

NXP Semiconductors
www.nxp.com

Application Software Pack:
ML-based State Monitor for FXOS8700CQ

Revision 9
January 2024

 Application Software Pack: ML-based System State Monitor Lab Page 2 of 21

Contents

1 Lab Overview .. 3

2 Software and Hardware Installation .. 3
2.1 Hardware Requirements ..3
2.2 TensorFlow Installation ...3
2.3 Download Enablement Software ... 4
2.4 eIQ Tool Installation ... 4

3 Import the App Software Pack into MCUXpresso IDE .. 4
3.1 Option #1: Get the App Software Pack with MCUXpresso IDE ... 4
3.2 Option #2: Use the Command Line .. 6

4 Gather the Data .. 7
4.1 Import the ML-based System State Monitor project ... 7
4.2 Collect data ... 8

5 Train Data and create a model .. 11
5.1 Copy Training Data to PC ... 11
5.2 Train The Model.. 12

6 Update Model for Inference Engines... 14
6.1 TensorFlow Lite for Microcontrollers ... 15
6.2 Glow ... 15
6.3 DeepViewRT .. 16

7 Deploy Model To Board .. 18

8 Conclusion ... 21

 Application Software Pack: ML-based System State Monitor Lab Page 3 of 21

1 Lab Overview
This lab will cover how to use the ML-based fan state monitor application code in conjunction with
the Building and benchmarking Deep Learning models for Smart Sensing Appliances on MCUs
application note (AN13562). This document will cover how to gather the data that the model will be
trained on, how to run the Jupyter notebook scripts that will train the model, and how to deploy the
trained model to the board.

This lab was written for the i.MX RT1170 but can also be ran on the following boards:

• LPCXpresso55S69
• FRDM-K66F
• i.MX RT1170-EVK

This lab document is only for the FXOS8700CQ accelerometer that are on some EVK boards or if
using the FRDM-STBC-AGM01 sensor board. If using the FXLS8974CF accelerometer which can be
found on the ACCEL_4_CLICK board or on the FRDM-STBI-A8974 board please refer to the other lab
document.

2 Software and Hardware Installation
This section will cover the steps needed to install the eIQ software and TensorFlow on your computer.

2.1 Hardware Requirements
• i.MX RT1170 EVK board (or other supported board like LPC55S69 or FRDM-K66F)

o Some new i.MX RT1170 EVK boards do not have the accelerometer populated on U34. If
this is the case, a FRDM-STBC-AGM01 board will need to be placed on the board to
provide the accelerometer data required for this lab.

• microSD card (formatted for FAT32)
• microSD card reader to transfer data to a PC
• A fan, motor, or other vibration source to train the model on that can provide vibrations that

will be gathered by the sensor. This fan for example.

2.2 TensorFlow Installation
1. Download and install Python 3.10. **The 64-bit edition is required and it is highly

recommended to use Python 64-bit 3.10.x to ensure compatibility with this lab**:
https://www.python.org/downloads/

2. Open a Windows command prompt and verify that the python command corresponds to
Python 3.10.x.
python -V

3. Update the python installer tools:
python -m pip install -U pip
python -m pip install -U setuptools

https://www.nxp.com/webapp/Download?colCode=AN13562
https://www.nxp.com/webapp/Download?colCode=AN13562
https://www.nxp.com/design/development-boards/freedom-development-boards/sensors/sensor-toolbox-development-boards-for-a-9-axis-solution-using-fxas21002c-and-fxos8700cq:FRDM-STBC-AGM01
https://www.mikroe.com/accel-4-click
https://www.nxp.com/design/design-center/software/sensor-toolbox/evaluation-boards/sensor-toolbox-development-board-for-fxls8974cf-3-axis-iot-accelerometer:FRDM-XXXX-A8974
https://www.nxp.com/design/development-boards/freedom-development-boards/sensors/sensor-toolbox-development-boards-for-a-9-axis-solution-using-fxas21002c-and-fxos8700cq:FRDM-STBC-AGM01
https://a.co/d/7I1Zsok
https://www.python.org/downloads/

 Application Software Pack: ML-based System State Monitor Lab Page 4 of 21

4. Install the Tensorflow libraries and support for python. To ensure software compatibility, it
should be these version numbers:
python -m pip install tensorflow==2.8
python -m pip install keras==2.8
python -m pip install protobuf==3.20
python -m pip install pandas==1.5.3

5. Install other useful python packages. Not all of these will be used for this lab but will be useful
for other eIQ demos and scripts.
python -m pip install numpy scipy matplotlib ipython jupyter sympy nose imageio
python -m pip install netron seaborn west pyserial scikit-learn opencv-python pillow

2.3 Download Enablement Software
1. Install the latest version of MCUXpresso IDE
2. Install a terminal program like TeraTerm.
3. Install Git

2.4 eIQ Tool Installation
The model inference can be done with TensorFlow Lite for Microcontrollers, Glow, or DeepView RT. If
using Glow or DeepViewRT, some additional PC software needs to be installed to convert the model
to the necessary formats for those two inference engines.

1. Install the latest Glow package. This will put the Glow compiler and helper programs into
C:\NXP\Glow and add it to your executable path.

2. Install the latest eIQ Toolkit which will provide a tool to convert a .tflite model to the .rtm
format needed for the DeepViewRT inference engine. Note that the DeepViewRT inference
engine is only available for i.MX RT Cortex-M7 devices at this time.

3 Import the App Software Pack into MCUXpresso IDE
There are two methods to get the application software pack. This section will cover both options, but
only one needs to be done. It is recommended to use the first option as it is more straight forward.

3.1 Option #1: Get the App Software Pack with MCUXpresso IDE
1. Open MCUXpresso IDE and select a workspace location in an empty directory.
2. Right click in the blank area of the Installed SDKs panel at the bottom and select Import

remote SDK Git repository…

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://ttssh2.osdn.jp/index.html.en
https://git-scm.com/downloads
https://www.nxp.com/design/software/development-software/eiq-ml-development-environment/eiq-for-glow-neural-network-compiler:eIQ-Glow?tab=Design_Tools_Tab
http://www.nxp.com/eiq/toolkit

 Application Software Pack: ML-based System State Monitor Lab Page 5 of 21

3. In the dialog box that comes up:

a) In the Location field, click on the Browse button and select or create an empty directory
for the application software pack to be downloaded to. Make note of this location as it’ll
be used throughout this lab.

b) In the Repository field put: https://github.com/nxp-appcodehub/ap-ml-state-monitor
c) In the Revision field put: main

Then hit OK to download the application software pack

4. A dialog box will then come up asking for the location of the Manifests folder. Make sure to
point it to the <repo_directory>\examples\manifests folder if it is not already.

5. Once imported the Installed SDKs tab will look like this:

 Application Software Pack: ML-based System State Monitor Lab Page 6 of 21

3.2 Option #2: Use the Command Line
1. Open up a Windows command line and execute the following lines:

 west init -m https://github.com/nxp-appcodehub/ap-ml-state-monitor --mr main appswpacks_ml_state_monitor
 cd appswpacks_ml_state_monitor
 west update

2. Go to the \appswpacks_ml_state_monitor\examples\manifests folder and find the

MIMXRT1170-EVK_manifest_v3_8.xml file. If using a different board copy that board’s .xml
file instead.

3. Copy that MIMXRT1170-EVK_manifest_v3_8.xml file into the root

\appswpacks_ml_state_monitor\ directory. It should look like the following when done:

6. Next open MCUXpresso IDE and select a workspace location in an empty directory.
7. Drag-and-drop the \appswpacks_ml_state_monitor directory that was created in the

previous step into the Installed SDKs window, located on a tab at the bottom of the screen
named “Installed SDKs”. You will get the following pop-up, so hit OK.

8. Once imported, the Installed SDK panel will look something like this

 Application Software Pack: ML-based System State Monitor Lab Page 7 of 21

4 Gather the Data
To train a model, sensor data must be collected. For this lab the on-board accelerometer will be
used and the data that is collected will be stored on a microSD card.

4.1 Import the ML-based System State Monitor project
1. In the Quickstart Panel in the lower left corner, click on Import SDK examples(s)…

2. Select the APP-SW-PACK ML-State-Monitor for evkmimxrt1170 and click on Next

3. Expand the app_sw_packs category and select the ml_state_monitor_cm7 example

which is compatible with the accelerometer on the i.MX RT1170 EVK or the FRDM-STBC-AGM01
sensor board. Click on Finish.

 Application Software Pack: ML-based System State Monitor Lab Page 8 of 21

4. Once imported it should look like the following:

4.2 Collect data
The project will need to be modified to collect accelerometer data and store it on an SD card.

1. Put in a microSD card into the board and set the fan on top of the board. Also make sure
nothing is in the M.2 slot in the board as it shares data lines with the SD card.

2. In MCUXpresso IDE, open the sensor_collect.h file and on line 49 change the #define for
SENSOR_COLLECT_ACTION to SENSOR_COLLECT_LOG_EXT as shown in the image below.

3. If using the FRDM-STBC-AGM01 add-on board, open up the frdm_stbc_agm01_shield.h file
in the board directory, and change the #define SENSOR_SHIELD_ENABLE to 1

4. Next build the project by clicking on “Build” in the Quickstart Panel and make sure there are no

errors.

 Application Software Pack: ML-based System State Monitor Lab Page 9 of 21

4. Plug the micro-B USB cable into the board at J11 on the i.MXRT1170 board.
5. Open TeraTerm or other terminal program, and connect to the COM port that the board

enumerated as. Use 115200 baud, 1 stop bit, no parity.
6. Debug the project by clicking on “Debug” in the Quickstart Panel.

7. It will ask what interface to use. Select CMSIS-DAP.

8. The debugger will download the firmware and open up the debug view. Click on the Resume

button to start running.

9. The following text should appear in the terminal program:

 Application Software Pack: ML-based System State Monitor Lab Page 10 of
21

10. For this demo there are four fan states that are going to be detected:
• FAN-OFF
• FAN-ON (normal operation)
• FAN-CLOG (something covering the fan so it does not get the normal airflow)
• FAN-FRICTION (something creating drag on the blades like a piece of tape or

cardboard)
11. Physically put the fan in the desired state. For this first run, lets put the fan into the normal ON

state.
12. In the terminal, type of the number of the fan state that corresponds with what the physical

fan state is. So for this example, type ‘3’ for FAN-ON.
13. The next selection is how many minutes to gather data. There is no hard and fast rule on how

much data needs to be collected, but at a minimum several minutes worth will be required.
For this simple example we’ll select 5 minutes, but for more complex examples it could be
significantly longer to ensure good training results. The ML-based System State Monitor
Dataset Creation Guide provides a much deeper exploration into the optimal data collection
techniques, but the key goal is to cover every corner case as much as possible and to not use
the same data for training and validation.

14. Next give a filename where this data will be stored in CSV (Comma Separated Value) format.

It can be any name but should be descriptive and cannot be more than 12 characters in
length. For this example lets use fanon.csv

15. Finally, it will display your selections. Type ‘y’ to then start the data collection:

16. You will see the status as it collects the data.

https://community.nxp.com/t5/eIQ-Machine-Learning-Software/Application-Software-Pack-ML-State-Monitor/ta-p/1413290
https://community.nxp.com/t5/eIQ-Machine-Learning-Software/Application-Software-Pack-ML-State-Monitor/ta-p/1413290

 Application Software Pack: ML-based System State Monitor Lab Page 11 of 21

17. Once completed, then you can either remove the SD card to look at the data on your
computer or hit the Reset button on the board to start the process again to collect validation
data for FAN-ON or to collect the other fan states. You’ll want to collect data for all 4
conditions and collect both Training data and Validation data so there should be at least 8
runs. The same amount of data collection time should be used for all data sets.

5 Train Data and create a model
5.1 Copy Training Data to PC
Once all the data required has been saved to the microSD card, remove it from the RT1170 EVK and
put it into a card reader for your PC so the data can be copied to the hard drive.

1. Inside the project folder there is a folder named
\appswpacks_ml_state_monitor\examples
\ml_state_monitor\ml_app\v1\in_sensor_data. Locate that directory. Make sure to use
the v1 path.

2. Inside that folder there are two subfolders, one named training and the other validation. By

default each folder contains pre-created data stored in .csv files that were gathered from a
simple 5V fan.

 Application Software Pack: ML-based System State Monitor Lab Page 12 of
21

3. These files should be deleted, and the newly collected data placed inside these folders in
order to create a new custom model. The file name does not matter but should end in .csv.
The files should cover all the possible classes and should be updated for both the training
and validation folders with their respective training and validation data.

If you did not collect new data, you can use the pre-existing .csv files as that has data
collected with a simple 5V brushless DC motor.

4. The Python scripts that will be used in the next section will assume the files will be in the
following Comma Separated Value format, which is how the data was written to the files by
using the projects from the previous section, so no modifications should be needed.

5.2 Train The Model
With the data ready, now use the Jupytr notebook to train the model.

1. Open a Windows command prompt
2. Navigate to the

\appswpacks_ml_state_monitor\examples\ml_state_monitor\ml_app\v1 directory
3. Start the notebook by typing “jupyter-notebook” into the command prompt

 Application Software Pack: ML-based System State Monitor Lab Page 13 of
21

4. A web browser window should automatically open up and look like the following. If it does not,
there are links in the terminal window that can be copy and pasted into a browser.

5. Click on ML_State_Monitor.ipynb to open the notebook
6. It will look like the following. Press the Run button to execute each section of the script. While

executing an asterisk (*) will appear and the dot in the upper right will be dark. Don’t press
Run again until the previous section has finished executing.

7. You may see some warning messages when executing certain blocks of the script but you

should not get any error/failure messages.
8. It is in cell 18 that the model will actually be trained. This step may take a while. You should

see a high (>90%) accuracy by the end of the training.

 Application Software Pack: ML-based System State Monitor Lab Page 14 of
21

9. In cell 29 it will export the trained model to generate two .tflite files in
\appswpacks_ml_state_monitor\examples\ml_state_monitor\ml_app\v1\models
that are named model_fan_clsf.tflite and model_fan_clsf_quant.tflite. There will also be C
array versions of those two models in the tensorflow directory and Glow compiled versions of
those models in the glow directory. Those files will be used in the next section.

10. For informational purposes: The last section of the Jupyter notebook allows you to run the
model using accelerometer data sent over a UART in real-time. It is not required for this lab,
but if you want to use that to verify your model, you can modify the COM port to match the
number that the board enumerated as, and then set the #define SENSOR_COLLECT_LOG_EXT
in sensor_collect.h to 0 so the data is sent out over the UART instead of written to an SD card.
Start the project and then once the accelerometer data starts printing to the UART, close the
serial terminal on your PC and then run that section of the Jupyter notebook. But again this
step is not needed for this lab and can be skipped.

6 Update Model for Inference Engines
It is now possible to use all 3 eIQ inference engine options for microcontrollers (TFLM, Glow, and
DeepViewRT) to run this newly created model on the i.MX RT1170 EVK.

1. First find the location on your PC where the ML-based system state monitor application
resides after it was imported into MCUXpresso IDE in the previous section. So inside
MCUXpresso IDE, right click on the evkmimxrt1170_ml_state_monitor_cm7 project name
and go down to Utilities and select Open directory browser here to open a Windows Explorer
window at the location.

 Application Software Pack: ML-based System State Monitor Lab Page 15 of
21

6.1 TensorFlow Lite for Microcontrollers
1. The Jupyter notebook already has created the C files needed by the TFLM inference engine,

so those newly generated files just need to replace the default files in the project
2. Navigate to the <MCUXpresso IDE Workspace>/source/models/tensorflow directory.
3. Copy the generated .h and .cpp files from the previous section that were placed in the

\examples\ml_state_monitor\ml_app\v1\models\tensorflow\ folder and paste them
into this directory.

Copy from:

Paste into:

6.2 Glow
1. The Jupyter notebook already has created the Glow bundled needed by the Glow inference

engine, so those newly generated files just need to replace the default files in the project. For
details on the exact commands used to generate the Glow bundle see cell 29 in that Jupyter
notebook.

2. Navigate to the <MCUXpresso IDE Workspace>/source/models/glow directory.

 Application Software Pack: ML-based System State Monitor Lab Page 16 of
21

3. Copy the Glow bundle files from the previous section that were placed in the \examples
\ml_state_monitor\ml_app\v1\models\glow\cortex_m7 folder and paste them into
this directory. Note that you should select the directory in that folder that corresponds with
the core architecture in the device that will be used.

Copy from:

Paste into:

6.3 DeepViewRT
To generate an RTM file that the DeepViewRT inference engine uses, make sure that you have
already installed the latest version of eIQ Toolkit.

Note that using the DeepViewRT inference engine is only supported on i.MX RT1170 and other i.MX
RT devices.

1. Open up eIQ Portal
2. Select the Model Tool option

https://www.nxp.com/design/software/development-software/eiq-ml-development-environment/eiq-toolkit-for-end-to-end-model-development-and-deployment:EIQ-TOOLKIT?tab=Design_Tools_Tab

 Application Software Pack: ML-based System State Monitor Lab Page 17 of
21

3. Click Open Model…

4. Navigate to the

\appswpacks_ml_state_monitor\examples\ml_state_monitor\ml_app\v1\models
folder to select the model_fan_clsf.tflite file

5. Once open, click on the Hamburger menu icon in the top left and then click on Convert

6. Then click on Deepview RT (.trm)

 Application Software Pack: ML-based System State Monitor Lab Page 18 of
21

7. In the dialog box that opens, leave all the fields as default and then click on Convert

8. Save the generated file into the folder, overwriting the default original .rtm file, at

<MCUXpresso IDE Workspace>\
evkmimxrt1170_ml_state_monitor_cm7\source\models\deepviewrt

9. You can do the same for the pre-quantized version of the .tflite file as well by opening up

model_fan_clsf_quant.tflite and performing the same conversion steps.

7 Deploy Model To Board
Now the models can be executed on the i.MX RT1170 EVK.

1. In MCUXpresso IDE, the evkmimxrt1170_ml_state_monitor_cm7 project should already be
imported into your workspace from the previous data collection section.

 Application Software Pack: ML-based System State Monitor Lab Page 19 of
21

2. Open the sensor_collect.h file under source\sensor folder by double clicking on it

3. Modify line 49 to change the #define SENSOR_COLLECT_ACTION to

SENSOR_COLLECT_RUN_INFERENCE to tell the project to now run the inference of the model

4. Then modify line 57 change the #define SENSOR_FEED_VALIDATION_DATA to 0 in order to

use the accelerometer data collected on the board to feed to the inference engine

5. Optionally modify line 56 if desired to change the #define for

SENSOR_COLLECT_RUN_INFENG to the desired inference engine to use. By default the project
will use TensorFlow Lite for Microcontrollers but you can see the other inference options as
well. For this lab we’ll keep it with TFLM.

 Application Software Pack: ML-based System State Monitor Lab Page 20 of
21

5. If using TensorFlow Lite for Microcontrollers, make sure to set the Build Configuration to the
“Release” target which does a high compiler optimization. This setting has a minor effect
when using Glow or DeepViewRT but significantly reduces inference time when using TFLM.
Click on the project name and then go to Project->Build Configurations->Set Active-
>Release

6. Next build the project by clicking on “Build” in the Quickstart Panel and make sure there are no

errors.

5. Plug the micro-B USB cable into the board at J11 on the i.MXRT1170 board.
6. Open TeraTerm or other terminal program, and connect to the COM port that the board

enumerated as. Use 115200 baud, 1 stop bit, no parity.
7. Debug the project by clicking on “Debug” in the Quickstart Panel.

8. It will ask what interface to use. Select CMSIS-DAP.

 Application Software Pack: ML-based System State Monitor Lab Page 21 of
21

9. The debugger will download the firmware and open up the debug view. Click on the Resume
button to start running.

10. The following text should appear in the terminal program:

11. Input a target class
12. Then input the pool size (how many samples to take). Put in a large number (like 1000) to get

a continuously updating status in the terminal.
13. It will then respond with its predictions based on the state of the fan. Try turning off the fan,

adding friction, and clogging it and you should see the state change:

8 Conclusion
This lab demonstrated how to gather and train sensor data to a classification model and deploy
it on an i.MX RT device.

This same lab can be used for other types of sensor data models that detect vibrations. By
enabling machine learning in embedded systems, there’s a wide world of opportunity for new
smarter applications.

