TRAINING IMAGE CLASSIFICATION MODELS FOR i.MX DEVICES

Michael Pontikes Systems and Applications Software Engineer JUNE 2022

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2022 NXP B.V.

TRAINING IMAGE CLASSIFICATION MODELS FOR i.MX DEVICES LEVEL: ADVANCED

OVERVIEW

- Artificial Intelligence and Machine Learning Overview
- eIQ[®] Toolkit Overview
- i.MX 8M Plus Overview
- Lab

MICHAEL PONTIKES

- Systems and Applications Engineer
- Works with machine learning, ISP, machine vision use cases
- Works at NXP in Austin, TX
- Graduate of The University of Texas at Austin

Artificial Intelligence and Machine Learning

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2022 NXP B.V. eIQ[®] ML SOFTWARE DEVELOPMENT ENVIRONMENT SUPPORTS KEY APPLICATION DOMAINS

Support for IoT, Industrial, Networking Applications at the Edge

VISION

VOICE & SOUND

TIME SERIES DATA

Edge Processing for Privacy, Performance, Cost Factors

MACHINE LEARNING PROCESS

- 1. Training Phase
- 2. Inference Phase

Inference Phase

MACHINE LEARNING MODELS

- Models are a mathematical representation of a real-world process
 - i.e. image recognition, speech recognition, etc.
- Basically, an extremely complicated math function that gives a "smart" output value for a given input
- Machine learning models look at data to create rules that can be applied to new neverseen-before data

INFERENCE PHASE

- Inference is using a model to perform a prediction on new data
- Inference time depends on framework and model

Two possibilities:

AI TERMINOLOGY

Image Classification

Apple

Apple

Facial Detection

This is a human's face

Object Detection

Apples and Orange

Instance Segmentation

Apples and Orange

Facial Recognition

This is NXP CEO Kurt Sievers' face

7

NC

WHAT PROCESSOR DO I NEED?

- ML inferencing is mostly doing millions of multiply and accumulate math calculations, which any MCU or MPU could do
 - No special hardware or module is required for inferencing
 - However specialized ML hardware accelerators, high core clock speeds, and fast memory can drastically reduce inference time
- Determining if a specific model can run on a particular device is based on:
 - How long will it take the inference to run.
 - The same model will take longer to run on a less powerful device
 - The maximum acceptable inference time is very application dependent.
 - Is there enough Flash memory to store the weights, model itself, and inference engine
 - Is there enough RAM to store the intermediate calculations and output

WHAT MODEL DO I NEED?

- Many different models could be used to accomplish the same goal
 Determining the "best" model for a particular application requires trial and error
- End application has large effect on the required model complexity
 Model classifying images into 2 categories with similar lighting and position vs
 Model classifying images into 1000 categories in variety of lighting and positions and backgrounds
- Can try to optimize a model for specific application to reduce hardware requirements
 Trade-off is this takes ML expertise and time to save BOM costs
- Example models:
 - Image classification research models: Mobilenet, CIFAR10
 - Object Detection research models: Mobilenet SSD, Inception

QUANTIZATION AND PRUNING

Quantization

• Transform 32-bit floating point weights \rightarrow 8-bit fixed point weights

- Reduces weights data size by 4x
- Fixed point math quicker than floating point
- Usually, little loss of accuracy

Pruning

- Remove low importance weights and biases from a neural network
 - Recommended to retrain model after pruning

TENSORFLOW LITE AND DELEGATES

Tensorflow Lite (TFLite)

- A mobile library for deploying models on mobile, microcontrollers and other edge devices.
 - Smaller footprint then the entire TensorFlow Library
 - Model training is mainly done off site, then the model file is saved to the device

Delegate

- Delegates enable hardware acceleration by leveraging on-device accelerators such as the GPU and NPU
 - NXP provides an OpenVX delegate to run inferences on the NPU

elQ

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2022 NXP B.V.

eIQ® MACHINE LEARNING SW DEVELOPMENT ENVIRONMENT

NXP's **eIQ ML Software** provides a collection of development tools, utilities and libraries for building ML applications using NXP MCUs and applications processors (MPUs).

eIQ ML software can be leveraged as part of a user's existing flow or can be used for the complete flow depending on the ML application targeted.

The user can use external preferred tools and utilities from their existing flow and leverage as much or as little of the eIQ Toolkit as they need.

NP

eIQ ML SOFTWARE DEVELOPMENT ENVIRONMENT INFERENCE ENGINE OPTIONS

NXP elQ[®] ML Software Development Environment

* i.MX RT500 is supported only with TensorFlow Lite for Microcontrollers

** Planned

*** Additional support for devices not listed can be available or requested

NO

elQ Toolkit

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2022 NXP B.V.

eIQ TOOLKIT

Q Toolkit can be found at <u>www.nxp.com/eiq/toolkit</u>										
elQ [™] Tooll	kit foi	r End-to	o-End Mode	l Developmen	t and FOLLOW 0					
OVERVIEW	DOCUM	IENTATION	DOWNLOADS	DEVELOPMENT TOOLS	TRAINING & SUPPORT					
Filter By Show All		BSP, Di	rivers and Midd	lleware (2)						
Filter by keyword Embedded Software (2) BSP, Drivers and Middleware	C (2)		ICUXpresso SDK Builder(REV oftware Development Kit for Arm® Corte EXTERNAL 1 KB MCUXPRESSC	1) ex ⁶ -M Cores with elQ machine learning middlev D-SDK-ElQ 2021-01-28 (are DOWNLOAD					
			IQ Toolkit Installer for Window IQ Toolkit Installer I EXE 54.9 MB elQ_Toolkit_Win64	ys(REV 1) 2020-11-26	DOWNLOAD 7:02:00	``	/			

- eIQ Toolkit package includes the eIQ Portal GUI as well as command line tools for model conversion and creation
- The elQ Toolkit consists of three key components:
 - elQ Portal
 - eIQ Model Tool
 - elQ Command-line Tools

eIQ PORTAL

- Create, train, and validate models using an intuitive GUI interface on your Window PC.
- Current release support Window PC and Linux.
- Output compatible with DeepViewRT, ONNX, and TensorFlow Lite inference engines
- Support Model validation and Profiling

eIQ PORTAL - IMPORT IMAGES

- Methods for importing images into eIQ Portal:
 - Using the eIQ Portal GUI directly
 - Using DeepView Importer command line tool to import datasets in the VOC format
 - Using Python script to import images based on directory structure
 - Using Python script to import pre-created datasets from TensorFlow
- All methods have the images and associated labels stored in a .eiqp file that can be opened by elQ Portal
- The eiqp file is essentially an SQL database.
- eiqp file can grow large with large datasets

eIQ PORTAL - IMPORT IMAGES

- Once imported, can easily see how images are labeled and the Training/Test categories
- Can also see if have any unlabeled images

eIQ PORTAL - DATA CURATION

- Support Data Curation.
 - Data curation is the organization and integration of data collected from various sources.
 - It involves annotation, publication and presentation of the data.
- Simple command line to import well known data set.
- Allow capture of new data set
- Support data labeling on whole image or part of image.
- Can divide into Train and Test categories
- Supports a wide variety of image formats
 (JPG, PNG, GIF, BMP, etc.)

eIQ PORTAL – DATA AUGMENTATION

- Support Data Augmentation.
 - Data augmentation is a commonly used strategy to significantly increase the diversity of data available for models training.
 - There are various inbuild ways to add new training data set without collecting new data
 - Horizontal/Vertical Flip
 - Random Light Noise
 - Random Cropping

• ...

eIQ PORTAL - SELECT MODEL

- Can choose between two main types of visual models:
 - Image Classification Simpler model to analyze entire image and provide estimate on main object in image
 - Object Detection More complex model that can identify bounding box for specified classification

eIQ PORTAL - TUNE

- The model wizard will select between two pre-built models:
 - Mobilenet v2 (Classification)
 - Mobilenet SSD (Detection)
- For Classification: choosing between Performance, Balanced, and Accuracy will adjust the alpha from 0.35, 0.5, and 1.0 respectively.
- For Detection: choosing between Performance and Balanced or Accuracy will adjust the scale between small and large
- In the current release, the target selection (MCU/CPU/GPU/NPU) does not make a difference
 - Future releases will target specific hardware engines
- These options are all adjustable in the training phase

eIQ PORTAL - TRAINER

 Adjust training options like learning rate, batch size, and epochs and see loss in real-time as the model trains

26

eIQ PORTAL - VALIDATE

• See the results on a confusion matrix with the test images

VALIDATION QUANTIZATION

- Can also see easily effects of post-training quantization
- Select "Per Channel" or "Per Tensor" and Input data type

e lQ Portal flowers					REMOTE DEVICE	S WORKSPACES	MARKETPLACE	HELP —	
Validation Settings Softmax Threshold 0					Validat	e			
Use Quantized Model	Not Available	1							
Post Training Quantization		Background							
Per Channel	Per Tensor								
Input Data Type Output Data Type	uint8 uint8 int8	daisy							
Validation Sta	float32								
Target Name	Default	dandelion –							
Target URI	http://127.0.0	Actual							-
Accuracy	78.18%	roses –							
Samples Count	275								
MODEL 1	'00L	sunflowers –							
VALIDATION	TARGET								
VALIDATE		tulips –							
DEEPVIEW DEVPACK ADD-ON		-	Backgrov.	clarisy	dandelion	10885	Suntown	lulips	
< TRAINER	DEPLOY >		, ₁₀ ,00,		Pred	icted			

PUBLIC 28

eIQ PORTAL - DEPLOY

- Export the resulting model in DeepViewRT, TFLite, or ONNX formats
- Can quantize model before exporting
- Compatible with all the eIQ Inference Engines:
 - DeepViewRT Inference Engine
 - TensorFlow Lite for MPU
 - ONNX Runtime

	REMOTE DEVICES WORKSPACES MARKETPLACE HELP	- 0
E	xport Model	
Project Model Name Task Tune Labels Epochs Trained	flowers classification-performance-mcu-2021- 05-26T21-48-59.044Z classification mobilenet_v2 daisy,dandelion,roses,sunflowers,tulips 6	
Training Accuracy Validation Accuracy	3035 88.5% 78.18%	
	Froject Model Name Task Tune Labels Epochs Trained Training Time Training Accuracy Validation Accuracy	Project flowers Model Name classification-performance-mcu-2021- 05-26T21-48-59.044Z Task classification Tune mobilenet_v2 Labels daisy,dandelion,roses,sunflowers,tulips Epochs Trained 6 Training Time 305s Training Accuracy 88.5% Validation Accuracy 78.18%

eIQ MODEL TOOL

- The elQ Model Tool is used for the analysis of your already trained models including model and per-layer time profiling.
- It support BYOM path.
 - It Support Model conversion
 - It Support Model Quantization
 - It Support Per-Layer time profiling.

eIQ COMMAND LINE TOOLS

- The elQ Command line tools is command line interface for Advance users.
- elQ Command-line Tools which also include a self-contained Python environment
- In order to use eIQ Command-line Tools, it is important either to launch them using the COMMAND LINE button from the Home screen or run <eIQ_Toolkit_install_dir>/bin/eiqenv.bat script which sets up the command-line environment.

i.MX 8M Plus SoC

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2022 NXP B.V.

i.MX 8M PLUS FAMILY OF APPLICATIONS PROCESSORS

The i.MX 8M Plus family of processors is based on Arm[®] Cortex[®]-A53 and Cortex-M7 cores and delivers a new level of:

- Machine Learning and Vision System
- Advanced Multimedia
- Industrial Networking and High Reliability.

It is well suited for applications as:

- Smart Home, Building, Retail and City
- Smart Factory and Industry IoT

Machine Learning & Vision, Advanced Multimedia, Industrial IoT

i.MX 8M PLUS KEY FEATURES

High-Performance Power-Efficient	Machine Learning, Vision and Voice	Advanced Multimedia	Connectivity and Interfaces
 High-Performance Dual/Quad-core Cortex-A53 cores up to 1.8 GHz; Cortex-M7 up to 800MHz (task offload, power optimizations) 3D GPU and VPU enables efficient video and display DDR3L, DDR4, LPDDR4 (Inline ECC) Power-Efficiency Dynamic Voltage Frequency Scaling (DVFS), power gating, clock gating. Built in 14nm FinFET LPC technology for low-power & high- performance 	 Machine Learning Neural Network Accelerator up to 2.3TOPS Vision System Camera (up to 2 cameras): 2x MIPI-CSI (4 lanes each, 1080p) Camera ISP: 2x187MPix or 1x375MPix scale, de-warp Low-Power Voice Low Power Voice Accelerator 	 Video: 1080p60 video decoding (H.265, H.264, VP9, VP8) 1080p60 video encoding (H.265, H.264) 2D and 3D GPU 2D and 3D GPU 18x I2S TDM (32-bit @ 768KHz), DSD512, SP/DIF Tx + Rx 8-ch PDM Mic input HDMI 2.0b Tx + eARC ASRC 8ch PDM DMIC input for voice capture 	 Display Interfaces 1x MIPI-DSI 1x HDMI 2.0b Tx (+eARC) LVDS (4/8-lane) Tx Up to 3 display simultaneously High Speed Interfaces 3x SDIO 3.0 for boot / storage / Wi-Fi (max flexibility) 1x PCle 3.0 to connect to high-performing Wi-Fi solutions and other systems 2x Gigabit Ethernet with IEEE 1588, AVB (one with TSN, one with IEEE) 2x USB 3.0/2.0 OTG with PHY 2x CAN-FD

i.MX 8M PLUS TARGET APPLICATIONS

Machine Learning and Industrial Automation	Smart Home, Building and City	Consumer and Pro Audio/Voice Systems
 Machine Vision and Robot Controller Industrial Computer, Gateways, HMI Printers and Scanners Machine Visual Inspection Factory Automation 	 Safety, Security and Surveillance Fleet Analytics and Driver Monitor Traffic Monitor and Flow Optimization Vision Payment Systems Targeted Advertisement Service Drones Alarm and AI Server Hubs Home Patient and Elderly Monitor 	 Surround sound and sound bars Audio/video receiver Immersive Audio Products Wireless or networked smart speakers Personal Assistant Voice-assisted products

a

Home

Gateway

Lab Overview

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2022 NXP B.V. THE GOAL

We can use a group of labeled photos....

...in the eIQ Toolkit's model creation tool...

...to get a file that can tell a computer how to identify flowers from other images.

THE PROCESS

NP

THE OBJECTIVES

<u>Section 1</u> Importing Data into eIQ Portal	Section 2 Viewing and Augmenting	Section 3 Train the Model	<u>Section 4</u> Deploy the Model
 How to import large datasets into eIQ Portal Importing data using a script 	 How to change the dataset inside the application How to use augmentation pipelines 	 How to train a model in elQ Portal Creating models for NPU devices 	 How to test a TFLite model on the i.MX 8M Plus How to use the onboard NPU
	Augmentation Pipeline Week Typeline Week Typeline		Warm-up time: 6023.2 ms Inference time: 6.1 ms 0.996094: tulips 0.000000: sunflowers 0.000000: roses 0.000000: dandelion 0.000000: daisy root@imx8mpevk:/usr/bin/tensor

ABOUT THIS LAB

- Follow along using the "Training Image Classification Models for i.MX Applications Processors.pdf" found on the desktop.
- Use the laptop and the i.MX 8M Plus provided for you.
- Each lab section builds on itself. Checkpoint files have been provided in case some participates cannot complete certain sections.
- · Feel free to ask questions!

Section 1	Section 2	Section 3	Section 4
Importing Data into eIQ Portal	Viewing and Augmenting	Train the Model	Deploy the Model
	Image: state in the state i		Warm-up time: 6023.2 ms Inference time: 6.1 ms 0.996094: tulips 0.000000: sunflowers 0.000000: roses 0.000000: dandelion 0.000000: daisy root@imx8mpevk:/usr/bin/tensor

SECURE CONNECTIONS FOR A SMARTER WORLD

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2022 NXP B.V.