

low-power metering library:

Q0.31

LPF1
Q0.31

METERLIBLP1PH_DATA

iQfilt[n] X
2

METERLIBLP1PH_DATA

IRMSQ[n]

LPF1
Q0.31Q0.15Q0.15

 METERLIBLP1PH_CalcIRMS function block diagram

Both implementations are based on fractional data format and use extensively fractional multiplication,

addition, and square-root functions to calculate RMS values. These functions calculate the RMS current

samples in fractional data format, denoted as IRMSQ[n]. They are mapped into the physical

representation using scaling:

𝑰𝑹𝑴𝑺𝑸 =
𝑰𝑹𝑴𝑺

𝑰_𝑴𝑨𝑿

Eq. 44

The high-precision metering library defines three functions for calculating RMS currents. The first,

METERLIB1PH_CalcIRMS() function is intended to calculate RMS current in a one-phase power meter

application. Others, METERLIB2PH_CalcIRMS() and METERLIB3PH_CalcIRMS() functions shall be

called in two-phase (Form-12S) and three-phase metering power meter use cases. The low-power

metering library defines the same set of functions.

Performance

Function Code size Data size Clock cycles

METERLIB1PH_CalcIRMS 364 96 1137

METERLIB2PH_CalcIRMS 690 96 2231

METERLIB3PH_CalcIRMS 1042 96 3314

METERLIBLP1PH_CalcIRMS 170 24 366

METERLIBLP2PH_CalcIRMS 354 32 744

METERLIBLP3PH_CalcIRMS 500 32 1069

 METERLIB_CalcPAVG

These functions recalculate active power (P).

Syntax
#include “meterlib.h”
void METERLIB1PH_CalcPAVG (tMETERLIB1PH_DATA *p);
void METERLIB2PH_CalcPAVG (tMETERLIB2PH_DATA *p);
void METERLIB3PH_CalcPAVG (tMETERLIB3PH_DATA *p);

#include “meterlibLP.h”

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

48 NXP Semiconductors

void METERLIBLP1PH_CalcPAVG (tMETERLIBLP1PH_DATA *p);
void METERLIBLP2PH_CalcPAVG (tMETERLIBLP2PH_DATA *p);
void METERLIBLP3PH_CalcPAVG (tMETERLIBLP3PH_DATA *p);

Arguments

Type Name Direction Description

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA.

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA.

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA.

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA.

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

Return

These functions do not return any arguments.

Description

These functions calculate active power (P) in one-phase, two-phase (Form-12S), and three-phase power

meter applications. The active power is measured in watts (W) and is symbolized by the capital letter P.

The library function uses the average power converter to calculate active and reactive powers

(see Average power converter).

This figure shows block diagram of the METERLIB1PH_CalcPAVG() function defined by the high-

precision metering library:

Q0.63METERLIB1PH_DATA

iQfilt[n]

uQfilt[n]

METERLIB1PH_DATA

PQ[n]

LPF1
Q0.31

Q0.31

Q0.31

Q0.31

X

 METERLIB1PH_CalcPAVG function block diagram

This figure shows block diagram of the METERLIBLP1PH_CalcPAVG() function defined by the low-

power metering library:

Q0.31METERLIBLP1PH_DATA

iQfilt[n]

uQfilt[n]

METERLIBLP1PH_DATA

PQ[n]

LPF1
Q0.31

Q0.15

Q0.15

Q0.15

X

 METERLIBLP1PH_CalcPAVG function block diagram

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 49

These functions update the active power PQ[n] samples based on new unbiased phase voltage and phase

current samples. The active power samples are represented in fractional data format and they’re mapped

into the physical representation using scaling:

𝑷𝑸 =
𝑷

𝑼_𝑴𝑨𝑿 ∗ 𝑰_𝑴𝑨𝑿

Eq. 45

The high-precision metering library defines three functions for calculating active powers. The first,

METERLIB1PH_CalcPAVG() function is intended to calculate active power in a one-phase power

meter application. Others, METERLIB2PH_CalcPAVG() and METERLIB3PH_CalcPAVG() functions

shall be called in two-phase (Form-12S) and three-phase metering power meter use cases. The low-

power metering library defines the same set of functions for computing active power in various power

meters.

Performance

Function Code size Stack size Clock cycles

METERLIB1PH_CalcPAVG 400 96 633

METERLIB2PH_CalcPAVG 778 96 1249

METERLIB3PH_CalcPAVG 1150 96 1845

METERLIBLP1PH_CalcPAVG 186 20 129

METERLIBLP2PH_CalcPAVG 388 28 283

METERLIBLP3PH_CalcPAVG 542 24 379

 METERLIB_ReadResults

There are three “reading” functions defined in the high-precision and low-power metering libraries.

Each function is intended to read non-billing quantities from the internal data structure of the respective

metering library and power meter type. The variables returned by the functions are already scaled to the

physical representation.

Syntax
#include “meterlib.h”
void METERLIB1PH_ReadResults (tMETERLIB1PH_DATA *p, double *urms, double *irms, double
*pavg, double *qavg, double *s);
void METERLIB2PH_ReadResultsPh1 (tMETERLIB2PH_DATA *p, double *urms, double *irms, double
*pavg, double *qavg, double *s);
void METERLIB2PH_ReadResultsPh2 (tMETERLIB2PH_DATA *p, double *urms, double *irms, double
*pavg, double *qavg, double *s);
void METERLIB3PH_ReadResultsPh1 (tMETERLIB3PH_DATA *p, double *urms, double *irms, double
*pavg, double *qavg, double *s);
void METERLIB3PH_ReadResultsPh2 (tMETERLIB3PH_DATA *p, double *urms, double *irms, double
*pavg, double *qavg, double *s);
void METERLIB3PH_ReadResultsPh3 (tMETERLIB3PH_DATA *p, double *urms, double *irms, double
*pavg, double *qavg, double *s);

#include “meterliblp.h”
void METERLIBLP1PH_ReadResults (tMETERLIBLP1PH_DATA *p, double *urms, double *irms, double
*pavg, double *qavg, double *s);
void METERLIBLP2PH_ReadResultsPh1 (tMETERLIBLP2PH_DATA *p, double *urms, double *irms, double
*pavg, double *qavg, double *s);
void METERLIBLP2PH_ReadResultsPh2 (tMETERLIBLP2PH_DATA *p, double *urms, double *irms, double
*pavg, double *qavg, double *s);

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

50 NXP Semiconductors

void METERLIBLP3PH_ReadResultsPh1 (tMETERLIBLP3PH_DATA *p, double *urms, double *irms, double
*pavg, double *qavg, double *s);
void METERLIBLP3PH_ReadResultsPh2 (tMETERLIBLP3PH_DATA *p, double *urms, double *irms, double
*pavg, double *qavg, double *s);
void METERLIBLP3PH_ReadResultsPh3 (tMETERLIBLP3PH_DATA *p, double *urms, double *irms, double
*pavg, double *qavg, double *s);

Arguments

Type Name Direction Description

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA.

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA.

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA.

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA.

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

double urms out Pointer to RMS voltage in volts.

double irms out Pointer to RMS current in amperes.

double pavg out Pointer to active power in watts.

double qavg out Pointer to reactive power in volt-amperes-reactive.

double s out Pointer to apparent power in volt-amperes.

Return

These functions do not return any arguments.

Description

These functions retrieve active power (P), reactive power (Q), RMS voltage (URMS), and RMS current

(IRMS) from the internal data structure of the respective metering library. All quantities are scaled to the

physical representation and returned in double floating point precision. The powers and RMS values are

scaled by U_MAX and I_MAX.

𝑷 = 𝑷𝑸 ∗ 𝑼_𝑴𝑨𝑿 ∗ 𝑰_𝑴𝑨𝑿

Eq. 46

𝑸 = 𝑸𝑸 ∗ 𝑼_𝑴𝑨𝑿 ∗ 𝑰_𝑴𝑨𝑿

Eq. 47

𝑰𝑹𝑴𝑺 = 𝑰𝑹𝑴𝑺𝑸 ∗ 𝑰_𝑴𝑨𝑿

Eq. 48

𝑼𝑹𝑴𝑺 = 𝑼𝑹𝑴𝑺𝑸 ∗ 𝑼_𝑴𝑨𝑿

Eq. 49

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 51

This figure shows block diagram of the METERLIB1PH_ReadResults() functions for reading non-

billing quantities from the METERLIB1PH_DATA high-precision library internal data structure:

METERLIB1PH_DATA

PAVGQ[n]

IRMSQ[n]

QAVGQ[n]

URMSQ[n]

Q0.31

Q0.31

U_MAX*I_MAX

U_MAX*I_MAX

Q0.31
U_MAX

Q0.31
I_MAX

double

double

double

double

X

d
o

u
b

le

d
o

u
b

le

U
_

M
A

X

I_
M

A
X

PAVG

QAVG

URMS

IRMS

S

 METERLIB1PH_ReadResults function block diagram

This figure shows block diagram of the METERLIBLP1PH_ReadResults() functions for reading non-

billing quantities from the METERLIBLP1PH_DATA low-power library internal data structure:

METERLIBLP1PH_DATA

PAVGQ[n]

IRMSQ[n]

QAVGQ[n]

URMSQ[n]

Q0.31

Q0.31

U_MAX*I_MAX

U_MAX*I_MAX

Q0.31
U_MAX

Q0.31
I_MAX

double

double

double

double

X

d
o

u
b

le

d
o

u
b

le

U
_

M
A

X

I_
M

A
X

PAVG

QAVG

URMS

IRMS

S

 METERLIBLP1PH_ReadResults function block diagram

NOTE

All reading functions perform several calculations in double precision

format. Due to this fact, and also for practical reasons, the reading

functions shall be called in an interrupt which is intended to update non-

billing information on the LCD. It is sufficient to update the LCD and call

reading functions every 250 milliseconds or so. With such a low update

rate the processor load caused by the reading functions will be almost

negligible.

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

52 NXP Semiconductors

Performance

Function Code size Stack size Clock cycles

METERLIB1PH_ReadResults 240 32 2557

METERLIB2PH_ReadResultsPh1

METERLIB2PH_ReadResultsPh2
236 32 5083

METERLIB3PH_ReadResultsPh1

METERLIB3PH_ReadResultsPh2

METERLIB3PH_ReadResultsPh3

240 32 7605

METERLIBLP1PH_ReadResults 232 32 2526

METERLIBLP2PH_ReadResultsPh1

METERLIBLP2PH_ReadResultsPh2
232 32 5008

METERLIBLP3PH_ReadResultsPh1

METERLIBLP3PH_ReadResultsPh2

METERLIBLP3PH_ReadResultsPh3

232 32 7473

 METERLIB_ReadURMS

These functions read RMS voltages from the internal data structure.

Syntax
#include “meterlib.h”
void METERLIB1PH_ReadURMS (tMETERLIB1PH_DATA *p, double *urms1);
void METERLIB2PH_ReadURMS (tMETERLIB2PH_DATA *p, double *urms1, double *urms2);
void METERLIB3PH_ReadURMS (tMETERLIB3PH_DATA *p, double *urms1, double *urms2, double
*urms3);

#include “meterliblp.h”
void METERLIBLP1PH_ReadURMS (tMETERLIBLP1PH_DATA *p, double *urms1);
void METERLIBLP2PH_ReadURMS (tMETERLIBLP2PH_DATA *p, double *urms1, double *urms2);
void METERLIBLP3PH_ReadURMS (tMETERLIBLP3PH_DATA *p, double *urms1, double *urms2, double
*urms3);

Arguments

Type Name Direction Description

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA.

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA.

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA.

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA.

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

double urms1 out Pointer to phase 1 RMS voltage value in volts.

double urms2 out Pointer to phase 2 RMS voltage value in volts.

double urms3 out Pointer to phase 3 RMS voltage value in volts.

Return

These functions do not return any arguments.

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 53

Description

These functions retrieve RMS voltage (URMS) from the internal data structure of the respective

metering library. The RMS voltages are scaled by U_MAX to the physical representation and returned in

double floating point precision.

𝑼𝑹𝑴𝑺 = 𝑼𝑹𝑴𝑺𝑸 ∗ 𝑼_𝑴𝑨𝑿

Eq. 50

A block diagram of the METERLIB1PH_ReadURMS() function defined in the high-precision metering

library is shown in this figure:

METERLIB1PH_DATA

URMSQ[n]
Q0.31

U_MAX
double

d
o

u
b

le
U

_
M

A
X

URMS

 METERLIB1PH_ReadURMS function block diagram

A block diagram of the METERLIBLP1PH_ReadURMS() function defined in the low-power metering

library is shown in this figure:

METERLIBLP1PH_DATA

URMSQ[n]
Q0.31

U_MAX
double

d
o

u
b

le
U

_
M

A
X

URMS

 METERLIBLP1PH_ReadURMS function block diagram

Performance

Function Code size Stack size Clock cycles

METERLIB1PH_ReadURMS 42 16 502

METERLIB2PH_ReadURMS 72 16 990

METERLIB3PH_ReadURMS 118 24 1464

METERLIBLP1PH_ReadURMS 40 16 489

METERLIBLP2PH_ReadURMS 72 16 965

METERLIBLP3PH_ReadURMS 112 24 1427

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

54 NXP Semiconductors

 METERLIB_ReadIRMS

These functions read RMS currents from the internal data structure.

Syntax
#include “meterlib.h”
void METERLIB1PH_ReadIRMS (tMETERLIB1PH_DATA *p, double *irms1);
void METERLIB2PH_ReadIRMS (tMETERLIB2PH_DATA *p, double *irms1, double *irms2);
void METERLIB3PH_ReadIRMS (tMETERLIB3PH_DATA *p, double *irms1, double *irms2, double
*irms3);

#include “meterliblp.h”
void METERLIBLP1PH_ReadIRMS (tMETERLIBLP1PH_DATA *p, double *irms1);
void METERLIBLP2PH_ReadIRMS (tMETERLIBLP2PH_DATA *p, double *irms1, double *irms2);
void METERLIBLP3PH_ReadIRMS (tMETERLIBLP3PH_DATA *p, double *irms1, double *irms2, double
*irms3);

Arguments

Type Name Direction Description

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA.

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA.

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA.

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA.

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

double irms1 out Pointer to phase 1 RMS current value in amperes.

double irms2 out Pointer to phase 2 RMS current value in amperes.

double irms3 out Pointer to phase 3 RMS current value in amperes.

Return

These functions do not return any arguments.

Description

These functions retrieve RMS current (IRMS) from the internal data structure. The RMS currents are

scaled by I_MAX to the physical representation and returned in double floating point precision.

𝑰𝑹𝑴𝑺 = 𝑰𝑹𝑴𝑺𝑸 ∗ 𝑰_𝑴𝑨𝑿

Eq. 51

A block diagram of the METERLIB1PH_ReadIRMS() function defined in the high-precision metering

library is shown in this figure:

METERLIB1PH_DATA

URMSQ[n]
Q0.31

U_MAX
double

d
o

u
b

le
U

_
M

A
X

URMS

 METERLIB1PH_ReadIRMS function block diagram

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 55

A block diagram of the METERLIBLP1PH_ReadIRMS() function defined in the low-power metering

library is shown in this figure:

METERLIBLP1PH_DATA

IRMSQ[n]
Q0.31

I_MAX
double

d
o

u
b

le
I_

M
A

X

IRMS

 METERLIBLP1PH_ReadIRMS function block diagram

Performance

Function Code size Stack size Clock cycles

METERLIB1PH_ReadIRMS 44 16 556

METERLIB2PH_ReadIRMS 76 16 1082

METERLIB3PH_ReadIRMS 124 24 1608

METERLIBLP1PH_ReadIRMS 42 16 505

METERLIBLP2PH_ReadIRMS 78 24 985

METERLIBLP3PH_ReadIRMS 110 24 1461

 METERLIB_ReadPAVG

These functions read active powers from the internal data structure.

Syntax
#include “meterlib.h”
void METERLIB1PH_ReadPAVG (tMETERLIB1PH_DATA *p, double *pavg1);
void METERLIB2PH_ReadPAVG (tMETERLIB2PH_DATA *p, double *pavg1, double *pavg2);
void METERLIB3PH_ReadIAVG (tMETERLIB3PH_DATA *p, double *pavg1, double *pavg2, double
*pavg3);

#include “meterliblp.h”
void METERLIBLP1PH_ReadPAVG (tMETERLIBLP1PH_DATA *p, double *pavg1);
void METERLIBLP2PH_ReadPAVG (tMETERLIBLP2PH_DATA *p, double *pavg1, double *pavg2);
void METERLIBLP3PH_ReadIAVG (tMETERLIBLP3PH_DATA *p, double *pavg1, double *pavg2, double
*pavg3);

Arguments

Type Name Direction Description

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA.

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA.

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA.

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA.

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

double pavg1 out Pointer to phase 1 active power in watts.

double pavg2 out Pointer to phase 2 active power in watts.

double pavg3 out Pointer to phase 3 active power in watts.

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

56 NXP Semiconductors

Return

These functions do not return any arguments.

Description

These functions retrieve active power (PAVG) from the internal data structure. The active powers are

scaled by U_MAX and I_MAX to the physical representation and returned in double floating point

precision.

𝑷 = 𝑷𝑸 ∗ 𝑼_𝑴𝑨𝑿 ∗ 𝑰_𝑴𝑨𝑿

Eq. 52

A block diagram of the METERLIB1PH_ReadPAVG() function defined in the high-precision metering

library is shown in this figure:

METERLIB1PH_DATA

URMSQ[n]
Q0.31

U_MAX
double

d
o

u
b

le
U

_
M

A
X

URMS

 METERLIB1PH_ReadPAVG function block diagram

A block diagram of the METERLIBLP1PH_ReadPAVG() function defined in the low-power metering

library is shown in this figure:

METERLIBLP1PH_DATA

PAVGQ[n]
Q0.31

U_MAX*I_MAX
double

d
o

u
b

le

d
o

u
b

le

U
_

M
A

X

I_
M

A
X

PAVG

 METERLIBLP1PH_ReadPAVG function block diagram

Performance

Function Code size Stack size Clock cycles

METERLIB1PH_ReadPAVG 52 16 734

METERLIB2PH_ReadPAVG 96 16 1436

METERLIB3PH_ReadPAVG 156 24 2163

METERLIBLP1PH_ReadPAVG 50 16 722

METERLIBLP2PH_ReadPAVG 96 16 1414

METERLIBLP3PH_ReadPAVG 150 24 2127

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 57

 METERLIB_ReadS

These functions read apparent powers from the internal data structure.

Syntax
#include “meterlib.h”
void METERLIB1PH_ReadS (tMETERLIB1PH_DATA *p, double *s1);
void METERLIB2PH_ReadS (tMETERLIB2PH_DATA *p, double *s1, double *s2);
void METERLIB3PH_ReadS (tMETERLIB3PH_DATA *p, double *s1, double *s2, double *s3);

#include “meterliblp.h”
void METERLIBLP1PH_ReadS (tMETERLIBLP1PH_DATA *p, double *s1);
void METERLIBLP2PH_ReadS (tMETERLIBLP2PH_DATA *p, double *s1, double *s2);
void METERLIBLP3PH_ReadS (tMETERLIBLP3PH_DATA *p, double *s1, double *s2, double *s3);

Arguments

Type Name Direction Description

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA.

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA.

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA.

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA.

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

double s1 out Pointer to phase 1 apparent power in volt-amperes.

double s2 out Pointer to phase 2 apparent power in volt-amperes.

double s3 out Pointer to phase 3 apparent power in volt-amperes.

Return

These functions do not return any arguments.

Description

These functions retrieve apparent power (S) from the internal data structure. The apparent powers are

scaled by U_MAX and I_MAX to the physical representation and returned in double floating point

precision.

𝑺 = 𝑰𝑹𝑴𝑺𝑸 ∗ 𝑼𝑹𝑴𝑺𝑸 ∗ 𝑼_𝑴𝑨𝑿 ∗ 𝑰_𝑴𝑨𝑿

Eq. 53

A block diagram of the METERLIB1PH_ReadS() function defined in the high-precision metering

library is shown in this figure:

METERLIB1PH_DATA

URMSQ[n]
Q0.31

U_MAX
double

d
o

u
b

le
U

_
M

A
X

URMS

 METERLIB1PH_ReadS function block diagram

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

58 NXP Semiconductors

A block diagram of the METERLIBLP1PH_ReadS() function defined in the low-power metering library

is shown in this figure:

METERLIBLP1PH_DATA

IRMSQ[n]

URMSQ[n]
Q0.31

U_MAX

Q0.31
I_MAX

X

d
o

u
b

le

d
o

u
b

le

U
_

M
A

X

I_
M

A
X

S

 METERLIBLP1PH_ReadS function block diagram

Performance

Function Code size Stack size Clock cycles

METERLIB1PH_ReadS 64 16 787

METERLIB2PH_ReadS 120 16 1552

METERLIB3PH_ReadS 192 24 2320

METERLIBLP1PH_ReadS 60 16 777

METERLIBLP2PH_ReadS 116 16 1530

METERLIBLP3PH_ReadS 180 24 2304

 METERLIB_KWH_PD

This macro returns a fine delay of the active energy pulse output transition.

Syntax
#include “meterlib.h”
#define METERLIB_KWH_PD(p) (frac16)(p)->wh.puDly

#include “meterliblp.h”
#define METERLIBLP_KWH_PD(p) (frac16)(p)->wh.puDly

Arguments

Type Name Direction Description

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA.

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA.

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA.

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA.

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

Return

This macro returns a fine delay in range from 0x0000 to 0x7fff in case of the active energy pulse output

transition. The fine delay is scaled to the calculation step (1/KWH_CALC_FREQ). If active energy

pulse output doesn’t change then macro returns -1 (0x8000).

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 59

 METERLIB_KVARH_PD

This macro returns a fine delay of the reactive energy pulse output transition.

Syntax
#include “meterlib.h”
#define METERLIB_KVARH_PD(p) (frac16)(p)->varh.puDly

#include “meterliblp.h”
#define METERLIBLP_KVARH_PD(p) (frac16)(p)->varh.puDly

Arguments

Type Name Direction Description

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA.

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA.

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA.

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA.

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

Return

This macro returns a fine delay in range from 0x0000 to 0x7fff in case of the reactive energy pulse

output transition. The fine delay is scaled to the calculation step (1/KVARH_CALC_FREQ). If reactive

energy pulse output doesn’t change then macro returns -1 (0x8000).

 METERLIB_KWH_PS

This macro returns a raw state of the active energy pulse output.

Syntax
#include “meterlib.h”
#define METERLIB_KWH_PS(p) (frac16)(p)->wh.puOut

#include “meterliblp.h”
#define METERLIBLP_KWH_PS(p) (frac16)(p)->wh.puOut

Arguments

Type Name Direction Description

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA.

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA.

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA.

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA.

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

Return

This macro returns a raw state of the active energy pulse output.

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

60 NXP Semiconductors

 METERLIB_KVARH_PS

This macro returns a raw state of the reactive energy pulse output.

Syntax
#include “meterlib.h”
#define METERLIB_KVARH_PS(p) (frac16)(p)->varh.puOut

#include “meterliblp.h”
#define METERLIBLP_KVARH_PS(p) (frac16)(p)->varh.puOut

Arguments

Type Name Direction Description

tMETERLIB1PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB1PH_DATA.

tMETERLIB2PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB2PH_DATA.

tMETERLIB3PH_DATA p in/out Pointer to high-precision library data structure tMETERLIB3PH_DATA.

tMETERLIBLP1PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP1PH_DATA.

tMETERLIBLP2PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

tMETERLIBLP3PH_DATA p in/out Pointer to low-power library data structure tMETERLIBLP2PH_DATA.

Return

This macro returns a raw state of the reactive energy pulse output.

 METERLIB_KWH_PR

This macro converts imp/kWh number to pulse output resolution required by metering libraries.

Syntax
#include “meterlib.h”
#define METERLIB_KWH_PR(x) FRAC48(((5e2/(x))/(U_MAX*I_MAX/3600/KWH_CALC_FREQ)))

#include “meterliblp.h”
#define METERLIBLP_KWH_PR(x) FRAC32(((5e2/(x))/(U_MAX*I_MAX/3600/KWH_CALC_FREQ)))

Arguments

Type Name Direction Description

int x in User defined imp/kWh number.

Return

This macro returns an active energy pulse output resolution.

 METERLIB_KVARH_PR

This macro converts imp/kVARh number to pulse output resolution required by metering libraries.

Syntax
#include “meterlib.h”
#define METERLIB_KVARH_PR(x) FRAC48(((5e2/(x))/(U_MAX*I_MAX/3600/KVARH_CALC_FREQ)))

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 61

#include “meterliblp.h”
#define METERLIBLP_KVARH_PR(x) FRAC32(((5e2/(x))/(U_MAX*I_MAX/3600/KVARH_CALC_FREQ)))

Arguments

Type Name Direction Description

int x in User defined imp/kVARh number.

Return

This macro returns a reactive energy pulse output resolution.

 METERLIB_DEG2SH

This macro converts U-I phase shift in degrees to a 16-bit fractional number with resolution of

(fn*360/(32768*KWH_CALC_FREQ)) degrees.

Syntax
#include “meterlib.h”
#define METERLIB_DEG2SH(x,fn) FRAC16((float)(x)*KWH_CALC_FREQ/((float)fn*360.0))

#include “meterliblp.h”
#define METERLIBLP_DEG2SH(x,fn) FRAC16((float)(x)*KWH_CALC_FREQ/((float)fn*360.0))

Arguments

Type Name Direction Description

double x in U-I phase shift in degrees.

double fn in Nominal frequency in Hz.

Return

This macro returns converted U-I phase shift in a 16-bit fractional representation.

 METERLIB_RAD2SH

This macro converts U-I phase shift in radians to a 16-bit fractional number with resolution of

(fn*2*Pi/(32768*KWH_CALC_FREQ)) radians.

Syntax
#include “meterlib.h”
#define METERLIB_RAD2SH(x,fn)
 FRAC16((float)(x)*KWH_CALC_FREQ/((float)fn*2.0*3.14159265358979323846))

#include “meterliblp.h”
#define METERLIBLP_RAD2SH(x,fn)
 FRAC16((float)(x)*KWH_CALC_FREQ/((float)fn*2.0*3.14159265358979323846))

Arguments

Type Name Direction Description

double x in U-I phase shift in radians.

double fn in Nominal frequency in Hz.

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

62 NXP Semiconductors

Return

This macro returns converted U-I phase shift in 16-bit fractional representation.

 Configuration tool

This section describes the configuration tool workspace and all its features. The configuration tool is

primarily intended to tune the filters to match the required performance and to generate the C-header file

that contains the source code with the parameters describing the behavior of the Filter-Based Metering

Algorithm. It automatizes the procedure of the algorithm setup and optimization, while providing a

rough estimate of the required computational load. The tool generates the C-code for configuring of

32-bit metering algorithms and supports one-phase, two-phase (Form-12S), and three-phase power

meter topologies.

It is recommended to be familiar with the workspace, because this is where your time is spent when

using the configuration tool to design a file with the parameters for the Filter-Based Metering Algorithm

(see Figure 45).

A – General and configuration panel, B – 90-degree phase shifter configuration panel, C – Block diagram panel,

D – Performance estimator panel, E – Code generator panel, F – Algorithm simulator panel

 Configuration tool

A

B

F
E

C

D

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 63

The configuration tool comprises six configuration and visualization panels: the general configuration

panel, the 90-degree phase shifter configuration panel, the block diagram panel, the performance

estimator panel, the code generator panel, and the algorithm simulator panel.

 General configuration panel

The general configuration panel is where you configure the basic parameters of your power meter

application.

 Parameters of the general configuration panel

Parameter Unit Default Min. Max. Description

Configuration — — — —
The name of the structure containing the

configuration parameters.

Sampling rate Hz 1200 1000 12000 The filter sampling rate.

Decimation

factor
— 1 1 10

The decimator factor for the computation of

non-billing quantities.

Maximal current A 141.421 — — The peak current scaled to the full ADC input range.

Maximal voltage V 395.980 — — The peak voltage scaled to the full ADC input range.

Nominal

frequency
Hz 50 50 60 The nominal frequency of the power meter.

Counters

resolution
Inc/kWh 10 000 100

100

000

The resolution of the active and reactive energy

counters.

Power sense

threshold
W 0.5 0.0 2.0

The power threshold for clearing the RMS current

and power values. This threshold does not influence

the accumulation of the active and reactive energies.

Starting current A 0.02 0.0 1.0

The RMS current threshold for clearing the RMS

current and power values. If the RMS current in the

phase is below this threshold, then the active and

reactive energies also do not accumulate.

Active power

offset4
W 0.0 0.0 9.9999 Used for zero-load active power residue cancellation.

Reactive power

offset4
VAR 0.0 0.0 9.9999

Used for zero-load reactive power residue

cancellation.

Current sensor — Proportional — —

The sensor output characteristic: proportional (current

transformer or shunt resistor), derivative

(Rogowski coil).

Power meter — three-phase — —
Number of phases: one-phase, two-phase, or three-

phase.

Library prefix — METERLIB — —
METERLIB: high-precision library, METERLIBLP:

low-power library.

Check and modify the default settings of the offset-removal configuration panel. The offset-removal

block uses the high-pass IIR filters to remove the DC offset from the measured waveforms. By default,

4 Both the “active” and “reactive” power offsets are intended to compensate for sensors and PCB cross-talks. Use
them whenever a library outputs a non-zero power measurement at a no-load condition. Use the following steps
to set up the power offsets in the configuration tool: 1) calibrate the power meter with the “power sense threshold”,
“starting current threshold” and “power offsets” parameters set to zero, 2) put the calibrated power meter under a
no-load test condition and monitor the measured “active” and “reactive” powers until a steady state, 3) write the
steady state “active” and “reactive” powers with negative signs into the respective “power offset” controls,
4) update the library configuration header file, recompile the project, and download the application into your power
meter. After the recalibration, the accuracy of the power meter in lower currents improves.

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

64 NXP Semiconductors

the cut-off frequency of these high-pass IIR filters is set to 0.3 Hz. This default setting works for most

applications.

 Parameters of the offset-removal configuration panel

Parameter Unit Default Min. Max. Description

HPF cut-off

frequency
Hz 0.3 0.1 29.9 High-pass filter cut-off frequency.

The RMS and the power converter blocks are represented by a cascade of two low-pass IIR filters.

The characteristics of these filters are defined by the cut-off frequency setting in the RMS and power

converters configuration panel. By default, the cut-off frequency of the low-pass IIR filter is set to

0.5 Hz.

 Parameters of the RMS and power converters configuration panel

Parameter Unit Default Min. Max. Description

LPF1 cut-off

frequency
Hz 0.5 0.2 29.9 Low-pass filter cut-off frequency.

Finally, check and adjust the setting of the pulse output generation. The configuration tool and the

metering libraries support the generation of two pulse outputs. The pulse outputs are used to calibrate

the measurement accuracy of the active and reactive energies using a reference meter. This very popular

method of calibration uses a power source, a meter pulse output, and an external reference meter to

determine the required compensation. Set the parameters of the meter pulse output (such as the number

of pulses per energy quanta and the smoothing factor) in the pulse generation configuration panel.

 Parameters of the pulse generation configuration panel

Parameter Unit Default Min. Max. Description

Active energy Imp/kWh 50 000 100 5e6
Number of pulses generated by the power meter for

one kWh.

Reactive

energy
Imp/kVARh 50 000 100 5e6

Number of pulses generated by the power meter for

one kVARh.

Energy

attenuation

factor

% 0.0 0 10.0

Attenuation of the energy calculation paths. Used

mainly with the low-power libraries to improve the

balance between the energy and non-billing

computation paths.

LPF2 cut-off

frequency
Hz 3.0 2.0 5.0

Pulse output ripple cancellation low-pass filter cut-off

frequency.

 90-degree phase shifter panel

The 90-degree phase shifter block is represented by the Hilbert FIR filter. Modify the Hilbert FIR filter

characteristics using the 90-degree phase shifter configuration panel. The default setting of this complex

FIR filter is computed with the aim to achieve a unity gain of the 90-degree shifted output waveforms in

the frequency bandwidth above the nominal frequency of 50 Hz (60 Hz), and below the half of the

sampling frequency.

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 65

 Parameters of the 90-degree phase shifter configuration panel

Parameter Unit Default Min. Max. Description

Kaiser window

beta
— 6.0672 0.0 9.9999 Kaiser window coefficient.

Kaiser window

gain
— 1.0 0.5 2.0 Kaiser window gain.

Adjust FIR filter

taps
— 0 100 100 Increase or lower the number of filter taps manually.

Select clock after

decimation
— — — — Hilbert FIR filter computation frequency.

To make the setting of the Hilbert FIR filter easier, leverage the “Knob Control” object (a graphical

panel for a precise adjustment of parameters). This panel is hidden by default, and you can activate it

using the CTRL+K keyboard shortcut. For more information about the “Knob Control” usage, see Using

the configuration tool.

 Block diagram panel

The procedure for computing of metering quantities depends on the library configurations.

The configuration tool is designed to track your changes within the library configurations, analyze their

impact on the computation algorithm, and to display the most up-to-date computation block diagram,

together with the estimated computational load of the selected MCU core architecture.

 Performance estimator panel

This panel shows the estimated core clock frequency (in MHz) that is required to compute the metering

algorithms. The core clock frequency is computed for the selected MCU core architecture and for

specific library configurations.

 Code generator panel

This panel shows a real-time preview of the data structure containing the most up-to-date library

configuration (see the following figure). For more information about integrating the library

configuration structure into your project, see Configuration tool.

 Code generator visualization panel

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

66 NXP Semiconductors

Start working with the configuration tool either by creating a new library configuration data structure or

by opening an existing one. Store the library configuration data structure in a C header file if you want

to make a reference to it from within your project. This figure shows the menu of all commands for

handling the library configuration files.

 Handling library configuration structure

 Algorithm simulator panel

The algorithm simulator panel is by default hidden by the configuration tool. Show/hide it using the

CTRL+A keyboard shortcut. The algorithm simulator panel is capable of analyzing the performance of

the metering library preset using your specific configuration. The algorithm simulator panel comprises

four blocks: A—signal generator block, B—overview visualization block, C—errors visualization block,

and D—simulation time slider:

A – Signal generator block, B – Overview visualization block, C – Errors visualization block, D – Simulation time slider,

E – Energies visualization block

 Algorithm simulator panel

The algorithm simulator panel is updated after each change in the library configuration. It simulates the

dynamic response of the metering library based on the user configuration during the first 10 seconds of

operation. Use the simulation time slider (D) to select the computation step of interest. For the selected

computation step, the overview (B), errors (C), and energies visualization blocks are updated with the

actual simulated values.

A
B

C

D

E

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 67

NOTE

Use the “Knob Control” pop-up panel to set up all parameters of the signal

generator block (A), and to control the simulation time slider (D).

Bring up the “Knob Control” pop-up panel using the CTRL+K keyboard

shortcut.

On the contrary to the physical quantities displayed in the overview visualization panel, the errors

visualization panel displays the deviations of quantities from the steady-state values in percentages:

 Errors visualization panel

The error limit [%] control is visible in both the overview (B) and error (C) visualization blocks.

It enables you to preset the error margin as a percentage. When the simulated quantity fits into the

specified error margin, the background color of the respective control is grayed out. When the deviation

of the simulated quantity for a given computation step doesn’t fit into the specified error margin, the

background color of the respective control turns red.

You can quickly check whether your selected and configured library (high-precision or low-power) is

accurate enough by simply predefining the error limit [%] of your interest and looking at the background

colors of the simulated quantities, while changing the computation step using the simulation time

slider (D). You can also find a computation step where all non-billing quantities settle and where their

accuracies start to fit into the predefined error margin [%].

The simulation engine (integrated within the configuration tool) uses metering libraries (including data

representation) that are compiled for the target MCU platforms. The simulations performed by the

configuration tool directly on the PC provide bit-accurate results and the responses to the input

waveforms generated by the signal generator block (A).

Toying with the simulator gives you a good insight into the algorithm performance and accuracy. Test

the behavior of metering algorithms using the algorithm simulator panel (e.g., when the input current

waveform is below the starting current threshold). Investigate the difference in accuracies of the

high-precision and low-power metering libraries for the given input voltage and current waveforms

within several clicks.

The following figure shows the panel for displaying the results of energy counting. This panel shows the

values of all energy counters supported by the library.

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

68 NXP Semiconductors

 Energies visualization panel

The filter-based metering libraries track the changes of the active and reactive energies independently

for each phase. The metering libraries compute the imported and exported active and reactive energies,

as well as the reactive energies in four quadrants. The energy counters are accumulated at each

calculation step with the resolution defined by the value in the “Counters resolution” dialog box.

The only energy counters updated by the metering library are those based on the location of the apparent

power phase phasor (S) within the distribution diagram:

 Energies distribution diagram

This table summarizes the energy counters supported by the metering library and their updating based

on the apparent power phase phasor (S) location within the distribution diagram:

 Dependencies of updated energy counters update

Counter name Counter description Apparent power phase phasor sector

kWh imp Active energy import Q1 or Q4

kWh exp Active energy export Q2 or Q3

kVARh imp Reactive energy import Q1 or Q2

kVARh exp Reactive energy export Q3 or Q4

kVARh Qn
Reactive energy in Qn

quadrant, n=1,2,3, and 4
Qn

kWh exp
active energy export

+

+-

-

P
Q

S
ϕ

Q2

Q3 Q4

kWh imp
active energy import

kVARh imp
reactive energy import

kVARh exp
reactive energy export

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 69

The following figure demonstrates the performance of the phase sequence detection. The simulator

returns the phase sequence for a three-phase system. The phase sequence is indicated by the color of the

decoration panel in the “Overview” and “Errors” visualization panels. The phase sequence 1-2-3

(clockwise rotation) is indicated by the green color and the phase sequence 3-2-1 (counter-clockwise

rotation) by the dark-blue color, respectively. The hidden decoration panel in the three-phase system

means that the phase sequence cannot be decoded properly.

 Phase sequence detection

NOTE

Select either the calibrated or the un-calibrated simulator output to

evaluate the accuracy of Filter-Based Metering Algorithms after or before

the calibration. The graphical configuration tool selects the calibrated

output of the simulator by default. In the calibrated mode, the simulator

shows the values computed by the algorithms with corrections for the

high-pass filter amplitude characteristics at the nominal frequency. As

opposed to the calibrated mode, you must select the un-calibrated mode

manually, and the simulator does not compensate for the filter

characteristics in this mode. The un-calibrated simulator output is less

accurate than the calibrated simulator output.

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

70 NXP Semiconductors

 Using the configuration tool

The example described in this section shows the procedure of configuring the Filter-Based Metering

Algorithm for a typical one-phase power meter application. The application runs on the MKM34Z128

32-bit Kinetis-M MCU. This device is based on the ARM Cortex-M0+ core and integrated with a

powerful 24-bit AFE. The 32-bit core, powerful 4-channel 24-bit AFE, and the additional 16-bit SAR

ADC make this family of MCUs ideal for one-phase, two-phase (Form-12S), and three-phase power-

meter applications.

These information about the target hardware platform, application firmware, and power meter features

and capabilities are needed for the configuration:

• Hardware platform:

— Power meter type: one-phase

— Mains frequency: 50 Hz

— Resolution of the active energy counter: 0.1 Wh

— Resolution of the reactive energy counter: 0.1 VARh

— Current scaling (I_MAX): 141.42 A

— Voltage scaling (U_MAX): 325.27 V

• Application firmware:

— Update rate for billing quantities (decimated from the 6-kHz AFE output rate): 1200 Hz

— Decimation ratio (update rate) for non-billing quantities: ↓2 (600 Hz)

— Power sensitivity threshold (for zeroing of non-billing quantities): 0.5 W

• Power meter features:

— Active energy pulse output rate: 50 000 imp/kWh

— Reactive energy pulse output rate: 50 000 imp/kVARh

— Active and reactive energy accuracies: from 49 Hz to 250 Hz (0.5 %)

— Starting current threshold (according to IEC50470-3): 20 mA

Initially, the parameters describing the hardware platform and the application firmware are entered into

the respective dialogue boxes of the general setting panel (see Figure 53). The name of the configuration

structure containing all the algorithm configurations is stored in the meterlib1ph_cfg.h file, and referred

to in the application code as “METERLIB1PH_CFG”.

NOTE

The only limitation in selecting the update rate for non-billing quantities is

the signal bandwidth required for their calculation, and it must be at least

1200 Hz (or higher). The configuration tool enables you to enter an integer

number as the decimation ratio to calculate the non-billing quantities.

Implement this lower update rate into the software by skipping the

non-billing calculations for a given number of times.

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 71

 General Setting

Set the parameter of the offset removal block, as shown in the following figure. This block is

represented by the high-pass first-order Butterworth filter, whose cut-off frequency must be chosen

appropriately. It is recommended to use the default setting of 0.3 Hz, which guarantees an effective

offset removal. Set the high-pass filter cut-off frequency in the range from 0.1 Hz to 5.0 Hz.

 Offset Removal

The RMS and power converters comprising the low-pass first-order Butterworth filters are configured.

This configuration is very straightforward, and requires you to select the filter cut-off frequency in the

range from 0.3 Hz to 5.0 Hz. Using the default cut-off frequency of 0.5 Hz is recommended, unless you

need a faster or smoother dynamic response.

 RMS and Power Converters

You must understand the default setting of the 90-degree phase shifter. Setting this block, which

represents the Hilbert FIR filter with numerous coefficients to set up, is almost impossible without the

configuration tool and/or high-level simulation tools (such as Matlab/Simulink). The configuration tool

provides an intuitive way to parameterize this block (similar to operating an oscilloscope) when using

the “Knob Control” panel. According to the technical requirements, the accuracy of the reactive energy

must be 0.5 % (in the frequency range from 49 Hz to 250 Hz).

The following figure shows the default setting of the block and the magnitude response of the FIR

Hilbert filter. It is evident that the accuracy of the reactive energy resulting from the default setting is in

the range of 0.1 % (in the given frequency range).

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

72 NXP Semiconductors

 Default setting of the 90-degree phase shifter

The default Hilbert FIR filter has a length of 49 taps for the given sampling rate of 1200 Hz, and the

mains frequency of 50 Hz. The group delay of the filter is 20 ms. Optimize the filter length, beta, and

gain parameters of the Kaiser Window manually (using the “Knob Control” pop-up panel) to further

lower the computational requirements.

 Optimal setting of the 90-degree phase shifter

Figure 57 shows the magnitude response of the optimized FIR Hilbert filter. The length of the filter is 39

taps, and its group delay is 15.83 ms. After the optimization, the computational requirements of the FIR

Hilbert filter drops by approximately 20 %. The magnitude response of the filter fits into the required

accuracy class of 0.5 %.

NOTE

Even the ±0.5 % accuracy target for the reactive energy is somewhat high.

The most demanding requirement for the reactive energy is given by the

IEC 62053-23 international standard, which defines the accuracy of

reactive energy measurement of ±2.0 %. Such accuracy can be achieved

Power meter application development

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 73

with a 29-tap FIR filter with just 60 % of the computational performance,

when compared to the default setting.

Configure the active and reactive pulse outputs and their low-pass filters. This is performed in several

dialogue boxes, as shown in the following figure. To improve the jitter of the pulse output, the low-pass

first-order Butterworth filter is used to filter out the energy ripples. It is recommended to use the default

filter cut-off frequency of 3 Hz, which achieves the attenuation of the ripple energy by 33.3 dB in a

relatively short time (0.281 s). The active and reactive energy pulse output numbers are set to

50 000 imp/kWh and 50 000 imp/kVARh, respectively.

 Pulse generation

After the configuration is complete, save it to the hard drive. An example of the configuration file

generated by the configuration tool for the one-phase power meter application is shown in Appendix A.

NOTE

The configuration is stored in a C header file in the format of initialization

data for the configuration structure of the particular power meter type.

The configuration structures for all supported power meter topologies are

defined in the meterlib.h header file.

The configuration file is an essential part of the power meter firmware application. A simple test

application that includes a configuration file is shown in Appendix B. For the sake of simplicity, this

application does not measure the phase voltage and phase current samples, but emulates these signals

by software.

Accuracy and performance testing

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

74 NXP Semiconductors

NOTE

Open the configuration file using the configuration tool for printing and

parameter adjustment. For example, the configuration file specific to the

one-phase power meter can be easily modified and used as the base for

generating two-phase (Form-12S) and/or three-phase power meter

configurations (and vice-versa). After making changes in the configuration

file, recompile the firmware application and rebuild the whole project.

Upload the new firmware code to the MCU and test the new algorithm

configuration. Repeat the above steps until the algorithm matches the

required performance.

The performance of the metering library was thoroughly tested. Real tests were carried out on the

one-phase power meter reference designs. The results of the performance testing are described in the

following section.

5. Accuracy and performance testing

The performance of the metering library was tested on the one-phase Kinetis M power meter reference

design [12]. The MKM34Z128 device (32-bit Kinetis M MCU) at the heart of the reference design is

based on the ARM Cortex-M0+ core. This efficient processor core, with support for 32-bit mathematics,

enables fast execution of the Filter-Based Metering Algorithm.

 Single phase KM3x power meter specification

Type of meter Single phase residential

Type of measurement 4-quadrant

Metering algorithm Filter-based

Precision (accuracy) IEC50470-3 class C, 0.5% (for active and reactive energy)

Voltage range 90…265 VRMS

Current Range 0…up to 120 ARMS (5 A is nominal current, peak current is up to 152 A)

Frequency range 47…53 Hz

Meter constant (imp/kWh, imp/kVArh)

500, 1000, 2000, 5000, 10000, 20000 (default), 50000, 100000, 200000,

500000, 1000000, 2000000, 4000000 and 6000000. Note that pulse

numbers above 50000 are aplicable only for low current measurement.

Functionality
V, A, kW, kVAr, kVA, kWh (import/export), kVARh (lead/lag), Hz, time,

date

Voltage sensor Voltage divider

Current sensor Shunt down to 120 μΩ

Energy output pulse interface two red LEDs (active and reactive energy)

Energy output pulse parameters:

 Maximum frequency

 On-Time

 Jitter

600 Hz

20 ms (50% duty cycle for frequencies above 25 Hz)

 10 s at constant power

Optoisolated pulse output (optional) optocoupler (active or reactive energy)

User interface (HMI) LCD, one push-button, one user LED (red)

Tamper detection two hidden buttons (terminal cover and main cover)

Infrared interface 4800/8-N-1 FreeMASTER interface

Isolated RS232 serial interface (optional only) 19200/8-N-1

RF interface (optional only)

2.4 GHz RF 1322x-LPN internal daughter card

Accuracy and performance testing

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 75

 Single phase KM3x power meter specification

Internal battery (for RTC) 3.6 V

Power consumption @ 3.3V and 22 °C:

Measurement mode (powered from mains)

Run/Menu list mode (mains disconnected)

Standby (4kB system RAM back-up)

10.88 mA

245 A

5.6 A (both cover closed), 4.4 A (covers opened)

Internal battery (for RTC) 3.6 V

NOTE

The one-phase Kinetis M power meter used for performance testing was

populated with a 140 µΩ shunt resistor for current measurement.

Additional power meter settings and capabilities are summarized in Table

15.

Figure 59 shows the accuracy errors obtained during performance testing and validation. It is evident

that both active and reactive energies at all power factors fit within the accuracy limit 0.2% in the

current dynamic range 2400:15.

5
 MKM34Z128 system and bus clocked by 12.288 MHz, AFE clocked by 6.144 MHz, Current scaling: I_MAX=
152A @ PGA gain=16, Voltage scaling: U_MAX= 286.0 V.

Summary

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

76 NXP Semiconductors

 Performance of the Kinetis M one-phase power meter reference design

The measured accuracy margin, measurement repeatability, and current dynamic range, make both the

MKM34Z128 Kinetis MCU and the Filter-Based Metering Algorithm suitable for modern high-

performance power meters. The achieved accuracy is compliant with the EN50470-1 and EN50470-3

European standards for electronic meters of active energy classes B and C, IEC 62053-21 and IEC

62052-11 international standards for electronic meters of active energy classes 2 and 1, and the IEC

62053-23 international standard for static meters of reactive energy classes 2 and 3.

6. Summary

This application note describes a metering library that implements the Filter-Based Metering Algorithm.

The presented algorithm is simple and highly accurate. It has been designed specifically for devices

featuring sigma-delta converters, which have a fixed measurement sample rate.

The presented Filter-Based Metering Algorithm can be easily integrated into electronic meters and

requires only instantaneous phase voltage and current samples to be provided to their inputs. All

available sensing circuitries, such as a voltage divider, in the case of phase voltage measurement, or a

shunt resistor, current transformer, and Rogowski coil for phase current measurement, are supported.

The presented algorithms are intended for post-processing instantaneous phase voltage and current

samples after phase shift compensation.

The theoretical section explains fixed-point arithmetic and the theory of digital filters and applications

on a level necessary to understand the metering algorithm. Setting up of the Filter-Based Metering

Algorithm can be realized by the configuration tool. This tool is designed to update configuration data

directly in the configuration C-header file. The changes in the C-header file are reflected after code re-

compilation. The configuration tool automates the procedure of the algorithm setup and optimization,

and it supports one-phase, two-phase (Form-12S), and three-phase power meter applications.

The performance of the metering library has been tested in the one-phase Kinetis M power meter

reference design – the accuracy of the measurement was in the range 0.2 % in the current dynamic

range 2400:1.

Sometimes, the lower power consumption is preferred over high accuracy. The existing metering library

is characterized by high accuracy and exploiting fractional calculations in Q0.31 (32-bit) and even

Q0.63 (64-bit) fractional data format. Such high accuracy requires adequate core performance and a

system clock in the range 10 MHz and above. The future development and expansion of the metering

library will focus on lowering computational resources while performing calculations of billing

quantities at the accuracy level mandated by IEC, MID, and ANSI-C12.20 standards.

Revision History

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 77

7. References

The following documents are useful when using the Filter Based Algorithm for Metering Applications.

1. Handbook for Digital Signal Processing, Sanjit K. Mitra, James F. Kaiser (John Wiley & Sons,

1993, USA)

2. Discrete-Time Signal Processing, Alan V. Oppenheim, Ronald W. Schafer (Prentice Hall, 1989,

USA)

3. Fractional and Integer Arithmetic - DSP56000 Family of General-Purpose Digital Signal

Processors, (Motorola 1993, USA)

4. Q (number format), en.wikipedia.org/wiki/Q_(number_format)

5. Digital Computer Design Fundamentals, Yaohan Chu (1962 by McGraw-Hill, New York, USA)

6. Otázky a odpovedě z mikroprocesorov a mikropočítačov, Zdeněk Sobotka (Alfa, 1986, Slovakia)

7. RMS to DC Conversion Application Guide, Charles Kitchin, Lew Counts (2nd Edition, Analog

Devices, 1986, USA)

8. Linear Circuit Design Handbook, Hank Zumbahlen (editor) (Elsevier-Newnes, 1st Edition,

2008, USA)

9. Analytic Signal Generation-Tips and Traps, Andrew Reilly, Gordon Frazer, and Boualem

Boashash (IEEE Transactions on Signal Processing, vol. 42. No. 11, November 1994)

10. Current Sensing for Energy Metering, William Koon, Analog Devices, USA

The following documents can be found on www.nxp.com. Additional documents not listed here can be

found on the Kinetis M Series product page.

11. DSP56800E and DSP56800EX Digital Signal Controller Cores Reference Manual

(document DSP56800ERM)

12. Kinetis-M One-Phase Power Meter Reference Design (document DRM143)

8. Revision History

Revision number Date Substantial changes

0 08/2013 Initial release

1 12/2013 Changed Section 7 - References

2 11/2014 Added Section 3.6 - Rogowski coil sensor signal processing

Changed Section 4 - Power meter application development

Changed Section 4.2 - Configuration tool

3 06/2015 Changed Section 4.1 - Metering libraries

Added Section 4.1.1 - Core architecture and compiler support

Changed Section 4.2 - Configuration tool

4 04/2016 Changed Section 4.2 - Configuration tool

http://en.wikipedia.org/wiki/Q_(number_format)
http://www.nxp.com/webapp/sps/site/taxonomy.jsp?code=KINETIS_M_SERIES
http://www.fsls.co/doc/DSP56800ERM
http://www.fsls.co/doc/DRM143

Revision History

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

78 NXP Semiconductors

Appendix A. C-Header file
/**
 * Filter-Based Metering Library Configuration File, Created: Sun May 31 09:38:33 2015
 **
 * @TAGNAME = METERLIB1PH_CFG
 * @LOCKED = 0
 * @FSAMPLE = 1200
 * @DFACTOR = 2
 * @IMAX = 141.4214
 * @UMAX = 350.0000
 * @FREQ = 50
 * @COUNTERS_RES = 10000
 * @PWR_THRESHOLD = 0.1000
 * @I_STARTING = 0.0200
 * @APWR_OFS = 0.0000
 * @RPWR_OFS = 0.0000
 * @ENERGY_ATT = 0.0000
 * @IMP_PER_KWH = 50000
 * @IMP_PER_KVARH = 50000
 * @HPF_FCUT = 0.3000
 * @LPF1_FCUT = 0.5000
 * @LPF2_FCUT = 3.0000
 * @KWIN_BETA = 6.0672
 * @KWIN_GAIN = 1.0000
 * @FIR_TAPS_CHG = 0
 * @FIR_FREQ_MOD = 0
 * @CUR_SENSOR = 1
 * @LIB_TYPE = 1
 * @MATH_TYPE = 1
 * @KWH_ONLY = 0
 * @SW_PH_CORR = 0
 * @MCU_CORE = 1
 **/
#ifndef __METERLIB1PH_CFG_H
#define __METERLIB1PH_CFG_H

/**
 * General parameters and scaling coefficients
 **/
#define POWER_METER 1PH /*!< Power meter topology */
#define CURRENT_SENSOR PROPORTIONAL /*!< Current sensor output characteristic */
#define LIBRARY_PREFIX METERLIB /*!< Library prefix; high-performance library */
#define I_MAX 141.421 /*!< Maximal current I-peak in amperes */
#define U_MAX 350.000 /*!< Maximal voltage U-peak in volts */
#define F_NOM 50 /*!< Nominal frequency in Hz */
#define COUNTER_RES 10000 /*!< Resolution of energy counters inc/kWh */
#define IMP_PER_KWH 50000 /*!< Impulses per kWh */
#define IMP_PER_KVARH 50000 /*!< Impulses per kVARh */
#define DECIM_FACTOR 2 /*!< Auxiliary calculations decimation factor */
#define KWH_CALC_FREQ 1200.000 /*!< Sample frequency in Hz */
#define KVARH_CALC_FREQ 1200.000 /*!< Sample frequency in Hz */
/**
 * Filter-based metering algorithm configuration structure
 **/
#define METERLIB1PH_CFG \
{ \
 U_MAX, \
 I_MAX, \
 FRAC32(((+0.1000)/(U_MAX*I_MAX/2.0))), \
 FRAC32((+0.0200)/I_MAX), \
 1, \
 {{0l,0l,0l},{0l,0l,0l}}, \
 {{FRAC32(+0.99921521804155),FRAC32(-0.99921521804155),FRAC32(-0.99843043608309)}}, \
 {{FRAC32(+0.13165249758740),FRAC32(+0.13165249758740),FRAC32(-1.0)}}, \
 {{0l,0ll},{0l,0ll}}, \
 {0l,0ll}, \
 {{0l,0ll},{0l,0ll}}, \
 { 49, \
 { \
 FRAC32(0.0),FRAC32(-0.00073728465714),FRAC32(0.0),FRAC32(-0.00196750272687), \
 FRAC32(0.0),FRAC32(-0.00411945802255),FRAC32(0.0),FRAC32(-0.00756839142185), \
 FRAC32(0.0),FRAC32(-0.01278720365088),FRAC32(0.0),FRAC32(-0.02040684105768), \
 FRAC32(0.0),FRAC32(-0.03136483560542),FRAC32(0.0),FRAC32(-0.04728105184137), \
 FRAC32(0.0),FRAC32(-0.07151114503989),FRAC32(0.0),FRAC32(-0.11276139617420), \
 FRAC32(0.0),FRAC32(-0.20318408017719),FRAC32(0.0),FRAC32(-0.63356345988777), \
 FRAC32(0.0),FRAC32(+0.63356345988777),FRAC32(0.0),FRAC32(+0.20318408017719), \
 FRAC32(0.0),FRAC32(+0.11276139617420),FRAC32(0.0),FRAC32(+0.07151114503989), \
 FRAC32(0.0),FRAC32(+0.04728105184137),FRAC32(0.0),FRAC32(+0.03136483560542), \

Revision History

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

NXP Semiconductors 79

 FRAC32(0.0),FRAC32(+0.02040684105768),FRAC32(0.0),FRAC32(+0.01278720365088), \
 FRAC32(0.0),FRAC32(+0.00756839142185),FRAC32(0.0),FRAC32(+0.00411945802255), \
 FRAC32(0.0),FRAC32(+0.00196750272687),FRAC32(0.0),FRAC32(+0.00073728465714), \
 FRAC32(0.0) \
 }, \
 25, \
 { \
 FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),FRAC16(0.0), \
 FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),FRAC16(0.0), \
 FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),FRAC16(0.0), \
 FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),FRAC16(0.0),FRAC16(0.0), \
 FRAC16(-1.0) \
 } \
 }, \
 { \
 { \
 0l, \
 0l,0l \
 }, \
 0ll, \
 { \
 0l,0l \
 }, \
 0l \
 }, \
 { \
 {FRAC32(+0.00261116383261),FRAC32(+0.00261116383261),FRAC32(-0.99477767233478)}, \
 {FRAC32(+0.00261116383261),FRAC32(+0.00261116383261),FRAC32(-0.99477767233478)}, \
 }, \
 {0ll,0ll,0l,0ll}, \
 {0ll,0ll,0l,0ll}, \
 {0ll,0ll,0l,0ll}, \
 {0ll,0ll,0l,0ll}, \
 { \
 FRAC48((+0.0000/(U_MAX*I_MAX))),FRAC32(+1.0000), METERLIB_KWH_DR(10000), \
 {0ll,0ll,0ll},0ll,0l,FRAC16(-1.0), \
 {FRAC32(+0.00779293629195),FRAC32(+0.00779293629195),FRAC32(-0.98441412741610)}, \
 {0ll,0ll,0ll},{0ll,0ll,0ll} \
 }, \
 { \
 FRAC48((+0.0000/(U_MAX*I_MAX))),FRAC32(+1.0000),METERLIB_KVARH_DR(10000), \
 {0ll,0ll,0ll},0ll,0l,FRAC16(-1.0), \
 {FRAC32(+0.00779293629195),FRAC32(+0.00779293629195),FRAC32(-0.98441412741610)}, \
 {0ll,0ll,0ll},{0ll,0ll,0ll} \
 } \
}
#endif /* __METERLIB1PH_CFG_H */

Revision History

Filter-Based Algorithm for Metering Applications, Application Note, Rev. 4, 04/2016

80 NXP Semiconductors

Appendix B. Test application
#include <math.h>
#include "drivers.h"

#include "fraclib.h"
#include "meterlib.h"
#include "meterlib1ph_cfg.h"

#include "appconfig.h"

#define _PI 3.14159265358979323846 /* pi */

/* static data definitions */
static tMETERLIB1PH_DATA mlib = METERLIB1PH_CFG;
static volatile frac32 u24_sample, i24_sample;
static tENERGY_CNT wh_cnt, varh_cnt;
static double time = 0.0, U_RMS, I_RMS, P, Q, S, U_ANGLE = (45.0/180.0)*_PI,
 I_SHIFT = (-5.5/180.0)*_PI;

static int cycle = 0;

static frac16 shift = METERLIB_DEG2SH(-5.5, 50.0);

#if defined(__ICCARM__)
 #pragma diag_suppress=Pa082
#endif
void main (void)
{
 while (1)
 {
 /* calculate phase voltage and phase current waveforms */
 time = time+(1.0/KWH_CALC_FREQ);
 u24_sample = FRAC24(((sin(2*_PI*50.0*time+U_ANGLE)*230.0*sqrt(2)+0.0)/U_MAX));
 i24_sample = FRAC24(((sin(2*_PI*50.0*time+I_SHIFT)*5.0*sqrt(2)+0.0)/I_MAX));

 METERLIB1PH_ProcSamples(&mlib,u24_sample,i24_sample,&shift);
 METERLIB1PH_CalcWattHours(&mlib,&wh_cnt,METERLIB_KWH_PR(IMP_PER_KWH));

 /* functions below might be called less frequently - please refer to */
 /* KWH_CALC_FREQ, KVARH_CALC_FREQ and DECIM_FACTOR constants */
 if (!(cycle % (int)(KWH_CALC_FREQ/KVARH_CALC_FREQ)))
 {
 METERLIB1PH_CalcVarHours (&mlib,&varh_cnt,METERLIB_KVARH_PR(IMP_PER_KVARH));
 }

 if (!(cycle % DECIM_FACTOR))
 {
 METERLIB1PH_CalcAuxiliary(&mlib);
 }

 METERLIB1PH_ReadResults (&mlib,&U_RMS,&I_RMS,&P,&Q,&S);
 cycle++;
 }
}

Document Number: AN4265
Rev. 4

04/2016

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of

the application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address:

nxp.com/SalesTermsandConditions.

NXP, the NXP logo, and Kinetis are trademarks of NXP B.V. All other product or service
names are the property of their respective owners. ARM, the ARM Powered logo, and
Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or
elsewhere. All rights reserved.

© 2016 NXP B.V.

http://www.nxp.com/
http://www.nxp.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	Filter-Based Algorithm for Metering Applications
	1. Introduction
	2. Block diagram
	3. Theory
	3.1. Basics of fixed-point arithmetic
	3.1.1. Signed integer
	3.1.2. Signed fractional
	3.1.3. Addition and subtraction
	3.1.4. Multiplication
	3.1.5. Square root

	3.2. Infinite impulse response filter
	3.3. Explicit RMS converter
	3.4. Average power converter
	3.5. Ideal Hilbert transformer
	3.6. Rogowski coil sensor signal processing

	4. Power meter application development
	4.1. Metering libraries
	4.1.1. Core architecture and compiler support
	4.1.2. High-precision library function API
	4.1.2.1. One-Phase power meter
	4.1.2.2. Two-Phase power meter
	4.1.2.3. Three-Phase power meter
	4.1.2.4. Auxiliary macros

	4.1.3. Low-power library function API
	4.1.3.1. One-Phase power meter
	4.1.3.2. Two-Phase power meter
	4.1.3.3. Three-Phase power meter
	4.1.3.4. Auxiliary macros

	4.1.4. Data structures
	4.1.4.1. tCNT
	Reference
	Data fields

	4.1.4.2. tENERGY_CNT
	Reference
	Data fields

	4.1.5. METERLIB_ProcSamples
	Syntax
	Arguments
	Return
	Description
	Performance

	4.1.6. METERLIB_CalcWattHours
	Syntax
	Arguments
	Return
	Description
	Performance

	4.1.7. METERLIB_CalcVarHours
	Syntax
	Arguments
	Return
	Description
	Performance

	4.1.8. METERLIB_CalcAuxiliary
	Syntax
	Arguments
	Return
	Description
	Performance

	4.1.9. METERLIB_CalcURMS
	Syntax
	Arguments
	Return
	Description
	Performance

	4.1.10. METERLIB_CalcIRMS
	Syntax
	Arguments
	Return
	Description
	Performance

	4.1.11. METERLIB_CalcPAVG
	Syntax
	Arguments
	Return
	Description
	Performance

	4.1.12. METERLIB_ReadResults
	Syntax
	Arguments
	Return
	Description
	Performance

	4.1.13. METERLIB_ReadURMS
	Syntax
	Arguments
	Return
	Description
	Performance

	4.1.14. METERLIB_ReadIRMS
	Syntax
	Arguments
	Return
	Description
	Performance

	4.1.15. METERLIB_ReadPAVG
	Syntax
	Arguments
	Return
	Description
	Performance

	4.1.16. METERLIB_ReadS
	Syntax
	Arguments
	Return
	Description
	Performance

	4.1.17. METERLIB_KWH_PD
	Syntax
	Arguments
	Return

	4.1.18. METERLIB_KVARH_PD
	Syntax
	Arguments
	Return

	4.1.19. METERLIB_KWH_PS
	Syntax
	Arguments
	Return

	4.1.20. METERLIB_KVARH_PS
	Syntax
	Arguments
	Return

	4.1.21. METERLIB_KWH_PR
	Syntax
	Arguments
	Return

	4.1.22. METERLIB_KVARH_PR
	Syntax
	Arguments
	Return

	4.1.23. METERLIB_DEG2SH
	Syntax
	Arguments
	Return

	4.1.24. METERLIB_RAD2SH
	Syntax
	Arguments
	Return

	4.2. Configuration tool
	4.2.1. General configuration panel
	4.2.2. 90-degree phase shifter panel
	4.2.3. Block diagram panel
	4.2.4. Performance estimator panel
	4.2.5. Code generator panel
	4.2.6. Algorithm simulator panel
	4.2.7. Using the configuration tool

	5. Accuracy and performance testing
	6. Summary
	7. References
	8. Revision History

