
Im
p

le
m

en
ti

n
g

 a
 1

0-
B

an
d

 S
te

re
o

 E
q

u
al

iz
er

MOTOROLA
Semiconductor Products Sector Engineering Bulletin

AN2110/D:
Rev. 0, 2/2001

Contents
1 Filter Design 2
2 Development Environment 5
2.1 Personal Computer Running

Windows NT® 4.0........................... 5
2.2 Suite56 Parallel Command

Converter... 5
2.3 Interfacing the PC to the

DSP56311EVM............................... 6
2.4 Useful Debugging Techniques 7
3 Implementation of 10-Band

Stereo Equalizer 7
3.1 Program Flow and Functionality 7
3.1.1 Equalizer Filter and Volume Gain... 8
3.1.2 Stage 1: DSP Initialization 10
3.1.3 Stage 2: Codec/ESSI Initialization

and Operation................................. 10
3.1.4 Stage 3: SCI Initialization and

Operation 12
3.1.5 Stage 4: EFCOP Memory

Initialization and DMA Setup........ 13
3.1.6 Stage 5: Equalizer Knob Value

Initialization................................... 17
3.1.7 Stage 6: Set up Registers R0 to R7 17
3.1.8 Stage 7, 8, 10, and 12: Codec

Operation 18
3.1.9 Stage 9 and 11: Process

Left/Right Input 19
3.1.10 Stage 13 and 14: Setting Knob

and Main Volume Gain Values 21
4 Equalizer Graphical User

Interface (GUI) 23
4.1 GUI Operation 23
4.2 GUI Development.......................... 24
4.2.1 Equalizer Form 24
4.2.2 Frequency Table Form................... 25
4.2.3 Communications Port Settings

Form... 25
5 Using the EFCOP in

Multichannel Mode 25
5.1 EFCOP Registers 26
5.2 EFCOP Programming for

Multichannel Mode27
5.2.1 FIR Filter Type 27
5.2.2 IIR Filter Type 28
5.2.3 Memory Configuration 29
6 Coefficients and Gain Table

Files ... 30
7 References 35
Implementing a 10-Band Stereo
Equalizer on the DSP56311 EVM
Board
By James M. Montgomery

This document describes the development and implementation of
a 10-band stereo equalizer programming example on the
Motorola DSP56311 Evaluation Module (EVM). It provides an
example of how to use readily available development tools to
develop complex code for the DSP56311EVM. It also discusses
how to program the enhanced filter coprocessor (EFCOP) in
Multichannel mode.

The DSP56311EVM is a low-cost hardware platform that serves
as a hardware reference design for system and board designers
using the DSP56311. It is also a very flexible platform for
developing DSP56311 code. Software engineers can download
software to on-device or on-board RAM, then run and debug it.

The DSP56311EVM features:

• DSP56311 24-bit digital signal processor

• FSRAM for expansion memory and flash memory for
stand-alone operation

• 16-bit CD-quality audio codec

• Command converter circuitry

For details on the DSP56311EVM, consult the DSP56311EVM
Product Preview (DSP56311EVMP/D) and the DSP56311EVM
User’s Manual (DSP56311EVMUM/D).

It is assumed that you already have access to the available
Motorola DSP56311 documentation, which is located on the
following Motorola DSP World Wide Web site:

http://www.mot.com/SPS/DSP/documentation
© Motorola, Inc. 20001

Filter Design
1 Filter Design
The 10-band stereo equalizer is constructed using 10 digital IIR bandpass filters in parallel for each stereo
audio channel. The on-board codec samples the incoming audio stream at 48,000 Hz. The center
frequencies for these filters lie between 0 Hz to fs/2 (where fs is the sample frequency of 48,000 Hz).

Figure 1 shows the passive RCL circuit forming a bandpass filter. The digital IIR Filter discussed later in
this application note is based on this circuit. The s-domain analysis of the second-order bandpass analog
filter is also shown.

Figure 1. Analog Bandpass Filter and Voltage Divider Analysis

Equation 1 shows the s-domain transfer function of the circuit. H(s) is derived from the voltage divider
analysis of the RCL network to be:

where .

Equation 2 shows the bilinear transformation between the s-plane and the z-plane:

where , , and T is the sample period .

Using Equation 2, the z-plane transfer function is found from Equation 1:

VoVi

L C R

Vo
Vi

R

R j 2πf()L 1
j 2πf()C
--------------------+ +

---=

H s()
Vo

Vi
------ Rs

Rs Ls2 1
C
----+ +

--------------------------------= = Eqn. 1

s j 2πf()=

s
2
T
--- 1 z 1––

1 z 1–+

 =
Eqn. 2

z ejθ= θ ωT 2πf() 1 fs⁄()= = 1 fs⁄()

H z() α 1 z 2––()
1
2
--- γz 1–– βz 2–+
------------------------------------= Eqn. 3
2 Implementing a 10-Band Stereo Equalizer

Filter Design
With Equation 3, the coefficients for each filter are calculated using the following three equations:

where and . The value is the center frequency of the bandpass filter, and
 are the half-power points (where the gain is equal to), and is the sample frequency. These

equations are approximations for center frequencies less than (or 6000 Hz).1 To implement the
transfer function from Equation 3 as a digital IIR Filter, it must be transformed to a difference equation in
the discrete time domain. Equation 7 shows this difference equation, and Figure 2 shows its
representation as a network diagram.

Figure 2. Bandpass IIR Filter Network Diagram

At each sample period, a left and right sound byte is fed to the 10 filters in parallel (see Figure 3). After
each respective bandpass filter eliminates the frequencies not in its range, each output () is
scaled by an output gain. This gain value ranges from 0 to 1. The results of the ten filters are then summed
together and outputted. This process allows one to selectively remove, or limit, the gain of a particular
frequency range from the sound source.

1. See the application note entitled Implementing IIR/FIR Filters with Motorola’s DSP56000 DSP (APR7/D).

β 1
2

1
θo

2Q

 tan–

1
θo

2Q

 tan+

-------------------------------= Eqn. 4

γ 1
2
--- β+

 θocos= Eqn. 5

α 1
2
--- β–

 2⁄= Eqn. 6

Q fo f2 f1–()⁄= θo 2π fo fs⁄()= fo f1

f2 1 2()⁄ fs

fs 8⁄

y n() 2 α x n() x n 2–()–[] γy n 1–() βy n 2–()–+{ }= Eqn. 7

z 1–

x n 2–()

y n 1–()

y n 2–()

x n() y n()

z 1–

z 1–

z 1–

Σ

α

α– β–

γ

2

y1 n() y10 n()→
Implementing a 10-Band Stereo Equalizer

3

Filter Design
Figure 3. IIR Equalizer Data-Flow Diagram

Table 1 shows the 10 center frequencies chosen for this programming example. The coefficients for the
center frequencies less than (or 6000 Hz) were found using equations 4–6 in Section 1 . The
coefficients for the center frequencies above 6000 Hz were found using more exact equations.2 Q is chosen
to be 1.4.

2. For a full analysis, see the application note entitled Digital Stereo 10-Band Graphic Equalizer Using the
DSP56001 (APR2/D).

Table 1. Digital IIR Bandpass Coefficients

Center
Frequency α β γ

31 Hz 0.000723575 0.49855285 0.998544628

62 Hz 0.001445062 0.497109876 0.997077038

125 Hz 0.002904926 0.494190149 0.994057064

250 Hz 0.005776487 0.488447026 0.987917799

500 Hz 0.011422552 0.477154897 0.975062733

1000 Hz 0.02234653 0.455306941 0.947134157

2000 Hz 0.04286684 0.414266319 0.88311345

4000 Hz 0.079552886 0.340894228 0.728235763

8000 Hz 0.1199464 0.2601072 0.3176087

16000 Hz 0.159603 0.1800994 -0.4435172

31 Hz
y1 n()

62 Hz
y2 n()

125 Hz
y3 n()

250 Hz
y4 n()

500 Hz
y5 n()

1 kHz
y6 n()

2 kHz
y7 n()

4 kHz
y8 n()

8 kHz
y9 n()

16 kHz
y10 n()

x n() y n()Σ

fs 8⁄
4 Implementing a 10-Band Stereo Equalizer

Development Environment

ther

cutes
2 Development Environment
This section describes the development environment for the 10-band stereo equalizer (see Figure 4). It
outlines the hardware and software requirements; describes how to establish the physical connection
between the PC and the DSP56311 EVM board; and lists the steps for compiling, downloading, and
running code on the DSP56311 EVM board. Once you complete these steps, you are ready to implement
the 10-band stereo equalizer.

Figure 4. Development Setup

2.1 Personal Computer Running Windows NT® 4.0
The following programs should be running on your personal computer:

• Codewright for Windows. Programmer’s text editor used to create and modify files. Note that o
text editors can also be used.

• Command Prompt. DOS-style terminal used to run the asm56300 compiler.

• Suite56 DSP56300 Software Development Tools. Free Motorola DSP tools to compile and link
DSP assembly code. The hardware debugger, ads56300, has a GUI interface that communicates
with the EVM Board through the parallel port command converter. It also downloads and exe
code on the DSP56311EVM.

• Visual Basic® 4.0. Programming language for creating the equalizer GUI that allows you to
change the gain values for the various equalizer bands.

2.2 Suite56 Parallel Command Converter
The parallel command converter provides the physical connection between the PC and the
DSP56311EVM. Its parallel port interface connects to the PC. In addition, its female 14-pin header
connects the device to the JTAG/OnCE Port (J2) on the DSP56311EVM. For details on this device, consult
the Suite56 Parallel Port Command Converter User’s Manual (DSPCOMMPARALLELUM/D).

PC

PC
DSP56311EVM

Stereo
Input

Stereo
Output

Paralle l Port Cable

JTag Connecter

Serial Port Cable

Suite56
Parallel
Command
Converter

Stereo
Input

Suite56
parallel
command
converter

DSP56311EVM

Stereo
Output

PC
Implementing a 10-Band Stereo Equalizer

5

Development Environment
The jumper settings on the DSP56311EVM are listed in Table 2. For details on how to set up the jumpers
for the desired functionality, see the DSP56311EVM User’s Manual (DSP56311EVMUM/D).

The Line IN jack on the DSP56311EVM connects to the headphone jack of the PC. The PC provides the
sound source for the DSP56311EVM. A pair of headphones or stereo speakers can connect to the
Headphone OUT/Line OUT jack to listen to the filtered sound source.

2.3 Interfacing the PC to the DSP56311EVM
Following are the steps to compile, download and run the code on the DSP56311EVM. It is assumed that
you are using the GUI version of ADS56300 (part of the Suite56 Motorola DSP software development
tools):

1. The stereo.asm file is the main assembly file of the project. Using the command prompt, change to
the directory where the project files are stored.

2. At the prompt, type: asm56300 -a -b -l stereo.asm.

Two output files are created. Stereo.lst contains a listing of the code, and stereo.cld is the
executable to be downloaded to the DSP56311EVM. There may be a few warning when you compile
the code. These warnings tell you of pipeline stalls located in the code. They have no effect on the
operation of the code.

3. Using the ADS56300 GUI, reset the 56311EVM.

4. Under File → Load → Memory COFF, select the desired file (stereo.cld). Press Apply to load the
file into memory.

5. Select GO (or type go into the Command window).

Table 2. Jumper Setting on the DSP56311 EVM Board

Number Function Description

J1 Boot Mode Select HI08 bootstrap in MC68302 bus mode

J3 FSRAM Memory Configuration Option Unified memory map

J4 SCI Header Pinout Connects serial port connector signals RxD and TxD to
the DSP SCI port

J5 SCI Port Clock Connects on-board 156.3 kHz oscillator to the SCI port
SCLK input (used for baud rate generation)

J6 On-board JTAG Enable/Disable Option On-board command converter disabled

J7 ESSI0 Header Pinout Selects the DSP ESSI0 port interface for use with an
on-board codec

J8 CS4218 Sampling Frequency Selection Selects 48 kHz sample rate for the codec

J9 ESSI1 Header Pinout Selects DSP ESSI1 port interface for use with an
on-board codec

J10 Core Current Measurement Jumper Connected jumper that applies power to the DSP core
6 Implementing a 10-Band Stereo Equalizer

Implementation of 10-Band Stereo Equalizer

d.

rogram

ory.

nts are

e
lity of
urces

main
these

n
 the
d.

 the
You should know about the following ADS56300 GUI windows:

• Command. Allows the user to type line commands.

• Core Registers. Displays the state of the core registers. The values can also be modified.

• EFCOP Registers. Displays the state of the EFCOP registers. The values can also be modifie

• Assembly. Displays the assembly code loaded in the DSP56311 program memory.

• X Memory. Displays the X-data Memory in the DSP56311.

• Y Memory. Displays the Y-data Memory in the DSP56311.

2.4 Useful Debugging Techniques
The breakpoint feature can be very useful. Software breakpoints stop at a particular instruction in p
memory. Hardware breakpoints allow you to examine the effects of the DSP56311. For example, a
breakpoint can be set up when a DMA channel writes data to one of the EFCOP registers in Y mem
This allows you to view the state of the EFCOP after each sample is written to it. Hardware breakpoi
particularly helpful when EFCOP operation needs to be verified.

3 Implementation of 10-Band Stereo Equalizer
There are numerous ways to implement the 10-band stereo equalizer using the DSP56311EVM. Th
examples in this section show how to implement two versions of the equalizer. The overall functiona
both versions is identical. The main differences between the versions lie in how the DSP56311 reso
are used. The two versions of the equalizer are compared in terms of:

• Program Flow and Functionality. The general flow serves as a template for designing each
specific implementation. Pertinent information includes how the DSP is initialized, what the
interrupt sources are, how they are configured, and how they are handled. After examining
features, you should have a good idea at how the overall program is structured.

• DSP56311 Core Implementation. How to process the 10 bandpass filters using the DSP56300
core. The memory map and register usage must also be considered.

• EFCOP and DMA Implementation. How to process the 10 bandpass filters using the EFCOP i
Multichannel mode and the DMA controller. The DSP56300 core is minimally used to set up
peripherals. The memory map, register usage, and peripheral setup must also be considere

3.1 Program Flow and Functionality
The general program flow of the 10-band stereo equalizer occurs in 14 stages (see Figure 5). All but four
of these stages (4, 6, 9, and 11) generally apply to any implementation. The first six stages initialize
DSP56311EVM hardware and software buffers in memory:

• Stage 1: Initialize the DSP56311. Set the clock frequency and bus interface.

• Stage 2: Initialize ESSI0 and ESSI1 to interface with the codec.

• Stage 3: Initialize the SCI to interface with an RS-232 port.

• Stage 4:
Implementing a 10-Band Stereo Equalizer

7

Implementation of 10-Band Stereo Equalizer

h the

ss

e

encies
lume)
f

s

s in the

13, the
e
 voice
a. (DSP56311 core implementation): Set up the Data Sample and Filter Coefficient memory
buffers. These data buffers reside in X and Y memory, respectively

b. (EFCOP and DMA Implementation): Set up EFCOP memory and initialize the DMA
controllers.

• Stage 5: Set the equalizer knob values to a preset level.

• Stage 6: Set up the values in registers R0 to R7.

The last eight stages are part of an infinite loop to process the data received and transmitted throug
codec:

• Stage 7: Frame sync for the codec.

• Stage 8: Get voice data from the receive buffer.

• Stage 9: Process the LEFT voice data using the 10 Bandpass filters.

• Stage 10: Store the LEFT voice data to transmit buffer.

• Stage 11: Process the RIGHT voice data using the 10 Bandpass filters.

• Stage 12: Store the RIGHT voice data to transmit buffer.

• Stage 13: Using the equalizer knob values, adjust the gain values for each of the 10 bandpa
filters.

• Stage 14: Using the equalizer knob value that sets the main volume, adjust the main volum
settings of the codec.

3.1.1 Equalizer Filter and Volume Gain
After each of the 10 digital IIR bandpass filters in the 10-band stereo equalizer eliminates the frequ
not in its range, the output is scaled by its respective output gain. The 10 gain values (and main vo
are determined by user-settable values called equalizer knob values.3 The equalizer knob values consist o
eleven 8-bit values received through the Serial Communication Interface (SCI) and placed into a
predetermined space in Y memory (see Figure 6). The least significant five bits of the first ten knob value
are used to select one out of 32 values in the filter gain table, ranging from –0.2 to 0.999 (see Example 16
on page -33). The least significant five bits of the last knob value are used to select 1 out of 32 value
volume gain table, which are used to configure the volume setting in the codec (see Example 17 on page
-34). Using interrupts, the SCI constantly updates the equalizer knob values in Y memory. In Stage
knob values are used to update the runtime gain values. The 5-bit knob values function as indexes into th
filter and volume Gain tables. The run-time gain values are then used in Stages 9 and 11 when the
data is filtered. This process continually repeats.

3. The equalizer GUI is used to set the equalizer knob values.
8 Implementing a 10-Band Stereo Equalizer

Implementation of 10-Band Stereo Equalizer
Figure 5. General Program Flow

Figure 6. Knob and Gain Memory Areas

DSP Init.

1
Codec/ESSI
2

Init
SCI Init

3
Knob Value

5

Init

Codec
7

Frame Sync

Send RIGHT
12

Input

Set Band
13

Gain Values

Send LEFT
10

Input

Get data from
8

RX Buffers

Process LEFT
9

Input

Set up
6

Registers
EFCOP/Data
4

Buffer Init

Loop Start

Program Start

Process Right
11

Input

Set Main
14

Volume

NOTE: The stages
depicted in the boxes with
thick borders generally
apply to any implementation
of the 10-band stereo equalizer.

KNOB_VAL

KNOB_BASE:

VOLUME_GAIN_TBL:

FILTER_GAIN_TBL:

GAIN_BASE:

...
$0100

$010A

...$0200
$021F

...$0300
$031F

...
$2A00

$2A0A

Filter Gain Table

Equalizer
Knob Values

‘filter_gain’

Volume Gain Table
‘volume_gain’

Filter Coefficients

(Y-MEM)

Runtime
Gain Values

(X-MEM)
31 Hz Knob Val
62 Hz Knob Val

125 Hz Knob Val
250 Hz Knob Val
500 Hz Knob Val

1000 Hz Knob Val
2000 Hz Knob Val
4000 Hz Knob Val
8000 Hz Knob Val

16000 Hz Knob Val
Main VOL Knob Val
Implementing a 10-Band Stereo Equalizer

9

Implementation of 10-Band Stereo Equalizer

0

 bus

he
3.1.2 Stage 1: DSP Initialization
The first stage of the code, shown in Example 1, initializes the following DSP memory address locations:

• INIT_PCTL. Written to the Phase Lock Loop Control Register (PCTL) to set up the DSP5630
core operating frequency.

• INIT_BCR. Written to the Bus Control Register (BCR) to control the external bus activity and
interface unit operation.

• START. Marks the start of the program in program memory.

Example 1. DSP Initialization

;**
 nolist

 include ’ioequ.asm’
 include ’intequ.asm’

 include ’ada_equ.asm’
 include ’vectors.asm’

 list

INIT_PCTL EQU $040006 ; Fcore=fcrystal*MF=12.288MHz*7=86 MHz
INIT_BCR EQU $012421

org p:$400

START
;--------------------------

; DSP Initialization
;--------------------------

movep #INIT_PCTL,x:M_PCTL ; PLL 7 X 12.288 = 86.016MHz
movep #INIT_BCR,x:M_BCR ; AARx - 1 wait state

ori #3,mr ; mask interrupts
movec #0,sp ; clear hardware stack pointer

move #0,omr ; operating mode 0

3.1.3 Stage 2: Codec/ESSI Initialization and Operation
The second stage of the code, shown in Example 2, sets up the codec on the DSP56311 EVM Board. T
receive and transmit buffer pointers are set up first. Then the ada_init procedure sets up the codec by
initializing the ESSI0 and ESSI1 registers. For details, refer to Programming the CS4218 CODEC for Use
With DSP56300 Devices (AN1790/D).

Example 2. Codec/ESSI Initialization

;--------------------------

; Codec Initialization
;--------------------------

move #RX_BUFF_BASE,x0
move x0,x:RX_PTR ; Initialize the rx pointer

move #TX_BUFF_BASE,x0
move x0,x:TX_PTR ; Initialize the tx pointer

jsr ada_init ; Initialize codec
10 Implementing a 10-Band Stereo Equalizer

Implementation of 10-Band Stereo Equalizer
The codec is configured to sample incoming data at a rate of 48,000 Hz. Figure 7 shows the data format
between the ESSI interface and the codec. ESSI0 is configured for Network mode with two time slots. Slot
0 of the 32-bit frame always contains the Left Channel Word, while Slot 1 always contains the Right
Channel Word.

Six ESSI0 interrupt service routines (ISRs) handle the ESSI0 receive and transmit interrupts. These ISRs
are located in the ada_init.asm file. A receive interrupt occurs at the end of each time slot, after each
channel is serially shifted into the ESSI0 Receive Shift Register and then transferred to the Receive Data
Register. The receive interrupt service routines place each word in the receive buffers into X memory (see
Figure 7). The 16-bit channel words are placed into the 16 most significant bits of the 24-bit memory
word. The lower 8 bits are cleared. A transmit interrupt occurs at the beginning of each time slot. The
transmit interrupt service routines place each word into the ESSI0 Transmit Data Register, where it is then
transferred to the Transmit Shift Register and then serially shifted out of the DSP.

Stages 7 through 12 (Figure 5) take the left and right channel words from the Receive Data Buffer
(RX_BUFF_BASE), process them, and place the result into the Transmit Data Buffer (TX_BUFF_BASE)
to be transmitted during the next codec data frame. T1 and T2 in Figure 7 represents the maximum time
allowed to process each channel in order to be transmitted correctly during the following time frame. The
Left Channel (T1) must be processed from the rising edge of the frame sync to the falling edge of the frame
sync and placed into the Transmit Data Buffer in order to be transmitted on time. The Right Channel (T2)
must be processed from the rising edge of the frame sync to the end of slot 0 of the next time frame and
placed into the Receive Data Buffer. The restriction of the processing time for each channel is due to the
design. With a core frequency of 86.016 MHz and a sampling rate of 48 kHz, T1 = 1794 DSP clocks and
T2 = 59,198 DSP clocks.

Figure 7. Codec Data Format and Layout in Memory

Left Channel Word 0 Right Channel Word 0

Left Channel Word Right Channel WordLeft Channel Word 0 Right Channel Word 0

Left Channel Word Right Channel Word

SSYNC

STOUT

SDIN

Frame 32-bits

Slot 0 Slot 1

16-bits 16-bits

0

Left Channel Word
Right Channel Word
Left Channel Word
Right Channel Word

RX_BUFF_BASE:

TX_BUFF_BASE:

00000000
00000000
00000000
00000000

723

(X-MEM)

T1
T2
Implementing a 10-Band Stereo Equalizer

11

Implementation of 10-Band Stereo Equalizer

.

L) to

ne ISR
eive

f the

alizer

ter is

. The
 half of
3.1.4 Stage 3: SCI Initialization and Operation
Stage 3 of the code, shown in Example 3, initializes the following memory address locations:

• INIT_SCCR. Written to the SCI Clock Control Register (SCCR) to set up the baud rate.

• INIT_SCR. Written to the SCI Control Register (SCR) to control the serial interface operation

The Port E register (PCRE) is also configured to enable the SCI lines. Finally the pointer (KNOB_VA
the equalizer knob values in Y memory is initialized.

Example 3. SCI Initialization

INIT_SCCR EQU $002010 ; baud = Fcore/[64*(7(SCP)+1)*(CD+1)]
INIT_SCR EQU $000b02

;--------------------------

; SCI Initialization
;--------------------------

movep #INIT_SCCR,x:M_SCCR ; Initialize SCI
movep #INIT_SCR,x:M_SCR

movep #$7,x:M_PCRE
move #KNOB_BASE,r0 ; Initialize the SCI pointer.

move r0,x:KNOB_VAL ;

The SCI is configured to receive the equalizer knob values from the external PC (or other source). O
handles the SCI receive interrupt. A receive interrupt occurs when a byte is shifted into the SCI Rec
Shift Register and then transferred to the Receive Data Register. The ISR places this byte in one o
equalizer knob value memory locations to which KNOB_VAL points (see Figure 6). The operation of the
SCI ISR is very simple (as shown in the top half of Figure 8).

1. It saves a few core registers to the system stack.

2. It reads the data byte from the SCI Receive Data Register.

3. The character “Enter” (hex value 0xd) is used to reset the table pointer (KNOB_VAL) to the equ
knob value base (KNOB_BASE).

4. If the character “Enter” is read, KNOB_VAL is set to equal KNOB_BASE. Else if another charac
read, then that character is put at the Y-Memory location pointed to by KNOB_VAL.

5. The core registers are then restored, and the interrupt exits.

In this programming example, the equalizer knob values come from the COM1 or COM2 port of a PC
Equalizer GUI that allows the user to set the knob values sends the data pattern shown in the bottom
Figure 8.
12 Implementing a 10-Band Stereo Equalizer

Implementation of 10-Band Stereo Equalizer

ic to

es

in X
 when

Figure 8. SCI Interrupt Service Routine and Incoming Data Pattern

3.1.5 Stage 4: EFCOP Memory Initialization and DMA Setup
Stage 4 of the code, shown in Example 4, sets up the X and Y memories for this version of the
implementation. The code in program memory does two things.

• Clears the x(n) and y(n) data buffers at DATA_BASE_L and DATA_BASE_R.

• Sets up the data buffer pointers in memory using DATA_PTR.

Figure 9 shows the memory map for this implementation. The following areas of memory are specif
this implementation and have not been discussed in previous sections.

• DATA_BASE_L and DATA_BASE_R. These two areas in X memory hold the current data valu
for x(n) to x(n-2) and y(n) to y(n-2) for all 10 bandpass filters.

• DATA_PTR. It is necessary to store the pointers to the memory areas. Storing these values
memory means that one register can be assigned to save and restore the four data pointers
they’re needed.

• COEF_BASE. This area of Y memory contains the , , and coefficients for each of the 10
bandpass filters.

RFISave REGs
A

Read from
B

SCI RX Buff
Put Char into

D
Restore REGs

E

from Stack

SCI RX IRQ

Char = 0x0d
??

Reset PTR
D

KNOB_VAL=KNOB_BASE

to Stack Knob Table

YES

NO

C

ENTER 31 Hz Knob 62 Hz Knob 125 Hz Knob 250 Hz Knob 500 Hz Knob 1 kHz Knob 2 kHz Knob 4 kHz Knob 8 kHz Knob 16 kHz Knob Volume Knob
0x0D Char1 Char2 Char3 Char4 Char5 Char6 Char7 Char8 Char9 Char10 Char11

α β γ
Implementing a 10-Band Stereo Equalizer

13

Implementation of 10-Band Stereo Equalizer
Figure 9. Memory Map for DSP56300 Core Implementation

Example 4. Filter Parameter Setup

org y:FILTER_GAIN_TBL

include ’filter_gain’
org y:VOLUME_GAIN_TBL

include ’volume_gain’
org y:COEF_BASE

include ’coeff’

;;;;IN PROGRAM MEMORY;;;

;--------------------------
; Filter Parameter Setup

;--------------------------
move #0,r0

;Clear the x(n) and y(n) Data Buffers

move #DATA_BASE_L,r3
rep #$68

move r0,x:(r3)+
; x:DATA_BASE_L+($00..$02) - x(n) left chan.

; x:DATA_BASE_L+($40..$42) - y(n) left chan. 31 Hz
; x:DATA_BASE_L+($44..$46) - y(n) left chan. 62 Hz

;
; x:DATA_BASE_L+($64..$66) - y(n) left chan. 16 kHz

move #DATA_BASE_R,r3

rep #$68
move r0,x:(r3)+

DATA_PTR:

KNOB_BASE:

(X-MEM)

STACK_PTR:

TX_BUFF_BASE:

DATA_BASE_L:

DATA_BASE_R:

RX_BUFF_BASE:

KNOB_VAL:

$0000

...$1000

$1002
$1040

$1067
$1100

$1102
$1140

$1167

$2800
$2801

$2802
$2803

$2804
$2805

RX_PTR:
TX_PTR:

$2806

$2B00
$2B01
$2B02
$2B03

...

...

...

VOLUME_GAIN_TBL:

FILTER_GAIN_TBL:

COEF_BASE:

GAIN_BASE:

...
$0100

$010A

...$0200

$021F

...$0300

$031F

...$1000

$101D

...
$2A00

$2A0A

SYSTEM STACK PONTER

x(n) Values for LEFT Channel

y(n) Values for LEFT Channel

x(n) Values for RIGHT Channel

y(n) Values for RIGHT Channel

LEFT CHANNEL WORD
RIGHT CHANNEL WORD

LEFT CHANNEL WORD
RIGHT CHANNEL WORD

Pointer to RX Buffer
Pointer to TX Buffer

Pointer to KNOB TABLE

Pointer to Yi(n): Left-channel
Pointer to X(n): Left-channel
Pointer to Yi(n): Right-channel
Pointer to X(n): Right-channel

Main VOL Knob Value

Filter Gain Table

31 Hz Knob Value
...

‘filter_gain’

Volume Gain Table
‘volume_gain’

Filter Coefficients
‘coeff’

Main VOL Setting

31 Hz Channel Gain
...

(Y-MEM)
14 Implementing a 10-Band Stereo Equalizer

Implementation of 10-Band Stereo Equalizer
; x:DATA_BASE_R+($00..$02) - x(n) right chan.
; x:DATA_BASE_R+($40..$42) - y(n) right chan. 31 Hz

; x:DATA_BASE_R+($44..$46) - y(n) right chan. 62 Hz
;

; x:DATA_BASE_R+($64..$66) - y(n) right chan. 16 kHz

; Setup Filter Data Buffers (and Pointers)
move #DATA_PTR,r3

nop
move #DATA_BASE_L+$40,r0 ; Yi(n):L-ch at x:DATA_BASE_L+$40

move r0,x:(r3)+
move #DATA_BASE_L,r0 ; X(n):L-ch at x:DATA_BASE_L

move r0,x:(r3)+
move #DATA_BASE_R+$40,r0 ; Yi(n):R-ch at x:DATA_BASE_R+$40

move r0,x:(r3)+
move #DATA_BASE_R,r0 ; X(n):R-ch at x:DATA_BASE_R

move r0,x:(r3)

Next, we implement the 10-band stereo equalizer using the DSP56311 EFCOP to process the bandpass
filters and DMA to transfer the DATA to/from the EFCOP. Stage 4 of the code, shown in Example 5, sets
up the X and Y memories for this implementation version. The code in program memory does the
following:

• Clears the four EFCOP data buffers at FIR_FDBA_L, FIR_FDBA_R, IIR_FDBA_L, and
IIR_FDBA_R.

• Sets up the EFCOP data buffer pointers in memory using FDBA_PTR.

Figure 10 shows the memory map for this implementation.

Figure 10. Memory Map for EFCOP/DMA Implementation

FDBA_PTR:

KNOB_BASE:

(X-MEM)

STACK_PTR:

TX_BUFF_BASE:

FIR_FDBA_L:

RX_BUFF_BASE:

KNOB_VAL:

$0000

...$1000

$1027
$1100

$1127
$1200

$1213
$1300

$1313

$2800
$2801

$2802
$2803

$2804
$2805

RX_PTR:
TX_PTR:

$2806

$2B00
$2B01
$2B02
$2B03

...

...

...

VOLUME_GAIN_TBL:

FILTER_GAIN_TBL:

FIR_COEF:

GAIN_BASE:

...
$0100

$010A

...$0200

$021F

...$0300

$031F

...$1000

$1027

...
$2A00

$2A0A

SYSTEM STACK PONTER

EFCOP FIR Data Buffer

LEFT CHANNEL WORD
RIGHT CHANNEL WORD

LEFT CHANNEL WORD
RIGHT CHANNEL WORD

Pointer to RX Buffer
Pointer to TX Buffer

Pointer to KNOB TABLE

Current Pointer to FIR Data Buffer: L-ch

Main VOL Knob Value

Filter Gain Table

31 Hz Knob Value
...

‘filter_gain’

Volume Gain Table
‘volume_gain’

FIR Filter Coefficients
‘fir_coeff’

Main VOL Setting

31 Hz Channel Gain
...

(Y-MEM)

IIR_FDBA_R:

IIR_FDBA_L:

FIR_FDBA_R:

$2900

$2909
$2A00

$2A09

...

...

FIR Filter Result

IIR Filter Result
IIR_TEMP:

FIR_TEMP:

for Left Channel

EFCOP FIR Data Buffer
for Right Channel

EFCOP IIR Data Buffer
for Left Channel

EFCOP IIR Data Buffer
for Right Channel

Current Pointer to IIR Data Buffer: L-ch
Current Pointer to FIR Data Buffer: R-ch
Current Pointer to IIR Data Buffer: R-ch

IIR_COEF: ...$1200

$1213
IIR Filter Coefficients

‘iir_coeff’
Implementing a 10-Band Stereo Equalizer

15

Implementation of 10-Band Stereo Equalizer

) to

 to

he

e IIR

he
e

OP
The following areas of memory are specific to this implementation and are not discussed in previous
sections.

• FIR_FDBA_L, FIR_FDBA_R. These two areas in X memory hold the current left and right x(n
x(n-2) data values for each of the 10 EFCOP filter channels.

• IIR_FDBA_L, IIR_FDBA_R. These two areas in X memory hold the current left and right y(n)
y(n-2) data values for each of the 10 EFCOP filter channels.

• FIR_TEMP. This area in X memory holds the result from the EFCOP after it has processed t
FIR part of the IIR filter. This area is 10 words long (one word for each of the 10 channels).

• IIR_TEMP. This area in X memory holds the result from the EFCOP after it has processed th
part of the IIR filter. This area is 10 words long (one word for each of the 10 channels).

• FDBA_PTR. Due to the nature of the program, it is necessary to store the FDBA register of t
EFCOP after each use. This pointer saves and restores the correct data pointer values to th
EFCOP.

• FIR_COEF. This area of Y memory contains the coefficients for each of the 10 EFCOP
channels.

• IIR_COEF. This area of Y memory contains the and coefficients for each of the 10 EFC
channels.

Example 5. EFCOP Memory Initialization

;--------------------------

; EFCOP Initialization
;--------------------------

move #0,r0

; Clear the EFCOP Data Buffer
move #FIR_FDBA_L,r3 ; FIR Left Channel

rep #40
move r0,x:(r3)+

move #FIR_FDBA_R,r3 ; FIR Right Channel

rep #40
move r0,x:(r3)+

move #IIR_FDBA_L,r3 ; IIR Left Channel

rep #20
move r0,x:(r3)+

move #IIR_FDBA_R,r3 ; IIR Right Channel

rep #20
move r0,x:(r3)+

; Clear the Temporary Storage Areas

move #FIR_TEMP,r3
rep #CHANNELS

move r0,x:(r3)+

move #IIR_TEMP,r3
rep #CHANNELS

move r0,x:(r3)+

; Setup EFCOP Data Buffers (and Pointers)
move #FDBA_PTR,r3 ; Base pointer for FDBA values (X mem)

α

β γ
16 Implementing a 10-Band Stereo Equalizer

Implementation of 10-Band Stereo Equalizer

in
x1F
move #FIR_FDBA_L,r0
move r0,x:(r3)+

move #IIR_FDBA_L,r0
move r0,x:(r3)+

move #FIR_FDBA_R,r0
move r0,x:(r3)+

move #IIR_FDBA_R,r0
move r0,x:(r3)+

; Setup Channels in EFCOP

movep #CHANNELS-1,y:M_FDCH ; # of EFCOP Channels

3.1.6 Stage 5: Equalizer Knob Value Initialization
Stage 5 of the code, shown in Example 6, clears the memory spaces corresponding to the ‘Runtime’ ga
Values by writing a 0x0 to them. The equalizer knob values in memory are then set with the value 0
(for the filter gain values) and 0x10 (for the volume gain value).

Example 6. Knob Value Initialization

;--------------------------
; Knob Value Initialization

;--------------------------
; Clear the ‘Runtime’ Gain Values in memory

move #0,r0
move #GAIN_BASE,r3

rep #11
move r0,y:(r3)+

; Set equalizer knob values (for Filters)

move #$00001f,r0 ; Set index into Filter Gain Table
move x:KNOB_BASE,r3

rep #10
move r0,y:(r3)+

; Set equalizer knob values (for Volume)

move #$000010,r0 ; Set index into Volume Gain Table
nop

move r0,y:(r3)+

3.1.7 Stage 6: Set up Registers R0 to R7
This implementation of the 10-band stereo equalizer uses all of the available DSP56300 core registers, as
shown in Example 7.

Example 7. Register Usage

;--------------------------

; Setup Registers
;--------------------------

; R0 - IIR Coeff Pointer (30-word Buffer)
move #COEF_BASE,r0 ; IIR Coeff for Left/Right Chan.

move #29,m0
; R1 - Knob Value Pointer (11-word Buffer)

move #KNOB_BASE,r1
; R2 - Points to the Filter and Volume Gain Tables

move #FILTER_GAIN_TBL,r2
Implementing a 10-Band Stereo Equalizer

17

Implementation of 10-Band Stereo Equalizer

 this

p
ync bit
voice
ft and
; R3 - ’Runtime’ Filter Gain Pointer (11-word Buffer)

move #GAIN_BASE,r3
move #10,m3

; R4 - Pointer to Yi(n) buffers (3-words * 10 Bands)
move #2,m4 ; Set y(n) modulo for 3 words

move #4,n4
; R5 - Pointer to X(n) buffer (3-words)

move #2,m5
; R6 - User Stack Pointer

move #STACK_PTR,r6 ; initialize stack pointer.
move #-1,m6 ; linear addressing

; R7 - Holds Pointer Value for current Data Buffer (4-Words)
move #DATA_PTR,r7 ; Base pointer for Data values (X mem)

move #3,m7 ; Set the buffer to 4

The core register usage is as follows:

• R0. Pointer to filter coefficients in Y memory (30-word circular buffer)

• R1. Pointer to knob values in Y memory (11-word buffer)

• R2. Pointer to filter gain table and volume gain table in Y memory.

• R3. Pointer to filter gain values in Y memory (11-word buffer).

• R4. Pointer to Yi(n) data buffers in X memory. This register is used for both the left and right
channels.

• R5. Pointer to X(n) data buffers in X memory. This register is used for both the left and right
channels.

• R6. System stack pointer, primarily used for interrupt service routines. The routines can use
register to save and restore the state of regular code flow.

• R7. Pointer for the current data buffer pointers. This register helps store the runtime X(n) and Yi(n)
data buffer pointer values in X memory (4-word buffer).

3.1.8 Stage 7, 8, 10, and 12: Codec Operation
The code for Stages 7, 8, 10, and 12 is shown in Example 8. Stages 7 through 14 make up an infinite loo
that processes the left and right voice channels that are received. In Stage 7, the Receive Frame S
(RFS) of the ESSI Status Register (SSISR) is used to start each loop. In Stage 8, the left and right
data, stored at RX_BUFF_BASE, is moved to registers in the DSP. After the voice data from the le
right channels is processed, it is moved to TX_BUFF_BASE.

Example 8. Codec Code

;--------------------------
; START LOOP

;--------------------------
loop

; Get Left and Right Channel Data Bytes
jset #3,x:M_SSISR0,* ; wait for RX frame sync

jclr #3,x:M_SSISR0,* ; wait for RX frame sync

move x:RX_BUFF_BASE,x1 ; receive left
move x:RX_BUFF_BASE+1,y1 ; receive right

;;; PROCESS LEFT INPUT code ;;;
18 Implementing a 10-Band Stereo Equalizer

Implementation of 10-Band Stereo Equalizer
move a,x:TX_BUFF_BASE ; transmit left data byte

;;; PROCESS RIGHT INPUT code ;;;
move b,x:TX_BUFF_BASE+1 ; transmit left data byte

3.1.9 Stage 9 and 11: Process Left/Right Input
Processing of the left and right voice data bytes is practically identical. The only difference is the codec
data bytes that are filtered. For a complete IIR filter to be implemented, the voice data must be processed
using the EFCOP FIR and IIR types of filters. These two filter types (shown in Figure 11) are used
together to create two filtering phases. During the first phase, the FIR results for each of the 10 channels
are calculated using the EFCOP. DMA 0 transfers the codec voice data sample to the EFCOP, and DMA 1
transfers the results to the FIR_TEMP buffer. During the second phase, the IIR results for each of the 10
Channels are calculated. DMA 2 transfers the FIR results to the EFCOP, and DMA 3 transfers the final
results to the IIR_TEMP buffer in X memory (see Example 9). The results are then multiplied by their
respective gain values and added together.

Figure 11. EFCOP IIR Block Diagram

The FIR coefficients (in the fir_coeff file) are multiplied by two. Similarly, the IIR coefficients (in the
iir_coeff file) are divided by four. These operations produce the correct multiplication factor while the
EFCOP is processing the data in the IIR phase. The EFCOP IIR block diagram for a single channel
(Figure 11) shows the how the two EFCOP phases are related. The EFCOP in IIR mode is configured so
that it scales the feedback terms by 8. The EFCOP also introduces a time delay when it is in FIR
Multichannel mode. This is why at time x(n), x(n–1) is processed instead. The channel gain, Gi, can be set
to have a value between –0.2 and 0.999 (see Section 3.1.1, Equalizer Filter and Volume Gain, on page 8).
A 3-tap FIR filter is used during the FIR filtering phase, implemented as follows:

1. Set the filter count register (FCNT) to the length of the filter coefficients –1 (that is, 2).

2. Set the Data and Coefficient Base Address Pointers (FDBA, FCBA).

3. Clear the ALU control register (FACR).

4. Set the control and status register (FCSR):

— FSCO = 0 (EFCOP filter coefficients are stored sequentially in memory)

— FPRC = 1 (EFCOP starts processing with no state initialization)

z 1–

xi n 3–()

yi n 2–()

yi n 3–()

xi n 1–() yi n 1–()

z 1–

z 1–

z 1–

α 2×

α 2×– β 4⁄–

γ 4⁄

Gi

At time x(n):

8

8

Σ

FIR IIR
Implementing a 10-Band Stereo Equalizer

19

Implementation of 10-Band Stereo Equalizer
— FMLC = 1 (Multichannel Mode)

— FOM = 00 (Real FIR filter)

— FLT = 0 (FIR filter)

— FEN = 1 (Enable EFCOP)

A 2-tap IIR filter is used during the IIR filtering phase, implemented as follows:

1. Set the filter count register (FCNT) to the length of the filter coefficients-1 (i.e. 1).

2. Set the Data and Coefficient Base Address Pointers (FDBA, FCBA).

3. Set the ALU control register (FACR).

— FISL = 1 (Determines where Scaling is done)

— FSCL = 01 (Scaling factor of 8)

4. Set the control and status register (FCSR):

— FSCO = 0 (EFCOP filter coefficients are stored sequentially in memory)

— FPRC = 1 (EFCOP starts processing with no state initialization)

— FMLC = 1 (Multichannel Mode)

— FLT = 1 (IIR filter)

— FEN = 1 (Enable EFCOP)

Example 9. Use EFCOP and DMA to Process the Left Channel

;;; PROCESS LEFT INPUT

; Initialize EFCOP for FIR stage of LEFT input

lfstart
movep #$000,y:M_FCSR ; Reset the EFCOP

movep #FIR_LEN-1,y:M_FCNT ; Set the counter for 3 Coeffs

movep x:(r7),y:M_FDBA ; R7 = Current FIR Data Pointer
movep #FIR_COEF,y:M_FCBA ; FIR Coeff Pointer

movep #$000,y:M_FACR ; Clear the FACR
movep #$0C1,y:M_FCSR ; Enable EFCOP

; Initialize DMA 0 (Data Samples -> EFCOP {FDIR Reg})

movep #RX_BUFF_BASE,x:M_DSR0 ; DMA source is the sound data buffer
movep #M_FDIR,x:M_DDR0 ; DMA Destination is the EFCOP (Y Mem)

movep #CHANNELS-1,x:M_DCO0 ; DMA Count in mode A
movep #$8eAA44,x:M_DCR0 ; Enable DMA Channel 0

; Initialize DMA 1 (EFCOP {FDOR Reg} -> FIR Temp Storage)

movep #M_FDOR,x:M_DSR1 ; DMA source is the EFCOP (Y Mem)
movep #FIR_TEMP,x:M_DDR1 ; DMA Destination is FIR_TEMP in X Mem

movep #CHANNELS-1,x:M_DCO1 ; DMA Count in mode A
movep #$8EB2C1,x:M_DCR1 ; Enable DMA Channel 1

; Wait for Completion of FIR Stage

jclr #0,x:M_DSTR,* ; DMA 0 Finished
jclr #1,x:M_DSTR,* ; DMA 1 Finished

movep y:M_FDBA,x:(r7)+ ; Update FIR Data Pointer, and

; Point to IIR Data Pointer
20 Implementing a 10-Band Stereo Equalizer

Implementation of 10-Band Stereo Equalizer
; Initialize EFCOP for IIR stage of Left Input

movep #$000,y:M_FCSR ; Reset the EFCOP

movep #IIR_LEN-1,y:M_FCNT ; Set the Counter to 2 Coeffs.
movep x:(r7),y:M_FDBA ; R7 = Current IIR Data Pointer

movep #IIR_COEF,y:M_FCBA ; IIR Coeff Pointer
movep #$041,y:M_FACR ; Set up Scaling factor

movep #$0C3,y:M_FCSR ; EFCOP enable

; Initialize DMA 2 (FIR Temp Storage -> EFCOP {FDIR Reg})
movep #FIR_TEMP,x:M_DSR2 ; DMA source is the sound data buffer

movep #M_FDIR,x:M_DDR2 ; DMA Destination is the EFCOP (Y Mem)
movep #CHANNELS-1,x:M_DCO2 ; DMA Count in mode A

movep #$8EAA54,x:M_DCR2 ; Enable DMA Channel 2

; Initialize DMA 3 (EFCOP {FDOR Reg} -> FIR Temp Storage)
movep #M_FDOR,x:M_DSR3 ; DMA source is the EFCOP (Y Mem)

movep #IIR_TEMP,x:M_DDR3 ; DMA Destination is FIR_TEMP in X Mem
movep #CHANNELS-1,x:M_DCO3 ; DMA Count in mode A

movep #$8EB2C1,x:M_DCR3 ; Enable DMA Channel 3
; Wait for Completion of IIR Stage

jclr #2,x:M_DSTR,* ; DMA 2 Finished
jclr #3,x:M_DSTR,* ; DMA 3 Finished

movep y:M_FDBA,x:(r7)+ ; Update IIR Data Pointer, and

; Point to FIR Data Pointer
; (Right Channel)

; Send out sound byte

move #IIR_TEMP,r0 ; Pointer to IIR values
move #GAIN_BASE,r4 ; Pointer to Gain values

clr a x:(r0)+,x0 y:(r4)+,y0

do #9,left_out

mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0
left_out

macr x0,y0,a

move a,x:TX_BUFF_BASE ; transmit left data byte

3.1.10 Stage 13 and 14: Setting Knob and Main Volume Gain Values
Stages 13 and 14 are shown in Example 10. During Stage 13, the equalizer knob values (at KNOB_BASE)
are used as indexes into the filter gain table. The gain values for the 10 filters come from this Table. During
Stage 14, the last equalizer knob value is used as an index into the volume gain table. The codec controls
the main volume for the system. If the knob value for the volume is between 0x0 to 0xF, then the output is
attenuated (less sound). Attenuation is accomplished by reprogramming the upper control word
(CTRL_WD_HI) for the codec. If the knob value for the volume is between 0x10 to 0x1F, then gain is
added (more sound). Gain is accomplished by reprogramming the lower control word (CTRL_WD_LO)
for the codec. The value programmed to the codec is in the volume gain table.
Implementing a 10-Band Stereo Equalizer

21

Implementation of 10-Band Stereo Equalizer

is
exes to

s.
. The
e

es.
Example 10. Setting Gain Values

; GET and SET new Band Gain Values

bgain_s
move #KNOB_BASE,r1 ; Pointer to equalizer knob values.

move #FILTER_GAIN_TBL,r2 ; Pointer to Filter Gain Table.
move #GAIN_BASE,r3 ; Pointer to ’runtime’ gain values.

clr a

do #10,bgain ; 10 Knobs for 10 Filter Channels
move y:(r1)+,a ; 1. Get Knob Value.

and #$00001F,a ; 2. Mask for lowest 5 bits.
move a1,n2 ; 3. Set index into Filter Gain Table.

move y:(r2+n2),r0 ; 4. Use index to get Filter Gain Value.
move r0,y:(r3)+ ; 5. Update ’runtime’ Filter Gain Value

bgain
vgain_s

move #VOLUME_GAIN_TBL,r2; Pointer to Volume Gain Table
move y:(r1)+,a ; 1. Get Knob Value.

and #$00001F,a ; 2. Mask for lowest 5 bits.
move a1,n2 ; 3. Set index into Volume Gain Table.

move y:(r2+n2),r0 ; 4. Use index to get Volume Gain Value.
move r0,y:(r3)+ ; 5. Update ’runtime’ Volume Gain Value

cmp #$00000F,a ; If index=0x0-0xF, attenuate the output

jle vol_atten ; If index = 0x10-0x1F, add gain
move #$000300,r1

move r0,x:CTRL_WD_LO
move r1,x:CTRL_WD_HI

jmp vgain
vol_atten

move #$000000,r1
move r0,x:CTRL_WD_HI

move r1,x:CTRL_WD_LO
vgain

jsr init_codec ; Send Control Word to CODEC

The KNOB TABLE discussed earlier sets the gain values for the 10 bandpass filters and the main volume.
Four spaces in memory are used in the stages.

• KNOB_BASE. Base of the 11-word equalizer knob value area in Y memory. The values in th
memory area are ASCII values sent from the COM port on the PC. These values are the ind
the filter and volume gain tables.

• FILTER_GAIN_TBL. Filter gain values in Y memory. This table is contains 32 words ranging
from the values of –0.2 to 0.999 (see Section 6, Coefficients and Gain Table Files, on page 30).

• VOLUME_GAIN_TBL. Volume setting values in Y memory. This table is made up of 32 word
The lower 16 words contain configuration settings for the lower 16 bits of codec control data
upper 16 words contain configuration settings for the upper 16 bits of codec control data (se
Section 6, Coefficients and Gain Table Files, on page 30).

• GAIN_BASE. 10-word Y memory table that contains the currently selected runtime gain valu
The code in Example 10 show how this table is updated.
22 Implementing a 10-Band Stereo Equalizer

Equalizer Graphical User Interface (GUI)

 values

ge the

en it is
4 Equalizer Graphical User Interface (GUI)
A simple GUI sets the gain values for each of the bandpass filters and the main volume. This GUI runs
under the Windows NT/98 OS. Figure 12 shows the initial state of the equalizer GUI. This section
discusses the GUI operation and the development of this GUI using Microsoft Visual Basic®.

Figure 12. Equalizer Graphical User Interface

4.1 GUI Operation
The GUI interface consists of the following:

• Eleven equalizer knobs (represented as scroll bars) on the face of the GUI; 10 to set the gain
of the bandpass filters and 1 to set the main volume.

• A status line to display messages to the user. It is currently not used for anything

• Frequency table On/Off checkbox to bring up a small dialog box that allows the user to chan
knob values of the 10 bandpass filters’ gain. When a certain frequency is checked, the
corresponding knob changes to the very top position (a gain of 1). The opposite happens wh
unchecked (see Figure 13).

• Setup and Exit buttons to bring up a dialog window that allows the user to change the
communications port on the PC.
Implementing a 10-Band Stereo Equalizer

23

Equalizer Graphical User Interface (GUI)

running
ou
The bandpass filter gain ranges from 0 to 1, with 0 at the bottom position and 1 at the top. Each knob
allows you to select from 1 of 16 different positions (gain values). Setting the scroll bar to the top causes
the gain to be 1. Hence, the frequencies of that particular band passes through. Setting the scroll bar to the
bottom causes the gain to be 0. Hence, the frequencies of that particular band is removed (or limited).

The main volume knob has 32 positions that can be selected. Sixteen of these positions gradually decrease
the main volume, while 15 increase the main volume. There is one knob position that does not affect the
main volume.

Figure 13. Frequency Table and COM Port Configuration

4.2 GUI Development
The equalizer GUI is implemented in Microsoft Visual Basic®, mainly because this very simple
programming language provides good access to the communications port of a personal computer
Microsoft Windows. This section briefly describes the code written for the GUI. It is assumed that y
know how to use Microsoft Visual Basic 4.0

4.2.1 Equalizer Form
The Equalizer Form is the main GUI form (see Figure 12). Several procedures are associated with this
form, but only two are key to its functionality: Band_Change() and Send_Data(). Example 11 shows these
two procedures.

Example 11. Baud_Change() and Send_Data() Procedures

Private Sub Band_Change(Index As Integer)

’ BandVal(Index).Caption = Format(31 - Band(Index).Value)
 Call Send_Data

End Sub

Private Sub Send_Data()
 ’ Send Gain info to DSP

 If MSComm1.PortOpen Then
24 Implementing a 10-Band Stereo Equalizer

Using the EFCOP in Multichannel Mode

hanges

imized
 ’ First, Send Reset Character

 MSComm1.Output = Chr$(13)

 For Knob = 0 To 10 Step 1
 MSComm1.Output = Chr$((31 - Band(Knob).Value) + 32)

 Next Knob
 End If

End Sub

The 11 knobs (scroll bars) form an object array element named Band. The Band_Change() procedure is
called when one of the equalizer knobs changes its value. This procedures invokes the Send_Data
procedure, which uses the MSComm1 object to transmit ASCII characters out of the specified
communications port. The value 0x0d is sent out first. Then the position value for each knob is read and
sent out, starting with the 33 Hz knob (see Example 8 on page -13).

4.2.2 Frequency Table Form
Example 12 shows the main procedure for this form.

Example 12. Check1_Click Procedure

Private Sub Check1_Click(Index As Integer)

 If Check1(Index).Value = 1 Then
 Form1.Band(Index).Value = 0

 ElseIf Check1(Index).Value = 0 Then
 Form1.Band(Index).Value = 15

 End If
End Sub

The 10 checkboxes form an object array element named ‘Check1’. The Check1_Click() procedure c
the equalizer knob values.

4.2.3 Communications Port Settings Form
The code for the communications port settings form changes the communications port value in the
MSComm1 object.

5 Using the EFCOP in Multichannel Mode
The EFCOP peripheral module functions as a general-purpose, fully programmable filter. It has opt
modes of operation to perform real and complex impulse response (FIR) filtering, infinite impulse
response (IIR) filtering, adaptive FIR filtering, and multichannel FIR filtering. As Figure 14 shows, the
EFCOP comprises these main functional blocks:

• Peripheral module bus (PMB) interface, including:

— Data input buffer

— Constant input buffer

— Output buffer

— Filter counter

• Filter data memory (FDM) bank
Implementing a 10-Band Stereo Equalizer

25

Using the EFCOP in Multichannel Mode
• Filter coefficient memory (FCM) bank

• Filter multiplier accumulator (FMAC) machine

• Address generation

• Control logic

Figure 14. EFCOP Block Diagram

5.1 EFCOP Registers
This section documents the registers for configuring and operating the EFCOP (see Table 3). For details
on these registers, consult the DSP56311 User’s Manual (DSP56311UM/D)

Table 3. EFCOP Registers Accessible Through the PMB

Register Name Description

Filter Data Input
Register (FDIR)

A FIFO four words deep and 24-bits wide for DSP-to-EFCOP data transfers. Data from
the FDIR is transferred to the FDM for filter processing.

Filter Data Output
Register (FDOR)

A 24-bit wide register for EFCOP-to-DSP data transfers. Data is transferred to the FDOR
after processing of all filter taps completes for a specific set of input samples.

Filter K-Constant Input
Register (FKIR)

A 24-bit register for DSP-to-EFCOP constant transfers.

Filter Count

Address
Generator

Control

4-Word

DATA
Memory Bank

24-bit

Coefficient
Memory Bank

24-bit

FMAC
24x24 → 56-bit

Output Buffer

Rounding & Limiting

DMA BUS

GDB BUS
PMB

Interface

Logic

Data Input BufferFDIR

FDM

FCM

FDOR

FCNT

Filter Constant
FKIR

X Memory
Shared
RAM

Y Memory
Shared
RAM

Coefficient Base
FCBA

Data Base
FDBA
26 Implementing a 10-Band Stereo Equalizer

Using the EFCOP in Multichannel Mode
5.2 EFCOP Programming for Multichannel Mode
This section discusses how to program the EFCOP to process multiple channels (Multichannel mode) and
shows how the filter coefficients should be set up in memory. EFCOP operation is determined by the
control bits in the FCSR. Multichannel mode is selected by setting FCSR[FMLC]. The number of channels
to process is one plus the number in the FDCH[FCHL] bits. Further filtering operations are enabled via the
appropriate bits in the FACR. After the FCSR is configured, enable the EFCOP by setting FCSR[FEN]. To
ensure proper EFCOP operation, most FCSR bits must not be changed while the EFCOP is enabled.

For each time period, the EFCOP receives the samples for each channel sequentially. This is repeated for
consecutive time periods. Filtering is performed with the same filter or different filters for each channel
using the FCSR[FSCO] bit. If FCSR[FSCO] is set, the same set of coefficients is used for all channels. If
FSCO is clear, the coefficients for each filter are stored sequentially in memory for each channel.

5.2.1 FIR Filter Type
To select the FIR filter type, clear FCSR[FLT]. In single-channel mode, the EFCOP takes an input, x(n),
from the FDIR, saves the input while shifting the previous inputs down in the FDM, multiplies each input
in the FDM by the corresponding coefficient, Bi, stored in the FCM, accumulates the multiplication results,
and places the accumulation result, w(n), in the FDOR. In Multichannel mode, the operation for FIR
filtering is identical but the EFCOP takes the input x(n – 1) instead of x(n). This is done for each sample
input to the FDIR. See Figure 15.

Filter Count (FCNT)
Register

A 24-bit register that specifies the number of filter taps. The EFCOP address generation
logic uses the count stored in the FCNT register to generate correct addressing to the
FDM and FCM.

EFCOP Control Status
Register (FCSR)

The DSP56300 core uses this 24-bit read/write register to program the EFCOP and to
examine the status of the EFCOP module.

EFCOP ALU Control
Register (FACR)

The DSP56300 core uses this 24-bit read/write register to program the EFCOP data
ALU operating modes.

EFCOP Data Buffer
Base Address (FDBA)

The DSP56300 core uses this 16-bit read/write register to indicate to the EFCOP the
data buffer base start address pointer in FDM RAM.

EFCOP Coefficient Buffer
Base Address (FCBA)

The DSP56300 core uses this 16-bit read/write register to indicate the EFCOP
coefficient buffer base start address pointer in FCM RAM.

Decimation/
Channel Count
Register (FDCH)

A 24-bit register that sets the number of channels in Multichannel mode and the filter
decimation ratio. The EFCOP address generation logic uses this information to supply
the correct addressing to the FDM and FCM.

Table 3. EFCOP Registers Accessible Through the PMB (Continued)

Register Name Description
Implementing a 10-Band Stereo Equalizer

27

Using the EFCOP in Multichannel Mode
Figure 15. Multichannel FIR Filter Type Processing

5.2.2 IIR Filter Type
To select the IIR filter type, set the FCSR[FLT] bit. In Single and Multichannel modes, the EFCOP
performs these steps:

1. Multiply each previous output value in the FDM by the corresponding coefficient, A, stored in the
FCM.

2. Accumulate the multiplication results.

3. Add the input, w(n), from the FDIR (which is optionally not scaled by S, depending on the
FACR[FISL] bit setting).

4. Place the accumulation result, y(n), in the FDOR.

5. Save the output while shifting the previous outputs down in the FDM.

This process repeats for each sample input to the FDIR. To process a complete IIR filter, a FIR filter type
session followed by an IIR filter type session is needed.

Figure 16. Multichannel IIR Filter Type Processing

FDIR

FCMFDM

FDORB0

B1

B2

BN

x(n-1)

x(n-2)

x(n-3)

x(n-1-N)

FDIR

FCMFDM

FDORA0

A1

A2

AN

y(n-1)

y(n-2)

y(n-3)

y(n-N)
28 Implementing a 10-Band Stereo Equalizer

Using the EFCOP in Multichannel Mode

s
gister

a

wer
pper

n

s. The
order,”
alues

de.
d, the
m the
t
r Data
x3 and
5.2.3 Memory Configuration
The EFCOP uses two memory banks:

• Filter Data Memory (FDM). This 24-bit-wide memory bank is mapped as X memory and store
input data samples for EFCOP filter processing. The EFCOP Data Base Address (FDBA) re
points to the EFCOP FDM bank.

• Filter Coefficient Memory (FCM). This 24-bit-wide memory bank is mapped as Y memory and
stores filter coefficients for EFCOP filter processing. The EFCOP Coefficient Base Address
(FCBA) register points to the EFCOP FCM bank.

The number of coefficients, M, used by each channel determines how the filter coefficients and dat
samples are stored in FCM and FDM, respectively. The value m = M-1 is stored in the Filter Count
Register (FCNT) to select the number of filter taps that each channel will use. The base address (lo
boundary) value of the FDM and FCM must have zeros in the k LSBs, where . The u
boundary is equal to the lower boundary plus (M –1). Since , once M is chosen (that is,
FCNT[11–0] is assigned), a sequential series of data memory blocks (each of length 2k) is created where
multiple circular buffers for multichannel filtering can be located. If , there is a space betwee
sequential circular buffers of (see Figure 17).

The data samples, D(n) are stored in each circular buffer of the FDM starting at the lower addresse
EFCOP manages placement of sample data into FDM. The filter coefficients are stored in “reverse
where H(N –1) is stored in each circular buffer of the FCM starting at the lower addresses. These v
must be set up in Y memory before the EFCOP is enabled.

Figure 17 shows an example EFCOP memory configuration. The EFCOP is set in Multichannel mo
There are two filter channels and each channel has three coefficients. Before the EFCOP is enable
FCM must be initialized. The coefficients for the first channel are stored in reverse order starting fro
FCM base address (0x0). Since each filter has three coefficients (k = 2), the coefficients for the nex
channel start at 0x4. After the EFCOP is enabled and initialized, the sample data is sent to the Filte
Input Register (FDIR). The EFCOP transfers that data to the FDM. The EFCOP does not touch the 0
0x7 positions in FDM and FCM.

Figure 17. Memory Configuration Example

2
k

M 2
k 1–≥ ≥

M 2
k≤

M 2
k<

2
k

M–

FDM

0x0

0x1

0x2

0x3

0x4

0x5

0x8

0x0

0x4

0x8

FCM

0x6

0x7

Channel 1

Channel 2

D(0)

D(1)

D(2)

Number of Filter Taps = 3

D(0)

D(1)

D(2)

H(2)

H(1)

H(0)

H(2)

H(1)

H(0)
Implementing a 10-Band Stereo Equalizer

29

Coefficients and Gain Table Files
6 Coefficients and Gain Table Files
This section lists the coefficients used in both 10-band stereo equalizer implementations. It also lists the
filter and volume gain tables.

Example 13. DSP56311 Core Implementation FIR and IIR Coefficients

;**

; COEFF.ASM
; Digital Stereo 10-band Graphic Equalizer Using the 56311

;
; Copyright (c) MOTOROLA 2000

; Semiconductor Products Sector
; Digital Signal Processing Division

;
;**

**
; IIR Coefficients for each of the 10 Bands

;**
31 Hz

DC .49855285 ;beta
DC .000723575 ;alpha

DC .998544628 ;gamma
; 62 Hz

DC .497109876
DC .001445062

DC .997077038
; 125 Hz

DC .494190149
DC .002904926

DC .994057064
; 250 Hz

DC .488447026
DC .005776487

DC .987917799
; 500 Hz

DC .477154897
DC .011422552

DC .975062733
; 1000 Hz

DC .455306941
DC .02234653

DC .947134157
; 2000 Hz

DC .414266319
DC .04286684

DC .88311345
; 4000 Hz

DC .340894228
DC .079552886

DC .728235763

; 8000 Hz
DC .2601072

DC .1199464
DC .3176087

; 16000 Hz
DC .1800994

DC .159603
DC -.4435172
30 Implementing a 10-Band Stereo Equalizer

Coefficients and Gain Table Files
Example 14. EFCOP and DMA Implementation FIR Coefficients

;**

; FIR_COEFF.ASM
; Digital Stereo 10-band Graphic Equalizer Using the 56311

;
; Copyright (c) MOTOROLA 2000

; Semiconductor Products Sector
; Digital Signal Processing Division

;
;**

**

; FIR Coefficients for each of the 10 Bands
;**

 31 Hz

DC -.000723575*2 ; A2 = -alpha
DC $000000 ; A1 = 0

DC .000723575*2 ; A0 = alpha
DC $000000 ; Added space to line up Coeffs in memory

; 62 Hz
DC -.001445062*2

DC $000000
DC .001445062*2

DC $000000
; 125 Hz

DC -.002904926*2
DC $000000

DC .002904926*2
DC $000000

; 250 Hz
DC -.005776487*2

DC $000000
DC .005776487*2

DC $000000
; 500 Hz

DC -.011422552*2
DC $000000

DC .011422552*2
DC $000000

; 1000 Hz
DC -.02234653*2

DC $000000
DC .02234653*2

DC $000000
; 2000 Hz

DC -.04286684*2
DC $000000

DC .04286684*2
DC $000000

; 4000 Hz
DC -.079552886*2

DC $000000
DC .079552886*2

DC $000000
; 8000 Hz

DC -.1199464*2
DC $000000

DC .1199464*2
Implementing a 10-Band Stereo Equalizer

31

Coefficients and Gain Table Files
DC $000000
; 16000 Hz

DC -.159603*2
DC $000000

DC .159603*2
DC $000000

Example 15. EFCOP and DMA Implementation IIR Coefficients

;**

; IIR_COEFF.ASM
; Digital Stereo 10-band Graphic Equalizer Using the 56311

;
; Copyright (c) MOTOROLA 2000

; Semiconductor Products Sector
; Digital Signal Processing Division

;
;**

**

; IIR Coefficients for each of the 10 Bands
;**

 31 Hz

DC -.49855285/4;B2 = -beta
DC .998544628/4;B1 = gamma

; 62 Hz
DC -.497109876/4

DC .997077038/4
; 125 Hz

DC -.494190149/4
DC .994057064/4

; 250 Hz
DC -.488447026/4

DC .987917799/4
; 500 Hz

DC -.477154897/4
DC .975062733/4

; 1000 Hz
DC -.455306941/4

DC .947134157/4
; 2000 Hz

DC -.414266319/4
DC .88311345/4

; 4000 Hz
DC -.340894228/4

DC .728235763/4
; 8000 Hz

DC -.2601072/4
DC .3176087/4

; 16000 Hz
DC -.1800994/4

DC -.4435172/4
32 Implementing a 10-Band Stereo Equalizer

Coefficients and Gain Table Files
Example 16. Filter Gain Table

;**

; Filter_Gain.ASM
; Digital Stereo 10-band Graphic Equalizer Using the 56311

;
; Copyright (c) MOTOROLA 2000

; Semiconductor Products Sector
; Digital Signal Processing Division

;
;**

**

; Filter Gain (G) Coefficients
;**

DC -0.200

DC -0.187
DC -0.171

DC -0.160
DC -0.150

DC -0.137
DC -0.114

DC -0.103

DC -0.092
DC -0.080

DC -0.067
DC -0.051

DC -0.039
DC -0.027

DC -0.015
DC 0.000

DC 0.000

DC 0.030
DC 0.060

DC 0.090
DC 0.120

DC 0.150
DC 0.180

DC 0.210

DC 0.250
DC 0.290

DC 0.340
DC 0.380

DC 0.460
DC 0.540

DC 0.750
DC 0.999
Implementing a 10-Band Stereo Equalizer

33

Coefficients and Gain Table Files
Example 17. Volume Gain Table

;**

; Volume_Gain.ASM
; Digital Stereo 10-band Graphic Equalizer Using the 56311

;
; Copyright (c) MOTOROLA 2000

; Semiconductor Products Sector
; Digital Signal Processing Division

;
;**

**

; Volume Gain (V) Coefficients
;**

DC $1FFB00

DC $1CE300
DC $1AD300

DC $18C300
DC $16B300

DC $14A300
DC $129300

DC $108300

DC $0E7300
DC $0C6300

DC $0A5300
DC $084300

DC $063300
DC $042300

DC $021300
DC $000300

DC $000000

DC $110000
DC $220000

DC $330000
DC $440000

DC $550000
DC $660000

DC $770000

DC $880000
DC $990000

DC $AA0000
DC $BB0000

DC $CC0000
DC $DD0000

DC $EE0000
DC $FF0000
34 Implementing a 10-Band Stereo Equalizer

References
7 References
This application note refers to the following resources:

• DSP56311 User’s Manual, DSP56311UM/D

• DSP56311 technical data sheet, DSP56303/D

• Digital Stereo 10-Band Graphic Equalizer Using the DSP56001, APR2/D

• Programming the CS4218 CODEC for use with DSP56300 Devices, AN1790/D

• Implementing IIR/FIR Filters with Motorola’s DSP56000/DSP56001, APR7/D, Rev. 2

You can download the Motorola documents from the Web at the following URL:

http://www.mot.com/SPS/DSP
Implementing a 10-Band Stereo Equalizer

35

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can
and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must
be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent
rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support life, or for any other application in which the
failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola
and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

OnCE, Digital DNA, and the DigitalDNA logo are trademarks of Motorola, Inc.

AN2110/D

How to reach us:

USA/EUROPE
Motorola Literature Distribution
P.O. Box 5405
Denver, Colorado 80217
1-303-675-2140
1-800-441-2447

Technical InformationCenter
1-800-521-6274

JAPAN
Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC
Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
852-26668334

Home Page
http://www.mot.com/SPS/DSP

DSP Helpline
http://www.motorola-dsp.com/contact
email: dsphelp@dsp.sps.mot.com

	1 Filter Design
	2 Development Environment
	2.1 Personal Computer Running Windows NT® 4.0
	2.2 Suite56 Parallel Command Converter
	2.3 Interfacing the PC to the DSP56311EVM
	2.4 Useful Debugging Techniques
	3 Implementation of 10-Band Stereo Equalizer
	3.1 Program Flow and Functionality
	3.1.1 Equalizer Filter and Volume Gain
	3.1.2 Stage 1: DSP Initialization
	3.1.3 Stage 2: Codec/ESSI Initialization and Operation
	3.1.4 Stage 3: SCI Initialization and Operation
	3.1.5 Stage 4: EFCOP Memory Initialization and DMA Setup
	3.1.6 Stage 5: Equalizer Knob Value Initialization
	3.1.7 Stage 6: Set up Registers R0 to R7
	3.1.8 Stage 7, 8, 10, and 12: Codec Operation
	3.1.9 Stage 9 and 11: Process Left/Right Input
	3.1.10 Stage 13 and 14: Setting Knob and Main Volume Gain Values
	4 Equalizer Graphical User Interface (GUI)
	4.1 GUI Operation
	4.2 GUI Development
	4.2.1 Equalizer Form
	4.2.2 Frequency Table Form
	4.2.3 Communications Port Settings Form
	5 Using the EFCOP in Multichannel Mode
	5.1 EFCOP Registers
	5.2 EFCOP Programming for Multichannel Mode
	5.2.1 FIR Filter Type
	5.2.2 IIR Filter Type
	5.2.3 Memory Configuration
	6 Coefficients and Gain Table Files
	7 References

