

NXP Semiconductors
www.nxp.com

eIQ™ Inference with Glow for i.MX RT1170
Lab Hand Out - Revision 8

August 2023

 eIQ Glow Lab Page 2 of 16

Contents

1 Lab Overview .. 3

2 Software and Hardware Installation .. 3
2.1 Glow Installation ... 3
2.2 ML Installation ... 3

3 Convert models .. 4

4 LeNet MNIST Example .. 4

5 Run Glow on the RT1170 ... 10

6 Conclusion ... 16

 eIQ Glow Lab Page 3 of 16

1 Lab Overview

This lab will cover how to compile a model using Glow and run that model on a RT1170-EVK board.

The MNIST models used as the example for this lab are no longer available online and Glow is no
longer a focus of development, so this lab will not be updated. It is recommended to use TensorFlow
Lite for Microcontrollers for any new products due to better compatibility with newly developed
models. This lab document will be kept online for any current users of Glow.

This lab can also be used with the following evaluation boards that support Glow in the SDK by
downloading their respective SDK packages. A camera+LCD is not required but is suggested.

• i.MX RT1050

• i.MX RT1060

• i.MX RT1064

• i.MX RT1160

• i.MX RT1170

For i.MX RT685 there is a separate lab document.

2 Software and Hardware Installation

This section will cover the steps needed to install the eIQ software and common machine learning
applications on your computer.

2.1 Glow Installation
1. Install MCUXpresso IDE
2. Install a terminal program like TeraTerm.
3. Install the latest Glow package. This will put the Glow compiler and helper programs into

C:\NXP\Glow and add it to your executable path.
4. Download MCUXpresso SDK for RT1170. Make sure to include the “eIQ” middleware option.
5. Unzip the RT1170 SDK zip file into a directory path that does not contain any spaces.

2.2 ML Installation
The following instructions are for install basic ML libraries with Python. Not all of these are required
when using Glow, but they can be very helpful for training models and using scripts.

1. Download and install Python 3.10. **The 64-bit edition is required and for compatibility it is
highly recommended to use Python 64-bit 3.10.x**: https://www.python.org/downloads/

2. Open a Windows command prompt and verify that the python command corresponds to
Python 3.10.x.
python -V

3. Update the python installer tools:
python -m pip install -U pip
python -m pip install -U setuptools

https://community.nxp.com/t5/i-MX-RT-Knowledge-Base/Connecting-camera-and-LCD-to-i-MX-RT-EVKs/ta-p/1122183
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://ttssh2.osdn.jp/index.html.en
https://www.nxp.com/design/software/development-software/eiq-ml-development-environment/eiq-inference-with-glow-nn:eIQ-Glow#downloads
https://mcuxpresso.nxp.com/
https://www.python.org/downloads/

 eIQ Glow Lab Page 4 of 16

4. Install other useful python packages. Not all of these will be used for this lab but will be useful
for other eIQ demos and scripts.
python -m pip install numpy scipy matplotlib ipython jupyter pandas sympy nose imageio
python -m pip install netron seaborn west pyserial sklearn opencv-python pillow

3 Convert models

The Glow tools can compile models that are in the TensorFlow Lite, ONNX, and Caffe2 format. More
conversion options can be found in Section 6.1 of the eIQ Glow Ahead of Time User Guide.

4 LeNet MNIST Example

The following steps can be used to run an LeNet MNIST example which does hand-written digit
recognition. More details can be found in the eIQ Glow User Guide.

1. The fastest inference performance is achieved by quantizing the model, and the best way to
quantize the model without losing much accuracy is to create a quantization profile. Because
different parts of the neural network contain floating point values in different ranges, Glow
uses profile-guided quantization to estimate the possible numerical range for each stage of the
network. The image-classifier tool generates a profile.yml file that can be used to optimize
quantization when compiling the model. Generating this profile file requires a small subset of
images to analyze, which were downloaded in the previous step. More details on how Glow
utilizes quantization can be found on the Glow website.

 This should be one long continuous line:

image-classifier -input-image-dir images ‑image‑mode=0to1 -image-layout=NCHW
‑image‑channel‑order=BGR -model=models ‑model‑input‑name=data
‑quantization‑schema=symmetric_with_power2_scale ‑quantization-precision‑bias=Int8
‑dump‑profile="profile.yml"

Note: If copying and pasting the text above into a Windows command line, there may be "?"
instead of hyphens "-", but the command will still work.

https://www.tensorflow.org/lite
https://onnx.ai/
https://caffe2.ai/docs/getting-started.html?platform=windows&configuration=compile
https://www.nxp.com/docs/en/user-guide/EIQGLOWAOTUG.pdf
https://www.nxp.com/docs/en/user-guide/EIQGLOWAOTUG.pdf
https://github.com/pytorch/glow/blob/master/docs/Quantization.md

 eIQ Glow Lab Page 5 of 16

2. Here’s an explanation for the arguments in the command you just ran. You can also use “image-
classifier -help”:

• -input-image-dir images
The directory location of the PNG images to perform the profiling on.

• -image_mode=0to1
Specifies range of values for input tensor. In this example it expects values between
[0,1]. Other options are [-1,1], [-128,127], or [0,255].

• -image_layout=NCHW
Specifies image layout to use. It’s important to preprocess the input images the same
way they were processed when training the model.
NCHW is Num x Channels x Height x Width.
NHWC is Num x Height x Width x Channels.

• -image-channel-order=BGR
Specifies image channel order. Could be Blue-Green-Red or Red-Green-Blue.

• -model=models
o For Caffe2 models, directory containing the Caffe2 model files named init_net.pb

and predict_net.pb that will be compiled by Glow
o For TFLite and ONNX models, it should be set to the ONNX model file name.

• -model-input-name=data
Name of the input layer of the model. For this MNIST model it is named “data”

• -quantization-precisison=Int8
Use Int8 bias quantization. Needed for CMSIS-NN optimizations.

• -quantization-schema=symmetric_with_power2_scale
Quantization schema. Symmetric with Power 2 scale is needed for CMSIS-NN
optimizations.

• -dump-profile=profile.yml
Filename to store the profiling results

3. This step is optional and not required for this lab. It is then possible to further tune this

quantization profile to provide even better accuracy. This is not required for this lab as the
default quantization is already accurate for this model, but this step is included here for
completeness. This highly optimized quantization profile will be named profile_tuned.yml to
differentiate it from the basic profiling done in the previous step. Using the model-tuner tool
causes the accuracy of the quantized Glow model to significantly increase. It uses a labeled
dataset listed in a CSV file. The eIQ Glow Ahead of Time User Guide in the SDK docs zip file has
more details on how this tuning works.

• Note: The more images used from across all categories will help improve accuracy. Example
image files would need to be created and those are not included as part of this lab.

• Note: This step can take a very long time without the -target-accuracy parameter, up to
several hours for large datasets.

• Note: If copying and pasting the text above into a Windows command line, there may be "?"
instead of hyphens "-", but the command will still work.

 eIQ Glow Lab Page 6 of 16

 This should be one long continuous line:

model-tuner -dataset-file="dataset‑tuning\Labels.csv" -dataset-path=dataset-tuning
‑image‑mode=0to1 -image-layout=NCHW -image-channel-order=BGR -model=models ‑model-
input="data,float,[1,1,28,28]" -load-profile="profile.yml"
‑dump‑tuned‑profile="profile_tuned.yml" -backend=CPU -quantization-precision=Int8
‑quantization-schema=symmetric_with_power2_scale -target-accuracy="0.95"

4. Here’s an explanation for the new arguments in the command you just ran. You can also use
“model-tuner -help”:

• -dataset-file="dataset-tuning\Labels.csv"
CSV file containing image names and labels in image_file_name,category_label, format. Ex:
 4_1059.png,4,
 0_1009.png,0,
 8_1026.png,8,

• -dataset-path=dataset-tuning
Directory path to the images specified in the CSV file

• -load-profile="profile.yml"
Load the profile file generated from the previous step

• -model-input="data,float,[1,1,28,28]"
o For Caffe2 models like this MNIST model, specify the input tensor (data), the input

layer type (float), and the shape ([1,1,28,28]). This is 1 channel 28x28 image.
o For ONNX models, this argument is not needed as this information can be read

directly from the model.

• -dump-tuned-profile="profile_tuned.yml"
Filename to store the highly tuned profile results

• -backend=CPU
Use CPU as the backend

• -quantization-precisison=Int8
Use Int8 bias quantization. Needed for CMSIS-NN optimizations.

• -quantization-schema=symmetric_with_power2_scale
Quantization schema. Symmetric with Power 2 scale is needed for CMSIS-NN
optimizations.

• -target-accuracy="0.95"
Stop tuning when accuracy has reached 95%. This saves significant amounts of time.

 eIQ Glow Lab Page 7 of 16

5. The profile file created from the image-classifier tool will then be used to generate the
compiled Glow executable by using the model-compiler tool. Generate the files with the
following command:

 This should be one long continuous line:

model-compiler ‑model=models ‑model‑input="data,float,[1,1,28,28]" ‑emit‑bundle=source
‑dump‑graph‑DAG="model_graph.dot" ‑backend=CPU ‑target=arm ‑mcpu=cortex‑m7
‑float‑abi=hard ‑load‑profile="profile.yml"
‑quantization‑schema=symmetric_with_power2_scale ‑quantization‑precision‑bias=Int8
‑use‑cmsis ‑network‑name=mnist

Note: If copying and pasting the text above into a Windows command line, there may be "?"
instead of hyphens "-", but the command will still work.

6. Here’s an explanation for the arguments in the command you just ran. You can also use
“model-compiler -help”:

• -model=models
o For Caffe2 models, directory name that contains the Caffe2 model files named

init_net.pb and predict_net.pb that will be compiled by Glow
o For TFLite and ONNX models, it should be set to the model file name.

• -model-input="data,float,[1,1,28,28]"
o For Caffe2 models like this MNIST model, specify the input tensor (data), the input

layer type (float), and the shape ([1,1,28,28]). This is a 28x28 image.
o For TFLite and ONNX models, this argument is not needed as this information can

be read directly from the model.

• -emit-bundle=source
Directory to output the generated files

• -dump-graph-DAG="model_graph.dot"
Generates a visual representation of the compiled model in dot format. See further
below for how to convert the dot file to a PDF file.

• -backend=CPU
Use CPU as the backend

• -target=ARM
Target architecture to compile for

 eIQ Glow Lab Page 8 of 16

• -mcpu=cortex-m7
Specific CPU to compile for.

o “cortex-m7” for M7 core (RT1050/RT1060/RT1160/RT1170).
o “cortex-m33” for M33 core (RT685)
o “cortex-m4” for M4 core.

• -float-abi=hard
Compile to use floating point hardware on target

• -load-profile="profile.yml"
Load the profile file generated earlier. This option is also what tells the model-compiler
to quantize the model. Note that if the optional model-tuner profile was generated,
would use the 'profile_tuned.yml' file instead.

• -quantization-precisison=Int8
Use Int8 bias quantization.

• -quantization-schema=symmetric_with_power2_scale
Quantization schema.

• -use-cmsis
Use CMSIS-NN library for supported quantized operations to speed up execution.

• -use-hifi
Use HiFi4 DSP on RT685 for supported operations to speed up execution. Not used for
RT1050/RT1170.

• -network-name=mnist
Use “mnist” as the name for the generated files. It is recommended to use a short and
descriptive name as it will be used as a prefix for all macros and functions.

7. You can see the generated files inside the source folder specified by the -emit-bundle
argument.

• <network_name>.o - the bundle object file (code).

• <network_name>.h - the bundle header file (API).

• <network_name>.weights.bin - the model weights in binary format.

• <network_name>.weights.txt - the model weights in text format as C text array.

 eIQ Glow Lab Page 9 of 16

8. The model_graph.dot file can be converted to a PDF file by using the Dot application included in
the Glow bundle. You can see the calls to CMSIS-NN for the supported layers.
dot -Tpdf model_graph.dot -o model_graph.pdf -Nfontname="Times New Roman,"

9. If a camera is not available for your board, a static image can be used to test the accuracy of the
model when running on an embedded system. To do this, we will convert an image into a C
array that will be loaded into Flash and used as input for the model inference on the board. This
step is not required if using a board with a camera+LCD.

The glow_process_image.py python script can be found in the RT1170 MCUXpresso SDK at
<SDK_dir>\middleware\eiq\glow\examples\common. This script will generate a
input_image_test.inc file that will be used in the next section. Notice the generated file is
28*28*4=3136 bytes in size because of the 28x28 pixel monochromatic image which uses 4-
byte floating point input that the model requires.

 This should be one long continuous line:

python glow_process_image.py ‑image-path="images\9_1088.png"
‑output‑path="source\input_image_test.inc" -image-mode=0to1 -image-layout=NCHW
‑image-channel-order=BGR -image-type=float32

If you get an error about no module named numpy.typing make sure you have numpy version
1.20 by using ‘python -m pip install numpy=1.20’

 eIQ Glow Lab Page 10 of 16

5 Run Glow on the RT1170

Now that the Glow files have been generated, the next step is to use them in the Glow MCUXpresso
IDE project and run it on the RT1170 board.

10. Open up MCUXpresso IDE and select a new workspace
11. Install the RT1170 SDK into the “Installed SDKs” tab by dragging-and-dropping the RT1170 SDK

.zip file downloaded earlier into the Installed SDK window. This dialog box will come up, and
click OK to continue the import:

12. It will look like the following when complete:

13. In the Quickstart Panel in the lower left corner, click on Import SDK examples(s)…

14. Select the RT1170 board and click on Next

 eIQ Glow Lab Page 11 of 16

15. Expand the eiq_examples category and select the glow_lenet_mnist_camera_cm7 example.
Click on Finish.

Note: If you do not have a camera+LCD for your board, use the glow_lenet_mnist_cm7 example
instead.

16. Now we need to add the files generated in the previous section into this project, which will be

covered in the next few steps. There are 4 files that need to be included. Three of them are

found in the “source” folder that was created by the compiler. Remember that the “mnist”

name comes from the “-network-name” argument you gave when running model-compiler.

input_image_test.inc comes from the python script to generate the data to do the inferencing

on.

• mnist.h

• mnist.o

• mnist.weights.txt

• input_image_test.inc

 eIQ Glow Lab Page 12 of 16

17. Open the directory location to place these files by right clicking on the source folder in the
Project Explorer and selecting Utilities->Open directory browser here

18. It should open a directory at something like something like: C:\Users\user_name\Documents\
MCUXpressoIDE_11.8.0_1165\workspace\evkmimxrt1170_glow_lenet_mnist_camera_cm7\s
ource

19. Find the mnist.h, mnist.o, mnist.weights.bin, and mnist.weights.txt files from the Glow source

directory created from the previous section, and copy those files into this directory.

Then find the input_image_test.inc file created in the previous section and also copy that file to

that same directory.

It will look like the following when done:

20. Now go back to MCUXpresso IDE

21. Open up the Project Properties by right clicking on the project name and select Properties.

 eIQ Glow Lab Page 13 of 16

22. Now go to the C/C++ Build->Settings->MCU Linker->Miscellaneous screen and double click on

the item in “Other Objects” to change the object file to the one that was just created:

23. Click on Workspace, navigate to the source folder, and select “mnist.o”. Then hit OK.

24. Then click on “Apply and Close” to close out of the Properties dialog box.

25. Now there are modifications that need to be made to glow_lenet_minst_camera.c to edit the

file to use the new file names. If we had chosen to use -network-name="lenet_mnist" then

these changes wouldn’t be necessary since the original name and the old name would match up

in the source code. But by using a new network name we can walk through the structure of the

code and point out changes needed if running a custom model.

Also note that the line numbers will differ based on the SDK package being used and if the

camera supported version is being used or not. However the changes themselves will be the

same for all projects.

 eIQ Glow Lab Page 14 of 16

Everywhere in the glow_lenet_minst_camera.c file that lenet_mnist is used, it should be

changed to just “mnist” and use the new variable names created by the generated files. This

includes:

• Line 61 to include the generated header file “mnist.h”

• Lines 65-66 for the new Glow variable names

• Line 67 to include the generated weights file: “mnist.weights.txt”

• Lines 71-76 to use the new Glow variable names

• Line 79 should set the inputAddr pointer to the network name plus the name of the

model’s input layer (MNIST_data in this example). This name be found in the minst.h

file.

• Line 82 should set the outputAddr pointer to the network name plus the name of the

model’s output layer (MNIST_softmax in this example). This name be found in the

minst.h file.

• Line 86-88 should be set to the input image size

• Line 91 should be set to the number of classes of the model.

• Lines 105-114 do not need to be modified but is where the labels can be set

• Line 164 which is what starts the inference by calling “mnist(constantWeight,

mutableWeight, activations)”

26. Now it’s time to build the project. However because new Glow files were copied into the

project, you must do a clean first. Failing to do a clean could cause the newly imported weight

data to become misaligned in memory, and cause accuracy errors during the inferencing. This is

only required when new Glow files are copied into the project. Click on “Clean” in the

Quickstart Panel first:

 eIQ Glow Lab Page 15 of 16

27. Build the project by clicking on “Build” in the Quickstart Panel.

28. Plug the micro-B USB cable into the board at J11 and connect the camera+LCD if available.

29. Open TeraTerm or other terminal program, and connect to the COM port that the board

enumerated as. Use 115200 baud, 1 stop bit, no parity.

30. Debug the project by clicking on “Debug” in the Quickstart Panel.

31. It will ask what interface to use. Select CMSIS-DAP.

32. The debugger will download the firmware and open up the debug view. Click on the Resume

button to start running.

https://community.nxp.com/t5/i-MX-RT-Knowledge-Base/Connecting-camera-and-LCD-to-i-MX-RT-EVKs/ta-p/1122183

 eIQ Glow Lab Page 16 of 16

33. Draw a number on a piece of white paper and you should see the console output identify the
number when you point the camera at it as well as display on the LCD screen. You can also use
the PDF attached to this NXP Community post for example numbers.

6 Conclusion

This lab demonstrates how to use the Glow tools to create executable models that will run on the
RT1170 device. For more information on the Glow tools, please read the eIQ Glow Ahead of Time
User Guide in the SDK docs zip file, and also visit the Glow AOT (Glow Ahead of Time) website.

The CIFAR-10 example can also be explored. Creating a CIFAR-10 model to convert requires
installing Caffe2 and training a CIFAR-10 model which is beyond the scope of this lab document.
See the readme.txt file at <SDK_path>\boards\evkmimxrt1170\eiq_examples\glow_cifar10\doc
for more details.

Further performance optimizations making use of the internal memory found in the i.MX RT can be
done by using the techniques described in Section 5.3 of the Glow User Guide.

Finally, quantization profiles for models that do not use images can be created by using the model-
profiler tool. It is included in this Glow release, and documentation can be found on the Glow
website.

https://www.nxp.com/docs/en/user-guide/EIQGLOWAOTUG.pdf
https://www.nxp.com/docs/en/user-guide/EIQGLOWAOTUG.pdf
https://github.com/pytorch/glow/blob/master/docs/AOT.md
https://www.nxp.com/docs/en/user-guide/EIQGLOWAOTUG.pdf
https://github.com/pytorch/glow/blob/master/docs/AOT.md
https://github.com/pytorch/glow/blob/master/docs/AOT.md

