

NXP Semiconductors
www.nxp.com

eIQ™ Inference with Glow for i.MX RT685
Lab Hand Out - Revision 8

August 2023

 eIQ Glow Lab Page 2 of 18

Contents

1 Lab Overview .. 3

2 Software and Hardware Installation .. 3
2.1 Glow Installation ... 3
2.2 ML Installation ... 3

3 Convert models .. 4

4 LeNet MNIST Example .. 4

5 Run Glow on the RT685 ... 9

6 Compile Neural Network HiFi4 DSP ... 16
6.1 RT685 Software Installation ... 16
6.2 Compile HiFi4 DSP Libraries ... 16

7 Conclusion ... 17

 eIQ Glow Lab Page 3 of 18

1 Lab Overview

This lab will cover how to compile a model using Glow and run it on an RT685 board. The compiled
model will run on the Cortex-M33 core and can also make use of the HiFi4 DSP for supported
operations.

The MNIST models used as the example for this lab are no longer available online and Glow is no
longer a focus of development, so this lab will not be updated. It is recommended to use TensorFlow
Lite for Microcontrollers for any new products due to better compatibility with newly developed
models. This lab document will be kept online for any current users of Glow.

2 Software and Hardware Installation

This section will cover the steps needed to install the eIQ software and common machine learning
applications on your computer.

2.1 Glow Installation
1. Install MCUXpresso IDE
2. Install a terminal program like TeraTerm.
3. Install the latest Glow package. This will put the Glow compiler and helper programs into

C:\NXP\Glow and add it to your executable path.
4. Download MCUXpresso SDK for RT685. Make sure to include the “eIQ” middleware option. Also

make sure to download the MCUXpresso SDK docs zip as well.
5. Unzip the RT685 SDK zip file into a directory path that does not contain any spaces.
6. If not done already, follow the instructions on the MIMXRT685-EVK Getting Started website to

update the LPC-Link2 firmware on the RT685-EVK to use the J-Link interface

2.2 ML Installation
The following instructions are for install basic ML libraries with Python. Not all of these are required
when using Glow, but can be helpful for training models and using scripts.

1. Download and install Python 3.10. **The 64-bit edition is required and for compatibility it is
highly recommended to use Python 64-bit 3.10.x**: https://www.python.org/downloads/

2. Open a Windows command prompt and verify that the python command corresponds to
Python 3.10.x.
python -V

3. Update the python installer tools:
python -m pip install -U pip
python -m pip install -U setuptools

4. Install other useful python packages. Not all of these will be used for this lab but will be useful
for other eIQ demos and scripts.
python -m pip install numpy scipy matplotlib ipython jupyter pandas sympy nose imageio
python -m pip install netron seaborn west pyserial sklearn opencv-python pillow

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://ttssh2.osdn.jp/index.html.en
https://www.nxp.com/design/software/development-software/eiq-ml-development-environment/eiq-for-glow-neural-network-compiler:eIQ-Glow?tab=Design_Tools_Tab
https://mcuxpresso.nxp.com/en/select?device=EVK-MIMXRT685
https://www.nxp.com/document/guide/getting-started-with-i-mx-rt600-evaluation-kit:GS-MIMXRT685-EVK
https://www.python.org/downloads/

 eIQ Glow Lab Page 4 of 18

3 Convert models

The Glow tools can compile models that are in the TensorFlow Lite, ONNX, and Caffe2 format. More
conversion options can be found in Section 6.1 of the eIQ Glow Ahead of Time User Guide.

4 LeNet MNIST Example

The following steps can be used to run an LeNet MNIST example which does hand-written digit
recognition. More details can be found in the eIQ Glow User Guide.

1. The fastest inference performance is achieved by quantizing the model, and the best way to
quantize the model without losing much accuracy is to create a quantization profile. Because
different parts of the neural network contain floating point values in different ranges, Glow
uses profile-guided quantization to estimate the possible numerical range for each stage of the
network. The image-classifier tool generates a profile.yml file that can be used to optimize
quantization when compiling the model. Generating this profile file requires a small subset of
images to analyze, which were downloaded in the previous step. More details on how Glow
utilizes quantization can be found on the Glow website.

 This should be one long continuous line:

image-classifier -input-image-dir images ‑image‑mode=0to1 -image-layout=NCHW
‑image‑channel‑order=BGR -model=models ‑model‑input‑name=data
‑quantization‑schema=symmetric_with_power2_scale ‑quantization-precision‑bias=Int8
‑dump‑profile="profile.yml"

Note: If copying and pasting the text above into a Windows command line, there may be "?"
instead of hyphens "-", but the command will still work.

2. Here’s an explanation for the arguments in the command you just ran. You can also use “image-
classifier -help”:

• -input-image-dir images
The directory location of the PNG images to perform the profiling on.

• -image_mode=0to1
Specifies range of values for input tensor. In this example it expects values between
[0,1]. Other options are [-1,1], [-128,127], or [0,255].

https://www.tensorflow.org/lite
https://onnx.ai/
https://caffe2.ai/docs/getting-started.html?platform=windows&configuration=compile
https://www.nxp.com/docs/en/user-guide/EIQGLOWAOTUG.pdf
https://www.nxp.com/docs/en/user-guide/EIQGLOWAOTUG.pdf
https://github.com/pytorch/glow/blob/master/docs/Quantization.md

 eIQ Glow Lab Page 5 of 18

• -image_layout=NCHW
Specifies image layout to use. It’s important to preprocess the input images the same
way they were processed when training the model.
NCHW is Num x Channels x Height x Width.
NHWC is Num x Height x Width x Channels.

• -image-channel-order=BGR
Specifies image channel order. Could be Blue-Green-Red or Red-Green-Blue.

• -model=models
o For Caffe2 models, directory containing the Caffe2 model files named init_net.pb

and predict_net.pb that will be compiled by Glow
o For ONNX models, it should be set to the ONNX model file name.

• -model-input-name=data
Name of the input layer of the model. For this MNIST model it is named “data”

• -quantization-precisison=Int8
Use Int8 bias quantization. Needed for CMSIS-NN optimizations.

• -quantization-schema=symmetric_with_power2_scale
Quantization schema. Symmetric with Power 2 scale is needed for CMSIS-NN
optimizations.

• -dump-profile=profile.yml
Filename to store the profiling results

3. This step is optional and not required for this lab. It is then possible to further tune this

quantization profile to provide even better accuracy. This is not required for this lab as the
default quantization is already accurate for this model, but this step is included here for
completeness. This highly optimized quantization profile will be named profile_tuned.yml to
differentiate it from the basic profiling done in the previous step. Using the model-tuner tool
causes the accuracy of the quantized Glow model to significantly increase. It uses a labeled
dataset listed in a CSV file. The eIQ Glow Ahead of Time User Guide in the SDK docs zip file has
more details on how this tuning works.

• Note: The more images used from across all categories will help improve accuracy. Example
image files would need to be created and those are not included as part of this lab.

• Note: This step can take a very long time without the -target-accuracy parameter, up to
several hours for large datasets.

• Note: If copying and pasting the text above into a Windows command line, there may be "?"
instead of hyphens "-", but the command will still work.

 This should be one long continuous line:

model-tuner ‑dataset‑file="dataset‑tuning\Labels.csv" ‑dataset‑path=dataset‑tuning
‑image‑mode=0to1 ‑image‑layout=NCHW ‑image‑channel‑order=BGR ‑model=models
‑model‑input="data,float,[1,1,28,28]" ‑load‑profile="profile.yml"
‑dump‑tuned‑profile="profile_tuned.yml" ‑backend=CPU ‑quantization‑precision=Int8
‑quantization‑schema=symmetric_with_power2_scale ‑target‑accuracy="0.95"

 eIQ Glow Lab Page 6 of 18

4. Here’s an explanation for the new arguments in the command you just ran. You can also use
“model-tuner -help”:

• -dataset-file="dataset-tuning\Labels.csv"
CSV file containing image names and labels in image_file_name,category_label, format. Ex:
 4_1059.png,4,
 0_1009.png,0,
 8_1026.png,8,

• -dataset-path=dataset-tuning
Directory path to the images specified in the CSV file

• -model-input="data,float,[1,1,28,28]"
o For Caffe2 models like this MNIST model, specify the input tensor (data), the input

layer type (float), and the shape ([1,1,28,28]). This is a 28x28 image.
o For ONNX models, this option is not needed as this information can be read directly

from the model.

• -load-profile="profile.yml"
Load the profile file generated from the previous step

• -dump-tuned-profile="profile_tuned.yml"
Filename to store the highly tuned profile results

• -backend=CPU
Use CPU as the backend

• -quantization-precisison=Int8
Use Int8 bias quantization. Needed for CMSIS-NN optimizations.

• -quantization-schema=symmetric_with_power2_scale
Quantization schema. Symmetric with Power 2 scale is needed for CMSIS-NN
optimizations.

• -target-accuracy="0.95"
Stop tuning when accuracy has reached 95%. This saves significant amounts of time.

5. The profile file created in Step 4 will then be used to generate the compiled Glow executable by
using the model-compiler tool. Generate the files with the following command:

 This should be one long continuous line:

model-compiler ‑model=models ‑model‑input="data,float,[1,1,28,28]" ‑emit‑bundle=source
‑dump‑graph‑DAG="model_graph.dot" ‑backend=CPU ‑target=arm ‑mcpu=cortex‑m33
‑float‑abi=hard ‑load‑profile="profile.yml"
‑quantization‑schema=symmetric_with_power2_scale ‑quantization‑precision‑bias=Int8
‑use‑cmsis -use-hifi ‑network‑name=mnist

Note: If copying and pasting the text above into a Windows command line, there may be "?"
instead of hyphens "-", but the command will still work.

 eIQ Glow Lab Page 7 of 18

6. Here’s an explanation for the arguments in the command you just ran. You can also use

“model-compiler -help”:

• -model=models
o For Caffe2 models, directory name that contains the Caffe2 model files named

init_net.pb and predict_net.pb that will be compiled by Glow
o For ONNX models, it should be set to the ONNX model file name.

• -model-input=data,float,[1,1,28,28]
o For Caffe2 models like this MNIST model, specify the input tensor (data), the input

layer type (float), and the shape ([1,1,28,28]). This is a 28x28 image.
o For ONNX models, this option is not needed as this information can be read directly

from the model.

• -emit-bundle=source
Directory to output the generated files

• -dump-graph-DAG=model_graph.dot
Generates a visual representation of the compiled model in dot format. See further
below for how to convert the dot file to a PDF file.

• -backend=CPU
Use CPU as the backend

• -target=ARM
Target architecture to compile for

• -mcpu=cortex-m33
Specific CPU to compile for.

o “cortex-m7” for M7 core (RT1050/RT1060/RT1160/RT1170).
o “cortex-m33” for M33 core (RT685)
o “cortex-m4” for M4 core.

• -float-abi=hard
Compile to use floating point hardware on target

• -load-profile=profile.yml
Load the profile file generated earlier. This option is also what tells the model-compiler
to quantize the model. The model must be quantized to use the CMSIS-NN
performance optimizations. Note that if the optional model-tuner profile was
generated, would use the 'profile_tuned.yml' file instead.

• -quantization-precisison=Int8
Use Int8 bias quantization.

• -quantization-schema=symmetric_with_power2_scale
Quantization schema.

• -use-cmsis
Use CMSIS-NN library for supported quantized operations to speed up execution.

• -use-hifi
Use HiFi4 DSP on RT685 for supported operations to speed up execution. Not used for
RT1050/RT1060.

• -network-name=mnist
Use “mnist” as the name for the generated files. It is recommended to use a short and
descriptive name as it will be used as a prefix for all macros and functions.

 eIQ Glow Lab Page 8 of 18

7. You can see the generated files inside the source folder defined by the emit-bundle argument.

• <network_name>.o - the bundle object file (code).

• <network_name>.h - the bundle header file (API).

• <network_name>.weights.bin - the model weights in binary format.

• <network_name>.weights.txt - the model weights in text format as C text array.

8. The model_graph.dot file can be converted to a PDF file by using the Dot application included in
the Glow bundle. You can see the calls to the HiFi4 DSP for the supported layers.
dot -Tpdf model_graph.dot -o model_graph.pdf -Nfontname="Times New Roman,"

9. Finally to test the accuracy of the model when running on an embedded system, convert an
image into a C array. This array will be loaded into Flash and used as input for the model
inference on the board. The glow_process_image.py Python script can be found attached to
the NXP Community post that this lab was in. This script will generate a input_image_test.bin
file that will be used in the next section. Notice the generated file is 28*28*4=3136 bytes in size
because of the 28x28 pixel monochromatic image which uses 4-byte floating point input that
the model requires.

 This should be one long continuous line:

python glow_process_image.py ‑image-path="images\9_1088.png"
‑output‑path="source\input_image_test.bin" -image-mode=0to1 -image-layout=NCHW
‑image-channel-order=BGR -image-type=float32 -output-format=bin

 eIQ Glow Lab Page 9 of 18

If you get an error about no module named numpy.typing make sure you have numpy version
1.20 by using ‘python -m pip install numpy=1.20’

5 Run Glow on the RT685

Now that the Glow files have been generated, the next step is to use them in the Glow MCUXpresso
IDE project and run it on the RT685 board.

This lab will use the glow_cifar10 demo found in the SDK and use it as a baseline to run the MNIST
Glow model compiled in the previous section.

1. Open up MCUXpresso IDE and select a new workspace
2. Install the RT685 SDK into the “Installed SDKs” tab by dragging-and-dropping the RT685 SDK

.zip downloaded earlier into the Installed SDK window. This dialog box will come up, and click
OK to continue the import:

3. It will look like the following when complete:

4. In the Quickstart Panel in the lower left corner, click on Import SDK examples(s)…

 eIQ Glow Lab Page 10 of 18

5. Select the evkmimxrt685 board and click on Next

6. Expand the eIQ_examples category and select the glow_cifar10_cm33 example. Then make

sure UART is selected for the SDK Debug Console option. Click on Finish.

7. This will copy the CIFAR10 demo project to the MCUXpresso IDE workspace.

8. The project already includes the pre-compiled HiFi4 binaries for neural network acceleration.

Section 6 will cover how to use Xtensa Xplorer to compile the DSP code, but for this section,

that code will be automatically loaded by the project.

 eIQ Glow Lab Page 11 of 18

9. Now we need to add the files generated in the previous section into this project, which will be

covered in the next few steps. There are 4 files that need to be included. Three of them are

found in the “source” folder that was created by the compiler. Remember that the “mnist”

name comes from the “-network-name” argument you gave when running model-compiler.

input_image_test.bin comes from the python script to generate the data to do the inferencing

on.

• mnist.h

• mnist.o

• mnist.weights.txt

• input_image_test.bin

10. Open the directory location to place these files by right clicking on the glow_bundle folder in
the Project Explorer and selecting Utilities->Open directory browser here

11. It should open a directory at something like something like: C:\Users\user_name\Documents \

\MCUXpressoIDE_11.5.0_7232\workspace\evkmimxrt685_glow_cifar10_cm33\glow_bundle

 eIQ Glow Lab Page 12 of 18

12. Find the mnist.h, mnist.o, mnist.weights.txt, and mnist.weights.bin files from the Glow source

directory created from the previous section, and copy those files into the

evkmimxrt685_glow_cifar10_cm33\glow_bundle directory. It will look like the following when

done:

13. Copy the input_image_test.bin file that was created from the previous section, and copy that

file into the evkmimxrt685_glow_cifar10_cm33\test directory. It should look like the following

when done:

14. Now go back to MCUXpresso IDE

15. Next open up the Project Properties by clicking on the project name again and select Properties

like done before.

16. Now go to the C/C++ Build->Settings->MCU Linker->Miscellaneous screen and double click on

the item (or hit the edit button) in “Other Objects” to modify the object file to be the one that

was just created:

17. Click on Workspace, navigate to the glow_bundle folder, and select “mnist.o”. This will add the

mnist model that was compiled earlier. Then hit OK.

18. Then click on “Apply and Close” to close out of the Properties dialog box.

 eIQ Glow Lab Page 13 of 18

19. Now there are modifications that need to be made to main_cm33.c to edit the file to use the

new file names and models.

20. Everywhere in the main_cm33.c file that cifar10 is used, it should be changed to just “mnist”

and use the new variable names created by the generated files. This includes:

• Line 52 to include the generated header file “mnist.h”

• Lines 56-65 for the new Glow variable names that use MNIST as the network name

• Line 68 should set the inputAddr pointer to the network name plus the name of the

model’s input layer (MNIST_data in this example). This name be found in the minst.h

file.

• Line 69 should set the outputAddr pointer to the network name plus the name of the

model’s output layer (MNIST_softmax in this example). This name be found in the

minst.h file.

• Line 72 should be set to the input size of the model (in this case a 28x28 monochrome

image with floating point input).

• Line 75 should be set to the number of classes of the model

• Line 78 should be the number of images being inferenced. In this case that is 1

 eIQ Glow Lab Page 14 of 18

21. Then modify Line 122 which is what starts the inference by changing the function name:

“mnist(constantWeight, mutableWeight, activations)”

22. Then open up the test_incbin.S file and change the input and weights sections to match the

new input data and the new weights data:

23. Optional: The serialize_data.py script found at

\boards\evkmimxrt685\eiq_examples\glow_cifar10\scripts could also be used to generate

input data to read in for inferencing if multiple images need to be inferenced. It is not used for

this lab though.

24. Now it’s time to build the project. However because new Glow files were copied into the

project, you must do a clean first. Failing to do a clean could cause the newly imported weight

data to become misaligned in memory, and cause accuracy errors during the inferencing. This is

only required when new Glow files are copied into the project. Click on “Clean” in the

Quickstart Panel first:

25. Then build the project by clicking on “Build” in the Quickstart Panel.

 eIQ Glow Lab Page 15 of 18

26. Plug the micro-B USB cable into the board at J5.

27. Open TeraTerm or other terminal program, and connect to the COM port that the board

enumerated as. Use 115200 baud, 1 stop bit, no parity.

28. Debug the project by clicking on “Debug” in the Quickstart Panel.

29. It will ask what interface to use. Select J-Link LPCXpresso V2 as the LPC-Link2 debug circuit

should have been updated to use the JLink interface as part of the RT685 Getting Started.

30. The debugger will download the firmware and open up the debug view. Click on the Resume

button to start running.

 eIQ Glow Lab Page 16 of 18

31. You should see the output on the console identifying the image as the number ‘9’ with ~93%
confidence and a 2.19ms inference time. Ignore the Ref class item and the Overall accuracy as it
assumes the output.bin file has that correct information, but that is not being used in this lab:

6 Compile Neural Network HiFi4 DSP

This section is not required but may be of interest to those who want to study the HiFi4 DSP code.
However the HiFi4 code should not normally need to be modified. The project in the previous section
already includes the pre-compiled DSP code. To explore the DSP code, Xtensa Xplorer can be used to
compile the neural network Hifi4 DSP libraries.

6.1 RT685 Software Installation
1. Follow all the instructions on the MIMXRT685-EVK Getting Started website. Before continuing

with this lab you should have:

• Installed Xtensa Xplorer IDE

• Updated LPC-Link2 firmware on the EVK to use the J-Link interface

• Successfully debugged the dsp_mu_polling_cm33 SDK example with both MCUXpresso
IDE and Xtensa Xplorer IDE.

6.2 Compile HiFi4 DSP Libraries
2. Open up Xtensa Xplorer.
3. Import the DSP project by going to File->Import
4. Expand the General category to select Existing Projects into Workspace and click on Next

https://www.nxp.com/document/guide/getting-started-with-i-mx-rt600-evaluation-kit:GS-MIMXRT685-EVK

 eIQ Glow Lab Page 17 of 18

5. Click on Browse next to Select root directory and navigate to where you unzipped the RT685
SDK. Select the \boards\evkmimxrt685\eiq_examples\glow_cifar10\dsp directory which
contains the DSP project for the CIFAR-10 demo. The glow_cifar10_hifi4 project should then
already be selected. Leave all the other options unchecked as-is. Click on Finish to import this
project.

6. In the toolbar, select the glow_cifar10_hifi4 project, select the nxp_rt600_RI2021_8_newlib

library, select the Release target, and then click on Build Active to build the neural network DSP
library. You will see the results in the Console tab at the bottom. If there are any errors, make
sure the SDK directory path does not have any spaces.

7. When the compilation is complete, two .bin file will be generated in <SDK_Path>

\boards\evkmimxrt685\eiq_examples\glow_cifar10\dsp\binary
8. These binary files can replace the default DSP library files in the project. Overwrite the default

files by copying them to the evkmimxrt685_glow_cifar10_cm33 directory in the MCUXpresso
IDE workspace. It’s the same directory location the Glow files were copied to in the previous
section.

7 Conclusion

This lab demonstrates how to use the Glow tools to create executable models that will run on the
RT685 device. For more information on the Glow tools, please read the eIQ Glow Ahead of Time
User Guide in the SDK docs zip file, and also visit the Glow AOT (Glow Ahead of Time) website.

The default CIFAR-10 example can also be explored. Creating a CIFAR-10 model to convert requires
installing Caffe2 and training a CIFAR-10 model which is beyond the scope of this lab document.
See the readme.txt file at <SDK_path>\boards\evkmimxrt685\eiq_examples\glow_cifar10\cm33
for more details.

https://www.nxp.com/docs/en/user-guide/EIQGLOWAOTUG.pdf
https://www.nxp.com/docs/en/user-guide/EIQGLOWAOTUG.pdf
https://github.com/pytorch/glow/blob/master/docs/AOT.md

 eIQ Glow Lab Page 18 of 18

The serialize_data.py script at
<SDK_path>\boards\evkmimxrt685\eiq_examples\glow_cifar10\scripts can be used to rapidly
test multiple images. It creates an input.bin (the input data) and output.bin (the correct result for
each image) that can be placed into the test folder of the CIFAR-10 project to be compiled in.

Further performance optimizations making use of the internal memory found in the i.MX RT can be
done by using the techniques described in Section 5.3 of the Glow User Guide.

Finally, quantization profiles for models that do not use images can be created by using the model-
profiler tool. It is included in this Glow release, and documentation can be found on the Glow
website.

https://www.nxp.com/docs/en/user-guide/EIQGLOWAOTUG.pdf
https://github.com/pytorch/glow/blob/master/docs/AOT.md
https://github.com/pytorch/glow/blob/master/docs/AOT.md

