
Digital Signal Controller
Cores

freescale.com

DSP56800E and
DSP56800EX
Reference Manual

DSP56800ERM
Rev. 3
09/2011

Contents
About This Book

Audience . xxvii
Organization . xxvii
Suggested Reading . xxviii
Conventions . xxix
Definitions, Acronyms, and Abbreviations . xxx

Chapter 1
Introduction

1.1 Key Features . 1-1
1.2 Architectural Overview. 1-3
1.3 Example DSP56800EX Device . 1-4
1.4 Introduction to Digital Signal Processing. 1-5

Chapter 2
Core Architecture Overview

2.1 Extending DSP56800E Architecture . 2-1
2.2 Extending DSP56800 Architecture. 2-1
2.3 Core Programming Model . 2-2
2.4 Dual Harvard Memory Architecture. 2-5
2.5 System Architecture and Peripheral Interface . 2-6
2.5.1 Core Block Diagram . 2-7
2.5.2 Address Buses. 2-8
2.5.3 Data Buses . 2-8
2.5.4 Data Arithmetic Logic Unit (ALU) . 2-9
2.5.5 Address Generation Unit (AGU) . 2-9
2.5.6 Program Controller and Hardware Looping Unit . 2-10
2.5.7 Bit-Manipulation Unit. 2-11
2.5.8 Enhanced On-Chip Emulation (Enhanced OnCE) Unit . 2-11
2.6 Blocks Outside the Core . 2-11
2.6.1 Program Memory . 2-11
2.6.2 Data Memory . 2-11
2.6.3 Bootstrap Memory . 2-12
2.6.4 External Bus Interface . 2-12

Chapter 3
Data Types and Addressing Modes

3.1 Core Programming Model . 3-1
Freescale Semiconductor Table of Contents iii

3.2 Data Types . 3-5
3.2.1 Data Formats. 3-6
3.2.1.1 Signed Integer . 3-6
3.2.1.2 Unsigned Integer. 3-6
3.2.1.3 Signed Fractional . 3-6
3.2.1.4 Unsigned Fractional . 3-7
3.2.2 Understanding Fractional and Integer Data . 3-7
3.3 Memory Access Overview . 3-8
3.3.1 Move Instruction Syntax. 3-8
3.3.1.1 Ordering Source and Destination . 3-9
3.3.1.2 Memory Space Syntax . 3-9
3.3.1.3 Specifying Data Size. 3-9
3.3.2 Instructions That Access Data Memory . 3-9
3.3.2.1 Signed and Unsigned Moves . 3-9
3.3.2.2 Moving Words from Memory to a Register . 3-10
3.3.2.3 Accessing Peripheral Registers. 3-10
3.3.3 Instructions That Access Program Memory . 3-11
3.3.4 Instructions with an Operand in Data Memory . 3-11
3.3.5 Parallel Moves . 3-11
3.3.5.1 Single Parallel Move. 3-12
3.3.5.2 Dual Parallel Read . 3-12
3.4 Data Alignment. 3-13
3.4.1 Data Alignment in Accumulators . 3-13
3.4.2 Data Alignment in Data Registers . 3-14
3.4.3 Data Alignment in 24-Bit AGU and Control Registers . 3-14
3.4.4 Data Alignment in 16-Bit AGU and Control Registers . 3-15
3.4.5 Data Alignment in Memory . 3-15
3.4.5.1 Byte and Word Addresses. 3-16
3.4.5.2 Byte Variable Alignment . 3-16
3.4.5.3 Word Variable Alignment . 3-17
3.4.5.4 Long-Word Alignment . 3-17
3.5 Memory Access and Pointers . 3-17
3.5.1 Word and Byte Pointers . 3-17
3.5.2 Accessing Word Values Using Word Pointers . 3-19
3.5.3 Accessing Long-Word Values Using Word Pointers . 3-19
3.5.4 Accessing Byte Values Using Word Pointers. 3-21
3.5.5 Accessing Byte Values Using Byte Pointers . 3-21
3.6 Addressing Modes . 3-23
3.6.1 Addressing Mode Summary . 3-23
3.6.2 Register-Direct Modes . 3-28
3.6.3 Address-Register-Indirect Modes . 3-28
3.6.3.1 No Update: (Rn) . 3-29
3.6.3.2 Post-Increment: (Rn)+ . 3-30
3.6.3.3 Post-Decrement: (Rn)– . 3-31
3.6.3.4 Post-Update by Offset N: (Rn)+N, (R3)+N3 . 3-32
3.6.3.5 Index by Offset N: (Rn+N). 3-33
3.6.3.6 Index by 3-Bit Displacement: (RRR+x), (SP–x) . 3-34
iv DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

3.6.3.7 Index by 6-Bit Displacement: (SP–xx) . 3-35
3.6.3.8 Index by 16-Bit Displacement: (Rn+xxxx) . 3-36
3.6.3.9 Index by 24-Bit Displacement: (Rn+xxxxxx) . 3-37
3.6.4 Immediate Address Modes . 3-38
3.6.4.1 4-Bit Immediate Data: #x . 3-38
3.6.4.2 5-Bit Immediate Data: #xx . 3-38
3.6.4.3 6-Bit Immediate Data: #xx . 3-38
3.6.4.4 7-Bit Immediate Data: #xx . 3-39
3.6.4.5 16-Bit Immediate Data: #xxxx . 3-39
3.6.4.6 32-Bit Immediate Data: #xxxxxxxx . 3-41
3.6.5 Absolute Address Modes . 3-41
3.6.5.1 Absolute Short Address: aa. 3-42
3.6.5.2 I/O Short Address: <<pp. 3-43
3.6.5.3 16-Bit Absolute Address: xxxx. 3-44
3.6.5.4 24-Bit Absolute Address: xxxxxx. 3-45
3.6.6 Implicit Address Modes . 3-45
3.6.7 Bit-Reverse Address Mode (DSP56800EX Core only) . 3-45

Chapter 4
Instruction Set Introduction

4.1 Instruction Groups . 4-1
4.1.1 Multiplication Instructions . 4-2
4.1.2 Arithmetic Instructions . 4-3
4.1.3 Shifting Instructions . 4-6
4.1.4 Logical Instructions . 4-7
4.1.5 AGU Arithmetic Instructions . 4-7
4.1.6 Bit-Manipulation Instructions. 4-9
4.1.7 Looping Instructions . 4-9
4.1.8 Move Instructions . 4-10
4.1.9 Program Control Instructions . 4-10
4.2 Instruction Aliases . 4-12
4.2.1 The ANDC, EORC, ORC, and NOTC Aliases. 4-12
4.2.2 Instruction Operand Remapping. 4-13
4.2.2.1 Duplicate Operand Remapping. 4-13
4.2.2.2 Addressing Mode Remapping . 4-13
4.3 Delayed Flow Control Instructions. 4-14
4.3.1 Using Delayed Instructions. 4-14
4.3.2 Delayed Instruction Restrictions. 4-15
4.3.3 Delayed Instructions and Interrupts . 4-16
4.4 Instruction Set Summary . 4-16
4.4.1 Using the Instruction Summary Tables . 4-16
4.4.2 Register Field Notation. 4-17
4.4.3 Immediate Value Notation . 4-21
4.4.4 Instruction Summary Tables . 4-21
4.4.5 Parallel Move Summary Tables . 4-49
4.5 Register-to-Register Moves . 4-51
Freescale Semiconductor Table of Contents v

Chapter 5
Data Arithmetic Logic Unit

5.1 Data ALU Overview and Architecture . 5-2
5.1.1 Data Registers (X0, Y1, Y0). 5-3
5.1.2 Accumulator Registers (A, B, C, D) . 5-4
5.1.3 Multiply-Accumulator (MAC) and Logic Unit . 5-5
5.1.4 Single-Bit Accumulator Shifter . 5-5
5.1.5 Arithmetic and Logical Shifter . 5-6
5.1.6 Data Limiter and MAC Output Limiter . 5-6
5.2 Accessing the Accumulator Registers . 5-6
5.2.1 Accessing an Entire Accumulator. 5-8
5.2.1.1 Writing an Accumulator with a Small Operand . 5-8
5.2.1.2 Using the Extension Registers . 5-9
5.2.2 Accessing Portions of an Accumulator. 5-9
5.2.3 Reading and Writing Integer Data to an Accumulator . 5-12
5.2.4 Reading 16-Bit Results of DSC Algorithms. 5-12
5.2.5 Converting a 36-Bit Accumulator to a 16-Bit Value . 5-13
5.2.6 Saving and Restoring Accumulators. 5-13
5.2.7 Bit-Manipulation Operations on Accumulators . 5-14
5.3 Fractional and Integer Arithmetic. 5-14
5.3.1 DSP56800E Data Types . 5-15
5.3.2 Addition and Subtraction . 5-16
5.3.3 Multiplication . 5-18
5.3.3.1 Fractional Multiplication . 5-18
5.3.3.2 Integer Multiplication . 5-19
5.3.3.3 Operand Re-Ordering for Multiplication Instructions 5-20
5.3.4 Division. 5-21
5.3.4.1 General-Purpose Four-Quadrant Division . 5-22
5.3.4.2 Positive Dividend and Divisor with Remainder . 5-23
5.3.4.3 Signed Dividend and Divisor with No Remainder . 5-23
5.3.4.4 Division Overflow . 5-24
5.3.5 Logical Operations . 5-25
5.3.6 Shifting Operations . 5-25
5.3.6.1 Shifting 16-Bit Words. 5-25
5.3.6.2 Shifting 32-Bit Long Words . 5-26
5.3.6.3 Shifting Accumulators by 16 Bits. 5-27
5.3.6.4 Shifting with Accumulation . 5-27
5.4 Unsigned Arithmetic Operations . 5-27
5.4.1 Condition Codes for Unsigned Operations . 5-27
5.4.2 Unsigned Single-Precision Multiplication . 5-28
5.5 Extended- and Multi-Precision Operations. 5-29
5.5.1 Extended-Precision Addition and Subtraction . 5-29
5.5.2 Multi-Precision Fractional Multiplication . 5-29
5.5.3 Multi-Precision Integer Multiplication . 5-32
5.5.3.1 Signed 32-Bit × Signed 32-Bit with 32-Bit Result . 5-33
5.5.3.2 Unsigned 32-Bit × Unsigned 32-Bit with 32-Bit Result. 5-34
5.5.3.3 Signed 32-Bit × Signed 32-Bit with 64-Bit Result . 5-34
vi DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

5.5.3.4 Other Applications of Multi-Precision Integer Multiplication 5-35
5.6 Normalizing . 5-36
5.6.1 Normalized Values . 5-36
5.6.2 Normalizing Methods . 5-37
5.7 Condition Code Calculation . 5-38
5.7.1 Condition Code Modes . 5-38
5.7.2 Condition Codes and Data Sizes. 5-38
5.8 Saturation and Data Limiting . 5-39
5.8.1 Data Limiter . 5-39
5.8.2 MAC Output Limiter . 5-41
5.8.3 Instructions Not Affected by the MAC Output Limiter . 5-42
5.9 Rounding. 5-43
5.9.1 Convergent Rounding . 5-44
5.9.2 Two’s-Complement Rounding . 5-46
5.9.3 Rounding Examples . 5-46

Chapter 6
Address Generation Unit

6.1 AGU Architecture. 6-1
6.1.1 Primary Address Arithmetic Unit . 6-2
6.1.2 Secondary Address Adder Unit . 6-3
6.1.3 Single-Bit Shifting Units . 6-3
6.2 AGU Programming Model . 6-3
6.2.1 Address Registers (R0–R5, N) . 6-4
6.2.2 Stack Pointer Register (SP). 6-4
6.2.3 Offset Register (N) . 6-5
6.2.4 Secondary Read Offset Register (N3) . 6-5
6.2.5 Modifier Register (M01). 6-5
6.2.6 Shadow Registers . 6-5
6.3 Using Address Registers . 6-6
6.4 Byte and Word Addresses. 6-7
6.5 Word Pointer Memory Accesses . 6-8
6.5.1 Accessing Bytes . 6-10
6.5.2 Accessing Long Words . 6-10
6.5.3 Accessing Data Structures . 6-11
6.5.4 Accessing Program Memory . 6-13
6.6 Byte Pointer Memory Accesses . 6-13
6.6.1 Byte Pointers vs. Word Pointers . 6-14
6.6.2 Byte Arrays . 6-15
6.7 AGU Arithmetic Instructions . 6-18
6.8 Linear and Modulo Address Arithmetic . 6-20
6.8.1 Linear Address Arithmetic . 6-20
6.8.2 Understanding Modulo Arithmetic . 6-20
6.8.3 Configuring Modulo Arithmetic . 6-22
6.8.3.1 Configuring for Byte and Word Accesses . 6-22
6.8.3.2 Configuring for Long Word Accesses . 6-23
6.8.4 Base Pointer and Offset Values in Modulo Instructions. 6-26
Freescale Semiconductor Table of Contents vii

6.8.4.1 Operand Placement Table . 6-26
6.8.4.2 Example of Incorrect Modulo Operation . 6-27
6.8.4.3 Special Case - ADDA Instructions in Modulo Arithmetic 6-28
6.8.4.3.1 Case 1. Adding a Positive Immediate Offset to a Pointer 6-28
6.8.4.3.2 Case 2. Adding a Negative Immediate Offset to a Pointer 6-28
6.8.4.4 Restrictions on the Offset Values . 6-28
6.8.5 Supported Memory Access Instructions . 6-29
6.8.5.1 Modulo Addressing for Word Memory Accesses . 6-29
6.8.5.2 Modulo Addressing for Byte and Long Memory Accesses 6-29
6.8.5.3 Modulo Addressing for AGU Arithmetic Instructions 6-30
6.8.6 Simple Circular Buffer Example . 6-30
6.8.7 Setting Up a Modulo Buffer . 6-32
6.8.8 Wrapping to a Different Bank . 6-33
6.8.9 Side Effects of Modulo Arithmetic. 6-34
6.8.9.1 When a Pointer Lies Outside a Modulo Buffer . 6-34
6.8.9.2 Restrictions on the Offset Register . 6-34
6.8.9.3 Memory Locations Not Accessible Using Modulo Arithmetic 6-34

Chapter 7
Bit-Manipulation Unit

7.1 Bit-Manipulation Unit Overview and Architecture . 7-2
7.1.1 8-Bit Mask Shift Unit . 7-2
7.1.2 16-Bit Masking Logic . 7-3
7.1.3 16-Bit Testing Logic . 7-3
7.1.4 16-Bit Logic Unit . 7-4
7.2 Bit-Manipulation Unit Operation . 7-4
7.2.1 Testing Bits . 7-4
7.2.2 Conditional Branching . 7-4
7.2.3 Modifying Selected Bits . 7-5
7.3 ANDC, EORC, ORC, and NOTC. 7-5
7.4 Other Bit-Manipulation Capabilities . 7-6
7.5 Programming Considerations . 7-6
7.5.1 Bit-Manipulation Operations on Registers . 7-6
7.5.2 Bit-Manipulation Operations on Byte Values . 7-6
7.5.2.1 Absolute Addresses. 7-7
7.5.2.2 Word Pointers with Byte Offsets . 7-7
7.5.3 Using Complex Addressing Modes . 7-8
7.5.4 Synthetic Conditional Branch and Jump Operations . 7-8
7.5.4.1 JRSET and JRCLR Operations. 7-9
7.5.4.2 BR1SET and BR1CLR Operations. 7-9
7.5.4.3 JR1SET and JR1CLR Operations. 7-10

Chapter 8
Program Controller

8.1 Program Controller Architecture . 8-1
8.1.1 Instruction Latch and Decoder . 8-2
viii DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

8.1.2 Program Counter. 8-3
8.1.3 Looping Control Unit . 8-3
8.1.4 Hardware Stack. 8-3
8.1.5 Interrupt Control Unit . 8-3
8.1.6 Interrupt Controller . 8-3
8.2 Program Controller Programming Model. 8-4
8.2.1 Operating Mode Register . 8-4
8.2.1.1 Operating Mode (MA and MB)—Bits 0–1. 8-6
8.2.1.2 External X Memory (EX)—Bit 3 . 8-6
8.2.1.3 Saturation (SA)—Bit 4 . 8-6
8.2.1.4 Rounding (R)—Bit 5 . 8-6
8.2.1.5 Stop Delay (SD)—Bit 6 . 8-6
8.2.1.6 X or P Memory (XP)—Bit 7. 8-6
8.2.1.7 Condition Code Mode (CM)—Bit 8 . 8-7
8.2.1.8 Nested Looping (NL)—Bit 15 . 8-7
8.2.2 Status Register . 8-7
8.2.2.1 Carry (C)—Bit 0 . 8-9
8.2.2.2 Overflow (V)—Bit 1. 8-9
8.2.2.3 Zero (Z)—Bit 2 . 8-9
8.2.2.4 Negative (N)—Bit 3 . 8-9
8.2.2.5 Unnormalized (U)—Bit 4 . 8-9
8.2.2.6 Extension in Use (E)—Bit 5 . 8-10
8.2.2.7 Limit (L)—Bit 6 . 8-10
8.2.2.8 Size (SZ)—Bit 7 . 8-10
8.2.2.9 Interrupt Mask (I0–I1)—Bits 8–9. 8-10
8.2.2.10 Program Counter Extension (P0–P4)—Bits 10–14 . 8-11
8.2.2.11 Loop Flag (LF)—Bit 15 . 8-11
8.2.3 Loop Count Register . 8-11
8.2.4 Loop Count Register 2 . 8-11
8.2.5 Loop Address Register . 8-12
8.2.6 Loop Address Register 2. 8-12
8.2.7 Hardware Stack Register . 8-12
8.2.8 Fast Interrupt Status Register . 8-12
8.2.9 Fast Interrupt Return Address. 8-14
8.3 Software Stack . 8-14
8.3.1 Pushing and Popping Values . 8-14
8.3.2 Subroutines . 8-15
8.3.3 Interrupt Service Routines . 8-15
8.3.4 Parameter Passing and Local Variables . 8-16
8.4 Hardware Stack. 8-17
8.5 Hardware Looping . 8-18
8.5.1 Repeat (REP) Looping . 8-18
8.5.2 DO Looping . 8-19
8.5.3 Specifying a Loop Count of Zero . 8-20
8.5.4 Terminating a DO Loop . 8-20
8.5.4.1 Allowing Current Block to Finish and Then Exiting . 8-20
8.5.4.2 Immediate Exit from a Hardware Loop . 8-21
Freescale Semiconductor Table of Contents ix

8.5.5 Specifying a Large Immediate Loop Count . 8-21
8.5.6 Nested Hardware Looping . 8-22
8.5.6.1 Nesting a REP Loop Within a DO Loop . 8-22
8.5.6.2 Nesting a DO Loop Within a DO Loop . 8-22
8.5.6.3 Nesting a DO Loop Within a Software Loop . 8-23
8.6 Executing Programs from Data Memory . 8-23
8.6.1 Entering Data-Memory Execution Mode . 8-25
8.6.2 Exiting Data-Memory Execution Mode . 8-26
8.6.3 Interrupts in Data-Memory Execution Mode . 8-28
8.6.4 Restrictions on Data-Memory Execution Mode . 8-28

Chapter 9
Processing States

9.1 Normal Processing State . 9-1
9.2 Reset Processing State . 9-1
9.3 Exception Processing State . 9-2
9.3.1 Interrupt Priority Structure . 9-3
9.3.2 Interrupt and Exception Processing . 9-4
9.3.2.1 Normal Interrupt Processing. 9-5
9.3.2.2 Fast Interrupt Processing . 9-6
9.3.3 Interrupt Sources. 9-8
9.3.3.1 External Hardware Interrupt Sources . 9-8
9.3.3.2 Hardware Interrupt Sources Within the Core . 9-8
9.3.3.2.1 Illegal Instruction Interrupt . 9-9
9.3.3.2.2 Hardware Stack Overflow Interrupt . 9-9
9.3.3.2.3 Misaligned Data Access Interrupt. 9-9
9.3.3.2.4 Debugging (Enhanced OnCE) Interrupts . 9-9
9.3.3.3 Software Interrupt Instructions . 9-10
9.3.3.3.1 SWI Instruction—Level 3. 9-10
9.3.3.3.2 SWI #x Instructions—Levels 0–2. 9-10
9.3.3.3.3 SWILP Instruction—Lowest Priority . 9-10
9.3.4 Non-Interruptible Instruction Sequences . 9-10
9.4 Wait Processing State . 9-11
9.4.1 Wait Mode Timing . 9-12
9.4.2 Disabling Wait Mode . 9-12
9.5 Stop Processing State . 9-12
9.5.1 Stop Mode Timing . 9-13
9.5.2 Disabling Stop Mode . 9-13
9.6 Debug Processing State . 9-13

Chapter 10
Instruction Pipeline

10.1 Pipeline Stages . 10-2
10.2 Normal Pipeline Operation . 10-3
10.2.1 General Pipeline Operations . 10-3
10.2.2 Data ALU Execution Stages . 10-4
x DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

10.3 Pipeline During Interrupt Processing . 10-7
10.3.1 Standard Interrupt Processing Pipeline. 10-7
10.3.2 The RTID Instruction . 10-9
10.3.3 Nested Interrupts. 10-11
10.3.4 SWI and Illegal Instructions During Interrupt Processing 10-11
10.3.5 Fast Interrupt Processing Pipeline . 10-13
10.3.6 Interrupting a Fast Interrupt Service Routine . 10-14
10.3.7 FIRQ Followed by Another Interrupt . 10-16
10.3.8 Interrupt Latency. 10-22
10.3.8.1 Interrupt Latency. 10-22
10.3.8.2 Re-Enabling Interrupt Arbitration . 10-23
10.3.8.3 Cases That Increase Interrupt Latency . 10-23
10.3.8.4 Delay When Enabling Interrupts via CCPL . 10-24
10.4 Pipeline Dependencies and Interlocks . 10-26
10.4.1 Data ALU Pipeline Dependencies . 10-26
10.4.2 AGU Pipeline Dependencies . 10-28
10.4.3 Instructions with Inherent Stalls . 10-30
10.4.3.1 Dependencies with Hardware Looping. 10-31

Chapter 11
JTAG and Enhanced On-Chip Emulation (Enhanced OnCE)

11.1 Enhanced OnCE Module . 11-1
11.1.1 Enhanced OnCE Module Capabilities . 11-2
11.2 Enhanced OnCE System Level View . 11-2
11.3 Accessing the Enhanced OnCE Module . 11-4
11.3.1 External Interaction via JTAG . 11-4
11.3.2 Core Access to the Enhanced OnCE Module . 11-5
11.3.3 Other Supported Interactions . 11-6
11.4 Enhanced OnCE and the Processing States . 11-6
11.4.1 Using the Debug Processing State . 11-6
11.4.2 Debugging and the Other Processing States . 11-7
11.4.3 Enhanced OnCE Module Architecture . 11-8
11.4.3.1 Command, Status, and Control . 11-8
11.4.3.2 Breakpoint Unit. 11-9
11.4.3.2.1 Trigger Blocks . 11-9
11.4.3.2.2 16-bit Counter . 11-10
11.4.3.2.3 Combining Logic . 11-11
11.4.3.3 Step Counter . 11-11
11.4.3.4 Change-of-Flow Trace Buffer . 11-11
11.4.3.5 Realtime Data Transfer Unit. 11-11
11.4.4 Effectively Using the Debug Port . 11-13
11.4.4.1 Using the Step Counter . 11-13
11.4.4.1.1 Usage upon Exiting the Debug Processing State 11-13
11.4.4.1.2 Step Counter Actions . 11-13
11.4.4.1.3 Other Step Counter Configurations . 11-14
11.4.4.2 Using the Breakpoint Unit . 11-14
11.4.4.2.1 Listing the Breakpoint Unit Triggers Available . 11-16
Freescale Semiconductor Table of Contents xi

11.4.4.2.2 Breakpoint Unit Actions . 11-18
11.4.4.2.3 Combining the Breakpoint Unit with the Step Counter 11-19
11.4.4.2.4 Breakpoint Unit — Step Counter Actions . 11-19
11.4.4.3 Capture Counter . 11-20
11.4.4.3.1 16-Bit Capture Counter (Non-Cascaded) . 11-20
11.4.4.3.2 Actions for 16-Bit Capture Counter (Non-Cascaded) 11-22
11.4.4.3.3 Using the Capture Counter with the Step Counter 11-23
11.4.4.3.4 16-bit Capture Counter — Step Counter Actions. 11-23
11.4.4.3.5 40-Bit Capture Counter (Cascaded) . 11-24
11.4.4.3.6 Actions for 40-Bit Capture Counter (Cascaded). 11-24
11.4.4.4 Programmable Trace Buffer . 11-24
11.4.5 Example Breakpoint Scenarios . 11-26
11.5 JTAG Port . 11-27
11.5.1 JTAG Capabilities. 11-27
11.5.2 JTAG Port Architecture . 11-27
11.5.2.1 JTAG Terminal Description . 11-28
11.5.2.2 Core JTAG Programming Model . 11-29
11.5.2.3 Core JTAG Port Block Diagram. 11-29
11.5.2.4 Core TAP Controller. 11-30
11.5.3 JTAG Port Restriction — STOP Processing State . 11-32

Appendix A
Instruction Set Details

A.1 Notation . A-1
A.2 Instruction Descriptions . A-7
A.3 32 x 32 to 32/64 Multiply and MAC Instructions . A-314
A.3.1 32 x 32 to 32/64 Multiplication and MAC Instruction Details. A-316
A.4 Test Bitfield and Set/Clear (BFSC) Instruction . A-327
A.5 Instruction Opcode Encoding . A-329
A.5.1 Register Operand Encodings . A-330
A.5.2 MOVE Instruction Register Encodings . A-336
A.5.3 Encodings for Instructions that Support the Entire Register Set A-338
A.5.4 Parallel Move Encoding . A-343
A.5.5 Addressing Mode Encodings . A-345
A.5.6 Conditional Instruction Encoding. A-345
A.5.7 Immediate and Absolute Address Encoding. A-346

Appendix B
Condition Code Calculation

B.1 Factors Affecting Condition Code Calculation . B-1
B.1.1 Operand Size and Type. B-1
B.1.2 MAC Output Limiter . B-3
B.1.3 Condition Code Mode. B-3
B.2 Condition Code Register. B-4
B.2.1 Size Bit (SZ) . B-5
B.2.2 Limit Bit (L) . B-5
xii DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

B.2.3 Extension in Use Bit (E) . B-6
B.2.4 Unnormalized Bit (U) . B-6
B.2.5 Negative Bit (N) . B-6
B.2.6 Zero Bit (Z) . B-7
B.2.7 Overflow Bit (V). B-7
B.2.8 Carry Bit (C) . B-7
B.3 Condition Code Summary by Instruction . B-8
B.3.1 Notation . B-8
B.3.2 Condition Code Calculation Table . B-8
B.3.3 Special Calculation Rules for Certain Instructions. B-14
B.3.3.1 ASL and ASL.W. B-14
B.3.3.2 ASLL.W and ASLL.L . B-14
B.3.3.3 ASRAC and LSRAC . B-14
B.3.3.4 BFCHG, BFCLR, BFSET, BFTSTH, and BRSET . B-14
B.3.3.5 BFTSTL and BRCLR . B-14
B.3.3.6 BFSC. B-14
B.3.3.7 IMPY.W . B-15
B.3.3.8 NORM . B-15

Appendix C
Glossary
Freescale Semiconductor Table of Contents xiii

xiv DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

List of Figures
Figure 1-1 DSP56800EX/DSP56800E Core Block Diagram. 1-3

Figure 1-2 Example of Chip Based on DSP56800EX Core . 1-4

Figure 1-3 Analog Signal Processing . 1-5

Figure 1-4 Digital Signal Processing . 1-6

Figure 1-5 Mapping DSC Algorithms into Hardware . 1-7

Figure 2-1 Core Programming Model . 2-3

Figure 2-2 Dual Harvard Memory Architecture. 2-5

Figure 2-3 DSC Chip Architecture with External Bus . 2-6

Figure 2-4 Core Block Diagram . 2-7

Figure 3-1 Core Programming Model . 3-2

Figure 3-2 Single Parallel Move. 3-12

Figure 3-3 Dual Parallel Read . 3-12

Figure 3-4 Data Alignment in Accumulators . 3-13

Figure 3-5 Supported Data Types in Data Registers (X0, Y1, Y0) 3-14

Figure 3-6 Data Alignment in 24-bit AGU Registers. 3-15

Figure 3-7 Data Alignment in 16-Bit AGU Registers . 3-15

Figure 3-8 Structure of Byte and Word Addresses. 3-16

Figure 3-9 Accessing a Word with a Word Pointer . 3-19

Figure 3-10 Correct Storage of 32-Bit Value in Memory . 3-19

Figure 3-11 Accessing a Long Word Using an Address Register . 3-20

Figure 3-12 Accessing a Long Word Using the SP Register . 3-20

Figure 3-13 Accessing a Byte with a Word Pointer . 3-21

Figure 3-14 Accessing a Byte with a Byte Pointer. 3-22

Figure 3-15 Address Register Indirect: No Update . 3-29

Figure 3-16 Address Register Indirect: Post-Increment . 3-30

Figure 3-17 Address Register Indirect: Post-Decrement . 3-31

Figure 3-18 Address Register Indirect: Post-Update by Offset N . 3-32

Figure 3-19 Address Register Indirect: Indexed by Offset N. 3-33

Figure 3-20 Address Register Indirect: Indexed by 3-Bit Displacement 3-34

Figure 3-21 Address Register Indirect: Indexed by 6-Bit Displacement 3-35

Figure 3-22 Address Register Indirect: Indexed by 16-Bit Displacement 3-36

Figure 3-23 Address Register Indirect: Indexed by 24-Bit Displacement 3-37

Figure 3-24 Immediate Addressing: 5-Bit Immediate Data to Accumulator 3-38

Figure 3-25 Immediate Addressing: 7-Bit Immediate Data to Address Register. 3-39
Freescale Semiconductor List of Figures xv

Figure 3-26 Immediate Addressing: 7-Bit Immediate Data to Data ALU Register 3-39

Figure 3-27 Immediate Addressing: 16-Bit Immediate Data to AGU Register 3-40

Figure 3-28 Immediate Addressing: 16-Bit Immediate Data to Data ALU Register 3-40

Figure 3-29 Immediate Addressing: 32-Bit Immediate Data . 3-41

Figure 3-30 Absolute Addressing: 6-Bit Absolute Short Address . 3-42

Figure 3-31 Absolute Addressing: 6-Bit I/O Short Address . 3-43

Figure 3-32 Absolute Addressing: 16-Bit Absolute Address . 3-44

Figure 3-33 Absolute Addressing: 24-Bit Absolute Address . 3-45

Figure 4-1 Moving Data in the Register Files . 4-51

Figure 5-1 Data ALU Programming Model . 5-2

Figure 5-2 Data ALU Block Diagram . 5-3

Figure 5-3 The 32-Bit Y Register—Composed of Y1 Concatenated with Y0. 5-4

Figure 5-4 Different Components of an Accumulator (Using “FF” Notation) 5-4

Figure 5-5 Writing the Accumulator as a Whole . 5-8

Figure 5-6 Writing the Accumulator by Portions . 5-10

Figure 5-7 Writing the Accumulator Extension Registers (FF2) . 5-10

Figure 5-8 Reading the Accumulator Extension Registers (FF2) 5-11

Figure 5-9 Integer Word Addition . 5-16

Figure 5-10 Fractional Word Addition . 5-16

Figure 5-11 Adding a Word Integer to a Long-Word Integer . 5-17

Figure 5-12 Adding a Word Fractional to a Long-Word Fractional 5-17

Figure 5-13 Comparison of Integer and Fractional Multiplication 5-18

Figure 5-14 Fractional Multiplication (MPY) . 5-19

Figure 5-15 Integer Multiplication with Word-Sized Result (IMPY.W) 5-20

Figure 5-16 Integer Multiplication with Long-Word-Sized Result (IMPY.L). 5-20

Figure 5-17 16- and 32-Bit Logical Operations . 5-25

Figure 5-18 Arithmetic Shifts on 16-Bit Words . 5-26

Figure 5-19 Arithmetic Shifts on 32-Bit Long Words . 5-26

Figure 5-20 Single-Precision-Times-Double-Precision Signed Multiplication 5-30

Figure 5-21 Double-Precision-Times-Double-Precision Signed Multiplication 5-31

Figure 5-22 32-Bit × 32-Bit –> 32-Bit Signed Integer Multiplication. 5-33

Figure 5-23 32-Bit × 32-Bit –> 32-Bit Unsigned Integer Multiplication. 5-34

Figure 5-24 32-Bit × 32-Bit –> 64-Bit Signed Integer Multiplication. 5-35

Figure 5-25 Normalizing a Small Negative Value . 5-36

Figure 5-26 Normalizing a Large Positive Value. 5-37

Figure 5-27 Example of Saturation Arithmetic . 5-40

Figure 5-28 Convergent Rounding . 5-45

Figure 5-29 Two’s-Complement Rounding . 5-46

Figure 6-1 Address Generation Unit Block Diagram (DSP56800E Core). 6-2
xvi DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Figure 6-2 Dual Parallel Read Instruction . 6-2

Figure 6-3 Address Generation Unit Programming Model . 6-4

Figure 6-4 Word vs. Byte Addresses . 6-8

Figure 6-5 Executing the MOVE.L X:(R3+2),D Instruction . 6-12

Figure 6-6 Executing the MOVEU.BP X:(R1+7),B Instruction . 6-17

Figure 6-7 Circular Buffer . 6-21

Figure 6-8 37-Location Circular Buffer . 6-22

Figure 6-9 Simple Five-Location Circular Buffer . 6-31

Figure 6-10 Linear Addressing with a Modulo Modifier . 6-33

Figure 7-1 Bit-Manipulation Unit Block Diagram . 7-2

Figure 8-1 Program Controller Block Diagram . 8-2

Figure 8-2 Program Controller Programming Model. 8-4

Figure 8-3 Effects of the JSR Instruction on the Stack . 8-15

Figure 8-4 Example Stack Frame . 8-17

Figure 8-5 Example Data-Memory Execution Mode Memory Map 8-24

Figure 9-1 Interrupt Vector Table . 9-5

Figure 9-2 Control Flow in Normal Interrupt Processing . 9-6

Figure 9-3 Control Flow in Fast Interrupt Processing . 9-7

Figure 10-1 DSP56800E Eight-Stage Pipeline. 10-1

Figure 10-2 Standard Interrupt Processing. 10-8

Figure 10-3 Execution of the RTID Instruction . 10-10

Figure 10-4 Interrupting an Interrupt Handler (Nested Interrupt) 10-12

Figure 10-5 Fast Interrupt Processing . 10-13

Figure 10-6 Interrupting a Fast Interrupt Routine . 10-15

Figure 10-7 Interrupting After Completing the Fastest Fast Interrupt Routine 10-17

Figure 10-8 Interruption by Level 3 Interrupt During FRTID Execution 10-19

Figure 10-9 Second Interrupt Case with 4 Cycles Executed in FRTID Delay Slots 10-21

Figure 10-10 Interrupt Latency Calculation . 10-22

Figure 10-11 Interrupt Latency Calculation—Non-Interruptible Instructions 10-23

Figure 10-12 Interrupt Latency and the REP Instruction . 10-24

Figure 10-13 Delay When Updating the CCPL . 10-25

Figure 11-1 DSP56800E On-Chip System with Debug Port . 11-3

Figure 11-2 JTAG/Enhanced OnCE Interface Block Diagram . 11-5

Figure 11-3 Breakpoint Unit Block Diagram . 11-9

Figure 11-4 Trigger 1 Logic . 11-10

Figure 11-5 Trigger 2 Logic . 11-10

Figure 11-6 Realtime Data Transfer Unit. 11-12

Figure 11-7 Step Counter — Started upon Exiting Debug State . 11-13

Figure 11-8 Step Counter — Started upon Exiting Debug State with Breakpoint Active . 11-13
Freescale Semiconductor List of Figures xvii

Figure 11-9 Breakpoint Unit Block Diagram . 11-15

Figure 11-10 Triggering the Step Counter with the Breakpoint Unit. 11-19

Figure 11-11 Capture Counter — 16-bit Configuration (Non-Cascaded) 11-20

Figure 11-12 Triggering the Step Counter with the Capture Counter 11-23

Figure 11-13 Capture Counter — 40-bit Configuration (Cascaded) 11-24

Figure 11-14 Programmable Trace Buffer . 11-25

Figure 11-15 JTAG Port Programming Model . 11-29

Figure 11-16 Core JTAG Block Diagram . 11-30

Figure 11-17 TAP Controller State Diagram . 11-31

Figure A-1 Example Instruction Encoding . A-329

Figure A-2 Encoding for the MPY Y1,B1,A X:(R1)+,Y1 Instruction A-329

Figure B-1 Internal Data ALU Alignment and Extension . B-2

Figure B-2 Internal AGU Alignment and Extension . B-2
xviii DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

List of Tables
Table 2-1 Example for Chip I/O and On-Chip Peripheral Memory Map 2-4

Table 3-1 Core Registers. 3-3

Table 3-2 Interpretation of 16-Bit Data Values . 3-7

Table 3-3 Interpretation of 36-Bit Data Values . 3-8

Table 3-4 Memory Space Symbols . 3-9

Table 3-5 Suffixes for Move Instructions . 3-10

Table 3-6 Typical 16-Bit-Word Register Loads . 3-10

Table 3-7 Useful Built-In Assembler Functions . 3-22

Table 3-8 Notation for AGU Registers . 3-23

Table 3-9 Register-Direct Addressing Mode . 3-24

Table 3-10 Address-Register-Indirect Addressing Modes . 3-25

Table 3-11 Immediate Addressing Modes . 3-25

Table 3-12 Absolute Addressing Modes. 3-26

Table 3-13 Assembler Operator Syntax for Immediate Data Sizes 3-26

Table 3-14 Assembler Operator Syntax for Branch and Jump Addresses 3-27

Table 4-1 Multiplication Instructions . 4-2

Table 4-2 Additional 32-Bit DSP56800EX Multiplication Instructions. 4-2

Table 4-3 Arithmetic Instructions . 4-3

Table 4-4 Shifting Instructions . 4-6

Table 4-5 Logical Instructions . 4-7

Table 4-6 AGU Arithmetic Instructions . 4-8

Table 4-7 Bitfield Instructions . 4-9

Table 4-8 Additional DSP56800EX Bitfield Instruction . 4-9

Table 4-9 Looping Instructions . 4-9

Table 4-10 Move Instructions . 4-10

Table 4-11 Program Control and Change-of-Flow Instructions . 4-11

Table 4-12 Miscellaneous Program Control Instructions . 4-11

Table 4-13 Aliases for Logical Instructions with Immediate Data 4-12

Table 4-14 Instructions with Alternate Syntax . 4-13

Table 4-15 Delayed Instructions . 4-14

Table 4-16 Sample Instruction Summary Table . 4-16

Table 4-17 Register Fields for General-Purpose Writes and Reads 4-18

Table 4-18 Address Generation Unit (AGU) Registers . 4-19

Table 4-19 Data ALU Registers . 4-19
Freescale Semiconductor List of Tables xix

Table 4-20 Additional Register Sets for Move Instructions . 4-20

Table 4-21 Immediate Value Notation . 4-21

Table 4-22 Move Byte Instructions—Byte Pointers . 4-21

Table 4-23 Move Byte Instructions—Word Pointers . 4-22

Table 4-24 Move Long Word Instructions . 4-23

Table 4-25 Move Word Instructions . 4-24

Table 4-26 Memory-to-Memory Move Instructions . 4-26

Table 4-27 Immediate Move Instructions . 4-27

Table 4-28 Register-to-Register Move Instructions . 4-28

Table 4-29 Conditional Register Transfer Instructions. 4-28

Table 4-30 Move Word Instructions—Program Memory. 4-29

Table 4-31 Data ALU Multiply Instructions. 4-29

Table 4-32 Data ALU Extended-Precision Multiplication Instructions 4-30

Table 4-33 Data ALU Arithmetic Instructions . 4-31

Table 4-34 Data ALU Shifting Instructions . 4-39

Table 4-35 Data ALU Logical Instructions. 4-41

Table 4-36 Miscellaneous Data ALU Instructions . 4-41

Table 4-37 AGU Arithmetic and Shifting Instructions . 4-42

Table 4-38 Bit-Manipulation Instructions. 4-43

Table 4-39 Branch-on-Bit-Manipulation Instructions. 4-45

Table 4-40 Change-of-Flow Instructions . 4-46

Table 4-41 Looping Instructions . 4-47

Table 4-42 Control Instructions . 4-48

Table 4-43 Single Parallel Move Instructions. 4-49

Table 4-44 Dual Parallel Read Instructions . 4-50

Table 5-1 Accessing the Accumulator Registers . 5-7

Table 5-2 Data Types and Range of Values . 5-15

Table 5-3 Data Limiter Saturation . 5-39

Table 5-4 MAC Unit Outputs with Saturation Enabled . 5-42

Table 5-5 Rounding Results for Different Values . 5-47

Table 6-1 Capabilities of the Address Pointer Registers. 6-6

Table 6-2 Hardware Implementation of Addressing Mode Arithmetic—
Word Pointers to Data Memory . 6-9

Table 6-3 Addressing Mode Arithmetic—Program Memory . 6-13

Table 6-4 Addressing Mode Arithmetic—Byte Pointers to Data Memory 6-14

Table 6-5 AGU Address Arithmetic Instructions . 6-18

Table 6-6 Programming the M01 Register—Byte and Word Accesses 6-23

Table 6-7 Programming the M01 Register—Long-Word Accesses 6-25

Table 6-8 Base Pointer and Offset/Update for DSP56800E Instructions 6-26
xx DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Table 7-1 Operations Synthesized Using DSP56800E Instructions 7-8

Table 8-1 OMR Bit Descriptions . 8-5

Table 8-2 SR Bit Descriptions . 8-8

Table 8-3 Interrupt Mask Bits Settings . 8-10

Table 8-4 FISR Bit Descriptions . 8-13

Table 8-5 Hardware Stack Status . 8-18

Table 9-1 Interrupt Priority Level Summary. 9-3

Table 9-2 Current Core Interrupt Priority Levels . 9-3

Table 10-1 Mapping Fundamental Operations to Pipeline Stages 10-3

Table 10-2 Instruction Pipelining . 10-4

Table 10-3 Execution of Data ALU Instructions in the Pipeline . 10-6

Table 10-4 Data ALU Operand Dependency Pipeline . 10-27

Table 10-5 Data ALU Pipeline with No Dependencies . 10-28

Table 10-6 AGU Write Dependency Pipeline. 10-29

Table 10-7 AGU Pipeline With No Dependencies . 10-30

Table 11-1 Processing States. 11-6

Table 11-2 Step Counter Operation . 11-14

Table 11-3 Notation used in Breakpoint Unit Triggering . 11-16

Table 11-4 First Part of Breakpoint Unit Trigger(s)— 16-bit Counter Available for
Triggering . 11-17

Table 11-5 Breakpoint Unit Trigger — 16-bit Counter Available for Triggering 11-18

Table 11-6 Possible Breakpoint Unit Actions. 11-18

Table 11-7 Breakpoint Unit — Step Counter Operation. 11-19

Table 11-8 Starting and Stopping the Capture Counter — Non-Cascaded. 11-20

Table 11-9 First Part of Breakpoint Unit Trigger— 16-bit Counter in Capture Mode. . . 11-21

Table 11-10 Breakpoint Unit Trigger — for 16-bit Capture Counter. 11-22

Table 11-11 Possible Capture Counter Actions — Non-Cascaded. 11-22

Table 11-12 Possible Capture Counter Actions — Non-Cascaded. 11-23

Table 11-13 Starting and Stopping Trace Buffer Capture . 11-25

Table 11-14 Possible Actions on Trace Buffer Full . 11-25

Table 11-15 JTAG Pin Descriptions . 11-28

Table A-1 Register Fields for General-Purpose Writes and Reads A-2

Table A-2 Address Generation Unit (AGU) Registers . A-3

Table A-3 Data ALU Registers . A-3

Table A-4 Additional Register Fields for Move Instructions . A-4

Table A-5 Opcode Encoding Fields . A-5

Table A-6 Instruction Field Symbols . A-6

Table A-7 Data ALU Register Operand Encodings. A-330

Table A-8 Three-Operand Data ALU Instruction Register Encodings A-332
Freescale Semiconductor List of Tables xxi

Table A-9 Register Op Codes for DALU Instructions with Parallel Moves A-336

Table A-10 Register Encodings for MOVE Instructions . A-336

Table A-11 Encodings for Instructions with Different Load and Store Register Sets. . . . A-339

Table A-12 Bit-Manipulation Register Encodings . A-340

Table A-13 Size-Dependent Register Encodings for MOVE Instructions A-342

Table A-14 Single Parallel Move Register Encoding . A-344

Table A-15 Dual Parallel Read Encoding . A-344

Table A-16 Addressing Mode Encodings . A-345

Table A-17 Condition Encoding for the Tcc Instruction . A-345

Table A-18 Condition Encoding for Jump and Branch Instructions A-346

Table A-19 Offset Values for iii Encoding . A-347

Table B-1 Condition Code Bit Descriptions . B-4

Table B-2 Condition Code Summary Table Notation . B-8

Table B-3 Condition Code Summary . B-9
xxii DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

List of Examples
Example 3-1 Demonstrating Source and Destination Operands . 3-9

Example 3-2 Program Memory Accesses . 3-11

Example 3-3 Examples of Operands in Memory . 3-11

Example 3-4 Loading Accumulators with Different Data Types. 3-13

Example 3-5 Storing Accumulators with Different Data Types . 3-14

Example 3-6 Allocation of 2 Bytes Globally . 3-17

Example 3-7 Allocation of a Character String . 3-17

Example 3-8 Using the Register-Direct Addressing Mode . 3-28

Example 3-9 Effects of Data Types on AGU Arithmetic . 3-28

Example 3-10 Effects of Data Types on Address Displacements . 3-28

Example 4-1 Logical OR with a Data Memory Location . 4-12

Example 4-2 Code Fragment with Regular Branch . 4-15

Example 4-3 Code Fragment with Delayed Branch. 4-15

Example 4-4 Valid Instructions . 4-17

Example 4-5 Invalid Instruction. 4-17

Example 4-6 Examples of Single Parallel Moves . 4-50

Example 5-1 X0 Register Used in Operation and Loaded in Parallel 5-4

Example 5-2 Accumulator A Used in Operation and Stored in Parallel 5-5

Example 5-3 Unsigned Load of a Long Word to an Accumulator . 5-9

Example 5-4 Reading the Contents of the C2 Register . 5-11

Example 5-5 Writing a Value into the C2 Register . 5-11

Example 5-6 Loading an Accumulator with an Integer Word . 5-12

Example 5-7 Loading an Accumulator with a Long Integer . 5-12

Example 5-8 Reading an Integer Value from an Accumulator . 5-12

Example 5-9 Reading a Word from an Accumulator with Saturation 5-12

Example 5-10 Reading a Long Value from an Accumulator with Limiting 5-13

Example 5-11 Converting a 36-Bit Accumulator to a 16-Bit Value . 5-13

Example 5-12 Saving and Restoring an Accumulator—Word Accesses. 5-13

Example 5-13 Saving and Restoring an Accumulator—Long Accesses 5-14

Example 5-14 Bit Manipulation on a DSP56800E Accumulator. 5-14

Example 5-15 Signed Division with Remainder . 5-22

Example 5-16 Unsigned Division with Remainder . 5-23
Freescale Semiconductor List of Examples xxiii

Example 5-17 Signed DIvision Without Remainder . 5-24

Example 5-18 Multiplication of 2 Unsigned Words . 5-28

Example 5-19 64-Bit Addition . 5-29

Example 5-20 64-Bit Subtraction. 5-29

Example 5-21 Fractional Single-Precision Times Double-Precision—Both Signed. 5-30

Example 5-22 Multiplying Two Fractional Double-Precision Values. 5-32

Example 5-23 Multiplying Two Signed Long Integers . 5-33

Example 5-24 Multiplying Two Unsigned Long Integers . 5-34

Example 5-25 Multiplying Two Signed Long Integers . 5-35

Example 5-26 Multiplying Signed 16-Bit Word with Signed 32-Bit Long 5-36

Example 5-27 Normalizing with the NORM Instruction. 5-37

Example 5-28 Normalizing with a Shift Instruction . 5-37

Example 5-29 Demonstrating the Data Limiter—Positive Saturation. 5-40

Example 5-30 Demonstrating the Data Limiter—Negative Saturation 5-41

Example 5-31 Demonstrating the MAC Output Limiter . 5-42

Example 5-32 Example Code for Two’s-Complement Rounding . 5-46

Example 5-33 Example Code for Convergent Rounding. 5-47

Example 6-1 Accessing Bytes with the MOVE.B Instruction . 6-10

Example 6-2 Addressing Mode Examples for Long Memory Accesses 6-11

Example 6-3 Accessing Elements in a Data Structure . 6-11

Example 6-4 Comparison of MOVE.BP and MOVE.B Instructions. 6-15

Example 6-5 Accessing Elements in an Array of Bytes . 6-16

Example 6-6 Invalid Use of the Modulo Addressing Mode . 6-28

Example 6-7 Adding Positive Offset to a Modulo Pointer . 6-28

Example 6-8 Adding “–2” to a Modulo Pointer. 6-28

Example 6-9 Correct Usage - Offset Values Satisfying Restriction 6-29

Example 6-10 Initializing the Circular Buffer . 6-31

Example 6-11 Accessing the Circular Buffer. 6-31

Example 6-12 Accessing the Circular Buffer with Post-Update by Three 6-32

Example 7-1 Examples of Byte Masks in BRSET and BRCLR Instructions 7-3

Example 7-2 Using a Mask to Operate on Bits 7–4 . 7-3

Example 7-3 Testing Bits in an Operand . 7-4

Example 7-4 Branching on Bits in an Operand . 7-5

Example 7-5 Clearing Bits in an Operand . 7-5

Example 7-6 Logical Operations on Bytes in Memory . 7-7

Example 7-7 Logical Operations on Bytes Using Word Pointers . 7-8

Example 7-8 Bit-Manipulation Operations Using Complex Addressing Modes. 7-8
xxiv DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Example 7-9 JRSET and JRCLR Operations. 7-9

Example 7-10 BR1SET and BR1CLR Operations. 7-9

Example 7-11 JR1SET and JR1CLR Operations. 7-10

Example 8-1 Pushing a Value on the Software Stack . 8-14

Example 8-2 Pushing Multiple Values on the Software Stack . 8-14

Example 8-3 Popping Values from the Software Stack . 8-15

Example 8-4 Subroutine Call with Passed Parameters . 8-16

Example 8-5 Repeat Loop Example. 8-18

Example 8-6 DO Loop Example . 8-19

Example 8-7 DO Loop Special Case . 8-20

Example 8-8 Immediate Exit from Hardware Loop. 8-21

Example 8-9 Using the DOSLC Instruction. 8-22

Example 8-10 Example of a REP Loop Nested Within a DO Loop . 8-22

Example 8-11 Example of Nested DO Loops . 8-23

Example 8-12 Example of Nested Looping in Software . 8-23

Example 8-13 Entering Data Memory Execution, 19-Bit Target Address 8-25

Example 8-14 Entering Data Memory Execution, 21-Bit Target Address 8-26

Example 8-15 Exiting Data-Memory Execution Mode, 19-Bit Target Address 8-27

Example 8-16 Exiting Data-Memory Execution Mode, 21-Bit Target Address 8-27

Example 9-1 BRSET Non-Interruptible Sequence . 9-11

Example 10-1 Example Code to Demonstrate Pipeline Flow . 10-4

Example 10-2 Demonstrating the Data ALU Execution Stages . 10-6

Example 10-3 Data ALU Operand Dependencies . 10-27

Example 10-4 Case with No Data ALU Pipeline Dependencies . 10-27

Example 10-5 Pipeline Dependency with AGU Registers. 10-28

Example 10-6 Case Without AGU Pipeline Dependencies . 10-29

Example 10-7 MOVE Instructions That Introduce Stalls . 10-30

Example 10-8 Instructions with No Stalls . 10-31

Example 10-9 Dependency with Load of LC and Start of Hardware Loop. 10-31
Freescale Semiconductor List of Examples xxv

xxvi DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

About This Book
This manual describes the central processing unit of the DSP56800E and DSP56800EX in detail. It is
intended to be used with the appropriate DSP56800E or DSP56800EX family member reference manual,
which describes the specific chip architecture, peripheral definitions, and programming models. The
appropriate DSP56800E or DSP56800EX family member’s technical data sheet provides timing, pinout,
and packaging descriptions.

This manual provides practical information to help the user accomplish the following:

• Understand the operation and instruction set of the DSP56800E and DSP56800EX families

• Write code for DSC algorithms

• Write code for general control tasks

• Write code for communication routines

• Write code for data-manipulation algorithms

Audience
The information in this manual is intended to assist software engineers with developing application
software for DSP56800E and DSP56800EX family devices.

Organization
Information in this manual is organized into chapters by topic. The contents of the chapters are as follows:

Chapter 1, “Introduction.” This chapter introduces the DSP56800E and DSP56800EX core architecture
and its application. It also provides the novice with a brief overview of digital signal processing.

Chapter 2, “Core Architecture Overview.” The DSP56800E and DSP56800EX core architecture
consists of the data arithmetic logic unit (ALU), address generation unit (AGU), bit-manipulation unit, and
program controller. This chapter describes each subsystem and the buses that interconnect the major
components in the DSC core central processing module.

Chapter 3, “Data Types and Addressing Modes.” This chapter presents the programming model,
introduces the MOVE instructions and their syntax, and presents the data types and addressing modes
found on the core.

Chapter 4, “Instruction Set Introduction.” This chapter presents register notation and summarizes the
instruction set. It shows the registers and addressing modes available to each instruction as well as the
number of execution cycles and program words required.

Chapter 5, “Data Arithmetic Logic Unit.” This chapter describes the data ALU architecture, its
programming model, methods for accessing the accumulators, and data types. The chapter also provides an
introduction to fractional and integer arithmetic on the core and discusses other topics such as unsigned
and multi-precision arithmetic.
Freescale Semiconductor About This Book xxvii

Chapter 6, “Address Generation Unit.” This chapter describes in detail the AGU architecture, its
programming model, its addressing modes, and its address modifiers.

Chapter 7, “Bit-Manipulation Unit.” This chapter describes in detail the bit-manipulation unit’s
architecture and capabilities.

Chapter 8, “Program Controller.” This chapter describes in detail the program controller architecture,
its programming model, the hardware and software stacks, subroutines, and hardware looping.

Chapter 9, “Processing States.” This chapter introduces the different processing states of the core
(normal, reset, exception, wait, stop, and debug).

Chapter 10, “Instruction Pipeline.” This chapter describes the pipeline of the DSP56800E and
DSP56800EX architecture.

Chapter 11, “JTAG and Enhanced On-Chip Emulation (Enhanced OnCE).” This chapter provides an
overview of the JTAG test interface and the integrated emulation and debugging module (Enhanced
OnCE™).

Appendix A, “Instruction Set Details.” This appendix presents a detailed description of each DSC core
instruction, its use, and its effect on the processor.

Appendix B, “Condition Code Calculation.” This appendix presents a detailed description of condition
code computation.

Appendix C, “Glossary.” The Glossary defines useful DSC, electronics, and communications terms.

Suggested Reading
The following DSC-related books may aid an engineer who is new to the field of digital signal processing:

Advanced Topics in Signal Processing, Jae S. Lim and Alan V. Oppenheim (Prentice-Hall: 1988)

Applications of Digital Signal Processing, A. V. Oppenheim (Prentice-Hall: 1978)

Digital Processing of Signals: Theory and Practice, Maurice Bellanger (John Wiley and Sons: 1984)

Digital Signal Processing, Alan V. Oppenheim and Ronald W. Schafer (Prentice-Hall: 1975)

Digital Signal Processing: A System Design Approach, David J. DeFatta, Joseph G. Lucas, and William S.
Hodgkiss (John Wiley and Sons: 1988)

Discrete-Time Signal Processing, A. V. Oppenheim and R.W. Schafer (Prentice-Hall: 1989)

Foundations of Digital Signal Processing and Data Analysis, J. A. Cadzow (Macmillan: 1987)

Handbook of Digital Signal Processing, D. F. Elliott (Academic Press: 1987)

Introduction to Digital Signal Processing, John G. Proakis and Dimitris G. Manolakis (Macmillan: 1988)

Multirate Digital Signal Processing, R. E. Crochiere and L. R. Rabiner (Prentice-Hall: 1983)

Signal Processing Algorithms, S. Stearns and R. Davis (Prentice-Hall: 1988)

Signal Processing Handbook, C. H. Chen (Marcel Dekker: 1988)

Signal Processing: The Modern Approach, James V. Candy (McGraw-Hill: 1988)

Theory and Application of Digital Signal Processing, Lawrence R. Rabiner and Bernard Gold
(Prentice-Hall: 1975)
xxviii DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Conventions
This document uses the following notational conventions:

• Bits within registers are always listed from most significant bit (MSB) to least significant bit (LSB).

• Bits within a register are formatted AA[n:0] when more than one bit is involved in a description.
For purposes of description, the bits are presented as if they are contiguous within a register.
However, they are not always contiguous. Refer to the programming-model diagrams or to the
programmer’s sheets to find the exact location of bits within a register.

• When a bit is described as set, its value is set to one. When a bit is described as cleared, its value is
set to zero.

• In graphic displays of registers, the following definitions of notation apply:

— Grey bit: An unimplemented bit that always reads as zero. Writing has no effect.

— TYPE: The bit’s type defines its behavior. Possible values include:

– r: Read-only. Writing this bit has no effect.

– w: Write-only.

– rw: Standard read/write bit. Only software (or a hardware reset) can change the bit’s value.

— RESET: The reset value of the bit. Possible values include:

– 0: Will reset to a logic 0.

– 1: Will reset to a logic 1.

– ?: The reset state is undefined.

– —: The reset state depends on individual chip implementation.

• A pin or signal that is asserted low (made active when pulled to ground) has a bar over its name.
For example, the SS0 pin is asserted low.

• Hexadecimal values are preceded by a dollar sign ($), as follows: $FFFB is the X memory address
for the interrupt priority register (IPR).

• Unless noted otherwise, M designates the value 220 and K designates the value 210.

• Memory addresses in the separate program and data memory spaces are differentiated by a
one-letter prefix. Data memory addresses have an X: prefix, while program memory addresses have
a P: prefix. For example, P:$0200 indicates a location in program memory. The terms data memory
and X memory are used interchangeably, and the terms program memory and P memory are used
interchangeably.

• Code examples are displayed in a monospaced font, as follows:

BFSET #$0007,X:PCC ; Configure: line 1
; MISO0, MOSI0, SCK0 for SPI master line 2
; ~SS0 as PC3 for GPIO line 3
Freescale Semiconductor About This Book xxix

Definitions, Acronyms, and Abbreviations
The following terms appear frequently in this manual:

DSC digital signal controller

JTAG Joint Test Action Group

Enhanced OnCE Enhanced On-Chip Emulation

ALU arithmetic logic unit

AGU address generation unit

IP-BUS Freescale standard on-chip peripheral interface bus

A complete list of relevant terms and their definitions appears in Appendix C, “Glossary.”
xxx DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Chapter 1
Introduction
The 32-bit DSP56800EX core represents the next step in the evolution of Freescale’s families of digital
signal controllers (DSCs). The DSP56800EX core extends the capabilities of the DSP56800E core
architecture.

The DSP56800EX core has all DSP56800E core features and adds new enhancements, including:

• 32-bit x 32-bit multiply and MAC operations

• all registers in the Address Generation Unit (AGU) have shadowed registers that effectively reduce
the context save/restore time during exception processing, reducing latency

• bit-reverse addressing mode, supporting Fast Fourier Transform (FFT)

• new bit manipulation instruction (BFSC) that integrates test-bitfield and a set/clear-bitfield
operations into a single instruction

Both the DSP56800EX and DSP56800E cores provide low-cost, low-power computing, combining DSC
power and parallelism with MCU-like programming simplicity. Each core is a general-purpose central
processing unit, designed for both efficient digital signal processing and a variety of controller operations.

The veteran DSC programmer recognizes a powerful DSC instruction set in these DSC cores.
Microcontroller programmers have access to a rich set of controller and general processing instructions. A
powerful multiply-accumulate (MAC) unit, with optional rounding and negation, enables the efficient
coding of DSC and digital filtering algorithms. The DSC cores’ large register set, powerful addressing
modes, and bit-manipulation unit allow traditional control tasks to be performed with ease, without the
complexity and limitations normally associated with DSCs. Assisting in the coding of general-purpose
programs is support for a software stack; flexible addressing modes; and byte, word, and long-word data
types.

1.1 Key Features
The DSP56800EX and DSP56800E architecture provides a variety of features that enhance performance,
reduce application cost, and ease product development. The architectural features that make these benefits
possible include the following:

• High Performance—support for all digital signal processing applications.

• Compatibility—The DSP56800EX is source-code compatible with the Freescale DSP56800E
family, making it a logical upgrade for performance-hungry applications. DSP56800 and
DSP56800E software can be run on the DSP56800EX by simply recompiling or reassembling it.
Freescale Semiconductor Introduction 1-1

Introduction
• Ease of Programming—The instruction mnemonics are designed to resemble the mnemonics of
MCUs, simplifying the transition from programming traditional microprocessors. Instruction-set
support for both fractional and integer data types provides the flexibility that is necessary for
optimal algorithm implementation.

• Support for High-Level Languages—The C programming language is well suited to the DSC
core architecture. The majority of an application can be written in a high-level language without
compromising DSC performance. A flexible instruction set and programming model enable the
efficient generation of compiled code.

• Rich Instruction Set—In addition to supporting instructions that support DSC algorithms, the
DSP56800EX and DSP56800E provide control, bit-manipulation, and integer processing
instructions. Powerful addressing modes and a range of data sizes are also provided. The result is
compact, efficient code.

• High Code Density—The base instruction word size for the DSC cores is only 16 bits, with
multi-word instructions for more complex operations, resulting in optimal code density. The
instruction set emphasizes efficient control programming, which accounts for the largest portion of
an application.

• Multi-Tasking Support—Implementing a real-time operating system or simple multi-tasking is
much easier on the DSP56800EX and DSP56800E than on most DSCs. The architecture provides
full support for a software stack, fast 32-bit context saves and restores to and from the system stack,
atomic test-and-set operations, and four prioritized software interrupts.

• Precision—The DSP56800EX and DSP56800E cores enable precise DSC calculations. Enough
precision for 96 dB of dynamic range is provided by 16-bit data paths. Intermediate values in the
36-bit accumulators can range over 216 dB.

• Hardware Looping—Two types of zero-overhead hardware looping are provided, enhancing
performance and making loop-unrolling techniques unnecessary.

• Parallelism—Each on-chip execution unit, memory device, and peripheral operates independently
and in parallel. Because of the high level of parallelism, the following can be executed in a single
instruction:

— Fetching the next instruction

— A 16-bit × 16-bit multiplication with 36-bit accumulation

— Optional negation, rounding, and saturation of the result

— Two 16-bit data moves

— No-overhead hardware looping

— Two address pointer updates

• Invisible Instruction Pipeline—The eight-stage instruction pipeline provides enhanced
performance while remaining essentially invisible to the programmer. Developers can program in
high-level languages such as C without being concerned about the pipeline, even as they benefit
from the pipeline’s throughput of one instruction per cycle.

• Low Power Consumption—Implemented in CMOS, the DSC cores inherently consume very little
power. In addition, the core architecture supports low-power modes, including STOP and WAIT,
which can provide even more power savings. The power management implementation can shut off
unused sections of logic.

• Real-Time Debugging—Freescale’s Enhanced On-Chip Emulation technology (Enhanced
OnCE™) allows simple, inexpensive, non-intrusive, and speed-independent access to the internal
state of the DSC core. By using Enhanced OnCE, programmers have full control over the
processor’s operation, simplifying and speeding debugging tasks without having to halt the core.
1-2 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Architectural Overview
The DSP56800EX and DSP56800E’s efficient instruction set and bus structure, extensive parallelism,
on-chip program and data memories, and advanced debugging and test features make the core an excellent
solution for real-time, embedded DSC and control tasks. It is the perfect choice for wireless and wireline
DSC applications, digital and industrial control, or any other embedded-controller application that needs
high-performance processing.

1.2 Architectural Overview
The DSP56800EX and DSP56800E cores each consist of a data arithmetic logic unit (ALU), an address
generation unit (AGU), a program controller, a bit-manipulation unit, an Enhanced On-Chip Emulation
module (Enhanced OnCE), and associated buses. The following diagram shows the core architecture.

Figure 1-1. DSP56800EX/DSP56800E Core Block Diagram

Data

DSC Core

Arithmetic
Logic Unit

(ALU)

XAB2

PAB

PDB

CDBW

CDBR

XDB2

Program
Memory

Data
Memory

IP-BUS
Interface

External
Bus

Interface

Bit-
Manipulation

Unit

N3

M01

Address

XAB1

Generation
Unit

(AGU)

PC
LA

LA2
HWS0
HWS1
FIRA

OMR
SR

FISR

LC
LC2

Instruction
Decoder

Interrupt
Unit

Looping
Unit

Program Control Unit ALU1 ALU2

MAC and ALU

A1A2 A0
B1B2 B0
C1C2 C0
D1D2 D0
Y1
Y0
X0

Enhanced

JTAG TAP

R2
R3
R4
R5

SP

R0
R1

N

Y

Multi-Bit Shifter

OnCE™
Freescale Semiconductor Introduction 1-3

Introduction
Flexible memory support is one of the strengths of the DSC architecture. Supported memories include:

• Program RAM and ROM modules.

• Data RAM and ROM modules.

• Non-volatile memory (NVM) modules.

• Bootstrap ROM for devices that execute code from RAM.

The Freescale IP-BUS architecture supports a variety of on-chip peripherals. Among the peripherals
available on some devices that are based on the DSP56800EX and DSP56800E cores are the following:

• Phase-locked loop (PLL) module

• 16-bit timer module

• Computer operating properly (COP) and real-time timer module

• Synchronous serial interface (SSI) module

• Serial peripheral interface (SPI) module

• Programmable general-purpose I/O (GPIO) module

1.3 Example DSP56800EX Device
Figure 1-2 shows an example device that is built around the DSP56800EX core.

Figure 1-2. Example of Chip Based on DSP56800EX Core

The DSC core architecture optionally supports chips with external bus interfaces. For chips with an
external bus, the core architecture supports an external address bus that is up to 24 bits wide and data bus
widths of 8, 16, or 32 bits.

RAM
Flash

COP & Real-

Serial

DSP56800EX

32-Bit

DSC

Core

External Bus

Interface

GPIO

24

32

ADR

DATA

IRQA

IRQB

Time Timer

PLL

JTAG

Timers

AA0002
1-4 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Introduction to Digital Signal Processing
1.4 Introduction to Digital Signal Processing
Digital signal processing (DSC) is the arithmetic processing of real-time signals that are sampled and
digitized at regular intervals. Examples of DSC processing include the following:

• Filtering

• Convolution (mixing two signals)

• Correlation (comparing two signals)

• Rectification, amplification, and transformation

Figure 1-3 shows an example of analog signal processing. The circuit in the illustration filters a signal from
a sensor using an operational amplifier and then controls an actuator with the result. Since the ideal filter is
impossible to design, the engineer must design the filter for acceptable response, considering variations in
temperature, component aging, power-supply variation, and component accuracy. The resulting circuit
typically has low noise immunity, requires adjustments, and is difficult to modify.

Figure 1-3. Analog Signal Processing

The equivalent circuit using a DSC is shown in Figure 1-4 on page 1-6. This application requires an
analog-to-digital (A/D) converter and digital-to-analog (D/A) converter in addition to the DSC.

x(t)
Input
from

Sensor

y t()
x t()

Rf
Ri
------ 1

1 jωRfCf+
----------------------------–=

y(t)
Output

to
Actuator

t

x(t)

Ri

Rf

Cf

Analog Filter

Frequency Characteristics

Ideal
Filter

f
fcFrequency

G
ai

n

y(t)-

+

AA0003

Actual
Filter
Freescale Semiconductor Introduction 1-5

Introduction
Figure 1-4. Digital Signal Processing

Processing in this circuit begins with band limiting the input signal with an anti-alias filter, which
eliminates out-of-band signals that can be aliased back into the pass band due to the sampling process. The
signal is then sampled, digitized with an A/D converter, and sent to the DSC. The DSC output is processed
by a D/A converter and is low-pass filtered to remove the effects of digitizing.

The particular filter implemented by the DSC is strictly a matter of software. The DSC can implement any
filter that can be implemented using analog techniques. Moreover, adaptive filters, which are extremely
difficult to implement using analog techniques, can easily be created using DSC.

In summary, the advantages of using the DSC include the following:

• Fewer components

• Stable, deterministic performance

• No filter adjustments

A

DSC Operation

Ideal
Filter

f
fc

Frequency

G
ai

n

FIR Filter

Finite Impulse
Response

c k() n k–()×

k 0=

N 1–

A/D D/A

x(n) y(n)
y(t)x(t)

Analog
Filter

f
fc

Frequency

G
ai

n

Digital
Filter

f
fc

Frequency

G
ai

n

Low-Pass
Anti-Aliasing

Filter

Digital-to-Analog
Converter

Reconstruction
Low-Pass

A

A

Analog In Analog Out

Sampler And
Analog-to-Digital

Converter

AA0004
1-6 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Introduction to Digital Signal Processing
• Wide range of applications

• Filters with sharper filtering characteristics

• High noise immunity

• Adaptive filters are easily implemented

• Self-test can be built in

• Better power-supply rejection

The DSP56800EX and DSP56800E families do not consist of custom chips designed for a particular
application; they are designed with a general-purpose DSC architecture to efficiently execute common
DSC algorithms and controller code in minimal time.

As Figure 1-5 shows, the key attributes of a DSC are as follows:

• Multiply-accumulate (MAC) operation

• Fetching up to two operands per instruction cycle for the MAC

• Flexibility in implementation through a powerful instruction set

• Input/output capability to move data in and out of the DSC

Figure 1-5. Mapping DSC Algorithms into Hardware

The multiply-accumulate (MAC) operation is the fundamental operation used in DSC. The DSP56800EX
and DSP56800E families of processors have a dual Harvard architecture that is optimized for MAC
operations. Figure 1-5 shows how the DSC architecture matches the shape of the MAC operation. The two
operands, C() and X(), are directed to a multiply operation, and the result is summed. This process is built
into the chip in that two separate data memory accesses are allowed to feed a single-cycle MAC. The entire
process must occur under program control to direct the correct operands to the multiplier and to save the
accumulated result, as needed. Since the memory and the MAC are independent, the DSC can perform two
memory moves, a multiply and an accumulate, and two address updates in a single operation. As a result,
many DSC benchmarks execute very efficiently for a single-multiplier architecture.

X

Σ

MAC

X
Memory

Program

AA0005

FIR Filter

c k() n k–()×

k 0=

N 1–

A/D D/A

x(n) y(n)
y(t)x(t)
Freescale Semiconductor Introduction 1-7

Introduction
1-8 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Chapter 2
Core Architecture Overview

This chapter presents the core’s architecture and programming model as well as the overall system
architecture for devices based on the DSP56800EX and DSP56800E cores. It introduces the different
blocks and data paths within the core and their functions. More detailed information on the individual
blocks within the core, such as the data ALU, AGU, and program controller, appears in later chapters.

2.1 Extending DSP56800E Architecture
The DSP56800EX core architecture extends Freescale’s DSP56800E family architecture. It is source-code
compatible with DSP56800E devices and adds the following new features:

• 32-bit x 32-bit multiply and MAC operations with 32-bit and 64-bit results

• all registers in the Address Generation Unit (AGU) have shadowed registers that effectively reduce
the context save/restore time during exception processing, reducing latency

• bit-reverse addressing mode, supporting Fast Fourier Transform (FFT)

• new bit manipulation instruction (BFSC) that integrates test-bitfield and a set/clear-bitfield
operations into a single instruction

2.2 Extending DSP56800 Architecture
The DSP56800E and DSP56800EX core architecture extends Freescale’s DSP56800 family architecture.
It is source-code compatible with DSP56800 devices and adds the following new features:

• Byte and long data types, supplementing the DSP56800’s word data type

• 24-bit data memory address space

• 21-bit program memory address space

• Three additional 24-bit pointer registers (one of which can be used as an offset register)

• A secondary 16-bit offset register to further enhance the dual parallel data ALU instructions

• Two additional 36-bit accumulator registers

• Full-precision integer multiplication

• 32-bit logical and shifting operations

• Second read in dual read instruction can access off-chip memory

• Loop count (LC) register extended to 16 bits
Freescale Semiconductor Core Architecture Overview 2-1

Core Architecture Overview
• Full support for nested DO looping through additional loop address and count registers

• Loop address and hardware stack extended to 24 bits

• Three additional interrupt levels with a software interrupt for each level

• Enhanced On-Chip Emulation (Enhanced OnCE) with three debugging modes:

— Non-intrusive real-time debugging

— Minimally intrusive real-time debugging

— Breakpoint and step mode (core is halted)

2.3 Core Programming Model
The registers in the core that are considered part of the core programming model are shown in Figure 2-1.
Registers for on-chip peripherals are mapped into a 64-location block of data memory. An example for this
block of memory is shown in Table 2-1 on page 2-4. Consult a specific device’s user’s manual for details
on the peripherals that are implemented, their function, the registers that are defined for them in this
memory area, and their location in memory.
2-2 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Core Programming Model
Figure 2-1. Core Programming Model

01516313235

023

015

012

R2

R3

R4

R5

SP

R0

R1

N

A1A2 A0

B1B2 B0

C1C2 C0

D1D2 D0

Data Arithmetic Logic Unit (ALU)

Data Registers

Address Generation Unit (AGU)

Pointer Registers
015

Y1

Y0

X0

D

C

B

A

Y

Program Counter
020

PC

023

LA

Loop Address

LA2

023

HWS0

Hardware Stack

HWS1

020

FIRA

Fast Interrupt Return Address

Secondary Offset Register

Program Control Unit

N3

015
Modifier Registers

M01

015

Operating Mode Register

OMR

SR

and Status Register
(OMR, SR)

Fast Interrupt Status
Register

FISR

Loop Counter
015

LC

LC2
Freescale Semiconductor Core Architecture Overview 2-3

Core Architecture Overview
NOTE:

Peripherals can be located anywhere in data memory and are defined by
the specific device’s user’s manual.

Table 2-1. Example for Chip I/O and On-Chip Peripheral Memory Map

X:$xxFFFF (Reserved for DSC Core)

X:$xxFFFE (Reserved for DSC Core)

X:$xxFFFD (Reserved for DSC Core)

X:$xxFFFC (Reserved for DSC Core)

X:$xxFFFB (Reserved for Interrupt Priority)

X:$xxFFFA (Reserved for Interrupt Priority)

X:$xxFFF9 (Reserved for Bus Control)

X:$xxFFF8 (Reserved for Bus Control)

X:$xxFFF7 (Reserved for DSC Core)

X:$xxFFF6 (Reserved for DSC Core)

X:$xxFFF5 (Reserved for DSC Core)

X:$xxFFF4 (Reserved for DSC Core)

X:$xxFFF3 (Available for Peripherals)

X:$xxFFF2 (Available for Peripherals)

X:$xxFFF1 (Available for Peripherals)

X:$xxFFF0 (Available for Peripherals)

.

.

.

.

.

.

X:$xxFFC3 (Available for Peripherals)

X:$xxFFC2 (Available for Peripherals)

X:$xxFFC1 (Available for Peripherals)

X:$xxFFC0 (Available for Peripherals)
2-4 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Dual Harvard Memory Architecture
2.4 Dual Harvard Memory Architecture
The DSC core has a dual Harvard architecture with separate program and data memory spaces, as shown in
Figure 2-2. This architecture allows for simultaneous program and data memory accesses. The data
memory interface also supports two simultaneous read operations, enabling up to three simultaneous
memory accesses.

Figure 2-2. Dual Harvard Memory Architecture

The block of memory containing reset and interrupt vectors can be any size and can be located anywhere in
program memory. Peripheral registers are memory mapped into a 64-location region in the data memory
space.

A 64-word block of data memory allocated for memory-mapped IP-BUS peripheral registers can be
located anywhere in data memory. Usually the location of this memory block is chosen so that it does not
overlap with RAM or ROM data memory. The X:<<pp addressing mode (see Section 3.6.5.2, “I/O Short
Address: <<pp,” on page 3-43) provides efficient access to this memory range, enabling single-word,
single-cycle move and bit-manipulation instructions.

Note that the top 12 locations in the peripheral register area ($xxFFF4 through $xxFFFF) are reserved for
use by the core, interrupt priority functions, and bus control functions, as shown in Table 2-1 on page 2-4.

The compiler has access only to the lower 16 Mbyte of data memory.

$0

$1FFFFF

Interrupt
Vectors

Program
Memory

Space

0

2M (4 Mbyte)

$0

$xxFFFF

0

64K

$xxFFC0 (64K – 64)

Optimized for

Peripherals

$FFFFFF 16M (32 Mbyte)

Data
Memory

Space

Accessible with
X:<<pp Addressing

15 0

15 0

IP-BUS

(Relocatable)

(Relocatable)
Freescale Semiconductor Core Architecture Overview 2-5

Core Architecture Overview
2.5 System Architecture and Peripheral Interface
The DSC system architecture encompasses all the on-chip components, including the core, on-chip
memory, peripherals, and the buses that are necessary to connect them. Figure 2-3 shows the overall
system architecture for a device with an external bus.

Figure 2-3. DSC Chip Architecture with External Bus

The complete architecture includes the following components:

• DSP56800EX or DSP56800E core

• On-chip program memory

• On-chip data memory

• On-chip peripherals

• Freescale IP-BUS peripheral interface

• External bus interface

Some DSC devices might not implement an external bus interface. Regardless of the implementation, all
peripherals communicate with the core via the IP-BUS interface. The IP-BUS–interface standard connects
the two data address buses and the CDBR, CDBW, and XDB2 uni-directional data buses to the
corresponding bus interfaces on the peripheral devices. The program memory buses are not connected to
peripherals.

External
Data

External
Address

IP-BUS

PDB

PAB

XAB1

CDBR

CDBW

XAB2

XDB2

Peripheral Peripheral Peripheral

DSC

Core

IP-BUS
Interface

External
Bus

Interface

Data
Memory

Program
Memory
2-6 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

System Architecture and Peripheral Interface
2.5.1 Core Block Diagram
The DSC core is composed of several independent functional units. The program controller, address
generation unit (AGU), and data arithmetic logic unit (ALU) contain their own register sets and control
logic, allowing them to operate independently and in parallel, which increases throughput. There is also an
independent bit-manipulation unit, which enables efficient bit-manipulation operations. Each functional
unit interfaces with the other units, memory, and the memory-mapped peripherals over the core’s internal
address and data buses. See Figure 2-4.

Figure 2-4. Core Block Diagram

Instruction execution is pipelined to take advantage of the parallel units, significantly decreasing the
execution time for each instruction. For example, all within a single execution cycle, it is possible for the
data ALU to perform a multiplication operation, for the AGU to generate up to two addresses, and for the
program controller to prefetch the next instruction.

Data

DSC Core

Arithmetic
Logic Unit

(ALU)

XAB2

PAB

PDB

CDBW

CDBR

XDB2

Program
Memory

Data
Memory

IP-BUS
Interface

External
Bus

Interface

Bit-
Manipulation

Unit

N3

M01

Address

XAB1

Generation
Unit

(AGU)

PC
LA

LA2
HWS0
HWS1
FIRA

OMR
SR

FISR

LC
LC2

Instruction
Decoder

Interrupt
Unit

Looping
Unit

Program Control Unit ALU1 ALU2

MAC and ALU

A1A2 A0
B1B2 B0
C1C2 C0
D1D2 D0
Y1
Y0
X0

Enhanced

JTAG TAP

R2
R3
R4
R5

SP

R0
R1

N

Y

Multi-Bit Shifter

OnCE™
Freescale Semiconductor Core Architecture Overview 2-7

Core Architecture Overview
The major components of the core are the following:

• Address buses

• Data buses

• Data arithmetic logic unit (ALU)

• Address generation unit (AGU)

• Program controller

• Bit-manipulation unit

• Enhanced OnCE debugging module

The following sections describe these components.

2.5.2 Address Buses
The core contains three address buses: the program memory address bus (PAB), the primary data address
bus (XAB1), and the secondary data address bus (XAB2). The program address bus is 21 bits wide and is
used to address (16-bit) words in program memory. The two 24-bit data address buses allow for two
simultaneous read accesses to data (X) memory. The XAB1 bus can address byte, word, and long data
types. The XAB2 bus is limited to (16-bit) word accesses.

All three buses address on-chip memory. They can also address off-chip memory on devices that contain
an external bus interface unit.

2.5.3 Data Buses
Data transfers inside the chip occur over the following buses:

• Two uni-directional 32-bit buses:

— Core data bus for reads (CDBR)

— Core data bus for writes (CDBW)

• Two uni-directional 16-bit buses:

— Secondary X data bus (XDB2)

— Program data bus (PDB)

• IP-BUS interface

Data transfers between the data ALU and data memory use the CDBR and CDBW when a single memory
read or write is performed. When two simultaneous memory reads are performed, the transfers use the
CDBR and XDB2 buses. All other data transfers to core blocks occur using the CDBR and CDBW buses.
Peripheral transfers occur through the IP-BUS interface. Instruction word fetches occur over the PDB.

This bus structure supports up to three simultaneous 16-bit transfers. Any one of the following can occur in
a single clock cycle:

• One instruction fetch

• One read from data memory

• One write to data memory

• Two reads from data memory

• One instruction fetch and one read from data memory
2-8 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

System Architecture and Peripheral Interface
• One instruction fetch and one write to data memory

• One instruction fetch and two reads from data memory

An instruction fetch will take place on every clock cycle, although it is possible for data memory accesses
to be performed without an instruction fetch. Such accesses typically occur when a hardware loop is
executed and the repeated instruction is only fetched on the first loop iteration. See Section 8.5, “Hardware
Looping,” on page 8-18 for more information on hardware loops.

2.5.4 Data Arithmetic Logic Unit (ALU)
The data arithmetic logic unit (ALU) performs all of the arithmetic, logical, and shifting operations on data
operands. The data ALU contains the following components:

• Three 16-bit data registers (X0, Y0, and Y1)

• Four 36-bit accumulator registers (A, B, C, and D)

• One multiply-accumulator (MAC) unit

• A single-bit accumulator shifter

• One arithmetic and logical multi-bit shifter

• One MAC output limiter

• One data limiter

All in a single instruction cycle, the data ALU can perform multiplication, multiply-accumulation (with
positive or negative accumulation), addition, subtraction, shifting, and logical operations. Division and
normalization operations are provided by iteration instructions. Signed and unsigned multi-precision
arithmetic is also supported. All operations are performed using two’s-complement fractional or integer
arithmetic.

Data ALU source operands can be 8, 16, 32, or 36 bits in size and can be located in memory, in immediate
instruction data, or in the data ALU registers. Arithmetic operations and shifts can have 16-, 32-, or 36-bit
results. The instruction set also supports 8-bit results for some arithmetic operations. Logical operations
are performed on 16- or 32-bit operands and yield results of the same size. The results of data ALU
operations are stored either in one of the data ALU registers or directly in memory.

Chapter 5, “Data Arithmetic Logic Unit,” contains a detailed description of the data ALU.

2.5.5 Address Generation Unit (AGU)
The address generation unit (AGU) performs all of the calculations of effective addresses for data operands
in memory. It contains two address ALUs, allowing up to two 24-bit addresses to be generated every
instruction cycle: one for either the primary data address bus (XAB1) or the program address bus (PAB),
and one for the secondary data address bus (XAB2). The address ALU can perform both linear and modulo
address arithmetic. The AGU operates independently of the other core units, minimizing
address-calculation overhead.

The AGU can directly address 224 (16M) words on the XAB1 and XAB2 buses. It can access 221 (2M)
words on the PAB. The XAB1 bus can address byte, word, and long data operands. The PAB and XAB2
buses can only address words in memory.

The AGU consists of the following registers and functional units:

• Seven 24-bit address registers (R0–R5 and N)
Freescale Semiconductor Core Architecture Overview 2-9

Core Architecture Overview
• Four shadow registers (for R0, R1, N, and M01) on the DSP56800E core, or nine shadow registers
(for all Rn, N, N3, and M01) on the DSP56800EX core

• A 24-bit dedicated stack pointer register (SP)

• Two offset registers (N and N3)

• A 16-bit modifier register (M01)

• A 24-bit adder unit

• A 24-bit modulo arithmetic unit

Each of the address registers, R0–R5 and N, can contain either data or an address. All of these registers can
provide an address for the XAB1 and PAB address buses; addresses on the XAB2 bus are provided by the
R3 register. The N offset register can be used either as a general-purpose address register or as an offset or
update value for the addressing modes that support those values. The second 16-bit offset register, N3, is
used only for offset or update values. The modifier register, M01, selects between linear and modulo
address arithmetic.

See Chapter 6, “Address Generation Unit,” for a complete discussion of the AGU.

2.5.6 Program Controller and Hardware Looping Unit
The program controller is responsible for instruction fetching and decoding, interrupt processing, hardware
interlocking, and hardware looping. Actual instruction execution takes place in the other core units, such as
in the data ALU, AGU, or bit-manipulation unit.

The program controller contains the following:

• An instruction latch and decoder

• The hardware looping control unit

• Interrupt control logic

• A program counter (PC)

• Two special registers for fast interrupts:

— Fast interrupt return address register (FIRA)

— Fast interrupt status register (FISR)

• Seven user-accessible status and control registers:

— Two-level-deep hardware stack

— Loop address register (LA)

— Loop address register 2 (LA2)

— Loop count register (LC)

— Loop count register 2 (LC2)

— Status register (SR)

— Operating mode register (OMR)

The operating mode register (OMR) is a programmable register that controls the operation of the core,
including the memory-map configuration. The initial operating mode is typically latched on reset from an
external source; it can subsequently be altered under program control.

The loop address register (LA) and loop count register (LC) work in conjunction with the hardware stack
to support no-overhead hardware looping. The hardware stack is an internal last-in-first-out (LIFO) buffer
that consists of two 24-bit words and that stores the address of the first instruction of a hardware DO loop.
2-10 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Blocks Outside the Core
When the execution of the DO instruction begins a new hardware loop, the address of the first instruction
in the loop is pushed onto the hardware stack. When a loop finishes normally or an ENDDO instruction is
encountered, the value is popped from the hardware stack. This process allows for one hardware DO loop
to be nested inside another.

The program controller is described in more detail in Chapter 8, “Program Controller.” For more
information on hardware looping, see Section 8.5, “Hardware Looping,” on page 8-18. Information on
interrupt processing is contained in Chapter 9, “Processing States.”

2.5.7 Bit-Manipulation Unit
The bit-manipulation unit performs bitfield operations on data memory words, peripheral registers, and
registers within the DSC core. It is capable of testing, setting, clearing, or inverting individual or multiple
bits within a 16-bit word. The bit-manipulation unit can also test bytes for branch-on-bitfield instructions.

See Chapter 7, “Bit-Manipulation Unit,” for a detailed description of the bitfield unit.

2.5.8 Enhanced On-Chip Emulation (Enhanced OnCE) Unit
The Enhanced On-Chip Emulation (Enhanced OnCE) unit provides a non-intrusive debugging
environment. It is capable of examining and changing core or peripheral registers and memory values. It
can also be used to set breakpoints in program or data memory and step or trace instruction execution.

Refer to Chapter 11, “JTAG and Enhanced On-Chip Emulation (Enhanced OnCE),” for an overview of the
Enhanced OnCE unit’s capabilities.

2.6 Blocks Outside the Core
Devices based on the DSC core contain several additional memory and peripheral blocks. These blocks
provide the functionality that is necessary for a complete working system on a chip. Typical blocks include
those outlined in the following subsections.

2.6.1 Program Memory
Program memory (RAM and/or flash memory) can be provided on-chip with the DSC architecture. The
PAB bus is used to select program memory addresses; instruction fetches are performed over the PDB.
Writes of 16-bit data to program memory are supported over the CDBW bus.

The interrupt and reset vector table can be any size and located anywhere in program memory. The size of
the table is determined by the number of peripherals on the device and by the requirements of the particular
application.

Program memory can be expanded off-chip, with a maximum of 221 (2M) addressable locations.

2.6.2 Data Memory
On-chip data memory (RAM or flash memory) can be implemented on a DSC device. Addresses in data
memory are selected on the XAB1 and XAB2 buses. Byte, word, and long data transfers occur on the
CDBR and CDBW buses. A second 16-bit read operation can be performed in parallel on the XDB2 bus.
Freescale Semiconductor Core Architecture Overview 2-11

Core Architecture Overview
Peripheral registers are memory mapped into the data memory space. The instruction set optimizes access
to the peripheral registers with a special peripheral addressing mode that makes access to a 64-location
peripheral address space more efficient. Although the peripheral register address range is typically from
$00FFC0 to $00FFFF, individual DSC devices may locate it anywhere in the data memory address space.
The top 12 locations of the peripheral register address space are reserved by the system architecture for the
core, interrupt priority, and bus control configuration registers.

A special addressing mode also exists for the first 64 locations in data memory. Like the peripheral
addressing mode, these locations can be accessed using single word, single cycle instructions. For more
information on these and other addressing modes used to access data memory, see Section 3.6.5.1,
“Absolute Short Address: aa,” on page 3-42.

Data memory can be expanded off-chip, with a maximum of 224 (16M) addressable locations.

2.6.3 Bootstrap Memory
A program bootstrap ROM is typically provided for devices that execute programs from on-chip RAM
instead of ROM. The bootstrap ROM is used to load the application into RAM on reset. The DSC
architecture provides a bootstrapping mode, which fetches instructions from ROM and configures the
RAM as read-only. The operating mode register can then be reprogrammed to fetch instructions from
RAM. See the specific device’s user’s manual for information on bootstrapping mode.

2.6.4 External Bus Interface
An external bus interface extends the data and address buses off the chip, allowing access to external data
and program memory, I/O devices, or other peripherals. The external-bus-interface timing is
programmable, allowing for a wide variety of external devices. These devices can include slow memory
devices, other DSCs, MPUs in master/slave system configurations, or any number of other peripherals.

All three sets of buses (PAB and PDB; XAB1, CDBW, and CDBR; and XAB2 and XDB2) can be
extended to access external devices. Refer to the specific device’s user’s manual for information on
implementing the external bus interface.
2-12 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Chapter 3
Data Types and Addressing Modes
The core contains a large register set and a variety of data types, enabling the efficient implementation of
digital signal processing and general-purpose control algorithms. Byte, word, and long memory accesses
are supported, as are instructions in which a memory access can occur in parallel with an arithmetic
operation. A powerful set of addressing modes also improves execution speed and reduces code size.

3.1 Core Programming Model
The registers in the DSC core programming model are shown in Figure 3-1 on page 3-2. The programming
model is divided into three major blocks in the DSC core.

Registers in the data ALU are used for operations within that block, such as arithmetic operations. More
information on these registers can be found in Section 5.1, “Data ALU Overview and Architecture,” on
page 5-2.

Registers in the address generation unit (AGU) are used as pointers and for operations within that block,
such as computations of effective addresses. More information on these registers can be found in
Section 6.1, “AGU Architecture,” on page 6-1.

Registers in the program control unit are used for instruction fetching, hardware looping, interrupt
handling, status, and control. More information on these registers can be found in Section 8.1, “Program
Controller Architecture,” on page 8-1.
Freescale Semiconductor Data Types and Addressing Modes 3-1

Data Types and Addressing Modes
Figure 3-1. Core Programming Model

Table 3-1 on page 3-3 contains summary descriptions of all the registers in the core.

01516313235

023

015

012

R2

R3

R4

R5

SP

R0

R1

N

A1A2 A0

B1B2 B0

C1C2 C0

D1D2 D0

Data Arithmetic Logic Unit (ALU)

Data Registers

Address Generation Unit (AGU)

Pointer Registers
015

Y1

Y0

X0

D

C

B

A

Y

Program Counter
020

PC

023

LA

Loop Address

LA2

023

HWS0

Hardware Stack

HWS1

020

FIRA

Fast Interrupt Return Address

Secondary Offset Register

Program Control Unit

N3

015
Modifier Registers

M01

015

Operating Mode Register

OMR

SR

and Status Register
(OMR, SR)

Fast Interrupt Status
Register

FISR

Loop Counter
015

LC

LC2
3-2 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Core Programming Model
Table 3-1. Core Registers

Unit Name
Size
(Bits)

Description

Data ALU Y1 16 Data register (upper 16 bits of 32-bit Y register).

Y0 16 Data register (lower 16 bits of 32-bit Y register).

Y 32 One long register containing two concatenated 16-bit registers, Y1:Y0. This regis-
ter is pushed to the stack when a fast interrupt is processed.

X0 16 Data register.

A2 4 Accumulator extension register—Bits 35 to 32 of an accumulator.

A1 16 Accumulator most significant product (MSP) register—Bits 31 to 16 of an accu-
mulator.

A0 16 Accumulator least significant product (LSP) register—Bits 15 to 0 of an accumu-
lator.

A10 32 Accumulator long portion—Bits 31 to 0 of an accumulator, containing concate-
nated registers: A1:A0.

A 36 Accumulator—Contains three concatenated registers: A2:A1:A0.

B2 4 Accumulator extension register—Bits 35 to 32 of an accumulator.

B1 16 Accumulator most significant product (MSP) register—Bits 31 to 16 of an accu-
mulator.

B0 16 Accumulator least significant product (LSP) register—Bits 15 to 0 of an accumu-
lator.

B10 32 Accumulator long portion—Bits 31 to 0 of an accumulator, containing concate-
nated registers: B1:B0.

B 36 Accumulator—Contains three concatenated registers: B2:B1:B0.

C2 4 Accumulator extension register—Bits 35 to 32 of an accumulator.

C1 16 Accumulator most significant product (MSP) register—Bits 31 to 16 of an accu-
mulator.

C0 16 Accumulator least significant product (LSP) register—Bits 15 to 0 of an accumu-
lator.
Freescale Semiconductor Data Types and Addressing Modes 3-3

Data Types and Addressing Modes
Data ALU C10 32 Accumulator long portion—Bits 31 to 0 of an accumulator, containing concate-
nated registers: C1:C0.

C 36 Accumulator—Contains three concatenated registers: C2:C1:C0.

D2 4 Accumulator extension register—Bits 35 to 32 of an accumulator.

D1 16 Accumulator most significant product (MSP) register—Bits 31 to 16 of an accu-
mulator.

D0 16 Accumulator least significant product (LSP) register—Bits 15 to 0 of an accumu-
lator.

D10 32 Accumulator long portion—Bits 31 to 0 of an accumulator, containing concate-
nated registers: D1:D0.

D 36 Accumulator—Contains three concatenated registers: D2:D1:D0.

AGU R0 24 Address register—This register is also shadowed for fast interrupt processing.

R1 24 Address register—This register is also shadowed for fast interrupt processing.

R2 24 Address register—On the DSP56800EX core, this register is also shadowed for
fast interrupt processing.

R3 24 Address register—On the DSP56800EX core, this register is also shadowed for
fast interrupt processing.

R4 24 Address register—On the DSP56800EX core, this register is also shadowed for
fast interrupt processing.

R5 24 Address register—On the DSP56800EX core, this register is also shadowed for
fast interrupt processing.

N 24 Offset register, may also be used as a pointer or index—This register is also
shadowed for fast interrupt processing.

SP 24 Stack pointer.

N3 16 Second read offset register—Sign extended to 24 bits and used as an offset in
updating the R3 pointer in dual read instructions. On the DSP56800EX core, this
register is also shadowed for fast interrupt processing.

M01 16 Modifier register—Used for enabling modulo arithmetic on the R0 and R1
address registers. This register is also shadowed for fast interrupt processing.

Table 3-1. Core Registers (Continued)

Unit Name
Size
(Bits)

Description
3-4 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Data Types
3.2 Data Types
The DSC architecture supports byte (8-bit), word (16-bit), and long-word (32-bit) integer data types. It also
supports word, long-word, and accumulator (36-bit) fractional data types.

Fractional and integer representations differ in the location of the decimal (or binary) point. For fractional
arithmetic, the decimal (or binary) point is always located immediately to the right of the MSP’s most
significant bit. For integer values, the decimal is always located immediately to the right of the value’s
least significant bit. Table 3-2 on page 3-7 shows the location of the decimal point (binary point), bit
weightings, and operand alignment for different fractional and integer representations.

The interpretation of a data value (fractional or integer) is determined by the instruction that uses it. In
some cases, the same instruction can operate on both types of data, with identical results. In others,
different instructions are used for processing fractional numbers and integer numbers. Multiplication, for
example, is performed with the MPY instruction for fractional values and with IMPY.L for integer values.

The following subsections describe the data types and their interpretation.

Program
Controller

PC 21 Program counter—Composed of a dedicated 16-bit register (bits 15-0 of the pro-
gram counter) as well as 5 bits stored in the upper byte of the status register.

LA 24 Loop address—Contains address of the last instruction word in a hardware DO
loop.

LA2 24 Loop address 2—Saves loop address for outer loop.

HWS 24 Hardware stack—Provides access to the hardware stack as a two-location LIFO
buffer.

FIRA 21 Fast interrupt return address—Saves a 21-bit copy of the return address upon
entering a level 2 fast interrupt service routine.

FISR 13 Fast interrupt status register—Saves a copy of the condition code register, the
stack alignment state, and the hardware looping status upon entering a level 2
fast interrupt service routine.

OMR 16 Operating mode register—Sets up modes for the core.

SR 16 Status register—Contains status, control, and the 5 MSBs of the program counter
register.

LC 16 Loop counter—Contains loop count when hardware looping.

LC2 16 Loop counter 2—Saves loop count for outer loop.

Table 3-1. Core Registers (Continued)

Unit Name
Size
(Bits)

Description
Freescale Semiconductor Data Types and Addressing Modes 3-5

Data Types and Addressing Modes
3.2.1 Data Formats
The DSC core supports four types of two’s-complement data formats:

• Signed integer

• Unsigned integer

• Signed fractional

• Unsigned fractional

Signed and unsigned integer data types are useful for general-purpose computing; they are familiar to
microprocessor and microcontroller programmers. Fractional data types allow for powerful numeric and
digital-signal-processing algorithms to be implemented.

3.2.1.1 Signed Integer

This format is used for processing data as integers. In this format, the N-bit operand is represented using
the N.0 format (N integer bits). Signed integer numbers lie in the following range:

–2[N–1]
 ≤ SI ≤ [2[N–1] – 1]

This data format is available for bytes, words, and longs. The most negative, signed word that can be
represented is –32,768 ($8000), and the most negative, signed long word is –2,147,483,648 ($8000_0000).
The most positive signed word is 32,767 ($7FFF), and the most positive signed long word is 2,147,483,647
($7FFF_FFFF).

3.2.1.2 Unsigned Integer

Unsigned integer numbers are positive only, and they have nearly twice the magnitude of a signed number
of the same size. Unsigned integer numbers lie in the following range:

0 ≤ UI ≤ [2N – 1]

The binary word is interpreted as having a binary point immediately to the right of the integer’s least
significant bit.

This data format is available for bytes, words, and long words. The most positive, 16-bit, unsigned integer
is 65,535 ($FFFF), and the most positive, 32-bit, unsigned integer is 4,294,967,295 ($FFFF_FFFF). The
smallest unsigned integer number is zero ($0000), regardless of size.

3.2.1.3 Signed Fractional

In this format, the N bit operand is represented using the 1.[N–1] format (1 sign bit, N–1 fractional bits).
Signed fractional numbers lie in the following range:

–1.0 ≤ SF ≤ +1.0 – 2–[N–1]

This data format is available for words and long words. For both word and long-word signed fractions, the
most negative number that can be represented is –1.0, whose internal representation is $8000 (word) or
$80000000 (long word). The most positive word is $7FFF (1.0 – 2–15), and the most positive long word is
$7FFF_FFFF (1.0 – 2–31).
3-6 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Data Types
3.2.1.4 Unsigned Fractional

Unsigned fractional numbers may be thought of as positive only, and they have nearly twice the magnitude
of a signed number with the same number of bits. Unsigned fractional numbers lie in the following range:

0.0 ≤ UF ≤ 2.0 – 2–[N–1]

The binary word is interpreted as having a binary point after the MSB.

This data format is available for words and longs. The most positive, 16-bit, unsigned number is $FFFF, or
{1.0 + (1.0 – 2–[N–1])} = 1.99997. The smallest unsigned fractional number is zero ($0000).

3.2.2 Understanding Fractional and Integer Data
Data in a memory location or register can be interpreted as fractional or integer, depending on a program’s
needs. Table 3-2 shows how a 16-bit value can be interpreted as either fractional or integer, depending on
the location of the binary point.

The relationship between the integer interpretation of a 16-bit value and the corresponding fractional
interpretation is:

Fractional Value = Integer Value / (215)

There is a similar relationship between 32-bit integers and fractional values:

Fractional Value = Integer Value / (231)

Table 3-3 on page 3-8 shows how a 36-bit value can be interpreted as either an integer or fractional value,
depending on the location of the binary point.

Table 3-2. Interpretation of 16-Bit Data Values

Hexadecimal
Representation

Integer Fraction

Binary Decimal Binary Decimal

$7FFF 0111 1111 1111 1111. 32767 0.111 1111 1111 1111 0.99997

$7000 0111 0000 0000 0000. 28672 0.111 0000 0000 0000 0.875

$4000 0100 0000 0000 0000. 16384 0.100 0000 0000 0000 0.5

$2000 0010 0000 0000 0000. 8192 0.010 0000 0000 0000 0.25

$1000 0001 0000 0000 0000. 4096 0.001 0000 0000 0000 0.125

$0000 0000 0000 0000 0000. 0 0.000 0000 0000 0000 0.0

$C000 1100 0000 0000 0000. –16384 1.100 0000 0000 0000 –0.5

$E000 1110 0000 0000 0000. –8192 1.110 0000 0000 0000 –0.25

$F000 1111 0000 0000 0000. –4096 1.111 0000 0000 0000 –0.125

$9000 1001 0000 0000 0000. –28672 1.001 0000 0000 0000 –0.875

$8000 1000 0000 0000 0000. –32768 1.000 0000 0000 0000 –1.0
Freescale Semiconductor Data Types and Addressing Modes 3-7

Data Types and Addressing Modes
3.3 Memory Access Overview
The core implements a powerful set of memory-access operations that eases the task of programming the
CPU, decreases program code size, improves efficiency, and decreases the power consumption and
processing power that are required to perform a given task.

Memory is accessed in a variety of ways. Examples include the following types of instructions:

• Move instructions that access data or program memory

• Arithmetic or bit-manipulation instructions where one operand is located in data memory

• Parallel move instructions that perform an operation and move data to or from memory
simultaneously

Each of these memory accesses can be performed both on different sizes of data and with a number of
different addressing modes. Byte, word, and long-word memory accesses, on both signed and unsigned
data, are supported. The provided addressing modes make it easy to access memory quickly and
efficiently.

3.3.1 Move Instruction Syntax
The core supports memory moves to and from both data and program memory, multiple data sizes, and a
variety of addressing modes. Understanding the syntax for each of these options is essential to
understanding and taking advantage of this flexibility.

Table 3-3. Interpretation of 36-Bit Data Values

Hexadecimal
Representation

Decimal Representation

36-Bit Integer in
Entire Accumulator

16-Bit Integer in MSP of
Accumulator

Fraction

$2 0000 0000 8589934592 (Overflows) 4.0

$0 8000 0000 2147483648 (Overflows) 1.0

$0 4000 0000 1073741824 16384 0.5

$0 2000 0000 536870912 8192 0.25

$0 0000 0000 0 0 0.0

$F E000 0000 –536870912 –8192 –0.25

$F C000 0000 –1073741824 –16384 –0.5

$F 8000 0000 –2147483648 –32768 –1.0

$E 0000 0000 –8589934592 (Overflows) –4.0
3-8 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Memory Access Overview
3.3.1.1 Ordering Source and Destination

The syntax and sequence for all move instructions on the core are as follows: SRC,DST. The source and
destination are separated by a comma, with no spaces either before or after the comma, as shown in
Example 3-1.

Example 3-1. Demonstrating Source and Destination Operands

MOVE.W X0,R3 ; X0 is the source operand
; R3 is the destination operand

3.3.1.2 Memory Space Syntax

Each instruction that accesses memory must specify the particular memory address space (data or
program) that is being referenced. Addresses in memory should be prefixed with either X: to indicate the
data memory space or with P: to indicate the program memory space. Table 3-4 shows the address space
prefixes and their use.

To avoid confusion, specify all addresses with one of these prefixes. Instructions that do not have this
requirement include jump and branch instructions, whose target addresses always access program memory.

3.3.1.3 Specifying Data Size

The size of data accessed from memory is indicated by a suffix:

• “.W” suffix—indicates word memory accesses

• “.L” suffix—indicates long memory accesses

• “.B” suffix—indicates byte memory accesses

• “.BP” suffix—indicates byte memory accesses

The difference between the two byte accesses is explained in Section 3.5, “Memory Access and Pointers.”

3.3.2 Instructions That Access Data Memory
Instructions access data memory in one of three ways: using a MOVE instruction with a parameter that
refers to data memory, using an arithmetic instruction that has a parameter in data memory, or using a
bitfield manipulation instruction.

3.3.2.1 Signed and Unsigned Moves

The core provides separate move instructions to ensure that the destination register is zero extended or sign
extended, as appropriate. For unsigned register loads from memory, the letter “U” immediately follows the
“MOVE” portion of the instruction. Unsigned moves are important only when a register is being written
and are not required when a register is being read.

Table 3-4. Memory Space Symbols

Symbol Examples Description

P: P:(R2)+ Program memory access

X: X:(R0)
X:$C000

Data memory access
Freescale Semiconductor Data Types and Addressing Modes 3-9

Data Types and Addressing Modes
Table 3-5 summarizes the various move instructions.

3.3.2.2 Moving Words from Memory to a Register

Data ALU registers are typically used to hold signed or fractional data because these data types are the
ones that are most often used in DSC algorithms. In contrast, the AGU and program controller registers
almost always manipulate unsigned values because addresses are always positive integer values. When
loading word values into any of these registers, be sure to use the correct type of MOVE instruction to fit
the use of the value.

For loading data ALU registers, the MOVE.W instruction is most frequently used. This instruction loads
the value into the register and sign extends it correctly. Use the MOVEU.W instruction when loading word
values into the AGU and program controller registers. Using this instruction ensures that the word value is
zero extended to the full register width. Table 3-6 shows how MOVE instructions are typically used to load
registers with 16-bit data.

The MOVE.W instruction is always used to store any register to a word location in memory.

3.3.2.3 Accessing Peripheral Registers

The rules for accessing peripheral registers are the same as the rules for data memory accesses because
peripheral registers are memory mapped in the data memory space.

Table 3-5. Suffixes for Move Instructions

Suffix Examples Description

.W MOVE.W X:(R0),A Load register with 1 word from memory, with sign extension

U.W MOVEU.W X:(R0),R5 Load register with 1 word from memory, with zero extension

.L MOVE.L X:(R0),A Load register with 1 long from memory, with sign extension; note
that no extension is performed when moving to 24-bit AGU regis-
ters

.B MOVE.B X:(R0),X0 Load register with 1 byte from memory, with sign extension

U.B MOVEU.B X:(R0),X0 Load register with 1 byte from memory, with zero extension

.BP MOVE.BP X:(R0),X0 Load register with 1 byte from memory, with sign extension

U.BP MOVEU.BP X:(R0),X0 Load register with 1 byte from memory, with zero extension

Table 3-6. Typical 16-Bit-Word Register Loads

Instruction Destination Description

MOVE.W Data ALU registers Signed words loaded to data ALU registers

MOVEU.W AGU registers Unsigned words loaded to AGU pointer registers

MOVEU.W LA, LC, HWS, OMR, and SR Unsigned words loaded to other control registers
3-10 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Memory Access Overview
3.3.3 Instructions That Access Program Memory
The size of data that is accessed from program memory is always 16 bits, so the “.W” suffix is used at all
times. Accesses to program memory follow the same rules that are used for data memory accesses.

Example 3-2 shows examples of valid program memory accesses.

Example 3-2. Program Memory Accesses

MOVE.W P:(R0)+,X0 ; Read 16-bit signed word from program memory
MOVEU.WP:(R0)+,R3 ; Read 16-bit unsigned word from program memory
MOVE.W R2,P:(R0)+ ; Write 16-bit word to memory

3.3.4 Instructions with an Operand in Data Memory
In some arithmetic instructions, one operand is located in data memory. This operand value must be moved
into a temporary register in the data ALU or in the AGU before the instruction can use it. If the instruction
modifies the operand value, the value must then be written back to data memory.

When loaded into a temporary register, the value is aligned and extended in the same way that it would be
if it were placed in a register with a MOVE instruction. For example, the instruction ADD.B X:$4000,A
uses the same method for loading the value at byte address $4000 into a temporary register that the
instruction MOVE.B X:$4000,A uses to load the value into A. For more information on this loading
method, see Section 3.4.1, “Data Alignment in Accumulators.”

Example 3-3 shows some instructions with an operand in data memory.

Example 3-3. Examples of Operands in Memory

;memory location as source operand
ADD.BP X:$4000,A ; Add byte in memory to accumulator
ADD.W X:$2000,A ; Add word in memory to accumulator
ADD.L X:$2000,A ; Add long in memory to accumulator

;memory location with read-modify-write instruction
DEC.BP X:$4000 ; Decrement byte in memory
DEC.W X:$2000 ; Decrement word in memory
DEC.L X:$2000 ; Decrement long in memory

3.3.5 Parallel Moves
The core implements two additional types of memory moves: the single parallel move and the dual parallel
read. Both are considered “parallel move” instructions and are extremely powerful in DSC algorithms and
numeric computation. Parallel moves are restricted to arithmetic operations in the data ALU. A parallel
move is not permitted, for example, with a JMP or BFSET instruction.
Freescale Semiconductor Data Types and Addressing Modes 3-11

Data Types and Addressing Modes
3.3.5.1 Single Parallel Move

The single parallel move allows an arithmetic operation and 1 memory word access to be completed with
1 instruction, in 1 clock cycle. For example, all in the same instruction, it is possible to add two numbers
while writing a value from a data ALU register to memory.

Figure 3-2 illustrates a single parallel move that uses 1 program word and executes in 1 instruction cycle.
In this example, the following events occur:

1. Register X0 is added to the A accumulator, and the result is stored back in A.

2. The contents of the Y0 register is stored as a word in data memory at the address contained
in the R1 register.

3. When the memory move is completed, the R1 register is post-updated by the value of
R1+N.

Figure 3-2. Single Parallel Move

3.3.5.2 Dual Parallel Read

With a single instruction, in 1 instruction cycle, the dual parallel read performs an arithmetic operation and
reads two word values from data memory. For example, a dual parallel read can multiply two numbers
while reading two values from data memory to two of the data ALU registers.

Figure 3-3 illustrates a dual parallel read that also uses 1 program word and executes in 1 instruction cycle.
In this example, the following events occur:

1. The original contents of the X0 and Y0 registers are multiplied, and the result is added to and
stored in the A accumulator.

2. The contents of the data memory location pointed to by the R0 register are moved into the
Y1 register. The size of the access is 1 memory word.

3. The contents of the data memory location pointed to by the R3 register are moved into the
X0 register. The size of the access is 1 memory word.

4. After completing the memory moves, the R0 register is post-updated with the value R0+N,
and R3 is decremented.

Figure 3-3. Dual Parallel Read

Opcode and Operands Single Parallel Move

ADD X0,A Y0,X:(R1)+N ; Example parallel move instruction

(Uses XAB1 and CDBW)

Opcode and Operands Primary Read

MAC X0,Y0,A X:(R0)+N,Y1 X:(R3)-,X0

(Uses XAB1 and CDBR)

Secondary Read

(Uses XAB2 and XDB2)
3-12 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Data Alignment
3.4 Data Alignment
This section discusses how data is aligned in registers and memory.

3.4.1 Data Alignment in Accumulators
Figure 3-4 shows the alignment of different-size data values when they are located in an accumulator. Byte
and word values are located in the FF1 portion of an accumulator, while 32-bit values occupy both the FF1
and FF0 portions.

Figure 3-4. Data Alignment in Accumulators

When a byte or word value is moved into an accumulator using one of the MOVE instructions, the FF0
portion is always cleared. Values can be loaded into an accumulator as either signed or unsigned, using the
MOVE or MOVEU mnemonics, respectively. When a signed move is performed, the value is sign
extended through bit 35 of the accumulator. Unsigned moves cause the value to be zero extended.

Move instructions that place a value in an accumulator are shown in Example 3-4.

Example 3-4. Loading Accumulators with Different Data Types

MOVE.B X:(R0+88),A ; accumulator loaded with signed byte
MOVE.BPX:(R0),A ; accumulator loaded with signed byte
MOVEU.BX:(R0+3),A ; accumulator loaded with unsigned byte
MOVEU.BPX:(R0)+,A ; accumulator loaded with unsigned byte
MOVE.W X:(R0),A ; accumulator loaded with signed word
MOVE.L X:(R0),A ; accumulator loaded with signed long

Moves from an accumulator register to memory use only the portions of the accumulator that are identified
in Figure 3-4. Saturation is allowed only on word data types (MOVE.W) and occurs only when an entire
accumulator (A, B, C, or D) is the source operand. See Example 3-5 on page 3-14.

MOVE.W (Signed Word Move)
Sign

Extension Zero Fill

MOVEU.B, MOVEU.BP (Unsigned Byte Move)
Zero Extension Zero Fill

035 32 1631 15

035

MOVE.B, MOVE.BP (Signed Byte Move)
Sign Extension Zero Fill

16 1524 23

MOVE.L (Signed Long Move) Sign
Extension

035 32 31

035 16 1524 23

SXT.B (Force to Signed Byte)

ZXT.B (Force to Unsigned Byte)

SXT.L (Force to Signed Long)

NOTE: Instructions SXT.B and ZXT.B do not change the LSP of a 32- or 36-bit register destination,
unless the source is a 16-bit register. In this case, the LSP is cleared.
Freescale Semiconductor Data Types and Addressing Modes 3-13

Data Types and Addressing Modes
Example 3-5. Storing Accumulators with Different Data Types

MOVE.B A1,X:(R0+3) ; store accumulator byte (no saturation)
MOVE.BPA1,X:(R0) ; store accumulator byte (no saturation)
MOVE.W A1,X:(R0) ; store accumulator word (no saturation)
MOVE.W A,X:(R0) ; store accumulator word (saturation)
MOVE.L A10,X:(R0) ; store accumulator long (no saturation)

When a MOVE.W or MOVE.L instruction is used to write an accumulator extension register to memory,
the value is sign extended to 16 or 32 bits before it is written.

3.4.2 Data Alignment in Data Registers
The alignment of data within the 16-bit data registers is shown in Figure 3-5. Moves of words (MOVE.W)
from memory (integer or fractional) fill the entire 16-bit register. Signed moves of bytes from memory
(MOVE.B or MOVE.BP) are put in the lower 8 bits of the data register and are sign extended in the upper
8 bits. Unsigned moves are marked with “U” (MOVEU.B or MOVEU.BP) and place zero extension into
the upper 8 bits of the data register.

Figure 3-5. Supported Data Types in Data Registers (X0, Y1, Y0)

The Y register, the combination of the Y0 and Y1 registers, can hold a full 32-bit value. It is always read or
written with a long-word move instruction (MOVE.L), and it is never sign extended or zero extended
because a 32-bit value completely fills it.

3.4.3 Data Alignment in 24-Bit AGU and Control Registers
The 24-bit registers in the AGU include the address pointer registers (R0–R5, N, and SP), loop address
registers (LA and LA2), and the hardware stack register (HWS). All values (byte, word, and long word) are
right aligned in the destination register. When an unsigned move instruction is used to load one of these
registers, the value is zero extended to the full register width. Signed moves cause the value to be sign
extended. The placement of data in AGU registers from memory appears in Figure 3-6 on page 3-15.

MOVE.W (Signed Word Move)

MOVEU.B (Unsigned Byte Move)

015

MOVE.B (Signed Byte Move)

8 7 015
Sign

Extension

Zero
Extension

8 7 015
3-14 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Data Alignment
Figure 3-6. Data Alignment in 24-bit AGU Registers

When a MOVE.L instruction is used to write a value to an AGU pointer register, the lower 24 bits are
written and the upper 8 bits are discarded. Using MOVE.L to store a register in memory stores the register
value in the lower 24 bits and fills the upper 8 bits with zero. Sixteen-bit accesses (such as using
MOVE.W) always access the low-order sixteen bits. Although there are no instructions that move bytes to
or from the AGU registers, byte data types can be used with the AGU’s SXTA.B and ZXTA.B
instructions.

Note that accessing the HWS register also pushes and pops values onto the hardware stack. Refer to
Section 8.1.4, “Hardware Stack,” on page 8-3 for details.

3.4.4 Data Alignment in 16-Bit AGU and Control Registers
The alignment of data within the AGU’s 16-bit registers (N3, M01, LC, and LC2) is shown in Figure 3-7.
When these registers are written to with a MOVE.L instruction, the upper 16 bits are discarded. Reading
this register with a MOVE.L instruction places the register contents on the lowest 16 bits, and the upper 16
bits are filled with zero extension. Byte accesses are not supported with these registers.

Figure 3-7. Data Alignment in 16-Bit AGU Registers

3.4.5 Data Alignment in Memory
The DSC core architecture requires that variables in data memory be aligned to byte, word, or long-word
address boundaries according to the type of data being accessed.

MOVEU.W (Unsigned Word Move)

MOVE.W (Signed Word Move)

ZXTA.B (Force to Unsigned Byte)

01623 15

01623 15

SXTA.B (Force to Signed Byte)

8 7

MOVE.L (Long Move)

01623 15

01623 15

01623 15

8 7

Sign
Extension

Zero
Extension

Sign
Extension

Zero
Extension

Sign
Extension

Zero
Extension

MOVEU.W (Unsigned Word Move)

015

MOVE.L (Long Move)

015
Freescale Semiconductor Data Types and Addressing Modes 3-15

Data Types and Addressing Modes
3.4.5.1 Byte and Word Addresses

In order to access the different sizes of data that are supported by the core, the instruction set supports two
types of addresses: byte and word. Word addresses can be used to access byte (8-bit), word (16-bit), or
long-word (32-bit) values in memory. Byte addresses are used only for accessing bytes.

In general, the core data memory map can be thought of as 224 contiguous 16-bit words. When word
pointers are used, the address selects for use one of the bytes of the word, the complete word, or two words
when a long-word access is performed. Byte pointers select both the word in the memory map to access
and the desired byte within the word. Figure 3-8 shows the two types of pointers.

Figure 3-8. Structure of Byte and Word Addresses

Bits 23–1 of a byte address select the word in the memory map that is to be accessed. The LSB selects the
byte within that word. If the LSB is zero, the lower byte within the word is selected; if the LSB is one, the
upper byte is selected.

Note that, because there are only 23 word-select bits in a byte pointer, byte variables can only be located in
the lower 223 locations in the data memory map.

3.4.5.2 Byte Variable Alignment

Byte variables can be allocated anywhere in the lower half of the 24-bit data memory space, since the
24-bit address used for accessing bytes can only access the lower 223 words in data memory.

Although byte variables can be located at any address, the core assembler only allows byte labels on word
(even) address boundaries. When a label is used to name a byte variable location, the assembler will force
the address of the variable to be even. When a byte is allocated statically or globally using a label, it will
use up 16 bits and will be located in the least significant 8 bits.

Example 3-6 on page 3-17 shows the ds assembler directive being used to allocate 1 word of uninitialized
data memory. The variables thus created are referenced by the word address labels X:BYTVAR1 and
X:BYTVAR2. For each variable, the byte is located in the least significant 8 bits of the word.

Word Pointer

23 16 15 78 1 0

Word Address

Upper or Lower Byte Select

Byte Pointer

23 16 15 78 1 0

Word Address

Word pointers can access bytes, words, or long words.

Byte pointers can access bytes only.
3-16 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Memory Access and Pointers
Example 3-6. Allocation of 2 Bytes Globally

org X:$100 ; Allocate 2 bytes at word address = $100
BYTVAR1 ds 1 ; DS directive allocates 1 word at $100
BYTVAR2 ds 1 ; DS directive allocates a second word at $102

Arrays of bytes and structures containing bytes correctly allocate a byte as 8 bits rather than 16 bits. An
array of bytes can begin at any byte address. In Example 3-7, a string containing the characters “my world”
is allocated in data memory, where each character is stored in a byte. The string uses 8 bytes of data
memory (four 16-bit words).

Example 3-7. Allocation of a Character String

org X:$200 ; Allocate 8 bytes at word address = $200
STRING1 dcb ‘ym’ ; ‘m’ in lower byte, ‘y’ in upper byte

dcb ‘w ’ ; ‘ ’ in lower byte, ‘w’ in upper byte
dcb ‘ro’ ; ‘o’ in lower byte, ‘r’ in upper byte
dcb ‘dl’ ; ‘l’ in lower byte, ‘d’ in upper byte

Data is organized in the memory map with the least significant byte occupying the lowest address in
memory—so-called little-endian byte ordering. This organization accounts for why the pairs of characters
are reversed in Example 3-7.

3.4.5.3 Word Variable Alignment

Word (16-bit) variables are naturally aligned correctly using word addressing—each address is treated as
referring to a 16-bit data value (see Section 3.5.2, “Accessing Word Values Using Word Pointers,” for
information on word addressing). Data accesses to program memory are always treated as word accesses
and behave the same as word accesses to data memory.

3.4.5.4 Long-Word Alignment

The core architecture requires that long-word variables be allocated on even word addresses, as illustrated
in Figure 3-10 on page 3-19. In general, a long word is accessed using the (lower) even word address.
Long-word accesses using the stack pointer work somewhat differently. See Section 3.5.3, “Accessing
Long-Word Values Using Word Pointers,” for more information.

3.5 Memory Access and Pointers
The DSP56800 core was designed to operate as a word-addressable machine, in which each address
represents one 16-bit word value. The core instruction set has been enhanced to access byte, word, and
long-word memory accesses while maintaining compatibility with the DSP56800 architecture. This
section introduces the concept of word and byte pointers and shows how they are used to access byte,
word, and long values in memory.

3.5.1 Word and Byte Pointers
As described in Section 3.4.5.1, “Byte and Word Addresses,” the core architecture supports both byte and
word addresses. Byte pointers are used to access byte values in memory, while word pointers are used to
access byte, word, or long-word data types in memory.
Freescale Semiconductor Data Types and Addressing Modes 3-17

Data Types and Addressing Modes
There is no inherent difference between a byte address and a word address—they are both simply 24-bit
quantities. Individual instructions determine how an address is used: an address in an AGU register is
considered a byte pointer when it is used by instructions that expect byte pointers, and it is considered a
word pointer when it is used by instructions expecting word pointers.

Instructions use the “.BP” suffix to indicate that an address register is to be used as a byte pointer. The
“.B”, “.W”, and “.L” suffixes indicate that an address register represents a word pointer. The suffix “.BP”
is also used to indicate that an absolute address is a byte address.

Characteristics of word pointers include the following:

• They indicate that an address register (R0–R5, N, SP) points to a word address in memory.

• They can be used for byte, word, or long data memory accesses.

• Immediate offsets are in bytes (for byte instructions) or in words (for word and long instructions).
Offsets in the N register are expressed in words (for word instructions) or in longs (for long
instructions).

• They provide efficient accesses to structures.

• They are fully compatible with the DSP56800 architecture, which only supports word accesses.

Characteristics of byte pointers include the following:

• They indicate that an address register (R0–R5, N) points to a byte address in data memory.

• They are used for byte accesses only.

• Offsets are always in bytes.

• They can only access the lower half of the 24-bit data memory space (the lowest 223 words).

• They are extremely efficient for accessing arrays of bytes in memory.

• They cannot access program memory.

• Several instructions use address registers as byte pointers, including the following:

— MOVE.BP, MOVEU.BP

— ADD.BP, SUB.BP, CMP.BP

— INC.BP, DEC.BP, NEG.BP

— CLR.BP, TST.BP

NOTE:

The SP register cannot be used as a byte pointer. The SP register is always
used as a stack pointer, so it must always be word aligned for the correct
operation of instructions such as JSR, RTS, and RTI. However, it is
possible to place and access bytes on the stack with the (SP – offset)
addressing modes.

Byte pointers are used exclusively for accessing byte values in data memory. Word pointers, however, can
be used for accessing data of any size: byte, word, or long word. The instruction itself determines if an
address is used as a word or byte pointer.

A word pointer can be converted to a byte pointer by left shifting the value 1 bit, using the ASLA
instruction. Similarly, a byte pointer can be converted to a word pointer by logically right shifting the value
1 bit, using the LSRA instruction (the LSB is lost).

Examples of byte and word pointers are shown in the following sections. More detailed examples of byte
and word pointers appear in Section 6.5, “Word Pointer Memory Accesses,” on page 6-8 and Section 6.6,
“Byte Pointer Memory Accesses,” on page 6-13.
3-18 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Memory Access and Pointers
3.5.2 Accessing Word Values Using Word Pointers
Word values are accessed from program or data memory with the MOVE.W or MOVEU.W instructions or
with any of the data ALU instructions that access an operand from data memory, such as
ADD.W X:(R0),A or DEC.W X:$C200. Word memory accesses always use an address as a word pointer.

Figure 3-9 shows an example of a word access using a word pointer. The example executes the
MOVE.W A1,X:(R0) instruction. This instruction uses the value in the R0 register, $1000, as the address
in X memory to which the value in A1 ($ABCD) is written.

Figure 3-9. Accessing a Word with a Word Pointer

3.5.3 Accessing Long-Word Values Using Word Pointers
Long-word values are accessed from data memory with the MOVE.L instruction or with any data ALU
instruction that accesses a long-word operand from data memory, such as ADD.L X:$1000,A. Long-word
memory accesses always use a word address. Each long-word value occupies two memory word locations,
as shown in Figure 3-10, and is always aligned on an even word address except when SP is used. The even
address holds the lower word, and the odd address holds the upper word.

Figure 3-10. Correct Storage of 32-Bit Value in Memory

Instruction: MOVE.W A1,X:(R0)
Access Size: Word

$001000

X Memory

A B C D

$001000R0

15 0Word
Address

$001000

Storage of $12345678 in Data Memory

X Memory

5 6 7 8

15 0Word
Address

1 2 3 4

Even Address: Always holds lower word

Odd Address: Always holds upper word
Freescale Semiconductor Data Types and Addressing Modes 3-19

Data Types and Addressing Modes
Although a long-word value is always located on an even word address boundary, the effective address
used to access the value is not always that even word address. For all registers and addressing modes other
than the stack pointer (SP), the lower even address is used when accessing a long word. In an addressing
mode that uses the stack pointer, the effective address is the odd address that contains the upper word of
the 32-bit value. An attempt to access a long word in any other way generates a misaligned data access
exception. Refer to Section 9.3.3.2.3, “Misaligned Data Access Interrupt,” on page 9-9 for more
information.

Figure 3-11 shows a long-word access using an AGU pointer register. The example executes the
MOVE.L A10,X:(R0) instruction, which uses the value in the R0 register, $1000, as a word address. The
32-bit value contained in the A accumulator, $12345678, is written to this location and the following one.

Figure 3-11. Accessing a Long Word Using an Address Register

Figure 3-12 shows a long-word access using the stack pointer. The example executes the
MOVE.L A10,X:(SP) instruction, which uses the value in the SP register, $1001, as a word address. The
32-bit value contained in the A accumulator, $12345678, is written to addresses $1000 and $1001.

Figure 3-12. Accessing a Long Word Using the SP Register

Instruction: MOVE.L A10,X:(R0)
Access Size: Long
Effective Address: Even Value

$001000

X Memory

5 6 7 8

$001000R0

15 0Word
Address

1 2 3 4 Note: Even Effective Address

Instruction: MOVE.L A10,X:(SP)
Access Size: Long
Effective Address: Odd Value

$001000

X Memory

5 6 7 8

$001001SP

15 0Word
Address

1 2 3 4
Note: Odd Effective Address
3-20 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Memory Access and Pointers
Note that, if the stack pointer addressing mode is used, each long value must still be aligned on an even
word address boundary even though the effective address that is used to access the value is odd.

3.5.4 Accessing Byte Values Using Word Pointers
The MOVE.B and MOVEU.B instructions are useful for accessing structures or unions containing bytes as
well as for accessing bytes in a stack frame. These instructions use the address registers (R0–R5, N, SP) as
word pointers and use an offset value to select the upper or lower byte.

Figure 3-13 shows an example of a byte access using a word pointer. The example executes the
MOVE.B A1,X:(R0+3) instruction. In this case, the address contained in R0, $1000, is added to an
immediate offset after the offset has been arithmetically right shifted 1 bit to give the correct word address:
(3>>1) + $1000 = $1001. The least significant bit (LSB) of the immediate offset selects which byte at the
word address is accessed. In this example, the LSB of the immediate offset (3) is set, so the upper byte of
the memory word is accessed. The lowest 8 bits of the A1 register, $CD, are then written to this location.
The lower byte of the memory location $1001 is not modified.

Figure 3-13. Accessing a Byte with a Word Pointer

3.5.5 Accessing Byte Values Using Byte Pointers
Byte pointers are useful for accessing byte variables or arrays of bytes. Instructions that use addresses as
byte pointers include the MOVE.BP and MOVEU.BP instructions as well as data ALU instructions that
access byte operands from data memory using the “.BP” suffix, such as ADD.BP X:$2001,A.

When a byte pointer is used, the value in the selected address register is a byte address. The byte address is
specified using the following:

• The contents of a register: MOVE.BP X:(R2),A

• The result of an AGU calculation: MOVE.BP X:(R1+$A701),A

Instruction: MOVE.B A1,X:(R0+3)
Access Size: Byte
Byte Selected: Upper

$001000R0

$001001

X Memory

C D X X

15 0Word
Address

Word Address: $1001
Byte Select: 1 (Upper)

Byte address: $2003

LSB of Offset

$001000

+Short Immediate Value “3”
from the Instruction Word

>>1
Freescale Semiconductor Data Types and Addressing Modes 3-21

Data Types and Addressing Modes
• An absolute address (upper byte): MOVE.BP X:@hb($F000),X0

• An absolute address (lower byte): MOVE.BP X:@lb(VAR_LABEL),X0

• An absolute address (upper byte): MOVE.BP X:$108001,X0

Two of the functions in the preceding list are built into the assembler. These functions, described in
Table 3-7, are useful for converting a word address or label into a byte address for instructions that expect
to receive a byte address.

NOTE:

The stack pointer register is always used as a word pointer.

Figure 3-14 shows a byte access using a byte pointer. The example executes the MOVE.BP A1,X:(R0)
instruction. The address contained in R0, $2001, is logically right shifted to give the correct word address,
$1000. The LSB of the R0 register selects which byte at the word address is accessed. In this example, the
LSB determines that the upper byte is to be accessed at location $1000. The lowest 8 bits of the A1
register, $CD, are then written to this location. The lower byte of memory location $1000 is not modified.

Figure 3-14. Accessing a Byte with a Byte Pointer

Table 3-7. Useful Built-In Assembler Functions

Assembler Function
Computation

Performed
Comments

@hb(value) (value<<1) + 1 Function is used to generate a byte address from a word
address or label for the upper byte of a word

@lb(value) (value<<1) + 0 Function is used to generate a byte address from a word
address or label for the lower byte of a word

Instruction: MOVE.BP A1,X:(R0)
Access Size: Byte
Byte Selected: Upper

$002001R0

$001000

X Memory

C D X X

15 0Word
Address

Word Address: $1000
Byte Select: 1 (Upper)

Byte address: $2001

>>1

LSB
3-22 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Addressing Modes
3.6 Addressing Modes
Addressing modes specify where the operands for an instruction can be found (in an immediate value, in a
register, or in memory) and provide the exact addresses of the operands. The core instruction set contains a
full set of operand addressing modes, which are optimized for high-performance signal processing as well
as for efficient controller code. All address calculations are performed in the address generation unit to
minimize execution time.

The addressing modes are grouped into categories:

• Register direct—directly references the registers on the chip as operands

• Address register indirect—uses an address register as a pointer to reference a location in memory
as an operand

• Immediate—operand is contained as a value within the instruction itself

• Absolute—uses the address contained within the instruction itself to reference a location in memory
as an operand

• Bit reverse (reverse carry)—applies only to address register indirect indexed by N = (Rn)+N
address calculations and to word-sized or longword-sized operands

These addressing modes are referred to extensively in Section 4.4.4, “Instruction Summary Tables,” on
page 4-20.

An effective address in an instruction specifies the addressing mode. In some addressing modes, the
effective address further specifies an address register that points to a location in memory, how the address
is calculated, and how the register is updated.

3.6.1 Addressing Mode Summary
This section contains a series of tables that summarize the addressing modes in the core. The notation used
in these tables to reference AGU registers is summarized in Table 3-8.

Table 3-9 on page 3-24 shows all accessible core registers (register direct).

Table 3-10 on page 3-25 shows data and program memory accesses (address register indirect).

Table 3-11 on page 3-25 shows all immediate addressing modes.

Table 3-12 on page 3-26 shows all absolute addressing modes.

Table 3-8. Notation for AGU Registers

Register Field Registers Comments

Rn R0–R5, N, SP Eight AGU address registers

Rk R0–R3, N, SP Six AGU address registers (DSP56800 registers)

RRR R0–R5, N Seven AGU address registers

Rj R0, R1, R2, R3 Four pointer registers available for addressing
Freescale Semiconductor Data Types and Addressing Modes 3-23

Data Types and Addressing Modes
Table 3-9. Register-Direct Addressing Mode

Addressing Mode Notation in the Instruction Set Summary1

1.The register field notations found in the middle column are explained in more detail in Table 4-17 on
page 4-18, Table 4-16 on page 4-17, and Table 4-18 on page 4-19.

Examples

Any register dd
dddd.L

DD
DDDDD

HHH
HHH.L
HHHH

HHHH.L
HHHHH

fff
F

F1
FF

FFF1
FFF
EEE
Rj
Rn

RRR
SSSS

A, A2, A1, A0
B, B2, B1, B0
C, C2, C1, C0
D, D2, D1, D0

Y, Y1, Y0, X0

R0, R1, R2, R3
R4, R5

SP
N

N3
M01

PC
OMR, SR

LA, LA2, LC, LC2
HWS

FISR, FIRA
3-24 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Addressing Modes
Table 3-10. Address-Register-Indirect Addressing Modes

Addressing Mode
Notation in the Instruction Set

Summary
Examples

Accessing Program Memory

Post-increment P:(Rj)+ P:(R0)+

Post-update by offset N P:(Rj)+N P:(R3)+N

Accessing Data Memory

No update X:(Rn) X:(R5)
X:(N)

X:(SP)

Post-increment X:(Rn)+ X:(R1)+
X:(SP)+

Post-decrement X:(Rn)– X:(R5)–
X:(N)–

Post-update by offset N or N3; available for word
accesses only

X:(Rn)+N
X:(R3)+N3

X:(R1)+N
X:(R3)+N3

Indexed by offset N X:(Rn+N) X:(R4+N)
X:(SP+N)

Indexed by 3-bit displacement X:(RRR+x)
X:(SP–x)

X:(R1+7)
X:(N+3)

X:(SP–8)

Indexed by 6-bit displacement—SP register only X:(SP–xx) X:(SP+15)
X:(SP–$1E)

Indexed by 16-bit displacement X:(Rn+xxxx) X:(R4–97)
X:(N+1234)

X:(SP+$03F7)

Indexed by 24-bit displacement X:(Rn+xxxxxx) X:(Rn+$408001)
X:(SP–$10ABCD)
X:(N+$C08000)

Table 3-11. Immediate Addressing Modes

Addressing Mode
Notation in the Instruction Set

Summary
Examples

Immediate short data—5-, 6-, and 7-bit (unsigned
and signed)

#xx #14
#<3

Immediate data—16-bit (unsigned and signed) #xxxx #$369C
#>1234

Long immediate data—24- and 32-bit #xxxxxxxx #$12345678
#>>$00001234
Freescale Semiconductor Data Types and Addressing Modes 3-25

Data Types and Addressing Modes
Several of the examples in Table 3-11 on page 3-25 and Table 3-12 demonstrate the use of assembler
forcing operators. These operators can be used in an instruction to force a desired addressing mode, as
shown in Table 3-13.

Other assembler forcing operators are available for hardware looping, jump and branch instructions as
shown in Table 3-14.

Table 3-12. Absolute Addressing Modes

Addressing Mode
Notation in the Instruction Set

Summary
Examples

Absolute short address—6 bit
(direct addressing)

X:aa X:$0002
X:<$02

I/O short address—6 bit
(direct addressing)

X:<<pp X:<<$FFE3

Absolute address—16-bit
(extended addressing)

X:xxxx X:$00F001
X:>$C002

Absolute long address—24-bit
(long extended addressing)

X:xxxxxx X:$18FC04
X:>>$804001

Table 3-13. Assembler Operator Syntax for Immediate Data Sizes

Desired Action Forcing Operator Syntax Example

Force short immediate data #<xx #<$07

Force 9-bit immediate data #>xxx #>$07

Force 16-bit immediate data #>xxxx #>$07

Force 24- or 32-bit immediate data #>xxxxxx #>$07

Force absolute short address X:<xx X:<$02

Force I/O short address X:<<xx X:<<$FFE3

Force 16-bit absolute address X:>xxxx X:>$02

Force 24-bit absolute long address X:>xxxxxx X:>$02

Force short offset X:(Rn+<x)
X:(SP-<x)
X:(SP-<xx)

X:(SP-<$02)
X:(R0+<3)

Force 16-bit offset X:(Rn+>xxxx) X:(SP->$02)

Force 24-bit offset X:(Rn+>>xxxxxx) X:(SP->>$02)
3-26 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Addressing Modes
Table 3-14. Assembler Operator Syntax for Branch and Jump Addresses

Desired Action Forcing Operator Syntax Example

Force 7-bit relative branch offset <xx <LABEL1

Force 18-bit relative branch offset >xxxxx >LABEL2

Force 21-bit relative branch offset >>xxxxxx >>LABEL3

Force 19-bit absolute loop address >xxxxx >LABEL4

Force 21-bit absolute loop address >>xxxxxx >>LABEL5

Force 19-bit absolute jump address >xxxxx >LABEL4

Force 21-bit absolute jump address >>xxxxxx >>LABEL5
Freescale Semiconductor Data Types and Addressing Modes 3-27

Data Types and Addressing Modes
3.6.2 Register-Direct Modes
The register-direct addressing modes specify that each of up to three operands is in either the AGU, data
ALU, or control registers. This type of reference is classified as a register reference.

NOTE:

There can be pipeline dependencies when a data ALU, AGU, or control
register is being accessed. Refer to Section 10.4, “Pipeline Dependencies
and Interlocks,” on page 10-26 to understand dependencies when
accessing these registers.

In Example 3-8, two operands are specified with the register-direct addressing mode. The source operand,
R0, is in the AGU, and the destination operand, X0, is in the data ALU.

Example 3-8. Using the Register-Direct Addressing Mode

MOVE.W R0,X0 ; Operands are registers

3.6.3 Address-Register-Indirect Modes
In the address-register-indirect addressing modes, the operand is not the address register itself, but consists
of the contents of the memory location that is pointed to by the address register. Most
address-register-indirect modes also allow the pointer register to be updated in some way. The X:(Rn)-
addressing mode, for example, accesses the memory location indicated by the address register and then
subtracts one from the register, when the register is used as a word pointer accessing a 16-bit word.

Note that the arithmetic performed can differ depending on the data type. In Example 3-9, the R5 register
is post-incremented by one for a byte or word access and by two for a long memory access.

Example 3-9. Effects of Data Types on AGU Arithmetic

MOVE.BPX:(R5)+,A ; Byte Access: R5 <= R5 + 1
MOVE.W X:(R5)+,A ; Word Access: R5 <= R5 + 1
MOVE.L X:(R5)+,A ; Long Access: R5 <= R5 + 2

In the MOVE.L instruction in Example 3-10, the assembler right shifts the offset of “6” when encoding the
value. When executing the instruction, the AGU unit then left shifts the value in hardware to generate a
displacement of 6 (that is, 3 long words) from the SP. See Section 6.7, “AGU Arithmetic Instructions,” on
page 6-18 for detailed information on how arithmetic is performed for different data types and addressing
modes.

Example 3-10. Effects of Data Types on Address Displacements

MOVE.W X:(SP–3),A ; Access 3rd word from SP
MOVE.L X:(SP–6),A ; Access 3rd long from SP

The type of arithmetic (linear or modulo) used for calculating the effective address in R0 or R1 is specified
in the modifier register (M01) rather than encoded in the instruction. Modulo arithmetic is covered in detail
in Section 6.8, “Linear and Modulo Address Arithmetic,” on page 6-20.

The remainder of this section illustrates each address-register-indirect addressing mode.
3-28 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Addressing Modes
3.6.3.1 No Update: (Rn)

The address of the operand is in the address register Rn, N, or SP. The contents of the address register are
unchanged. Figure 3-15 demonstrates this addressing mode.

Figure 3-15. Address Register Indirect: No Update

$001000

Before Execution

X Memory

X X X X

$001000R2

1 2 3 40

A2 A1

5 6 7 8

A0

A

After Execution

$001000R2

1 2 3 40

A2 A1

5 6 7 8

A0

A

Available for: Byte (Byte Pointer [Word Pointer for SP]), Word, Long
Assembler Syntax: X:(Rn), X:(N), X:(SP)
Additional Instruction Execution Cycles: 0
Additional Effective Address Program Words: 0

35 32 31 16 15 0

15 0

35 32 31 16 15 0

23 0 23 0

No Update Example: MOVE.W A1,X:(R2)

$001000

X Memory

1 2 3 4

15 0
Freescale Semiconductor Data Types and Addressing Modes 3-29

Data Types and Addressing Modes
3.6.3.2 Post-Increment: (Rn)+

The address of the operand is in the address register Rn, N, or SP. After the operand address is used, it is
incremented and stored in the same address register. When a long 32-bit memory location is accessed, the
pointer is incremented by two.

Figure 3-16 demonstrates this addressing mode.

Figure 3-16. Address Register Indirect: Post-Increment

$002500

Before Execution

X Memory

X X X X

$002500R2

6 5 4 3A

B2 B1

F E D C

B0

B

After Execution

$002501R2

6 5 4 3A

B2 B1

F E D C

B0

B

Available for: Byte (Byte Pointer), Word, Long
Assembler Syntax: X:(Rn)+, X:(N)+, X:(SP)+, P:(Rj)+
Additional Instruction Execution Cycles: 0
Additional Effective Address Program Words: 0

35 32 31 16 15 0

15 0

35 32 31 16 15 0

23 0 23 0

Post-Increment Example: MOVE.W B0,X:(R2)+

$002500

X Memory

F E D C

15 0

$002501 X X X X $002501 X X X X
3-30 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Addressing Modes
3.6.3.3 Post-Decrement: (Rn)–

The address of the operand is in the address register Rn, N, or SP. After the operand address is used, it is
decremented and stored in the same address register. When a long 32-bit memory location is accessed, the
pointer is decremented by two.

Figure 3-17 demonstrates this addressing mode.

Figure 3-17. Address Register Indirect: Post-Decrement

$004734

Before Execution

X Memory

X X X X

$004735R2

6 5 4 30

B2 B1

F E D C

B0

B

After Execution

$004734R2

6 5 4 30

B2 B1

F E D C

B0

B

Available for: Byte (Byte Pointer), Word, Long
Assembler Syntax: X:(Rn)–, X:(N)–, X:(SP)–
Additional Instruction Execution Cycles: 0
Additional Effective Address Program Words: 0

35 32 31 16 15 0

15 0

35 32 31 16 15 0

23 0 23 0

Post-Decrement Example: MOVE.W B,X:(R2)-

$004734

X Memory

X X X X

15 0

$004735 X X X X $004735 6 5 4 3
Freescale Semiconductor Data Types and Addressing Modes 3-31

Data Types and Addressing Modes
3.6.3.4 Post-Update by Offset N: (Rn)+N, (R3)+N3

The address of the operand is in the address register Rn, N, or SP. After the operand address is used, the
contents of the offset register (N or N3) are added to the address register and stored in the same address
register. In the addressing update, the contents of the offset register are treated as a signed, 16-bit,
two’s-complement number (the offset register itself remains unchanged). The lower 16 bits of the offset
register are sign extended to 24 bits and used in the addition to the address register. The 24-bit result is then
stored back to the address register.

NOTE:

The upper 8 bits of the N register are ignored in this addressing mode.

Figure 3-18 demonstrates this addressing mode.

Figure 3-18. Address Register Indirect: Post-Update by Offset N

$003200

Before Execution

X Memory

X X X X

$003200R2

$F00004N

5 5 5 5

Y1

A A A A

Y0

Y

After Execution

$003204R2

$F00004N

5 5 5 5

Y1

A A A A

Y0

Y

Available for: Word
Assembler Syntax: X:(Rn)+N, X:(R3)+N3, X:(N)+N, X:(SP)+N, P:(Rj)+N
Additional Instruction Execution Cycles: 0
Additional Effective Address Program Words: 0

31 16 15 0

15 0

31 16 15 0

23 0 23 0

23 0 23 0

Post-Update by Offset N Example: MOVE.W Y1,X:(R2)+N

$003200

X Memory

5 5 5 5

15 0

$003204 X X X X $003204 X X X X

Sign Extend
from Bit 15

+

3-32 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Addressing Modes
3.6.3.5 Index by Offset N: (Rn+N)

The address of the operand is the sum of the contents of the address register Rn, N, or SP and the contents
of the address offset register N. The content of N is treated as a signed, two’s-complement, 24-bit number.
The contents of the address register and N register are unchanged by this addressing mode. When a long
32-bit memory location is accessed, the N register is left shifted 1 bit before the addition.

Figure 3-19 demonstrates this addressing mode.

Figure 3-19. Address Register Indirect: Indexed by Offset N

$007000

Before Execution

X Memory

X X X X

$007000R2

$000003N

E D C BF

A2 A1

A 9 8 7

A0

A

After Execution

$007000R2

$000003N

E D C BF

A2 A1

A 9 8 7

A0

A

Available for: Byte (Byte Pointer), Word, Long
Assembler Syntax: X:(Rn+N), X:(N+N), X:(SP+N)
Additional Instruction Execution Cycles: 1
Additional Effective Address Program Words: 0

35 32 31 16 15 0

15 0

35 32 31 16 15 0

23 0 23 0

23 0 23 0

Indexed by Offset N Example: MOVE.W A1,X:(R2+N)

$007000

X Memory

X X X X

15 0

$007003 X X X X $007003 E D C B

+

Freescale Semiconductor Data Types and Addressing Modes 3-33

Data Types and Addressing Modes
3.6.3.6 Index by 3-Bit Displacement: (RRR+x), (SP–x)

This addressing mode contains the 3-bit immediate displacement within the instruction word. This field is
always one extended to form a negative offset from –1 to –8 when the SP register is used. The field is
always zero extended to form a positive offset from 0 to 7 when R0, R1, R2, R3, R4, R5, or the N register
is used.

Figure 3-20 demonstrates this addressing mode.

Figure 3-20. Address Register Indirect: Indexed by 3-Bit Displacement

$007000

Before Execution

X Memory

X X X X

$007000R4

E D C BF

A2 A1

A 9 8 7

A0

A

After Execution

$007000R4

E D C BF

A2 A1

A 9 8 7

A0

A

Available for: Byte (Word Pointer), Word
Assembler Syntax: X:(Rn+x), X:(N+x), X:(SP–x)
Additional Instruction Execution Cycles: 1
Additional Effective Address Program Words: 0

35 32 31 16 15 0

15 0

35 32 31 16 15 0

23 0 23 0

Indexed by 3-Bit Displacement Example: MOVE.W A1,X:(R4+3)

$007000

X Memory

X X X X

15 0

$007003 X X X X $007003 E D C B

+

3-Bit Immediate Value
from the Instruction Word

Zero Extend for (RRR+x)
One Extend for (SP–x)
3-34 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Addressing Modes
3.6.3.7 Index by 6-Bit Displacement: (SP–xx)

This addressing mode contains the 6-bit immediate displacement within the instruction word. This field is
always one extended to form a negative offset from –1 to –64. When a long 32-bit memory location is
accessed, the 6-bit displacement is left shifted 1 bit before the addition.

Figure 3-21 demonstrates this addressing mode.

Figure 3-21. Address Register Indirect: Indexed by 6-Bit Displacement

Before Execution

$007020SP

E D C BF

A2 A1

A 9 8 7

A0

A

After Execution

$007020SP

E D C BF

A2 A1

A 9 8 7

A0

A

Available for: Word, Long
Assembler Syntax: X:(SP–xx)
Additional Instruction Execution Cycles: 1
Additional Effective Address Program Words: 0

35 32 31 16 15 0 35 32 31 16 15 0

23 0 23 0

Indexed by 6-Bit Displacement Example: MOVE.W A1,X:(SP-32)

+

6-Bit Immediate Value
from the Instruction Word

One Extend for (SP–xx)

X Memory

15 0

X Memory

15 0

$007020 X X X X $007020 X X X X

$007000 X X X X $007000 E D C B
Freescale Semiconductor Data Types and Addressing Modes 3-35

Data Types and Addressing Modes
3.6.3.8 Index by 16-Bit Displacement: (Rn+xxxx)

This addressing mode contains the 16-bit immediate displacement in the second instruction word. This
second word is treated as a signed, two’s-complement, 16-bit value except when byte pointers (MOVE.BP
and MOVEU.BP) are used, in which case the second word is zero extended. This addressing mode is
available for the move instructions. When a long 32-bit memory location is accessed, the 16-bit
displacement is left shifted 1 bit before the addition. When byte values are accessed, the displacement is
given in bytes.

Figure 3-22 demonstrates this addressing mode.

Figure 3-22. Address Register Indirect: Indexed by 16-Bit Displacement

Before Execution

X Memory

$007000R2

E D C BF

A2 A1

A 9 8 7

A0

A

After Execution

$007000R2

E D C BF

A2 A1

A 9 8 7

A0

A

Available for: Byte (Byte and Word Pointer), Word, Long
Assembler Syntax: X:(Rn+xxxx), X:(N+xxxx), X:(SP+xxxx)
Additional Instruction Execution Cycles: 1
Additional Effective Address Program Words: 1

35 32 31 16 15 0

15 0

35 32 31 16 15 0

23 0 23 0

Indexed by 16-Bit Displacement Example: MOVE.W A1,X:(R2+$10CF)

X Memory

+

16-Bit Immediate Value
from the Instruction Word

15 0

$0080CF X X X X $0080CF E D C B

$007000 X X X X $007000 X X X X

Zero Extend for MOVE.BP, MOVEU.BP
One Extend for All Other Instructions
3-36 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Addressing Modes
3.6.3.9 Index by 24-Bit Displacement: (Rn+xxxxxx)

This addressing mode contains the 24-bit immediate displacement in 2 of the 3 instruction words. The
24-bit displacement is treated as a signed, two’s-complement value. This addressing mode is available for
move instructions. When a long-word (32-bit) memory location is accessed, the 24-bit displacement is left
shifted 1 bit before the addition. When a byte is accessed, the displacement value is given in bytes.

Figure 3-23 demonstrates this addressing mode.

Figure 3-23. Address Register Indirect: Indexed by 24-Bit Displacement

Before Execution

X Memory

$007000R2

E D C BF

A2 A1

A 9 8 7

A0

A

After Execution

$007000R2

E D C BF

A2 A1

A 9 8 7

A0

A

Available for: Byte (Byte and Word Pointer), Word, Long
Assembler Syntax: X:(Rn+xxxxxx), X:(N+xxxxxx), X:(SP+xxxxxx)
Additional Instruction Execution Cycles: 2
Additional Effective Address Program Words: 2

35 32 31 16 15 0

15 0

35 32 31 16 15 0

23 0 23 0

Indexed by 24-Bit Long Displacement Example: MOVE.W A1,X:(R2+$40100F)

X Memory

+

24-Bit Immediate Value
from the Instruction Word

15 0

$40800F X X X X $40800F E D C B

$007000 X X X X $007000 X X X X
Freescale Semiconductor Data Types and Addressing Modes 3-37

Data Types and Addressing Modes
3.6.4 Immediate Address Modes
The immediate address modes do not use an address register to specify an effective address. These modes
specify the value of the operand directly in a field of the instruction.

3.6.4.1 4-Bit Immediate Data: #x

The 4-bit immediate data operand is located in the instruction operation word. In the ADDA instruction,
the 4-bit unsigned value is zero extended to form a 24-bit value. In data ALU shifting instructions, the 4-bit
value is zero extended to form a data ALU operand.

3.6.4.2 5-Bit Immediate Data: #xx

The 5-bit immediate data operand is located in the instruction operation word. When the MOVE.L
instruction is used to write an accumulator, the 5-bit value is sign extended to form a 36-bit value. In data
ALU instructions, the 5-bit value is zero extended to form a data ALU operand.

Figure 3-24 demonstrates this addressing mode.

Figure 3-24. Immediate Addressing: 5-Bit Immediate Data to Accumulator

3.6.4.3 6-Bit Immediate Data: #xx

The 6-bit immediate data operand is located in the instruction operation word. The 6-bit unsigned value is
zero extended to form a 16-bit loop count. It is used by the DO and REP instructions when the loop count
is specified with an immediate value.

Available for: Long
Assembler Syntax: #xx
Additional Instruction Execution Cycles: 0
Additional Effective Address Program Words: 0

5-Bit Immediate into Full 36-Bit Accumulator Example: MOVE.L #-4,B

Before Execution

X X X XX

B2 B1

X X X X

B0

B

After Execution

F F F FF

B2 B1

F F F C

B0

B

35 32 31 16 15 0 35 32 31 16 15 0
3-38 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Addressing Modes
3.6.4.4 7-Bit Immediate Data: #xx

The 7-bit immediate data operand is located in the instruction operation word. The 7-bit signed value is
sign extended to the appropriate size of the register. It is used by the MOVE.W instruction. Figure 3-25
and Figure 3-26 demonstrate this addressing mode.

Figure 3-25. Immediate Addressing: 7-Bit Immediate Data to Address Register

Figure 3-26. Immediate Addressing: 7-Bit Immediate Data to Data ALU Register

See Section 5.2.3, “Reading and Writing Integer Data to an Accumulator,” on page 5-12 for more details
on correctly loading the accumulator registers.

3.6.4.5 16-Bit Immediate Data: #xxxx

There are two instructions available for writing 16-bit immediate data to an AGU register. The MOVEU.W
instruction loads an AGU register with an unsigned 16-bit value, and the MOVE.L instruction loads an
AGU register with a signed 16-bit value. Figure 3-27 on page 3-40 demonstrates these two instructions.

Available for: Word
Assembler Syntax: #xx
Additional Instruction Execution Cycles: 0
Additional Effective Address Program Words: 0

Before Execution

XXXXXXR0

23 0

7-Bit Immediate Into 24-Bit Address Register Example: MOVE.W #-2,R0

After Execution

$FFFFFER0

23 0

Available for: Word
Assembler Syntax: #xx
Additional Instruction Execution Cycles: 0
Additional Effective Address Program Words: 0

7-Bit Immediate into 36-Bit Accumulator Example: MOVE.W #-58,B

Before Execution

XXXXX0

After Execution

15 0

7-Bit Immediate into 16-Bit Data Register Example: MOVE.W #$0006,X0

$0006X0

15 0

Before Execution

X X X XX

B2 B1

X X X X

B0

B

After Execution

F F C 6F

B2 B1

0 0 0 0

B0

B

35 32 31 16 15 0 35 32 31 16 15 0
Freescale Semiconductor Data Types and Addressing Modes 3-39

Data Types and Addressing Modes
Figure 3-27. Immediate Addressing: 16-Bit Immediate Data to AGU Register

Sixteen-bit immediate data can also be moved to the data ALU registers. When the MOVE.W instruction is
used, the 16-bit value is loaded into the MSP of the accumulator, the value is sign extended into the
extension register, and the LSP is cleared. If the MOVE.L instruction is used, the value is moved into the
LSP of an accumulator and is sign extended through the upper 20 bits. These two cases are shown in
Figure 3-28.

Figure 3-28. Immediate Addressing: 16-Bit Immediate Data to Data ALU Register

Sixteen-bit immediate data is also used to specify the mask for the bit-manipulation instructions.

Available for: Word
Assembler Syntax: #xxxx
Additional Instruction Execution Cycles: 1
Additional Effective Address Program Words: 1

Before Execution

X X X X X XR5

After Execution

8 0 0 1R5

23 16 15 0 23 16 15 0

Immediate into 24-Bit Address Register Example: MOVE.L #$FF8001,R5

F F

Before Execution

X X X X X XR5

After Execution

8 0 0 1R5

23 16 15 0 23 16 15 0

Immediate into 24-Bit Address Register Example: MOVEU.W #$8001,R5

0 0

Available for: Word, Long
Assembler Syntax: #xxxx
Additional Instruction Execution Cycles: 1
Additional Effective Address Program Words: 1

Before Execution

X X X XX

B2 B1

X X X X

B0

B

After Execution

1 2 3 40

B2 B1

0 0 0 0

B0

B

35 32 31 16 15 0 35 32 31 16 15 0

Positive Immediate into 36-Bit Accumulator Example: MOVE.W #$1234,B

Before Execution

X X X XX

B2 B1

X X X X

B0

B

After Execution

F F F FF

B2 B1

B 0 0 0

B0

B

35 32 31 16 15 0 35 32 31 16 15 0

Negative Immediate into Full 36-Bit Accumulator Example: MOVE.L #$FFFFB000,B
3-40 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Addressing Modes
3.6.4.6 32-Bit Immediate Data: #xxxxxxxx

Figure 3-29 demonstrates using 32-bit immediate data to load a register. The immediate data value is
truncated to 24 bits when it is written to one of the 24-bit AGU registers. The value is sign extended when
it is moved to a 36-bit accumulator.

Figure 3-29. Immediate Addressing: 32-Bit Immediate Data

3.6.5 Absolute Address Modes
The absolute address modes do not use an address register to specify an effective address. These modes
specify the address of the operand directly in a field of the instruction. This category includes direct
addressing, extended addressing, and immediate data.

Available for: Long
Assembler Syntax: #xxxxxxxx
Additional Instruction Execution Cycles: 2
Additional Effective Address Program Words: 2

Before Execution

X X X X X XR5

After Execution

5 6 7 8R5

23 16 15 0 23 16 15 0

Immediate into 24-Bit Address Register Example: MOVE.L #$12345678,R5

Before Execution

X X X XX

B2 B1

X X X X

B0

B

After Execution

8 0 0 CF

B2 B1

F 0 0 1

B0

B

35 32 31 16 15 0 35 32 31 16 15 0

Negative Immediate into 36-Bit Accumulator Example: MOVE.L #$800CF001,B

3 4

Before Execution

X X X XX

B2 B1

X X X X

B0

B

After Execution

0 0 0 00

B2 B1

A 9 8 7

B0

B

35 32 31 16 15 0 35 32 31 16 15 0

Positive Immediate into Full 36-Bit Accumulator Example: MOVE.L #$A987,B
Freescale Semiconductor Data Types and Addressing Modes 3-41

Data Types and Addressing Modes
3.6.5.1 Absolute Short Address: aa

For the absolute short addressing mode, the address of the operand occupies 6 bits in the instruction
operation word and is zero extended to 24 bits. This scheme allows direct access to the first 64 locations in
X memory. No registers are used to form the address of the operand.

Figure 3-30 demonstrates this addressing mode. Note the use of the assembler forcing operator (<) in this
example (see Table 3-13 on page 3-26).

Figure 3-30. Absolute Addressing: 6-Bit Absolute Short Address

Available for: Word
Assembler Syntax: X:aa
Additional Instruction Execution Cycles: 0
Additional Effective Address Program Words: 0

$000003

X Memory

X X X X

15 0

$000003

X Memory

A B C D

15 0

Before Execution

$ABCDR2

After Execution

15 0

$ABCDR2

15 0

Absolute Short Address Example: MOVE.W R2,X:<$0003

$000000 $000000
3-42 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Addressing Modes
3.6.5.2 I/O Short Address: <<pp

In this addressing mode, the instruction specifies only the 6 LSBs of the effective address. The upper 18
bits are hard-wired to a specific area of memory, which varies depending on the specific implementation of
the chip. This scheme allows efficient access to a 64-location area in data memory, which may be
dedicated to on-chip peripheral registers.

Figure 3-31 demonstrates the I/O short addressing mode. Note the use of the assembler forcing operator
(<<) in this example, indicating that the I/O short addressing mode is in use (see Table 3-13 on page 3-26).

Figure 3-31. Absolute Addressing: 6-Bit I/O Short Address

Available for: Word
Assembler Syntax: X:<<pp
Additional Instruction Execution Cycles: 0
Additional Effective Address Program Words: 0

$00FFFF

X Memory

5 6 7 8

15 0

$00FFFF

X Memory

5 6 7 8

15 0

Before Execution

XXXXR3

After Execution

15 0

$5678R3

15 0

I/O Short Address Example: MOVEU.W X:<<$FFFB,R3

$00FFFB $00FFFB
Freescale Semiconductor Data Types and Addressing Modes 3-43

Data Types and Addressing Modes
3.6.5.3 16-Bit Absolute Address: xxxx

The address of the operand is zero extended to 24 bits. No registers are used to form the address of the
operand. When a long 32-bit memory location is accessed, the 16-bit absolute address is left shifted 1 bit
before the access occurs.

Figure 3-32 demonstrates the 16-bit absolute addressing mode.

Figure 3-32. Absolute Addressing: 16-Bit Absolute Address

Available for: Byte (BP), Word, Long
Assembler Syntax: X:xxxx
Additional Instruction Execution Cycles: 1
Additional Effective Address Program Words: 1

$008079

X Memory

1 2 3 4

15 0

$008079

X Memory

1 2 3 4

15 0

Before Execution

XXXXX0

After Execution

15 0

$1234X0

15 0

Absolute Address Example: MOVE.W X:$8079,X0
3-44 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Addressing Modes
3.6.5.4 24-Bit Absolute Address: xxxxxx

This addressing mode requires 2 words of instruction extension. The address of the operand is located in
the extension words. No registers are used to form the address of the operand. When a long 32-bit memory
location is accessed, the 24-bit absolute address is left shifted 1 bit before the access occurs.

Figure 3-33 demonstrates the 24-bit absolute addressing mode.

Figure 3-33. Absolute Addressing: 24-Bit Absolute Address

3.6.6 Implicit Address Modes
Some instructions make implicit reference to the program counter (PC), software stack, hardware stack,
loop address register (LA), loop counter (LC), or status register (SR). For example, the DO instruction
accesses the LA and LC registers without explicitly referencing them in the instruction. Similarly, the JSR,
RTI, and RTS instructions access the PC, SR, and SP registers without explicitly referencing them in the
instruction. The implied registers and their use are described in the individual instruction descriptions in
Appendix A, “Instruction Set Details.”

3.6.7 Bit-Reverse Address Mode (DSP56800EX Core only)
The bit-reverse address mode, which is also known as reverse carry address mode, is useful for many DSC
applications. It is available only on the DSP56800EX core.

Reverse carry arithmetic is enabled for the R0 and R1 registers through programming the Modifier
Register (M01). Reverse carry addressing is not available for the R2-R5, N, or SP registers. The default
addressing mode for the R0 and R1 registers is linear addressing. Linear arithmetic is enabled for the R0
and R1 registers by programming the M01 register to 0xFFFF. The M01 register is set to 0xFFFF at reset.

Available for: Byte (BP), Word, Long
Assembler Syntax: X:xxxxxx
Additional Instruction Execution Cycles: 2
Additional Effective Address Program Words: 2

$418003

X Memory

1 2 3 4

15 0

$418003

X Memory

1 2 3 4

15 0

Before Execution

XXXXX0

After Execution

15 0

$1234X0

15 0

Absolute Address Example: MOVE.W X:$418003,X0
Freescale Semiconductor Data Types and Addressing Modes 3-45

Data Types and Addressing Modes
For both the DSP56800E and DSP56800EX cores, an M01 register with M01[15:14] = 0b00 configures R0
for modulo arithmetic, and an M01 register with M01[15:14] = 0b10 configures both R0 and R1 registers
for modulo arithmetic. For the DSP56800E core, M01 register settings with M01[15:14] = 0b01 or 0b11
(but not M01 = 0xFFFF) are reserved. For the DSP56800EX core, an M01 register setting with
M01[15:0] = 0x4000 (M01[15:14] = 0b01; M01[13:0] = 0x0000) configures R0 for reverse carry
addressing, and an M01 register setting with M01[15:0] = 0xc000 (M01[15:14] = 0b11;
M01[13:0] = 0x0000) configures R0 and R1 for reverse carry addressing.

NOTE:

Modulo address arithmetic applies to certain instructions that operate on
R0 and R1 as well as certain address calculations that use and/or update R0
and R1. In contrast, reverse carry addressing applies only to address
register indirect indexed by N = (Rn)+N address calculations. Also,
reverse carry addressing applies only to word-sized or longword-sized
operands.

Reverse carry address modification is useful for bit-reversed FFT buffers. Reverse carry address
modification is designed to work on a buffer that is aligned on a 0-modulo-(power-of-two size) address
(word or longword). It is designed to start at the beginning of the buffer and step through the entire buffer.
The user has the responsibility to loop through the buffer the correct number of times. Performing reverse
carry address modification beyond this number of times will simply repeat the loop through the buffer.

Reverse carry addressing is performed by doing the (Rn)+N next address calculation and propagating the
carry in the reverse direction modulo the buffer size. That is, the carry is propagated from the MSB of the
buffer address to the LSB.

Reverse carry addressing works as follows. A power-of-two buffer size must be used = 2**k where k < 13.

• The buffer must be aligned on a 0-modulo (2**k) address.

• The initial value of Rn is the start of the buffer and N must be 2**(k-1).

When (Rn)+N addressing is used, the next Rn is calculated as follows:

1. The lower-order 14 bits of Rn and N are reversed:

 Rn_reversed[13:0] = Rn[0:13]

 N_reversed[13:0] = N[0:13]

2. The next Rn with lower-order bits [13:0] reversed is calculated (carry is ignored):

 next_Rn_reversed[13:0]

 = Rn_reversed[13:0] + N_reversed[13:0]

3. The next Rn is built by reversing the lower-order 14 bits of this result and appending it to
the upper bits of Rn:

 next_Rn[23:0] = {Rn[23:14], next_Rn_reversed[0:13]}

The user is responsible for stepping through the buffer for the correct number of times.

Example

In the following example:

• 8 word buffer = 2**3; k = 3; base at 0x00_BDC8

• initial: Rn = 0x00_BDC8, N = 0x00_0004 = 2**(k-1) = 2**2

• do 8 iterations; within the buffer the reference order is 0,4,2,6,1,5,3,7
3-46 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Addressing Modes
ITERATION 1: Rn = 0x00_BDC8, N = 0x00_0004

 Rn_reversed[23:0] = 0x00_84EF
 + N_reversed[23:0] = 0x00_0800

 next_Rn_reversed[23:0] = 0x00_8CEF
 current_address[23:0] = 0x00_BDC8 <- 1st reference
 next_Rn[23:0] = 0x00_BDCC

ITERATION 2: Rn = 0x00_BDCC, N = 0x00_0004

 Rn_reversed[23:0] = 0x00_8CEF
 + N_reversed[23:0] = 0x00_0800

 next_Rn_reversed[23:0] = 0x00_94EF
 current_address[23:0] = 0x00_BDCC <- 2nd reference
 next_Rn[23:0] = 0x00_BDCA

ITERATION 3: Rn = 0x00_BDCA, N = 0x00_0004

 Rn_reversed[23:0] = 0x00_94EF
 + N_reversed[23:0] = 0x00_0800

 next_Rn_reversed[23:0] = 0x00_9CEF
 current_address[23:0] = 0x00_BDCA <- 3rd reference
 next_Rn[23:0] = 0x00_BDCE

ITERATION 4: Rn = 0x00_BDCE, N = 0x00_0004

 Rn_reversed[23:0] = 0x00_9CEF
 + N_reversed[23:0] = 0x00_0800

 next_Rn_reversed[23:0] = 0x00_A4EF
 current_address[23:0] = 0x00_BDCE <- 4th reference
 next_Rn[23:0] = 0x00_BDC9

ITERATION 5: Rn = 0x00_BDC9, N = 0x00_0004

 Rn_reversed[23:0] = 0x00_A4EF
 + N_reversed[23:0] = 0x00_0800

 next_Rn_reversed[23:0] = 0x00_ACEF
 current_address[23:0] = 0x00_BDC9 <- 5th reference
 next_Rn[23:0] = 0x00_BDCD

ITERATION 6: Rn = 0x00_BDCD, N = 0x00_0004

 Rn_reversed[23:0] = 0x00_ACEF
 + N_reversed[23:0] = 0x00_0800

 next_Rn_reversed[23:0] = 0x00_B4EF
 current_address[23:0] = 0x00_BDCD <- 6th reference
 next_Rn[23:0] = 0x00_BDCB

ITERATION 7: Rn = 0x00_BDCB, N = 0x00_0004

 Rn_reversed[23:0] = 0x00_B4EF
 + N_reversed[23:0] = 0x00_0800

 next_Rn_reversed[23:0] = 0x00_BCEF
 current_address[23:0] = 0x00_BDCB <- 7th reference
 next_Rn[23:0] = 0x00_BDCF

ITERATION 8: Rn = 0x00_BDCF, N = 0x00_0004
Freescale Semiconductor Data Types and Addressing Modes 3-47

Data Types and Addressing Modes
 Rn_reversed[23:0] = 0x00_BCEF
 + N_reversed[23:0] = 0x00_0800

 next_Rn_reversed[23:0] = 0x00_84EF <<< not used, would be 9th reference
 current_address[23:0] = 0x00_BDCF <- 8th reference
 next_Rn[23:0] = 0x00_BDC8 <<< not used, would be 9th reference
3-48 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Chapter 4
Instruction Set Introduction
The DSP56800E and DSP56800EX provide a powerful instruction set, enabling the efficient
implementation of digital signal processing and general-purpose computing algorithms. The instruction set
is designed around a large register set, with support for byte, word, and long memory accesses. It also has
special support for powerful DSC capabilities, such as instructions with data moves that occur in parallel
and hardware looping capabilities.

The core architecture contains several functional units that operate in parallel:

• Data ALU

• AGU

• Program controller

• Bit-manipulation unit

The instruction set is designed to keep each of these units busy in every instruction cycle. Often a single
instruction activates more than one functional unit, enabling the parallel execution of operations. This
arrangement helps to achieve maximum speed, minimum power consumption, and minimum use of
program memory.

This chapter provides an introduction to the core instruction set. The instruction set has been divided into
functional groups, simplifying how to locate the instructions that implement a particular function. The
instructions, their parameters, and their use are summarized at the end of this chapter. For a full description
of each instruction, consult Appendix A, “Instruction Set Details.”

4.1 Instruction Groups
The core instruction set can be divided into several general categories that are based on function:

• Multiplication—integer and fractional multiplication and multiply-accumulate operations.

• Arithmetic—all arithmetic operations other than multiplication.

• Shifting—shift and rotate operations.

• Logic—Boolean logic functions, such as AND, OR, and NOT.

• AGU arithmetic—address calculation operations.

• Bit manipulation—instructions for manipulating values at the bit level.

• Looping—instructions that support iterative loops.

• Move—data movement operations.

• Program control—instructions that control execution flow.

Each instruction group is described in the following sections.
Freescale Semiconductor Instruction Set Introduction 4-1

Instruction Set Introduction
4.1.1 Multiplication Instructions
These instructions perform all of the multiplication operations within the data ALU. Optional data
transfers (parallel moves) can be specified with some of the multiplication instructions. These transfers
allow new data to be pre-fetched for use in instructions that follow, or they allow results calculated by
previous instructions to be stored.

Multiplication instructions execute in 1 instruction cycle. They may affect one or more of the condition
code register bits.

Table 4-1 lists the multiplication instructions available on both the DSP56800E core and the DSP56800EX
core.

Table 4-2 lists additional 32-bit multiplication instructions available on the DSP56800EX core.

Table 4-1. Multiplication Instructions

Instruction
Parallel
Move?

Description

IMAC.L — Signed integer multiply-accumulate with full precision

IMACUS — Unsigned/signed integer multiply-accumulate with full precision

IMACUU — Unsigned/unsigned integer multiply-accumulate with full precision

IMPY.L — Signed integer multiply with full precision

IMPY.W — Signed integer multiply with integer result

IMPYSU — Signed/unsigned integer multiply with full precision

IMPYUU — Unsigned/unsigned integer multiply with full precision

MAC Yes Signed fractional multiply-accumulate

MACR Yes Signed fractional multiply-accumulate and round

MACSU — Signed/unsigned fractional multiply-accumulate

MPY Yes Signed fractional multiply

MPYR Yes Signed fractional multiply and round

MPYSU — Signed/unsigned fractional multiply

Table 4-2. Additional 32-Bit DSP56800EX Multiplication Instructions

Instruction
Parallel
Move?

Description

IMAC32 — Integer multiply-accumulate 32 bits

IMPY32 — Integer multiply 32 bits x 32 bits → 32 bits

IMPY64 — Integer multiply 32 bits x 32 bits → 64 bits

IMPY64UU — Unsigned integer multiply 32bits x 32 bits → 64 bits

MAC32 — Fractional multiply-accumulate 32 bits x 32 bits → 32 bits
4-2 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Instruction Groups
4.1.2 Arithmetic Instructions
This group consists of all non-multiplication mathematical instructions. These instructions can operate on
values located either in registers or in memory, although using register-based operands allows data move
operations to be executed in parallel.

The arithmetic instructions typically execute in 1 instruction cycle, although instructions that use more
complex addressing modes may take longer. The instructions may affect one or more of the condition code
register bits.

Table 4-3 on page 4-3 lists the arithmetic instructions.

MPY32 — Fractional multiply 32 bits x 32 bits → 32 bits

MPY64 — Fractional multiply 32 bits x 32 bits → 64 bits

Table 4-3. Arithmetic Instructions

Instruction
Parallel
Move?

Description

ABS Yes Absolute value

ADC — Add long with carry

ADD Yes Add two registers

ADD.B — Add byte value from memory to register

ADD.BP — Add byte value from memory to register

ADD.L — Add long value from memory (or immediate) to register

ADD.W — Add word value from memory (or immediate) to register

CLR Yes Clear a 36-bit register value

CLR.B — Clear a byte value in memory

CLR.BP — Clear a byte value in memory

CLR.L — Clear a long value in memory

CLR.W — Clear a word value in memory or in a register

CMP Yes Compare a word value from memory (or immediate) with an accumulator; also
compare two registers, where the second is always an accumulator; comparison
done on 36 bits

CMP.B — Compare the byte portions of two registers or an immediate with the byte portion
of a register; comparison done on 8 bits

CMP.BP — Compare a byte value from memory with a register; comparison done on 8 bits

Table 4-2. Additional 32-Bit DSP56800EX Multiplication Instructions (Continued)

Instruction
Parallel
Move?

Description
Freescale Semiconductor Instruction Set Introduction 4-3

Instruction Set Introduction
CMP.L — Compare a long value from memory (or an immediate value) with a register; also
compare the long portions of two registers; comparison done on 32 bits

CMP.W — Compare a word value from memory (or immediate) with a register; also com-
pare the word portions of two registers; comparison done on 16 bits

DEC.BP — Decrement byte in memory

DEC.L — Decrement an accumulator or a long in memory

DEC.W Yes Decrement upper word of accumulator, word register, or a word in memory

DIV — Divide iteration

INC.BP — Increment byte in memory

INC.L — Increment an accumulator or a long in memory

INC.W Yes Increment upper word of accumulator, word register, or a word in memory

NEG Yes Negate an accumulator

NEG.BP — Negate byte in memory

NEG.L — Negate a long word in memory

NEG.W — Negate a word in memory

NORM — Normalize

RND Yes Round

SAT Yes Saturate a value in an accumulator and store in destination

SBC — Subtract long with carry

SUB Yes Subtract two registers

SUB.B — Subtract byte value from memory to register

SUB.BP — Subtract byte value from memory to register

SUB.L — Subtract long value from memory to register

SUB.W — Subtract word value from memory (or immediate) to register

SUBL Yes Shift accumulator left and subtract word value

SXT.B — Sign extend a byte value in a register and store in destination

SXT.L — Sign extend a value in an accumulator and store in destination

SWAP — Swap R0, R1, N, and M01 registers—as well as R2, R3, R4, R5, and N3 regis-
ters for the DSP56800EX core—with corresponding shadows

Tcc — Conditionally transfer one or two registers to other registers

Table 4-3. Arithmetic Instructions (Continued)

Instruction
Parallel
Move?

Description
4-4 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Instruction Groups
TFR Yes Transfer data ALU register to an accumulator

TST Yes Test a 36-bit accumulator

TST.B — Test byte in memory or in a register

TST.BP — Test byte in memory

TST.L — Test an accumulator or a long in memory

TST.W — Test a word in memory or in a register

ZXT.B — Zero extend a byte value in an register and store in destination

Table 4-3. Arithmetic Instructions (Continued)

Instruction
Parallel
Move?

Description
Freescale Semiconductor Instruction Set Introduction 4-5

Instruction Set Introduction
4.1.3 Shifting Instructions
The shifting instructions are used to perform shift and rotate operations within the data ALU. They
generally execute in 1 instruction cycle, except for the multi-bit shift instructions (ASLL.L, ASRR.L, and
LSRR.L), which execute in 2 cycles. These instructions may affect one or more of the condition code
register bits.

Table 4-4 lists the shifting instructions.

Table 4-4. Shifting Instructions

Instruction
Parallel
Move?

Description

ASL1

1.ASL should not be used to shift the 16-bit X0, Y0, and Y1 registers because the condition codes might not
be calculated as expected. The ASL.W instruction should be used instead.

Yes Arithmetic shift left (shift register 1 bit)

ASL16 — Arithmetic left shift a register or accumulator by 16 bits

ASL.W — Arithmetic shift left a 16-bit register (shift register 1 bit)

ASLL.L — Arithmetic multi-bit shift left a long value

ASLL.W — Arithmetic multi-bit shift left a word value

ASR Yes Arithmetic shift right (shift register 1 bit)

ASR16 — Arithmetic right shift a register or accumulator by 16 bits

ASRAC — Arithmetic multi-bit shift right with accumulate

ASRR.L — Arithmetic multi-bit shift right a long value

ASRR.W — Arithmetic multi-bit shift right a word value

LSL.W — Logical shift left a word-sized register

LSR.W — Logical shift right (shift word-sized register 1 bit)

LSR16 — Logical right shift a register or accumulator by 16 bits

LSRAC — Logical multi-bit shift right with accumulate

LSRR.L — Logical multi-bit shift right a long value

LSRR.W — Logical multi-bit shift right a word value

ROL.L — Rotate left on long register

ROL.W — Rotate left on word register

ROR.L — Rotate right on long register

ROR.W — Rotate right on word register
4-6 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Instruction Groups
4.1.4 Logical Instructions
The instructions in this group perform Boolean logic operations. Optional data transfers are not permitted
with logical instructions, except with the EOR.L instruction, which permits a single parallel move. These
instructions execute in 1 cycle.

Table 4-5 lists the logical instructions.

4.1.5 AGU Arithmetic Instructions
These instructions perform all of the address-calculation arithmetic operations within the address
generation unit. AGU arithmetic instructions typically use AGU registers for operands, although some
instructions can operate on immediate data. Only the CMPA, CMPA.W, DECTSTA, TSTA.B, TSTA.W,
TSTA.L, and TSTDECA.W instructions modify the condition code register bits.

No optional data transfers (parallel moves) can be specified with the AGU arithmetic instructions.
Arithmetic instructions typically execute in 1 instruction cycle, although some of the operations may take
additional cycles depending on the operand addressing mode.

Table 4-6 on page 4-8 lists the AGU arithmetic instructions.

Table 4-5. Logical Instructions

Instruction1

1.Note that ANDC, EORC, ORC, and NOTC are not true instructions, but are aliases to bit-manipulation in-
structions that perform the same function. See Section 4.2.1, “The ANDC, EORC, ORC, and NOTC Aliases,”
for more information.

Parallel
Move?

Description

AND.L — Logical AND on long registers

AND.W — Logical AND on word registers

ANDC — Logical AND immediate data on word in memory

CLB — Count leading zeros or ones

EOR.L Yes Logical exclusive OR on long registers

EOR.W — Logical exclusive OR on word registers

EORC — Logical exclusive OR immediate data on word in memory

NOT.W — Logical complement on word registers

NOTC — Logical complement on word in memory

OR.L — Logical OR on long registers

OR.W — Logical OR on word registers

ORC — Logical OR immediate data on word in memory
Freescale Semiconductor Instruction Set Introduction 4-7

Instruction Set Introduction
Table 4-6. AGU Arithmetic Instructions

Instruction Description

ADDA Add register or immediate to AGU register

ADDA.L Add to AGU register with 1 bit left shift of source operand

ALIGNSP Save old value of stack pointer onto stack, aligning SP for long memory accesses before per-
forming the save

ASLA Arithmetic 1 bit left shift an AGU register

ASRA Arithmetic 1 bit right shift an AGU register

CMPA Compare two AGU registers; comparison done on 24 bits

CMPA.W Compare two AGU registers; comparison done on 16 bits

DECA Decrement an AGU register by one

DECA.L Decrement an AGU register by two

DECTSTA Decrement and test an AGU register

LSRA Logical 1 bit right shift an AGU register

NEGA Negate an AGU register

SUBA Subtract register or immediate from AGU register

SXTA.B Sign extend a byte value in an AGU register

SXTA.W Sign extend a word value in an AGU register

TFRA Transfer one AGU register to another

TSTA.B Test the byte portion of an AGU register

TSTA.L Test the long portion of an AGU register

TSTA.W Test the word portion of an AGU register

TSTDECA.W Test and decrement the word portion of an AGU register

ZXTA.B Zero extend a byte value in an AGU register

ZXTA.W Zero extend a word value in an AGU register
4-8 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Instruction Groups
4.1.6 Bit-Manipulation Instructions
The bit-manipulation instructions are used to test or modify a set of one or more bits, called a bitfield,
within a word. They can operate on any data memory location, peripheral, or register. The carry bit in the
status register is the only condition code affected by these instructions. They all execute in 2, 3, or 4
instruction cycles.

For similar instructions that change execution flow based on a bitfield test, see Section 4.1.9, “Program
Control Instructions.”

Table 4-7 lists the bit-manipulation instructions available on both the DSP56800E core and the
DSP56800EX core.

Table 4-8 lists the additional bit-manipulation instruction available on the DSP56800EX core.

Using the bit-manipulation instructions to modify AGU registers (Rn, N, SP, or M01) can result in pipeline
dependencies. See Section 10.4.2, “AGU Pipeline Dependencies,” on page 10-28 for more information.

4.1.7 Looping Instructions
The looping instructions are used to perform program looping with minimal overhead. The core
architecture supports efficient hardware looping on a single instruction (using REP) or on a block of
instructions (using DO). Using these instructions can dramatically increase the performance of iterative
algorithms. For a full discussion of hardware looping and the looping instructions, see Section 8.5,
“Hardware Looping,” on page 8-18.

Table 4-9 lists the loop instructions.

Table 4-7. Bitfield Instructions

Instruction Description

BFCHG Bitfield test and change

BFCLR Bitfield test and clear

BFSET Bitfield test and set

BFTSTH Bitfield test for on condition

BFTSTL Bitfield test for off condition

Table 4-8. Additional DSP56800EX Bitfield Instruction

Instruction Description

BFSC Bitfield test and set/clear

Table 4-9. Looping Instructions

Instruction Description

DO Load LC register with unsigned 16-bit loop count and start hardware loop

DOSLC Start hardware loop with signed 16-bit loop count already in LC register
Freescale Semiconductor Instruction Set Introduction 4-9

Instruction Set Introduction
4.1.8 Move Instructions
The move instructions transfer data between core registers and memory or peripherals, or between two
memory or peripheral locations. Move instructions that write an accumulator register to memory or a
peripheral can also automatically saturate, limiting the value written. In addition to the following move
instructions, there are also parallel moves that can be used simultaneously with many of the arithmetic
instructions. The parallel moves appear in Table 4-43 on page 4-49 and Table 4-44 on page 4-50 and are
discussed in detail in Section 3.3.5, “Parallel Moves,” on page 3-11 and in Appendix A, “Instruction Set
Details.”

Table 4-10 lists the move instructions.

Writing AGU registers (Rn, N, SP, or M01) with a MOVE instruction can result in an execution pipeline
stall. See Section 10.4.2, “AGU Pipeline Dependencies,” on page 10-28 for more information.

4.1.9 Program Control Instructions
The program control instructions include branches, jumps, conditional branches, conditional jumps, and
other instructions that affect the program counter and software stack. Also included in this instruction
group are the STOP and WAIT instructions, which place the DSC chip in a low-power state.

Table 4-11 lists the change-of-flow instructions.

ENDDO Terminate current hardware DO loops

REP Repeat immediately following instruction

Table 4-10. Move Instructions

Instruction Description

MOVE.B Move (signed) byte using word pointers and byte addresses

MOVE.BP Move (signed) byte using byte pointers and byte addresses

MOVEU.B Move unsigned byte using word pointers and byte addresses

MOVEU.BP Move unsigned byte using byte pointers and byte addresses

MOVE.L Move long using word pointers

MOVE.W Move (signed) word using word pointers and word addresses
(data or program memory)

MOVEU.W Move unsigned word using word pointers and word addresses
(data or program memory)

Table 4-9. Looping Instructions (Continued)

Instruction Description
4-10 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Instruction Groups
See Section 7.5, “Programming Considerations,” on page 7-6 for other program control instructions that
can be synthesized from existing core instructions. For information on the delayed program control
instructions (BRAD, FRTID, JMPD, RTID, and RTSD), see Section 4.3, “Delayed Flow Control
Instructions.”

Table 4-12 lists the miscellaneous program control instructions.

Table 4-11. Program Control and Change-of-Flow Instructions

Instruction Description

Bcc Branch conditionally

BRA Branch

BRAD Delayed branch

BRCLR Branch if selected bits are clear

BRSET Branch if selected bits are set

BSR Branch to subroutine

FRTID Delayed return from fast interrupt

ILLEGAL Generate an illegal instruction exception

Jcc Jump conditionally

JMP Jump

JMPD Delayed jump

JSR Jump to subroutine

RTI Return from interrupt

RTID Delayed return from interrupt

RTS Return from subroutine

RTSD Delayed return from subroutine

SWI Software interrupt at highest priority level

SWI #<0–2> Software interrupt at specified priority level

SWILP Software interrupt at lowest priority level

Table 4-12. Miscellaneous Program Control Instructions

Instruction Description

DEBUGEV Generate debug event

DEBUGHLT Enter debug mode

NOP No operation

STOP Stop processing (lowest power standby)
Freescale Semiconductor Instruction Set Introduction 4-11

Instruction Set Introduction
4.2 Instruction Aliases
The DSC core assembler provides a number of additional, useful instruction mnemonics that are actually
aliases to other instructions. Each of these instructions is mapped to one of the core instructions and
dis-assembles as such.

4.2.1 The ANDC, EORC, ORC, and NOTC Aliases
The core instruction set does not support logical operations using 16-bit immediate data. It is possible to
achieve the same result, however, using the bit-manipulation instructions. To simplify implementing these
operations, the core assembler provides the following operations:

• ANDC—logically AND a 16-bit immediate value with a destination

• EORC—logically exclusive OR a 16-bit immediate value with a destination

• NOTC—take the logical one’s-complement of a 16-bit destination

• ORC—logically OR a 16-bit immediate value with a destination

These operations are not new instructions, but aliases to existing bit-manipulation instructions. They are
mapped as indicated in Table 4-13.

Note that for the ANDC instruction, a one’s-complement of the mask value is used when remapping to the
BFCLR instruction. For the NOTC instruction, all bits in the 16-bit mask are set to one.

In Example 4-1, a logical OR operation is performed on an immediate value with a location in memory.

Example 4-1. Logical OR with a Data Memory Location

ORC #$00FF,X:$400; Set all bits of lower byte in X:$400

The assembler translates this instruction into BFSET #$00FF,X:$400, which performs the same
operation. If the assembled code is later dis-assembled, the instruction appears as a BFSET instruction.

WAIT Wait for interrupt (low power standby)

Table 4-13. Aliases for Logical Instructions with Immediate Data

Desired
Instruction

Operands

Remapped
DSP56800E/
DSP56800EX
Instruction

Operands

ANDC #xxxx,DST BFCLR #xxxx,DST

EORC #xxxx,DST BFCHG #xxxx,DST

NOTC DST BFCHG #$FFFF,DST

ORC #xxxx,DST BFSET #xxxx,DST

Table 4-12. Miscellaneous Program Control Instructions (Continued)

Instruction Description
4-12 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Instruction Aliases
4.2.2 Instruction Operand Remapping
The core assembler performs a few additional mapping functions, either to allow an alternative syntax for
certain instructions or to simplify the addressing mode used by an instruction. These remapping functions
are discussed in the following sections.

4.2.2.1 Duplicate Operand Remapping

Several instructions, such as the ADDA, SAT, and ZXT.B instructions, allow different source and
destination register operands to be specified. Often, however, the source and destination registers are the
same. For situations when they are the same, the core assembler provides an alternate syntax in which the
operand is only specified once. Table 4-14 lists the standard and duplicate-operand syntaxes for these
instructions.

Note that the alternate syntax is merely an alias to the regular instruction syntax. When dis-assembled, the
instruction appears with the standard syntax, with the register operand repeated.

4.2.2.2 Addressing Mode Remapping

When an instruction operand uses the index-by-6-bit-displacement or index-by-3-bit-displacement
addressing modes, the core assembler examines the effective address calculation to see if the operand can
be mapped to one that uses a simpler addressing mode. Specifically, when the assembler detects
occurrences of the following addressing modes, it remaps them:

• X:(SP–xx) where the value of the 6-bit offset is “0”

• X:(SP–x) where the value of the 3-bit offset is “0”

Table 4-14. Instructions with Alternate Syntax

Standard Syntax Alternate Syntax

Operation Operands Operation Operands

ADDA #xxxx,Rn,Rn ADDA #xxxx,Rn

#xxxxxx,Rn,Rn #xxxxxx,Rn

ADDA.L #xxxx,Rn,Rn ADDA.L #xxxx,Rn

#xxxxxx,Rn,Rn #xxxxxx,Rn

ASL16 FFF,FFF ASL16 FFF

ASLA Rn,Rn ASLA Rn

ASR16 FFF,FFF ASR16 FFF

LSR16 FFF,FFF LSR16 FFF

SAT FF,FFF SAT FF

SXT.B FFF,FFF SXT.B FFF

SXT.L FF,FFF SXT.L FF

ZXT.B FFF,FFF ZXT.B FFF
Freescale Semiconductor Instruction Set Introduction 4-13

Instruction Set Introduction
In both cases, the operand addressing mode is remapped to the X:(SP) addressing mode.

4.3 Delayed Flow Control Instructions
One particular class of instructions merits additional attention: the delayed flow control instructions. These
instructions are designed to increase throughput by eliminating execution cycles that are wasted when
program flow changes.

An instruction that affects normal program flow (such as branch or jump instruction) requires 2 or 3
additional instruction cycles to flush the execution pipeline. The program controller stops fetching
instructions at the current location and begins to fill the pipeline from the target address. The execution
pipeline is said to stall while this switch occurs. The additional cycles required to flush the pipeline are
reflected in the total cycle count for each change-of-flow instruction. A special group of instructions
referred to as “delayed” instructions provide a mechanism for executing useful tasks during these normally
wasted cycles.

4.3.1 Using Delayed Instructions
The delayed instructions use the execution pipeline more efficiently by executing one or more of the
instructions following the delayed instruction before execution is switched to the target address. The
number of instructions is limited by the number of delay slots that are available with a given delayed
instruction, where each delay slot consists of 1 program word.

The delayed instructions, and the number of delay slots for each, are shown in Table 4-15.

The delay slots following each of these instructions must be filled with exactly the same number of
instruction words as there are delay slots. If not all delay slots can be filled with valid instructions, then
each unused delay slot must be filled with an NOP instruction. If a pipeline dependency occurs due to
instructions executed in the delay slots, the appropriate amount of interlock cycles are inserted by the core,
reducing the number of delay-slot cycles that are available for instructions by the same number of cycles.
See Section 10.4, “Pipeline Dependencies and Interlocks,” on page 10-26 for more information.

Example 4-2 shows a code fragment that reverses the contents of a buffer in memory that starts at the
address contained in R0. Note the BRA instruction that is used to return to the top of the loop. Due to the
design of the execution pipeline, the pipeline stalls for 2 cycles while control is transferred back to the top
of the loop.

Table 4-15. Delayed Instructions

Delayed Instructions Number of Delay Slots

BRAD 2

JMPD 2

RTID 3

RTSD 3

FRTID 2
4-14 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Delayed Flow Control Instructions
Example 4-2. Code Fragment with Regular Branch

ADDA #buflen-1,R0,R1 ; put end of buffer in R1
SWAP_LOOP

CMPA R0,R1 ; check if done yet
BLE DONE ; if R0 >= R1, we’re done
MOVE.W X:(R0)+,X0 ; perform the swap
MOVE.W X0,X:(R1)- ; " " "
BRA SWAP_LOOP ; branch back to top of loop

; pipeline stalls for 2 cycles
DONE

... ; subsequent code...

A more efficient way to implement the reversal algorithm is to use the BRAD instruction instead of BRA.
Example 4-3 on page 4-15 shows BRAD being used, with the code rearranged appropriately. By using
BRAD, we can execute the two MOVE.W instructions during the 2 cycles that would normally be wasted
due to the branch.

Example 4-3. Code Fragment with Delayed Branch

ADDA #buflen-1,R0,R1 ; put end of buffer in R1
SWAP_LOOP

CMPA R0,R1 ; check if done yet
BLE DONE ; if R0 >= R1, we’re done
BRAD SWAP_LOOP ; delayed branch to top of loop
MOVE.W X:(R0)+,X0 ; swap occurs in the delay slots!
MOVE.W X0,X:(R1)-

DONE
... ; subsequent code...

Similar strategies can be used on subroutines and interrupt handlers, where employing the RTSD and
RTID instructions can eliminate the wasted cycles associated with the RTS and RTI instructions.

4.3.2 Delayed Instruction Restrictions
Not all instructions are allowed in delay slots. The following instructions cannot be executed in a delay
slot. The assembler detects these instructions and flags them as illegal.

• DO, DOSLC, REP, ENDDO

• JMP, JMPD, Jcc, JSR, BRA, BRAD, Bcc, BSR, RTS, RTSD, RTI, RTID, FRTID

• ADD.W with the following operands: ADD.W EEE,X:(SP-xx)

• SWILP, SWI #0, SWI #1, SWI #2, SWI

• STOP, WAIT

• SWAP SHADOWS

• Move instructions that access program memory

• Any move clear or test instruction that accesses the SP, N3, M01, LA, LA2, LC, LC2, HWS, SR, or
OMR registers

• The BFCHG, BFCLR, and BFSET instructions (and the aliases to them: ANDC, EORC, NOTC, and
ORC) that access the SP, N3, M01, LA, LA2, LC, LC2, HWS, SR, or OMR registers

• The clear or test instructions (except TSTA.B, TSTA.W, TSTA.L, DECTSTA, or TSTDECA.W)
that access the SP,N3,M01,LA,LA2,LC,LC2, HWS, SR, or OMR registers

• ALIGNSP

• Tcc
Freescale Semiconductor Instruction Set Introduction 4-15

Instruction Set Introduction
• DEBUGHLT, DEBUGEV

There are additional restrictions on instructions that are allowed in delay slots for the RTID instruction.
Because this instruction restores the value of the status register, instructions that update the status register
are not allowed. The assembler detects these cases, which appear in the following list, and flags them as
illegal.

• ADC, SBC, ROL.L, ROR.L, ROL.W, ROR.W

In addition to all of the preceding restrictions, the instructions that can be in the delay slots for the FRTID
instruction are further limited. The assembler dis-allows the following:

• ADC, SBC, ROL.L, ROR.L, ROL.W, ROR.W

• Any instruction in which the SP register is used as an address pointer, in an addressing mode, or in
an AGU calculation

• Move instructions where the source or destination is the R0, R1, or N register

• BFCHG, BFCLR, or BFSET instructions (including the ANDC, EORC, NOTC, and ORC
instruction aliases) that operate on the R0, R1, or N registers

• CLR.W or TST.W on either the R0, R1, or N registers

• Any two instructions in the delay slots (including any hardware interlocks) with a total execution
time greater than 3 cycles

4.3.3 Delayed Instructions and Interrupts
Instructions that are executed in delay slots are not interruptible. From the time that execution begins for a
delayed instruction to the end of execution for the instruction that occupies the last delay slot, no interrupts
are serviced. Any interrupt that occurs during this time is latched as pending and is not serviced until after
the final delay-slot instruction. See Section 9.3.4, “Non-Interruptible Instruction Sequences,” on page 9-10
for more information.

4.4 Instruction Set Summary
This section presents the entire core instruction set in tabular form. The tables show the instruction
mnemonics, supported operands, and addressing modes for each instruction. The number of instruction
cycles that each operation takes to execute and the number of program words that it occupies is also listed.
With these tables, it is easy to determine the appropriate instruction for a given application.

4.4.1 Using the Instruction Summary Tables
The entries in the instruction summary tables give the name of the operation (the instruction mnemonic),
the legal operands, cycle and word counts, and a brief description of the operation. The general form
appears in Table 4-16.

Table 4-16. Sample Instruction Summary Table

Operation Operands C W Comments

MAC (±)FFF1,FFF1,FFF 1 1 Fractional multiply-accumulate; multiplication result
optionally negated before accumulation
4-16 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Instruction Set Summary
The operands are specified using the register and immediate values that are allowed, or, when there are a
number of options, using shorthand notation. This notation, which is used to describe a set of registers, is
explained in Section 4.4.2, “Register Field Notation.”

The summary tables and the notation definitions make it possible to determine whether or not a particular
instruction is legal. For the MAC instruction in Table 4-16, for example, we can determine that the
following are valid core instructions:

MAC X0,Y0,A ; A + X0*Y0 -> A
MAC +X0,Y0,A ; A + X0*Y0 -> A
MAC -X0,Y0,A ; A - (X0*Y0) -> A

The (+) in the operand entry for MAC indicates that an optional “+” or “–” sign can be specified before the
input register combination. If a “–” is specified, the multiplication result is negated.

Table 4-44 on page 4-50 shows all the registers and addressing modes that are allowed in a dual read
instruction, one of the core’s parallel move instructions. Based on the entries in the summary tables for the
MOVE, MACR, and ADD instructions, as well as the information contained in Table 4-44, we see that the
instructions in Example 4-4 are allowed.

Example 4-4. Valid Instructions

MOVE.W X:(R0)+,Y0 X:(R3)+,X0
MACR X0,Y1,A X:(R1)+N,Y1 X:(R3)-,X0
ADD Y0,B X:(R1)+N,Y0 X:(R3)+,X0

The instruction summary tables can also be used to determine if a particular instruction is not allowed.
Consider the instruction in Example 4-5.

Example 4-5. Invalid Instruction

ADD X0,Y1,A X:(R2)-,X0 X:(R3)+N,Y0

Using the information in Table 4-33 on page 4-31 and Table 4-44 on page 4-50, we know that this
instruction is invalid for the following reasons:

• The ADD instruction only takes two operands, not three.

• The pointer R2 is not allowed for the first memory read.

• The post-decrement addressing mode is not available for the first memory read.

• The X0 register cannot be a destination for the first memory read.

• The post-update–by–N addressing mode is not allowed for the second memory read; only the
post-increment, post-decrement, and post-update–with–N3 addressing modes are allowed.

• The Y0 register cannot be a destination for the second memory read.

4.4.2 Register Field Notation
There are many different register fields that are used within the instruction summary tables. The following
tables outline the notation that is used to specify legal registers.

Table 4-17 shows the register sets that are available for the most important move instructions. Whenever
the supported set of registers varies due to whether the set is the source or destination of an operation, the
difference is noted. Register fields that are used in conjunction with AGU move instructions are listed in
Table 4-18 on page 4-19.
Freescale Semiconductor Instruction Set Introduction 4-17

Instruction Set Introduction
In some cases, the notation that is used for specifying an accumulator determines whether or not saturation
is enabled when the accumulator is being used as a source in a move or parallel move instruction. Refer to
Section 5.8.1, “Data Limiter,” on page 5-39 and Section 5.2, “Accessing the Accumulator Registers,” on
page 5-6 for more information.

Table 4-18 shows the register sets that are available for use for pointers in address-register-indirect
addressing modes. The most commonly used fields in this table are Rn and RRR. This table also shows the
notation that is used for AGU registers in AGU arithmetic operations.

Table 4-17. Register Fields for General-Purpose Writes and Reads

Register Field
Registers in This

Field
Comments

HHH
(source)

A1, B1, C1, D1
X0, Y0, Y1

Seven data ALU registers—four 16-bit MSP portions of the accumula-
tors and three 16-bit data registers used as source registers. Note the
usage of A1, B1, C1, and D1.

This field is identical to the FFF1 field.

HHH
(destination)

A, B, C, D
Y

X0, Y0, Y1

Seven data ALU registers—four 16-bit MSP portions of the accumula-
tors and three 16-bit data registers used as destination registers. Note
the usage of A, B, C, and D. Writing word data to the 32-bit Y register
clears the Y0 portion.

HHH.L
(source)

A10, B10, C10, D10
Y

Five data ALU registers—four 32-bit MSP:LSP portions of the accumu-
lators and one 32-bit Y data register (Y1:Y0) used as source register.

Used for long memory accesses.

HHH.L
(destination)

A, B, C, D
Y

Five data ALU registers—four 32-bit MSP:LSP portions of the accumu-
lators and one 32-bit Y data register (Y1:Y0) used as destination regis-
ter.

Used for long memory accesses.

HHHH
(source)

A1, B1, C1, D1
X0, Y0, Y1
R0–R5, N

Seven data ALU and seven AGU registers used as source registers.
Note the usage of A1, B1, C1, and D1.

HHHH
(destination)

A, B, C, D
Y

X0, Y0, Y1
R0–R5, N

Seven data ALU and seven AGU registers used as destination regis-
ters. Note the usage of A, B, C, and D. Writing word data to the 32-bit Y
register clears the Y0 portion.

HHHH.L
(source)

A10, B10, C10, D10
Y

R0–R5, N

Five data ALU and seven AGU registers used as source registers.

Used for long memory accesses. Also see dddd.L.

HHHH.L
(destination)

A, B, C, D
Y

R0–R5, N

Five data ALU and seven AGU registers used as destination registers.

Used for long memory accesses. Also see dddd.L.
4-18 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Instruction Set Summary
Table 4-19 shows the register sets that are available for use in data ALU arithmetic operations. The most
commonly used fields in this table are EEE and FFF.

Table 4-18. Address Generation Unit (AGU) Registers

Register Field
Registers in This

Field
Comments

Rn R0–R5
N

SP

Eight AGU registers available as pointers for addressing and address
calculations

RRR R0–R5
N

Seven AGU registers available as pointers for addressing and as
sources and destinations for move instructions

Rj R0, R1, R2, R3 Four pointer registers available as pointers for addressing

N3 N3 One index register available only for the second access in dual parallel
read instructions

M01 M01 Address modifier register

FIRA FIRA Fast interrupt return register

Table 4-19. Data ALU Registers

Register
Field

Registers in This
Field

Comments

FFF A, B, C, D
Y

X0, Y0, Y1

Eight data ALU registers—four 36-bit accumulators, one 32-bit long regis-
ter Y, and three 16-bit data registers accessible during data ALU opera-
tions.

FFF1 A1, B1, C1, D1
X0, Y0, Y1

Seven data ALU registers—four 16-bit MSP portions of the accumulators
and three 16-bit data registers accessible during data ALU operations.

This field is identical to the HHH (source) field. It is very similar to FFF, but
indicates that the MSP portion of the accumulator is in use. Note the usage
of A1, B1, C1, and D1.

EEE A, B, C, D
X0, Y0, Y1

Seven data ALU registers—four accumulators and three 16-bit data regis-
ters accessible during data ALU operations.

This field is similar to FFF but is missing the 32-bit Y register. Used for
instructions where Y is not a useful operand (use Y1 instead).

fff A, B, C, D, Y Four 36-bit accumulators and one 32-bit long register accessible during
data ALU operations.

FF A, B, C, D Four 36-bit accumulators accessible during data ALU operations.

DD X0, Y0, Y1 Three 16-bit data registers.

F A, B Two 36-bit accumulators accessible during parallel move instructions and
some data ALU operations.
Freescale Semiconductor Instruction Set Introduction 4-19

Instruction Set Introduction
Table 4-20 shows additional register fields that are available for move instructions.

F1 A1, B1 The 16-bit MSP portion of two accumulators accessible as source oper-
ands in parallel move instructions.

Table 4-20. Additional Register Sets for Move Instructions

Register Field
Registers in This

Field
Comments

DDDDD A, A2, A1, A0
B, B2, B1, B0

C, C1
D, D1

Y
Y1, Y0, X0

R0, R1, R2, R3
R4, R5, N, SP

M01, N3

OMR, SR
LA, LC
HWS

This table lists the CPU registers. It contains the contents of the
HHHHH and SSSS register fields.

Y is permitted only as a destination, not as a source.
Writing word data to the 32-bit Y register clears the Y0 portion.

Note that the C2, C0, D2, and D0 registers are not available within this
field. See the dd register field for these registers

dd C2, D2, C0, D0 Extension and LS portion of the C and D accumulators.

This register set supplements the DDDDD field.

HHHHH A, A2, A1, A0
B, B2, B1, B0

C, C1
D, D1

Y
Y1, Y0, X0

This set designates registers that are written with signed values when
written with word values.

Y is permitted only as a destination, not as a source.

The registers in this field and SSSS combine to make the DDDDD reg-
ister field.

SSSS R0, R1, R2, R3
R4, R5, N, SP

M01, N3

LA, LC, HWS
OMR, SR

This set designates registers that are written with unsigned values when
written with word values.

The registers in this field and HHHHH combine to make the DDDDD
register field.

dddd.L A2, B2, C2, D2
Y0, Y1, X0

SP, M01, N3,
LA, LA2, LC, LC2,
HWS, OMR, SR

Miscellaneous set of registers that can be placed onto or removed from
the stack 32 bits at a time.

This list supplements the registers in the HHHH.L field, which can also
access the stack via the MOVE.L instruction.

Table 4-19. Data ALU Registers (Continued)

Register
Field

Registers in This
Field

Comments
4-20 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Instruction Set Summary
4.4.3 Immediate Value Notation
Immediate values, including absolute and offset addresses, are presented in the instruction set summary
using the notation presented in Table 4-21.

4.4.4 Instruction Summary Tables
A summary of the entire core instruction set is presented in this section in tabular form. In these tables, the
instructions are broken into several different categories and then listed alphabetically.

The tables specify the operation, operands, and any relevant comments. There are separate fields for
sources and destinations of move instructions. In addition, each instruction has two fields:

• C—Number of clock cycles that are required to execute the instruction

• W—Number of program words that are required by the instruction

Descriptions of the parallel move instruction syntax (for those operations that support them) are located at
the end of this section. See Table 4-43 on page 4-49 and Table 4-44 on page 4-50 for information on
parallel moves.

Table 4-21. Immediate Value Notation

Immedate Value Field Description

<MASK16> 16-bit mask value

<MASK8> 8-bit mask value

<OFFSET18> 18-bit signed PC-relative offset

<OFFSET22> 22-bit signed PC-relative offset

<OFFSET7> 7-bit signed PC-relative offset

<ABS16> 16-bit absolute address

<ABS19> 19-bit absolute address

<ABS21> 21-bit absolute address

Table 4-22. Move Byte Instructions—Byte Pointers

Operation Source Destination C W Comments

MOVE.BP X:(RRR)
X:(RRR)+
X:(RRR)–

HHH 1 1 Move signed byte from memory

X:(RRR+N) HHH 2 1 Address = Rn+N

X:(RRR+xxxx) HHH 2 2 Unsigned 16-bit offset

X:(RRR+xxxxxx) HHH 3 3 24-bit offset

X:xxxx HHH 2 2 Unsigned 16-bit absolute address

X:xxxxxx HHH 3 3 24-bit absolute address
Freescale Semiconductor Instruction Set Introduction 4-21

Instruction Set Introduction
MOVEU.BP X:(RRR)
X:(RRR)+
X:(RRR)–

HHH 1 1 Move unsigned byte from memory

X:(RRR+N) HHH 2 1 Address = Rn+N

X:(RRR+xxxx) HHH 2 2 Unsigned 16-bit offset

X:(RRR+xxxxxx) HHH 3 3 24-bit offset

X:xxxx HHH 2 2 Unsigned 16-bit absolute address

X:xxxxxx HHH 3 3 24-bit absolute address

MOVE.BP HHH X:(RRR)
X:(RRR)+
X:(RRR)–

1 1 Move signed byte to memory

HHH X:(RRR+N) 2 1 Address = Rn+N

HHH X:(RRR+xxxx) 2 2 Unsigned 16-bit offset

HHH X:(RRR+xxxxxx) 3 3 24-bit offset

HHH X:xxxx 2 2 Unsigned 16-bit absolute address

HHH X:xxxxxx 3 3 24-bit absolute address

Table 4-23. Move Byte Instructions—Word Pointers

Operation Source Destination C W Comments

MOVE.B X:(Rn+xxxx) HHH 2 2 Signed 16-bit offset

X:(Rn+xxxxxx) HHH 3 3 24-bit offset

X:(SP) HHH 1 1 Pointer is SP

MOVEU.B X:(RRR+x) HHH 2 1 x: offset ranging from 0 to 7

X:(Rn+xxxx) HHH 2 2 Signed 16-bit offset

X:(Rn+xxxxxx) HHH 3 3 24-bit offset

X:(SP–x) HHH 2 1 x: offset ranges from 1 to 8

X:(SP) HHH 1 1 Pointer is SP

MOVE.B HHH X:(RRR+x) 2 1 x: offset ranges from 0 to 7

HHH X:(Rn+xxxx) 2 2 Signed 16-bit offset

HHH X:(Rn+xxxxxx) 3 3 24-bit offset

HHH X:(SP–x) 2 1 x: offset ranges from 1 to 8

HHH X:(SP) 1 1 Pointer is SP

Table 4-22. Move Byte Instructions—Byte Pointers (Continued)

Operation Source Destination C W Comments
4-22 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Instruction Set Summary
Table 4-24. Move Long Word Instructions

Operation Source Destination C W Comments

MOVE.L X:(Rn)
X:(Rn)+
X:(Rn)–

HHHH.L 1 1 Move signed 32-bit long word from memory;
note that Rn includes SP

X:(SP)– dddd.L 1 1 Pop 32 bits from stack; does not modify bits
14–10 in SR

X:(Rn+N) HHHH.L 2 1 Address = Rn+N

X:(Rn+xxxx) HHHH.L 2 2 Signed 16-bit offset

X:(Rn+xxxxxx) HHHH.L 3 3 24-bit offset

X:(SP–xx) HHHH.L 2 1 Unsigned 6-bit offset, left shifted 1 bit

X:xxxx HHHH.L 2 2 Unsigned 16-bit address

X:xxxxxx HHHH.L 3 3 24-bit address

MOVE.L HHHH.L X:(Rn)
X:(Rn)+
X:(Rn)–

1 1 Move signed 32-bit long word to memory;
note that Rn includes SP

dddd.L X:(SP)+ 1 1 Push 32 bits onto stack; SP not permitted in
dddd.L

HHHH.L X:(Rn+N) 2 1 Address = Rn+N

HHHH.L X:(Rn+xxxx) 2 2 Signed 16-bit offset

HHHH.L X:(Rn+xxxxxx) 3 3 24-bit offset

HHHH.L X:(SP–xx) 2 1 Unsigned 6-bit offset, left shifted 1 bit

HHHH.L X:xxxx 2 2 Unsigned 16-bit address

HHHH.L X:xxxxxx 3 3 24-bit address
Freescale Semiconductor Instruction Set Introduction 4-23

Instruction Set Introduction
Table 4-25. Move Word Instructions

Operation Source Destination C W Comments

MOVE.W X:(Rn)
X:(Rn)+
X:(Rn)–

HHHHH 1 1 Move signed 16-bit integer word from memory

X:(Rn+N) HHHHH 2 1 Address = Rn+N

X:(Rn)+N HHHHH 1 1 Post-update of Rn register

X:(Rn+x) HHH 2 1 x: offset ranging from 0 to 7

X:(Rn+xxxx) HHHHH 2 2 Signed 16-bit offset

X:(Rn+xxxxxx) HHHHH 3 3 24-bit offset

X:(SP–xx) HHH 2 1 Unsigned 6-bit offset

X:xxxx HHHHH 2 2 Unsigned 16-bit address

X:xxxxxx HHHHH 3 3 24-bit address

X:<<pp X0, Y1, Y0
A, B, C, A1, B1

1 1 6-bit peripheral address

X:aa X0, Y1, Y0
A, B, C, A1, B1

1 1 6-bit absolute short address

(parallel) 1 1 Refer to Table 4-44 on page 4-50.

MOVEU.W X:(Rn)
X:(Rn)+
X:(Rn)–

SSSS 1 1 Move signed 16-bit integer word from memory

X:(Rn+N) SSSS 2 1 Address = Rn+N

X:(Rn)+N SSSS 1 1 Post-update of Rn register

X:(Rn+xxxx) SSSS 2 2 Signed 16-bit offset

X:(Rn+xxxxxx) SSSS 3 3 24-bit offset

X:(SP–xx) RRR 2 1 Unsigned 6-bit offset

X:xxxx SSSS 2 2 Unsigned 16-bit address

X:xxxxxx SSSS 3 3 24-bit address

X:<<pp RRR 1 1 6-bit peripheral address

X:aa RRR 1 1 6-bit absolute short address
4-24 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Instruction Set Summary
MOVE.W DDDDD X:(Rn)
X:(Rn)+
X:(Rn)–

1 1 Move signed 16-bit integer word to memory

DDDDD X:(Rn+N) 2 1 Address = Rn+N

DDDDD X:(Rn)+N 1 1 Post-update of Rn register

HHH X:(Rn+x) 2 1 x: offset ranging from 0 to 7

DDDDD X:(Rn+xxxx) 2 2 Signed 16-bit offset

DDDDD X:(Rn+xxxxxx) 3 3 24-bit offset

HHHH X:(SP–xx) 2 1 Unsigned 6-bit offset

DDDDD X:xxxx 2 2 Unsigned 16-bit address

DDDDD X:xxxxxx 3 3 24-bit address

X0, Y1, Y0
A, B, C, A1, B1

R0–R5, N

X:<<pp 1 1 6-bit peripheral address

X0, Y1, Y0
A, B, C, A1, B1

R0–R5, N

X:aa 1 1 6-bit absolute short address

Table 4-25. Move Word Instructions (Continued)

Operation Source Destination C W Comments
Freescale Semiconductor Instruction Set Introduction 4-25

Instruction Set Introduction
Table 4-26. Memory-to-Memory Move Instructions

Operation Source Destination C W Comments

MOVE.BP1

1.The destination operand X:xxxx is always specified as a byte address for the MOVE.BP, MOVEU.B, and
MOVE.B instructions. The upper 15 bits of the address select the appropriate word location in memory, and
the LSB selects the upper or lower byte of that word.

X:(RRR)
X:(RRR)+
X:(RRR)–

X:xxxx 2 2 Move byte from one memory location to another;
RRR used as a byte pointer

X:(RRR+N) X:xxxx 3 2 RRR used as a byte pointer

X:(RRR+xxxx) X:xxxx 3 3 Unsigned 16-bit offset; RRR used as a byte
pointer

X:xxxx X:xxxx 3 3 16-bit absolute address

MOVEU.B1 X:(RRR+x) X:xxxx 3 2 x: offset ranges from 0 to 7

X:(SP) X:xxxx 2 2 Signed 16-bit offset

X:(SP–x) X:xxxx 3 2 x: offset ranges from 1 to 8

MOVE.B1 X:(Rn+xxxx) X:xxxx 3 3 Signed 16-bit offset

MOVE.W X:(Rn+x) X:xxxx 3 2 Move word from one memory location to another;
x: offset ranges from 0 to 7

X:(SP–xx) X:xxxx 3 2

X:(Rn)
X:(Rn)+
X:(Rn)–

X:xxxx 2 2

X:(Rn+N) X:xxxx 3 2

X:(Rn)+N X:xxxx 2 2

X:(Rn+xxxx) X:xxxx 3 3 Signed 16-bit offset

X:xxxx X:xxxx 3 3 16-bit absolute address

MOVE.L X:(SP–xx) X:xxxx 3 2 Move long from one memory location to another

X:(Rn)
X:(Rn)+
X:(Rn)–

X:xxxx 2 2

X:(Rn+N) X:xxxx 3 2

X:(Rn+xxxx) X:xxxx 3 3 Signed 16-bit offset

X:xxxx X:xxxx 3 3 16-bit absolute address
4-26 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Instruction Set Summary
Table 4-27. Immediate Move Instructions

Operation Source Destination C W Comments

MOVE.W #<–64,63> HHHH 1 1 Signed 7-bit integer data (data is put in the lowest 7
bits of the word portion of any accumulator, upper 8
bits and extension register are sign extended, LSP
portion is set to 0).

X:xxxx 2 2 Signed 7-bit integer data (data put in the low por-
tion of the word).

#xxxx HHHHH 2 2 Signed 16-bit immediate data.

dd 2 2 Move to C2, D2, C0, D0 registers.

X:(Rn) 2 2

X:(Rn+xxxx) 3 3

X:(SP–xx) 2 2

X:<<pp 2 2 Move 16-bit immediate data to the one of 64 loca-
tions in X data memory—peripheral registers.

X:aa 2 2 Move 16-bit immediate data to the first 64 locations
of X data memory.

X:xxxx 3 3

X:xxxxxx 4 4

MOVEU.W #xxxx SSSS 2 2 Unsigned 16-bit immediate data.

MOVE.L #xxxx X:xxxx 3 3 Sign extend 16-bit value and move to 32-bit mem-
ory location.

#xxxxxxxx X:xxxx 4 4 Move to 32-bit memory location.

#<–16,15> HHH.L 1 1 Signed 5-bit integer data (data is put in the lowest 5
bits of the word portion of the register; upper bits
are sign extended).

#xxxx HHHH.L 2 2 Sign extend the 16-bit immediate data to 36 bits
when moving to an accumulator; sign extend to
24 bits when moving to an AGU register.

Use MOVEU.W for moves to the AGU with
unsigned 16-bit immediate data.

#xxxxxxxx HHH.L 3 3 Move signed 32-bit immediate data to a 32-bit
accumulator.

#xxxxxx RRR 3 3 Move unsigned 24-bit immediate value to AGU reg-
ister.
Freescale Semiconductor Instruction Set Introduction 4-27

Instruction Set Introduction
NOTE:

Additional register-to-register move instructions include the TFR and
SXT.L instructions for data ALU registers (see Table 4-33 on page 4-31)
and the TFRA instruction for AGU registers (see Table 4-37 on
page 4-42).

Table 4-28. Register-to-Register Move Instructions

Operation Source Destination C W Comments

MOVE.W DDDDD HHHHH 1 1 Move signed word to register.

HHH RRR Move signed word to register.

MOVEU.W DDDDD SSSS 1 1 Move unsigned word to register.
MOVEU.W HWS,HWS is not supported.

MOVE.L HHH.L RRR 1 1

RRR HHH.L Move pointer register to data ALU register.
Zero extend the 24-bit value contained in the
RRR register.

SWAP SHADOWS 1 1 This instruction swaps the value in the R0, R1,
N, and M01 registers with their shadow regis-
ters. It is the only instruction that accesses the
shadow registers.

Table 4-29. Conditional Register Transfer Instructions

Operation
Data ALU Transfer AGU Transfer

C W Comments
Source Destination Source Destination

Tcc1

1.The Tcc instruction does not support the HI, LS, NN, and NR conditions.

DD F (No transfer) 1 1 Conditionally transfer one
register

A B (No transfer)

B A (No transfer)

DD F R0 R1 Conditionally transfer one
data ALU register and
one AGU register

A B R0 R1

B A R0 R1
4-28 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Instruction Set Summary
Table 4-30. Move Word Instructions—Program Memory

Operation1

1.These instructions are not allowed when the XP bit in the OMR is set (that is, when the instructions are ex-
ecuting from data memory).

Source Destination C W Comments

MOVE.W P:(Rj)+
P:(Rj)+N

X0, Y1, Y0,
A, B, C,
A1 or B1

5 1 Read signed word from program memory

MOVEU.W P:(Rj)+
P:(Rj)+N

RRR 5 1 Read unsigned word from program memory

MOVE.W X0, Y1, Y0
A, B, C, A1, B1

R0–R5, N

P:(Rj)+
P:(Rj)+N

5 1 Write word to program memory

Table 4-31. Data ALU Multiply Instructions

Operation Operands C W Comments

IMAC.L FFF1,FFF1,fff 1 1 Integer 16 × 16 multiply-accumulate with 36-bit result.

IMPY.L FFF1,FFF1,fff 1 1 Integer 16 × 16 multiply with 32-bit result.

IMPY.W Y1,X0,FFF
Y0,X0,FFF
Y1,Y0,FFF
Y0,Y0,FFF
A1,Y0,FFF
B1,Y1,FFF
C1,Y0,FFF
C1,Y1,FFF

1 1 Integer 16 × 16 multiply with 16-bit result.

When the destination is the Y register or an accumu-
lator, the LSP portion is unchanged by the instruction.

Note: Assembler also accepts first two operands
when they are specified in opposite order.

MAC (±)FFF1,FFF1,FFF 1 1 Fractional multiply-accumulate; multiplication result
optionally negated before accumulation.

(parallel) Refer to Table 4-43 and Table 4-44.

MACR (±)FFF1,FFF1,FFF 1 1 Fractional MAC with round; multiplication result
optionally negated before addition.

(parallel) Refer to Table 4-43 and Table 4-44.

MPY FFF1,FFF1,FFF 1 1 Fractional multiply.

–Y1,X0,FFF
–Y0,X0,FFF
–Y1,Y0,FFF
–Y0,Y0,FFF
–A1,Y0,FFF
–B1,Y1,FFF
–C1,Y0,FFF
–C1,Y1,FFF

Fractional multiply where one operand negated
before multiplication.

Note: Assembler also accepts first two operands
when they are specified in opposite order.

(parallel) Refer to Table 4-43 and Table 4-44.
Freescale Semiconductor Instruction Set Introduction 4-29

Instruction Set Introduction
MPYR FFF1,FFF1,FFF 1 1 Fractional multiply; result rounded.

–Y1,X0,FFF
–Y0,X0,FFF
–Y1,Y0,FFF
–Y0,Y0,FFF
–A1,Y0,FFF
–B1,Y1,FFF
–C1,Y0,FFF
–C1,Y1,FFF

Fractional multiply where one operand negated
before multiplication. The result is rounded.

Note: Assembler also accepts first two operands
when they are specified in opposite order.

(parallel) Refer to Table 4-43 and Table 4-44.

Table 4-32. Data ALU Extended-Precision Multiplication Instructions

Operation Operands C W Comments

IMACUS A0,A1,Y
A0,B1,Y
A0,C1,Y
A0,D1,Y
B0,C1,Y
B0,D1,Y
C0,C1,Y
C0,D1,Y

1 1 Integer 16 × 16 multiply accumulate:
F0 (unsigned) × F1 (signed).

This instruction is described in more detail in
Section 5.5.3, “Multi-Precision Integer Multiplication,” on
page 5-32.

IMACUU A0,A1,Y
A0,B1,Y
A0,C1,Y
A0,D1,Y
B0,C1,Y
B0,D1,Y
C0,C1,Y
C0,D1,Y

1 1 Integer 16 × 16 multiply accumulate:
F0 (unsigned) × F1 (unsigned).

This instruction is described in more detail in
Section 5.5.3, “Multi-Precision Integer Multiplication,” on
page 5-32.

IMPYSU A1,A0,Y
A1,B0,Y
A1,C0,Y
A1,D0,Y
B1,C0,Y
B1,D0,Y
C1,C0,Y
C1,D0,Y

1 1 Integer 16 × 16 multiply:
F1 (signed) × F0 (unsigned).

This instruction is described in more detail in
Section 5.5.3, “Multi-Precision Integer Multiplication,” on
page 5-32.

Table 4-31. Data ALU Multiply Instructions (Continued)

Operation Operands C W Comments
4-30 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Instruction Set Summary
IMPYUU A1,A0,Y
A1,B0,Y
A1,C0,Y
A1,D0,Y
B1,C0,Y
B1,D0,Y
C1,C0,Y
C1,D0,Y

1 1 Integer 16 × 16 multiply:
F1 (unsigned) × F0 (unsigned).

This instruction is described in more detail in
Section 5.5.3, “Multi-Precision Integer Multiplication,” on
page 5-32.

A0,A0,FF
A0,B0,FF
A0,C0,FF
A0,D0,FF
B0,C0,FF
B0,D0,FF
C0,C0,FF
C0,D0,FF

1 1 Integer 16 × 16 multiply:
F0 (unsigned) × F0 (unsigned).

This instruction is described in more detail in
Section 5.5.3, “Multi-Precision Integer Multiplication,” on
page 5-32.

MACSU X0,Y1,EEE
X0,Y0,EEE
Y0,Y1,EEE
Y0,Y0,EEE
Y0,A1,EEE
Y1,B1,EEE
Y0,C1,EEE
Y1,C1,EEE

1 1 16 × 16 => 32-bit unsigned/signed fractional MAC.

The first operand is treated as signed and the second as
unsigned.

MPYSU X0,Y1,EEE
X0,Y0,EEE
Y0,Y1,EEE
Y0,Y0,EEE
Y0,A1,EEE
Y1,B1,EEE
Y0,C1,EEE
Y1,C1,EEE

1 1 16 × 16 => 32-bit signed/unsigned fractional multiply.

The first operand is treated as signed and the second as
unsigned.

Table 4-33. Data ALU Arithmetic Instructions (Sheet 1 of 8)

Operation Operands C W Comments

ABS FFF 1 1 Absolute value.

(parallel) Refer to Table 4-43 on page 4-49.

ADC Y,F 1 1 Add with carry (set C bit also).

ADD FFF,FFF 1 1 36-bit addition of two registers.

(parallel) Refer to Table 4-43 and Table 4-44.

ADD.B #xxx,EEE 2 2 Add 9-bit signed immediate.

ADD.BP X:xxxx,EEE 2 2 Add memory byte to register.

X:xxxxxx,EEE 3 3

Table 4-32. Data ALU Extended-Precision Multiplication Instructions (Continued)

Operation Operands C W Comments
Freescale Semiconductor Instruction Set Introduction 4-31

Instruction Set Introduction
ADD.L X:xxxx,fff 2 2 Add memory long to register.

X:xxxxxx,fff 3 3

#xxxx,fff 2 2 Add a 16-bit immediate value sign extended to 32 bits
to a data register.

ADD.W X:(Rn),EEE 2 1 Add memory word to register.

X:(Rn+xxxx),EEE 3 2

X:(SP–xx),EEE 3 1

X:xxxx,EEE 2 2

X:xxxxxx,EEE 3 3

EEE,X:(SP–xx) 4 2 Add register to memory word, storing the result back
to memory.

EEE,X:xxxx 3 2

#<0–31>,EEE 1 1 Add an immediate integer 0–31.

#xxxx,EEE 2 2 Add a signed 16-bit immediate.

CLR F 1 1 Clear 36-bit accumulator and set condition codes.
Also see CLR.W.

(parallel) Refer to Table 4-43 and Table 4-44.

CLR.B X:(SP) 1 1 Clear a byte in memory.
Rn may be SP.

X:(Rn+xxxx) 2 2

X:(Rn+xxxxxx) 3 3

CLR.BP X:(RRR) 1 1 Clear a byte in memory.

X:(RRR)+ 1 1

X:(RRR)– 1 1

X:(RRR+N) 2 1

X:(RRR+xxxx) 2 2

X:(RRR+xxxxxx) 3 3

X:xxxx 2 2

X:xxxxxx 3 3

Table 4-33. Data ALU Arithmetic Instructions (Sheet 2 of 8)

Operation Operands C W Comments
4-32 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Instruction Set Summary
CLR.L X:(Rn) 1 1 Clear a long in memory.

X:(Rn)+ 1 1

X:(Rn)– 1 1

X:(Rn+N) 2 1

X:(Rn+xxxx) 2 2

X:(Rn+xxxxxx) 3 3

X:xxxx 2 2

X:xxxxxx 3 3

CLR.W DDDDD
(except Y)

1 1 Clear a register. Clear an entire accumulator when FF
specified; clear an entire AGU register when Rn is
specified.

Note: When clearing an AGU register, it is
recommended to use MOVE.W #0,Rn. This is
beneficial because it clears the register without
introducing any dependencies due to the pipeline.

Not permitted for the 32-bit Y register—instead use
MOVE.W #0,Y.

X:(Rn) 1 1 Clear a word in memory.

X:(Rn)+ 1 1

X:(Rn)– 1 1

X:(Rn+N) 2 1

X:(Rn)+N 1 1

X:(Rn+xxxx) 2 2

X:(Rn+xxxxxx) 3 3

X:aa 1 1

X:<<pp 1 1

X:xxxx 2 2

X:xxxxxx 3 3

Table 4-33. Data ALU Arithmetic Instructions (Sheet 3 of 8)

Operation Operands C W Comments
Freescale Semiconductor Instruction Set Introduction 4-33

Instruction Set Introduction
CMP EEE,EEE 1 1 36-bit compare of two accumulators or data registers.

X:(Rn),FF 2 1 Compare memory word with 36 bit accumulator.

Also see CMP.W.

Note: Condition codes set based on 36-bit result.
Also see CMP.W for condition codes on 16 bits.

X:(Rn+xxxx),FF 3 2

X:(SP–xx),FF 3 1

X:xxxx,FF 2 2

X:xxxxxx,FF 3 3

#<0–31>,FF 1 1 Compare accumulator with an immediate integer
0–31.

#xxxx,FF 2 2 Compare accumulator with a signed 16-bit immedi-
ate.

(parallel) 1 1 Refer to Table 4-43 on page 4-49.

CMP.B EEE,EEE 1 1 Compare the 8-bit byte portions of two data registers.

#<0–31>,EEE 1 1 Compare the byte portion of a data register with an
immediate integer 0–31.

#xxx,EEE 2 2 Compare with a 9-bit signed immediate integer.

CMP.BP X:xxxx,EEE 2 2 Compare memory byte with register.

X:xxxxxx,EEE 3 3

CMP.L FFF,FFF 1 1 Compare the 32-bit long portions of two data registers
or accumulators.

X:xxxx,fff 2 2 Compare memory long with a data register.

X:xxxxxx,fff 3 3

#xxxx,fff 2 2 Compare a 16-bit immediate value sign extended to
32 bits with a data register.

Table 4-33. Data ALU Arithmetic Instructions (Sheet 4 of 8)

Operation Operands C W Comments
4-34 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Instruction Set Summary
CMP.W EEE,EEE 1 1 Compare the 16-bit word portions of two data regis-
ters or accumulators.

X:(Rn),EEE 2 1 Compare memory word with a data register or the
word portion of an accumulator.

X:(Rn+xxxx),EEE 3 2

X:(SP–xx),EEE 3 1

X:xxxx,EEE 2 2

X:xxxxxx,EEE 3 3

#<0–31>,EEE 1 1 Compare the word portion of a data register with an
immediate integer 0–31.

#xxxx,EEE 2 2 Compare the word portion of a data register with a
signed 16-bit immediate.

DEC.BP X:xxxx 3 2 Decrement byte in memory.

X:xxxxxx 4 3

DEC.L fff 1 1 Decrement long.

X:xxxx 3 2 Decrement long in memory.

X:xxxxxx 4 3

DEC.W EEE 1 1 Decrement word.

X:(Rn) 3 1 Decrement word in memory using appropriate
addressing mode.

X:(Rn+xxxx) 4 2

X:(SP–xx) 4 1

X:xxxx 3 2

X:xxxxxx 4 3

(parallel) 1 1 Refer to Table 4-43 on page 4-49.

DIV FFF1,fff 1 1 Divide iteration.

INC.BP X:xxxx 3 2 Increment byte in memory.

X:xxxxxx 4 3

INC.L fff 1 1 Increment long.

X:xxxx 3 2 Increment long in memory.

X:xxxxxx 4 3

Table 4-33. Data ALU Arithmetic Instructions (Sheet 5 of 8)

Operation Operands C W Comments
Freescale Semiconductor Instruction Set Introduction 4-35

Instruction Set Introduction
INC.W EEE 1 1 Increment word.

X:(Rn) 3 1 Increment word in memory using appropriate
addressing mode.

X:(Rn+xxxx) 4 2

X:(SP–xx) 4 1

X:xxxx 3 2

X:xxxxxx 4 3

(parallel) 1 1 Refer to Table 4-43 on page 4-49.

NEG FFF 1 1 Two’s-complement negation.

(parallel) Refer to Table 4-43 on page 4-49.

NEG.BP X:xxxx 3 2 Negate byte in memory.

X:xxxxxx 4 3

NEG.L X:xxxx 3 2 Negate long in memory.

X:xxxxxx 4 3

NEG.W X:(Rn) 3 1 Negate word in memory using appropriate addressing
mode.

X:(Rn+xxxx) 4 2

X:(SP–xx) 4 1

X:xxxx 3 2

X:xxxxxx 4 3

RND fff 1 1 Round.

(parallel) Refer to Table 4-43 on page 4-49.

SAT FF,FFF 1 1 Saturate and transfer 32 bits independent of SA bit.

(parallel) Refer to Table 4-43 on page 4-49.

SBC Y,F 1 1 Subtract with carry (set C bit also).

SUB FFF,FFF 1 1 36-bit subtraction of two registers.

(parallel) Refer to Table 4-43 and Table 4-44.

SUB.B #xxx,EEE 2 2 Subtract 9-bit signed immediate.

SUB.BP X:xxxx,EEE 2 2 Subtract memory byte from register.

X:xxxxxx,EEE 3 3

Table 4-33. Data ALU Arithmetic Instructions (Sheet 6 of 8)

Operation Operands C W Comments
4-36 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Instruction Set Summary
SUB.L X:xxxx,fff 2 2 Subtract memory long from register.

X:xxxxxx,fff 3 3

#xxxx,fff 2 2 Subtract a 16-bit immediate value, sign extended to
32 bits, from a data register.

SUB.W X:(Rn),EEE 2 1 Subtract memory word from register.

X:(Rn+xxxx),EEE 3 2

X:(SP–xx),EEE 3 1

X:xxxx,EEE 2 2

X:xxxxxx,EEE 3 3

#<0–31>,EEE 1 1 Subtract an immediate value 0–31.

#xxxx,EEE 2 2 Subtract a signed 16-bit immediate.

SXT.B FFF,FFF 1 1 Sign extend byte.

SXT.L FF,FFF 1 1 Sign extend long and transfer without saturating.

TFR FFF,fff 1 1 Transfer register to register, 36 bits. Also see SXT.L.

(parallel) Refer to Table 4-43 and Table 4-44.

TST FF 1 1 Test 36-bit accumulator.

(parallel) Refer to Table 4-43 on page 4-49.

TST.B EEE 1 1 Test 8-bit byte in register.

X:(SP) 1 1 Test a byte in memory using appropriate addressing
mode.

X:(Rn+xxxx) 2 2

X:(Rn+xxxxxx) 3 3

TST.BP X:(RRR) 1 1 Test a byte in memory using appropriate addressing
mode.

X:(RRR)+ 1 1

X:(RRR)– 1 1

X:(RRR+N) 2 1

X:(RRR+xxxx) 2 2

X:(RRR+xxxxxx) 3 3

X:xxxx 2 2

X:xxxxxx 3 3

Table 4-33. Data ALU Arithmetic Instructions (Sheet 7 of 8)

Operation Operands C W Comments
Freescale Semiconductor Instruction Set Introduction 4-37

Instruction Set Introduction
TST.L fff 1 1 Test 32-bit long in register.

X:(Rn) 1 1 Test a long in memory using appropriate addressing
mode.

X:(Rn)+ 1 1

X:(Rn)– 1 1

X:(Rn+N) 2 1

X:(Rn+xxxx) 2 2

X:(Rn+xxxxxx) 3 3

X:(SP–xx) 2 1

X:xxxx 2 2

X:xxxxxx 3 3

TST.W DDDDD
(except HWS and Y)

1 1 Test 16-bit word in register.
All registers are allowed except HWS and Y.
Limiting is not performed if an accumulator is speci-
fied.

X:(Rn) 1 1 Test a word in memory using appropriate addressing
mode.

X:(Rn)+ 1 1

X:(Rn)– 1 1

X:(Rn+N) 2 1

X:(Rn)+N 1 1

X:(Rn+xxxx) 2 2

X:(Rn+xxxxxx) 3 3

X:(SP–xx) 2 1

X:aa 1 1

X:<<pp 1 1

X:xxxx 2 2

X:xxxxxx 3 3

ZXT.B FFF,FFF 1 1 Zero extend byte.

Table 4-33. Data ALU Arithmetic Instructions (Sheet 8 of 8)

Operation Operands C W Comments
4-38 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Instruction Set Summary
Table 4-34. Data ALU Shifting Instructions

Operation Operands C W Comments

ASL fff 1 1 Arithmetic shift left entire register by 1 bit

(parallel) Refer to Table 4-43 and Table 4-44.

ASL.W DD 1 1 Arithmetic shift left 16-bit register by 1 bit

ASL16 FFF,FFF 1 1 Arithmetic shift left of the first operand by 16 bits, placing
result in the destination operand

ASLL.L #<0–31>,fff 2 1 Arithmetic shift left by a 5-bit positive immediate integer

EEE,FFF Bi-directional arithmetic shift of destination by value in the
first operand: positive –> left shift

ASLL.W #<0–15>,FFF 1 1 Arithmetic shift left by a 4-bit positive immediate integer

EEE,FFF Arithmetic shift left of destination by value specified in 4
LSBs of the first operand

Y1,X0,FFF
Y0,X0,FFF
Y1,Y0,FFF
Y0,Y0,FFF
A1,Y0,FFF
B1,Y1,FFF
C1,Y0,FFF
C1,Y1,FFF

Arithmetic shift left of the first operand by value specified in
4 LSBs of the second operand; place result in FFF

ASR FFF 1 1 Arithmetic shift right entire register by 1 bit

(parallel) Refer to Table 4-43 and Table 4-44.

ASR16 FFF,FFF 1 1 Arithmetic shift right of the first operand by 16 bits, placing
result in the destination operand

ASRAC Y1,X0,FF
Y0,X0,FF
Y1,Y0,FF
Y0,Y0,FF
A1,Y0,FF
B1,Y1,FF
C1,Y0,FF
C1,Y1,FF

1 1 Arithmetic word shifting with accumulation

ASRR.L #<0–31>,fff 2 1 Arithmetic shift right by a 5-bit positive immediate integer

EEE,FFF Bi-directional arithmetic shift of destination by value in the
first operand: positive –> right shift
Freescale Semiconductor Instruction Set Introduction 4-39

Instruction Set Introduction
ASRR.W #<0–15>,FFF 1 1 Arithmetic shift right by a 4-bit positive immediate integer

EEE,FFF Arithmetic shift right of destination by value specified in 4
LSBs of the first operand

Y1,X0,FFF
Y0,X0,FFF
Y1,Y0,FFF
Y0,Y0,FFF
A1,Y0,FFF
B1,Y1,FFF
C1,Y0,FFF
C1,Y1,FFF

Arithmetic shift right of the first operand by value specified
in 4 LSBs of the second operand; places result in FFF

LSL.W EEE 1 1 1-bit logical shift left of word

LSR.W EEE 1 1 1-bit logical shift right of word

LSR16 FFF,FFF 1 1 Logical shift right of the first operand by 16 bits, placing
result in the destination operand (new bits zeroed)

LSRAC Y1,X0,FF
Y0,X0,FF
Y1,Y0,FF
Y0,Y0,FF
A1,Y0,FF
B1,Y1,FF
C1,Y0,FF
C1,Y1,FF

1 1 Logical word shifting with accumulation

LSRR.L #<0–31>,fff 2 1 Logical shift right by a 5-bit positive immediate integer

EEE,FFF Bi-directional logical shift of destination by value in the first
operand: positive –> right shift

LSRR.W #<0–15>,FFF 1 1 Logical shift right by a 4-bit positive immediate integer
(sign extends into FF2)

EEE,FFF Logical shift right of destination by value specified in 4 LSBs
of the first operand (sign extends into FF2)

Y1,X0,FFF
Y0,X0,FFF
Y1,Y0,FFF
Y0,Y0,FFF
A1,Y0,FFF
B1,Y1,FFF
C1,Y0,FFF
C1,Y1,FFF

Logical shift right of the first operand by value specified in 4
LSBs of the second operand; places result in FFF (sign
extends into FF2)

ROL.L F 1 1 Rotate 32-bit register left by 1 bit through the carry bit

ROL.W EEE 1 1 Rotate 16-bit register left by 1 bit through the carry bit

ROR.L F 1 1 Rotate 32-bit register right by 1 bit through the carry bit

ROR.W EEE 1 1 Rotate 16-bit register right by 1 bit through the carry bit

Table 4-34. Data ALU Shifting Instructions (Continued)

Operation Operands C W Comments
4-40 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Instruction Set Summary
ANDC, EORC, ORC, and NOTC can also be used to perform logical operations with an immediate value
on registers and data memory locations. See Section 4.2.1, “The ANDC, EORC, ORC, and NOTC
Aliases,” for additional information.

SUBL (parallel) 1 1 Refer to Table 4-43 on page 4-49.

Table 4-35. Data ALU Logical Instructions

Operation Operands C W Comments

AND.L #<0–31>,fff 1 1 AND with a 5-bit positive immediate integer (0–31)

FFF,fff 32-bit logical AND

AND.W #<0–31>,EEE 1 1 AND with a 5-bit positive immediate integer (0–31)

EEE,EEE 16-bit logical AND

CLB FFF,EEE 1 1 Count leading bits (minus 1); designed to operate with
the ASLL and ASRR instructions

EOR.L FFF,fff 1 1 32-bit exclusive OR (XOR)

(parallel) Refer to Table 4-43 on page 4-49.

EOR.W EEE,EEE 1 1 16-bit exclusive OR (XOR)

NOT.W EEE 1 1 One’s-complement (bit-wise) negation

OR.L FFF,fff 1 1 32-bit logical OR

OR.W EEE,EEE 1 1 16-bit logical OR

Table 4-36. Miscellaneous Data ALU Instructions

Operation Operands C W Comments

NORM R0,F 4 1 Normalization iteration instruction for normalizing the F accumulator

Table 4-34. Data ALU Shifting Instructions (Continued)

Operation Operands C W Comments
Freescale Semiconductor Instruction Set Introduction 4-41

Instruction Set Introduction
Table 4-37. AGU Arithmetic and Shifting Instructions

Operation Operands C W Comments

ADDA Rn,Rn 1 1 Add first operand to the second and store the result in the
second operand.

Rn,Rn,N 1 1 Add first operand to the second and store result in the N reg-
ister.

#<0–15>,Rn 1 1 Add unsigned 4-bit value to Rn.

#<0–15>,Rn,N 1 1 Add an unsigned 4-bit value to an AGU register and store
result in the N register.

#xxxxx,Rn,Rn 2 2 Add first register with a signed 17-bit immediate value and
store the result in Rn.

#xxxxxx,Rn,Rn 3 3 Add first register with a 24-bit immediate value and store the
result in Rn.

#xxxx,HHH,Rn 4 2 Add a data register with an unsigned 16-bit value and store
the result in Rn. HHH is accessed as a signed 16-bit word.

#xxxxxx,HHH,Rn 5 3 Add a data register with a 24-bit immediate value and store
the result in Rn. HHH is accessed as a signed 16-bit word.

ADDA.L Rn,Rn 1 1 Add first operand left shifted 1 bit to the second and store the
result in the second operand.

Rn,Rn,N 1 1 Add first operand left shifted 1 bit to the second and store
result in the N register.

#xxxx,Rn,Rn 2 2 Add first register left shifted 1 bit with an unsigned 16-bit
immediate value and store the result in Rn.

#xxxxxx,Rn,Rn 3 3 Add first register left shifted 1 bit with a 24-bit immediate
value and store the result in Rn.

#xxxx,HHH,Rn 4 2 Add a data register left shifted 1 bit with an unsigned 16-bit
immediate value and store the result in Rn. HHH is accessed
as a signed 16-bit word.

#xxxxxx,HHH,Rn 5 3 Add a data register left shifted 1 bit with a 24-bit immediate
value and store the result in Rn. HHH is accessed as a
signed 16-bit word.

ASLA Rn,Rn 1 1 Arithmetic shift left AGU register by 1 bit.

ASRA Rn 1 1 Arithmetic shift right AGU register by 1 bit.

CMPA Rn,Rn 1 1 24-bit compare between two AGU registers.

CMPA.W Rn,Rn 1 1 16-bit compare between two AGU registers.

DECA Rn 1 1 Decrement AGU register by one.

DECA.L Rn 1 1 Decrement AGU register by two.

DECTSTA Rn 1 1 Decrement and test AGU register.
4-42 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Instruction Set Summary
LSRA Rn 1 1 Logical shift right AGU register by 1 bit.

NEGA Rn 1 1 Negate AGU register.

SUBA Rn,Rn 1 1 Subtract the first operand from the second and store the
result in the second operand.

#<1–64>,SP Subtract a 6-bit unsigned immediate value from the SP and
store in the stack pointer.

SXTA.B Rn 1 1 Sign extend the value in an AGU register from bit 7.

SXTA.W Rn 1 1 Sign extend the value in an AGU register from bit 15.

TFRA Rn,Rn 1 1 Transfer one AGU register to another.

TSTA.B Rn 1 1 Test byte portion of an AGU register.

TSTA.L Rn 1 1 Test long portion of an AGU register.

TSTA.W Rn 1 1 Test word portion of an AGU register.

TSTDECA.W Rn 3 1 Test and decrement AGU register.

Note: Only operates on the lower 16 bits of the register;
the upper 8 bits are forced to zero.

ZXTA.B Rn 1 1 Zero extend the value in an AGU register from bit 7.

ZXTA.W Rn 1 1 Zero extend the value in an AGU register from bit 15.

Table 4-38. Bit-Manipulation Instructions

Operation Operands C W Comments

BFCHG #<MASK16>,DDDDD 2 2 BFCHG tests all the targeted bits defined by the 16-bit
immediate mask. If all the targeted bits are set, then the C
bit is set. Oterwise it is cleared. Then the operation
inverts all selected bits.

All registers in DDDDD are permitted except HWS and Y.

#<MASK16>,dd 2 2

#<MASK16>,X:(Rn) 2 2

#<MASK16>,X:(Rn+xxxx) 3 3

#<MASK16>,X:(SP–xx) 3 2

#<MASK16>,X:aa 2 2

#<MASK16>,X:<<pp 2 2

#<MASK16>,X:xxxx 3 3

#<MASK16>,X:xxxxxx 4 4

Table 4-37. AGU Arithmetic and Shifting Instructions (Continued)

Operation Operands C W Comments
Freescale Semiconductor Instruction Set Introduction 4-43

Instruction Set Introduction
BFCLR #<MASK16>,DDDDD 2 2 BFCLR tests all the targeted bits defined by the 16-bit
immediate mask. If all the targeted bits are set, then the C
bit is set. Otherwise it is cleared. Then the operation
clears all selected bits.

All registers in DDDDD are permitted except HWS and Y.

#<MASK16>,dd 2 2

#<MASK16>,X:(Rn) 2 2

#<MASK16>,X:(Rn+xxxx) 3 3

#<MASK16>,X:(SP–xx) 3 2

#<MASK16>,X:aa 2 2

#<MASK16>,X:<<pp 2 2

#<MASK16>,X:xxxx 3 3

#<MASK16>,X:xxxxxx 4 4

BFSET #<MASK16>,DDDDD 2 2 BFSET tests all the targeted bits defined by the 16-bit
immediate mask. If all the targeted bits are set, then the C
bit is set. Otherwise it is cleared. Then the operation sets
all selected bits.

All registers in DDDDD are permitted except HWS and Y.

#<MASK16>,dd 2 2

#<MASK16>,X:(Rn) 2 2

#<MASK16>,X:(Rn+xxxx) 3 3

#<MASK16>,X:(SP–xx) 3 2

#<MASK16>,X:aa 2 2

#<MASK16>,X:<<pp 2 2

#<MASK16>,X:xxxx 3 3

#<MASK16>,X:xxxxxx 4 4

BFTSTH #<MASK16>,DDDDD 2 2 BFTSTH tests all the targeted bits defined by the 16-bit
immediate mask. If all the targeted bits are set, then the C
bit is set. Otherwise it is cleared.

All registers in DDDDD are permitted except HWS and Y.

#<MASK16>,dd 2 2

#<MASK16>,X:(Rn) 2 2

#<MASK16>,X:(Rn+xxxx) 3 3

#<MASK16>,X:(SP–xx) 3 2

#<MASK16>,X:aa 2 2

#<MASK16>,X:<<pp 2 2

#<MASK16>,X:xxxx 3 3

#<MASK16>,X:xxxxxx 4 4

Table 4-38. Bit-Manipulation Instructions (Continued)

Operation Operands C W Comments
4-44 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Instruction Set Summary
BFTSTL #<MASK16>,DDDDD 2 2 BFTSTL tests all the targeted bits defined by the 16-bit
immediate mask. If all the targeted bits are clear, then the
C bit is set. Otherwise it is cleared.

All registers in DDDDD are permitted except HWS and Y.

#<MASK16>,dd 2 2

#<MASK16>,X:(Rn) 2 2

#<MASK16>,X:(Rn+xxxx) 3 3

#<MASK16>,X:(SP–xx) 3 2

#<MASK16>,X:aa 2 2

#<MASK16>,X:<<pp 2 2

#<MASK16>,X:xxxx 3 3

#<MASK16>,X:xxxxxx 4 4

Table 4-39. Branch-on-Bit-Manipulation Instructions

Operation Operands C W Comments

BRCLR #<MASK8>,DDDDD,<OFFSET7> 7/5 2 BRCLR tests all the targeted bits defined by
the immediate mask. If all the targeted bits are
clear, then the carry bit is set and a PC relative
branch occurs. Otherwise it is cleared and no
branch occurs.

All registers in DDDDD are permitted except
HWS and Y.

MASK8 specifies a 16-bit immediate value
where either the upper or lower 8 bits contain
all zeros.

#<MASK8>,dd,<OFFSET7> 7/5 2

#<MASK8>,X:(Rn),<OFFSET7> 7/5 2

#<MASK8>,X:(Rn+xxxx),<OFFSET7> 8/6 3

#<MASK8>,X:(SP–xx),<OFFSET7> 8/6 2

#<MASK8>,X:aa,<OFFSET7> 7/5 2

#<MASK8>,X:<<pp,<OFFSET7> 7/5 2

#<MASK8>,X:xxxx,<OFFSET7> 7/5 3

#<MASK8>,X:xxxxxx,<OFFSET7> 8/6 4

BRSET #<MASK8>,DDDDD,<OFFSET7> 7/5 2 BRSET tests all the targeted bits defined by
the immediate mask. If all the targeted bits are
set, then the carry bit is set and a PC relative
branch occurs. Otherwise it is cleared and no
branch occurs.

All registers in DDDDD are permitted except
HWS and Y.

MASK8 specifies a 16-bit immediate value
where either the upper or lower 8 bits contain
all zeros.

#<MASK8>,dd,<OFFSET7> 7/5 2

#<MASK8>,X:(Rn),<OFFSET7> 7/5 2

#<MASK8>,X:(Rn+xxxx),<OFFSET7> 8/6 3

#<MASK8>,X:(SP–xx),<OFFSET7> 8/6 2

#<MASK8>,X:aa,<OFFSET7> 7/5 2

#<MASK8>,X:<<pp,<OFFSET7> 7/5 2

#<MASK8>,X:xxxx,<OFFSET7> 7/5 3

#<MASK8>,X:xxxxxx,<OFFSET7> 8/6 4

Table 4-38. Bit-Manipulation Instructions (Continued)

Operation Operands C W Comments
Freescale Semiconductor Instruction Set Introduction 4-45

Instruction Set Introduction
Table 4-40. Change-of-Flow Instructions

Operation Operands C W Comments

Bcc <OFFSET7> 5/3 1 7-bit signed PC-relative offset

<OFFSET18> 5/4 2 18-bit signed PC-relative offset

<OFFSET22> 6/5 3 22-bit signed PC-relative offset

BRA <OFFSET7> 5 1 7-bit signed PC-relative offset

<OFFSET18> 5 2 18-bit signed PC-relative offset

<OFFSET22> 6 3 22-bit signed PC-relative offset

BRAD <OFFSET7> 3 1 Delayed branch with 7-bit signed offset;
must fill 2 delay slots (2 program words)

<OFFSET18> 3 2 Delayed branch with 18-bit signed offset;
must fill 2 delay slots (2 program words)

<OFFSET22> 4 3 Delayed branch with 22-bit signed offset;
must fill 2 delay slots (2 program words)

BSR <OFFSET18> 5 2 18-bit signed PC-relative offset

<OFFSET22> 6 3 22-bit signed PC-relative offset

FRTID 2 1 Delayed return from level 2 interrupt, restoring PC from the
FIRA register and the Y register from the stack in a fast inter-
rupt procedure; must fill 2 delay slots (2 program words)

Jcc <ABS19> 5/4 2 19-bit absolute address

<ABS21> 6/5 3 21-bit absolute address

JMP (N) 5 1 Jump to target contained in N register

<ABS19> 4 2 19-bit absolute address

<ABS21> 5 3 21-bit absolute address

JMPD <ABS19> 2 2 Delayed jump with 19-bit absolute address;
must fill 2 delay slots (2 program words)

<ABS21> 3 3 Delayed jump with 21-bit absolute address;
must fill 2 delay slots (2 program words)

JSR (RRR) 5 1 Push 21-bit return address and jump to target address con-
tained in RRR register

<ABS19> 4 2 Push 21-bit return address and jump to 19-bit target address

<ABS21> 5 3 Push 21-bit return address and jump to 21-bit target address

RTI 8 1 Return from interrupt, restoring 21-bit PC and SR from the
stack
4-46 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Instruction Set Summary
Information on delayed instruction execution is located in Section 9.3.4, “Non-Interruptible Instruction
Sequences,” on page 9-10.

RTID 5 1 Delayed return from interrupt, restoring 21-bit PC and SR from
the stack;
must fill 3 delay slots (3 program words)

RTS 8 1 Return from subroutine, restoring 21-bit PC from the stack

RTSD 5 1 Delayed return from subroutine, restoring 21-bit PC from the
stack;
must fill 3 delay slots (3 program words)

Table 4-41. Looping Instructions

Operation Operands C W Comments

DO #<1–63>,<ABS16> 3 2 Load LC register with unsigned value and start hardware DO loop
with 6-bit immediate loop count. Last address is 16-bit absolute.
Executes in 3 cycles when there is a minimum of 2 instruction
words in the loop.

#<1–63>,<ABS16> 5 2 Case of only 1 instruction word in loop body.

#<1–63>,<ABS21> 4 3 Last address is 21-bit absolute address.
Executes in 4 cycles when there is a minimum of 2 instruction
words in the loop.

#<1–63>,<ABS21> 6 3 Case of only 1 instruction word in loop body

DDDDD,<ABS16> 7 2 Load LC register with unsigned value. If LC is not equal to zero,
start hardware DO loop with 16-bit loop count in register. Other-
wise skip body of loop (adds 2 additional cycles).
Last address is 16-bit absolute.

Any register is allowed except C2, D2, C0, D0,
C, D, Y, M01, N3, LA, LA2, LC, LC2, SR, OMR, and HWS.

When looping with a value in an accumuator, use A1, B1, C1, or
D1 to avoid saturation when reading the accumulator.

DDDDD,<ABS21> 8 3 Last address is 21-bit absolute address.

Any register is allowed except C2, D2, C0, D0,
C, D, Y, M01, N3, LA, LA2, LC, LC2, SR, OMR, and HWS.

When looping with a value in an accumuator, use A1, B1, C1, or
D1 to avoid saturation when reading the accumulator.

DOSLC <ABS16> 3 2 If value in LC > 0, execute loop for specified number of times.
Otherwise skip body of loop (adds 3 additional cycles).
Last address is 16-bit absolute.
Minimum of 2 instructions words required in the loop.

<ABS21> 4 3 Last address is 21-bit absolute address.
Minimum of 2 instructions words required in the loop.

Table 4-40. Change-of-Flow Instructions (Continued)

Operation Operands C W Comments
Freescale Semiconductor Instruction Set Introduction 4-47

Instruction Set Introduction
ENDDO 1 1 Remove one value from the hardware stack and update the NL
and LF bits appropriately.

Note: Does not branch to the end of the loop.

REP #<0–63> 2 1 Hardware repeat of a 1-word instruction with immediate loop
count.

DDDDD 5 1 Hardware repeat of a 1-word instruction with loop count specified
in register.

If LC is not equal to zero, start hardware REP loop with 16-bit loop
count in register. Otherwise skip body of loop (adds 1 additional
cycle).

Any register is allowed except C2, D2, C0, D0,
C, D, Y, M01, N3, LA, LA2, LC, LC2, SR, OMR, and HWS.

When looping with a value in an accumuator, use A1, B1, C1, or
D1 to avoid saturation when reading the accumulator.

Table 4-42. Control Instructions

Operation Operands C W Comments

ALIGNSP 3 1 Save SP to the stack and align SP for long memory accesses, point-
ing to an empty location.

DEBUGEV 3 1 Generate a debug event.

DEBUGHLT 3 1 Enter the debug processing state.

ILLEGAL 4 1 Generate an illegal instruction exception; can be used to verify inter-
rupt handlers for illegal instructions.

NOP 1 1 No operation.

STOP * 1 Enter stop low-power mode.
The number of cycles is dependent upon chip implementation.

SWI #<0–2> 1 1 Generate an interrupt at priority level 0, 1, or 2 as specified by the
instruction.

SWI 4 1 Generate an interrupt at the highest priority level (level 3,
non-maskable).

SWILP 1 1 Generate an interrupt at the lowest priority level (lower than level 0).

WAIT * 1 Enter wait low-power mode.
The number of cycles is dependent upon chip implementation.

Table 4-41. Looping Instructions (Continued)

Operation Operands C W Comments
4-48 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Instruction Set Summary
4.4.5 Parallel Move Summary Tables
The following tables show the instructions that support move operations that are executed in parallel with
the execution of the primary instruction. Three types of parallel moves are supported: a move of data in
memory to a register, a move of a register value to memory, or two simultaneous moves of data from
memory to a register.

Table 4-43 summarizes the single parallel moves that are legal. Each instruction occupies only 1 program
word and executes in 1 cycle. Data transferred in a parallel move is always treated as a signed 16-bit word.

Table 4-43. Single Parallel Move Instructions

Data ALU Operation Parallel Memory Move

Operation Operands Source Destination1

1.The case where the destination of the data ALU operation is the same register as the destination of the par-
allel read operation is not allowed. Memory writes are allowed in this case.

MAC
MPY

MACR
MPYR

Y1,X0,F
Y0,X0,F
Y1,Y0,F
Y0,Y0,F

A1,Y0,F
B1,Y1,F

X:(Rj)+
X:(Rj)+N

X0
Y1
Y0

A
B
C
A1
B1MAC

MPY
MACR

C1,Y0,F
C1,Y1,F

X0
Y1
Y0

A
B
C
A1
B1

X:(Rj)+
X:(Rj)+N

MAC –C1,Y0,F
–C1,Y1,F

ADD
SUB
CMP

TFR

X0,F
Y1,F
Y0,F
C,F

A,B
B,A

SAT F,Y0

EOR.L C,F

ABS
ASL
ASR
CLR
RND
TST

INC.W
DEC.W

NEG

F

SUBL2

2.The “AD” destination notation indicates that both the A and D accumulators are written with the same 16-bit
value. Both extension registers are sign extended, and the F0 portion of both accumulators is set to $0000.

A,D,B X:(R1)+ AD
Freescale Semiconductor Instruction Set Introduction 4-49

Instruction Set Introduction
Examples of instructions with a single parallel move appear in Example 4-6.

Example 4-6. Examples of Single Parallel Moves

MAC Y1,X0,A X:(R0)+,X0
MAC Y1,X0,A X0,X:(R0)+
MAC -C1,Y0,A X:(R0)+,C
ASL B X:(R0)+,Y1
ASL B Y1,X:(R0)+

Table 4-44 summarizes the dual parallel read instructions that are legal. Each instruction occupies only 1
program word and executes in 1 cycle. Data transferred in by each of the reads is always treated as a signed
16-bit word.

Table 4-44. Dual Parallel Read Instructions

Data ALU Operation1

1.These instructions are not allowed when the XP bit in the OMR is set (that is, when the instructions are ex-
ecuting from data memory).

First Memory Read Second Memory Read

Operation Operands Source 1 Destination 1 Source 2 Destination 2

MAC
MPY

MACR
MPYR

Y1,X0,F
Y1,Y0,F
Y0,X0,F
C1,Y0,F

X:(R0)+
X:(R0)+N
X:(R1)+

X:(R1)+N

Y0
Y1

X:(R3)+
X:(R3)–

X0

X:(R4)+
X:(R4)+N

Y0 X:(R3)+
X:(R3)+N3

X0
ADD
SUB

X0,F
Y1,F
Y0,F

A,B
B,A

X:(R0)+
X:(R0)+N
X:(R4)+

X:(R4)+N

Y1 X:(R3)+
X:(R3)+N3

C

TFR A,B
B,A

CLR
ASL
ASR

F

MOVE.W
4-50 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Register-to-Register Moves
4.5 Register-to-Register Moves
As the instruction set summary shows, several different instructions are available for performing
register-to-register moves. Figure 4-1 summarizes these instructions to aid in choosing the correct
instruction.

Figure 4-1. Moving Data in the Register Files

C2

Y1

Y0

X0

C1

D1D2 D0

C0

A2 A1

B1B2 B0

A0

Pointer Registers

R3

SP

R4

R5

N

R0

R1

R2

Data Registers

TFRA* (24)

MOVEU.W (16)

TFR (36)

SXT.L (32)

SXT.B (8)

ZXT.B (8)

MOVE.W (16)

ASL16 (36)

ASR16 (36)

LSR16 (36)

MOVE.W (16)

MOVEU.W (16)

MOVE.L (24)

MOVE.W (16)

MOVE.L (32)

* TFRA recommended for AGU register transfers

SAT (32)
Freescale Semiconductor Instruction Set Introduction 4-51

Instruction Set Introduction
4-52 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Chapter 5
Data Arithmetic Logic Unit
This chapter describes the architecture and operation of the data arithmetic logic unit (ALU).
Multiplication, arithmetic, logical, and shifting operations are performed in this block. (Note that addition
can also be performed in the address generation unit, and that the bit-manipulation unit can also perform
logical operations.)

The data ALU can perform the following operations with a throughput of 1 cycle per instruction, except
where noted:

• Multiplication (with or without rounding)

• Multiplication with negated product (with or without rounding)

• Multiplication and accumulation (with or without rounding)

• Multiplication and accumulation with negated product (with or without rounding)

• Multi-precision multiplication support

• Addition and subtraction

• Increments and decrements (for 8-, 16-, 32-, and 36-bit operands)

• Test and comparison (for 8-, 16-, 32-, and 36-bit operands)

• Logical operations (AND, OR, and EOR)

• One’s-complement and two’s-complement negation

• Arithmetic and logical shifts

• Rotates

• Rounding

• Absolute values

• Sign extension and zero extension

• Saturation (limiting) on data ALU and move operations

• Conditional register moves

• Division iteration

• Normalization iterations (execute in 4 clock cycles)

Multiple buses within the data ALU allow complex arithmetic operations (such as a multiply-accumulate)
to execute in parallel with up to two memory transfers in a single execution cycle.
Freescale Semiconductor Data Arithmetic Logic Unit 5-1

Data Arithmetic Logic Unit
5.1 Data ALU Overview and Architecture
The major components of the data ALU are:

• Three 16-bit data registers (X0, Y0, and Y1).

• Four 36-bit accumulator registers (A, B, C, and D).

• A single-cycle multiply-accumulator (MAC) unit.

• A single-bit accumulator shifter.

• An arithmetic and logical multi-bit shifter.

• A MAC output limiter.

• A data limiter.

A programming model of the data ALU unit is shown in Figure 5-1, and a block diagram is shown in
Figure 5-2 on page 5-3. The blocks and registers within the data ALU are explained in the following
sections.

Figure 5-1. Data ALU Programming Model

01516313235

015

A1A2 A0

B1B2 B0

C1C2 C0

D1D2 D0

Y1

Y0

X0

D

C

B

A

Y

5-2 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Data ALU Overview and Architecture
Figure 5-2. Data ALU Block Diagram

5.1.1 Data Registers (X0, Y1, Y0)
There are three independent 16-bit registers—X0, Y1, and Y0—that serve as data registers for operations
in the data ALU. The 16-bit Y1 register and the 16-bit Y0 register can be concatenated together to form a
32-bit register called Y, which is shown in Figure 5-3 on page 5-4. Y1 forms the most significant word and
Y0 forms the least significant word.

01516313235

Data Registers

CDBW

CDBR

XDB2

Optional Inverter

Arithmetic/Logical
Shifter

Shifter/MUX

Latch MUX

36-Bit Accumulator
Shifter

Rounding Constant

MAC Output LimiterOMR’s SA Bit

Condition Code
Generation

Condition Codes to Status Register

EXT:MSP:LSP

Limiter

For second access on dual parallel read

A1

B1

C1

D1

A0

B0

C0

D0

Y1

Y0

X0

A2

B2

C2

D2

(accesses X0 and C only)
*

*

Freescale Semiconductor Data Arithmetic Logic Unit 5-3

Data Arithmetic Logic Unit
Figure 5-3. The 32-Bit Y Register—Composed of Y1 Concatenated with Y0

The data registers are used as source or destination operands for most data ALU operations. With the use
of parallel move instructions (see Section 3.3.5, “Parallel Moves,” on page 3-11), these registers can serve
as sources for data ALU operations while new operands are loaded into them, in parallel, from memory.
This process is demonstrated in Example 5-1.

Example 5-1. X0 Register Used in Operation and Loaded in Parallel

ADD.W X0,A X:(R0)+,X0 ; X0 used and simultaneously loaded

The Y1, Y0, and X0 registers can be read or written as a byte or word operand. The Y register is read or
written as a long operand. All of the registers can be read or written using a parallel move. Only the X0
register can be written by the secondary read in a dual read instruction.

5.1.2 Accumulator Registers (A, B, C, D)
The data ALU contains four, independent, 36-bit accumulator registers that serve as the source or
destination for operations in the data ALU.

Each 36-bit data ALU accumulator register is composed of three different portions:

• 4-bit extension register, FF2 (where FF2 represents A2, B2, C2, or D2)

• 16-bit most significant product (MSP), FF1 (where FF1 represents A1, B1, C1, or D1)

• 16-bit least significant product (LSP), FF0 (where FF0 represents A0, B0, C0, or D0)

The “FF” notation is used throughout this chapter and the rest of the manual in references to the
accumulators. In this notation, FF refers to the entire accumulator (bits 35–0), FF2 refers only to the 4-bit
extension portion (bits 35–32), FF1 is the 16-bit most significant portion (bits 31–16), and FF0 is the 16-bit
least significant portion (bits 15–0). The various parts of an accumulator and the corresponding “FF”
notation are shown in Figure 5-4. Note that there is not actually an “FF” accumulator anywhere in the chip.

Figure 5-4. Different Components of an Accumulator (Using “FF” Notation)

Y Y1 Y0

31 16 15 0

LSPMSP

32-Bit Y Register

FF FF1 FF0FF2

35 32 31 16 15 0

LSP (FF0)MSP (FF1)Extension (FF2)

Entire Accumulator (FF)

Long Portion of Accumulator (FF10)
5-4 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Data ALU Overview and Architecture
As Figure 5-4 on page 5-4 shows, it is also possible to directly address the 32-bit long-word portion of the
accumulator, which is referred to as FF10 in this notation. FF10 represents the concatenation of the FF1
and FF0 portions and is useful for manipulating 32-bit quantities.

The accumulators are used as source or destination operands for most data ALU operations. With the use
of parallel move instructions (see Section 3.3.5, “Parallel Moves,” on page 3-11), these registers can serve
as sources for data ALU operation while new operands are loaded into them, in parallel, from memory.
This process is demonstrated in Example 5-2.

Example 5-2. Accumulator A Used in Operation and Stored in Parallel

ADD.W X0,A A,X:(R0)+ ; A used and simultaneously stored

Each register can be read or written as a byte, word, or long operand. In a parallel move instruction, an
accumulator register is specified only as a whole accumulator and not in portions. Only the C register can
be written by the secondary read in a dual read instruction.

Section 5.2, “Accessing the Accumulator Registers,” discusses methods for accessing the accumulators
and strategies for using them properly.

NOTE:

The C2, C0, D2, and D0 portions of the C and D accumulators are
generally not directly accessible through the instruction set, with the
exception of certain operations. See Section 5.2.2, “Accessing Portions of
an Accumulator,” for ways to access these registers.

5.1.3 Multiply-Accumulator (MAC) and Logic Unit
The multiply-accumulator (MAC) and logic unit is the main arithmetic processing unit in the data ALU.
This block performs multiplications, additions, subtractions, logical operations, and other arithmetic
operations. It accepts up to three input operands and outputs one 36-bit result.

The MAC unit is pipelined to maintain a throughput of one instruction per cycle. The MAC pipeline has
two stages, multiplication and arithmetic/logical. Multiplication and MAC operations take 2 cycles to flow
through the two pipeline stages, whereas arithmetic and logical operations are completed in a single cycle.
More information on the two-stage execution of the MAC unit appears in Section 10.2.2, “Data ALU
Execution Stages,” on page 10-4.

The inputs of the MAC and logic unit can come from the seven data ALU registers (A1, B1, C1, D1, X0,
Y0, and Y1), can come from memory, or can be immediate data. Byte, word, and long operands are all
supported. Optional saturation and rounding are supported to ensure correct operation when 36-bit results
are written to memory. See Section 5.9, “Rounding,” for a more detailed discussion.

Arithmetic operations in the MAC unit occur independently and in parallel with memory accesses on the
core data buses. This capability allows a parallel move instruction to update an accumulator in the same
instruction in which the accumulator is used as the source for an ALU operation.

5.1.4 Single-Bit Accumulator Shifter
The accumulator shifter is an asynchronous parallel shifter with a 36-bit input and a 36-bit output. The
accumulator shifter is used to perform single-bit shifts of entire accumulators (as with the ASL and ASR
instructions), or to pre-shift values before they are passed on to the MAC unit (as occurs with the LSRAC
instruction).
Freescale Semiconductor Data Arithmetic Logic Unit 5-5

Data Arithmetic Logic Unit
5.1.5 Arithmetic and Logical Shifter
An arithmetic and logical shifter block performs shifting of data ALU registers by an immediate value or
by a value specified in a register. The unit is pipelined to maintain a throughput of one instruction per cycle
for 16-bit shifting (one instruction per two cycles for 32-bit shifting). The pipeline has two stages. Shifting
is performed in the first stage, and the second stage can add the result of the first stage to an accumulator in
the ALU unit. Shifting operations take two cycles to flow through the two pipeline stages (three cycles for
32-bit shifts). More information on the two-stage execution of the shifter unit appears in Section 10.2.2,
“Data ALU Execution Stages,” on page 10-4.

5.1.6 Data Limiter and MAC Output Limiter
DSC algorithms can calculate values larger than the data precision of the machine when processing real
data streams. Normally a processor simply overflows such a result, but this treatment can create problems
for processing real-time signals. To eliminate the problems associated with overflow and underflow, the
DSP56800E provides the optional saturation of results using two limiters: the data limiter and the MAC
output limiter. The operation of the two limiter units is discussed in Section 5.8, “Saturation and Data
Limiting.”

5.2 Accessing the Accumulator Registers
The DSP56800E architecture provides four 36-bit accumulator registers for arithmetic operations. To
simplify the development of algorithms for signal processing and control, the DSP56800E provides three
methods for accessing the accumulators:

• As an entire 36-bit register (FF)

• As a 32-bit long register for store operations (FF10)

• As individual component registers (FF2, FF1, or FF0)

Accessing an entire accumulator (A, B, C, or D) is particularly useful for DSC tasks because it preserves
the full precision of multiplication and other ALU operations. Using the full accumulator also provides
limiting (or saturation) capability when storing the result of a computation would cause overflow; see
Section 5.8.1, “Data Limiter.”

Accessing 32-bit long values (A10, B10, C10, or D10) is important for control tasks and general-purpose
computing. It allows long variables to be written to memory and stored to other registers without
saturation.

The ability to access individual portions of an accumulator (FF2, FF1, or FF0) provides a great deal of
flexibility when systems and control algorithms are implemented. Saturation is always disabled when
portions of an accumulator are manipulated, allowing for the accurate manipulation of integer values. This
access method also allows for accumulators to be saved and restored without limiting, preserving the full
precision of a mathematical result. See Section 5.2.6, “Saving and Restoring Accumulators,” for more
information.

Note that while the individual accumulator register portions are normally accessible, C2, C0, D2, and D0
are exceptions. Refer to Section 5.2.2, “Accessing Portions of an Accumulator,” for details on how to
access these portions.

Table 5-1 on page 5-7 summarizes the various possible accesses. These are described in more detail in the
following sections.
5-6 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Accessing the Accumulator Registers
Table 5-1. Accessing the Accumulator Registers

Register Reading an Accumulator Register Writing an Accumulator Register

A
B
C
D

Using a MOVE.W instruction:
If the extension bits are not in use, the 16-bit
contents of the FF1 portion of the accumulator
are read.
If the extension bits are in use, a 16-bit “limited”
value is substituted. See Section 5.8.1, “Data
Limiter.”

When used in an arithmetic operation:
All 36 bits are used without limiting.

Using a MOVE.W instruction:
The 16-bit value is written to the FF1 portion of the
accumulator. The extension portion, FF2, is filled
with sign extension; the FF0 portion is set to zero.

Using a MOVE.B instruction:
The 8-bit value is written into the lower 8 bits of
the FF1 portion of the register. The upper 8 bits of
the FF1 portion and the extension portion, FF2,
are sign extended (zero extended on MOVEU.B).
The FF0 portion is set to zero.

Using a MOVE.L instruction:
All 32 bits of the CDBR bus are written to the FF1
and FF0 portions of the register, FF1:FF0.
The FF2 register is written with sign extension.

A10
B10
C10
D10

Using a MOVE.L instruction:
The 32 bits in the FF1 and FF0 portions of the
accumulator are read.
Saturation logic is bypassed on MOVE.L.

Not available as a destination. Long-word values
must be written to the entire accumulator.

A2
B2

Using a MOVE.W instruction:
The 4-bit register, sign extended to 16 bits, is
read. (See Figure 5-8 on page 5-11.)

Using a MOVE.W instruction:
The 4 LSBs of the 16-bit value are written into the
register. The upper 12 bits are ignored. The corre-
sponding FF1 and FF0 portions are not modified.
(See Figure 5-7 on page 5-10.)

A1
B1
C1
D1

Using a MOVE.W instruction:
The 16-bit FF1 portion is read.

Using a MOVE.B instruction:
The lower 8 bits of FF1 are read.

When used in an arithmetic operation:
The FF1 register is used as a 16-bit source
operand for an arithmetic operation.

FF1 is also used for unsigned moves
(MOVEU.B, MOVEU.W) and with byte pointer
operations (MOVE.BP, MOVEU.BP).

Using a MOVE.W instruction:
The 16-bit value is written into the FF1 register.
The corresponding FF2 and FF0 portions are not
modified.

A0
B0

Using a MOVE.W instruction:
The 16-bit FF0 register is read.

Using a MOVE.W instruction:
The 16-bit value is written into the FF0 register.
The corresponding FF2 and FF1 portions are not
modified.

Note: In all cases where MOVE.W is supported, the MOVEU.W instruction, parallel moves, and bit-manipulation
operations are also supported.
Freescale Semiconductor Data Arithmetic Logic Unit 5-7

Data Arithmetic Logic Unit
5.2.1 Accessing an Entire Accumulator
The accumulator registers serve as the source or destination for most data ALU operations. The result of an
ALU or multiplication operation is typically a full 36-bit value that, when written to an accumulator,
affects the entire register. Inputs for most arithmetic operations are also full-precision 36-bit accumulator
values.

The entire accumulator register can also be accessed with the explicit execution of a MOVE instruction.
Contents from the 32-bit CDBR bus can be written to all accumulators (A, B, C, or D) with sign extension
propagated to the 4-bit extension register (A2, B2, C2, or D2). When the contents of the 36-bit accumulator
need to be limited, the SAT instruction can be used to saturate the value in the 36-bit accumulator, limiting
with the full-scale positive or negative 32-bit values ($7FFF:FFFF or $8000:0000).

5.2.1.1 Writing an Accumulator with a Small Operand

Automatic sign or zero extension of the 36-bit accumulators is provided when the FF accumulator is
written with a smaller size operand. The extension can occur when FF is written from the CDBR
(MOVE.B, MOVEU.B, MOVE.W, or MOVE.L instruction) or with the results of certain data ALU
operations (for example, ADD.L, SUB.L, or TFR from a 16-bit register to a 36-bit accumulator). If a word
operand is to be written to an accumulator register (FF), the FF1 portion of the accumulator is written with
the word operand, the FF0 portion is zeroed, and the FF2 portion receives sign extension.

Figure 5-5 shows some examples of writing word values to an accumulator. Note that all three portions of
the accumulator are modified by these instructions.

Figure 5-5. Writing the Accumulator as a Whole

A move instruction that moves one accumulator to another, or a MOVE.L instruction with an immediate
value, behaves similarly. This result does not occur for the TFR instruction; no sign extension is performed
when TFR transfers a smaller register to an accumulator.

When an unsigned value is moved into an accumulator, the extension (FF2) portion of the accumulator
must be cleared because the most significant bit might be set. Automatic sign extension causes this bit to
be propagated into the extension register, making the value negative. Unsigned loads of words or long
words to an accumulator are performed using the technique in Example 5-3 on page 5-9.

Before Execution

X X X XX

B2 B1

X X X X

B0

B

After Execution

1 2 3 40

B2 B1

0 0 0 0

B0

B

35 32 31 16 15 0 35 32 31 16 15 0

Writing a Positive Value into 36-Bit Accumulator: MOVE.W #$1234,B

Before Execution

X X X XX

B2 B1

X X X X

B0

B

After Execution

A 9 8 7F

B2 B1

0 0 0 0

B0

B

35 32 31 16 15 0 35 32 31 16 15 0

Writing a Negative Value into 36-Bit Accumulator: MOVE.W #$A987,B
5-8 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Accessing the Accumulator Registers
Example 5-3. Unsigned Load of a Long Word to an Accumulator

MOVE.L X:(R0),B
CLR.W B2

See Section 5.2, “Accessing the Accumulator Registers,” for a discussion of when it is appropriate to
access an accumulator by its individual portions and when it is appropriate to access an entire accumulator.

NOTE:

If the extension bits of an accumulator contain only sign extension (the E
bit in the status register is not set), saturation is unnecessary, and a read of
an entire accumulator is identical to a read of just the FF1 portion.

5.2.1.2 Using the Extension Registers

The extension registers (FF2) offer protection against 32-bit overflow. When the result of an accumulation
crosses the MSB of MSP (bit 31 of FF), the extension in use bit of the status register (E) is set. Up to 15
overflows or underflows are possible using the accumulator extension bits, after which the sign is lost
beyond the MSB of the extension register. When this loss occurs, the overflow bit (V) in the status register
is set. The extension register allows overflow during intermediate calculations without losing important
information. This capability is particularly useful during the execution of DSC algorithms, where
intermediate calculations might overflow.

The extension in use bit is used to determine when to saturate the value of an accumulator when it is
written to memory or when it is transferred to any data ALU register. If saturation occurs, the content of
the original accumulator is not affected (unless the same accumulator is specified as both source and
destination); only the value transferred is limited to a full-scale positive or negative 16-bit value ($7FFF or
$8000). This same logic applies to the SAT instruction.

When limiting occurs, the L flag in the status register is set. Saturation and limiting are explained in more
detail in Section 5.8, “Saturation and Data Limiting.”

NOTE:

Limiting is performed only when the entire 36-bit accumulator register
(FF) is specified as the source for a data move or is transferred to another
register. It is not performed when FF2, FF1, or FF0 is specified.

5.2.2 Accessing Portions of an Accumulator
The instruction set provides for loading and storing one portion of an accumulator register without
affecting the other two portions. When an instruction uses the FF1 or FF0 notation instead of F, the
instruction only operates on the specified 16-bit portion without modifying the other two portions. When
an instruction specifies FF2, the instruction operates only on the 4-bit accumulator extension register
without modifying the FF1 or FF0 portions of the accumulator. Refer to Table 5-1 on page 5-7 for a
summary of ways to access the accumulator registers.

Figure 5-6 on page 5-10 shows some examples of writing values to portions of the accumulator. Note that
only one of the three portions of the accumulator is modified by each of these instructions—the other two
portions remain unmodified.
Freescale Semiconductor Data Arithmetic Logic Unit 5-9

Data Arithmetic Logic Unit
Figure 5-6. Writing the Accumulator by Portions

Limiting does not occur for move instructions that specify one portion of an accumulator as the source
operand.

When FF2 is written, it receives the low-order portion of the word; the high-order portion is not used. See
Figure 5-7. When FF2 is read, the register contents occupy the low-order portion (bits 3–0) of the word;
the high-order portion (bits 15–4) is sign extended. See Figure 5-8 on page 5-11.

Figure 5-7. Writing the Accumulator Extension Registers (FF2)

Before Execution

X X X XX

A2 A1

X X X X

A0

A

After Execution

X X X XD

A2 A1

X X X X

A0

A

35 32 31 16 15 0 35 32 31 16 15 0

Writing the FF2 Portion: MOVE.W #$ABCD,A2

Before Execution

X X X XX

A2 A1

X X X X

A0

A

After Execution

1 2 3 4X

A2 A1

X X X X

A0

A

35 32 31 16 15 0 35 32 31 16 15 0

Writing the FF1 Portion: MOVE.W #$1234,A1

Before Execution

X X X XX

A2 A1

X X X X

A0

A

After Execution

X X X XX

A2 A1

A 9 8 7

A0

A

35 32 31 16 15 0 35 32 31 16 15 0

Writing the FF0 Portion: MOVE.W #$A987,A0

CDBR Bus Contents

Not Used
LSB of

Word

Register FF2 Used

as a Destination

15 4 3 0

FF2No Bits Present Register FF2

15 4 3 0
5-10 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Accessing the Accumulator Registers
Figure 5-8. Reading the Accumulator Extension Registers (FF2)

Although the FF1 portion of every accumulator is accessible by all instructions, the FF2 and FF0 portions
are only accessible for the A and B registers. The C2, C0, D2, and D0 accumulator portions are only
accessible through a limited set of instructions:

• MOVE.W #xxxx,<register>

• BFCHG, BFCLR, BFSET, ANDC, ORC, EORC, NOTC

• BFTSTH, BFTSTL

• BRSET, BRCLR

• Push register to stack (C2 and D2 only)

• Pop register from stack (C2 and D2 only)

There are no other ways to read or write these accumulator portions directly. To read or write the values of
C2 and D2, use the code in Example 5-4 and Example 5-5 (or similar code).

Example 5-4. Reading the Contents of the C2 Register

; First technique, with sign extension
ASR16 C,X0 ; Shift C2 into X0 with sign extension
MOVE.W X0,R0 ; Write C2 signed contents to final destination

; Second technique, no sign extension
LSR16 C,A ; Shift C2 into A1 with no sign extension
MOVE.W A1,R0 ; Write C2 unsigned contents to final destination

Example 5-5. Writing a Value into the C2 Register

; First technique
MOVE.W R2,C1 ; Write value first to C1
ASL16 C ; Shift the C1 register into C2

; Second technique
MOVE.W R2,A1 ; Write value first to A1
ASL16 A,C ; Shift the A1 register into C2

; Third technique (may saturate if SA = 1)
MOVE.W R3,A2 ; Write value first to A2
TFR A,C ; Transfer value from A to C accumulator

FF2

CDBW Bus Contents

Register FF2

Used as a Source

Sign Extension

of FF2

Contents

of FF2

No Bits Present Register FF2

LSB of
Word

15 4 3 0

15 4 3 0
Freescale Semiconductor Data Arithmetic Logic Unit 5-11

Data Arithmetic Logic Unit
5.2.3 Reading and Writing Integer Data to an Accumulator
General integer and control processing typically uses 16-bit data. When an integer is loaded to an
accumulator, the 36 bits of the accumulator should reflect the 16-bit data correctly. During integer
processing, all accumulator loads of 16-bit data should clear the least significant portion of the
accumulator and sign extend the extension portion. Such loading is accomplished using the instruction
demonstrated in Example 5-6.

Example 5-6. Loading an Accumulator with an Integer Word

MOVE.W X:(R0),A ; A2 receives sign extension
; A1 receives the 16-bit data
; A0 receives the value $0000

In general, the A1 register should not be used when an accumulator is loaded with an integer. Using the
entire accumulator, as in Example 5-6, is almost always preferable. One exception to this rule is discussed
in Section 5.2.6, “Saving and Restoring Accumulators.”

The entire accumulator should also be used when long integers are loaded into the accumulators, as shown
in Example 5-7.

Example 5-7. Loading an Accumulator with a Long Integer

MOVE.L X:(R0),A ; A2 receives sign extension
; A1 receives the upper 16 of the 32 bits
; A0 receives the lower 16 of the 32 bits

NOTE:

It is not possible to use the A10 register when a long value is loaded into
an accumulator.

General integer and control processing does not use saturation or limiting. There is often no overflow
protection when the result of an integer calculation is read. Typically, the accumulators are read with
saturation disabled, as demonstrated in Example 5-8.

Example 5-8. Reading an Integer Value from an Accumulator

MOVE.W A1,X:Variable_1 ; Word move with saturation disabled
MOVE.L A10,X:Long_Variable_1 ; Long word move without saturation

Note the use of the A1 and A10 registers instead of the entire accumulator, A. Using this notation ensures
that saturation is disabled.

5.2.4 Reading 16-Bit Results of DSC Algorithms
A DSC algorithm can use the full 36-bit precision of an accumulator while performing DSC calculations
such as digital filtering or matrix multiplications. However, the 36-bit result must often be written to a
16-bit memory location or D/A converter. Because DSC algorithms process digital signals, it is important
that saturation is enabled when a 36-bit accumulator value is converted to a 16-bit value so that signals that
overflow 16 bits are clipped to the maximum positive or negative value appropriately. Saturation is
ensured when the entire accumulator (FF) is specified as the source operand, as shown in Example 5-9.

Example 5-9. Reading a Word from an Accumulator with Saturation

MOVE.W A,X:D_to_A_data ; Saturation is enabled

Note the use of the A accumulator instead of the A1 register. Using the A accumulator enables saturation.
5-12 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Accessing the Accumulator Registers
There is no instruction for reading a long value from an accumulator with saturation enabled. If this
function is required, the SAT instruction can be used, as shown in Example 5-10.

Example 5-10. Reading a Long Value from an Accumulator with Limiting

SAT A ; Limit the value in the A accumulator
MOVE.L A10,X:D_to_A_data ; Saturation is no longer required

5.2.5 Converting a 36-Bit Accumulator to a 16-Bit Value
There are three useful techniques for converting the 36-bit contents of an accumulator to a 16-bit value,
which can then be stored to memory or used for further computation. This conversion is useful for
processing word-sized operands (16 bits) because it guarantees that an accumulator contains correct sign
extension and that the least significant 16 bits are all zeros. The three techniques appear in Example 5-11.

Example 5-11. Converting a 36-Bit Accumulator to a 16-Bit Value

;Converting with no limiting
MOVE.W A1,A ;Sign extend A2, A0 set to $0000
MOVE.W C1,B ;Sign extend B2, B0 set to $0000

;Extracting the A0 portion (no limiting)
ASL16 A ;Sign extend A2, write A1, clear A0
ASL16 A,D ;Sign extend D2, write D1, clear D0

;Converting with limiting enabled
MOVE.W A,A ;Sign extend A2, limit if required
MOVE.W A,C ;Sign extend C2, limit if required

In the last technique, where limiting is enabled, limiting only occurs when the extension register is in use.
Refer to Section 8.2.2, “Status Register,” on page 8-7. When the extension register is in use, the extension
in use (E) bit of the status register is set.

5.2.6 Saving and Restoring Accumulators
There are times when an accumulator value must be saved to the stack, such as in interrupt-handling
routines. To be saved and restored properly, the accumulator must be saved with saturation disabled. The
MOVE.W A,X:(SP)+ instruction should never be used when a value is being saved to the stack, because
this instruction operates with saturation enabled and can inadvertently store the value $7FFF or $8000 if
the extension register is in use. The solution is to save the individual portions of the accumulator, as
demonstrated in Example 5-12.

Example 5-12. Saving and Restoring an Accumulator—Word Accesses

; Saving the A accumulator to the stack
ADDA #1,SP ; Point to first empty location
MOVE.W A2,X:(SP)+ ; Save extension register
MOVE.W A1,X:(SP)+ ; Save A1 register
MOVE.W A0,X:(SP) ; Save A0 register

; Restoring the A accumulator from the stack
MOVE.W X:(SP)-,A0 ; Restore A0 register
MOVE.W X:(SP)-,A1 ; Restore A1 register
MOVE.W X:(SP)-,A2 ; Restore extension register

A faster way of saving and restoring accumulators is to access the stack 32 bits at a time, as shown in
Example 5-13 on page 5-14.
Freescale Semiconductor Data Arithmetic Logic Unit 5-13

Data Arithmetic Logic Unit
Example 5-13. Saving and Restoring an Accumulator—Long Accesses

; Saving the A accumulator to the Stack
ADDA #2,SP ; Point to first empty location
MOVE.L A2,X:(SP)+ ; Save extension register
MOVE.L A10,X:(SP) ; Save A1 and A0 registers

; Restoring the A accumulator from the Stack
MOVE.L X:(SP)-,A ; Restore A1 and A0 (changes A2)
MOVE.L X:(SP)-,A2 ; Restore extension register

In order for the accumulator to be pushed on the stack 32 bits at a time, the stack pointer must be aligned to
an odd word address. See Section 3.5.3, “Accessing Long-Word Values Using Word Pointers,” on
page 3-19 for more information.

5.2.7 Bit-Manipulation Operations on Accumulators
The DSP56800E bit-manipulation instructions operate in a read-modify-write sequence: the value to be
manipulated is read into a temporary register, modified according to the instruction, and written back to its
original location. The “read” portion of this sequence is performed as if a MOVE.W instruction had been
executed, and thus may cause saturation to occur if an entire accumulator register is specified. In order for
bit-manipulation operations to execute correctly, saturation must be disabled. For this reason,
bit-manipulation instructions should always be performed on the FF1 portion of a register (A1, for
example) instead of the entire register, as demonstrated in Example 5-14.

Example 5-14. Bit Manipulation on a DSP56800E Accumulator

; BFSET using the A register
BFSET #$0F00,A ; Reads A1 with saturation enabled - can limit

; Sets bits 11 through 8 and stores back to A1
; A2 is sign extended and A0 is cleared

; BFSET using the A1 register
BFSET #$0F00,A1 ; Reads A1 with saturation disabled

; Sets bits 11 through 8 and stores back to A1
; Note: A2 and A0 unmodified

5.3 Fractional and Integer Arithmetic
Fractional arithmetic is typically required for computation-intensive algorithms such as digital filters,
speech coders, vector and array processing, digital control, and other signal processing tasks. In this mode,
data is interpreted as fractional values, and computations are performed accordingly. When calculations
are performed in this mode, saturation is often used to prevent a problem that occurs without saturation: an
output signal that is generated from a result where a computation overflows without saturation can be
severely distorted (see Figure 5-27 on page 5-40). Saturation can be selectively enabled and disabled so
that intermediate calculations are performed without limiting and so that only the final results are limited.

Integer arithmetic is typically used in controller code, array indexing and address computations, peripheral
setup and handling, bit manipulation, bit-exact algorithms, and other general-purpose tasks. Typically,
saturation is not used when integers are processed, but it is available if desired.
5-14 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Fractional and Integer Arithmetic
5.3.1 DSP56800E Data Types
The DSP56800E architecture supports byte (8-bit), word (16-bit), and long-word (32-bit) integer data
types. It also supports word, long-word, and accumulator (36-bit) fractional data types.

Regardless of size, the four basic data types supported by the DSP56800E core are:

• Signed integer.

• Unsigned integer.

• Signed fractional.

• Unsigned fractional.

One of these four types is used in each data ALU operation. The complete list of data types and their
ranges appears in Table 5-2.

For more information on the DSP56800E data types, refer to Section 3.2, “DSP56800E Data Types,” on
page 3-5.

Table 5-2. Data Types and Range of Values

Data Type Minimum Value Maximum Value

Integer

Unsigned byte 0 255

Signed byte –128 127

Unsigned word 0 65,535

Signed word –32,768 32,767

Unsigned long 0 4,294,967,295

Signed long –2,147,483,648 2,147,483,647

Fractional1

1.All fractional values are rounded to 10 decimal digits of accuracy.

Signed word –1.0 0.999 969 482 4

Signed long word –1.0 0.999 999 999 5

Signed 36-bit accumulator –16.0 15.999 999 999 5
Freescale Semiconductor Data Arithmetic Logic Unit 5-15

Data Arithmetic Logic Unit
5.3.2 Addition and Subtraction
Addition, subtraction, and comparison operations are performed identically for both fractional and integer
data values. The data ALU does not distinguish between the data types for these operations.

To perform integer arithmetic operations with word-sized data, the MOVE.W instruction loads the data
into the FF1 portion of the accumulator as shown in Figure 5-9. FF2 contains sign extension and FF0 is
cleared. Note that the decimal (or binary) point lines up correctly for integer data in the two accumulators.

Figure 5-9. Integer Word Addition

Fractional word arithmetic is performed in a similar manner. The MOVE.W instruction loads the data into
the FF1 portion of the accumulator as shown in Figure 5-10. FF2 contains sign extension and FF0 is
cleared. Again, the decimal (or binary) point lines up correctly for fractional data in the two accumulators.

Figure 5-10. Fractional Word Addition

Before Execution

$0000$0020$0

A2 A1 A0

After Execution

MOVE.W #32,A ; Load integer value “32” ($20) into A Accumulator
; (Sign extends A2 and clears A0)

MOVE.W #64,B ; Load integer value “64” ($40) into B Accumulator
; (Sign extends B2 and clears B0)

ADD B,A ; Perform Integer Word Addition
; (32 + 64 = $20 + $40 = $60 = 96)

MOVE.W A1,X:RESULT ; Save Result (without saturating) to Memory

A

$0000$0040$0

B2 B1 B0

B

$0000$0060$0

A2 A1 A0

A

Integer Addition of 2 Words: 32 + 64 = 96

Before Execution

$0000$4000$0

A2 A1 A0

After Execution

MOVE.W #0.5,A ; Load fraction value “0.5” ($4000) into A
; (Sign extends A2 and clears A0)

MOVE.W #0.25,B ; Load fraction value “0.25” ($2000) into B
; (Sign extends B2 and clears B0)

ADD B,A ; Perform Fractional Word Addition
; (0.5 + 0.25 = $4000 + $2000 = $6000 = 0.75)

MOVE.W A,X:RESULT ; Save Result (limiting enabled) to Memory

A

$0000$2000$0

B2 B1 B0

B

$0000$6000$0

A2 A1 A0

A

Fractional Addition: 0.5 + 0.25 = 0.75
5-16 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Fractional and Integer Arithmetic
When a word-sized integer is added to a long-sized integer, the word value must first be converted to a
long value, as shown in Figure 5-11.

Figure 5-11. Adding a Word Integer to a Long-Word Integer

When a word-sized fraction is added to a long-sized fraction as shown in Figure 5-12, no conversion is
necessary because their binary points are the same.

Figure 5-12. Adding a Word Fractional to a Long-Word Fractional

If limiting is desired before the long value is written to memory, it is necessary to use the SAT A,A
instruction immediately before the MOVE.L.

Before Execution

$0020$0000$0

A2 A1 A0

After Execution

MOVE.L #32,A ; Load integer long “32” ($20) into A Accumulator
; (Sign extends A2 and A1)

MOVE.W #64,B ; Load integer word “64” ($40) into B Accumulator
; (Sign extends B2 and clears B0)

ASR16 B ; Convert word value in B Accumulator to a long
ADD B,A ; Perform Integer Word Addition

; (32 + 64 = $20 + $40 = $60 = 96)
MOVE.L A10,X:RESULT ; Save Result (limiting disabled) to Memory

A

$0000$0040$0

B2 B1 B0

B

$0060$0000$0

A2 A1 A0

A

Integer Addition of a Long and a Word: 32 (long) + 64 (word) = 96 (long)

$0040$0000$0

B2 B1 B0

B

Before Execution

$0000$4000$0

A2 A1 A0

After Execution

MOVE.L X:(R0),A ; Load fraction long “0.5” ($4000:0000) into A
; (Sign extends A2)

MOVE.W #0.25,B ; Load fraction word “0.25” ($2000) into B
; (Sign extends B2 and clears B0)
; (Note: Same format as a fractional long)

ADD B,A ; Perform Fractional Long Addition
; (0.5 + 0.25 = $0:6000:0000 = 0.75)

MOVE.L A10,X:RESULT ; Save Result (limiting disabled) to Memory

A

$0000$2000$0

B2 B1 B0

B

$0000$6000$0

A2 A1 A0

A

Fractional Addition of a Long and a Word: 0.5 (long) + 0.25 (word) = 0.75 (long)

0000$2000$0

B2 B1 B0

B

Freescale Semiconductor Data Arithmetic Logic Unit 5-17

Data Arithmetic Logic Unit
5.3.3 Multiplication
The multiplication operation is not the same for integer and fractional arithmetic. The result of a fractional
multiplication differs from the result of an integer multiplication. The difference amounts to a 1-bit shift of
the final result, as illustrated in Figure 5-13. Any binary multiplication of two N-bit signed numbers gives
a signed result that is 2N – 1 bits in length. This (2N – 1)-bit result must then be properly placed in a field
of 2N bits to fit correctly into the on-chip registers. For correct fractional multiplication, an extra zero bit is
inserted in the LSB to give a 2N-bit result. For correct integer multiplication, an extra sign bit is inserted in
the MSB to give a 2N-bit result.

Figure 5-13. Comparison of Integer and Fractional Multiplication

The MPY, MAC, MPYR, and MACR instructions perform fractional multiplication and fractional
multiply-accumulation. The IMPY.W, IMPY.L, and IMAC.L instructions perform integer multiplication.
These types of multiplication are explained in more detail in the following sections.

5.3.3.1 Fractional Multiplication

Figure 5-14 on page 5-19 shows the multiplication of two 16-bit, signed, fractional operands. The
multiplication results in an intermediate 32-bit, signed, fractional result with the LSB always cleared. This
intermediate result is then stored in one of the 36-bit accumulators, with sign extension placed in the
extension register. If rounding is specified (using the MPYR instruction), the intermediate results is
rounded to 16 bits before being stored in the destination accumulator, and the LSP is cleared.

S S

S

N – 1

2N Bits

S S

0

2N Bits

Integer Fractional

Signed Multiplication: N × N = 2N – 1 Bits

X

Sign Extension Zero Fill

X
Signed Multiplier Signed Multiplier

S MSP LSP S MSP LSP

N N – 1N
5-18 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Fractional and Integer Arithmetic
Figure 5-14. Fractional Multiplication (MPY)

5.3.3.2 Integer Multiplication

There are two techniques for performing integer multiplication on the DSC core:

• Using the IMPY.W instruction to generate a 16-bit result in the FF1 portion of an accumulator

• Using the IMPY.L and IMAC.L instructions to generate a 36-bit full-precision result

Each technique offers advantages for different types of computations.

Integer processing code usually requires only a 16-bit result, since greater precision is rarely needed. The
word-size integer multiplication instruction, IMPY.W, provides this capability, generating a 16-bit
unrounded result. Figure 5-15 on page 5-20 shows the multiply operation for integer arithmetic with a
word-sized result. The multiplication of two 16-bit, signed, integer operands using the IMPY.W instruction
gives a 16-bit, signed integer result that is placed in the FF1 portion of the accumulator. The corresponding
extension register (FF2) is filled with sign extension, and the FF0 portion remains unchanged.

ss

EXT MSP LSP

Signed Fractional
Input Operands

Signed 31-Bit
Intermediate

Multiplier Result

Signed Fractional
MPY Result

Input Operand 1 Input Operand 2

31 Bits

36 Bits

16 Bits 16 Bits

0

ss

Signed Multiplier
X

Freescale Semiconductor Data Arithmetic Logic Unit 5-19

Data Arithmetic Logic Unit
Figure 5-15. Integer Multiplication with Word-Sized Result (IMPY.W)

At other times, when it is necessary to maintain the full 32-bit precision of an integer multiplication, use
the IMPY.L instruction. Figure 5-16 shows an integer multiplication with a long-word result. The 32-bit
long integer result is placed into the FF1 and FF0 portions of an accumulator, with sign extension placed in
the extension register (FF2).

Figure 5-16. Integer Multiplication with Long-Word-Sized Result (IMPY.L)

5.3.3.3 Operand Re-Ordering for Multiplication Instructions

The source operands for the three-operand multiplication and multiply-accumulate instructions must be
specified in a particular order so that they are dispatched to the appropriate units in the data ALU. The

16 Bits

Signed Integer
 IMPY.W Result (Unchanged) (Sign Extension) MSP

Signed 31-Bit
Intermediate

Multiplier Result
s

31 Bits

16 Bits

Signed Integer
Input Operands

Input Operand 1 Input Operand 2

16 Bits 16 Bits

ss

Signed Multiplier
X

EXT MSP LSP

Signed 31-Bit
Intermediate

Multiplier Result

Signed Integer
IMPY.L Result

36 Bits

Signed Integer
Input Operands

Input Operand 1 Input Operand 2

16 Bits 16 Bits

ss

Signed Multiplier
X

ss

31 Bits
5-20 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Fractional and Integer Arithmetic
DSP56800E assembler automatically rearranges the source operands for the following operations if they
are not specified in the required order:

This re-ordering by the assembler has no impact on the execution of the instruction. Note, however, that
the instruction dis-assembles as the re-ordered version. For example:

MPY -X0,Y1,A ; X0 specified as first source operand

This instruction specifies the two source operands in the wrong order (the X0 register cannot be specified
as the first operand). The assembler replaces this instruction with the following:

MPY -Y1,X0,A ; Y1 specified as first source operand

This instruction performs the same function, but with the operands in the proper order. Note that the
instruction always dis-assembles with the second ordering of operands.

5.3.4 Division
Fractional and integer division of both positive and signed values is supported using the DIV instruction.
The DIV instruction performs a single division iteration, calculating 1 bit of the result with each execution.
The dividend (numerator) is a 32-bit fractional or 31-bit integer value, and the divisor (denominator) is a
16-bit fractional or integer value. A full division requires that the DIV instruction be executed 16 times.

Algorithms for performing division can vary, depending on the values being divided and whether or not
the remainder after integer division must also be calculated. To formulate the correct approach, consider
the following key questions:

• Are both operands always guaranteed to be positive?

• Are operands fractional or integer?

• Is the quotient all that is needed, or is the remainder needed as well?

• Will the calculated quotient fit in 16 bits in integer division?

• Are the operands signed or unsigned?

• How many bits of precision are in the dividend?

• What about overflow in fractional and integer division?

• Will there be “integer division” effects?

Once you answer these questions, select the appropriate division algorithm. The most general division
algorithms are the fractional and integer algorithms for four-quadrant division,1 which generate both a
quotient and a remainder. These algorithms require the most time to complete and use the most registers.
Simpler, quicker algorithms can be used when positive numbers are divided or when the remainder is not
required. Note that none of the algorithms that are presented here apply to extended-precision division,
which requires more than 16 quotient bits.

MAC S1,S2,D MAC –S1,S2,D IMAC.L S1,S2,D

MACR S1,S2,D MACR –S1,S2,D IMPY.L S1,S2,D

MPY S1,S2,D MPY –S1,S2,D IMPY.W S1,S2,D

MPYR S1,S2,D MPYR –S1,S2,D

1. Four-quadrant division is so called because it generates correct results for any combination of positive or negative dividends and divisors.
Freescale Semiconductor Data Arithmetic Logic Unit 5-21

Data Arithmetic Logic Unit
5.3.4.1 General-Purpose Four-Quadrant Division

This general-purpose algorithm generates both a correct quotient and a correct remainder when dividing
any combination of positive or negative, two’s-complement, signed values. Because this algorithm handles
the most general case, it is the slowest and uses the most resources. Example 5-15 presents one algorithm
for division with fractional numbers and another algorithm for the division of integer numbers.

Example 5-15. Signed Division with Remainder

; Four-Quadrant Division of Fractional, Signed Data (B1:B0 / X0)
; Generates Signed quotient and remainder
; Setup

MOVE.W B1,A ; Save sign bit of dividend (B1) in MSB of A1
MOVEU.WB1,N ; Save sign bit of dividend (B1) in MSB of N
ABS B ; Force dividend positive
EOR X0,Y1 ; Save sign bit of quotient in N bit of SR
BFCLR #$0001,SR ; Clear carry bit: required for 1st DIV instr

; Division
REP 16
DIV X0,B

; Correct quotient
TFR B,A
BGE QDONE ; If correct result is positive, then done
NEG B ; Else negate to get correct negative result

QDONE
MOVE.W A0,Y1 ; Y1 <- True quotient
MOVE.W X0,A ; A <- Signed divisor
ABS A ; A <- Absolute value of divisor
ADD B,A ; A1 <- Restored remainder
BRCLR #$8000,N,DONE
MOVE.W #0,A0
NEG A

DONE
; (At this point, the correctly signed quotient
; is in Y1 and the correct remainder is in A1)

; Four-Quadrant Division of Integer, Signed Data (B1:B0 / X0)
; Generates Signed quotient and remainder
; Setup

ASL B ; Shift of dividend required for integer
; division

MOVE.W B1,A ; Save sign bit of dividend (B1) in MSB of A1
MOVEU.WB1,N ; Save sign bit of dividend (B1) in MSB of N
ABS B ; Force dividend positive
EOR X0,Y1 ; Save sign bit of quotient in N bit of SR
BFCLR #$0001,SR ; Clear carry bit: required for 1st DIV instr

;Division
REP 16
DIV X0,B

; Correct quotient
TFR B,A
BGE QDONE ; If correct result is positive, then done
NEG B ; Else negate to get correct negative result

QDONE
MOVE.W A0,Y1 ; Y1 <- True quotient
MOVE.W X0,A ; A <- Signed divisor
ABS A ; A <- Absolute Value of divisor
ADD B,A ; A1 <- Restored remainder
BRCLR #$8000,N,DONE
MOVE.W #0,A0
NEG A
ASR B ; Shift required for correct integer remainder

DONE
; (At this point, signed quotient in Y1, correct
; remainder in A1)
5-22 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Fractional and Integer Arithmetic
5.3.4.2 Positive Dividend and Divisor with Remainder

If both the dividend and divisor are positive, signed, two’s-complement numbers, a more efficient
algorithm can replace the general-purpose four-quadrant approach. Consider a simple positive division
with a remainder, such as the following:

64 ÷ 9 = 7 (remainder 1)

This operation can be calculated correctly with the code presented in Example 5-16. The algorithms in this
code are the fastest and require the least amount of program memory. The example presents different
algorithms for the division of fractional and integer numbers. Both algorithms generate the correct positive
quotient and positive remainder.

Example 5-16. Unsigned Division with Remainder

; Division of Positive Fractional Data (B1:B0 / X0)
BFCLR #$0001,SR ; Clear carry bit: required for 1st DIV instruction
REP 16
DIV X0,B ; Form positive quotient in B0
ADD X0,B ; Restore remainder in B1

; (At this point, the positive quotient is in
; B0 and the positive remainder is in B1)

; Division of Positive Integer Data (B1:B0 / X0)
ASL B ; Shift of dividend required for integer

; division
BFCLR #$0001,SR ; Clear carry bit: required for 1st DIV instruction
REP 16
DIV X0,B ; Form positive quotient in B0
MOVE.W B0,Y1 ; Save quotient in Y1

; (At this point, the positive quotient is in
; B0 but the remainder is not yet correct)

ADD X0,B ; Restore remainder in B1
ASR B ; Required for correct integer remainder

; (At this point, the correct positive
; remainder is in B1)

5.3.4.3 Signed Dividend and Divisor with No Remainder

An algorithm that is slightly more complex but still more efficient than the general-purpose algorithm can
be used for signed values when a correct remainder is not required.

The algorithms in Example 5-17 on page 5-24 are faster than the general-purpose algorithms because they
generate the quotient only; they do not generate a correct remainder. The example presents different
algorithms for the division of fractional and integer numbers.
Freescale Semiconductor Data Arithmetic Logic Unit 5-23

Data Arithmetic Logic Unit
Example 5-17. Signed DIvision Without Remainder

; Four-Quadrant Division of Signed Fractional Data (B1:B0 / X0)
; Generates signed quotient only, no remainder
; Setup

MOVE.W B,Y1 ; Save Sign Bit of dividend (B1) in MSB of Y1
ABS B ; Force dividend positive
EOR X0,Y1 ; Save sign bit of quotient in N bit of SR
BFCLR #$0001,SR ; Clear carry bit: required for 1st DIV instr

; Division
REP 16
DIV X0,B ; Form positive quotient in B0

; Correct quotient
BGE DONE ; If correct result is positive, then done
NEG B ; Else negate to get correct negative result

DONE
; (At this point, the correctly signed
; quotient is in B0 but the remainder is not
; correct)

; Four-Quadrant Division of Signed Integer Data (B1:B0 / X0)
; Generates signed quotient only, no remainder
; Setup

ASL B ; Shift of dividend required for integer
; division

MOVE.W B,Y1 ; Save Sign Bit of dividend (B1) in MSB of Y1
ABS B ; Force dividend positive
EOR X0,Y1 ; Save sign bit of quotient in N bit of SR
BFCLR #$0001,SR ; Clear carry bit: required for 1st DIV instr

; Division
REP 16
DIV X0,B ; Form positive quotient in B0

; Correct quotient
BGE DONE ; If correct result is positive, then done
NEG B ; Else negate to get correct negative result

DONE
; (At this point, the correctly signed
; quotient is in B0 but the remainder is not
; correct)

5.3.4.4 Division Overflow

Both integer and fractional division are subject to division overflow. Overflow occurs when the correct
value of the quotient does not fit into the destination available to store it. For the division of fractional
numbers, the result must be a 16-bit, signed, fractional value that satisfies the following equation:

–1.0 ≤ quotient < +1.0 – 2–15

When the magnitude of the dividend is larger than the magnitude of the divisor, this relation can never be
satisfied; the result is always larger in magnitude than 1.0. The dividend should be scaled to avoid this
condition.

Integer division can also overflow. Correct execution without overflow occurs only when the result of the
division fits within the range of a signed 16-bit word:

–2–15 ≤ quotient ≤ [215 – 1]

The numerator should be scaled if necessary to ensure this condition.
5-24 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Fractional and Integer Arithmetic
5.3.5 Logical Operations
The logic unit in the data ALU can perform 16- and 32-bit logical operations. All logical operations are
performed on the raw bits that are contained in the operands, regardless of whether they represent integer
or fractional values. Typically, logical operations are only performed on integer values, but the
DSP56800E supports logical operations on fractional values as well.

When logical operations are performed on 16-bit values, they operate on the FF1 portion of an accumulator
register or on any of the 16-bit data registers (X0, Y0, and Y1). Logical operations on 32-bit values are
performed on the FF1:FF0 portion of the accumulators and can also use the 32-bit Y register. Figure 5-17
shows examples of 16- and 32-bit logical operations.

Figure 5-17. 16- and 32-Bit Logical Operations

Logical AND, OR, and EOR operations are supported for both 16- and 32-bit operands. A logical NOT
operation is also supported, but only for 16-bit operands. See Chapter 4, “Instruction Set Introduction,”
and the appropriate sections in Appendix A, “Instruction Set Details,” for more information on the logical
operation instructions.

5.3.6 Shifting Operations
A variety of shifting operations can be done on both integer and fractional data values. For both types of
data, an arithmetic left shift of 1 bit corresponds to a multiplication by two. An arithmetic right shift of
1 bit corresponds to a signed division by two, and a logical right shift of 1 bit corresponds to an unsigned
division by two.

5.3.6.1 Shifting 16-Bit Words

The shifter performs single-cycle arithmetic or logical shifts of 0 to 15 bits on 16-bit word values.
Figure 5-18 on page 5-26 shows both right and left shifting of a 16-bit word.

Before Execution

2 3 4 51

A2 A1

6 7 8 9

A0

A

After Execution

0 0 0 51

A2 A1

6 7 8 9

A0

A

35 32 31 16 15 0 35 32 31 16 15 0

16-Bit Logical Operation: AND.W #$F,A

Before Execution

2 3 4 51

A2 A1

6 7 8 9

A0

A

After Execution

0 0 0 01

A2 A1

0 0 0 9

A0

A

35 32 31 16 15 0 35 32 31 16 15 0

32-Bit Logical Operation: AND.L #$F,A
Freescale Semiconductor Data Arithmetic Logic Unit 5-25

Data Arithmetic Logic Unit
Figure 5-18. Arithmetic Shifts on 16-Bit Words

At the completion of a 16-bit logical or arithmetic shift, the extension register is loaded with sign extension
and the LSP is cleared. The extension bits are never shifted into the MSP of an accumulator, nor are bits in
the MSP ever shifted into the extension.

Note that sign extension is always performed for 16-bit shifts. In the unusual case in which a negative
value is shifted by zero and its destination is an accumulator, the extension register of the destination is
loaded with $F instead of $0.

5.3.6.2 Shifting 32-Bit Long Words

The shifter can also perform arithmetic or logical shifts of 0 to 31 bits on 32-bit data. If the number of bits
to be shifted is specified using a data ALU register and is positive, the shifting is performed in the direction
indicated by the mnemonic (for example, an ASRR.L instruction shifts right). If the number of bits to shift
is specified by a register and is a negative value, the shifting is performed in the opposite direction by the
absolute value of the number of bits to be shifted (for example, an ASRR.L instruction shifts left).

Figure 5-19 shows both right and left shifting of a 32-bit long word.

Figure 5-19. Arithmetic Shifts on 32-Bit Long Words

At the completion of a 32-bit logical shift, the extension register is always cleared. At the end of an
arithmetic shift, the extension register is sign extended. The extension bits are never shifted into the MSP
of an accumulator, nor are bits in the MSP ever shifted into the extension.

F A A AF

EXT MSP

0 0 0 0

LSP

A

Barrel Shifting

Unit

16 4

5 5 4 00

EXT MSP

0 0 0 0

LSP

A

Barrel Shifting

Unit

16 4

$AAAA $4 $AAAA $5

Example: Right Shifting (ASRR.W) Example: Left Shifting (ASLL.W)

35 32 31 16 15 0 35 32 31 16 15 0

F A A AF

EXT MSP

A C C C

LSP

A

Shifting

Unit

32 4

5 5 5 C0

EXT MSP

C C C 0

LSP

A

Shifting

Unit

32 4

$AAAACCCC $4 $5555CCCC $4

Example: Right Shifting (ASRR.L) Example: Left Shifting (ASLL.L)

35 32 31 16 15 0 35 32 31 16 15 0
5-26 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Unsigned Arithmetic Operations
5.3.6.3 Shifting Accumulators by 16 Bits

Three instructions—ASL16, ASR16, and LSR16—shift an entire 36-bit accumulator by 16 bits in 1 cycle.
LSR16 and ASR16 logically or arithmetically shift a 36-bit accumulator 16 bits to the right, and are useful
for converting 16-bit values to 32-bit long values that are unsigned and signed, respectively. When it is
necessary to convert a 16-bit value to a 32-bit integer, the FF1 portion must be shifted into the FF0 portion,
and the FF2 portion must be shifted into the 4 LSBs of the FF1 portion. In this manner, the original 16-bit
value is represented as a 32-bit integer. The ASL16 instruction shifts a 36-bit accumulator 16 bits to the
left, filling the FF0 portion with $0000 and the extension register with what were previously the 4 LSBs of
the original FF1 portion.

5.3.6.4 Shifting with Accumulation

The ASRAC and LSRAC instructions are unique in that they arithmetically or logically right shift a 16-bit
value into a 32-bit field and add the result to the previous value of the accumulator. For these two
instructions, the least significant bits of the MSP are shifted into the most significant bits of the LSP.

5.4 Unsigned Arithmetic Operations
The DSP56800E can perform both unsigned and signed arithmetic operations. The addition, subtraction,
multiplication, and comparison instructions work for both signed and unsigned values, but the condition
code computations are different.

5.4.1 Condition Codes for Unsigned Operations
Unsigned arithmetic operations such as addition, subtraction, comparison, and logical operations are
performed with the same instructions, and in the same manner, as for signed computations. The difference
between signed and unsigned operations involves how the data is interpreted (Section 3.2.1, “Data
Formats,” on page 3-6) and which status bits are affected when comparing signed and unsigned numbers.

The difference in the way condition codes are calculated is most evident with any of the conditional jump
and branch instructions, such as Bcc and Jcc. These instructions perform an operation based on the state of
the condition codes, which may be set differently depending on whether a signed or unsigned calculation
has been performed to generate the value tested by the instruction.

Specifically, the following conditions should be used for signed values:

• GE—greater than or equal to

• LE—less than or equal to

• GT—greater than

• LT—less than

These conditions should be used instead for unsigned values:

• HS (high or same)—unsigned greater than or equal to

• LS (low or same)—unsigned less than or equal to

• HI (high)—unsigned greater than

• LO (low)—unsigned less than

Note that the HS condition is identical to carry clear (CC) and that LO is identical to carry set (CS).
Freescale Semiconductor Data Arithmetic Logic Unit 5-27

Data Arithmetic Logic Unit
Accumulator extension registers can also interfere with the correct calculation of condition codes for
unsigned numbers when an arithmetic operation generates a 36-bit result. The TST and CMP instructions,
among others, exhibit this problem.

On the DSP56800, the recommended solution was to set the CM bit in the OMR register before using any
of the unsigned jump and branch conditions (HS, LS, HI, and LO) after a TST or CMP instruction. For
DSP56800E code, use of the CM bit is not generally recommended. Instead, instructions that exactly
match the size of the data should be used:

• TST.B and CMP.B for bytes

• TST.W and CMP.W for words

• TST.L and CMP.L for long words

Using these instructions guarantees that the extension registers are not considered when condition codes
are calculated.

5.4.2 Unsigned Single-Precision Multiplication
Unsigned multiplications are supported with the IMPYUU instruction, which accepts two 16-bit
multiplicands from the lowest portion of the accumulators (FF0). This instruction is illustrated in
Example 5-18.

Example 5-18. Multiplication of 2 Unsigned Words

MOVE.W X:(R0),A ; Load 1 word from memory
MOVE.W X:(SP-2),B ; Load 1 word from memory

LSR16 A ; Place unsigned value in FF0 portion
LSR16 B ; Place unsigned value in FF0 portion

IMPYUU A0,B0,D ; Multiply 2 unsigned words

The IMACUS and IMPYSU instructions are provided for multiplying one signed value and one unsigned
value. However, be careful with these instructions, because one of the 16-bit multiplicands is in the upper
portion (FF1) of an accumulator, and the other is in the lower portion (FF0). See the entries for these
instructions in Appendix A, “Instruction Set Details,” for more information on the placement of operands.

Fractional unsigned multiplications are supported with the MPYSU and MACSU instructions. Again, be
careful, because one of the 16-bit multiplicands is in the upper portion (FF1) of an accumulator, and the
other is in the lower portion (FF0).
5-28 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Extended- and Multi-Precision Operations
5.5 Extended- and Multi-Precision Operations
Some algorithms require calculations that exceed the range or precision of the 16- and 32-bit operations
that the DSP56800E architecture supports. To assist in implementing these algorithms, the DSP56800E
provides several instructions targeted toward extended-precision and multi-precision calculations.

5.5.1 Extended-Precision Addition and Subtraction
Two instructions, ADC and SBC, assist in performing extended-precision addition and subtraction.

Example 5-19 illustrates the use of the ADC instruction in 64-bit addition. Two 64-bit operands in memory
are summed, 32 bits at a time, with the carry out of the low-order addition added into the high-order
portion. The final sum is stored in both the A and B registers.

Example 5-19. 64-Bit Addition

X:$103:X:$102:X:$101:X:$100 + X:$203:X:$202:X:$201:X:$200 = A2:A1:A0:B1:B0

MOVE.L X:$100,B ; Get Operand1 (Lower 32 bits, sign ext)
MOVE.L X:$200,Y ; Get Operand2 (Lower 32 bits)
ADD Y,B ; First 32-bit addition,
MOVE.L X:$102,A ; Get Operand1 (Upper 32 bits)
MOVE.L X:$202,Y ; Get Operand2 (Upper 32 bits)
ADC Y,A ; Second 32-bit addition

Subtraction is carried out in a similar manner. As illustrated in Example 5-20, the low-order 32-bit
subtraction is performed first, with any borrow being reflected in the carry bit in the status register. The
high-order subtraction is then performed, with the borrow subtracted to achieve the correct result.

Example 5-20. 64-Bit Subtraction

X:$103:X:$102:X:$101:X:$100 – X:$203:X:$202:X:$201:X:$200 = A2:A1:A0:B1:B0

MOVE.L X:$100,B ; Get Operand1 (Lower 32 bits, sign ext.)
MOVE.L X:$200,Y ; Get Operand2 (Lower 32 bits)
SUB Y,B ; First 32-bit subtraction
MOVE.L X:$102,A ; Get Operand1 (Upper 32 bits)
MOVE.L X:$202,Y ; Get Operand2 (Upper 32 bits)
SBC Y,B ; Second 32-bit subtraction

5.5.2 Multi-Precision Fractional Multiplication
Two instructions are provided to assist with multi-precision multiplications: MPYSU and MACSU. When
these instructions are used, the multiplier accepts one signed two’s-complement operand and one unsigned
two’s-complement operand.

Figure 5-20 on page 5-30 shows the process for multiplying a 16-bit value with a 32-bit value, resulting in
a 36-bit product. The 16-bit value is multiplied by each of the 16-bit halves of the larger value, and the
results are summed, with the second product offset by 16 bits so the products align properly.
Freescale Semiconductor Data Arithmetic Logic Unit 5-29

Data Arithmetic Logic Unit
Figure 5-20. Single-Precision-Times-Double-Precision Signed Multiplication

The key to making the multiplication work is the use of the MPYSU instruction, as shown in the code in
Example 5-21. Treating the lower half of the 32-bit input value as unsigned ensures that the correct value is
generated for the later addition.

Example 5-21. Fractional Single-Precision Times Double-Precision—Both Signed

(4 Cycles, 4 Instruction Words)
MPYSU X0,Y0,A ; Single-Precision times Lower Portion
ASR16 A ; 16-bit Arithmetic Right Shift
MAC X0,Y1,A ; Single-Precision times Upper Portion

; and added to Previous

Extended-precision 32-bit multiplication works similarly. Figure 5-21 on page 5-31 shows two 32-bit
values being multiplied to generate a 64-bit result. The code for this figure appears in Example 5-22 on
page 5-32.

32 Bits

X0
×

Sign Ext.

Signed × Unsigned

Y1 Y0

A0A1A2

X0 × Y0

Signed × Signed

 +

16 Bits

X0 × Y1

36 Bits
5-30 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Extended- and Multi-Precision Operations
Figure 5-21. Double-Precision-Times-Double-Precision Signed Multiplication

32 Bits

×

Unsigned × Unsigned

OP2UPR OP2LWR

RES1UPRRES2LWRRES2UPR

OP2LWR × OP1LWR

Unsigned × Signed

OP2LWR × OP1UPR

 +

Signed × Unsigned

OP2UPR × OP1LWR

Signed × Signed

OP2UPR × OP1UPR

RES1LWR

64 Bits

32 Bits

OP1UPR OP1LWR
Freescale Semiconductor Data Arithmetic Logic Unit 5-31

Data Arithmetic Logic Unit
Example 5-22. Multiplying Two Fractional Double-Precision Values

X:OP1UPR:X:OP1LWR × X:OP2UPR:X:OP2LWR
(Both 32-Bit Operands Are Signed)

; Unsigned x Unsigned Multiplication, save lower 16 bits of final result
 MOVE.W X:OP1UPR,A ; Get first operand from memory
 MOVE.W X:OP1LWR,A0 ; Could use a MOVE.L to move 32-bit value to A
 MOVE.W X:OP2UPR,B ; Get first operand from memory
 MOVE.W X:OP2LWR,B0 ; Could use a MOVE.L to move 32-bit value to B
 IMPYUU A0,B0,D ; Perform lower portion of multiplication
 LSR16 D,C ; Isolate upper 16 bits for accumulation

; LSP of D for RES1LWR

; Signed x Unsigned Multiplication with Accumulation
 IMPYSU A1,B0,Y ; Perform signed multiplication with upper 16 bits
 ADD Y,C ; Accumulate result

; Unsigned x Signed Multiplication with Accumulation
 MOVE.L #0,Y
 IMACUS A0,B1,Y ; Perform signed multiplication with upper 16 bits
 ADD Y,C ; Accumulate result

; Lower 16 bits Correspond to Lower 32 bits of Final Result
 ASL16 C,Y1 ; Save lower 16 bits of result
 MOVE.W Y1,D1 ; D has lower 32 bits of result

; MSP of D for RES1UPR

; Upper 16 bits Correspond to Upper 32 bits of Final Result
 ASR16 C ; Isolate upper 16 bits for accumulation
 IMAC.L A1,B1,C ; Perform upper portion of multiplication

; Correction for Fractional Result (C => RES2UPR:RES2LWR, D => RES1UPR:RES1LWR)
 SXT.L D ; Propagate bit 31 to EXT of D
 ASL D ; Corresponds to lower 32 bits of Final Fractional

; Result
 ROL.L C ; Corresponds to upper 32 bits of Final Fractional

; Result

; Storing 64-bit Fractional Result in Memory
 MOVE.L D10,X:RES1 ; X:RES1UPR:RES1LWR = Lower 32 bits of Fractional

; Result
 MOVE.L C10,X:RES2 ; X:RES2UPR:RES2LWR = Upper 32 bits of Fractional

; Result

; ====> C2 may not be correct after the result is generated ...

This type of multiplication can also be performed as a 32 × 32 → 64-bit integer multiplication with a final
left shift of the result. Multi-precision integer multiplication is described in Section 5.5.3, “Multi-Precision
Integer Multiplication.”

5.5.3 Multi-Precision Integer Multiplication
Four provided instructions assist with multi-precision integer multiplications. When these instructions are
used, the multiplier accepts signed two’s-complement operands and unsigned two’s-complement operands.
Each instruction specifies not only which source operand is signed or unsigned, but also the location of the
16-bit operand (FF1 or FF0 portion of an accumulator):

• IMACUU—multiply-accumulate with two unsigned operands
(first 16-bit operand located in FF0 portion, second in FF1)

• IMACUS—multiply-accumulate with one unsigned and one signed operand
(unsigned 16-bit operand located in FF0 portion, signed in FF1)
5-32 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Extended- and Multi-Precision Operations
• IMPYSU—multiplication with one signed and one unsigned operand
(signed 16-bit operand located in FF1 portion, unsigned in FF0)

• IMPYUU—multiplication with two unsigned operands (2 cases)
(each unsigned 16-bit operand located in the FF0 portion)
(first 16-bit operand located in FF1 portion, second in FF0)

The following sections demonstrate the use of these instructions in multi-precision integer multiplications.

5.5.3.1 Signed 32-Bit × Signed 32-Bit with 32-Bit Result

Figure 5-22 and Example 5-23 demonstrate a signed multiplication of two 32-bit long values that generates
a 32-bit long integer result.

Figure 5-22. 32-Bit × 32-Bit –> 32-Bit Signed Integer Multiplication

Example 5-23. Multiplying Two Signed Long Integers

C1:C0 = A1:A0 × B1:B0
(Both 32-Bit Operands Are Signed)

;Signed x Signed 32-Bit Integer Multiplication
IMPYSU A1,B0,Y ; Y1:Y0 = signed A1 x unsigned B0
IMACUS A0,B1,Y ; Y1:Y0 = unsigned A0 x signed B1 + Y1:Y0
IMPYUU A0,B0,C ; C2:C1:C0 = unsigned A0 x unsigned B0
ADD Y0,C ; Combine Results: final 32-bit result in C

This example, which saves only the lower 32 bits of the result, does not require the A1 × B1 product,
which only affects the upper 32 bits of the result. Also note that C2 in the final result is modified and does
not contain valid data.

32 Bits

×

Unsigned × Unsigned

B1 B0

C0C1C2

A0 × B0

Signed × Unsigned

A1 × B0

 +

Unsigned × Signed

A0 × B1

32 Bits

32 Bits

A1 A0
Freescale Semiconductor Data Arithmetic Logic Unit 5-33

Data Arithmetic Logic Unit
5.5.3.2 Unsigned 32-Bit × Unsigned 32-Bit with 32-Bit Result

Figure 5-23 and Example 5-24 demonstrate an unsigned multiplication of two 32-bit long values that
generates a 32-bit long integer result.

Figure 5-23. 32-Bit × 32-Bit –> 32-Bit Unsigned Integer Multiplication

Example 5-24. Multiplying Two Unsigned Long Integers

C1:C0 = A1:A0 × B1:B0
(Both 32-Bit Operands Are Unsigned)

;Unsigned x Unsigned 32-Bit Integer Multiplication
IMPYUU A1,B0,Y ; Y1:Y0 = signed A1 x unsigned B0
IMACUU A0,B1,Y ; Y1:Y0 = unsigned A0 x signed B1 + Y1:Y0
IMPYUU A0,B0,C ; C2:C1:C0 = unsigned A0 x unsigned B0
ADD Y0,C ; Combine Results: final 32-bit result in C

This example, which saves only the lower 32 bits of the result, does not require the A1 × B1 product,
which only affects the upper 32 bits of the result. Also note that C2 in the final result is modified and does
not contain valid data.

5.5.3.3 Signed 32-Bit × Signed 32-Bit with 64-Bit Result

Figure 5-24 on page 5-35 and Example 5-25 on page 5-35 demonstrate a signed multiplication of two
32-bit long values that generates a 64-bit full-precision integer result.

32 Bits

×

Unsigned × Unsigned

B1 B0

C0C1C2

A0 × B0

Unsigned × Unsigned

A1 × B0

 +

Unsigned × Unsigned

A0 × B1

32 Bits

32 Bits

A1 A0
5-34 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Extended- and Multi-Precision Operations
Figure 5-24. 32-Bit × 32-Bit –> 64-Bit Signed Integer Multiplication

Example 5-25. Multiplying Two Signed Long Integers

D2:D1:D0:C1:C0 = A1:A0 × B1:B0
(Both 32-Bit Operands Are Signed)

;Signed x Signed 32-Bit Integer Multiplication with 64-Bit Result
IMPYUU A0,B0,D ; D2:D1:D0 = unsigned A0 x unsigned B0
LSR16 D,C ; Align upper word of first product in C
IMPYSU A1,B0,Y ; Y1:Y0 = signed A1 x unsigned B0
ADD Y,C ;
ASL16 X0,Y ; Clears the 32-bit Y register
IMACUS A0,B1,Y ; Y1:Y0 = unsigned A0 x signed B1 + Y1:Y0
ADD Y,C ;
ASL16 C0,Y1 ; Copy next 16 bits of result to D1
MOVE.W Y1,D1 ;
ASR16 C,C
IMAC.L A,B,C ; C2:C1:C0 now contain upper result

5.5.3.4 Other Applications of Multi-Precision Integer Multiplication

In addition to the examples in Section 5.5.3.1, “Signed 32-Bit × Signed 32-Bit with 32-Bit Result,”
through Section 5.5.3.3, “Signed 32-Bit × Signed 32-Bit with 64-Bit Result,” the multi-precision integer
multiplication instructions can be applied in other cases, such as the case of a signed 32-bit times an
unsigned 32-bit. The case of a signed 16-bit times a signed 32-bit with a 32-bit result is shown in
Example 5-26 on page 5-36.

32 Bits

×

Unsigned × Unsigned

B1 B0

D0D1C2

A0 × B0

Signed × Unsigned

A1 × B0

 +

Unsigned × Signed

A0 × B1

64 Bits

32 Bits

A1 A0

C0C1

Signed × Signed

A0 × B1
Freescale Semiconductor Data Arithmetic Logic Unit 5-35

Data Arithmetic Logic Unit
Example 5-26. Multiplying Signed 16-Bit Word with Signed 32-Bit Long

C1:C0 = A1 × B1:B0
(Both Operands Are Signed)

;Signed 16-Bit x Signed 32-Bit Integer Multiplication
IMPYSU A1,B0,Y ; Y1:Y0 = signed A1 x unsigned B0
TFR Y,C
IMPY.L A,B,Y ; Y1:Y0 = signed A1 x signed B1
ADD Y0,C ; Combine Results: final 32-bit result in C

5.6 Normalizing
For many algorithms, maximum precision in calculations is required to ensure proper results. For example,
when very small fractional values are worked with, there may not be enough binary digits in an
accumulator to accurately reflect a value. The normalizing capabilities provided by the DSP56800E
architecture can help correct this problem.

Normalizing involves scaling a value to a known magnitude. On the DSP56800E, a normalized value is
one that has no significant digits to the left of the binary point. Thus, in an accumulator register, a
normalized value has 1 sign bit and 31 significant digits. A value can be normalized, the original
magnitude can be saved, calculations can be performed, and the result can be scaled back to its original
magnitude.

5.6.1 Normalized Values
On the DSP56800E architecture, a value is considered normalized if there are no significant digits to the
left of the binary point. Bits to the left of the binary point should contain only the sign and sign extension.
Figure 5-25 shows both non-normalized and normalized values in an accumulator.

Figure 5-25. Normalizing a Small Negative Value

The first value in Figure 5-25 is not normalized: the first significant bit in the value is bit 21, and all bits to
the left are merely the sign and sign extension. The second value in Figure 5-25 shows the same value
normalized. The value has been left shifted 10 bits, eliminating the sign-extension bits and placing the sign
in bit 31 and the most significant bit in bit 30.

Figure 5-26 on page 5-37 shows a second value before and after normalization. In this example, the value
has been right shifted 3 bits to place the most significant bit to the right of the binary point.

Before Normalization

F F E 4F

A2 A1

6 C 3 1

A0

A

After Normalization

9 1 B 0F

A2 A1

C 4 0 0

A0

A

35 32 31 16 15 0 35 32 31 16 15 0
5-36 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Normalizing
Figure 5-26. Normalizing a Large Positive Value

In both Figure 5-25 on page 5-36 and Figure 5-26, the normalized values are aligned so that the most
significant bit is placed in bit 30. On the DSP56800E architecture, this alignment ensures that positive
values p lie in the range 0.5 < p < 1.0 and that negative values n lie in the range –1.0 < n < –0.5. The
amount by which the values were shifted can be used to scale the normalized values back to their original
magnitudes.

5.6.2 Normalizing Methods
There are two methods for normalizing a value in an accumulator. One, using the NORM instruction, is
more flexible but slow. The other method executes much more quickly, but is limited in the values it can
normalize.

The NORM instruction can be used to normalize a full 36-bit accumulator. Each time NORM is executed,
the accumulator to be normalized is shifted 1 bit right or left, as necessary, and a second register is
incremented. NORM is executed repeatedly until the accumulator value is fully normalized. Example 5-27
shows the general method.

Example 5-27. Normalizing with the NORM Instruction

TST A ; establish condition codes for NORM
REP #31 ; do 31 normalization steps
NORM R0,A ; execute a normalization step

The NORM instruction uses the E, U, and Z bits in the status register to determine how a value should be
shifted, so a TST instruction on the accumulator that is to be normalized must be executed before NORM
to ensure that the condition codes are set properly. At the end of the sequence in Example 5-27, the A
accumulator is normalized, and the R0 register holds the number of shifts required to normalize A.

Unfortunately, it is not possible to determine in advance how many shifts will be required to normalize a
value. Because up to 31 shifts might be required, NORM must be executed 31 times to ensure that the
value is fully normalized. In Example 5-27, a REP instruction is used to execute NORM for the proper
number of times. Although it wastes time to execute NORM more times than is necessary, NORM has no
effect on already normalized values, so there are no adverse side effects.

There is a second method for normalizing an accumulator that is less flexible but much faster. The CLB
instruction is used to determine the number of leading zeros or ones in a value, and a simple shift
instruction normalizes the accumulator. Example 5-28 shows this method.

Example 5-28. Normalizing with a Shift Instruction

CLB A,X0 ; place # of leading bits - 1 into X
ASLL.L X0,A ; shift A left to normalize

This method is clearly more efficient, requiring only two instructions (the NORM technique requires 33
instructions to be executed). However, the CLB instruction only counts leading bits in the 32-bit MSP:LSP
portion of the accumulator. Because the extension portion of the accumulator is ignored by CLB, fractional

Before Normalization

7 C C 32

A2 A1

4 0 0 0

A0

A

After Normalization

4 F 9 80

A2 A1

6 8 0 0

A0

A

35 32 31 16 15 0 35 32 31 16 15 0
Freescale Semiconductor Data Arithmetic Logic Unit 5-37

Data Arithmetic Logic Unit
values that are larger than one cannot be normalized. For most applications, this limitation should not be a
problem. However, if it is necessary to consider the extension register when a value is normalized, the
NORM technique must be used.

Regardless of the method that is used to normalize an accumulator, the second register (R0 and X0 in
Example 5-27 and Example 5-28 on page 5-37, respectively) holds the amount by which the accumulator
was scaled. This value can be used later to scale the normalized accumulator back to its original
magnitude.

5.7 Condition Code Calculation
The results of calculations are reflected in the condition code flag bits. To understand how the value of the
condition code bits is calculated after an operation, consider a number of factors:

• The size of the operands, as specified by the instruction

• The operation’s destination: accumulator, 16-bit register, or memory location

• Whether the instruction operates on the whole accumulator or only on a portion

• The current condition code mode

• Whether or not the MAC output limiter is enabled

This section discusses how the condition code mode and data sizes affect the condition codes. A detailed
discussion of condition code calculation appears in Appendix B, “Condition Code Calculation.”

5.7.1 Condition Code Modes
In earlier generations of the DSP56800E architecture, two condition code modes were available: 36-bit
mode, where the extension portion of the accumulator was considered when condition codes were
calculated, and 32-bit mode, where the the extension registers were ignored. Setting the CM bit in the
operating mode register (OMR) meant that 32-bit mode was selected. This mode was useful for integer and
control code because the extension registers are not typically used in those algorithms.

Although both condition code modes are supported on the DSP56800E, using 32-bit mode is not generally
recommended, nor is it necessary. The DSP56800E instruction set supports test and compare instructions
for byte, word, long, and 36-bit values, so the exact data size can be specified at all times depending on the
needs of the program. Thirty-two-bit condition code mode should only be used when exact compatibility
with existing DSP56800 program code is required.

5.7.2 Condition Codes and Data Sizes
The DSP56800E properly calculates condition codes for all supported data types. The calculation depends
on the size and type of the data that is being manipulated. Consider the compare instruction, for example.
The DSP56800E instruction set supports four different versions of the compare instruction:

• CMP.B and CMP.BP—compare two byte values

• CMP.W—compare two word values

• CMP.L—compare the lowest 32 bits of an accumulator with the lowest 32 bits of a second
accumulator or with a 16-bit source

• CMP—compare an entire 36-bit accumulator with a second 36-bit accumulator or with a 16-bit
source
5-38 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Saturation and Data Limiting
In the CMP.B, CMP.BP, and CMP.W instructions, condition codes are based on 8- or 16-bit results, with
corresponding 8- or 16-bit source operands. The CMP.L and CMP instructions generate condition codes on
32- and 36-bit results, respectively, but one of the two operands can be a 16-bit word. In each case,
condition codes are calculated based on the size that is specified in or implied by the instruction opcode.

5.8 Saturation and Data Limiting
DSC algorithms can generate values that are larger than the data precision of the machine when real data
streams are processed. Normally a processor simply overflows its result when this generation occurs, but
overflow creates problems for processing real-time signals. The solution is saturation, or data limiting,
which guarantees that values are always within a given range.

Saturation is especially important when data is run through a digital filter whose output goes to a
digital-to-analog converter (DAC), since saturation “clips” the output data instead of allowing arithmetic
overflow. Without saturation, the output data could incorrectly switch from a large positive number to a
large negative value, which would almost certainly cause unwanted results.

As an alternative to overflow, the DSP56800E provides optional saturation of results through two limiters
that are within the data ALU. The data limiter saturates values when moving data out of an accumulator
with a move instruction or parallel move. The MAC output limiter limits the output of the data ALU’s
MAC unit.

5.8.1 Data Limiter
The data limiter protects against overflow by selectively limiting when an accumulator register is read as a
source operand in a move instruction. Test logic in the extension portion of each accumulator register
detects overflows so that the limiter can substitute one of two constants to minimize errors that are due to
overflow. This process is called “saturation arithmetic.” When limiting occurs, a flag is set and latched in
the status register. The value of the accumulator is not changed.

When a MOVE.W instruction specifies an accumulator (FF) as a source, and when the contents of the
selected source accumulator can be represented in the destination operand size without overflow (that is,
the accumulator extension register is not in use), the data limiter does not saturate and the register contents
are stored unmodified. If a MOVE.W instruction is used and the contents of the selected source
accumulator cannot be represented in the destination operand size without overflow, the data limiter places
a “limited” data value in the destination that has maximum magnitude and the same sign as the source
accumulator. Table 5-3 summarizes these scenarios. The value in the accumulator is not changed.

Although the following examples all involve fractional data and arithmetic, saturation is equally applicable
to integer arithmetic.

Table 5-3. Data Limiter Saturation

Extension Bits in Use in Selected
Accumulator?

MSB of FF2 Output of Limiter onto the CDBW Bus

No (Don’t care) Same as input—unmodified MSP

Yes 0 $7FFF—maximum positive value

Yes 1 $8000—maximum negative value
Freescale Semiconductor Data Arithmetic Logic Unit 5-39

Data Arithmetic Logic Unit
Figure 5-27 graphically demonstrates the advantages of saturation arithmetic. In this example, the A
accumulator contains the following 36-bit value to be read to a 16-bit destination:

0000 1.000 0000 0000 0000 0000 0000 0000 0000 (in binary)
(+1.0 in fractional decimal, $0 8000 0000 in hexadecimal)

If this accumulator is read with a MOVE.W A1,X0 instruction, which disables limiting, the 16-bit X0
register contains the following value after the move instruction, assuming signed fractional arithmetic:

1.000 0000 0000 0000 (–1.0 fractional decimal, $8000 in hexadecimal)

This result is clearly in error because the value –1.0 in the X0 register greatly differs from the value of +1.0
in the source accumulator. In this case, overflow has occurred. To minimize the error due to overflow, it is
preferable to write the maximum (“limited”) value that the destination can assume. In this example, the
limited value would be:

0.111 1111 1111 1111 (+ 0.999969 fractional decimal, $7FFF in hexadecimal)

This value is clearly closer than –1.0 is to the original value, +1.0, and thus introduces less error.

Figure 5-27. Example of Saturation Arithmetic

Example 5-29 is a simple illustration of positive saturation.

Example 5-29. Demonstrating the Data Limiter—Positive Saturation

MOVE.W #$7FFC,A ; Initialize A = $0:7FFC:0000

INC.W A ; A = $0:7FFD:0000
MOVE.W A,X:(R0)+ ; Write $7FFD to memory (limiter enabled)
INC.W A ; A = $0:7FFE:0000
MOVE.W A,X:(R0)+ ; Write $7FFE to memory (limiter enabled)
INC.W A ; A = $0:7FFF:0000
MOVE.W A,X:(R0)+ ; Write $7FFF to memory (limiter enabled)

INC.W A ; A = $0:8000:0000 <=== Overflows 16 bits!
MOVE.W A,X:(R0)+ ; Write $7FFF to memory (limiter saturates)
INC.W A ; A = $0:8001:0000
MOVE.W A,X:(R0)+ ; Write $7FFF to memory (limiter saturates)
INC.W A ; A = $0:8002:0000
MOVE.W A,X:(R0)+ ; Write $7FFF to memory (limiter saturates)

MOVE.W A1,X:(R0)+ ; Write $8002 to memory (limiter disabled)

Limiting automatically occurs when the 36-bit operands A, B, C, or D are read with a MOVE.W instruction. Note that
the contents of the original accumulator are NOT changed.

Without Limiting—MOVE.W A1,X0 With Limiting—MOVE.W A,X0

A = +1.00 . . . 0 1 0 0 0 0 0 0 0 0

3 0 15 0 15 0

35 0

X0 = +0.9999690 1 1 1 1

IERRORI = .000031

A = +1.00 . . . 0 1 0 0 0 0 0 0 0 0

3 0 15 0 15 0

35 0

X0 = –1.01 0 0 0 0

IERRORI = 2.015 0 15 0
5-40 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Saturation and Data Limiting
Once the accumulator increments to $8000 in Example 5-29, the positive result can no longer be written to
a 16-bit memory location without overflow. So, instead of writing an overflowed value to memory, the
data limiter writes $7FFF, the maximum positive value that can be represented by a signed, 16-bit word.
Note that the data limiter affects only the value written to memory; it does not affect the accumulator. In
the final instruction of the example, the limiter is disabled because the register is specified as A1.

Example 5-30 is a simple illustration of negative saturation.

Example 5-30. Demonstrating the Data Limiter—Negative Saturation

MOVE.W #$8003,A ; Initialize A = $F:8003:0000

DEC.W A ; A = $F:8002:0000
MOVE.W A,X:(R0)+ ; Write $8002 to memory (limiter enabled)
DEC.W A ; A = $F:8001:0000
MOVE.W A,X:(R0)+ ; Write $8001 to memory (limiter enabled)
DEC.W A ; A = $F:8000:0000
MOVE.W A,X:(R0)+ ; Write $8000 to memory (limiter enabled)

DEC.W A ; A = $F:7FFF:0000 <=== Overflows 16 bits!
MOVE.W A,X:(R0)+ ; Write $8000 to memory (limiter saturates)
DEC.W A ; A = $F:7FFE:0000
MOVE.W A,X:(R0)+ ; Write $8000 to memory (limiter saturates)
DEC.W A ; A = $F:7FFD:0000
MOVE.W A,X:(R0)+ ; Write $8000 to memory (limiter saturates)

MOVE.W A1,X:(R0)+ ; Write $7FFD to memory (limiter disabled)

Once the accumulator decrements to $7FFF in Example 5-30, the negative result can no longer fit into a
16-bit memory location without overflow. So, instead of writing an overflowed value to memory, the data
limiter writes the most negative 16-bit number, $8000. Limiting is bypassed when individual portions of
the accumulator, rather than the entire accumulator, are read (as in the last line of the example).

5.8.2 MAC Output Limiter
The MAC output limiter optionally saturates or limits results that are calculated by data ALU arithmetic
operations such as multiplication, addition, incrementing, rounding, and so on.

The MAC output limiter can be enabled by setting the SA bit in the operating mode register (see
Section 8.2.1.3, “Saturation (SA)—Bit 4,” on page 8-6). It is also used when the SAT instruction is
executed, which saturates the value of the source accumulator and stores the result in a data ALU register.

NOTE:

When the SA bit in the OMR is modified, a delay of 2 instruction cycles is
necessary before the new saturation mode becomes active.

Consider the simple example in Example 5-31 on page 5-42.
Freescale Semiconductor Data Arithmetic Logic Unit 5-41

Data Arithmetic Logic Unit
Example 5-31. Demonstrating the MAC Output Limiter

BFSET #$0010,OMR ; Set SA bit-—enables MAC Output Limiter
MOVE.W #$7FFC,A ; Initialize A = $0:7FFC:0000
NOP

INC.W A ; A = $0:7FFD:0000
INC.W A ; A = $0:7FFE:0000
INC.W A ; A = $0:7FFF:0000

INC.W A ; A = $0:7FFF:FFFF <=== Saturates to 16 bits!
INC.W A ; A = $0:7FFF:FFFF <=== Saturates to 16 bits!
ADD.W #9,A ; A = $0:7FFF:FFFF <=== Saturates to 16 bits!

Once the accumulator increments to $7FFF in Example 5-31, the saturation logic in the MAC output
limiter prevents it from growing larger because it can no longer fit into a 16-bit memory location without
overflow. So, an overflowed value is not written to back to the A accumulator; the value of the most
positive 32-bit number, $7FFF:FFFF, is written instead.

The saturation logic operates by checking 3 bits of the 36-bit result out of the MAC unit—EXT[3],
EXT[0], and MSP[15]. As shown in Table 5-4, when the SA bit is set, these 3 bits determine whether
saturation is performed on the MAC unit’s output and whether to saturate to the maximum positive value
($7FFF:FFFF) or to the maximum negative value ($8000:0000).

The MAC output limiter affects not only the results calculated by the instruction, but condition code
computation as well. See Section B.1.2, “MAC Output Limiter,” on page B-3 for more information.

5.8.3 Instructions Not Affected by the MAC Output Limiter
The MAC output limiter is always disabled (even if the SA bit is set) when the following instructions are
executed:

Table 5-4. MAC Unit Outputs with Saturation Enabled

EXT[3] EXT[0] MSP[15] Result Stored in Accumulator

0 0 0 Result as calculated, with no limiting

0 0 1 $0:7FFF:FFFF

0 1 0 $0:7FFF:FFFF

0 1 1 $0:7FFF:FFFF

1 0 0 $F:8000:0000

1 0 1 $F:8000:0000

1 1 0 $F:8000:0000

1 1 1 Result as calculated, with no limiting

• ASLL.W, ASRR.W, LSRR.W • ASLL.L, ASRR.L, LSRR.L

• ASL16, ASR16, LSR16, ASRAC,
LSRAC

• IMPYSU, IMACUS, IMPYUU,
IMACUU

• IMAC.L, IMPY.L, IMPY.W • MPYSU, MACSU
5-42 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Rounding
The CMP.W instruction is not affected by the MAC output limiter except when the first operand is not a
register (that is, it is a memory location or an immediate value) and the second operand is X0, Y0, or Y1.
In this particular case, the calculation of the U bit might be affected if saturation occurs. No other condition
code bits are affected.

Note also that if the MAC output limiter is enabled, saturation may occur when a value is transferred from
one accumulator to another with the TFR instruction. To move a 32-bit value from one accumulator to
another without limiting when the MAC output limiter is enabled, use the SXT.L instruction.

The MAC output limiter only affects operations performed in the data ALU. It has no effect on instructions
executed in other functional blocks, such as the AGU or program controller.

5.9 Rounding
The DSP56800E architecture provides three instructions that can perform rounding—RND, MACR, and
MPYR. The RND instruction simply rounds a value in the accumulator register that is specified by the
instruction, whereas the MPYR or MACR instructions perform a regular MPY or MAC operation and then
round the result. Each rounding instruction rounds the result to a single-precision value so that the value
can be stored in memory or in a 16-bit register. (Note that saturation can still occur when a rounded result
is moved to a 16-bit destination). In addition, for instructions where the destination is one of the four
accumulators, the FF0 portion of the destination accumulator (A0, B0, C0, or D0) is cleared.

The DSC core implements two types of rounding: convergent rounding and two’s-complement rounding.
In the DSP56800E, the rounding point is between bits 16 and 15 of a 36-bit value. In the A accumulator,
this point is between the A1 register’s LSB and the A0 register’s MSB. The usual rounding method rounds
up any value above one-half (that is, LSP > $8000) and rounds down any value below one-half (that is,
LSP < $8000).

The question arises as to which way the number one-half (LSP equals $8000) should be rounded. If it is
always rounded one way, the results are eventually biased in that direction. Convergent rounding solves
the problem of this boundary case by rounding down if the number is even (bit 16 equals zero) and
rounding up if the number is odd (bit 16 equals one). In contrast, two’s-complement rounding always
rounds this number up. The type of rounding is selected by the rounding bit (R) of the OMR.

NOTE:

When the rounding bit is modified, there is a delay of 2 instruction cycles
before the new rounding mode becomes active.

• AND.W, OR.W, EOR.W • AND.L, OR.L, EOR.L

• LSL.W, LSR.W, ROL.W, ROR.W,
ROL.L, ROR.L

• SXT.B, ZXT.B, SXT.L

• NOT.W, CLB, SUBL • ADC, DIV, SBC

• ADD.B, ADD.BP, SUB.B, SUB.BP • DEC.BP, INC.BP, NEG.BP

• TST, TST.B, TST.BP, TST.W, TST.L • CMP.B, CMP.BP, CMP.L
Freescale Semiconductor Data Arithmetic Logic Unit 5-43

Data Arithmetic Logic Unit
5.9.1 Convergent Rounding
Convergent rounding, also called “round to the nearest even number,” is the default rounding mode. For
most values, this mode and two’s-complement rounding round identically. They only differ when the least
significant 16 bits of the final result before rounding are exactly $8000. In this case, convergent rounding
rounds down the value if the number is even (bit 16 equals zero) and rounds up the value if it is odd (bit 16
equals one).

The algorithm for convergent rounding is as follows:

1. Add the value $0:0000:8000 to the accumulator (for the RND instruction) or to the final
result without rounding (for the MACR instruction).

2. If the 16 LSBs of the result at this point are $0000, then clear bit 16 of the result.

3. If the SA bit in the OMR is set and the accumulator extension is in use:

— Saturate to $0:7FFF:0000 if positive.

— Saturate to $F:8000:0000 if negative.

4. Clear the LSP of the result before writing to a destination accumulator.

Figure 5-28 on page 5-45 shows the four possible cases for convergent rounding a number in one of the
four accumulators.
5-44 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Rounding
Figure 5-28. Convergent Rounding

Case I: If A0 < $8000 (1/2), then round down (add nothing)

Before Rounding After Rounding

Case II: If A0 > $8000 (1/2), then round up (add 1 to A1)

Case III: If A0 = $8000 (1/2), and the LSB of A1 = 0 (even), then round down (add nothing)

Case IV: If A0 = $8000 (1/2), and the LSB = 1 (odd), then round up (add 1 to A1)

*A0 is always clear; performed during RND, MPYR, MACR

X X . . X X X X X . . . X X X 0 1 0 0 0 1 1 X X X X X X
35 32 31 16 15 0

A2 A1 A0
0

X X . . X X X X X . . . X X X 0 1 0 0 0 0 0 0 0 0
35 32 31 16 15 0

A2 A1 A0*

Before Rounding After Rounding

X X . . X X X X X . . . X X X 0 1 0 0 1 1 1 0 X X X X X
35 32 31 16 15 0

A2 A1 A0
1

X X . . X X X X X . . . X X X 0 1 0 1 0 0 0 0 0 0
35 32 31 16 15 0

A2 A1 A0*

Before Rounding After Rounding

X X . . X X X X X . . . X X X 0 1 0 0 1 0 0 0 0 0 0
35 32 31 16 15 0

A2 A1 A0
0

X X . . X X X X X . . . X X X 0 1 0 0 0 0 0 0 0 0
35 32 31 16 15 0

A2 A1 A0*

Before Rounding After Rounding

X X . . X X X X X . . . X X X 0 1 0 1 1 0 0 0 0 0 0
35 32 31 16 15 0

A2 A1 A0
1

X X . . X X X X X . . . X X X 0 1 1 0 0 0 0 0 0 0
35 32 31 16 15 0

A2 A1 A0*
Freescale Semiconductor Data Arithmetic Logic Unit 5-45

Data Arithmetic Logic Unit
5.9.2 Two’s-Complement Rounding
When this type of rounding is selected through setting the rounding bit in the OMR, then, during a
rounding operation, one is added to the bit to the right of the rounding point (bit 15 of A0) before the bit
truncation. Figure 5-29 shows the two possible cases.

Figure 5-29. Two’s-Complement Rounding

The algorithm for two’s-complement rounding is as follows:

1. Add the value $0:0000:8000 to the accumulator (for the RND instruction) or to the final
result without rounding (for the MACR instruction).

2. If the SA bit in the OMR is set and the extension is in use:

— Saturate to $0:7FFF:0000 if positive.

— Saturate to $F:8000:0000 if negative.

3. Clear the LSP of the result before writing to a destination accumulator.

5.9.3 Rounding Examples
Example 5-32 shows program code that demonstrates two’s-complement rounding, and Example 5-33
demonstrates convergent rounding.

Example 5-32. Example Code for Two’s-Complement Rounding

MOVE.L #VALUE,A ; Load A Accumulator
BFSET #$0020,OMR ; Set the R bit for two’s-complement rounding
NOP ; (2 cycles required for R bit to be valid)
NOP ; (2 cycles required for R bit to be valid)
RND A ; Round A accumulator

Case I: A0 < 0.5 ($8000), then round down (add nothing)

Case II: A0 >= 0.5 ($8000), then round up (add 1 to A1)

AA0050*A0 is always clear; performed during RND, MPYR, MACR

Before Rounding After Rounding

X X . . X X X X X . . . X X X 0 1 0 0 0 1 1 0 X. X X X
35 32 31 16 15 0

A2 A1 A0
0

X X . . X X X X X . . . X X X 0 1 0 0 0 0 0 0 0 0
35 32 31 16 15 0

A2 A1 A0*

Before Rounding After Rounding

X X . . X X X X X . . . X X X 0 1 0 1 1 1 1 0 X X X X
35 32 31 16 15 0

A2 A1 A0
1

X X . . X X X X X . . . X X X 0 1 0 1 0 0 0 0 0 0
35 32 31 16 15 0

A2 A1 A0*
5-46 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Rounding
Example 5-33. Example Code for Convergent Rounding

MOVE.L #VALUE,A ; Load A Accumulator
BFCLR #$0020,OMR ; Clear the R bit for convergent rounding
NOP ; (2 cycles required for R bit to be valid)
NOP ; (2 cycles required for R bit to be valid)
RND A ; Round A accumulator

Table 5-5 shows four sets of results when four different values are substituted for the placeholder
“#VALUE” in Example 5-32 and Example 5-33 on page 5-47. The two algorithms give different results in
one of the four cases.

Table 5-5. Rounding Results for Different Values

Value to be
Rounded

Convergent
Rounding

Result

Two’s-Complement
Rounding Result

Comments

$1234:0397 $1234:0000 $1234:0000 Simple case: both round down to same
value.

$1234:C397 $1235:0000 $1235:0000 Simple case: both round up to same value.

$1234:8000 $1234:0000 $1235:0000 Boundary case: LSP of value is $8000 and
MSP is even. In this case, the algorithms
generate different results!

$1235:8000 $1236:0000 $1236:0000 Boundary case: LSP of value is $8000 and
MSP is odd. In this case, both have the
same result.
Freescale Semiconductor Data Arithmetic Logic Unit 5-47

Data Arithmetic Logic Unit
5-48 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Chapter 6
Address Generation Unit
The address generation unit (AGU) performs all address calculation and generation for the DSP56800E
core. The AGU calculates effective addresses for instruction operands and directly executes the address
arithmetic instructions.

Support is built into the AGU for applications that require both 24- and 16-bit pointers. Byte, word, and
long-word data memory accesses are also available for use by applications. Extensive pointer arithmetic
operations are provided for even greater flexibility.

6.1 AGU Architecture
The address generation unit (AGU) consists of the registers and logic used to calculate the effective
address of data operands in memory. It supports both linear and modulo arithmetic calculations. All AGU
operations are performed in parallel with other chip functions to minimize address-generation overhead.

The major components of the address generation unit are:

• A 24-bit primary address arithmetic unit.

• A 24-bit secondary address adder unit.

• Two single-bit shifters for byte addressing.

The AGU contains two arithmetic units—a primary address arithmetic unit for complex address
calculations, and a secondary address adder for simple calculations. The primary address arithmetic unit
supports both linear and modulo address arithmetic, simplifying the implementation of some useful data
structures.

The two arithmetic units can update up to two 24-bit addresses every instruction cycle: one for primary
memory accesses using XAB1 or PAB, and one for secondary memory accesses performed on XAB2.
AGU operations are performed on internal AGU buses, so bus transfers occur in parallel with AGU
calculations.

Figure 6-1 on page 6-2 presents a block diagram of the AGU on the DSP56800E core. The DSP56800EX
core contains additional shadow registers not reflected in this diagram.
Freescale Semiconductor Address Generation Unit 6-1

Address Generation Unit
Figure 6-1. Address Generation Unit Block Diagram (DSP56800E Core)

Figure 6-2 illustrates a dual parallel read instruction, which uses 1 program word and executes in
1 instruction cycle. The primary operand is addressed with XAB1, and the second operand is addressed
with XAB2. The data memory, in turn, places its data on the core data bus for reads (CDBR) and on the
second data bus (XDB2), respectively. See Section 3.3.5, “Parallel Moves,” on page 3-11 for more
discussion of parallel memory moves.

Figure 6-2. Dual Parallel Read Instruction

The AGU can directly address 224 (16,777,217) locations in data memory and 221 (2,097,152) locations in
program memory. All three buses can generate addresses to on-chip or off-chip memory.

6.1.1 Primary Address Arithmetic Unit
The primary address arithmetic unit is used when AGU arithmetic instructions are performed and when
complex operand effective addresses are calculated, as in indexing and post-updating. Byte, word, and
long-word accesses are supported.

XAB1

015

Secondary

N3

015

Modifier

023

R2

R3

R4

R5

SP

R0

R1

N

Pointer Registers

Primary
Arithmetic

Unit

Secondary
Adder

Short or Long
Immediate Data

pass, <<1

Registers
Offset

Register

pass, >>1

PAB

Byte Select

XAB2

CDBR

CDBW

To
R3

R3 Only

M01

Primary Read

MOVE.W X:(R4)+N,Y0 X:(R3)+N3,X0

(Uses XAB1 and CDBR)
Secondary Read

(Uses XAB2 and XDB2)
6-2 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

AGU Programming Model
Calculations in the primary address arithmetic unit can be performed using either linear arithmetic, for
general-purpose computing, or modulo arithmetic, for circular buffers and other useful data structures. The
contents of the modifier register, M01, specify the type of arithmetic to be performed for the R0 and R1
address registers. All other address registers—R2–R5, N, and SP—always operate with linear arithmetic.
Modulo arithmetic is described in detail in Section 6.8, “Linear and Modulo Address Arithmetic.”

6.1.2 Secondary Address Adder Unit
The secondary address adder unit is used for address update calculations on the R3 register, which is used
for the secondary read in dual memory read instructions (see Figure 6-2 on page 6-2). The adder unit can
increment, decrement, or add the contents of the N3 register to R3. This unit performs only linear
arithmetic; modulo arithmetic is not supported.

6.1.3 Single-Bit Shifting Units
Two single-bit shifters are present to support byte addressing. More information on byte addressing, and
on the shift operations that are performed on byte addresses, can be found in Section 3.5, “Memory Access
and Pointers,” on page 3-17.

6.2 AGU Programming Model
The AGU programming model, which Figure 6-3 on page 6-4 illustrates, consists of 14 programmable
registers:

• Six 24-bit address registers (R0–R5)

• A 24-bit stack pointer register (SP)

• A 24-bit offset register (N, which may also be used as an address register)

• A 16-bit offset register (N3)

• A 16-bit modifier register (M01)

• Four shadow registers (shadows of R0, R1, N, and M01) on the DSP56800E and DSP56800EX
cores, and five additional shadow registers (shadows of R2, R3, R4, R5, and N3) on the
DSP56800EX core

The eight 24-bit registers can be used as pointers in the register-indirect addressing modes. The N register
can also be used as an index or offset by the six address pointer registers. Modulo arithmetic on the R0 and
R1 pointer registers is enabled with the M01 register. The shadowed registers provide extra pointer
registers for interrupt routines or for system-control software.

Although all of the address pointer registers and the SP are available for most addressing modes, there are
some addressing modes that only work with a specific address pointer register. These special cases appear
in Table 6-1 on page 6-6.
Freescale Semiconductor Address Generation Unit 6-3

Address Generation Unit
Figure 6-3. Address Generation Unit Programming Model

NOTE:

Pipeline dependencies might be encountered when the AGU registers are
modified. Refer to Section 10.4.2, “AGU Pipeline Dependencies,” on
page 10-28 for more information.

6.2.1 Address Registers (R0–R5, N)
The address register file consists of six 24-bit registers, R0–R5, which are typically used as pointers to
memory. The offset register, N, can also be used as an address register. The address registers can directly
drive the core’s three address buses, minimizing access time to internal and external data and program
memory.

The address registers can be used to access byte, word, and long values in data memory, and they can be
used as byte or word pointers (see Section 3.5.1, “Word and Byte Pointers,” on page 3-17). Any address
register can be used for accessing either on-chip or off-chip data memory, including the R3 register when it
is used in the secondary access of a dual read instruction. Only the R0–R3 registers can be used to access
on-chip or off-chip program memory.

6.2.2 Stack Pointer Register (SP)
The stack pointer register (SP) is a 24-bit register that is used to access the software stack. The stack
pointer register can be used to access byte, word, and long values in data memory. It is always used as a
word pointer (see Section 3.5.1, “Word and Byte Pointers,” on page 3-17).

The SP register can be used by a program to access data on the software stack, or it can be used implicitly
by instructions that store information on the stack as part of their regular operation. These instructions
include jumps to subroutines and interrupt handlers, which push the current program counter and status
register on the stack.

This register is not initialized to a known value after reset. Applications need to explicitly establish the
base of the stack after reset, taking care that the stack area does not overlap any other data area. Note that
the software stack grows upward when values are pushed onto it.

023

R2

R3

R4

R5

SP

R0

R1

N

Pointer Registers
015

Secondary Offset Register

N3

015
Modifier Registers

M01
6-4 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

AGU Programming Model
6.2.3 Offset Register (N)
The N register is one of the most powerful registers in the AGU. In addition to functioning as an address
pointer similar to the R0–R5 registers, it can also be used for indexed and post-update addressing modes.

When the N register is used as an offset for post-updating, its value is truncated to 16 bits and then sign
extended to 24 bits before being passed to the primary arithmetic unit for post-updating. When the N
register is used as an offset for accessing long memory locations, its value is shifted to the left by 1 bit
before it is passed to the primary arithmetic unit for calculating the effective address. Thus, in this case, the
N offset is a long offset.

6.2.4 Secondary Read Offset Register (N3)
The secondary read offset register (N3) is a 16-bit register that is used for post-updating the R3 pointer
register in dual read instructions, which read two values from data memory. The N3 register is sign
extended to 24 bits and passed to the secondary address adder unit for post-updating the R3 pointer
register.

6.2.5 Modifier Register (M01)
The modifier register (M01) specifies whether linear or modulo arithmetic is used when a new address is
calculated. This modifier register is automatically read when the R0 or R1 address register is used in an
address calculation. This register has no effect on address calculations done with the R2–R5, N, or SP
registers.

During processor reset this register is set to $FFFF, which enables linear arithmetic for the R0 and R1
registers. Programming the modifier register is discussed in Section 6.8.3, “Configuring Modulo
Arithmetic.”

NOTE:

The M01 register should never be used for general-purpose storage
because its value affects calculations with the R0 and R1 pointers.

6.2.6 Shadow Registers
The DSP56800E provides four shadow registers corresponding to the R0, R1, N, and M01 address
registers. The DSP56800EX core provides the same four registers as well as five additional shadow
registers corresponding to the R2, R3, R4, R5, and N3 address registers.

The shadow registers are not directly accessible, but become available when their contents are swapped
with the contents of the corresponding AGU core registers. This swapping is accomplished through
executing the SWAP SHADOWS instruction. The contents of the four registers are exchanged with their
shadowed counterparts. When the original values of the registers are required, executing the
SWAP SHADOWS instruction a second time restores the original values.

NOTE:

The shadow register corresponding to M01 is not initialized by the core at
reset. It must be explicitly programmed by the user.
Freescale Semiconductor Address Generation Unit 6-5

Address Generation Unit
Using shadow registers as dedicated address registers during fast interrupt processing can greatly reduce
the considerable overhead incurred by saving and restoring registers when exception handlers are entered
and exited. Fast interrupts are described in Section 9.3.2.2, “Fast Interrupt Processing,” on page 9-6. The
SWAP instruction enables the shadow registers to be used to minimize the overhead during normal
interrupt processing.

6.3 Using Address Registers
The DSP56800E AGU provides several address registers that can be used as pointers for accessing
memory. Not all of the registers work identically, however. Depending on the register, there are additional
capabilities or restrictions of use. For example, the R3 register is the only register that is available for the
secondary read in instructions that perform two data memory moves. Table 6-1 summarizes the
capabilities of each address register.

The type of address arithmetic to be performed, linear or modulo, is not encoded in the instruction, but is
specified by the address modifier register (M01). See Section 6.8, “Linear and Modulo Address
Arithmetic,” for a discussion of the arithmetic types. Table 6-1 indicates whether or not modulo arithmetic
is supported for a given register.

Table 6-1. Capabilities of the Address Pointer Registers

Pointer
Register

Addressing
Modes

Allowed

Modulo
Allowed?

Capabilities and Notes

R0 (Rn)
(Rn)+
(Rn)–
(Rn)+N
(Rn+N)
(RRR+x)
(Rn+xxxx)
(Rn+xxxxxx)

Yes Counter for the NORM instruction.
Pointer for single parallel move and for primary access in dual parallel reads.
Pointer for P: memory moves.
Optional source register for Tcc transfer.
Supports legacy addressing modes (Rj+N) and (Rj+xxxx).
Shadowed for use with fast interrupt processing.

Refer to Section 6.8.4, “Base Pointer and Offset Values in Modulo Instruc-
tions,” on page 6-26 for interpretation of base pointer and offset in update by
index addressing mode.

R1 (Rn)
(Rn)+
(Rn)–
(Rn)+N
(Rn+N)
(RRR+x)
(Rn+xxxx)
(Rn+xxxxxx)

Yes Pointer for single parallel move and for primary access in dual parallel reads.
Pointer for P: memory moves.
Optional destination register for Tcc transfer.
Supports legacy addressing modes (Rj+N) and (Rj+xxxx).
Shadowed for use with fast interrupt processing.

Refer to Section 6.8.4, “Base Pointer and Offset Values in Modulo Instruc-
tions,” on page 6-26 for interpretation of base pointer and offset in update by
index addressing mode.

R2 (Rn)
(Rn)+
(Rn)–
(Rn)+N
(Rn+N)
(RRR+x)
(Rn+xxxx)
(Rn+xxxxxx)

No Pointer for single parallel move.
Pointer for P: memory moves.
Supports legacy addressing modes (Rj+N) and (Rj+xxxx).
Shadowed for use with fast interrupt processing on the DSP56800EX core.
6-6 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Byte and Word Addresses
6.4 Byte and Word Addresses
As discussed in Section 3.5.1, “Word and Byte Pointers,” on page 3-17, the DSP56800E supports two
types of addresses for data memory accesses: word and byte. Depending on the type of address used, the
memory map is interpreted somewhat differently. Figure 6-4 on page 6-8 shows the differences between
the memory maps.

R3 (Rn)
(Rn)+
(Rn)–
(Rn)+N
(R3)+N3
(Rn+N)
(RRR+x)
(Rn+xxxx)
(Rn+xxxxxx)

No Pointer for single parallel move and for secondary access in dual parallel
reads.
May be post-updated with N3 register.
Pointer for P: memory moves.
Supports legacy addressing modes (Rj+N) and (Rj+xxxx).
Shadowed for use with fast interrupt processing on the DSP56800EX core.

R4 (Rn)
(Rn)+
(Rn)–
(Rn)+N
(Rn+N)
(RRR+x)
(Rn+xxxx)
(Rn+xxxxxx)

No Pointer for primary access in dual read instructions.
Shadowed for use with fast interrupt processing on the DSP56800EX core.

R5 (Rn)
(Rn)+
(Rn)–
(Rn)+N
(Rn+N)
(RRR+x)
(Rn+xxxx)
(Rn+xxxxxx)

No Shadowed for use with fast interrupt processing on the DSP56800EX core.

N (Rn)
(Rn)+
(Rn)–
(Rn)+N
(Rn+N)
(RRR+x)
(Rn+xxxx)
(Rn+xxxxxx)

No Available not only as a pointer register, but also as indexing and post-update
register.
Shadowed for use with fast interrupt processing.

SP (Rn)
(Rn)+
(Rn)–
(Rn)+N
(Rn+N)
(SP–x)
(SP–xx)
(Rn+xxxx)
(Rn+xxxxxx)

No Supports 1-word indexed addressing with 6-bit offset for word moves.
Used implicitly by the JSR, RTS, RTSD, RTI, RTID and FRTID instructions.
SP is always used as a word pointer to properly support stack operations.
Supports legacy addressing mode (SP+N).

Table 6-1. Capabilities of the Address Pointer Registers (Continued)

Pointer
Register

Addressing
Modes

Allowed

Modulo
Allowed?

Capabilities and Notes
Freescale Semiconductor Address Generation Unit 6-7

Address Generation Unit
Figure 6-4. Word vs. Byte Addresses

When word addresses are used, each unique address refers to a different 16-bit word in memory. As shown
in Figure 6-4, locations X:$2000 and X:$2001 refer to adjacent 16-bit words. Byte addresses are used to
locate individual bytes in memory. Addresses X:$4000 and X:$4001 refer to 2 bytes contained in the same
word (the word at X:$2000, using word addressing). Note that data is stored in memory with the least
significant byte occupying the lowest memory location. This is often referred to as “little-endian” byte
ordering.

NOTE:

Byte addresses can not be used for accessing program memory. Program
memory accesses are always performed with word addresses.

Byte and word addresses are distinguished by the instruction that uses them. For most instructions,
including those that explicitly perform a word or long-word access, address register values are interpreted
as word addresses. Address register values are interpreted as byte addresses only when instructions with
the “.BP” extension are used.

6.5 Word Pointer Memory Accesses
Instructions that use address registers as word pointers can access bytes, words, and longs from data
memory. Table 6-2 on page 6-9 shows the word address in data memory that is accessed for the different
addressing modes and data types when word pointers are used. For byte accesses, the LSB of the offset
before the right shift selects the upper or lower byte. For the post-update addressing modes, the address in
Rn is used for the memory access and then is post-updated using the arithmetic shown in Table 6-2.

All immediate offsets and absolute addresses for long-word moves must be even values because long
words must be located on an even word address boundary. When the assembler encounters these
instructions, it divides the absolute address and offset values by two before generating the opcode (no
information is lost, since the low-order bit is guaranteed to be zero). When the instruction is executed, the
AGU left shifts the absolute value 1 bit to generate the correct word address or offset.

NOTE:

The values “xx,” “xxxx,” and “xxxxxx” that appear in Table 6-2 on
page 6-9 for long word accesses are the values that are actually encoded by
the assembler, which have been divided by two during assembly. The table
describes what the hardware does after the instruction has been encoded by
the assembler.

$2001 $4002

$2002 $4004

$2003 $4006

$2000 $4000

X Memory

$22 $11

7 0

$77

$44 $33

$55

$88

$66

X Memory

$22 $11

15 0

$77

$44 $33

$55

$88

$66

Word
Addresses

Byte
Addresses

Identical Memory
Locations

70
6-8 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Word Pointer Memory Accesses
Table 6-2. Hardware Implementation of Addressing Mode Arithmetic—
Word Pointers to Data Memory

Addressing Mode
Address for
Byte Access

Address for
Word Access

Address for
Long Access

Comments

No update
X:(Rn)

— Rn Rn

Post-increment
X:(Rn)+

— Rn+1 Rn+2 Post-increment occurs
after access.

Post-decrement
X:(Rn)–

— Rn–1 Rn–2 Post-decrement occurs
after access.

Post-update by offset N
X:(Rn)+N

— Rn+N — The lower 16 bits of N
are sign extended to 24
bits and added to Rn.

Indexed by offset N
X:(Rn+N)

— Rn+N Rn+(N<<1)

Indexed by 3-bit offset
X:(RRR+x)

RRR+(x>>1) Rn+x — Offset x from 0 to 7.

Indexed by 6-bit offset
X:(SP–xx)

— SP–xx SP–(xx<<1) 6-bit one extended;
SP pointer only.

Indexed by 3-bit offset
X:(SP–x)

SP–(x>>1) — — 3-bit one extended.

Indexed by 16-bit offset
X:(Rn+xxxx)

Rn+(xxxx>>1) Rn+xxxx Rn+(xxxx<<1) Signed 16-bit offset.

Indexed by 24-bit offset
X:(Rn+xxxxxx)

Rn+(xxxxxx>>1) Rn+xxxxxx Rn+(xxxxxx<<1) Signed 24-bit offset.

6-bit absolute short
X:aa

— 0000xx —

6-bit peripheral short
X:<<pp

— 00FFxx1

1.The upper 18 bits are hard-wired to a specific area of memory, which varies depending on the specific

implementation of the chip.

—

16-bit absolute address2

X:xxxx

2.The X:xxxx and X:xxxxxx addressing modes are allowed for byte accesses when they are used as the des-
tination address in a byte memory to memory move instruction. In this case, the source address is specified
with a word pointer, and the destination is an absolute byte address.

— 00xxxx (00xxxx<<1)

24-bit absolute address2

X:xxxxxx
— xxxxxx (xxxxxx<<1)
Freescale Semiconductor Address Generation Unit 6-9

Address Generation Unit
6.5.1 Accessing Bytes
Word pointers can be used to access bytes in memory with the MOVE.B and MOVEU.B instructions.
Because word pointers typically select an entire 16-bit word at once, the particular byte to access within
the word is determined by the offset that is specified in the instruction. Even offset values (or an offset of
zero) select the lower byte in a word, while odd offsets select the upper byte.

Example 6-1 demonstrates accessing byte values in memory using the MOVE.B instruction. Note that,
even though word pointers are being used, the offset values are all specified in bytes.

Example 6-1. Accessing Bytes with the MOVE.B Instruction

; Load the R0, SP Address Pointers
MOVEU.W#$2000,R0 ; load R0 pointer with the value $2000

; (can be either a byte or word pointer)
MOVEU.W#$4000,SP ; load the stack pointer (SP) with $4000

; (SP must always be a word pointer)

; MOVE.B -- R0 used as a word pointer, offset is a byte offset
MOVE.B x:(r0+0),x0 ; word address = $2000, selects lower byte
MOVE.B x:(r0+1),x0 ; word address = $2000, selects upper byte
MOVE.B x:(r0+2),x0 ; word address = $2001, selects lower byte
MOVE.B x:(r0+3),x0 ; word address = $2001, selects upper byte
MOVE.B x:(r0+4),x0 ; word address = $2002, selects lower byte

; MOVE.B -- SP always used as a word pointer, offset is a byte offset
MOVE.B x:(sp),x0 ; word address = $4000, selects lower byte
MOVE.B x:(sp-1),x0 ; word address = $3fff, selects upper byte
MOVE.B x:(sp-2),x0 ; word address = $3fff, selects lower byte
MOVE.B x:(sp-3),x0 ; word address = $3ffe, selects upper byte
MOVE.B x:(sp-4),x0 ; word address = $3ffe, selects lower byte

6.5.2 Accessing Long Words
Long words are always accessed with word pointers. When a long-word value is read or written to
memory, two adjacent 16-bit word values are accessed: the word specified in the pointer, and the word that
immediately follows in memory. (An exception is when the SP register is used to access long-word values;
see Section 3.5.3, “Accessing Long-Word Values Using Word Pointers,” on page 3-19 for more
information.)

Example 6-2 on page 6-11 demonstrates several long-word accesses. Note the arithmetic performed by the
AGU in calculating the long-word address, specifically the use of the N offset register.
6-10 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Word Pointer Memory Accesses
Example 6-2. Addressing Mode Examples for Long Memory Accesses

;Initialize Registers
MOVEU.W#$1000,R2 ; initialize base address
TFRA R2,R3 ; make a copy of R2
MOVEU.W#4,N ; initialize register index value

;First Example -- Indexing with Displacement
MOVE.L X:(R2+4),A ; Accesses X:$1005:X:$1004

;Second Example -- Indexing with Offset Register N (N = 4)
MOVE.L X:(R3+N),A ; Accesses X:$1009:X:$1008

;Third Example -- Calculating the New Address (similar to first example)
ADDA N,R2 ; Calculated Address = $1004
MOVE.L X:(R2),A ; Accesses X:$1005:X:$1004

;Fourth Example -- Calculating the New Address (similar to second example)
ADDA.L N,R3 ; Calculated Address = $1008
MOVE.L X:(R3),A ; Accesses X:$1009:X:$1008

In the second and fourth examples, the N register value is treated as a long-word offset. When the address
is calculated for the memory access, the R2 and R3 registers are offset by 4 long words (8 words), since the
long-word versions of MOVE and ADDA are used. The resulting address in each case is $1008. Where
word offsets are used, in the other two examples, the address is $1004.

6.5.3 Accessing Data Structures
Data structures and unions (such as those used in the C and C++ programming languages) typically contain
a mixture of data types. Because it is not possible to access word or long-word variables with a byte
pointer, word pointers should always be used when structure elements are accessed. Byte values in the
structure can still be accessed with the MOVE.B and MOVEU.B instructions, which use word pointers.

Consider an example structure in data memory. The structure contains byte, word, and long-word variables
and has its base address, a word pointer, stored in R3. Structure elements are accessed with offsets from
this base through using the (R3+x) and (R3+xxxx) addressing modes.

The code in Example 6-3 shows the initialization of a data structure and code used to access the elements.
Each of the four accumulators are loaded with a different structure variable.

Example 6-3. Accessing Elements in a Data Structure

ORG x:$7000 ; Data Structure named “STRUCT1”
STRUCT1 DCB $BB,$AA ; four chars: 1st is $AA, 2nd is $BB

DCB $DD,$CC ; 3rd is $CC, 4th is $DD
DCL $12345678 ; 1 long containing $12345678
DC $FFFF ; 1 word containing $FFFF

ORG P: ; (instructions located in program memory)
CODESTART MOVE.L #STRUCT1,R3 ; set up base to data structure

MOVE.B x:(R3+1),A ; read with offset of 1 byte from R3
MOVEU.Bx:(R3+2),B ; read with offset of 2 bytes from R3
MOVE.W x:(R3+4),C ; read with offset of 4 words from R3
MOVE.L x:(R3+2),d ; read with offset of 2 words from R3
Freescale Semiconductor Address Generation Unit 6-11

Address Generation Unit
After the code in Example 6-3 on page 6-11 is executed, the accumulators hold the following values:

Note that the last instruction in Example 6-3, which loads the long-word variable into D, specifies an offset
value of two. This value is specified because constant offsets for both word and long-word memory
accesses are always specified in words. The operation performed by the MOVE.L X:(R3+2),D instruction
is shown in Figure 6-5.

Figure 6-5. Executing the MOVE.L X:(R3+2),D Instruction

Note that, for instructions that move bytes, the offset is specified in the number of bytes, whereas, for word
and long instructions, the offset is specified in the number of words. Also note that accesses to bytes in the
data structure in Example 6-3 on page 6-11 require the MOVE.B and MOVEU.B instructions instead of
MOVE.BP and MOVEU.BP. This requirement exists because the R3 register is used as a word pointer.

Before Execution

XX XB

After Execution

XX XC

XX XD

XX XA

$00CC$0 $0000B

$FFFF$F $0000C

$1234$0 $5678D

$FFBB$F $0000A

$7001

Before Execution

X Memory

$BB $AA

$7000R3

$9876N

$FFFFM01

After Execution

$7000R3

$9876N

$FFFFM01

15 0

$7001

$7004

$1234

$7004

+

Short Immediate Value
from the Instruction Word

XX XD

$7002

$DD $CC

$7002

$7003

$5678

$7003

$7000

$FFFF

$7000

X Memory

$BB $AA

15 0

$1234

$DD $CC

$5678

$FFFF

$1234$0 $5678D

Word

Long

4 Bytes

<< 1
6-12 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Byte Pointer Memory Accesses
6.5.4 Accessing Program Memory
Program memory accesses are always performed with word pointers. The general rules for word pointer
accesses, as discussed in Section 6.5, “Word Pointer Memory Accesses,” through Section 6.5.3,
“Accessing Data Structures,” apply to program memory accesses. However, many fewer addressing modes
are supported. The addressing modes that can be used when program memory is accessed appear in
Table 6-3.

6.6 Byte Pointer Memory Accesses
Instructions that use address registers as byte pointers can only access bytes from data memory. An address
register value is interpreted as a byte pointer when an instruction with a “.BP” extension is used, such as
MOVE.BP or CLR.BP.

Table 6-4 on page 6-14 shows the byte address that is accessed for the different byte pointer addressing
modes. The address of the word that is accessed in memory is the byte address from the table, right shifted
1 bit; the LSB of the byte address in the table selects the upper or lower byte. Note that the X:xxxx and
X:xxxxxx addressing modes specify an absolute byte address, with the upper n – 1 bits specifying the
correct word in memory and the LSB selecting the upper or lower byte.

NOTE:

Bytes can not be accessed in the top half of data memory using byte
pointers. Bytes can still be accessed in the complete data memory space
using word pointers; but if byte pointers are used, only the lower half of
data memory can be accessed.

Table 6-3. Addressing Mode Arithmetic—Program Memory

Addressing Mode Address for Word Access Comments

Post-increment
P:(Rj)+

Rn+1 Word accesses only

Post-update by offset N
P:(Rj)+N

Rn+N Word accesses only
Freescale Semiconductor Address Generation Unit 6-13

Address Generation Unit
6.6.1 Byte Pointers vs. Word Pointers
Both the MOVE.B and MOVE.BP instructions (and their unsigned counterparts) can be used to access
bytes in memory. The difference between them is how the address register operand is interpreted. When
the MOVE.B instruction is used, the address register operand is treated as a word pointer. When
MOVE.BP is used, the address register operand is treated as a byte pointer. Note that word pointers have
full visibility of the complete 32Mbyte data memory space, but when byte pointers are used, only the lower
half of data memory can be accessed.

Although it is possible to access bytes in memory with either type of pointer, there are times when using a
byte pointer makes more sense than using a word pointer, and at other times the opposite is true. Word
pointers can be used to access a data element of any size, so they should be used when mixed data is

Table 6-4. Addressing Mode Arithmetic—Byte Pointers to Data Memory

Addressing Mode Address for Byte Access Comments

No update
X:(RRR)

RRR Not allowed for SP register

Post-increment
X:(RRR)+

RRR+1 Not allowed for SP register

Post-decrement
X:(RRR)–

RRR–1 Not allowed for SP register

Post-update by offset N
X:(RRR)+N

—

Indexed by offset N
X:(RRR+N)

RRR+N Not allowed for SP register

Indexed by 3-bit offset
X:(RRR+x)

— Must use MOVE.B or MOVEU.B with word
pointer

Indexed by 6-bit offset
X:(SP–xx)

—

Indexed by 3-bit offset
X:(SP–x)

— Must use MOVE.B or MOVEU.B with word
pointer

Indexed by 16-bit offset
X:(RRR+xxxx)

RRR+xxxx Zero-extended 16-bit offset; not allowed for SP
register

Indexed by 24-bit offset
X:(RRR+xxxxxx)

RRR+xxxxxx Not allowed for SP register

6-bit absolute short
X:aa

—

6-bit peripheral short
X:pp

—

16-bit absolute address
X:xxxx

00xxxx

24-bit absolute address
X:xxxxxx

xxxxxx
6-14 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Byte Pointer Memory Accesses
accessed (such as occurs in data structures). However, post-updating word pointers always occurs in word
addresses, so using a word pointer in a post-update addressing mode to access a byte array would only
access every other byte. Using byte pointers fixes this problem.

Byte pointers are only used if an instruction contains the “.BP” suffix. Otherwise, the pointer is always
interpreted as a word pointer. The offsets for all instructions that are accessing bytes from memory are
always byte offsets, regardless of whether an instruction uses a pointer as a byte or word pointer.

Example 6-4 demonstrates the difference between the MOVE.BP and MOVE.B instructions using
numerical values. For each instruction in Example 6-4, the comment shows the word address where the
access occurs as well as the byte that is selected (upper or lower byte of the word).

Example 6-4. Comparison of MOVE.BP and MOVE.B Instructions

; Load the R0, SP Address Pointers
MOVEU.W#$2000,R0 ; load R0 pointer with the value $2000

; (can be either a byte or word pointer)
MOVEU.W#$4000,SP ; load the stack pointer (SP) with $4000

; (SP must always be a word pointer)

; MOVE.BP -- R0 used as a byte pointer, offset is a byte offset
MOVE.BPx:(r0+0),x0 ; word address = $1000, selects lower byte
MOVE.BPx:(r0+1),x0 ; word address = $1000, selects upper byte
MOVE.BPx:(r0+2),x0 ; word address = $1001, selects lower byte
MOVE.BPx:(r0+3),x0 ; word address = $1001, selects upper byte
MOVE.BPx:(r0+4),x0 ; word address = $1002, selects lower byte

MOVE.BPx:$2005,x0 ; word address = $1002, selects upper byte

; MOVE.B -- R0 used as a word pointer, offset is a byte offset
MOVE.B x:(r0+0),x0 ; word address = $2000, selects lower byte
MOVE.B x:(r0+1),x0 ; word address = $2000, selects upper byte
MOVE.B x:(r0+2),x0 ; word address = $2001, selects lower byte
MOVE.B x:(r0+3),x0 ; word address = $2001, selects upper byte
MOVE.B x:(r0+4),x0 ; word address = $2002, selects lower byte

; MOVE.B -- SP always used as a word pointer, offset is a byte offset
MOVE.B x:(sp),x0 ; word address = $4000, selects lower byte
MOVE.B x:(sp-1),x0 ; word address = $3fff, selects upper byte
MOVE.B x:(sp-2),x0 ; word address = $3fff, selects lower byte
MOVE.B x:(sp-3),x0 ; word address = $3ffe, selects upper byte
MOVE.B x:(sp-4),x0 ; word address = $3ffe, selects lower byte

In Example 6-4, the address pointer R0 is loaded with the value $2000. Locations near the word address
$2000 are accessed when R0 is interpreted as a word pointer (when MOVE.B is used). Locations near the
word address $1000 are accessed when MOVE.BP is used, which causes R0 to be interpreted as a byte
pointer.

6.6.2 Byte Arrays
Byte arrays are a common data structure in many applications; they are often used to store string values.
The DSP56800E instruction set makes it easy to access and manipulate byte arrays through the use of byte
pointers.

The code in Example 6-5 on page 6-16 shows an eight-element byte array being initialized and also shows
accesses to the array. The base of the array is loaded first as a byte pointer via the assembler’s lb()
function. The first two move instructions access the fifth and eighth array elements, respectively. The base
of the array is then reloaded, and the last two move instructions demonstrate sequential accesses to byte
elements.
Freescale Semiconductor Address Generation Unit 6-15

Address Generation Unit
Example 6-5. Accessing Elements in an Array of Bytes

ORG X:$3000 ; Array of Bytes named “ARRAY1”
ARRAY1 DCB $22,$11 ; 1st is $11, 2nd is $22

DCB $44,$33 ; 3rd is $33, 4th is $44
DCB $66,$55 ; 5th is $55, 6th is $66
DCB $88,$77 ; 7th is $77, 8th is $88

ORG P: ; (instructions located in program memory)
CODESTART MOVEU.W#@lb(ARRAY1),R1; set up byte pointer to base of array

MOVE.BPX:(R1+4),A ; read with offset of 4 bytes from R1 (byte pointer)
MOVEU.BPX:(R1+7),B ; read with offset of 7 bytes from R1 (byte pointer)
MOVEU.W#@lb(ARRAY1),R1; set up byte pointer to base of array
MOVE.BPX:(R1)+,C ; read first array element and advance pointer
MOVE.BPX:(R1)+,D ; read second array element and advance pointer

After the code in Example 6-5 has been executed, the values in the accumulator registers are:

Recall that constant offset values are always specified in bytes when byte accesses are performed.
Figure 6-6 on page 6-17 demonstrates the AGU arithmetic that is performed when the instruction
MOVE.B X:(R1+7),B is executed. Because R1 is a byte pointer and an offset of 7 bytes has been
specified, the eighth element in the array is read.

Before Execution

XX XB

After Execution

XX XC

XX XD

XX XA

$0088$0 $0000B

$0011$0 $0000C

$0022$0 $0000D

$0055$0 $0000A
6-16 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Byte Pointer Memory Accesses
Figure 6-6. Executing the MOVEU.BP X:(R1+7),B Instruction

As Figure 6-6 shows, the byte address $6007 is accessed to load the B accumulator. Note that because this
address is a byte address, the byte is actually retrieved from the upper half of the word that is located at the
address $3000.

$3001

Before Execution

$6000R1

$9876N

$FFFFM01

XX XB

After Execution

$6000R1

$9876N

$FFFFM01

$3001

+

Short Immediate Value
from the Instruction Word

$3002 $3002

$3003 $3003

$3000 $3000

X Memory

$22 $11

15 0

$77

$44 $33

$55

$0088$0 $0000B

$88

$66

X Memory

$22 $11

15 0

$77

$44 $33

$55

$88

$66
>>1

Word Address: $3003
Byte Select: 1 (upper)

Byte Address: $6007

Word
Addresses

$6007

LSB
Freescale Semiconductor Address Generation Unit 6-17

Address Generation Unit
6.7 AGU Arithmetic Instructions
In addition to the address arithmetic performed by the various addressing modes, the AGU supports a
number of powerful instructions for directly manipulating address registers. The AGU arithmetic
instructions enable more complex address calculations. These instructions make no distinction between
word and byte pointers, calculating results the same way for both.

Table 6-5 summarizes the AGU arithmetic instructions. For more detailed information, refer to the
appropriate entry in Appendix A, “Instruction Set Details.”

Table 6-5. AGU Address Arithmetic Instructions

Instruction Address Calculation Comments

ADDA Rm,Rn Rn = Rn+Rm

ADDA.L Rm,Rn Rn = Rn+(Rm<<1)

ADDA Rm,Rn,N N = Rn+Rm

ADDA.L Rm,Rn,N N = Rn+(Rm<<1)

ADDA #x,Rn Rn = #x+Rn #x is a 4-bit unsigned value.

ADDA #x,Rn,N N = #x+Rn #x is a 4-bit unsigned value.

ADDA #xxxx,Rm,Rn Rn = #xxxx+Rm #xxxx is a signed 17-bit value.

ADDA.L #xxxx,Rm,Rn Rn = #xxxx+(Rm<<1) #xxxx is an unsigned 16-bit value.

ADDA #xxxx,HHH,Rn Rn = #xxxx+HHH HHH—data ALU register that is treated as a
signed 16-bit value.
#xxxx is an unsigned 16-bit value.

ADDA.L #xxxx,HHH,Rn Rn = #xxxx+(HHH<<1) HHH—data ALU register that is treated as a
signed 16-bit value.
#xxxx is an unsigned 16-bit value.

ADDA #xxxxxx,Rm,Rn Rn = #xxxxxx+Rm #xxxxxx is a signed 24-bit value.

ADDA.L #xxxxxx,Rm,Rn Rn = #xxxxxx+(Rm<<1) #xxxxxx is a signed 24-bit value.

ADDA #xxxxxx,HHH,Rn Rn = #xxxxxx+HHH HHH—data ALU register that is treated as a
signed 16-bit value.
#xxxx is an unsigned 16-bit value.

ADDA.L #xxxxxx,HHH,Rn Rn = #xxxxxx+(HHH<<1) HHH—data ALU register that is treated as a
signed 16-bit value.
#xxxx is an unsigned 16-bit value.

ASLA Rm,Rn Rn = (Rm<<1)

ASRA Rn Rn = (Rn>>1) Arithmetic right shift.

CMPA Rm,Rn Rn–Rm The result is not stored, but the condition codes
are set based on the 24-bit result.

CMPA.W Rm,Rn Rn–Rm The result is not stored, but the condition codes
are set based on the lowest 16 bits of the result.

DECTSTA Rn Rn = Rn–1 Decrement by one and then set the condition
codes.
6-18 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

AGU Arithmetic Instructions
Section 6.8.5.3, “Modulo Addressing for AGU Arithmetic Instructions,” lists the AGU arithmetic
instructions that can be affected by modulo arithmetic.

DECA Rn Rn = Rn–1 Decrement by one.

DECA.L Rn Rn = Rn–2 Decrement by two.

LSRA Rn Rn = (Rn>>1) Logical right shift.

NEGA Rn Rn = –(Rn) Negate register value

SUBA Rm,Rn Rn = Rn–Rm

SUBA #xx,SP SP = SP–#xx #x is a 6-bit unsigned value.

SXTA.B Rn Rn = sign_extend(Rn,7) Sign extend the upper 16 bits of a register using
the value of bit 7 for sign extension.

SXTA.W Rn Rn = sign_extend(Rn,15) Sign extend the upper 8 bits of a register using
the value of bit 15 for sign extension.

TFRA Rm,Rn Rn = Rm Transfer one 24-bit register to another.

TSTA.B Rn (Rn & 0x0000FF)–0 Test byte—the result is not stored anywhere, but
the condition codes are set based on the lower 8
bits of the result.

TSTA.W Rn (Rn & 0x00FFFF)–0 Test word—the result is not stored, but the con-
dition codes are set based on the lower 16 bits
of the result.

TSTA.L Rn Rn–0 Test long—the result is not stored, but the condi-
tion codes are set based on the result.

TSTDECA.W Rn Rn = Rn–1 Test the lower 16 bits of the value in the Rn reg-
ister, set the condition codes, and then decre-
ment the register.

ZXTA.B Rn Rn = Rn & 0x0000FF Zero extend a byte value.

ZXTA.W Rn Rn = Rn & 0x00FFFF Zero extend a word value.

Table 6-5. AGU Address Arithmetic Instructions (Continued)

Instruction Address Calculation Comments
Freescale Semiconductor Address Generation Unit 6-19

Address Generation Unit
6.8 Linear and Modulo Address Arithmetic
When an arithmetic operation is performed in the address generation unit, two modes of address
computation can be used: linear or modulo arithmetic. Linear arithmetic is required for general purpose
address computation and is found on all microprocessors. Modulo arithmetic allows the creation of special
data structures in memory. Data is manipulated by updating address registers (pointers) rather than moving
large blocks of data.

Many DSC and standard control algorithms require the use of specialized data structures, such as circular
buffers, FIFOs, and stacks. Using these structures allows data to be manipulated simply by updating
address register pointers, rather than by moving large blocks of data. The DSP56800E architecture
provides support for these algorithms by implementing modulo arithmetic in the address generation unit.
Modulo arithmetic is enabled for the R0 and R1 registers through programming the modifier register
(M01). Modulo arithmetic is not available for the R2–R5, N, and SP registers. Memory accesses using the
R2-R5, N, and SP pointers are always performed with linear arithmetic.

6.8.1 Linear Address Arithmetic
The alternative to modulo address arithmetic is linear arithmetic, as found on general-purpose
microprocessors. It is performed using 24-bit two’s-complement addition and subtraction. The 24-bit
offset register N, or immediate data (+1, –1, or a displacement value), is used in the address calculations.
Addresses are normally considered unsigned; offsets are considered signed.

Linear arithmetic is performed on the R2–R5, N, and SP registers at all times. Linear arithmetic is enabled
for the R0 and R1 registers through setting the modifier register (M01) to $FFFF. The M01 register is set to
$FFFF on reset. The shadow register for M01 is not initialized on reset, and must be manually set
according to the address arithmetic selection when shadow registers are swapped.

6.8.2 Understanding Modulo Arithmetic
To understand modulo address arithmetic, consider a circular buffer. A circular buffer is a block of
sequential memory locations with a special property: a pointer into the buffer is limited to the buffer’s
address range. When a buffer pointer is incremented such that it would point past the end of the buffer, the
pointer is “wrapped” back to the beginning of the buffer. Similarly, decrementing a pointer that is located
at the beginning of the buffer wraps the pointer to the end. This behavior is achieved by performing
modulo arithmetic when the buffer pointers are incremented or decremented. See Figure 6-7.
6-20 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Linear and Modulo Address Arithmetic
Figure 6-7. Circular Buffer

The modulo arithmetic unit in the AGU simplifies the use of a circular buffer by handling the address
pointer wrapping for you. After a buffer is established in memory, programming the M01 register enables
the R0 and R1 address pointers to wrap in the buffer area.

Modulo arithmetic is enabled through programming the M01 register with a value that is one less than the
size of the circular buffer. See Section 6.8.3, “Configuring Modulo Arithmetic,” for exact details on
programming the M01 register. Once modulo arithmetic is enabled, updates to the R0 or R1 register using
one of the post-increment or post-decrement addressing modes are performed with modulo arithmetic, and
the pointers wrap correctly in the circular buffer.

The address range within which the address pointers will wrap is determined by the value that is placed in
the M01 register and by the address that is contained within one of the pointer registers. Due to the design
of the modulo arithmetic unit, the address range is not arbitrary, but limited based on the value placed in
M01. The lower bound of the range is calculated by taking the size of the buffer, rounding it up to the next
higher power of two, and then rounding the address contained in the R0 or R1 pointer down to the nearest
multiple of that value.

For example: for a buffer size of M, the smallest value of k is calculated such that 2k > M. This value is the
buffer size rounded up to the next higher power of two. For a value M of 37, 2k would be 64. The lower
boundary of the range in which the pointer registers will wrap is the value in the R0 or R1 register with the
low-order k bits all set to zero, effectively rounding the value down to the nearest multiple of 2k (64 in this
case). This example is shown in Figure 6-8.

Circular
Buffer

Address
Pointer

Lower Boundary: k LSBs Are All Zeros

M01 = Size of Modulo Region Minus One

Upper Boundary: Lower Boundary + M01

Address of Lower Boundary:

Base Address

01k–1 ...k23

0 0 0 0 0
Freescale Semiconductor Address Generation Unit 6-21

Address Generation Unit
Figure 6-8. 37-Location Circular Buffer

When modulo arithmetic is performed on the buffer pointer register, only the low-order k bits are
modified; the upper 24 – k bits are held constant, fixing the address range of the buffer. The algorithm used
to update the pointer register (R0 in this case) is as follows:

R0[23:k] = R0[23:k]
R0[k–1:0] = (R0[k–1:0] + offset) MOD (M01 + 1)

Note that this algorithm can result in some memory addresses being inaccessible using modulo addressing.
If the size of the buffer is not an even power of two, there is a range of addresses between M and 2k – 1 (37
and 63 in the preceding example) that are not addressable. Section 6.8.9.3, “Memory Locations Not
Accessible Using Modulo Arithmetic,” discusses this issue in greater detail.

6.8.3 Configuring Modulo Arithmetic
As noted in Section 6.8.2, “Understanding Modulo Arithmetic,” modulo arithmetic is enabled through
programming the address modifier register, M01. This single register enables modulo arithmetic for both
the R0 and R1 registers. However, in order for modulo arithmetic to be enabled for the R1 register, it must
be enabled for the R0 register as well. When both pointers use modulo arithmetic, the sizes of both buffers
are the same. The pointers can refer to the same or different buffers as desired.

6.8.3.1 Configuring for Byte and Word Accesses

Modulo arithmetic affects not only the arithmetic used in calculating effective addresses for move
instructions, but it also affects the AGU arithmetic instructions. Table 6-6 shows how the M01 register is
correctly programmed for instructions that perform byte or word memory accesses as well as for the AGU
arithmetic instructions.

For byte memory accesses:

• Modulo arithmetic is performed on byte addresses.

• M01 = (size of the buffer in bytes) – 1.

Upper Boundary: $00A4

$009F

$00B0

Lower Bound Relative to R0

Initial R0 Pointer Value

Memory

Circular
Buffer

Lower Boundary: $0080

Lower Bound + Size – 1 = Upper Bound

(Unavailable
Addresses)
6-22 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Linear and Modulo Address Arithmetic
For word memory accesses:

• Modulo arithmetic is performed on word addresses.

• M01 = (size of the buffer in words) – 1.

NOTE:

The reserved sets of modifier values ($0000, $4000–$8000, and
$C000–$FFFE) must not be used. The behavior of the modulo arithmetic
unit is undefined for these values and might result in erratic program
execution.

6.8.3.2 Configuring for Long Word Accesses

The modifier register must be programmed a little differently when long-word data is to be accessed. Since
each long-word location in the modulo buffer uses up two word memory locations, the size of the modulo
buffer in words must always be an even number, which means that M01 will always be programmed with
an odd value.

Table 6-6. Programming the M01 Register—Byte and Word Accesses

16-Bit M01 Register Contents Address Arithmetic Performed Pointer Registers Affected

$0000 (Reserved) —

$0001 Modulo 2 R0 pointer only

$0002 Modulo 3 R0 pointer only

...

$3FFE Modulo 16383 R0 pointer only

$3FFF Modulo 16384 R0 pointer only

$4000 (Reserved) —

...

$7FFF (Reserved) —

$8000 (Reserved) —

$8001 Modulo 2 R0 and R1 pointers

$8002 Modulo 3 R0 and R1 pointers

...

$BFFE Modulo 16383 R0 and R1 pointers

$BFFF Modulo 16384 R0 and R1 pointers

$C000 (Reserved) —

...

$FFFE (Reserved) —

$FFFF Linear Arithmetic R0 and R1 pointers
Freescale Semiconductor Address Generation Unit 6-23

Address Generation Unit
For long-word memory accesses:

• Modulo arithmetic is performed on word addresses.

• M01 = 2 × (size of the buffer in long words) – 1

Table 6-7 on page 6-25 shows how the M01 register is correctly programmed for long memory accesses.
Note that all valid entries in this table are odd values, which results from the fact that 2 words are allocated
for each long value in the modulo buffer.

For example, to create a circular buffer with four 32-bit locations, calculate M01 as follows:

The four 32-bit locations would require 8 words of data memory, so the M01 register is programmed with
the value “$0007.”

M01 2 4×() 1–=

8 1–=

7=
6-24 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Linear and Modulo Address Arithmetic
NOTE:

The reserved sets of modifier values ($0000, $4000–$8000,
$C000–$FFFE, and all even values) must not be used. The behavior of the

Table 6-7. Programming the M01 Register—Long-Word Accesses

16-Bit M01 Register Contents Address Arithmetic Performed Pointer Registers Affected

$0000 (Reserved) —

$0001 Modulo 2 R0 pointer only

$0002 (Not available) R0 pointer only

$0003 Modulo 4 R0 pointer only

$0004 (Not available) R0 pointer only

...

$3FFC (Not available) R0 pointer only

$3FFD Modulo 16382 R0 pointer only

$3FFE (Not available) R0 pointer only

$3FFF Modulo 16384 R0 pointer only

$4000 (Reserved) —

...

$7FFF (Reserved) —

$8000 (Reserved) —

$8001 Modulo 2 R0 and R1 pointers

$8002 (Not available) R0 and R1 pointers

$8003 Modulo 4 R0 and R1 pointers

$8004 (Not available) R0 and R1 pointers

...

$BFFC (Not available) R0 and R1 pointers

$BFFD Modulo 16382 R0 and R1 pointers

$BFFE (Not available) R0 and R1 pointers

$BFFF Modulo 16384 R0 and R1 pointers

$C000 (Reserved) —

...

$FFFE (Reserved) —

$FFFF Linear Arithmetic R0 and R1 pointers
Freescale Semiconductor Address Generation Unit 6-25

Address Generation Unit
modulo arithmetic unit is undefined for these values and might result in
erratic program execution.

The high-order 2 bits of the M01 register determine the arithmetic mode for R0 and R1. A value of 00 for
M01[15:14] selects modulo arithmetic for R0. A value of 10 for M01[15:14] selects modulo arithmetic for
both R0 and R1. A value of 11 disables modulo arithmetic. The remaining 14 bits of M01 hold the size of
the buffer minus one.

6.8.4 Base Pointer and Offset Values in Modulo Instructions
For all instructions supporting modulo arithmetic (see Section 6.8.5, “Supported Memory Access
Instructions,” on page 6-29), there is always a “base pointer” and an “offset value” or “update value”. The
base pointer specifies an AGU register or absolute address which points to a location in the modulo buffer.
The offset (update) value is an immediate offset or AGU register which specifies the amount used as an
offset or an update to the pointer, and the size of the offsets are subject to the restriction in Section 6.8.9.2,
“Restrictions on the Offset Register,” on page 6-34.

For example, in the X:(Rn+N) addressing mode, the base pointer is Rn and the offset value is N. In the
X:(Rn)+N addressing mode, the base pointer is Rn and the update value is N.

6.8.4.1 Operand Placement Table

Table 6-8 shows which operand is used as a base pointer and which is used as offset value for the
addressing modes (X: notation) or instructions listed below.

This table only applies to instructions where:

• modulo arithmetic is enabled, and

• R0 (or R1) are used as source registers in the addressing mode or instruction.

If either of these conditions is not true, then Table 6-8 can be ignored.

Table 6-8. Base Pointer and Offset/Update for DSP56800E Instructions

 Addressing Mode
or Instruction

Base Pointer
Offset Value

(Update Value)
Comments

X:(Rn) Rn (no offset) —

X:(Rn)+ Rn +1 —

X:(Rn)- Rn -1 —

X:(Rn)+N Rn N —

X:(Rn+N) Rn N —

X:(RRR+x) RRR x —

X:(Rn+>xxxx) Rn >xxxx —

X:(Rn+>xxxx) >xxxx Rn Alternate use for this
addressing mode. Rn
must be positive for
correct modulo oper-
ation.

X:(Rn+>>xxxxxx) Rn >>xxxxxx —
6-26 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Linear and Modulo Address Arithmetic
The following four instructions will not perform modulo arithmetic because R0 and R1 are not source
operands for the instruction. As a result, there are no restrictions on which operand is used as pointer and
which is used as offset.

• ADDA #>xxxx,HHH,Rx

• ADDA #>>xxxxxx,HHH,Rx

• ADDA.L #>xxxx,HHH,Rx

• ADDA.L #>>xxxxxx,HHH,Rx

6.8.4.2 Example of Incorrect Modulo Operation
Using the above table, we can see that the example below incorrectly uses the modulo addressing
mode because the pointer and offset are not mapped to the correct operands.

X:(Rn+>>xxxxxx) >>xxxxxx Rn Alternate use for this
addressing mode. Rn
must be positive for
correct modulo oper-
ation.

ADDA Rx,Ry Ry Rx —

ADDA Rx,Ry,N Ry Rx —

ADDA #x,Rx Rx #x —

ADDA #x,Rx,N Rx #x —

ADDA #>xxxx,Rx,Ry #>xxxx Rx —

ADDA #>xxxx,Rx,Ry Rx #>xxxx See Section 6.8.4.3
for the case where
the immediate value
is negative.

ADDA #>>xxxxxx,Rx,Ry #>>xxxxxx Rx —

ADDA #>>xxxxxx,Rx,Ry Rx #>>xxxxxx See Section 6.8.4.3
for the case where
the immediate value
is negative.

ADDA.L Rx,Ry Ry Rx —

ADDA.L Rx,Ry,N Ry Rx —

ADDA.L #>xxxx,Rx,Ry #>xxxx Rx —

ADDA.L #>>xxxxxx,Rx,Ry #>>xxxxxx Rx —

DECA Rx Rx -1 —

DECA.L Rx Rx -2 —

DECTSTA Rx Rx -1 —

SUBA Rx,Ry Ry Rx —

TSTDECA.W Rx Rx -1 —

Table 6-8. Base Pointer and Offset/Update for DSP56800E Instructions

 Addressing Mode
or Instruction

Base Pointer
Offset Value

(Update Value)
Comments
Freescale Semiconductor Address Generation Unit 6-27

Address Generation Unit
Example 6-6. Invalid Use of the Modulo Addressing Mode

; Part 1 - Initialization
MOVEU.W#$5-1,M01 ; Modulo Enabled, buffer size = 5
MOVEU.W#$008000,N ; Base Pointer for modulo buffer

; NOTE: placed in N, NOT Rn
MOVEU.W#-2,R0 ; Offset Value used in addressing mode

; NOTE: placed in Rn, NOT N

; Part 2 - INCORRECT - pointer/offset placement violates rules in Table 6-8
MOVE.W X:(R0+N),X0 ; Performs incorrect arithmetic

; - base pointer in N
; - offset value in R0

The solution to the above example would be to place $008000 into R0 and #-2 into N. Then the instruction
works correctly.

6.8.4.3 Special Case - ADDA Instructions in Modulo Arithmetic

It is possible to use the ADDA instruction to add or subtract immediate offsets from a pointer when
modulo arithmetic is enabled.

6.8.4.3.1 Case 1. Adding a Positive Immediate Offset to a Pointer

In the case where a positive value is to be added to a pointer, the ADDA instruction can be used. If the
immediate offset satisfies the size restriction in Section 6.8.4.4, then simply use the instruction as shown in
the example below:

Example 6-7. Adding Positive Offset to a Modulo Pointer

BUFF_SIZE EQU 5
MOVEU.W#$BUFF_SIZE-1,M01 ; Modulo Enabled, buffer size = 5
MOVE.L #$008000,R0 ; Base Pointer for modulo buffer
ADDA #3,R0 ; Update base pointer using positive value

6.8.4.3.2 Case 2. Adding a Negative Immediate Offset to a Pointer

In the case where a negative value is to be added to a pointer, this can also be accomplished using the
ADDA instruction. If the immediate offset satisfies the size restriction in Section 6.8.4.4, then modulo
operation works correctly if the following formula is used:

Offset = Buffer_Size - Desired_Offset

Example 6-8. Adding “–2” to a Modulo Pointer

BUFF_SIZE EQU 5
MOVEU.W#BUFF_SIZE-1,M01 ; Modulo Enabled, buffer size = 5
MOVE.L #$008000,R0 ; Base Pointer for modulo buffer
ADDA #(BUFF_SIZE-2),R0 ; Update base pointer by -2

6.8.4.4 Restrictions on the Offset Values

Modulo addressing will work correctly with the post-update addressing mode, (Rn)+N, as long as it
satisfies the following condition:

• If an offset N is used in the address calculations, the 16-bit absolute value |N| must be less than or
equal to M01 + 1 for proper modulo addressing. This is because only a single modulo wraparound
is detected.
6-28 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Linear and Modulo Address Arithmetic
Modulo addressing also requires that any immediate values or AGU registers (see Section 6.8.4, “Base
Pointer and Offset Values in Modulo Instructions,” on page 6-26) used as offset values are subject to this
same constraint. On Example 6-9, the correct usage of offset values is demonstrated.

Example 6-9. Correct Usage - Offset Values Satisfying Restriction

BUFF_SIZE EQU 64 ; Buffer Size
; Initialization

MOVEU.W#BUFF_SIZE-1,M01; Modulo Enabled, buffer size = 64
MOVE.L #$008000,R0 ; Base Pointer for modulo buffer
MOVE.W #50,N ; Offset register - Note: offset <= BUFF_SIZE
TFRA N,R4 ; Offset register - another copy

; Modulo Arithmetic works correctly for the following instructions:
MOVE.W X:(R0+N),X0 ; offset in N
MOVE.W X:(R0)+N,X0 ; offset in N
MOVE.W X:(R0+50),X0 ; offset is 50
MOVE.W X:(R0-50),X0 ; offset is -50
ADDA R4,R0 ; offset in R4
SUBA N,R0 ; offset in N

6.8.5 Supported Memory Access Instructions
Depending on the size of the memory values that are being accessed when modulo arithmetic is enabled,
different addressing modes and instructions are supported.

6.8.5.1 Modulo Addressing for Word Memory Accesses

The DSP56800E core’s address generation unit supports modulo arithmetic for the following
address-register-indirect modes when Rn is R0 or R1:

Modulo arithmetic can also be programmed for both the R0 and the R1 pointers, as shown in Section 6.8.3,
“Configuring Modulo Arithmetic.”

6.8.5.2 Modulo Addressing for Byte and Long Memory Accesses

Modulo arithmetic is also supported for both byte and long memory accesses. When byte pointers are used,
the following addressing modes support modulo address arithmetic, where Rn is R0 or R1:

The addressing modes that support modulo arithmetic for byte accesses when word pointers are used are
more limited:

(Rn) (Rn)+ (Rn)–

(Rn+N) (Rn)+N (Rn+x)

(Rn+xxxx) (Rn+xxxxxx)

(Rn) (Rn+N) (Rn)+

(Rn)– (Rn+xxxx) (Rn+xxxxxx)

(Rn+x) (Rn+xxxx) (Rn+xxxxxx)
Freescale Semiconductor Address Generation Unit 6-29

Address Generation Unit
Finally, when modulo arithmetic is used while accessing long-word values, any of the following
addressing modes can be used:

Be careful to configure the M01 register properly based on the type of data that is being accessed when
modulo arithmetic has been enabled. See Section 6.8.3, “Configuring Modulo Arithmetic,” for more
information.

6.8.5.3 Modulo Addressing for AGU Arithmetic Instructions

The DSP56800E address generation unit also supports using modulo address arithmetic with some AGU
instructions. The supported instructions are the following:

For those supported AGU instructions that have more than one operand, modulo arithmetic will be used if
any of the source operands is a register for which modulo arithmetic has been enabled.

NOTE:

Refer to Section 6.8.4.3, “Special Case - ADDA Instructions in Modulo
Arithmetic,” on page 6-28 for special considerations on the ADDA
instruction.

6.8.6 Simple Circular Buffer Example
Suppose a five-location circular buffer is needed for an application. The application locates this buffer at
X:$800 in memory.1 In order for the AGU to be configured correctly to manage this circular buffer, the
following two pieces of information are needed:

• The size of the buffer: 5 words

• The location of the buffer: X:$0800–X:$0804

Modulo addressing is enabled for the R0 pointer through writing the size minus one ($0004) to M01[13:0]
and writing 00 to M01[15:14]. See Figure 6-9.

(Rn) (Rn+N) (Rn)+

(Rn)– (Rn+xxxx) (Rn+xxxxxx)

ADDA* ADDA.L SUBA

DECA DECA.L DECTSTA

TSTDECA.W

1. This location is arbitrary—any location in data memory would suffice.
6-30 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Linear and Modulo Address Arithmetic
Figure 6-9. Simple Five-Location Circular Buffer

The location of the buffer in memory is determined by the value of the R0 pointer when it is used to access
memory. The size of the memory buffer (five in this case) is rounded up to the nearest power of two, which
is eight. The value in R0 is then rounded down to the nearest multiple of eight. For the base address to be
X:$0800, the initial value of R0 must be in the range X:$0800–X:$0804. Note that the initial value of R0
does not have to be X:$0800 to establish this address as the lower bound of the buffer. However, it is often
convenient to set R0 to the beginning of the buffer. The source code in Example 6-10 shows the
initialization of the example buffer.

Example 6-10. Initializing the Circular Buffer

MOVEU.W#(5-1),M01 ; Initialize the buffer for five locations
MOVEU.W#$0800,R0 ; R0 can be initialized to any location

; within the buffer. For simplicity, R0
; is initialized to the value of the lower
; boundary

The buffer is used simply through being accessed with MOVE instructions. The effect of modulo address
arithmetic becomes apparent when the buffer is accessed multiple times, as in Example 6-11.

Example 6-11. Accessing the Circular Buffer

MOVE.W X:(R0)+,X0 ; First time accesses location $0800
; and bumps the pointer to location $0801

MOVE.W X:(R0)+,X0 ; Second accesses at location $0801
MOVE.W X:(R0)+,X0 ; Third accesses at location $0802
MOVE.W X:(R0)+,X0 ; Fourth accesses at location $0803
MOVE.W X:(R0)+,X0 ; Fifth accesses at location $0804

; and bumps the pointer to location $0800

MOVE.W X:(R0)+,X0 ; Sixth accesses at location $0800 <=== NOTE
MOVE.W X:(R0)+,X0 ; Seventh accesses at location $0801
MOVE.W X:(R0)+,X0 ; and so forth...

For the first several memory accesses, the buffer pointer is incremented as expected, from $0800 to $0801,
$0802, and so forth. When the pointer reaches the top of the buffer, rather than incrementing from $0804 to
$0805, the pointer value “wraps” back to $0800.

The behavior is similar when the buffer pointer register is incremented by a value greater than one.
Consider the source code in Example 6-12 on page 6-32, where R0 is post-incremented by three rather
than one. The pointer register correctly “wraps” from $0803 to $0801—the pointer does not have to land
exactly on the upper or lower bound of the buffer for the modulo arithmetic to wrap the value properly.

Circular
Buffer

$0800

M01 Register = Size – 1 = 5 – 1 = $0004

$0804

R0
Freescale Semiconductor Address Generation Unit 6-31

Address Generation Unit
Example 6-12. Accessing the Circular Buffer with Post-Update by Three

MOVEU.W#$0800,R0 ; Initialize the pointer to $0800
MOVEU.W#3,N ; Initialize “bump value” to 3
NOP
NOP
MOVE.W X:(R0)+N,X0 ; First time accesses location $0800

; and bumps the pointer to location $0803
MOVE.W X:(R0)+N,X0 ; Second accesses at location $0803

; and wraps the pointer around to $0801

MOVE.W X:(R0)+N,X0 ; Third accesses at location $0801
; and bumps the pointer to location $0804

MOVE.W X:(R0)+N,X0 ; Fourth accesses at ...

In addition, the pointer register does not need to be incremented. Instructions that post-decrement the
buffer pointer also work correctly. Executing the instruction MOVE.W X:(R0)-,X0 when the value of R0
is $0800 will correctly set R0 to $0804.

6.8.7 Setting Up a Modulo Buffer
The following steps detail the process of setting up and using the 37-location circular buffer that is shown
in Figure 6-8 on page 6-22.

1. Determine the value for the M01 register.

— Select the size of the desired buffer; it can be no larger than 16,384 locations. If modulo
arithmetic is to be enabled only for the R0 address register, the result is the following:
M01 = # locations – 1 = 37 – 1 = 36 = $0024

— If modulo arithmetic is to be enabled for both the R0 and R1 address registers, be sure to set the
high-order bit of M01. In this case:
M01 = # locations – 1 + $8000 = 37 – 1 + 32768 = 32804 = $8024

2. Find the nearest power of two that is greater than or equal to the circular buffer size. In this

example, the value would be 2k ≥ 37, which gives a value of k = 6.

3. From k, derive the characteristics of the lower boundary of the circular buffer. Since the k
number of least significant bits of the address of the lower boundary must all be zeros, then

the buffer base address must be some multiple of 2k. In this case, k = 6, so the base address

is some multiple of 26 = 64.

4. Locate the circular buffer in memory.

— The location of the circular buffer in memory is determined by the upper (24 – k) bits of the
address pointer register that is used in a modulo arithmetic operation. For example, if there is
an open area of memory from locations 111 to 189 ($006F to $00BD), then the addresses of the
lower and upper boundaries of the circular buffer will fit in this open area for J = 2:
Lower boundary = (J × 64) = (2 × 64) = 128 = $0080
Upper boundary = (J × 64) + 36 = (2 × 64) + 36 = 164 = $00A4

— The exact area of memory in which a circular buffer is prepared is specified by picking a value
for the address pointer register, R0 or R1, whose value is inclusively between the desired lower
and upper boundaries of the circular buffer. Thus, selecting a value of 139 ($008B) for R0
would locate the circular buffer between locations 128 and 164 ($0080 to $00A4) in memory
since the upper 18 (from a total of 24 – k) bits of the address indicate that the lower boundary
is 128 ($0080).
6-32 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Linear and Modulo Address Arithmetic
In summary, the size and exact location of the circular buffer is defined once a value is assigned to
the M01 register and to the address pointer register (R0 or R1) that will be used in a modulo
arithmetic calculation.

5. Determine the upper boundary of the circular buffer:
upper boundary = lower boundary + number of locations – 1.

6. Select a value for the offset register if it is used in modulo operations.

— If the offset register is used in a modulo arithmetic calculation, it must be selected as follows:
|N| ≤ M01 + 1
|N| refers to the absolute value of the contents of the offset register.

— The special case where N is a multiple of the block size, 2k, is discussed in Section 6.8.8,
“Wrapping to a Different Bank.”

7. Perform the modulo arithmetic calculation.

— Once the appropriate registers are set up, the modulo arithmetic operation occurs when an
instruction is executed that uses any of the addressing modes in Section 6.8.5, “Supported
Memory Access Instructions,” with the R0 (or R1, if enabled) register.

— If the result of the arithmetic calculation would exceed the upper or lower bound, wrapping
around is correctly performed.

6.8.8 Wrapping to a Different Bank
Normally, when the absolute value of the offset register N, (|N|) used when performing modulo arithmetic
is less than or equal to M01, the primary address arithmetic unit automatically wraps the address pointer
around by the required amount. However, if |N| is greater than M01, the result is data-dependent and
unpredictable except for the special case where N is a multiple of the block size, 2k: N = L × (2k), where L
is a positive integer. In this special case, the pointer Rn is updated using linear arithmetic to the same
relative address that is L blocks forward in memory, as shown in Figure 6-10.

Figure 6-10. Linear Addressing with a Modulo Modifier

(Rn) ± N MOD M01
where N = 2k (L = 1)

M

M

2k

2k
Freescale Semiconductor Address Generation Unit 6-33

Address Generation Unit
Note that this case requires that the offset N must be a positive two’s-complement integer. This technique
is useful in sequentially processing multiple tables (for example, implementing a bank of parallel IIR
filters) or N-dimensional arrays. The primary address arithmetic unit will automatically wrap around the
address pointer by the required amount.

6.8.9 Side Effects of Modulo Arithmetic
Due to the way modulo arithmetic is implemented by the DSP56800E, there are some potential side effects
that must be noted. Specifically, there are some restrictions and limitations that relate to the fact that the
base address of a buffer must be a power of two, and that the modulo arithmetic unit can only detect a
single wraparound.

6.8.9.1 When a Pointer Lies Outside a Modulo Buffer

If a pointer is outside the valid modulo buffer range, and an operation occurs that causes R0 or R1 to be
updated, the contents of the pointer are still updated using modulo arithmetic. This can result in the pointer
register being updated with an unexpected value, resulting in unusual behavior. Care should be taken to
ensure that the R0 and R1 pointers always point into a valid modulo buffer when modulo address
arithmetic is enabled.

For example, a MOVE.W B,X:(R0)+N instruction (where R0 = 6, M01 =5, and N = 0) would apparently
leave R0 unchanged since N is zero. However, since R0 is outside the boundary, the address calculation is
R0 + N - (M01 + 1) for the new contents of R0 and sets it to 0.

6.8.9.2 Restrictions on the Offset Register

The modulo arithmetic unit in the AGU is only capable of detecting a single wraparound of an address
pointer. As a result, if the post-update addressing mode—(Rn)+N—is used, be careful in selecting the
value of N. The 16-bit absolute value |N| must be less than or equal to M01 + 1 for proper modulo
addressing. Values of |N| that are larger than the size of the buffer may result in the Rn address value
wrapping twice, which the AGU cannot detect.

6.8.9.3 Memory Locations Not Accessible Using Modulo Arithmetic

When the size of a modulo buffer is not a power of two, there is a range of memory locations immediately
after the buffer that are not accessible with modulo addressing. Lower boundaries for modulo buffers
always begin on an address where the lowest k bits are zeros—that is, a power of two. This requirement
means that for buffers that are not an exact power of two, there are locations above the upper boundary that
are not accessible through modulo addressing.

In Figure 6-8 on page 6-22, for example, the buffer size is 37, which is not a power of two. The smallest
power of two that is greater than 37 is 64. Thus, there are 64 – 37 = 27 memory locations that are not
accessible with modulo addressing. These 27 locations are between the upper boundary + 1 = $00A5 and
the next power-of-two boundary address – 1 = $00C0 – 1 = $00BF.

These locations are still accessible when modulo arithmetic is not performed. Using linear addressing
(with the R2–R5 pointers), absolute addresses, or the no-update addressing mode makes these locations
available.
6-34 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Chapter 7
Bit-Manipulation Unit
The bit-manipulation unit performs bitfield operations on data memory and registers within the core. It is
capable of testing, setting, clearing, or inverting any bits that are specified in a 16-bit mask. This unit also
performs test-and-set operations, which test and update a value in a single atomic, non-interruptible
operation. Test-and-set instructions are especially useful for implementing semaphores and other key
system-programming operations.

The bit-manipulation unit can perform the following operations:

• Testing selected bits in a 16-bit word:

— BFTSTH: Test a selected set of bits for all ones

— BFTSTL: Test a selected set of bits for all zeros

• Testing selected bits in the upper or lower byte of a word and branching accordingly:

— BRSET: Branch if a selected set of bits is all ones

— BRCLR: Branch if a selected set of bits is all zeros

• Testing and modifying bits in a 16-bit word:

— BFSET: Test and then set a selected set of bits

— BFCLR: Test and then clear a selected set of bits

— BFCHG: Test and then invert a selected set of bits

— BFSC: Test and then set/clear bitfield (DSP56800EX core only)

The bit-manipulation unit is connected to the major data buses within the core, enabling it to manipulate
data ALU registers, AGU registers, and peripheral registers as well as locations in memory. There is no
need to transfer data to dedicated bit-manipulation unit registers; in fact, the bit-manipulation unit does not
have any registers. This design greatly improves program and compiler efficiency.

NOTE:

The bitfield operations cannot be performed on program memory
locations, the Y register, or the HWS register.

This chapter describes the architecture and operation of the bit-manipulation unit. It also covers the use of
the ANDC, EORC, ORC, and NOTC instructions for performing logical operations with immediate data.
A variety of programming techniques for using the bit-manipulation instructions more effectively is also
presented.
Freescale Semiconductor Bit-Manipulation Unit 7-1

Bit-Manipulation Unit
7.1 Bit-Manipulation Unit Overview and
Architecture
The bit-manipulation unit contains the following:

• 8-bit mask shifting unit

• 16-bit masking unit

• 16-bit testing unit

• 16-bit logic unit

A block diagram of the bit-manipulation unit appears in Figure 7-1.

Figure 7-1. Bit-Manipulation Unit Block Diagram

The blocks within the bit-manipulation unit are explained in the following sections.

7.1.1 8-Bit Mask Shift Unit
The 8-bit mask shift unit performs two dedicated functions:

• Right shifting an 8-bit immediate mask from the upper byte of a word to the lower byte of a word,
zeroing the upper 8 bits of the mask

• Passing the upper 8 bits of the immediate mask to the 16-bit masking unit, zeroing out the lower
8 bits of the mask

This shifter is used when the BRCLR and BRSET instructions are executed. These instructions test only
the upper or lower byte of a word. See Example 7-1 on page 7-3.

CDBR

CDBW

PDB

Optional 8-Bit Mask Shift

16-Bit Masking Unit

To Carry Bit
in the
Status Register

Bit-Manipulation Unit

Data Memory
Locations

Peripheral
Registers

DSC Core
Registers

Test with 16-Bit Mask

16-Bit Logic Unit

IP-BUS
Interface
7-2 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Bit-Manipulation Unit Overview and Architecture
Example 7-1. Examples of Byte Masks in BRSET and BRCLR Instructions

BRCLR #$0081,X0,LABEL1; Immediate Mask in lower byte
BRSET #$81,X:$3,LABEL1; Immediate Mask in lower byte
BRCLR #$8100,X0,LABEL1; Immediate Mask in upper byte

The other bit-manipulation instructions (BFTSTH, BFTSTL, BFCHG, BFCLR, and BFSET) work with a
full 16-bit mask, so no shifting is required.

This unit can optionally be bypassed, passing through a 16-bit mask directly to the 16-bit masking unit.

7.1.2 16-Bit Masking Logic
The 16-bit masking logic selects which of the bits in a 16-bit word will be operated on by the
bit-manipulation unit. Bits that are set to one in the mask are tested when the bit-manipulation operation is
performed. Bits that are set to zero in the mask are ignored.

Example 7-2 demonstrates an instruction that specifies a bit mask. The 4 bits that are set to one, bits 7–4,
are selected by the 16-bit masking unit, and only these 4 bits are tested and then cleared by the
bit-manipulation unit. The result of the test is stored in the status register’s carry bit. All other bits in the
X0 register (bits 15–8 and bits 3–0) are ignored and not modified by this instruction.

Example 7-2. Using a Mask to Operate on Bits 7–4

BFCLR #$00F0,X0 ; Immediate Mask = $00F0

Note that bit masks are always specified with the use of an immediate value. The DSP56800E instruction
set does not support mask values in a register.

7.1.3 16-Bit Testing Logic
The 16-bit testing logic tests all bits that are specified in the immediate mask value. It is capable of
determining if the selected bits are either all ones or all zeros. The result of the test is then recorded in the
status register’s carry bit. Based on the instruction used, the testing logic performs the following:

For the BFTSTH, BRSET, BFCHG, BFCLR, and BFSET instructions:

• Tests the selected bits for ones

• Sets the C bit if all tested bits are one

• Clears the C bit if not all tested bits are ones

For the BFTSTL and BRCLR instructions:

• Tests the selected bits for zeros

• Sets the C bit if all tested bits are zero

• Clears the C bit if not all tested bits are zeros

These testing steps are performed before any modifications are made to the operand (by the BFCHG,
BFCLR, and BFSET instructions). Only the carry bit in the status register is affected.
Freescale Semiconductor Bit-Manipulation Unit 7-3

Bit-Manipulation Unit
7.1.4 16-Bit Logic Unit
The 16-bit logic unit performs any modifications to the operand value before it is written back to the
original register or memory location. This unit performs the following operations for the following
instructions:

• BFCHG—Inverts the bits selected by the 16-bit mask

• BFCLR—Clears the bits selected by the 16-bit mask

• BFSET—Sets the bits selected by the 16-bit mask

Any bit that is not selected by the 16-bit mask is not modified.

7.2 Bit-Manipulation Unit Operation
There are three different types of operations performed by the bit-manipulation unit. A description of each
operation appears in its own subsection.

7.2.1 Testing Bits
The bit-manipulation unit can test a set of bits within an operand. This testing operation is performed by
the following instructions:

• BFTSTH

• BFTSTL

The basic operations performed are:

1. Read the 16-bit operand from memory or from a register.

2. Create a 16-bit mask directly from the instruction itself. In most cases, the instruction
directly provides the 16-bit mask, but for the BRSET and BRCLR instructions, a 16-bit
mask is reduced to 8 bits, where either the upper or lower eight bits are zeros.

3. Use the mask to select the desired bits within the 16-bit operand that was already read from
an on-chip register or memory location.

4. Test all of the selected bits within this value. Check for whether all selected bits are zeros
or ones, as described in Section 7.1.3, “16-Bit Testing Logic.”

5. Write the result of this test to the C bit in the status register (SR).

Example 7-3 presents an example of an instruction that performs this operation.

Example 7-3. Testing Bits in an Operand

BFTSTL #$000F,X:$C000 ; Test lower 4 bits of memory location

7.2.2 Conditional Branching
The bit-manipulation unit can test a set of bits in an operand and execute a conditional branch based on the
result of the test. This operation is performed by the following instructions:

• BRCLR

• BRSET
7-4 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ANDC, EORC, ORC, and NOTC
The basic operations performed are:

1. Perform steps 1 through 5 in Section 7.2.1, “Testing Bits.”

2. Branch to the specified target address if the result of the test performed is True. Otherwise,
continue program execution with the next sequential instruction.

Example 7-4 presents an example of an instruction that performs this operation.

Example 7-4. Branching on Bits in an Operand

BRSET #$8000,X:(R0),LABEL4 ; Branch to LABEL4 if MSB set in X:(Rn)

7.2.3 Modifying Selected Bits
The bit-manipulation unit can perform logical operations on selected bits in an operand. The instructions
that perform these operations, in addition to performing the testing that is described in Section 7.1.3,
“16-Bit Testing Logic,” process selected bits in the original 16-bit source using the 16-bit logic unit and
write the results back to their original source. This operation is performed by the following instructions:

• BFCHG

• BFCLR

• BFSET

• BFSC (DSP56800EX core only)

The basic operations performed are:

1. Perform steps 1 through 5 in Section 7.2.1, “Testing Bits.”

2. Invert, clear, or set all bits selected by the 16-bit mask.

3. Write this modified result back to the 16-bit source operand.

Note that these three steps are a non-interruptible sequence because they are implemented within a single
bit-manipulation instruction.

Example 7-5 presents an example of an instruction that performs this operation.

Example 7-5. Clearing Bits in an Operand

BFCLR #$FF00,X:(R0) ; Clear upper byte of memory location

7.3 ANDC, EORC, ORC, and NOTC
With the use of the following four operations, the bit-manipulation unit gives the DSP56800E core the
capability to perform logical operations with immediate data:

• ANDC—logically AND a 16-bit immediate value with an operand

• EORC—logically exclusive OR a 16-bit immediate value with an operand

• ORC—logically OR a 16-bit immediate value with an operand

• NOTC—take the logical one’s-complement of a 16-bit destination

The operations ANDC, EORC, ORC, and NOTC are not instructions; they are aliases to the
bit-manipulation instructions that are identified in the preceding list. See Section 4.2.1, “The ANDC,
EORC, ORC, and NOTC Aliases,” on page 4-11 for additional information.
Freescale Semiconductor Bit-Manipulation Unit 7-5

Bit-Manipulation Unit
7.4 Other Bit-Manipulation Capabilities
The bit-manipulation unit is supplemented by the capabilities found within the DSP56800E’s data ALU
unit. The data ALU instructions complement the capabilities of the bit-manipulation unit. Together these
two units provide very powerful bit-manipulation capabilities for efficient control processing.

The bit-manipulation capabilities within the data ALU unit include:

• 16- or 32-bit bi-directional logical and arithmetic shifting.

• Single-bit arithmetic and logical shifts.

• Single-bit 16- and 32-bit rotate instructions.

• 16- or 32-bit logical operations.

• Incrementing and decrementing of memory locations.

In all but the last case, operations are performed directly on the registers within the data ALU unit. Refer to
Chapter 5, “Data Arithmetic Logic Unit,” for more details.

7.5 Programming Considerations
In order to use the bit-manipulation unit effectively, some considerations must be kept in mind when
writing code that uses it. The following sections describe the recommended approach to take, and a variety
of programming techniques that can be employed, when using the bit-manipulation unit.

7.5.1 Bit-Manipulation Operations on Registers
There are some potential side effects to consider when performing bit-manipulation operations on AGU
registers or the accumulators:

When bit-manipulation operations (BFCHG, BFCLR, or BFSET) are performed on 24-bit AGU registers,
the upper 8 bits of the register are set to zero.

Take special care when performing a bitfield operation on one of the data ALU accumulator registers.
Saturation may occur when an accumulator is accessed by the bit-manipulation unit. See Section 5.2.7,
“Bit-Manipulation Operations on Accumulators,” on page 5-14 for more information.

7.5.2 Bit-Manipulation Operations on Byte Values
The bit-manipulation instructions are designed to manipulate 16-bit quantities. It is possible, however, to
perform bit-manipulations on byte values by carefully selecting the 16-bit mask.

In general, the 8-bit mask to be used should be placed in the upper or lower byte of the 16-bit mask, and the
other byte in the word should be set to zero. This ensures that only bits in the appropriate byte are affected.
Note, however, that the ANDC instruction alias inverts the mask, so the byte mask should be padded with
ones instead of zeros.

Note that these operations still access and store 16-bit quantities. The mask is simply set so that only 1 byte
is operated on. This arrangement might have potentially adverse side effects when memory-mapped
peripheral registers are operated on.
7-6 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Programming Considerations
7.5.2.1 Absolute Addresses

For absolute addresses, the following rules apply:

• The address used in the bit-manipulation instruction is the byte address, logically right shifted 1 bit.

• For even byte addresses, the 8-bit mask is placed in the lower 8 bits of the 16-bit mask, and the upper
8 bits of the mask are zeroed.

• For odd byte addresses, the 8-bit mask is placed in the upper 8 bits of the 16-bit mask, and the lower
8 bits of the mask are zeroed.

Two examples appear in Example 7-6.

Example 7-6. Logical Operations on Bytes in Memory

; AND the value $1F with a byte in data memory
; ===> 8-bit mask in lower byte of 16-bit mask, for lower byte at word address

ANDC #$FF1F,X:$1000 ; Bit Operation
; (8-bit mask placed in lower byte)

; OR the value $F8 with a byte in data memory
; ===> 8-bit mask in upper byte of 16-bit mask, for upper byte at word address

ORC #$F800,X:$1000 ; Bit Operation
; (8-bit mask placed in upper byte)

Similar techniques can be used for performing bit operations on bytes with other addressing modes, such
as (Rn+xxxx).

7.5.2.2 Word Pointers with Byte Offsets

A technique that is similar to the one described in Section 7.5.2.1, “Absolute Addresses,” can be used for
manipulating a byte referenced through a word pointer with a byte offset. In this case, the technique that is
outlined in Section 7.5.3, “Using Complex Addressing Modes,” is used for synthesizing an address.

For addresses with byte offsets, the following rules apply:

• The base address is stored in an Rn register as a word pointer.

• The offset that is added to the pointer is the offset value in bytes, arithmetically right shifted 1 bit.

• For even byte addresses, the 8-bit mask is placed in the lower 8 bits of the 16-bit mask, and the upper
8 bits of the mask are zeroed.

• For odd byte addresses, the 8-bit mask is placed in the upper 8 bits of the 16-bit mask, and the lower
8 bits of the mask are zeroed.

Two examples appear in Example 7-7 on page 7-8.
Freescale Semiconductor Bit-Manipulation Unit 7-7

Bit-Manipulation Unit
Example 7-7. Logical Operations on Bytes Using Word Pointers

; AND the value $1F with the byte in data memory
; (that is, the lower byte at word address X:$1001)
; ===> Word Pointer = $1000, byte offset = 2
; ===> 8-bit mask in lower byte of 16-bit mask

ADDA #1,Rn,N ; N = Rn + (byte offset >> 1)
ANDC #$FF1F,X:(N) ; Bit Operation

; (8-bit mask placed in lower byte)

; AND the value $F8 with the byte in data memory
; (that is, the upper byte at word address X:$1001)
; ===> Word Pointer = $1000, byte offset = 3
; ===> 8-bit mask in upper byte of 16-bit mask

ADDA #1,Rn,N ; N = Rn + (byte offset >> 1)
ANDC #$F8FF,X:(N) ; Bit Operation

; (8-bit mask placed in upper byte)

Similar techniques can be used for performing bit operations on bytes with other addressing modes.

7.5.3 Using Complex Addressing Modes
It is possible to create bit-manipulation operations with more complex addressing modes. AGU arithmetic
can be performed to emulate the desired addressing mode, with the resulting address stored in the N
register. Then the bit-manipulation operation is performed with the X:(N) addressing mode. Example 7-8
shows code that emulates more complex addressing modes.

Example 7-8. Bit-Manipulation Operations Using Complex Addressing Modes

; BFSET #MASK,X:(Rn+xxxx) Operation — performed in two instructions
ADDA #xxxx,Rn,N ; N = (Rn+xxxx)
BFSET #MASK,X:(N) ; Perform operation with synthesized address

; BFCLR #MASK,X:(Rn+Rm) Operation — performed in two instructions
ADDA Rm,Rn,N ; N = (Rn+Rm)
BFCLR #MASK,X:(N) ; Perform operation with synthesized address

7.5.4 Synthetic Conditional Branch and Jump Operations
The flexible instruction set of the DSP56800E architecture allows new bit-manipulation operations to be
synthesized with the use of existing DSP56800E instructions. This section presents some of these useful
operations that are not directly supported by the DSP56800E instruction set but that can be efficiently
synthesized by the user. Table 7-1 lists operations that can be synthesized in this manner.

Table 7-1. Operations Synthesized Using DSP56800E Instructions

Operation Description

JRCLR Jumps if all selected bits in bitfield clear

JRSET Jumps if all selected bits in bitfield set

BR1CLR Branches if at least 1 selected bit in bitfield is clear

BR1SET Branches if at least 1 selected bit in bitfield is set
7-8 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Programming Considerations
Several operations for jumping and branching can be emulated, depending on the selected bits in a bitfield,
overflows, or other condition codes.

NOTE:

None of these operations are actual DSP56800E instructions; they are
macros that can be created from existing instructions.

7.5.4.1 JRSET and JRCLR Operations

The JRSET and JRCLR operations are very similar to the BRSET and BRCLR instructions. Like BRSET
and BRCLR, they perform a bitfield test and branch based on the result. However, the BRSET and BRCLR
instructions only allow branches to locations that are up to 64 locations away from the current instruction,
and they can only test an 8-bit bitfield. The JRSET and JRCLR operations allow jumps to anywhere in the
program address space and can specify a 16-bit mask.

Example 7-9. JRSET and JRCLR Operations

; JRSET Operation — performed in two DSP56800E instructions
BFTSTH #MASK,X:<ea> ; 16-bit mask allowed
JCS LABEL9 ; 19- or 21-bit jump address allowed

; JRCLR Operation — performed in two DSP56800E instructions
BFTSTL #MASK,X:<ea> ; 16-bit mask allowed
JCS LABEL9 ; 19- or 21-bit jump address allowed

JRSET and JRCLR use the BFTSTH and BFTSTL instructions to perform the bitfield test. Thus, they can
use the same addressing modes as those bit-manipulation instructions.

7.5.4.2 BR1SET and BR1CLR Operations

The BRSET and BRCLR instructions are very useful, since they branch to a different address based on a
bitfield comparison. However, the design of these instructions is such that all the bits in the mask must
match the value being tested, or the branch is not taken. In some cases, it would be more useful to branch if
at least 1 bit in the mask matched. The BR1SET and BR1CLR operations provide just that functionality.
See Example 7-10.

Example 7-10. BR1SET and BR1CLR Operations

; BR1SET Operation — performed in two DSP56800E instructions
BFTSTL #MASK,X:<ea> ; 16-bit mask allowed
BCC LABEL10 ; 7-, 18-, 22-bit signed PC-relative offset

; allowed

; BR1CLR Operation — performed in two DSP56800E instructions
BFTSTH #MASK,X:<ea> ; 16-bit mask allowed
BCC LABEL10 ; 7-, 18-, 22-bit signed PC-relative offset

; allowed

JR1CLR Jumps if at least 1 selected bit in bitfield is clear

JR1SET Jumps if at least 1 selected bit in bitfield is set

Table 7-1. Operations Synthesized Using DSP56800E Instructions (Continued)

Operation Description
Freescale Semiconductor Bit-Manipulation Unit 7-9

Bit-Manipulation Unit
In addition to having the ability to branch based on a single bit, the BR1SET and BR1CLR operations can
also specify a 16-bit mask, as compared to an 8-bit mask for BRSET and BRCLR. These operations allow
the same addressing modes as the BFTSTH and BFTSTL instructions.

7.5.4.3 JR1SET and JR1CLR Operations

The JR1SET and JR1CLR operations function almost identically to the BR1SET and BR1CLR operations
that are described in Section 7.5.4.2, “BR1SET and BR1CLR Operations.” The JR1SET and JR1CLR
operations differ from the BR1SET and BR1CLR operations in that the former pair uses absolute
addressing. See Example 7-11.

Example 7-11. JR1SET and JR1CLR Operations

; JR1SET Operation — performed in two DSP56800E instructions
BFTSTL #MASK,X:<ea> ; 16-bit mask allowed
JCC LABEL11 ; 19- and 21-bit jump to absolute address allowed

; JR1CLR Operation — performed in two DSP56800E instructions
BFTSTH #MASK,X:<ea> ; 16-bit mask allowed
JCC LABEL11 ; 19- and 21-bit jump to absolute address allowed

The JR1SET and JR1CLR operations specify a 16-bit mask and a 19-bit target address, allowing jumps to
anywhere in the program address space. These operations allow the same addressing modes as the
BFTSTH and BFTSTL instructions.
7-10 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Chapter 8
Program Controller
The program controller is perhaps the most important unit in the DSC core. It fetches and decodes
instructions, coordinates the other core units in executing the instructions, and directs program flow,
including exception processing. It also contains dedicated circuitry to accelerate looping operations.

This chapter describes the program controller’s function, including details on stack handling and
no-overhead hardware looping. The different processing states, including reset and exception processing,
are covered in Chapter 9, “Processing States.” For more in-depth information on the execution pipeline,
see Chapter 10, “Instruction Pipeline.”

8.1 Program Controller Architecture
A block diagram of the program controller is given in Figure 8-1 on page 8-2. As the figure shows, the
following major blocks are located within the program controller:

• Instruction latch and decoder

• Program counter (PC)

• Hardware stack

• Looping control unit

• Interrupt control unit

The blocks and registers within the program controller are explained in the following sections.
Freescale Semiconductor Program Controller 8-1

Program Controller
Figure 8-1. Program Controller Block Diagram

8.1.1 Instruction Latch and Decoder
The instruction latch is a 16-bit internal register that is used to hold instruction opcodes that are fetched
from memory. The instruction decoder uses the contents of the instruction latch to control and synchronize
the other execution units in performing the specified operation.

012

023

LA

LA2

023

HWS0

HWS1

020

FIRA

015

Operating Mode and Status Register

OMR

SR

FISR

015

LC

LC2

21-Bit Incrementer

020

PC

LF NL

Loop Address

Loop Counter

Looping Control

Fast Interrupt Return Address

Program Counter

Hardware Stack

Interrupt
Control

MODA, MODB Signals

Control Bits to DSC Core

Condition Codes from
Data ALU or AGU

Status and Control Bits
to DSC Core

Interrupt
Arbitration

Interrupt Request

|1,|0 Bits from SR

Interrupt Controller
(Located Outside the DSC Core)

IPR

015

Instruction Latch

Instruction Decoder

Control Signals

PAB

PDB

Interrupt
Priority
Update

CDBR
CDBW

(OMR, SR)

Fast Interrupt Status Register
8-2 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Program Controller Architecture
8.1.2 Program Counter
The program counter (PC) is a 21-bit register that contains the address of the next item that is to be fetched
from program memory. The PC can point to instructions, data operands, or addresses of operands. Under
normal operation, all references to this register are implicit; no instruction can manipulate it directly.

The program counter value is split between two locations in the core. The lowest 16 bits are stored in the
PC register, while the top 5 bits are located in the upper word of the status register (SR). See
Section 8.2.2.10, “Program Counter Extension (P0–P4)—Bits 10–14,” for more information.

8.1.3 Looping Control Unit
The looping control unit controls the hardware-accelerated looping capability in the core. With the REP,
DO, and DOSLC instructions, program loops can be executed with very little overhead, resulting in
substantial time savings. For more information on the hardware looping capabilities that are included in the
core, see Section 8.5, “Hardware Looping.”

8.1.4 Hardware Stack
The hardware stack is a 2-deep, 24-bit-wide, last-in-first-out (LIFO) stack that is used to enable the nesting
of hardware loops. It stores the address of the first instruction in a loop, so execution of an outer hardware
loop can continue when an inner hardware loop has completed.

When the stack limit is exceeded, the oldest loop information (top-of-loop address and LF bit) is lost, and a
non-maskable hardware stack overflow interrupt occurs. There is no interrupt on hardware stack
underflow.

The hardware stack can be manipulated under program control using the hardware stack register (HWS),
which is discussed in Section 8.2.7, “Hardware Stack Register.”

8.1.5 Interrupt Control Unit
The interrupt control unit coordinates interrupt and exception processing in the core. It is assisted in this
task by the interrupt controller (located outside the core), which performs interrupt arbitration and
indicates when an enabled interrupt request is pending. See Section 8.1.6, “Interrupt Controller.” Interrupt
arbitration and the exception processing state are discussed in Section 9.3, “Exception Processing State,”
on page 9-2.

8.1.6 Interrupt Controller
The interrupt controller is responsible for arbitrating all interrupt requests from the core and on-chip
resources. It typically arbitrates among all available interrupt requests, and then it checks the priority of the
highest request against the interrupt mask bits for the DSC core (I1 and I0 in the SR). If the requesting
interrupt has higher priority than the current priority level of the DSC core, then the unit generates a single
enabled interrupt request signal to the interrupt control unit within the core.

NOTE:

The interrupt controller is not part of the DSC core, but it is included on
any chip that is based on the DSP56800E or DSP56800EX core.
Freescale Semiconductor Program Controller 8-3

Program Controller
8.2 Program Controller Programming Model
The programming model for the program controller consists of seven user-accessible registers and two
special registers for fast interrupt processing:

• Status register (SR)

• Operating mode register (OMR)

• Hardware stack register (HWS)

• Two loop address registers (LA and LA2)

• Two loop count registers (LC and LC2)

• Fast interrupt return address register (FIRA)

• Fast interrupt status register (FISR)

Figure 8-2 depicts the registers graphically.

Figure 8-2. Program Controller Programming Model

8.2.1 Operating Mode Register
The operating mode register (OMR) is a 16-bit register that controls the current operating mode of the
processor. It is used to configure the memory map and the operation of the data ALU, and it reflects the
status of these and other units in the core. The operating mode register’s format is described in the
following register display and in Table 8-1 on page 8-5.

012

Program Counter
020

PC

023

LA

Loop Address

LA2

023

HWS0

Hardware Stack

HWS1

020

FIRA

Fast Interrupt Return Address

015

Operating Mode and Status

OMR

SR

Register
(OMR, SR)

Fast Interrupt Status
Register

FISR

Loop Counter
015

LC

LC2
8-4 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Program Controller Programming Model
NOTE:

When a bit of the OMR is changed by an instruction, a delay of
2 instruction cycles is necessary before the new mode comes into effect.

When individual bits in the OMR are modified, the BFCLR, BFCHG, or
BFSET instructions should be used instead of a MOVE instruction to
prevent the accidental modification of other bits.

OMR Operating Mode Register
BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BIT 0

NL CM XP SD R SA EX MB MA

TYPE rw rw rw rw rw rw rw rw rw

RESET 0 0 0 0 0 0 0 0 0 0 0 0 — 0 — —

Table 8-1. OMR Bit Descriptions

Name Description Settings

NL
Bit 15

Nested Looping—Indicates whether a nested
hardware DO loop is active or whether HWS has
been written to at least two times without being
read

0 = No nested DO loop active.
1 = Nested DO loop active.

Note: See Section 8.4, “Hardware Stack.”

Reserved
Bits 14–9

Reserved These bits are reserved and always read
zero.

CM
Bit 8

Condition Code Mode—Selects whether 36-bit
or 32-bit values are used for condition codes

0 = 36-bit values are used.
1 = 32-bit values are used.

XP
Bit 7

X or P Memory Select—Determines the mem-
ory space from which instructions are fetched

0 = Fetched from P (program) memory.
1 = Fetched from X (data) memory.

SD
Bit 6

Stop Delay—Selects length of wake-up time
from stop mode

Dependent on individual chip’s implementa-
tion.

R
Bit 5

Rounding—Selects the rounding method 0 = Convergent rounding.
1 = Two’s-complement rounding.

SA
Bit 4

Saturation—Enables automatic saturation in
the data ALU

0 = Saturation disabled.
1 = Saturation enabled.

EX
Bit 3

External X Memory Select—Forces all data
memory access to be in external memory

0 = Internal data memory accesses.
1 = Data memory accesses are external.

This bit is dependent on the individual chip's
implementation.

Reserved
Bit 2

Reserved This bit is reserved and always reads zero.

MB and MA
Bits 1–0

Operating Mode—Selects the memory map
and operating mode

This bit is dependent on the individual chip’s
implementation.
Freescale Semiconductor Program Controller 8-5

Program Controller
8.2.1.1 Operating Mode (MA and MB)—Bits 0–1

The operating mode (MB and MA) bits are used to select the operating mode and memory map. Their
initial values after reset are typically established by external mode select pins. After the chip leaves the
reset state, MB and MA can be changed under program control. Consult the specific DSC device’s
reference manual for more information about how these bits are established on reset and about their
specific effect on operation.

8.2.1.2 External X Memory (EX)—Bit 3

The external X memory (EX) bit can be used to configure the location of data memory. Typically, a
DSP56800E– or DSP56800EX–based device has some quantity of on-chip data memory, which can be
supplemented by external data memory as needed. The EX bit can be used by a chip to select whether both
on-chip and external memories are used or whether all data memory accesses are sent to external memory.

The exact effect of the EX bit depends on the architecture of a given device. Consult the appropriate
device’s user’s manual for more information on the EX bit.

8.2.1.3 Saturation (SA)—Bit 4

The saturation (SA) bit enables automatic saturation in the data ALU on 32-bit arithmetic results.
Normally, saturation occurs only when an accumulator is written to memory. When the SA bit is set,
saturation is performed on the results of all basic arithmetic operations, such as multiplication or addition,
before they are stored in an accumulator. This automatic saturation is useful for bit-exact DSC algorithms
that do not recognize or cannot take advantage of the extension registers that are available with each
accumulator. Automatic saturation is discussed in detail in Section 5.8.2, “MAC Output Limiter,” on
page 5-41. This bit is cleared by processor reset.

8.2.1.4 Rounding (R)—Bit 5

The rounding (R) bit selects the type of rounding that is used when RND, MACR, and other instructions
that round values are executed. When set, two’s-complement rounding (always round up) is used. When
cleared, convergent rounding is selected. The two rounding modes are discussed in Section 5.9,
“Rounding,” on page 5-43. This bit is cleared by processor reset.

8.2.1.5 Stop Delay (SD)—Bit 6

The stop delay (SD) bit selects the amount of time it takes to wake up from stop mode. When the bit is set,
the processor exits quickly from stop mode; when the bit is cleared, a delay is inserted before the processor
exits stop mode. A long wake-up time can be useful to allow a crystal oscillator to settle before resuming
instruction execution. The exact length of the delay depends on the particular DSC device that is being
used. Consult the device’s user’s manual for more information. This bit is cleared by processor reset.

8.2.1.6 X or P Memory (XP)—Bit 7

The X or P memory (XP) bit is used to select the memory space—program or data—from which
instructions are fetched. In most cases, this bit is cleared and instructions are fetched from program
memory. On devices that support execution from both memory spaces, this bit can be set so that
instructions are fetched from data memory. Refer to Section 8.6, “Executing Programs from Data
Memory,” for more information on executing programs from data memory. This bit is cleared by processor
reset.
8-6 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Program Controller Programming Model
8.2.1.7 Condition Code Mode (CM)—Bit 8

The condition code mode (CM) bit selects whether condition codes are calculated with 36-bit or 32-bit data
ALU results. When this bit is set, the C, N, V, and Z condition codes are calculated based on 32-bit results.
When this bit is cleared, these condition codes are generated based on 36-bit results. See Section B.1.3,
“Condition Code Mode,” on page B-3 for a more detailed description of the effect of the CM bit on the
condition codes. This bit is cleared by processor reset.

In general, programs should not set the CM bit unless it is required for compatibility with the DSP56800
architecture. The DSP56800E and DSP56800EX instruction set contains test and compare instructions for
byte, word, long-word, and 36-bit values in the accumulators, obviating the need for the CM bit
functionality.

NOTE:

The CM bit on the DSP56800E and DSP56800EX architecture is identical
in function to the DSP56800’s CC bit. The bit has been renamed for the
DSP56800E and DSP56800EX in the interest of clarity.

8.2.1.8 Nested Looping (NL)—Bit 15

The nested looping (NL) bit reflects the status of hardware DO loops and the hardware stack. If this bit is
set, then the program is currently executing a DO loop that is nested inside another DO loop. If this bit is
clear, a nested DO loop is not being executed. This bit is used by the looping hardware to correctly save
and restore the contents of the hardware stack. REP looping does not affect this bit.

The NL bit is also affected by any direct accesses to the hardware stack register. See Section 8.4,
“Hardware Stack,” for a more detailed discussion. The NL bit is cleared on processor reset.

8.2.2 Status Register
The status register (SR) is a 16-bit register that consists of an 8-bit mode register (MR) and an 8-bit
condition code register (CCR). MR occupies the high-order 8 bits of the SR; CCR occupies the low-order
8 bits.

The mode register reflects and defines the operating state of the DSC core, including the current interrupt
priority level. The condition code register reflects various properties of the values that result from
instruction execution.
Freescale Semiconductor Program Controller 8-7

Program Controller
Bits in the CCR portion of the status register are affected by data ALU operations, AGU arithmetic
instructions, bit-manipulation instructions, and so forth. Bits in the MR are affected by processor reset,
exception processing, flow control instructions, and many others. During processor reset, all CCR bits are
cleared, the interrupt mask bits in the MR are both set, and the LF bit is cleared. The program extension bit
values depend on the value of the reset vector.

SR Status Register
BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BIT 0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

TYPE rw r r r r r rw rw rw rw rw rw rw rw rw rw

RESET 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

Table 8-2. SR Bit Descriptions

Name Description Settings

LF
Bit 15

Loop Flag—Indicates whether a program loop is
active or whether HWS has been written to at
least once without being read

0 = No DO loop active.
1 = DO loop active.

Note: See Section 8.4, “Hardware Stack.”

P4–P0
Bits 14–10

Program Counter Extension—Bits 20–16 of
the program counter

Dependent on execution.

I1–I0
Bits 9–8

Interrupt Mask—Masks or enables the four
interrupt levels

00 = Allow all interrupts.
01 = Mask level 0.
10 = Mask levels 0 and 1.
11 = Mask levels 0, 1, and 2.

SZ
Bit 7

Size—Indicates growth beyond a certain point in
the size of an accumulator value

0 = Accumulator value is small.
1 = Accumulator value is large.

L
Bit 6

Limit—Indicates whether data limiting has been
performed since this bit was last cleared

0 = No limiting performed.
1 = Limiting has been performed.

E
Bit 5

Extension in Use—Indicates whether an accu-
mulator extension register is in use

0 = Extension not in use.
1 = Extension in use.

U
Bit 4

Unnormalized—Shows whether a result value
is normalized or not

0 = Normalized.
1 = Not normalized.

N
Bit 3

Negative—Indicates whether result of last oper-
ation was negative or positive

0 = Result was positive.
1 = Result was negative.

Z
Bit 2

Zero—Indicates whether result of last operation
was zero or not

0 = Result was non-zero.
1 = Result was zero.

V
Bit 1

Overflow—Indicates whether result of last oper-
ation overflowed its destination

0 = Result did not overflow.
1 = Result overflowed destination.

C
Bit 0

Carry—Set if a carry out or borrow was gener-
ated in addition or subtraction

0 = No carry occurred during operation.
1 = Carry out occurred during operation.
8-8 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Program Controller Programming Model
A description of each of the bits in the status register appears in the following subsections. The
descriptions that are given for the CCR bits are the standard definitions, but these bits may be set or cleared
slightly differently depending on the instruction that is being executed. More information on the condition
code bits is found in Section 5.7, “Condition Code Calculation,” on page 5-38 and in Appendix B,
“Condition Code Calculation.”

NOTE:

When individual bits in the SR are modified, the BFCLR, BFCHG, or
BFSET instructions should be used instead of a MOVE instruction to
prevent the accidental modification of other bits.

8.2.2.1 Carry (C)—Bit 0

The carry (C) bit is used to reflect a variety of conditions. It is set under the following circumstances:

• If an addition operation results in a carry out of the MSB of the result

• If a borrow was necessary when a subtraction operation was performed

• When all bits specified by the mask are set (or cleared, depending on the instruction) in their
corresponding operand for bit-manipulation instructions

• When the last bit that is to be shifted or rotated out of the MSB or LSB of an operand in a shift or
rotate operation is a one

When not set under one of these conditions, this bit is always cleared.

8.2.2.2 Overflow (V)—Bit 1

The overflow (V) bit is set if the result of an arithmetic operation overflows (is too large to fit in) the size
of the specified destination. If overflow does not occur, this bit is always cleared.

8.2.2.3 Zero (Z)—Bit 2

The zero (Z) bit is set if the result of an operation is equal to zero. If the result is non-zero, this bit is
cleared.

8.2.2.4 Negative (N)—Bit 3

The negative (N) bit is set if the result of an operation is negative. A value is considered negative if the
MSB is set; otherwise it is considered positive. If the MSB of the result is not set, this bit is cleared.

8.2.2.5 Unnormalized (U)—Bit 4

The unnormalized (U) bit is set if the value resulting from an operation is not normalized. A value is
considered normalized if all bits to the right of the binary point are significant. For an accumulator result,
this condition means that bits 31 and 30 of the result should be different. Thus, the U bit is computed as
follows:

U = (Bit 31 ⊕ Bit 30)

Normalized values have the property that, for a positive number p, the relation 0.5 < p < 1.0 is satisfied; for
a negative value n, the relation is –1.0 < n < –0.5.

This bit is not affected by the OMR’s CM bit.
Freescale Semiconductor Program Controller 8-9

Program Controller
8.2.2.6 Extension in Use (E)—Bit 5

The extension in use (E) bit is cleared if the high-order 5 bits (bits 35–31) of a 36-bit result are the same
(00000 or 11111). Otherwise, this bit is set.

When the high-order 5 bits all contain the same value, the extension portion of an accumulator (bits 35–32)
just holds sign extension and can be ignored. When they are not all the same, the bits in the extension
register are significant and must be considered when additional computations are performed or when the
accumulator is written to memory.

This bit is not affected by the OMR’s CM bit.

8.2.2.7 Limit (L)—Bit 6

The limit (L) bit is a latching bit (sticky bit) that is set if the overflow bit is set or if the data limiters
perform a limiting operation. It is not affected otherwise. The L bit is cleared only by a processor reset or
by an instruction that specifically clears it.

8.2.2.8 Size (SZ)—Bit 7

The size (SZ) bit is a latching bit (sticky bit) that indicates that word growth is occurring in an algorithm.
The bit is set when a 36-bit accumulator is moved to data memory and bits 30 and 29 of the source
accumulator are not the same. The setting of the SZ bit occurs via the following computation:

SZ = SZ | (Bit 30 ⊕ Bit 29)

This bit is especially useful for attaining maximum accuracy when a block-floating-point fast Fourier
transform (FFT) is performed. See the application note Implementation of Fast Fourier Transforms on
Freescale’s Digital Signal Processors (document order number APR4/D) for information on
implementing FFT algorithms on the DSC core.

The SZ bit is cleared only by a processor reset or by an instruction that specifically clears it.

8.2.2.9 Interrupt Mask (I0–I1)—Bits 8–9

The interrupt mask (I1 and I0) bits set the interrupt priority level (IPL) that is needed for an interrupt
source to interrupt the processor. The current priority level of the processor may be changed under
software control. Both interrupt mask bits are set to one during processor reset. Table 8-3 shows the
exceptions that are permitted and masked for the various settings of I1 and I0.

Exception processing is explained in detail in Section 9.3, “Exception Processing State,” on page 9-2.

Table 8-3. Interrupt Mask Bits Settings

I1 I0 Exceptions Permitted Exceptions Masked

0 0 IPL 0, 1, 2, 3, LP None

0 1 IPL 1, 2, 3 IPL 0

1 0 IPL 2, 3 IPL 0, 1

1 1 IPL 3 IPL 0, 1, 2
8-10 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Program Controller Programming Model
8.2.2.10 Program Counter Extension (P0–P4)—Bits 10–14

The program extension (P4–P0) bits form bits 20 through 16 of the program counter. P4 corresponds to the
MSB of the 21-bit program address, and P0 corresponds to bit 16. Bits 15–0 of the program counter are
found in the PC register.

The program extension bits are stacked by the JSR and BSR instructions for subroutines and interrupts
because the complete status register is pushed by these instructions. They are restored from the stack when
an RTS, RTSD, RTI, or RTID instruction is executed.

NOTE:

Because these bits represent part of the program counter, they cannot be
directly modified. Instructions that change the value of the status register
do not affect these bits.

NOTE:

The values read (from reading the SR) are not guaranteed to be valid.

8.2.2.11 Loop Flag (LF)—Bit 15

The loop flag (LF) bit is set when a hardware (DO or DOSLC) loop is initiated or when a value is written
under program control to the hardware stack. Reading the hardware stack or terminating a DO or DOSLC
loop causes LF to be set to the value in the OMR’s NL bit. See Section 8.2.1.8, “Nested Looping
(NL)—Bit 15.”

REP looping does not affect this bit. The LF bit is cleared during processor reset.

NOTE:

This bit should never be explicitly cleared by a move or bitfield instruction
when the NL bit in the OMR register is set.

See Section 8.4, “Hardware Stack,” for more information on how accesses to the hardware stack affect the
value in LF.

8.2.3 Loop Count Register
The loop count register (LC) is a special 16-bit counter that specifies the number of times to repeat a
hardware loop (one that is begun with a DO, DOSLC, or REP instruction). When the last instruction in a
hardware program loop is reached, the contents of the loop counter register are tested. If the loop counter is
one, the program loop is terminated. If the loop counter is not one, it is decremented by one and the
program loop is repeated.

The loop count register can be read and written under program control. This capability gives software
programs access to the value of the current loop iteration. The LC register is also updated with the contents
of the LC2 register when a loop is exited. See Section 8.5, “Hardware Looping,” for a full discussion of
hardware looping.

8.2.4 Loop Count Register 2
The loop count register 2 (LC2) is a 16-bit register that is used to save the value that is in LC whenever LC
is modified, as when a nested hardware loop is begun. The contents of LC are copied to LC2 whenever a
DO instruction is executed or when an instruction is executed that explicitly modifies the LC register. This
arrangement ensures that LC is backed up properly when LC is loaded under program control, such as
Freescale Semiconductor Program Controller 8-11

Program Controller
when LC is loaded with a loop count before DOSLC is executed. When a DO or DOSLC loop terminates,
the value in the LC2 register is copied back into the LC register when the OMR's NL bit is set. See
Section 8.5, “Hardware Looping,” for a full discussion hardware looping.

LC2 may be pushed onto or popped from the software stack under program control. This capability allows
an application to save and restore this register when necessary.

8.2.5 Loop Address Register
The loop address (LA) register holds the location of the last instruction word in a hardware DO loop, and it
is used by the looping hardware to determine when the end of a loop has been reached.

The value in the LA register is set when the DO instruction is executed, and it may also be updated when a
DO loop that is nested in another DO loop is exited, at which point the contents of LA2 are copied to it.
The LA register can be read or written using a MOVE instruction. When the register is read as a 32-bit
long with a MOVE.L instruction, the upper 8 bits of the destination are zero extended. When it is written as
a 32-bit long by a MOVE.L instruction, only the lower 24 bits are stored in LA.

8.2.6 Loop Address Register 2
The loop address 2 register (LA2) is a 24-bit register that is used to save the value of LA when a DO loop
that is nested within another DO loop is executed. When a DO or DOSLC instruction is executed, the
contents of LA are copied to LA2 before the end-of-loop address for the inner loop is stored in LA. When
the nested loop terminates, the value in LA2 is copied back to LA to allow the outer loop to continue. See
Section 8.5, “Hardware Looping,” for more information on nested hardware loops.

LA2 may be read from and written to the stack under program control. This capability allows an
application to save and restore this register when necessary.

8.2.7 Hardware Stack Register
The hardware stack register (HWS) is used to manipulate the program controller’s hardware stack under
program control. Accesses to HWS always read or write the value on the top of the stack; the second stack
location is not directly accessible. Reading from or writing to HWS can affect the LF bit in the status
register and the NL bit in the operating mode register. See Section 8.4, “Hardware Stack,” for more
information.

The HWS register is accessed with standard MOVE instructions. When the register is read as a 32-bit long
by a MOVE.L instruction, the upper 8 bits of the destination register are zero extended. When it is written
as a 32-bit long by a MOVE.L instruction, only the lower 24 bits are stored on the hardware stack.

8.2.8 Fast Interrupt Status Register
The fast interrupt status register (FISR) is a 13-bit register that is used to hold the state of the DSC core
during fast interrupt processing. Critical bits in the status register (SR) and operating mode register
(OMR), as well as the alignment of the stack pointer, are copied into the FISR at the beginning of fast
interrupt processing. The value in the FISR is used to restore the core state when a fast interrupt processing
routine is exited.
8-12 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Program Controller Programming Model
The FISR holds copies of the status register’s LF, I1, I0, SZ, L, E, U, N, Z, V, and C bits as well as the
operating mode register’s NL bit. The SPL bit holds a copy of the LSB of the stack pointer (SP), which
allows the stack pointer to be restored to its original value after interrupt processing is complete. See
Section 9.3.2.2, “Fast Interrupt Processing,” on page 9-6 for more information on fast interrupt processing
and on the use of the FISR register. This register is not affected by processor reset.

FISR Fast Interrupt Status Register
BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BIT 0

SPL LF NL I1 I0 SZ L E U N Z V C

TYPE rw rw rw rw rw rw rw rw rw rw rw rw rw

Table 8-4. FISR Bit Descriptions

Name Description Settings

Undefined
Bits 15–13

Undefined These bits are undefined and should be ignored.

SPL
Bit 12

Stack Pointer LSB—Contains a copy of the
LSB of the SP register

Value in stack pointer on interrupt.

LF
Bit 11

Loop Flag—Contains a copy of the LF bit in the
status register

Value in status register on interrupt.

NL
Bit 10

Nested Looping—Contains a copy of the NL bit
in the operating mode register

Value in operating mode register on interrupt.

I1–I0
Bits 9–8

Interrupt Mask—Contains a copy of the I1 and
I0 bits in the status register

Value in status register on interrupt.

SZ
Bit 7

Size—Contains a copy of the SZ bit in the status
register

Value in status register on interrupt.

L
Bit 6

Limit—Contains a copy of the L bit in the status
register

Value in status register on interrupt.

E
Bit 5

Extension in Use—Contains a copy of the E bit
in the status register

Value in status register on interrupt.

U
Bit 4

Unnormalized—Contains a copy of the U bit in
the status register

Value in status register on interrupt.

N
Bit 3

Negative—Contains a copy of the N bit in the
status register

Value in status register on interrupt.

Z
Bit 2

Zero—Contains a copy of the Z bit in the status
register

Value in status register on interrupt.

V
Bit 1

Overflow—Contains a copy of the V bit in the
status register

Value in status register on interrupt.

C
Bit 0

Carry—Contains a copy of the C bit in the status
register

Value in status register on interrupt.
Freescale Semiconductor Program Controller 8-13

Program Controller
8.2.9 Fast Interrupt Return Address
The fast interrupt return address (FIRA) is a 21-bit register that holds a copy of the program counter when
fast interrupt processing is initiated. This address is used to return control to the interrupted program when
the fast interrupt service routine is complete.

This register is not affected by processor reset.

8.3 Software Stack
The software stack is a last-in-first-out (LIFO) stack of arbitrary depth that is located in data memory. Any
instruction that accesses data memory can be used to access locations on the stack, although typically
accesses are made using the stack pointer register (SP).

The JSR and BSR instructions use the software stack for saving the program counter and status register
when a subroutine or interrupt service routine is called. The stack can also be used for passing parameters
to subroutines, for creating variables that are local to a subroutine, or for any other temporary-storage
needs.

The stack pointer value is undefined after reset, and it must be set in software before the stack can be used.
The initial value for the stack pointer is the lower boundary of the stack—the software stack on the core
grows up as values are pushed onto it.

NOTE:

Be careful when initializing the stack pointer to set aside enough space for
the stack. If the address space used by the stack overlaps other data areas,
erratic behavior may result. For maximum performance, the software stack
should be located in on-chip memory.

8.3.1 Pushing and Popping Values
Because the stack grows up in memory, and because the SP register always points at the item that is on the
top of the stack, the stack pointer must be pre-incremented when values are pushed on the stack. This
process involves two instructions, as shown in Example 8-1.

Example 8-1. Pushing a Value on the Software Stack

; Placing One value onto the software stack
; Performed in 2 cycles, 2 instruction words

ADDA #2,SP ; Increment the SP (1 cycle, 1 Word)
MOVE.L A10,X:(SP) ; Place value onto the stack

For pushing multiple values to the stack, there is a more efficient technique in terms of both time and
space. Instead of repeating the two-instruction sequence for each value to be stored, implement the push
operations that are shown in Example 8-2.

Example 8-2. Pushing Multiple Values on the Software Stack

; Faster technique for pushing four values onto the software stack
; Finishes in 5 cycles, 5 instruction words

ADDA #2,SP ; Increment the SP (1 cycle, 1 Word)
MOVE.L A10,X:(SP)+
MOVE.L B10,X:(SP)+
MOVE.L R0,X:(SP)+
MOVE.L R1,X:(SP) ; <== No post-increment SP on last MOVE
8-14 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Software Stack
Popping values from the software stack is fairly straightforward. With the use of the post-decrement
addressing mode, values can be popped from the stack in a single instruction. To pop the four values that
are saved on the stack in Example 8-2 on page 8-14, the code in Example 8-3 can be executed.

Example 8-3. Popping Values from the Software Stack

; Popping four values from the software stack
; Finishes in 4 cycles, 4 instruction words

MOVE.L X:(SP)-,R1
MOVE.L X:(SP)-,R0
MOVE.L X:(SP)-,B10
MOVE.L X:(SP)-,A10 ; SP left pointing at previous top of stack

8.3.2 Subroutines
The JSR and BSR instructions are used to call subroutines. When a JSR or BSR is executed, the return
address (the value in the program counter) is pushed onto the stack. Because the high-order 5 bits of the
program counter are contained in the status register, the return address is saved by pushing both the PC and
the SR, in that order, onto the stack. Figure 8-3 shows the software stack after a JSR has been executed.

Figure 8-3. Effects of the JSR Instruction on the Stack

The RTS and RTSD instructions pop the PC and SR off the stack when a subroutine is exited. Only the
P4–P0 bits are actually updated in the SR; the remaining bits are discarded.

8.3.3 Interrupt Service Routines
Entries in the DSC core interrupt and exception vector table frequently consist of a JSR instruction, with a
service routine target address as its argument. When an exception occurs, the program counter is moved to
the address of the appropriate entry in the vector table. If there is a JSR instruction at that location, it is
fetched and executed in the same way that a JSR would normally be executed.

The JSR instruction stacks the program counter (the return address from the interrupted program) and
status register, as shown in Figure 8-3. When the interrupt service routine is complete, an RTI or RTID
instruction is executed. Like the RTS and RTSD instructions, these instructions pop the program counter
and status register from the stack. Unlike RTS and RTSD, the RTI and RTID instructions do not discard
the contents of the stored status register, but use them to restore the status bits in SR. This restoration
ensures that the processor state is not changed by the actions of the interrupt service routine.

Return Address (16 LSBs)

Status Register (Contains P4–P0)

Data Memory

SP
Freescale Semiconductor Program Controller 8-15

Program Controller
Note that if the fast interrupt processing method is used to handle an interrupt, the process is quite
different, and it does not involve a JSR to an interrupt service routine. For more information on both types
of interrupt processing, see Section 9.3.2, “Interrupt and Exception Processing,” on page 9-4.

8.3.4 Parameter Passing and Local Variables
The software stack supports structured programming techniques, such as parameter passing to subroutines
and local variables. These techniques can be used for both assembly language programming as well as
high-level language compilers.

Parameters can be passed to a subroutine by placing these variables on the software stack immediately
before a JSR to the subroutine is performed. Placing these variables on the stack is referred to as building a
“stack frame.” These passed parameters can then be accessed in the called subroutine with the use of
SP-relative addressing modes. This process is demonstrated in Example 8-4.

Variables that are local to a subroutine can also be conveniently allocated on the stack. Stack locations that
are above the status register and return address can be set aside for local variables by incrementing the
stack pointer the required number of words. Local variables can then be accessed relative to the stack
pointer, as subroutine parameters are. Example 8-4 also illustrates the creation and use of local variables
on the stack.

Example 8-4. Subroutine Call with Passed Parameters

ADDA #1,SP ; (pre-increment before pushing two variables)
MOVE.W X:$35,X0 ; Pointer variable to be passed to subroutine
MOVE.W X0,X:(SP)+ ; (push onto stack)
MOVE.W X:$21,X0 ; 2nd variable to be passed to subroutine
MOVE.W X0,X:(SP) ; (push onto stack)
JSR ROUTINE1 ; *** Execute Subroutine ***
SUBA #2,SP ; Remove the two passed parameters from

; stack when done

ROUTINE1
ADDA #4,SP ; Allocate room for local variables

; (instructions)
MOVEU.WX:(SP-7),R0 ; Get pointer variable
MOVE.W X:(SP-6),B ; Get 2nd variable
MOVE.W X:(R0),X0 ; Get data pointed to by pointer variable
ADD X0,B
MOVE.W B,X:(SP-6) ; Store sum in 2nd variable

; (other instructions...)
SUBA #4,SP
RTS

The stack frame created by the code in Example 8-4 is shown in Figure 8-4 on page 8-17.
8-16 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Hardware Stack
Figure 8-4. Example Stack Frame

Before a subroutine is exited, be careful to de-allocate space that is reserved on the stack for local
variables. The stack pointer should be decremented so that it points to the saved status register before the
RTS instruction is executed, so the correct return address is popped from the stack.

8.4 Hardware Stack
The hardware stack is a last-in-first-out (LIFO) stack that consists of two 24-bit internal registers.
Although there are two locations on the stack, the stack is always accessed through the hardware stack
register (HWS). Reads or writes to the HWS access or modify the top location in the stack.

The hardware stack is updated when a hardware DO loop is entered or exited. Executing a DO or DOSLC
instruction (or a write to HWS) pushes the address of the first instruction in the loop onto the stack. When
the loop terminates, the address is popped off the stack. The hardware stack can also be manipulated under
program control with the use of standard MOVE instructions.

When a value is written to HWS, either through a MOVE instruction or by the DO and DOSLC
instructions saving the looping state, the following occur:

1. The SR’s LF bit is copied to the OMR’s NL bit, overwriting the previous NL value.

2. The value in the first HWS location (HWS0) is copied to the second (HWS1), overwriting
the previous value.

3. The LF bit in the status register is set.

4. The appropriate value is written to the top hardware stack register.

Reading a value from HWS does the following:

1. Copies the OMR’s NL bit to the SR’s LF bit, overwriting the previous LF value

2. Copies the value in the second hardware stack register to the first, or top, register

3. Clears the OMR’s NL bit

1st Passed Parameter

2nd Passed Parameter

Return Address

Status Register

1st Local Variable

2nd Local Variable

3rd Local Variable

4th Local Variable

X Data Memory

SP
Freescale Semiconductor Program Controller 8-17

Program Controller
The state of the NL and LF bits can be used to determine the status of program looping and thus of the
hardware stack, as shown in Table 8-5. To ensure the integrity of the hardware stack values, make certain
that a program never puts the processor in the illegal state that this table specifies. Avoid this illegal state
by ensuring that the LF bit is never explicitly cleared when the NL bit is set.

If both the NL and LF bits are set (that is, two DO loops are active) and a DO or DOSLC instruction (or a
write to HWS) is executed, a hardware stack overflow interrupt occurs because there is no more space on
the hardware stack to support a third DO loop. There is no interrupt on hardware stack underflow.

8.5 Hardware Looping
Loops are one of the most common software constructs, especially in DSC algorithms. In order to speed up
these critical algorithms, the core includes special hardware to accelerate loops. Two types of
hardware-accelerated loops are supported: fast repetition of a single instruction a specified number of
times, using the REP instruction; and more traditional multi-instruction loops, using the DO and DOSLC
instructions.

8.5.1 Repeat (REP) Looping
Repeat looping, using the REP instruction, executes a single 1-word instruction a number of times. The
number of times the instruction should be repeated is specified by the parameter to the REP instruction,
which is either a 6-bit immediate or 16-bit register value. The instruction that is to be repeated is the one
that immediately follows REP.

Example 8-5 demonstrates repeat looping on the move instruction. In this example, 64 words are cleared in
data memory, 2 words at a time.

Example 8-5. Repeat Loop Example

MOVE.W #0,A ; Clear the A Accumulator
REP #32 ; Set up hardware repeat of the following instruction
MOVE.L A10,X:(R0)+ ; Clear 2 words in memory

The instruction that is to be repeated (MOVE.L in this case) is fetched only once from program memory.
Until the repeat loop is complete, the program counter is frozen and interrupts are disabled. If a repeat loop
must be interruptible, a DO loop should be used instead. See Section 8.5.2, “DO Looping.”

The repeat count that is specified in the REP instruction must be a positive value. If the count specified is
zero, the instruction following REP is skipped, and execution continues with the subsequent instruction.

Table 8-5. Hardware Stack Status

NL LF DO Loop Status # Words of Hardware Stack

0 0 No DO loops active 0

0 1 Single DO loop active 1

1 0 (Illegal) —

1 1 Two DO loops active 2
8-18 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Hardware Looping
The REP instruction can only be used to repeatedly execute single-word instructions. Repeat looping
cannot be used on:

• An instruction that is more than 1 program word in length.

• An instruction that accesses program memory.

• A REP or ENDDO instruction.

• Any instruction that changes program flow.

• A SWI, SWI #x, SWILP, DEBUGEV, DEBUGHLT, WAIT, or STOP instruction.

• A Tcc, SWAP SHADOWS, or ALIGNSP instruction.

8.5.2 DO Looping
The DO instruction performs hardware looping on a single instruction or a block of instructions. DO loops
can be nested up to two deep, accelerating more complex algorithms. Unlike REP loops, loops initiated
with DO are interruptible.

Hardware DO looping (DO or DOSLC) executes a block of instructions for the number of specified times.
For a DO instruction, the loop count is specified with a 6-bit unsigned value or 16-bit register value. The
DOSLC instruction works identically to DO, but assumes that the loop count has already been placed in
the LC register.

Example 8-6 demonstrates hardware DO looping on a block of two instructions. This example copies a
block of forty 32-bit memory locations from one area of memory to another.

Example 8-6. DO Loop Example

DO #40,END_CPY ; Set up hardware DO loop
MOVE.L X:(R0)+,A ; Copy a 32-bit memory location
MOVE.L A10,X:(R1)+ ;

END_CPY

When a hardware loop is initiated with a DO or DOSLC instruction, the following events occur:

1. When the DO instruction is executed, the contents of the LC register are copied to the LC2
register, and LC is loaded with the loop count that the instruction specifies. The DOSLC
instruction does not modify the LC and LC2 registers.

2. The old contents of the LA register are copied to the LA2 register, and the LA register is
loaded with the address of the last instruction word in the loop. If a 16-bit address is
specified, the upper 8 bits of LA are cleared.

3. The address of the first instruction in the program loop (top-of-loop address) is pushed onto
the hardware stack. This push sets the LF bit and updates the NL bit, as occurs with any
hardware stack push.

Instructions in the loop are then executed. The address of each instruction is compared to the value in LA
to see if it is the last instruction in the loop. When the end of the loop is reached, the loop count register is
checked to see if the loop should be repeated. If the value in LC is greater than one, LC is decremented and
the loop is re-started from the top. If LC is equal to one, the loop has been executed for the proper number
of times and should be exited.

When a hardware loop ends, the hardware stack is popped (and the popped value is discarded), the LA2
register is copied to LA, the LC2 register is copied to LC, and the NL bit in the operating mode register is
Freescale Semiconductor Program Controller 8-19

Program Controller
copied to the LF bit. The OMR's NL bit is then cleared. Instruction execution then continues at the address
that immediately follows the end-of-loop address.

One hardware stack location is used for each nested DO or DOSLC loop. Thus, a two-deep hardware stack
allows for a maximum of two nested loops. The REP instruction does not use the hardware stack, so repeat
loops can be nested within DO loops.

8.5.3 Specifying a Loop Count of Zero
If a loop count of zero is specified for the DO instruction, or if a zero or negative loop count is specified for
DOSLC, the instructions in the body of the loop are skipped, and execution continues with the instruction
immediately following the loop body. An example of this process appears in Example 8-7.

Example 8-7. DO Loop Special Case

MOVE.W #0,X0
.
.
.
DO X0,END_CPY ; Loop count is zero upon entry
MOVE.L X:(R0)+,A ; Copy a 32-bit memory location
MOVE.L A10,X:(R1)+ ;

END_CPY

Note that an immediate loop count of zero (for the DO instruction) is not allowed and will be rejected by
the assembler. A loop count of zero can only be specified by using a register that is loaded with zero as the
argument to the DO instruction, or by placing a zero in the LC register and executing DOSLC.

8.5.4 Terminating a DO Loop
A DO loop normally terminates when the body of the loop has been executed for the specified number of
times (the end of the loop has been reached, and LC is one). Alternately, a DO loop terminates if the count
specified is zero. Similarly, if the LC register is zero or negative, a DOSLC loop will also terminate, which
causes the body of the loop to be skipped entirely.

When the inner loop of a nested loop terminates naturally, the LA2 and LC2 registers are copied into the
LA and LC registers, respectively, restoring these two registers with their values for the outer loop. A loop
is determined to be a nested inner loop if the OMR’s NL bit is set. If the NL bit is not set, the LA and LC
registers are not modified when a loop is terminated or skipped.

If it is necessary to terminate a DO loop early, use one of the techniques discussed in Section 8.5.4.1,
“Allowing Current Block to Finish and Then Exiting,” and Section 8.5.4.2, “Immediate Exit from a
Hardware Loop.”

8.5.4.1 Allowing Current Block to Finish and Then Exiting

One method for terminating a DO loop is to modify the loop counter register so that the remainder of the
instructions in the loop are executed, but so that the loop does not return to the top of the loop. This
modification can be accomplished through explicitly setting the value in LC to one:

MOVEU.W #1,LC

Because the loop is allowed to complete, the hardware stack will be popped, and the internal looping state
will be reset correctly.
8-20 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Hardware Looping
This technique should not be used to terminate a loop that is nested within another loop. A nested DO loop
can be terminated by using the ENDDO instruction (see Section 8.5.4.2, “Immediate Exit from a Hardware
Loop,” for the correct usage of this instruction). Writing a value to LC causes the previous value in LC to
be copied to LC2, thus destroying the outer loop’s count.

NOTE:

There are restrictions on the location of instructions that modify the LC
register with respect to the end of the loop. See the sections concerning DO
and DOSLC in Section A.2, “Instruction Descriptions,” on page A-7.

8.5.4.2 Immediate Exit from a Hardware Loop

When it is necessary to break out of a loop immediately, without executing any more iterations in the loop,
use the ENDDO instruction.

Note that the ENDDO instruction does not cause execution to jump to the end of the loop. ENDDO only
cleans up the hardware stack and the internal loop processing state. A BRA or JMP instruction must be
used to stop the execution of instructions within the body of the loop.

Two examples of code that show how to perform immediate exits appear in Example 8-8.

Example 8-8. Immediate Exit from Hardware Loop

DO #LoopCount,LABEL
; (instructions in loop)

Bcc EXITLP ;
;

; (other instructions in loop (skipped if immediate exit))
LABEL

BRA OVER ; additional cycle for BRA for normal loop exit

EXITLP ENDDO ; 1 additional cycle for ENDDO when exiting
; loop if exit via Bcc

OVER

;
; ------ alternate method ------

;
DO #LoopCount,LABEL

; (instructions)
Bcc OVER ; executed each iteration
ENDDO ; executed only for immediate termination
BRA LABEL

OVER
; (instructions)
LABEL

8.5.5 Specifying a Large Immediate Loop Count
The DO instruction allows an immediate value up to 63 to be specified for the loop count. In cases where it
is necessary to specify a value that is larger than 63, the DOSLC instruction should be used. A 16-bit
immediate loop count can be loaded into the LC register before the loop is started. The loop is then
initiated with the DOSLC instruction, which assumes that the count has previously been loaded into LC.
Example 8-9 on page 8-22 demonstrates this technique.
Freescale Semiconductor Program Controller 8-21

Program Controller
Example 8-9. Using the DOSLC Instruction

MOVEU.W#2048,LC ; Specify a loop count greater than 63
; using the LC register

NOP ; (delay required due to pipeline)
NOP ; ...
DOSLC LABEL ; Start loop with count already in LC

; (instructions)
LABEL

Note that a delay of 2 instruction words must be inserted between the instruction that updates LC and the
DOSLC instruction. Each of these words can consist of any instruction, including NOP if no useful
instruction can be placed in the sequence.

8.5.6 Nested Hardware Looping
The DSC core architecture allows one hardware-accelerated DO loop to be nested within another. It is
possible to nest one hardware DO loop within another, or to nest a REP loop within a DO loop or within
two nested DO loops. The following sections describe the nesting of hardware loops.

8.5.6.1 Nesting a REP Loop Within a DO Loop

A hardware repeat loop can be nested within a hardware DO loop without any additional setup or
processing. Example 8-10 demonstrates a repeat loop nested within a DO loop. In this example, the repeat
loop accumulates 8 values and stores the result for 10 different blocks of data.

Example 8-10. Example of a REP Loop Nested Within a DO Loop

MOVE.W X:(R0)+,X0 ; (read first value)
DO #10,END_NST ; Set up hardware DO loop
CLR.W A ; (body of DO loop)
REP #8
ADD X0,A X:(R0)+,X0 ; accumulate eight values
MOVE.W A1,X:(R1)+ ; store result of eight accumulated values

END_NST

Note that the REP instruction does not affect the value of the loop count for the outer DO loop.

8.5.6.2 Nesting a DO Loop Within a DO Loop

Nested looping of DO and DOSLC loops is permitted on the DSC core architecture. The hardware stack,
dual loop count, and dual loop address registers act as a LIFO stack for hardware looping state information.
The loop count, the “top-of-loop” address, and the state of the LF and NL bits are maintained for an outer
loop when a nested hardware loop is executed. Because the hardware stack only contains two locations,
hardware DO and DOSLC loops can only be stacked two deep.

Example 8-11 on page 8-23 demonstrates one hardware loop nested within another.
8-22 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Executing Programs from Data Memory
Example 8-11. Example of Nested DO Loops

ADDA #1,SP ; (bump to unoccupied stack location)
CLR.W A

DO #4,END_OUTR ; Outer loop
DO #3,END_INNR ; Inner loop: saves LC->LC2, LA->LA2
INC.W A ; (body of innermost loop)
ASL B ; (body of innermost loop)

END_INNR
NOP ; (required by pipeline)

END_OUTR

Note that, due to dependencies in the execution pipeline, the outer and inner loops must not end on the
same instruction. In Example 8-11, a NOP instruction has been placed between the loop end labels to
ensure that they end on different instructions. Any useful instruction could be substituted for the NOP.

8.5.6.3 Nesting a DO Loop Within a Software Loop

If more than two loops need to be nested, one of the loops can always be performed with standard software
looping techniques. Example 8-12 demonstrates a hardware DO loop that is nested in a regular software
loop.

Example 8-12. Example of Nested Looping in Software

MOVEU.W#4,R5 ; Load R5 for four outer loop iterations
OUTER

DO #4,END_INNR ; Inner DO loop
INC.W A ; (body of innermost loop)
ASL B ; (body of innermost loop)

END_INNR
DECTSTAR5 ; Decrement Outer Loop Counter
BGT OUTER ; Branch to top of loop

As compared to a hardware loop, a software loop involves considerably more looping overhead. Software
loops should only be used when necessary, or in code where execution time is not critical.

8.6 Executing Programs from Data Memory
The core is designed with the ability to execute programs stored in data memory. Although this capability
is not intended for high-throughput DSC applications, it is useful for executing diagnostic and test code on
parts where program memory resides in ROM. Program instructions and interrupt vectors are downloaded
into data memory, where they can be executed later.

When instructions from data memory are executed, the core drives the address of the instruction onto the
XAB2 bus, and the memory places its result on the XDB2 bus. The data on this bus is then internally
transferred to the PDB bus, where the execution units expect to find it. Note that, because the program
address bus (PAB) is only 21 bits wide, only the lower 221 locations in data memory can be accessed in
data-memory execution mode.

Figure 8-5 on page 8-24 shows the memory map in this mode.
Freescale Semiconductor Program Controller 8-23

Program Controller
Figure 8-5. Example Data-Memory Execution Mode Memory Map

When reset occurs, the XP bit in the OMR register is cleared. This event places the device back into
normal program-memory execution mode. It is not possible to have the core exit reset and then go straight
into data-memory execution mode.

The XP bit in OMR enables this operating mode.

$0

$FFFFFF

Interrupt
Vectors

Data
Memory
Space

0

16M × 16

$0

$1FFFFF
External
program
memory

External

Data

Memory

Data Memory
 (EX = 0)

$0

Program
Memory

Internal
program
memory

is not
accessible in

this mode.

is not
accessible in

this mode.

On-Chip
Data

Memory

$00FFFF

$00FF80

On-Chip

Peripherals

$FFFFFF

$1FFFFF

Locations above $1FFFFF are
not accessible in data-memory
execution mode.

On- and off-chip data memory can
hold both data and program
instructions to be executed. The
interrupt vector table can also be
located in these memory spaces.
8-24 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Executing Programs from Data Memory
8.6.1 Entering Data-Memory Execution Mode
A specific sequence must be followed to switch to executing programs from data memory. To enter
data-memory execution mode, perform the following steps:

1. Download the desired program—including interrupt vectors, interrupt service routines, and
data constants—into data memory.

2. Disable interrupts in the status register (SR).

3. Set the XP bit in the operating mode register (OMR).

4. Jump to the first instruction in data memory.

5. Re-enable interrupts from code in data memory (if desired).

These steps translate into one of two code sequences, which are shown in Example 8-13 and Example 8-14
on page 8-26. Depending on the size of the target address specified in the JMP to instructions in data
memory, a slightly different sequence must be used.

Example 8-13 shows the sequence that must be used when a 19-bit target address is used:

Example 8-13. Entering Data Memory Execution, 19-Bit Target Address

BEGIN_X EQU $1000 ; Beginning address of program in data memory

ORG P: ; (indicates code located in program memory)
.
.
.

; Exact Sequence for Steps 3 through 5
BFSET #$0300,SR ; Disable Interrupts
NOP ; (wait for interrupts to be disabled)
NOP ; (wait for interrupts to be disabled)
NOP ; (wait for interrupts to be disabled)
NOP ; (wait for interrupts to be disabled)
NOP ; (wait for interrupts to be disabled)
BFSET #$0080,OMR ; Enable data memory instruction fetches
NOP ; (wait for mode to switch)
NOP ; (wait for mode to switch)

; NOTE: Must Use Assembler Forcing Operator - Forces 19-bit Address
JMP >XMEM_TARGET ; Jump to 1st instruction in data memory
NOP ; (fetched but not executed)
NOP ; (fetched but not executed)
NOP ; (fetched but not executed)

ORG P:BEGIN_X,X:BEGIN_X; (both must be the same value)
XMEM_TARGET

; Remember to re-enable interrupts

If a 21-bit target address is specified, the code sequence is slightly different. In particular, only a single
NOP instruction must be inserted between the BFSET instruction that sets the XP bit and the JMP
instruction (rather than two), and a different assembler forcing operator is specified in the JMP instruction.
This code sequence is given in Example 8-14 on page 8-26.
Freescale Semiconductor Program Controller 8-25

Program Controller
Example 8-14. Entering Data Memory Execution, 21-Bit Target Address

BEGIN_X EQU $1000 ; Beginning address of program in data memory

ORG P: ; (indicates code located in program memory)
.
.
.

; Exact Sequence for Steps 3 through 5
BFSET #$0300,SR ; Disable Interrupts
NOP ; (wait for interrupts to be disabled)
NOP ; (wait for interrupts to be disabled)
NOP ; (wait for interrupts to be disabled)
NOP ; (wait for interrupts to be disabled)
NOP ; (wait for interrupts to be disabled)
BFSET #$0080,OMR ; Enable data memory instruction fetches
NOP ; (wait for mode to switch)

; NOTE: Must Use Assembler Forcing Operator -- Forces 21-bit address
JMP >>XMEM_TARGET; Jump to 1st instruction in data memory
NOP ; (fetched but not executed)
NOP ; (fetched but not executed)
NOP ; (fetched but not executed)

ORG P:BEGIN_X,X:BEGIN_X; (both must be the same value)
XMEM_TARGET

; Remember to re-enable interrupts

Choose the location of the first instruction in data memory carefully. The target addresses of the JMP
instructions in Example 8-13 on page 8-25 and Example 8-14, which are located in data memory, must be
known absolute addresses. Labels should not be used unless the technique that is shown in the examples is
employed. This technique defines the target code address as the same absolute address in both program and
data memory, which causes the assembler to generate the correct JMP target address.

NOTE:

The code that is used to enter data-memory execution mode must contain
the exact number of NOP instructions that is shown in Example 8-13 on
page 8-25 or Example 8-14. There can be no jumps or branches to
instructions within this sequence.

8.6.2 Exiting Data-Memory Execution Mode
When executing instructions from data memory is no longer required, and when it is necessary to begin
executing instructions from the program memory space, the following sequence of operations must be
performed:

1. Disable interrupts in the status register.

2. Clear the XP bit in the operating mode register.

3. Jump to the return location in the program memory space.

4. Re-enable interrupts from code that is located in program memory space.

Either the code sequence given in Example 8-15 on page 8-27 or the one in Example 8-16 on page 8-27
must be used for exiting data-memory execution mode. The sequence that is used depends on the size of
the target address specified by the JMP instruction. Because of the nature of this operation, it is very
important that the instruction segment between setting the XP bit (or clearing it) and the JMP instruction
should not be single stepped.
8-26 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Executing Programs from Data Memory
Example 8-15. Exiting Data-Memory Execution Mode, 19-Bit Target Address

ORG P:BEGIN_X,X:BEGIN_X; (code located in data memory)
.
.
.

; Exact Sequence for Steps 1 through 3
BFSET #$0300,SR ; Disable interrupts
NOP ; (wait for interrupts to be disabled)
NOP ; (wait for interrupts to be disabled)
NOP ; (wait for interrupts to be disabled)
NOP ; (wait for interrupts to be disabled)
NOP ; (wait for interrupts to be disabled)
BFCLR #$0080,OMR ; Disable data memory instruction fetches
NOP ; (wait for mode to switch)
NOP ; (wait for mode to switch)

; NOTE: Must Use Assembler Forcing Operator -- Forces 19-bit address
JMP >PMEM_TARGET ; Jump to 1st instruction in program memory
NOP ; (fetched but not executed)
NOP ; (fetched but not executed)
NOP ; (fetched but not executed)

ORG P: ; (indicates code located in prgm mem)
.
.
.

PMEM_TARGET
; Remember to re-enable interrupts

If a 21-bit target address must be specified for the JMP instruction, the code sequence in Example 8-16
must be used.

Example 8-16. Exiting Data-Memory Execution Mode, 21-Bit Target Address

ORG P:BEGIN_X,X:BEGIN_X; (code located in data memory)
.
.
.

; Exact Sequence for Steps 1 through 3
BFSET #$0300,SR ; Disable interrupts
NOP ; (wait for interrupts to be disabled)
NOP ; (wait for interrupts to be disabled)
NOP ; (wait for interrupts to be disabled)
NOP ; (wait for interrupts to be disabled)
NOP ; (wait for interrupts to be disabled)
BFCLR #$0080,OMR ; Disable data memory instruction fetches
NOP ; (wait for mode to switch)

; NOTE: Must Use Assembler Forcing Operator - Forces 21-bit address
JMP >>PMEM_TARGET; Jump to 1st instruction in program memory
NOP ; (fetched but not executed)
NOP ; (fetched but not executed)
NOP ; (fetched but not executed)

ORG P: ; (indicates code located in program memory)
.
.
.

PMEM_TARGET
; Remember to re-enable interrupts

The rules for determining the target address of the JMP instruction that are discussed in Section 8.6.1,
“Entering Data-Memory Execution Mode,” also apply when exiting data-memory execution.

NOTE:
Freescale Semiconductor Program Controller 8-27

Program Controller
The code that is used to exit data-memory execution mode must contain
the exact number of NOP instructions that is shown in Example 8-15 or
Example 8-16 on page 8-27. There can be no jumps or branches to
instructions within this sequence.

8.6.3 Interrupts in Data-Memory Execution Mode
Regular interrupt processing is supported in data-memory execution mode. The interrupt vector table and
all interrupt service routines must be copied to data memory because program memory is completely
disabled when data-memory execution mode is active. It is only necessary to provide interrupt vectors and
service routines for interrupts that will actually occur during data memory execution.

During the transition in and out of data-memory execution mode, interrupts must be disabled.

8.6.4 Restrictions on Data-Memory Execution Mode
The following restrictions apply when programs are executed from data memory:

• Instructions that perform two reads from data memory are not permitted.

• Instructions that access program memory are not permitted.

• Interrupts must be disabled when data-memory execution mode is entered or exited.

Instructions that perform one parallel move operation are allowed in this mode.
8-28 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Chapter 9
Processing States
The DSP56800E core has six processing states, and it is always in one of these states. The states reflect the
variety of operating modes that are available to a DSP56800E device, which include low-power and debug
capabilities. The processing states are:

• Normal—the normal instruction execution state.

• Reset—the state where the core is forced into a known reset state. The first program instruction is
fetched upon exiting this state.

• Exception—the interrupt processing state, where the core transfers program control from its current
location to an interrupt service routine using the interrupt vector table.

• Wait—a low-power state where the core is shut down but the peripherals and interrupts remain
active.

• Stop—a low-power state where the core, interrupts, and selected peripherals are shut down.

• Debug—a debugging state where the core is halted and the Enhanced On-Chip Emulation
(Enhanced OnCE) module is enabled and used for debug activity.

These processing states are available when programs are executed normally from program memory and
when instructions are fetched from data memory (see Section 8.6, “Executing Programs from Data
Memory,” on page 8-23). Each of these processing states is considered in the following pages.

9.1 Normal Processing State
The normal processing state is the typical state of the processor, where it performs normal instruction
execution. The core enters the normal processing state after reset, if debugging is not active.

Additional information on the normal processing state can be found in Section 10.2, “Normal Pipeline
Operation,” on page 10-3.

9.2 Reset Processing State
The processor enters the reset processing state when a hardware reset signal is asserted. The core is held in
reset during power up through the assertion of the RESET terminal, making this the first processing state
entered by the DSC.

The reset processing state takes precedence over all other processing states. When the reset terminal to the
core is asserted, the core exits the processing state it was in previously and immediately enters the reset
processing state.
Freescale Semiconductor Processing States 9-1

Processing States
On devices with a computer operating properly (COP) timer, it is also possible for the COP timer to assert
the RESET signal if the timer reaches zero, forcing the core into the reset processing state.

The DSP56800E core remains in the reset processing state until the cause for reset is de-asserted. When the
reset trigger is deasserted, the following occurs:

1. The internal registers are set to their reset state:

— The modifier register (M01) is set to $FFFF.

— The status register’s (SR) loop flag and condition code bits are cleared.

— The interrupt mask bits (I1 and I0) in the status register are both set to one.

— All bits in the operating mode register (except MA and MB) are cleared.

2. The chip operating mode bits (MA and MB) in the OMR are loaded from external mode
select pins, establishing the operating mode of the chip.

3. The core begins instruction execution at the program memory address that is defined by the
address of the reset vector that is provided to the core. There may be different vector
addresses for different reset sources, such as the RESET signal or the COP and RTI timer.
The reset vector or vectors are specific to a particular DSP56800E–based device. Consult
the appropriate device’s user’s manual for details.

The DSP56800E core enters the normal processing state upon exiting reset. It is also possible for the core
to enter the debug processing state upon exiting reset when system debug is underway. See Section 9.6,
“Debug Processing State.”

9.3 Exception Processing State
In the exception processing state, the DSP56800E core recognizes and processes interrupts and exceptions.
Interrupts and exceptions can be generated by conditions inside the core, such as illegal instructions, or
from external sources, such as an interrupt request signal. When an exception occurs, control is transferred
from the currently executing program to an interrupt service routine. Upon entering the interrupt service
routine, the core exits the exception processing state and enters the normal processing state. When the
interrupt routine is terminated, the interrupted program resumes execution.

In digital signal processing, some common uses of interrupts are to transfer data between the data memory
and a peripheral device or to begin execution of a DSC algorithm upon the reception of a new sample.
Interrupts are also useful for system calls in an operating system and for servicing peripherals. An interrupt
that is enabled can also be used to exit the DSC’s low-power wait processing state.

There are many sources for interrupts on the DSP56800E Family of chips, and some of these sources can
generate more than one interrupt. Interrupt requests can be generated from conditions within the core, from
the on-chip peripherals, or from external pins. The DSP56800E core features a prioritized interrupt vector
scheme to provide faster interrupt servicing. The interrupt priority structure is discussed in Section 9.3.1,
“Interrupt Priority Structure.”

Several types of exceptions are supported: interrupts, which are generated by the core, the debug port,
on-chip peripherals or interrupt request pins, and instruction level exceptions, which are caused by the
execution of an instruction. The DSP56800E supports an unlimited number of exceptions. Core interrupts
and instruction level exceptions have a fixed priority level (there are software interrupt instructions for
requesting an interrupt at each of the five priority levels); peripheral and debug port interrupts may be
programmed to one of three priority levels or be disabled.

The following sections discuss the interrupt priority levels, the ways in which interrupts are processed, and
the various sources for interrupts and exceptions.
9-2 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Exception Processing State
9.3.1 Interrupt Priority Structure
The DSP56800E architecture supports five interrupt priority levels. Levels LP, 0, 1, and 2, in ascending
priority, are maskable. Level 3 is the highest priority and is non-maskable. Priority levels 0–2 are used for
programmable interrupt sources, such as peripherals and external interrupt requests. The lowest priority
level, LP, can only be generated by the SWILP instruction. Level 3 interrupts are generated by the core.
Table 9-1 shows the different interrupt priority levels.

When exceptions or interrupts occur simultaneously, higher-priority exceptions take precedence. It is also
possible for a higher-priority exception to interrupt the interrupt handler of a lower-priority exception.
Reset conditions take precedence over all interrupt priorities. If a reset occurs, the chip immediately enters
the reset processing state.

The current core interrupt priority level (CCPL) defines which interrupt priority levels will be accepted and
which will be rejected by the core. Interrupt sources with a priority level that is equal to or greater than the
CCPL are accepted. Interrupt sources with a priority level that is lower than the CCPL are rejected.
Non-maskable interrupts (level 3) are always accepted. The CCPL is determined from the I1 and I0 bits in
the status register. Table 9-2 shows the CCPL values.

Table 9-1. Interrupt Priority Level Summary

IPL Description Priority Interrupt Sources

LP Maskable Lowest SWILP instruction

0 Maskable . On-chip peripherals, IRQA and IRQB, SWI #0 instruction

1 Maskable . On-chip peripherals, IRQA and IRQB, SWI #1 instruction,
Enhanced OnCE interrupts

2 Maskable . On-chip peripherals, IRQA and IRQB, SWI #2 instruction,
Enhanced OnCE interrupts

3 Non-maskable Highest Illegal instruction, hardware stack overflow, SWI instruction,
Enhanced OnCE interrupts, misaligned data access

Table 9-2. Current Core Interrupt Priority Levels

I1 I0 CCPL
Exceptions
Accepted

Exceptions
Masked

Comments

0 0 0 IPL 0, 1, 2, 3
and SWILP

None The interrupt controller accepts any unmasked
interrupt, including the SWILP.

0 1 1 IPL 1, 2, 3 IPL 0 and
SWILP

The interrupt controller accepts all non-maskable
interrupts and any unmasked interrupts that are
programmed at level 1 or 2.

1 0 2 IPL 2, 3 IPL 0, 1
and SWILP

The interrupt controller accepts all non-maskable
interrupts and any unmasked interrupts that are
programmed at level 2.

1 1 3 IPL 3 IPL 0, 1, 2
and SWILP

The interrupt controller only accepts non-maskable
interrupts (level 3).
Freescale Semiconductor Processing States 9-3

Processing States
Every interrupt source has an associated priority level. For some interrupt sources, such as the SWI
instructions and non-maskable interrupts, the interrupt level is pre-assigned. Other interrupt sources, such
as on-chip peripherals, support a programmable priority level. Programmable interrupt sources other than
those in the debug port can be set to one of the maskable priority levels (0, 1, or 2) or be disabled.
Enhanced OnCE interrupt sources can be programmed as level 1, 2, or 3 or as disabled. The CCPL is set to
level 3 on reset.

When an exception or interrupt is recognized and the CCPL is low enough to allow it to be processed, the
CCPL is automatically updated to be one higher than the level of the interrupt (except for the case of
SWILP, which does not update the CCPL, or the case of level 3 interrupts, which leave the priority level at
level 3). This updating prevents interrupts that have the same or a lower priority level from interrupting the
handler for the current interrupt. When the interrupt service routine finishes, the CCPL is set back to its
original value.

To better understand the interrupt priority structure, consider a simple example with nested interrupts.
Assume that the following have already taken place:

1. A serial port on a chip has requested a level 1 interrupt when the core’s CCPL was at level 0.

2. The core has recognized this interrupt and entered the exception processing state. The
CCPL was updated from level 0 to level 2, which is one level higher than the priority of the
recognized interrupt (level 1).

3. Program flow has been transferred to the interrupt handler for the serial port.

Now consider that a second peripheral, a timer with interrupt priority level 0, generates an interrupt.
Although the interrupt request is valid, the interrupt will not be acknowledged and serviced because the
peripheral’s priority level is lower than the core’s CCPL. If the interrupt request can be latched as pending,
the interrupt will be serviced after the current interrupt service routine completes, because the CCPL will
be restored to its original level (level 0). A higher-priority interrupt (at level 2, for instance) would
interrupt the level 1 service routine, and the level 1 routine would resume later after the level 2 handler
completed.

9.3.2 Interrupt and Exception Processing
When an interrupt or exception occurs, the current program is stopped, and control is passed to an interrupt
handling routine. Once the handling routine has completed processing the interrupt, control is returned to
the original program at the point at which it was interrupted. The location of the interrupt handling routine
that is to be executed is determined with the interrupt vector table.

Interrupt vectors are typically located in a block of memory locations in program memory (although
interrupt vectors can be located anywhere in the program memory map, if desired). Each interrupt vector
typically holds a 2- or 3-word JSR instruction, except for fast interrupts, which are covered in
Section 9.3.2.2, “Fast Interrupt Processing.” When an interrupt occurs, the interrupting device provides a
vector number to the core. Program control is then transferred to the address specified by the vector
provided. At this address, the JSR instruction is fetched and executed, transferring control to the interrupt
service routine. Figure 9-1 on page 9-5 shows an example of the vector table.

When the chip is in data-memory execution mode (see Section 8.6, “Executing Programs from Data
Memory,” on page 8-23), the interrupt vector table is located in data memory, not program memory, and
the interrupt vector is fetched appropriately from data memory when entering exception processing.
9-4 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Exception Processing State
Figure 9-1. Interrupt Vector Table

Two types of interrupt processing routines are supported: normal and fast. Normal interrupt processing is
supported for all types of interrupts, but it involves a certain amount of overhead. Fast interrupt processing
requires substantially less overhead, but it is only available for level 2 interrupts. The type of interrupt
processing that will be performed is determined by the opcode that is located in the vector for a given
interrupt and by the priority level of the interrupt source. If the instruction is a JSR, normal interrupt
processing occurs. If it is any other instruction and level 2, fast interrupt processing is used. The case
where the first instruction is not a JSR and the priority level is 0, 1, or 3 is not permitted.

9.3.2.1 Normal Interrupt Processing

Under most circumstances, normal interrupt processing is used to handle an interrupt or exception. When
an interrupt occurs, the following occurs:

1. The currently executing instruction is allowed to complete, and all subsequent instructions
are flushed from the pipeline.

2. The program counter is frozen.

3. The CCPL is raised to be one higher than the level of the current interrupt.

4. The program controller fetches the JSR instruction that is located at the vector for this
interrupt, and then it unfreezes the PC.

5. The JSR instruction is executed, saving the original program counter and status register on
the software stack.

The interrupt routine that is located at the target address of the JSR is then executed. Be careful in the
interrupt handler routine to save any registers that will be used; otherwise, the operation of the interrupted
program may be affected. The status register, however, is automatically saved when an interrupt occurs, so
it does not need to be saved by the handler.

Interrupt Vector
Table

JSR

Handler Address

JSRVector #22

Vector #23

.

.

.

.

.

.

Handler Address

.

.

.

JSRs to Normal Interrupt
Handler Routines
Freescale Semiconductor Processing States 9-5

Processing States
Figure 9-2. Control Flow in Normal Interrupt Processing

When interrupt processing is complete, the interrupt routine should be terminated by an RTI or RTID
instruction. These instructions return control to the interrupted program and restore the status register to its
original value.

Normal interrupts can be nested (refer to Section 10.3.3, “Nested Interrupts,” on page 10-11).

9.3.2.2 Fast Interrupt Processing

The default implementation of fast interrupt processing in the DSP56800E core, which is available only for
level 2 interrupts, is performed when the instruction that is located in the appropriate slot in the vector table
is not a JSR. Fast interrupt processing has lower overhead than normal processing and should be used for
all low-latency or time-critical interrupts. Since the interrupt controller is external to the core, chip
implementations of this core can provide an alternate scheme in detecting fast interrupt processing. For
example, the 568xx family of chips has implemented a scheme whereas, the interrupt controller intercepts
the normal vector table processing and inserts the absolute address into the core via the VAB bus. In this
implementation, the IRQ selected for fast interrupt processing and the address of the code for the fast
interrupts are coded in special chip registers. Please refer to the specific chip implementation for complete
description of fast interrupt processing. The description of fast interrupt throughout this manual follows the
default implementation prescribed by the DSP56800E core.

Initially, fast interrupt processing resembles normal interrupt processing: the core performs steps 1–3 in
Section 9.3.2.1, “Normal Interrupt Processing,” for fast interrupt processing as well. When the core
recognizes that fast interrupt processing should be used—by determining that the interrupt is a level 2
interrupt and that the instruction in the vector is not a JSR—fast interrupt processing is initiated. The
following additional steps are performed:

1. The frozen program counter (return address) is copied to the fast interrupt return address
register (FIRA).

2. The status register (with the exception of the P4–P0 bits) and the NL bit in the operating
mode register are copied to the fast interrupt status register (FISR).

3. The stack pointer (SP) is aligned for long-word accesses.

JSR

Jump Address (LBL)

Main
Program

ii2

ii3

ii4

iin

RTI

Interrupt
Vector Table

Interrupt
Subroutine

Explicit
Return From

Interrupt
(RTI)

n1

n2

PC Resumes
Operation

Interrupt
Routine
9-6 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Exception Processing State
4. The Y register is pushed onto the stack, and the stack pointer is advanced to an empty 32-bit
location.

5. The shadowed registers (R0, R1, N, and M01 on the DSP56800E core, or all Rn, N, N3,
and M01 on the DSP56800EX core) are swapped with their shadows.

Execution of the fast interrupt handling routine then continues with the execution of the instruction in the
interrupt’s vector. The code for a fast interrupt routine might be contained entirely in the interrupt vector
table or might reside outside the table at a user-determined location. If it is located in the vector table, note
that the code for the handling routine may overlap the locations of other vectors, rendering them unusable.
It is more practical to have the interrupt vector for a fast interrupt handler to point to a location outside the
main portion of the interrupt vector table, to avoid the overlap problem of a fast interrupt service routine
with more than 2 words.

Figure 9-3. Control Flow in Fast Interrupt Processing

A fast interrupt handling routine is terminated with the FRTID instruction, a delayed return from a fast
interrupt. This instruction performs the following:

1. Swaps the shadowed registers back to their original values

2. Decrements the SP by two

3. Pops the Y register off the stack and restores the stack pointer to its original value

4. Restores the SR and the NL bit in the OMR from the FISR register

5. Sets the PC to the value in the FIRA register, returning control to the interrupted program

Note that fast interrupt handlers, like interrupt handlers that are executed in normal interrupt processing
mode, can be interrupted by a higher-priority interrupt.

The execution of a fast interrupt service routine always conforms to the following rules:

1. The first instruction in the interrupt vector table is the first instruction of the level 2 interrupt
service routine for its associated interrupt source.

2. The following instructions are not allowed in the first four instructions of a fast interrupt
service routine:

– JSR, BSR, RTS, RTSD, RTI, RTID

Main
Program

ii0

ii1

ii2

di1

Interrupt
Vector Table

Fast Interrupt
Subroutine

Explicit
Return From
Fast Interrupt

(FRTID)

n1

n2

PC Resumes
Operation

ii3
FRTID

di0
Freescale Semiconductor Processing States 9-7

Processing States
– BRA, BRAD, Bcc, JMP, JMPD

– STOP, WAIT, DEBUGHLT

– DEBUGEV when programmed to halt the core

– SWI, SWI #n, SWILP, ALIGNSP

– REP, DO, DOSLC

3. The first 5 instruction words in a fast interrupt service routine cannot contain an instruction
that accesses program memory.

4. The instructions for the level 2 interrupt service routine are located directly in the interrupt
vector table unless a jump or branch transfers control out of the vector table. As a result, a
level 2 interrupt service routine typically occupies more than 2 program words in the
interrupt vector table.

5. To prevent one level 2 fast interrupt from interrupting another, the status register’s I1 and
I0 bits should not be explicitly changed during a fast interrupt service routine. A fast
interrupt handler can still be interrupted by a level 3 interrupt.

Fast interrupts are not nestable because fast interrupts are only available as level 2 interrupts—one level 2
interrupt cannot interrupt another level 2 interrupt.

9.3.3 Interrupt Sources
Interrupt requests on a DSP56800E–based chip are generated by one of three sources: hardware sources
outside the core (peripherals, interrupt request signals), hardware sources within the core (illegal
instructions, data access exceptions, debug port exceptions), and software interrupt instructions.

Each interrupt source has at least one associated interrupt vector—the address to which program flow is
transferred when an interrupt occurs. Interrupt vectors are located in a block of memory called the interrupt
vector table. The interrupt source provides the location of the appropriate vector to the interrupt control
hardware.

Exact information on possible interrupt sources, and the size and location of the vector table, can be found
in the user’s manual for the particular DSP56800E–based device.

9.3.3.1 External Hardware Interrupt Sources

Interrupt and reset sources outside the core are unique to a chip’s particular configuration of peripherals
and so on. Consult the user’s manual for the particular DSP56800E–based device.

9.3.3.2 Hardware Interrupt Sources Within the Core

The hardware interrupt sources within the core include the following:

• Illegal instruction interrupts

• Hardware stack overflow interrupts

• Misaligned data access interrupts

• Debugging (Enhanced OnCE) interrupts
9-8 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Exception Processing State
9.3.3.2.1 Illegal Instruction Interrupt

The illegal instruction interrupt is a non-maskable level 3 interrupt source. It is generated when the
DSP56800E core identifies an instruction as invalid. The illegal instruction interrupt is serviced
immediately following the attempted execution of an undefined operation code—that is, no other
instructions are executed between the illegal instruction and the first JSR instruction that is fetched from
the interrupt vector table in the exception processing state.

It is not possible to recover from an illegal instruction exception because critical state information is lost
when an invalid instruction is executed. However, handling this interrupt can be used for diagnostic
purposes—to locate the faulty code. The address of the instruction that immediately follows the illegal
instruction is pushed on the stack when the illegal instruction exception handler is entered. This address
can be used to locate the illegal instruction in memory.

The ILLEGAL instruction is a mnemonic for one of the invalid instruction opcodes. It can be used to test
the illegal instruction interrupt service routine.

Note that the illegal instruction exception is not necessarily generated for all invalid opcodes. Opcodes
with addressing modes that are not technically illegal, but that perform no useful work, might not generate
an exception even though these opcodes are not supported and thus are considered illegal.

9.3.3.2.2 Hardware Stack Overflow Interrupt

The hardware stack overflow interrupt is a non-maskable level 3 interrupt source. Encountering the
hardware stack overflow interrupt request means that more than two values have been stacked onto the
hardware stack and that the oldest top-of-loop address has been lost (see Section 8.4, “Hardware Stack,” on
page 8-17). The hardware stack overflow interrupt is non-recoverable and is used primarily for debugging.
The hardware stack overflow refers only to the hardware stack and is not affected by the software stack
operation.

9.3.3.2.3 Misaligned Data Access Interrupt

The misaligned data access interrupt is a non-maskable level 3 interrupt source. It occurs when a 32-bit
long-word value is accessed from data memory and the address that is used to access the data is
misaligned. A long-word value must be accessed from memory using an even word address, except when
SP is used in an indirect addressing mode. In the latter case, the value must be accessed using an odd word
address when it is accessed via the stack pointer register. If the long word is not aligned in this manner, a
misaligned data access interrupt is generated. See Section 3.5.3, “Accessing Long-Word Values Using
Word Pointers,” on page 3-19 for more information on the correct alignment for long-word values in
memory.

9.3.3.2.4 Debugging (Enhanced OnCE) Interrupts

The Enhanced On-Chip Emulation module, which provides integrated debugging support for the
DSP56800E, is capable of generating interrupts. These interrupts provide the Enhanced OnCE module
with the capability of executing instructions. See Chapter 11, “JTAG and Enhanced On-Chip Emulation
(Enhanced OnCE),” for more information on the capabilities of the Enhanced OnCE module.

The Enhanced OnCE interrupts can be disabled or programmed to one of three different priority
levels—level 1 through level 3.
Freescale Semiconductor Processing States 9-9

Processing States
9.3.3.3 Software Interrupt Instructions

The DSP56800E instruction set contains instructions that trigger an interrupt. Depending on the instruction
that is used, any priority interrupt can be generated. These instructions are commonly used for debugging
purposes or operating system calls.

9.3.3.3.1 SWI Instruction—Level 3

The SWI instruction generates a non-maskable level 3 interrupt request. This request is serviced
immediately following the execution of the SWI instruction; no other instructions are ever executed
between the SWI instruction and the first instruction of the interrupt handler.

SWI’s ability to mask out lower-level interrupts makes it very useful for setting breakpoints in monitor
programs. The instruction can also be used for making a system call in a simple operating system.

9.3.3.3.2 SWI #x Instructions—Levels 0–2

The SWI #0, SWI #1, and SWI #2 instructions are maskable interrupt sources. Executing these instructions
generates an interrupt request at the specified priority level, and each typically has its own vector address.

These instructions execute in 1 clock cycle. If the interrupt requested by the SWI #x instruction is at a
priority level greater than or equal to the CCPL, the interrupt is recognized by the core. A minimum of 3
additional clock cycles are executed before the core forces three NOPs into the pipeline and executes the
first instruction located in the vector table. As a result, up to three instructions immediately after the
SWI #x instruction may be executed before the interrupt is serviced.

If the SWI #x instruction is executed with a priority level that is lower than the CCPL, the request is
latched as pending by the interrupt controller and will be serviced only after the core’s CCPL is lowered to
a level that is less than or equal to the priority of the instruction.

Note that the SWI #2 instruction can also be used for fast interrupt processing.

9.3.3.3.3 SWILP Instruction—Lowest Priority

The operation of the SWILP instruction is very similar to the operation of the maskable SWI instructions.
Executing SWILP generates the lowest-priority interrupt request that is available.

This instruction executes in 1 clock cycle. If the CCPL is at level 0, the interrupt is recognized by the core.
In this case, a minimum of 3 additional clock cycles are executed before the core forces three NOPs into
the pipeline and executes the JSR located in the vector table. As a result, up to three instructions
immediately after the SWILP instruction may be executed before the interrupt is serviced.

If the SWILP instruction is executed when the CCPL is greater than level 0, the request is latched as
pending by the interrupt controller and will be serviced only after the core’s CCPL is lowered to level 0.
Processing SWILP, the lowest-priority interrupt, does not update the CCPL. It is possible for a level 0
interrupt request to interrupt the handler for SWILP.

This instruction is typically executed within other interrupt handlers, where its low priority will not be
recognized until all other interrupt handlers have completed execution. Used in this manner, the SWILP
instruction can schedule code for execution after all of the interrupt handlers have completed execution.

9.3.4 Non-Interruptible Instruction Sequences
In general, interrupts can only occur between the execution of two instructions. However, there are certain
sequences of instructions that are not interruptible. When one of these sequences is executed, interrupts are
effectively disabled until after the last instruction in the sequence. In the following sets of instructions,
interrupts cannot occur between the instructions:

• A delayed flow control instruction (such as JMPD) and the instructions in the delay slots
9-10 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Wait Processing State
• A REP instruction and the instruction that is to be repeated

• A 1-word Bcc instruction and either of the following:

— A multi-word instruction

— A 1-word instruction and the instruction that immediately follows it

• A multi-word Bcc and the instruction immediately after the Bcc

• BRSET or BRCLR and either of the following:

— A multi-word instruction

— A 1-word instruction and the instruction that immediately follows it

• A Jcc instruction and the instruction that is executed immediately after the Jcc

• A Tcc instruction with an R0,R1 register transfer and the instruction that immediately follows it

• An ADD.W X:(SP-xx),EEE instruction and the instruction that immediately follows it

• An SWI at the highest priority level and the instruction that immediately follows it (see following
paragraph on SWI)

• Any of the last 3 program words in a hardware DO or DOSLC loop during the last iteration of the
hardware loop

Consider the code fragment in Example 9-1. BRSET is an instruction that causes interrupts to be
temporarily disabled, as noted in the preceding list.

Example 9-1. BRSET Non-Interruptible Sequence

NOP ; (interrupt may occur before BRSET)
BRSET #34,X0,LABEL ; Begins Non-Interruptible Sequence
ASL A ; ===> No interrupt allowed before ASL
DEC.W X:$3400 ; ===> No interrupt allowed before DEC
MOVE.W Y0,X0 ; (interrupt allowed before MOVE)

LABEL
ADD X0,A ; (interrupt allowed if branch taken)

If the branch is not taken, interrupts will be disabled until after the DEC.W instruction is executed. Any
interrupts that occur during the time that is taken to execute these three instructions will be deferred until
the end of this sequence. If the branch is taken, interrupts can occur between the BRSET and ADD
instructions.

The SWI instruction is included in this list because of the nature of this instruction. The SWI instruction is
designed so that upon execution, the instruction immediately after the SWI will not be executed; instead,
the processor directly enters the exception processing state. Thus, by design, no interrupts can occur
between the execution of the SWI instruction and the processor’s direct entry into the exception processing
state.

9.4 Wait Processing State
One of the DSP56800E core’s low-power-consumption states is wait mode. This mode is entered by
executing the WAIT instruction. After a delay, the processor enters a state where the internal clock to the
core is disabled and clocks to the memories are typically disabled, but where clocks continue to run to the
on-chip peripherals and to the interrupt controller.
Freescale Semiconductor Processing States 9-11

Processing States
Wait mode is exited when an interrupt request is sent to the core. The interrupt must be enabled
(unmasked) and must be at a higher priority level than the core’s current interrupt priority level, as defined
by the I1 and I0 bits in the status register. Upon exiting this mode, the program continues execution in the
exception processing state, where it processes the recognized interrupt request. Wait mode is also exited
when the chip is reset, or by certain debug actions in the JTAG/Enhanced OnCE unit.

9.4.1 Wait Mode Timing
The timing for entering and exiting the wait processing state is determined by the architecture of the
particular DSP56800E–based device being used. Consult that device’s user’s manual for exact wait mode
timing information.

9.4.2 Disabling Wait Mode
The DSP56800E core supports the permanent disabling of the wait processing state. If disabled, wait mode
can never be entered, and the WAIT instruction simply executes five NOPs. Upon completing the NOP
cycles, program execution continues with the instruction that immediately follows the WAIT instruction.
Consult the specific DSP56800E–based device’s user’s manual for more information on disabling wait
mode.

9.5 Stop Processing State
The second of the DSP56800E core’s low-power-consumption states is stop mode. In this state the core
consumes the lowest amount of power. This mode is entered by executing the STOP instruction. After a
delay, the internal core clock, the interrupt controller, and any on-chip memories are disabled. The clock is
also disabled to selected peripherals on the chip, but it may continue to run to the PLL block or to a timer
block.

All peripheral and external interrupts are typically cleared on entering the stop state. Hardware stack
overflows that were pending remain pending. The priority levels of the peripherals remain as they were
before the STOP instruction was executed. The on-chip peripherals are held in their respective individual
reset states.

In a typical system architecture, the following events can bring the core out of the stop processing state:

• An external pin is asserted.

• The RESET signal is asserted.

• An on-chip timer reaches zero.

• Debug actions in the JTAG/Enhanced OnCE unit occur.

Any of these actions will re-activate the oscillator, and, after a clock stabilization delay, clocks to the
processor and peripherals will be re-enabled. The clock stabilization delay period is determined by the stop
delay (SD) bit in the operating mode register (OMR).

If an interrupt is used to wake the processor from stop mode, the first code to be executed on leaving stop
mode is either the interrupt handler for that request or the instruction immediately following the STOP
instruction (see the user’s manual for a particular DSP56800E–based device for more details). Likewise,
the processor will enter the reset processing state if a reset signal was the cause for waking from stop
mode.
9-12 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Debug Processing State
9.5.1 Stop Mode Timing
The timing for entering and exiting stop mode is determined by the architecture of the particular
DSP56800E–based device being used. Consult the specific device’s user’s manual for more information
on stop mode timing.

9.5.2 Disabling Stop Mode
The DSP56800E core supports the permanent disabling of the stop processing state. If disabled, stop mode
can never be entered, and the STOP instruction simply executes five NOPs. Upon completing the NOP
cycles, program execution continues with the instruction that immediately follows the STOP instruction.
Consult the specific DSP56800E device’s user’s manual for more information on disabling stop mode.

9.6 Debug Processing State
The debug processing state is a state where the core is halted and placed under the control of the Enhanced
OnCE debug port. Serial data is shifted in and out of this port, and it is possible to execute instructions
from this processing state. It is also possible to use the debug port without entering the debug processing
state. This is useful for applications where the core must not be halted.
Freescale Semiconductor Processing States 9-13

Processing States
9-14 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Chapter 10
Instruction Pipeline
The DSP56800E architecture is built around an eight-stage execution pipeline. The eight stages overlap
instruction fetches, operand fetches, and instruction execution, resulting in higher execution throughput.
The eight stages of the pipeline are shown in Figure 10-1.

Figure 10-1. DSP56800E Eight-Stage Pipeline

Instructions typically require 7 or 8 clock cycles to be fetched, to be decoded, and to finish execution,
depending on their complexity. Most instructions will complete and be retired (their results written back
and condition codes updated) by the end of the Execute stage of the pipeline. Some more complex
instructions require additional processing and are retired in the Execute 2 stage. AGU arithmetic
instructions complete execution in the Address Generation stage. Although it takes as many as 8 clock
cycles to fill the pipeline and to complete the execution of the first instruction, subsequent instructions
typically complete execution on each clock cycle thereafter.

Although the execution pipeline is composed of many stages, its operation is largely hidden from the user.
Knowledge of the pipeline is useful, however, because certain code sequences can introduce pipeline
dependencies. These dependencies, and the resultant pipeline stalls, can affect overall performance if they
are not addressed. The following sections describe the pipeline in detail, including those circumstances that
can result in pipeline dependencies.

Pre-Fetch 1 (P1)

Address Generation (AG)

Operand Pre-Fetch 2 (OP2)

Instruction Decode (ID)

Instruction Fetch (IF)

Pre-Fetch 2 (P2)

Execute 2 (EX2)

Execute and Operand Fetch (EX)
Freescale Semiconductor Instruction Pipeline 10-1

Instruction Pipeline
10.1 Pipeline Stages
The eight stages of the pipeline, and their abbreviations, are as follows:

1. Pre-Fetch 1 (P1)—The address of the instruction that is to be fetched is driven onto the
program address bus (PAB).

2. Pre-Fetch 2 (P2)—Program memory latches the instruction address and begins program
memory access.

3. Instruction Fetch (IF)—Program memory places the instruction opcode onto the program
data bus (PDB).

4. Instruction Decode (ID)—The instruction latch latches and decodes the opcode. It is at
this point in the pipeline that the instruction is identified.

5. Address Generation (AG)—The address generation unit (AGU) drives data memory
access addresses onto the primary and secondary data address buses (XAB1 and XAB2).
Address and AGU calculations (including transfers done with the TFRA instruction) are
performed in the AGU’s arithmetic units and are stored in the destination AGU register.

6. Operand Pre-Fetch 2 (OP2)—Data memory latches the data address and begins data
memory access.

7. Execute and Operand Fetch (EX)—For a memory read, data memory places its value
onto the primary and secondary data read buses (CDBR and XDB2), and the value or values
are captured in the move’s destination registers. For a memory write operation, data that is
to be written to data memory is placed onto the core data bus for writes (CDBW).
Multiplications and MACs begin in this stage in the data ALU’s arithmetic unit, and the
multiplication result is stored in an intermediate pipeline latch. Multi-bit shifting
instructions (arithmetic and logical) begin in this stage in the data ALU’s arithmetic unit,
and the temporary result is stored in an intermediate pipeline latch. All data ALU
calculations other than those that are previously listed are performed in the data ALU’s
arithmetic unit and are stored in the destination data ALU register, unless they are executed
using Late Execution.

8. Execute 2 (EX2)—Multiplications, MACs, and multi-bit shift instructions complete in this
stage in the data ALU’s arithmetic unit, and the final result is stored in the destination data
ALU register (ASLL.L, ASRR.L, and LSRR.L take an additional cycle since they are
2-cycle instructions). Data ALU calculations other than those that are listed previously are
performed in the data ALU’s arithmetic unit and are stored in the destination data ALU
register when they are executed using Late Execution.

Table 10-1 on page 10-3 shows the relationship between fundamental operations, such as memory
accesses and calculations, and the various pipeline stages. The execution of data ALU operations in the
pipeline is discussed in more detail in Section 10.2.2, “Data ALU Execution Stages.”
10-2 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Normal Pipeline Operation
Note that memory accesses take place across three stages of the pipeline: an address is provided in the first
cycle of an access, the memory latches the address on the second cycle, and the memory drives the
corresponding data bus on the third cycle. This requirement applies when accessing both program and data
memory, and when fetching both instructions and operands.

10.2 Normal Pipeline Operation
Normal instruction execution occurs in an eight-stage pipeline, allowing most instructions to be retired at a
rate of one instruction per clock cycle. Certain instructions, however, require more than 1 clock cycle to
complete. These include the following:

• Instructions longer than 1 instruction word

• Instructions using an addressing mode that requires more than 1 cycle for the address calculation

• Data ALU arithmetic instructions with one operand in memory

• Instructions causing a change of flow

• Instructions accessing program memory

• Special instructions:

— Multi-bit shifting instructions that operate on 32-bit values

— TSTDECA.W instruction

— NORM instruction

— ALIGNSP instruction

— REP instruction

10.2.1 General Pipeline Operations
Pipelining allows instruction executions to overlap so that the execution of one pipeline stage for a given
instruction occurs concurrently with the execution of other pipeline stages for other instructions. The
processor fetches only 1 instruction word per clock cycle; if an instruction is more than 1 instruction word
in length, it fetches each additional word with an additional cycle before fetching the next instruction.

Table 10-2 on page 10-4 demonstrates simultaneous execution through the pipelining of the five
instructions that are found in Example 10-1 on page 10-4.

Table 10-1. Mapping Fundamental Operations to Pipeline Stages

Operation Pipeline Stages

Instruction fetch P1, P2, IF

Data memory access AG, OP2, EX

AGU calculation AG

Data ALU calculation—Normal EX

Data ALU calculation—Late EX2

Data ALU calculation—multiplication and shifts EX, EX2
Freescale Semiconductor Instruction Pipeline 10-3

Instruction Pipeline
Example 10-1. Example Code to Demonstrate Pipeline Flow

MOVE.W X:(R0),A ; n1: 1-word, 1-cycle instruction
ADD A,B ; n2: 1-word, 1-cycle instruction
MOVE.W B,C ; n3: 1-word, 1-cycle instruction
MOVE.W C1,X:$0C00 ; n4: 2-word, 2-cycle instruction
INC.W C ; n5: 1-word, 1-cycle instruction

The abbreviations n1 and n2 refer to the first and second instructions, respectively, that are executed in the
pipeline. The fourth instruction, n4, contains an instruction extension word (typically an absolute address
or immediate value), which is labeled n4e. As shown in Table 10-2, it takes an additional clock cycle to
fetch and process the extension word.

All instructions are referred to by their n abbreviations before they reach the Instruction Decode stage of
the pipeline. Then, as Table 10-2 demonstrates, the instructions are referred to by name (or by a shortened
version thereof) to reflect that they have been identified.

It can be seen that although each instruction takes many clock cycles to complete execution, throughput
remains high due to the pipelining.

10.2.2 Data ALU Execution Stages
Data ALU instructions are executed in the last two stages of the pipeline, Execute and Execute 2. Data
ALU instructions execute in one of four ways:

• Normal Execution—Arithmetic and logical instructions that begin and complete execution in the
Execute phase.

• Late Execution—Arithmetic and logical instructions that begin and complete execution in the
Execute 2 phase.

• Two-Stage Execution—Multiplication, multiply-accumulate, and multi-bit shifting instructions
that begin execution in the Execute phase and complete in the Execute 2 phase. These instructions
place the data ALU into Late mode.

• Multi-Cycle Execution—Data ALU instructions that execute in more than 1 clock cycle.

Table 10-2. Instruction Pipelining

Pipeline Stage
Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 •

P1 (Pre-Fetch 1) n1 n2 n3 n4 n4e n5 • • • • • •

P2 (Pre-Fetch 2) n1 n2 n3 n4 n4e n5 • • • • •

IF (Instruction Fetch) n1 n2 n3 n4 n4e n5 • • • •

ID (Instruction Decode) mov1

1.In all of the pipeline tables in this chapter, MOVE instructions are notated as “mov.”

add mov mov mov inc • • •

AG (Address Generation) mov add mov mov mov inc • •

OP2 (Operand Pre-Fetch 2) mov add mov mov mov inc •

EX (Execute and Operand Fetch) mov add mov mov mov •

EX2 (Execute 2) — — — — —
10-4 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Normal Pipeline Operation
Data ALU instructions such as ADD, CMP, TST, and NEG are typically executed by the data ALU using
Normal Execution. When a multiplication or multi-bit shifting instruction is encountered, it is processed
using Two-Stage Execution (still executing in a single cycle), and it places the data ALU into the Late
Execution state. The data ALU then remains in the Late state until a non–data ALU instruction is executed.
The transitions between states are determined as follows:

• Instructions that are not executed in the data ALU, and multi-cycle data ALU instructions—except
ASLL.L, ASRR.L, and LSRR.L—place the data ALU into the Normal state.

• Two-stage instructions and the ASLL.L, ASRR.L, and LSRR.L instructions place the data ALU
into the Late state.

• All other instructions keep the data ALU in its current state.

The complete list of two-stage instructions follows. Each of these instructions uses two pipeline stages and
places the data ALU into the Late Execution state.

• IMAC.L, IMPY.L, IMPY.W

• IMACUS, IMACUU, IMPYSU, IMPYUU

• MAC, MACR, MPY, MPYR

• MACSU, MPYSU

• ASLL.W, ASRR.W, LSRR.W

• ASLL.L, ASRR.L, LSRR.L

• ASRAC, LSRAC

There are three conditions where the data ALU can cause pipeline dependencies. They occur when:

• The result of a data ALU instruction that is executed in the Late state is used in the immediately
following instruction as the source register in a move instruction.

• The result of a data ALU instruction that is executed in the Late state is used in the immediately
following two-stage instruction as the source register to a multiplication or multi-bit shifting
operation. A dependency does not occur if the result is used in an accumulation, arithmetic, or logic
operation on the immediately following instruction.

• An instruction requiring condition codes, such as Bcc, is executed immediately after a data ALU
instruction is executed in the Late state.

When a data ALU dependency occurs, interlocking hardware on the core automatically stalls the core for
1 cycle to remove the dependency.

Example 10-2 on page 10-6 contains a code sequence demonstrating the behavior of the pipeline with a
variety of different instructions. Note how instructions that are executed using Normal Execution, such as
n2, n3, and n4, complete before the final stage of the pipeline.
Freescale Semiconductor Instruction Pipeline 10-5

Instruction Pipeline
Example 10-2. Demonstrating the Data ALU Execution Stages

NOP ; n1: Non-data ALU (restores to Normal state)
ADD X0,A ; n2: Normal Execution (Execute phase)
ASL A ; n3: Normal Execution (Execute phase)
MOVE.W A,X:(R0)+ ; n4: Normal Execution (no dependency)

MPY X0,Y0,B ; n5: Two-Stage (Execute and Execute 2)
MOVE.W B,X:(R0)+ ; n6: (dependency occurs--1 stall cycle)

; Non-data ALU (restores to Normal state)

MAC X0,Y0,A ; n7: Two-Stage (Execute and Execute 2)
MAC X0,Y0,A ; n8: Two-Stage (Execute and Execute 2)
SUB Y1,A ; n9: Late Execution (Execute 2 phase)
MOVE.W A,X:(R0)+ ; n10: (dependency occurs--1 stall cycle)

; Non-data ALU (restores to Normal state)

ASRR.W #3,A ; n11: Two-Stage (Execute and Execute 2)
BNE LABEL ; n12: (dependency occurs--1 stall cycle)

; Non-data ALU (restores to Normal state)

Several pipeline effects occur in the code in Example 10-2:

• No pipeline effect between ASL (n3) and MOVE.W (n4), since the ASL is done in Execute

• Pipeline stall occurs because the result of MPY (n5) is not available for write to memory (n6) until
the end of cycle #12

• No pipeline effect between successive MAC and data ALU instructions (n7, n8, and n9)

• Pipeline stall because result of SUB (n9) is not available for write to memory (n10) until the end of
cycle #17

• Pipeline stall because result of ASRR.W (n11) is not available for conditional branching (n12) until
cycle #20

Table 10-3. Execution of Data ALU Instructions in the Pipeline

Pipeline
Stage

Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

P1 n1 n2 n3 n4 n5 n6 n7 n8 n9 — n10 n11 n12 • — • — • • • •

P2 n1 n2 n3 n4 n5 n6 n7 n8 — n9 n10 n11 n12 — • — • • • •

IF n1 n2 n3 n4 n5 n6 n7 — n8 n9 n10 n11 — n12 — • • • •

ID nop add asl mov mpy — mov mac mac sub — mov asrr — bcc • • •

AG — add asl mov mpy — mov mac mac sub — mov asrr — bcc • •

OP2 — add asl mov mpy — mov mac mac sub — mov asrr — bcc •

EX — add asl mov mpy — mov mac mac — — mov asrr — bcc

EX2 — — — — mpy — — mac mac sub — — asrr —
10-6 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Pipeline During Interrupt Processing
10.3 Pipeline During Interrupt Processing
The instruction pipeline functions slightly differently when processing interrupt requests. Beyond the
standard eight-stage pipeline, additional cycles are required for arbitrating and interrupting the core. On a
typical chip implementation, two extra stages are required. This addition effectively makes the interrupt
pipeline 10 levels deep. The two additional stages are as follows:

• Interrupt Arbitration (Int Arbitr)

• Interrupt Request (Int Req)

The Interrupt Arbitration stage is required for arbitrating among all the different possible requesting
sources. If a valid interrupt is found at a high enough priority level after this arbitration is performed, the
program interrupt controller asserts an interrupt request to the core. This assertion occurs during the
Interrupt Request stage.

Note in this example that these 2 additional processing cycles are not real stages in the pipeline. Rather,
they are performed in the interrupt controller, and they do not directly affect the operation of the pipeline.
However, these cycles do affect the overall processing time for an interrupt, so they can be considered
additional pipeline stages for the purpose of calculating interrupt latency. For an exact calculation of
interrupt latency, refer to Section 10.3.8, “Interrupt Latency.”

10.3.1 Standard Interrupt Processing Pipeline
Figure 10-2 on page 10-8 shows the program flow and pipeline during standard interrupt processing.
Freescale Semiconductor Instruction Pipeline 10-7

Instruction Pipeline
Figure 10-2. Standard Interrupt Processing

JSR

Jump Address (LBL)

Main
Program

ii2

ii3

ii4

iin

RTI

Interrupt
Vector Table

Interrupt
Subroutine

(a) Instruction Flow

Interrupt Requests Sampled
by the Arbiter

(b) Interrupt Pipeline

i = Interrupt Arbitration and Request
ii = Interrupt instruction word
ii0 = First word of JSR instruction
ii1 = Second word of JSR instruction
ii5 = RTI instruction
n = Normal instruction word

Explicit
Return From

Interrupt
(RTI)

n1

n2

PC Resumes
Operation

Interrupt
Routine

Pipeline
Stage

Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Int Arbitr i

Int Req i

P1 n1 n2 n3 n4 ii0 ii1 ii1 ii1 ii2 ii3 ii4 ii5 • • • • • • • n2 • • •

P2 n1 n2 n3 n4 ii0 ii1 ii1 ii1 ii2 ii3 ii4 ii5 • • • • • • • n2 • •

IF n1 n2 n3 n4 ii0 ii1 ii1 ii1 ii2 ii3 ii4 ii5 • • • • • • • n2 •

ID n1 — — — jsr jsr jsr jsr ii2 ii3 ii4 rti rti rti rti rti rti rti rti n2

AG n1 — — — jsr jsr jsr jsr ii2 ii3 ii4 rti rti rti rti rti rti rti rti

OP2 n1 — — — jsr jsr jsr jsr ii2 ii3 ii4 rti rti rti rti rti rti rti

EX n1 — — — jsr jsr jsr jsr ii2 ii3 ii4 rti rti rti rti rti rti

EX2 n1 — — — — — — — ii2 ii3 ii4 — — — — —
10-8 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Pipeline During Interrupt Processing
When an interrupt request is asserted, the interrupt controller takes 2 cycles to arbitrate between interrupts
and to send an interrupt request to the core. During this time, the pipeline continues to function normally.
When the core recognizes an interrupt request, as in cycle #5 in Figure 10-2 on page 10-8, the transition to
the exception processing state begins. Any instructions in the pipeline that have not yet been decoded are
replaced with NOPs, and the JSR instruction is fetched from the interrupt vector table.

Upon entering the interrupt service routine after executing the JSR instruction, the core returns to the
normal processing state, and the CCPL has been updated to reflect the new priority level.

When the interrupt handler completes (by executing the RTI instruction), control returns to the interrupted
program. The return address, which is saved on the stack by the JSR, points to instruction n2, since the PC
was frozen as soon as the interrupt was recognized. The PC was not updated to point past n2, even though
instructions n2–n4 had already begun to be fetched.

10.3.2 The RTID Instruction
In the example interrupt processing pipeline that is presented in Figure 10-2 on page 10-8, most of the time
that is needed to execute the (admittedly short) interrupt routine is taken up by the JSR and RTI
instructions. Because the RTI instruction manipulates the software stack and causes execution flow to
change, it takes several cycles to execute. To help reduce the overhead that is required in processing an
interrupt, an alternative to the RTI instruction is provided: the delayed return from interrupt (RTID).

The RTID instruction performs the same function as RTI, but it reduces overhead by executing the
instructions in the 3 subsequent program words before returning control to the interrupt program. These
instruction words, or “delay slots,” must always be filled. If it is not possible to fill all of the delay slots
with useful instructions, then NOP instructions must be placed in the unfilled slots. See Section 4.3,
“Delayed Flow Control Instructions,” on page 4-12 for more information on the RTID instruction.

The interrupt processing pipeline when RTID is used is given in Figure 10-3 on page 10-10. Note the
difference between Figure 10-3 and Figure 10-2 on page 10-8 from cycle #13 onward: the di0–di2
instructions are executed before control returns to instruction n2.
Freescale Semiconductor Instruction Pipeline 10-9

Instruction Pipeline
Figure 10-3. Execution of the RTID Instruction

JSR

Jump Address (LBL)

Main
Program

ii2

ii3

iin

RTID

Interrupt
Vector Table

Interrupt
Subroutine

Interrupt Requests Sampled
by the Arbiter

(b) Interrupt Pipeline

i = Interrupt Arbitration and Request
ii = Interrupt instruction word
ii0 = First word of JSR instruction
ii1 = Second word of JSR instruction
ii5 = RTID instruction
di = Instruction in RTID delay slot
n = Normal instruction word

Explicit
Return From

Interrupt
(RTID)

n1

n2

PC Resumes
Operation

Interrupt
Routine

Pipeline
Stage

Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Int Arbitr i

Int Req i

P1 n1 n2 n3 n4 ii0 ii1 ii1 ii1 ii2 ii3 ii4 ii5 di0 di1 di2 • • • • n2 • • •

P2 n1 n2 n3 n4 ii0 ii1 ii1 ii1 ii2 ii3 ii4 ii5 di0 di1 di2 • • • • n2 • •

IF n1 n2 n3 n4 ii0 ii1 ii1 ii1 ii2 ii3 ii4 ii5 di0 di1 di2 • • • • n2 •

ID n1 — — — jsr jsr jsr jsr ii2 ii3 ii4 rtid rtid rtid rtid rtid di0 di1 di2 n2

AG n1 — — — jsr jsr jsr jsr ii2 ii3 ii4 rtid rtid rtid rtid rtid di0 di1 di2

OP2 n1 — — — jsr jsr jsr jsr ii2 ii3 ii4 rtid rtid rtid rtid rtid di0 di1

EX n1 — — — jsr jsr jsr jsr ii2 ii3 ii4 rtid rtid rtid rtid rtid di0

EX2 n1 — — — — — — — ii2 ii3 ii4 — — — — —

di0

di1

di2

(a) Instruction Flow
10-10 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Pipeline During Interrupt Processing
10.3.3 Nested Interrupts
Interrupts on the DSP56800E architecture can be nested; one exception can interrupt another exception’s
interrupt service routine if it has a higher priority. During initial interrupt processing, interrupts are
disabled. Once the JSR instruction reaches the point in the pipeline where it has begun execution, the core
can safely re-enable interrupts because the return address will be stacked properly before another interrupt
can occur. This re-enabling occurs at cycle #11 in Figure 10-4 on page 10-12. Interrupts are disabled
during cycles #4 through #10.

If a second, higher-priority interrupt request occurs after cycle #4, it is not arbitrated until after interrupts
are re-enabled in cycle #11. This scenario is illustrated in Figure 10-4 as interrupt request i2a. The second
interrupt request interrupts the processing of the first at cycle #13, and it is processed before the interrupt
handler for request i1 resumes.

If the vector table contains a 2-word JSR instruction, no interrupts are allowed between the JSR and the
first instruction in the interrupt service routine (ii2). If the vector table contains a 3-word JSR instruction,
interrupts are permitted between the JSR instruction and the first instruction in the interrupt service routine
(ii2).

10.3.4 SWI and Illegal Instructions During Interrupt
Processing

Another case of interest is where a first interrupt request begins the interrupt pipeline and the instruction at
n1 in Figure 10-4 on page 10-12 is a non-maskable SWI instruction or an illegal instruction. The SWI and
illegal instructions execute in 4 clock cycles. Upon completion of these cycles, the exception that is
serviced will not be the original interrupt request. Instead, the core will service the SWI or illegal
instruction exception that is caused by instruction n1. This condition is true only when the first interrupt
request is at a lower priority level than the exception that is caused by the instruction at n1.
Freescale Semiconductor Instruction Pipeline 10-11

Instruction Pipeline
Figure 10-4. Interrupting an Interrupt Handler (Nested Interrupt)

JSR

Jump Address (LBL)

Interrupt
Handler

2nd ISR — ii2

2nd ISR — ii3

2nd ISR — ii4

2nd ISR — iin

2nd ISR — RTI

Interrupt
Vector Table

Interrupt
Subroutine

(a) Instruction Flow

First Interrupt Request
Sampled by the Arbiter

(b) Interrupt Pipeline

i = Interrupt Arbitration and Request
ii = Interrupt instruction word
ii0 = First word of JSR instruction
ii1 = Second word of JSR instruction
n = Normal instruction word

Explicit
Return From

Interrupt
(RTI or RTID)

1st ISR — ii9

1st ISR — ii10

1st ISR — ii8

PC Resumes
Operation

Interrupt
Routine

Pipeline
Stage

Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Int Arbitr i1 i2 i2a

Int Req i1 i2 i2a

P1 n1 n2 n3 n4 ii0 ii1 ii1 ii1 ii2 ii3 ii4 ii5 ii0 ii1 ii1 ii1 ii2 ii3 ii4 ii5 ii6 ii7

P2 n1 n2 n3 n4 ii0 ii1 ii1 ii1 ii2 ii3 ii4 ii5 ii0 ii1 ii1 ii1 ii2 ii3 ii4 ii5 ii6

IF n1 n2 n3 n4 ii0 ii1 ii1 ii1 ii2 ii3 ii4 ii5 ii0 ii1 ii1 ii1 ii2 ii3 ii4 ii5

ID n1 — — — jsr jsr jsr jsr ii2 — — — jsr jsr jsr jsr ii2 ii3 ii4

AG n1 — — — jsr jsr jsr jsr ii2 — — — jsr jsr jsr jsr ii2 ii3

OP2 n1 — — — jsr jsr jsr jsr ii2 — — — jsr jsr jsr jsr ii2

EX n1 — — — jsr jsr jsr jsr ii2 — — — jsr jsr jsr jsr

EX2 n1 — — — — — — — ii2 — — — — — —

Interrupt Requests Again
Sampled by the Arbiter
10-12 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Pipeline During Interrupt Processing
10.3.5 Fast Interrupt Processing Pipeline
Figure 10-5 shows the program flow, and the corresponding pipeline, during fast interrupt processing.
Within the pipeline, ii0 refers to the first instruction word in the fast interrupt handler, and ii4 refers to the
FRTID instruction. The instructions ii5 and ii6 are the 2 instruction words filling the FRTID’s delay slots.

Figure 10-5. Fast Interrupt Processing

Main
Program

ii0

ii1

ii2

di1

Interrupt
Vector Table

Fast Interrupt
Subroutine

(a) Instruction Flow

Interrupt Requests Sampled
by the Arbiter

(b) Interrupt Pipeline

i = Interrupt Arbitration and Request
ii = Interrupt instruction word
n = Normal instruction word

Explicit
Return From
Fast Interrupt

(FRTID)

n1

n2

PC Resumes
Operation

Pipeline
Stage

Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Int Arbitr i

Int Req i

P1 n1 n2 n3 n4 ii0 ii1 ii2 ii3 ii4 ii5 ii6 ii7 n2 n3 • • • • • • •

P2 n1 n2 n3 n4 ii0 ii1 ii2 ii3 ii4 ii5 ii6 ii7 n2 n3 • • • • • •

IF n1 n2 n3 n4 ii0 ii1 ii2 ii3 ii4 di0 di1 ii7 n2 n3 • • • • •

ID n1 — — — ii0 ii1 ii2 ii3 ii4 di0 di1 — n2 n3 • • • •

AG n1 — — — ii0 ii1 ii2 ii3 frtid di0 di1 — n2 n3 • • •

OP2 n1 — — — ii0 ii1 ii2 ii3 frtid di0 di1 — n2 n3 • •

EX n1 — — — ii0 ii1 ii2 ii3 frtid di0 di1 — n2 n3 •

EX2 n1 — — — ii0 ii1 ii2 ii3 frtid di0 di1 — n2 n3

ii3
FRTID

di0
Freescale Semiconductor Instruction Pipeline 10-13

Instruction Pipeline
10.3.6 Interrupting a Fast Interrupt Service Routine
Fast interrupt service routines can be interrupted by a level 3 interrupt. However, the first few instructions
in a fast interrupt service routine cannot be interrupted, even if a level 3 interrupt is received. Figure 10-6
on page 10-15 shows the fast interrupt pipeline and the point at which interrupts are re-enabled and
subsequent interrupts can be arbitrated. Even if a level 3 interrupt is received prior to this point in the
pipeline, it is not sampled by the interrupt arbiter until instruction cycle #13 (as shown in the figure), so at
least 7 clock cycles in the fast interrupt routine are executed without being interrupted. Note that the
instructions in the FRTID’s 2 delay slots cannot be interrupted.
10-14 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Pipeline During Interrupt Processing
Figure 10-6. Interrupting a Fast Interrupt Routine

(a) Instruction Flow

Level 2 Interrupt Request Sampled
by the Arbiter

(b) Interrupt Pipeline

i = Interrupt Arbitration and Request
ii = Interrupt instruction word
n = Normal instruction word

Pipeline
Stage

Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Int Arbitr i i

Int Req i i

P1 n1 n2 n3 n4 ii0 ii1 ii2 ii3 ii4 ii5 ii6 ii7 ii8 ii9 ii0 ii1 ii2 • • • •

P2 n1 n2 n3 n4 ii0 ii1 ii2 ii3 ii4 ii5 ii6 ii7 ii8 ii9 ii0 ii1 ii2 • • •

IF n1 n2 n3 n4 ii0 ii1 ii2 ii3 ii4 ii5 ii6 ii7 ii8 ii9 ii0 ii1 ii2 • •

ID n1 — — — ii0 ii1 ii2 ii3 ii4 ii5 ii6 — — — ii0 ii1 ii2 •

AG n1 — — — ii0 ii1 ii2 ii3 ii4 ii5 ii6 — — — ii0 ii1 ii2

OP2 n1 — — — ii0 ii1 ii2 ii3 ii4 ii5 ii6 — — — ii0 ii1

EX n1 — — — ii0 ii1 ii2 ii3 ii4 ii5 ii6 — — — ii0

EX2 n1 — — — ii0 ii1 ii2 ii3 ii4 ii5 ii6 — — —

Level 3 Interrupt Request
Sampled by the Arbiter

JSR

Jump Address

Level 2
Interrupt
Handler

ii2

ii3

ii4

iin

RTI

Interrupt
Vector Table

Level 3 Interrupt
Subroutine

Explicit
Return From

Interrupt
(RTI or RTID)

ii6

ii7

ii5

PC Resumes
Operation

Interrupt
Routine

ii8

ii4

FRTID

dly0

dly1
Freescale Semiconductor Instruction Pipeline 10-15

Instruction Pipeline
10.3.7 FIRQ Followed by Another Interrupt
Figure 10-7 on page 10-17 shows the fast interrupt pipeline for the case of a short, three-instruction, fast
interrupt service routine where the following occur:

• A fast interrupt request is received.

• Simultaneously with this request or a short time after it is received, a second interrupt is received.

The point at which interrupts are re-enabled after the exception processing state is exited is shown in the
interrupt pipeline in Figure 10-7. Interrupt arbitration begins again in cycle #11. Even if a level 3 priority
interrupt is received, it is not sampled by the interrupt arbiter until instruction cycle #11, as the figure
shows. This arrangement allows a minimum of 5 clock cycles in the fast interrupt routine to be executed
without being interrupted.

For this short, 3-word interrupt service routine, the fast interrupt routine completes and control returns to
the main program before the second interrupt request is serviced. All interrupt priority levels are eligible
already by cycle #11 because, by this time, the FRTID instruction has restored the status register to its
original value.

In Figure 10-7 on page 10-17, the second interrupt is level 0, 1, or 2. In this case, the interrupt will be
successfully arbitrated in cycle #12 after the contents of the status register have been restored by the
FRTID instruction in cycle #11. This allows a minimum of 2 instruction cycles from the main program to
be executed before the second interrupt is serviced. Additional cycles will be executed if n2 is more than 2
cycles or if n3 is a multi-cycle instruction.

Consider a second case, slightly different from the one shown in Figure 10-7, in which the second interrupt
is level 3. In this case, the interrupt will be successfully arbitrated in cycle #11; exactly one instruction
from the main program will be executed before the second interrupt is serviced.
10-16 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Pipeline During Interrupt Processing
Figure 10-7. Interrupting After Completing the Fastest Fast Interrupt Routine

(a) Instruction Flow—Fast Interrupt Routine Followed by Another Interrupt

Level 2 Fast Interrupt Request Sampled
by the Arbiter

(b) Interrupt Pipeline—Servicing an Interrupt Immediately After a Fast Interrupt Routine

i = Interrupt Arbitration and Request
ii = Interrupt Instruction Word
n = Normal Instruction Word

Pipe
Stage

Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Int Arbitr i i i

Int Req i i i

P1 n1 n2 n3 n4 ii0 ii1 ii2 n3 n2 n3 n4 n5 n6 ii0 ii1 ii2 • • • •

P2 n1 n2 n3 n4 ii0 ii1 ii2 n3 n2 n3 n4 n5 n6 ii0 ii1 ii2 • • •

IF n1 n2 n3 n4 ii0 ii1 ii2 n3 n2 n3 n4 n5 n6 ii0 ii1 ii2 • •

ID n1 — — — frtid dly0 dly1 — n2 n3 — — — ii0 ii1 ii2 •

AG n1 — — — frtid dly0 dly1 — n2 n3 — — — ii0 ii1 ii2

OP2 n1 — — — frtid dly0 dly1 — n2 n3 — — — ii0 ii1

EX n1 — — — frtid dly0 dly1 — n2 n3 — — — ii0

EX2 n1 — — — frtid dly0 dly1 — n2 n3 — — —

Second Interrupt Request
Sampled by the Arbiter

FRTID

dly0

Main
Program

Level 2
Fast Interrupt

n1

n2

n3

n4

n5

n6

dly1

JSR

Jump Address

Level 0–2
General Interrupt
Freescale Semiconductor Instruction Pipeline 10-17

Instruction Pipeline
Figure 10-8 on page 10-19 shows the fast interrupt pipeline for the case of a fast interrupt service routine
where the following occur:

• Two cycles are executed before the FRTID instruction.

• Simultaneously to this execution or a short time afterwards, a second interrupt at level 3 is received.

Interrupt arbitration begins again in cycle #11. At this point, the level 3 interrupt is successfully arbitrated
and exception processing begins. However, the 2-cycle FRTID instruction (with 2 delay slots), which is
shown in the box in the ID stage of the pipeline, is a non-interruptible sequence. Since interrupts can only
occur when instructions complete execution, the pending level 3 interrupt must wait 1 cycle before
continuing into the exception processing state. This wait is indicated by the jagged arrow in Figure 10-8 on
page 10-19.

If 3 cycles were executed before the FRTID instruction (a case that is not shown in the figure), exception
processing would be delayed 2 cycles instead of the 1 cycle shown in the figure.
10-18 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Pipeline During Interrupt Processing
Figure 10-8. Interruption by Level 3 Interrupt During FRTID Execution

(a) Instruction Flow—Fast Interrupt Routine Followed by Another Interrupt

Level 2 Fast Interrupt Request Sampled
by the Arbiter

(b) Interrupt Pipeline—Servicing an Interrupt Immediately After a Fast Interrupt Routine

i = Interrupt Arbitration and Request
ii = Interrupt Instruction Word
n = Normal Instruction Word

Pipe
Stage

Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Int Arbitr i i

Int Req i i

P1 n1 n2 n3 n4 ii0 ii1 ii2 ii3 ii4 ii5 n2 n3 ii0 ii1 ii2 • • • • •

P2 n1 n2 n3 n4 ii0 ii1 ii2 ii3 II4 II5 n2 n3 ii0 ii1 ii2 • • • •

IF n1 n2 n3 n4 ii0 ii1 ii2 ii3 II4 II5 n2 n3 ii0 ii1 ii2 • • •

ID n1 — — — ii0 ii1 frtid dly0 dly1 — — — — ii0 ii1 ii2 •

AG n1 — — — ii0 ii1 frtid dly0 dly1 — — — — ii0 ii1 ii2

OP2 n1 — — — ii0 ii1 frtid dly0 dly1 — — — — ii0 ii1

EX n1 — — — ii0 ii1 frtid dly0 dly1 — — — — ii0

EX2 n1 — — — ii0 ii1 frtid dly0 dly1 — — — —

Second Interrupt Request
(Level 3) Sampled by the Arbiter

FRTID

dly0

Main
Program

Level 2
Fast Interrupt

n1

n2

n3

n4

n5

n6

dly1

JSR

Jump Address

Level 3
General Interrupt

ii1
ii0

(Wait 1 Cycle)
Freescale Semiconductor Instruction Pipeline 10-19

Instruction Pipeline
Figure 10-9 on page 10-21 shows the fast interrupt pipeline for the case of a short fast interrupt service
routine where the following occur:

• A fast interrupt request is received.

• Simultaneously with this request or a short time after it is received, a second interrupt is received.

In this case, the instructions in the FRTID’s are multi-cycle instructions such that the 2 delay slots execute
in 4 cycles.

For the fast interrupt service routine in this example, control does not return to the main program but
instead immediately enters the second interrupt. This is true anytime the instructions in the FRTID’s delay
slots execute in 4 or more cycles.

If the second interrupt is level 0, 1, or 2, successful arbitration occurs in cycle #12 because the FRTID
instruction must first restore the status register. If the second interrupt request is level 3, arbitration begins
1 cycle earlier in cycle #11. The level 3 interrupt completes successful arbitration 1 cycle earlier. The
exception processing state, however, can only be entered upon the completion of an instruction. Since the
second cycle of the FRTID instruction executes after the completion of the instructions in the delay slots,
the exception processing state is entered at the same time, regardless of the priority level of the second
interrupt.

Consider another scenario that is not shown in Figure 10-9: If the instructions in the FRTID’s 2 delay slots
execute in 3 clock cycles, then 1 instruction from the main program, n2, will be executed before the second
interrupt is entered.
10-20 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Pipeline During Interrupt Processing
Figure 10-9. Second Interrupt Case with 4 Cycles Executed in FRTID Delay Slots

(a) Instruction Flow—Fast Interrupt Routine Followed by Another Interrupt

Level 2 Fast Interrupt Request Sampled
by the Arbiter

(b) Interrupt Pipeline—Servicing an Interrupt Immediately After a Fast Interrupt Routine

i = Interrupt Arbitration and Request
ii = Interrupt Instruction Word
n = Normal Instruction Word

Pipe
Stage

Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Int Arbitr i i i

Int Req i i i

P1 n1 n2 n3 n4 ii0 ii1 ii2 ii3 n2 n3 n4 n5 n6 ii0 ii1 ii2 • • • •

P2 n1 n2 n3 n4 ii0 ii1 ii2 ii3 n2 n3 n4 n5 n6 ii0 ii1 ii2 • • •

IF n1 n2 n3 n4 ii0 ii1 ii2 ii3 n2 n3 n4 n5 n6 ii0 ii1 ii2 • •

ID n1 — — — frtid dly0 dly0 dly1 dly1 — — — — ii0 ii1 ii2 •

AG n1 — — — frtid dly0 dly0 dly1 dly1 — — — — ii0 ii1 ii2

OP2 n1 — — — frtid dly0 dly0 dly1 dly1 — — — — ii0 ii1

EX n1 — — — frtid dly0 dly0 dly1 dly1 — — — — ii0

EX2 n1 — — — frtid dly0 dly0 dly1 dly1 — — — —

Second Interrupt Request
Sampled by the Arbiter

FRTID

dly0

Main
Program

Level 2
Fast Interrupt

n1

n2

n3

n4

n5

n6

dly1

JSR

Jump Address

Level 0–3
General Interrupt
Freescale Semiconductor Instruction Pipeline 10-21

Instruction Pipeline
10.3.8 Interrupt Latency
Interrupt latency is the time between when an interrupt request first appears and when the first instruction
in an interrupt service routine is actually executed. The interrupt can only take place on instruction
boundaries (which are subject to the non-interruptible sequences that are described in Section 9.3.4,
“Non-Interruptible Instruction Sequences,” on page 9-10). The length of execution of an instruction can
affect interrupt latency.

For purposes of calculation, interrupt latency is defined here as the time between when the interrupt
controller first arbitrates among the interrupt sources and when the first instruction in an interrupt handler
is latched into the instruction latch and is ready to be executed. This first instruction is defined as the
instruction that is executed immediately after the JSR from the interrupt vector table. See Figure 10-10.

Figure 10-10. Interrupt Latency Calculation

10.3.8.1 Interrupt Latency

Interrupt latency is calculated as follows:

Latency = Execution time of instruction n1
+ 4 clock cycles (1 for arbitration and 3 NOPs)
+ the number of clock cycles to execute the JSR (4 or 5 cycles)
+ wait states when the JSR instruction pushes the PC and SR to the stack
+ wait states due to program fetches of n3, n4, and ii0–ii3
(or ii0–ii4 if the JSR instruction executes in 5 cycles)

The largest execution time for instruction n1 is 8 clock cycles (when n1 is an RTI or RTS instruction). See
Section 10.3.8.3, “Cases That Increase Interrupt Latency.”

Interrupt Request Sampled
by the Arbiter

Pipeline
Stage

Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Int Arbitr i

Int Req i

P1 n1 n2 n3 n4 ii0 ii1 ii1 ii1 ii2 ii3 ii4 • • • • • • • • • • •

P2 n1 n2 n3 n4 ii0 ii1 ii1 ii1 ii2 ii3 ii4 • • • • • • • • • •

IF n1 n2 n3 n4 ii0 ii1 ii1 ii1 ii2 ii3 ii4 • • • • • • • • •

ID n1 — — — jsr jsr jsr jsr ii2 ii3 ii4 • • • • • • • •

AG n1 — — — jsr jsr jsr jsr ii2 ii3 ii4 • • • • • • •

OP2 n1 — — — jsr jsr jsr jsr ii2 ii3 ii4 • • • • • •

EX n1 — — — jsr jsr jsr jsr ii2 ii3 ii4 • • • • •

EX2 n1 — — — jsr jsr jsr jsr ii2 ii3 ii4 • • • •

First Instruction in Handler Reaches
Instruction Decode
10-22 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Pipeline During Interrupt Processing
10.3.8.2 Re-Enabling Interrupt Arbitration

The time when interrupt arbitration is allowed to resume is calculated as follows:

Re-enable = Execution time of instruction n1
+ 4 clock cycles (1 for arbitration and 3 NOPs forced into pipeline)
+ 3 clock cycles (first 3 cycles executing the JSR instruction)
+ wait states when the JSR instruction pushes the PC and SR to the stack
+ wait states due to program fetches of n3, n4, and ii0–ii2

10.3.8.3 Cases That Increase Interrupt Latency

Some special cases increase interrupt latency. Section 9.3.4, “Non-Interruptible Instruction Sequences,” on
page 9-10 documents instruction sequences that are not interruptible. Such sequences increase latency.

Figure 10-11 demonstrates such a case. When the instruction n1 is a 1-word conditional branch instruction,
and when the condition evaluates to false, the two instructions immediately following the Bcc, n2 and n3,
are non-interruptible.

Figure 10-11. Interrupt Latency Calculation—Non-Interruptible Instructions

The STOP instruction places the core into the stop processing state, where interrupts are not recognized.
The WAIT instruction places the core into the wait processing state. An enabled interrupt brings the core
out of this low-power state.

The REP instruction and the instruction that it repeats are not interruptible. Instead, these two instructions
are treated as a single 2-word instruction, regardless of the number of times that the second instruction is
repeated. Instruction fetches are suspended and are re-activated only after the repeat loop is finished (see
Figure 10-12 on page 10-24). During the execution of n2 in Figure 10-12, no interrupts will be serviced.
When the loop finally completes, instruction fetches are re-initiated and pending interrupts can be serviced.

Interrupt Requests
Sampled by the Arbiter

Pipeline
Stage

Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Int Arbitr i

Int Req i

P1 n1 n2 n3 n4 n5 n6 n7 n8 ii0 ii1 ii1 ii1 ii2 ii3 ii4 • • • • • • •

P2 n1 n2 n3 n4 n5 n6 n7 n8 ii0 ii1 ii1 ii1 ii2 ii3 ii4 • • • • • •

IF n1 n2 n3 n4 n5 n6 n7 n8 ii0 ii1 ii1 ii1 ii2 ii3 ii4 • • • • •

ID bcc bcc bcc n2 n3 — — — jsr jsr jsr jsr ii2 ii3 ii4 • • • •

AG bcc bcc bcc n2 n3 — — — jsr jsr jsr jsr ii2 ii3 ii4 • • •

OP2 bcc bcc bcc n2 n3 — — — jsr jsr jsr jsr ii2 ii3 ii4 • •

EX bcc bcc bcc n2 n3 — — — jsr jsr jsr jsr ii2 ii3 ii4 •

EX2 bcc bcc bcc n2 n3 — — — jsr jsr jsr jsr ii2 ii3 ii4

First Instruction
Reaches Decode
Freescale Semiconductor Instruction Pipeline 10-23

Instruction Pipeline
Figure 10-12. Interrupt Latency and the REP Instruction

10.3.8.4 Delay When Enabling Interrupts via CCPL

Another case of interest is the time from the enabling of an interrupt by updating the CCPL in the status
register until the time when the interrupt controller first arbitrates with the newly modified CCPL and an
already pending interrupt is serviced.

n2

JSR

Main
Program

n1 (REP #4)

n2

Interrupt
Synchronized and

Recognized
as Pending

Process Interrupt:
Fetch JSR Instruction from
the Interrupt Vector Table

Jump Address

n2

n3

n4
n5

n6

Interrupts
Re-Enabled

n2
n2

Instruction n2 Replaced per
the REP Instruction

(a) Instruction Flow

Repeat
4 Times

Interrupt Requests Sampled
by the Arbiter

(b) Interrupt Pipeline

i = Interrupt Arbitration and Request
i% = Interrupt Request rejected by core and remains pending
ii = Interrupt instruction word
n = Normal instruction word

Pipeline
Stage

Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Int Arbitr i

Int Req i% i% i% i% i% i% i% i

P1 rep n2 ii0 ii1 ii1 ii1 ii2 ii3 • • •

P2 rep n2 ii0 ii1 ii1 ii1 ii2 ii3 • •

IF rep n2 ii0 ii1 ii1 ii1 ii2 ii3 •

ID rep rep n2 n2 n2 n2 — — — jsr jsr jsr jsr ii2 ii3

AG rep rep n2 n2 n2 n2 — — — jsr jsr jsr jsr ii2

OP2 rep rep n2 n2 n2 n2 — — — jsr jsr jsr jsr

EX rep rep n2 n2 n2 n2 — — — jsr jsr jsr

EX2 rep rep n2 n2 n2 n2 — — — jsr jsr
10-24 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Pipeline During Interrupt Processing
This case is demonstrated in Figure 10-13. The following notation is used in the figure:

• n1 is a 1-cycle instruction that modifies the SR register.

• p0 and p1 are the 2 instruction cycles that are executed immediately before instruction n1. They can
be a single multi-cycle instruction or two single-cycle instructions.

• ii0 is the first word that is fetched from the interrupt vector table for the interrupt that is serviced.
In Figure 10-13, ii0 is the first word of the JSR instruction.

The single-cycle instruction n1 in this example writes to the status register, lowering the CCPL. The actual
write to the CCPL occurs at the end of cycle #7 (the Execute 2 stage is not used by instruction n1). In cycle
#8, the program interrupt controller arbitrates the already pending interrupts, but now with a lower CCPL.
An interrupt is now recognized as valid, and interrupt processing begins.

Figure 10-13. Delay When Updating the CCPL

The exact calculation of the time to recognize and process a pending interrupt after modifying the CCPL is
measured from the decode of instruction n1, which modifies CCPL (the beginning of cycle #4 in
Figure 10-13), to the first decode cycle of the first instruction that is fetched from the vector table after a
pending interrupt is recognized (beginning of cycle #13):

Delay =Execution time of instruction n1
+ 3 clock cycles for n1 to reach the end of the Execute phase
+ 1 clock cycle for arbitration with updated CCPL
+ remaining execution time of “Instruction at Int Req” (see following discussion)
+ 3 clock cycles for NOPs forced into pipeline
+ any pipeline core stalls due to data memory dependencies or wait states for p0 and p1
+ wait states due to program fetches of n2 through n5
– 1 clock cycle if n1 is a 2-cycle instruction that writes an immediate to the SR

In the preceding equation, the “Instruction at Int Req” is defined as the instruction in the Instruction
Decode stage of the pipeline when the pending interrupt is at the Int Req stage of the pipeline. In this
example, the instruction is n6. The “remaining execution time of ‘Instruction at Int Req’” is the number of
cycles from the time that the interrupt request reaches the Int Req stage for the pipeline to the time when
this instruction completes the pipeline’s decode stage.

Write to SR Changes the
CCPL, Enabling InterruptsEE

Pipeline
Stage

Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Int Arbitr i

Int Req i

P1 n1 n2 n3 n4 n5 n6 n7 n8 n9 ii0 ii1 ii1 ii1 ii2 ii3 ii4 • • • • •

P2 p0 n1 n2 n3 n4 n5 n6 n7 n8 n9 ii0 ii1 ii1 ii1 ii2 ii3 ii4 • • • •

IF p1 p0 n1 n2 n3 n4 n5 n6 n7 n8 n9 ii0 ii1 ii1 ii1 ii2 ii3 ii4 • • •

ID p1 p0 n1 n2 n3 n4 n5 n6 — — — jsr jsr jsr jsr ii2 ii3 ii4 • •

AG p1 p0 n1 n2 n3 n4 n5 n6 — — — jsr jsr jsr jsr ii2 ii3 ii4 •

OP2 p1 p0 n1 n2 n3 n4 n5 n6 — — — jsr jsr jsr jsr ii2 ii3 ii4

EX p1 p0 n1 n2 n3 n4 n5 n6 — — — jsr jsr jsr jsr ii2 ii3

EX2 p1 p0 — n2 n3 n4 n5 n6 — — — — — — — ii2

Arbitrates with NEW CCPL, and
Pending Interrupt Is Serviced
Freescale Semiconductor Instruction Pipeline 10-25

Instruction Pipeline
In the example in Figure 10-13 on page 10-25, the “remaining execution time” is 1 cycle. If n6 is a 2-cycle
instruction with its first decode cycle in cycle #9, the remaining execution time is 2 cycles. If a 2-word,
2-cycle instruction is contained in n5 and n6, the remaining execution time is 1 because there is only 1
remaining instruction cycle once the Int Req takes place.

The preceding timing calculation also applies when pending interrupts are already waiting and interrupts
are enabled by instruction n1.

10.4 Pipeline Dependencies and Interlocks
The pipeline is normally transparent to the user. However, there are certain instruction sequences that can
cause the pipeline to stall, affecting program execution. Most of these pipeline dependencies and resulting
interlocks occur because the result of an operation occurring very deep in the pipeline is used by the
immediately following instructions that are in earlier stages in the pipeline. Dependencies and interlocks
can also occur when there is contention for an internal resource, such as the status register (SR).

There are three methods for handling pipeline dependencies:

1. Hardware interlocking—the DSC automatically stalls the pipeline 1 or more cycles

2. Handling by development tools—the assembler automatically inserts NOP instructions

3. Instruction sequence restrictions—the instruction sequence is not allowed

In the first case, dependencies are detected in hardware, and the pipeline automatically stalls for the
required number of cycles. In the second case, the DSC does not stall the pipeline; rather, the assembler
issues a warning and inserts the appropriate number of NOP instructions between the dependent
instructions. In the third case, the assembler generates an error, and the sequence must be re-coded.

10.4.1 Data ALU Pipeline Dependencies
There are some cases within the data ALU unit where the nature of the pipeline can result in interlocks and
stalls, affecting the execution of a sequence of instructions. Data ALU dependencies fall into three
different categories:

• Interlocks due to two-stage data ALU execution

• Dependencies with OMR bits taking effect

• Dependencies on reading status bits in the SR

In most cases, the pipeline will automatically stall when one of these dependencies occurs. In some
instances, NOP instructions are automatically inserted between instructions by the assembler to correct the
dependency.

One common dependency occurs when results that are calculated in the Execute 2 stage of the pipeline are
used as input operands in an immediately following two-stage instruction. Example 10-3 and Table 10-4
on page 10-27 illustrate this type of dependency.
10-26 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Pipeline Dependencies and Interlocks
Example 10-3. Data ALU Operand Dependencies

NOP ; n1: Non-data ALU (restores to Normal state)
ADD X0,A ; n2: Normal Execution (Execute phase)
SUB A,B ; n3: Normal Execution (Execute phase)
MPY B1,C1,D ; n4: Two-Stage (Execute and Execute 2)
MAC X0,Y0,D ; n5: Two-Stage (Execute and Execute 2)
MPY D1,X0,C ; n6: Two-Stage (Execute and Execute 2)
AND.W Y0,C ; n7: Late Execution (Execute 2 phase)
ASLL.W #3,C ; n8: Two-Stage (Execute and Execute 2)
ASLA R0 ; n9: Non-data ALU (restores to Normal state)
MPY C1,D1,C ; n10: Two-Stage (Execute and Execute 2)

Operand dependencies occur in the example between n5 and n6 and between n7 and n8. Instruction n9
removes a potential dependency by resetting the pipeline to the Normal state. Note that no operand
dependency exists with the D register between n4 and n5 because it is used only in accumulation, not
multiplication. Note also that n7 completes in Execute 2, since the pipeline is forced Late by n6.

It should be noted that there are no pipeline effects when the data ALU executes instructions using Late
Execution as long as the following instruction neither writes the results to memory nor depends on the
condition codes that are generated.

This situation is demonstrated in Example 10-4. As the associated pipeline in Table 10-5 on page 10-28
shows, there are no pipeline dependencies. Note that n2 and n3 in this example complete in the Execute 2
stage because the pipeline is placed in the Late state by n1.

Example 10-4. Case with No Data ALU Pipeline Dependencies

MAC X0,Y0,A ; n1: performed in Execute and Execute 2
SUB Y1,A ; n2: Late Execution (Execute 2 phase)
ASL A ; n3: Late Execution (Execute 2 phase)
TFRA R2,R1 ; n4: Non-data ALU (restores to Normal state)
MOVE.W A,X:(R0)+ ; n5: (no dependency)
ADD X0,A ; n6: Normal Execution (Execute phase)

Table 10-4. Data ALU Operand Dependency Pipeline

Pipeline
Stage

Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Int Arbitr

Int Req

P1 n1 n2 n3 n4 n5 n6 n7 n8 n9 — n10 • — • • • • • • • •

P2 n1 n2 n3 n4 n5 n6 n7 n8 — n9 n10 — • • • • • • • •

IF n1 n2 n3 n4 n5 n6 n7 — n8 n9 — n10 • • • • • • •

ID nop add sub mpy mac — mpy and — asll asla mpy • • • • • •

AG — add sub mpy mac — mpy and — asll asla mpy • • • • •

OP2 — add sub mpy mac — mpy and — asll — mpy • • • •

EX — add sub mpy mac — mpy — — asll — mpy • • •

EX2 — — — mpy mac — mpy and — asll — mpy • •
Freescale Semiconductor Instruction Pipeline 10-27

Instruction Pipeline
10.4.2 AGU Pipeline Dependencies
Dependencies that are similar to those presented for the data ALU can occur with the address generation
unit, affecting the execution of a sequence of instructions. Many pipeline dependencies are caused by the
fact that addresses are issued early in the pipeline (AG stage), while registers are written deeper within the
pipe (EX stage).

The most frequently occurring dependencies take place when an AGU register (R0–R5, N, or SP) is
modified using a move or bit-manipulation instruction. A dependency occurs if the same register is used
within the next 2 immediately following instruction cycles and if it is:

• used as a pointer in an addressing mode.

• used as an offset in an addressing mode.

• used as an operand in an AGU calculation.

• used in a TFRA instruction.

When these conditions occur, a hardware interlock occurs and the DSC automatically stalls the pipeline
1 or 2 cycles. This AGU dependency is demonstrated in Example 10-5.

Example 10-5. Pipeline Dependency with AGU Registers

MOVE.L A10,R0 ; n1: Write AGU pointer register
MOVE.W X:(R0),X0 ; n2: Use same register as an address
ADD X0,B ; n3: Use value in x0 just read from memory

A pipeline interlock occurs between n1 and n2 because the address for the MOVE.W instruction (n2) is
formed at the Address Generation stage of the pipeline, which would normally occur at cycle #6 for n2 in
Table 10-6 on page 10-29. The MOVE.L instruction (n1), however, updates the R0 register very deep in
the pipeline—at cycle #7. Because the R0 register is available for use in cycle #8, interlocking hardware on
the core automatically stalls the core for 2 cycles.

Table 10-5. Data ALU Pipeline with No Dependencies

Pipeline Stage
Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 • • •

P1 mac sub asl tfra mov add • • • • • • • •

P2 mac sub asl tfra mov add • • • • • • •

IF mac sub asl tfra mov add • • • • • •

ID mac sub asl tfra mov add • • • • •

AG mac sub asl tfra mov add • • • •

OP2 mac sub asl — mov add • • •

EX mac — — — mov add • •

EX2 mac sub asl — — — •
10-28 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Pipeline Dependencies and Interlocks
If a dependency is caused by a modification of the N3 or M01 registers by a move or bit-manipulation
instruction, or if a bit-manipulation operation is performed on the N register, the DSC does not
automatically stall the pipeline. Instead, the development tools automatically insert the appropriate number
of NOP instructions to ensure that the program executes as intended.

There are some special cases where there are no AGU dependencies. There is no dependency when
immediate values are written to the address pointer registers—R0–R5, N, and SP. Similarly, there are no
dependencies when a register is loaded with a TFRA instruction. Example 10-6 and Table 10-7 on
page 10-30 illustrate this case.

Example 10-6. Case Without AGU Pipeline Dependencies

MOVEU.W#$4,R0 ; n1: Write AGU pointer register with immediate
MOVE.W X:(R0),A ; n2: Use same register to access memory

MOVE.W #3,R1 ; n3: Write AGU pointer register with immediate
ADDA R0,R1 ; n4: Use same register in AGU calculation
MOVE.W X:(R1)-,B ; n5: Use same register to access memory

TFRA R1,R2 ; n6: Copy one AGU pointer register to another
MOVE.W X:(R2),C ; n7: Use same register to access memory

Table 10-6. AGU Write Dependency Pipeline

Pipeline
Stage

Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 • • •

P1 n1 n2 n3 n4 n5 — — • • • • • • •

P2 n1 n2 n3 n4 — — n5 • • • • • •

IF n1 n2 n3 — — n4 n5 • • • • •

ID mov.l — — mov.w add n4 n5 • • • •

AG mov.l — — mov.w add n4 n5 • • •

OP2 mov.l — — mov.w add n4 n5 • •

EX mov.l — — mov.w add n4 n5 •

EX2 — — — — — n4 n5
Freescale Semiconductor Instruction Pipeline 10-29

Instruction Pipeline
10.4.3 Instructions with Inherent Stalls
There is an infrequently used class of move instructions that introduce stalls into the pipeline due to
pipeline effects. The assembler will issue a warning when any of these instructions are encountered.

The pipeline automatically inserts 2 stall cycles when move instructions that satisfy all of the following
characteristics are executed:

• The instruction is a move from a register to data memory.

• The source of the move is an AGU register (R0–R5, N, or SP).

• The AGU register that is used for the effective address is the same AGU register that is used as the
source of the move instruction.

• The addressing mode is one of the three post-update addressing modes:

— Post-increment

— Post-decrement

— Post-update by offset register

The inserted stall cycles effectively make these instructions 3-cycle instructions. The stalls are inserted so
that the register is updated by the addressing mode after being used as the source register in the move
instruction. Example 10-7 shows three instructions that fall into this category.

Example 10-7. MOVE Instructions That Introduce Stalls

MOVE.W R1,X:(R1)+ ; R1 stored with R1 post-update

MOVE.W N,X:(N)- ; N stored with N post-update

MOVE.W R5,X:(R5)+N ; R5 stored with R5 post-update

This type of dependency occurs whenever an address pointer register is used as the source in a store
instruction, while, within the same instruction, the same pointer is being updated (modified) by an
addressing mode. There is no dependency if the register is used as a destination in the move instruction.
Example 10-8 on page 10-31 shows this case and other instances where there is no dependency.

Table 10-7. AGU Pipeline With No Dependencies

Pipeline
Stage

Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 • • •

P1 n1 n2 n3 n4 n5 n6 n7 • • • • • • •

P2 n1 n2 n3 n4 n5 n6 n7 • • • • • •

IF n1 n2 n3 n4 n5 n6 n7 • • • • •

ID movu mov mov add mov tfra mov • • • •

AG movu mov mov add mov tfra mov • • •

OP2 movu mov mov add mov tfra mov • •

EX movu mov mov add mov tfra mov •

EX2 — — — — — — —
10-30 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Pipeline Dependencies and Interlocks
Example 10-8. Instructions with No Stalls

MOVE.W R2,X:(R1)+ ; R2 stored with R1 post-update

MOVEU.WX:(N)-,N ; N loaded with N post-update

MOVE.W R5,X:(R5+N) ; R5 stored with no R5 post-update

10.4.3.1 Dependencies with Hardware Looping

There are a few dependencies that occur when one is working with the DO, DOSLC, and REP hardware
looping mechanisms. In particular, a dependency occurs when the LC register is loaded prior to executing
one of the hardware looping instructions. Due to the architecture of the instruction pipeline, none of the
hardware looping instructions can be executed immediately after a value is placed in the LC register.

Example 10-9 shows a code sequence that has such a dependency.

Example 10-9. Dependency with Load of LC and Start of Hardware Loop

MOVEU.WR0,LC ; n1: Write to LC immediately followed by:
DOSLC LABEL ; n2: 3-cycle, 2-word DOSLC loop
MOVE.W X:(R3)+,X0 ; n3
ADD X0,B ; n4

LABEL

In the code sequence in Example 10-9, the value that is loaded into LC in the first instruction is not
available when it is needed by the DOSLC instruction: 2 more cycles are required before it is available in
the right place in the pipeline.

The solution to this problem is to insert instructions that require at least 2 cycles to execute between the
load of LC and the DOSLC instruction. If instructions are not inserted to correct this problem, the
assembler will insert as many NOP instructions as necessary to ensure that the code executes correctly.
Freescale Semiconductor Instruction Pipeline 10-31

Instruction Pipeline
10-32 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Chapter 11
JTAG and Enhanced On-Chip
Emulation (Enhanced OnCE)
The DSP56800E Family includes extensive integrated support for application software development and
real-time debugging. Two modules, the Enhanced On-Chip Emulation module (Enhanced OnCE) and the
core test access port (TAP, commonly called the JTAG port), work together to provide these capabilities.
Both are accessed through a common JTAG/Enhanced OnCE interface. Using these modules allows the
user to insert the DSC chip into a target system while retaining debug control. This capability is especially
important for devices without an external bus, since it eliminates the need for a costly cable to bring out the
footprint of the chip, as is required by a traditional emulator system.

The DSP56800E Enhanced OnCE module is a Freescale-designed module that is used to develop and
debug application software used with the chip. This module allows non-intrusive interaction with the DSC
and is accessible either through the pins of the JTAG interface or by software program control of the
DSP56800E core. Among the many features of the Enhanced OnCE module is the support for data
communication between the DSC chip and the host software development and debug systems in real-time
program execution. Other features allow for hardware breakpoints, the monitoring and tracking of program
execution, and the ability to examine and modify the contents of registers, memory, and on-chip
peripherals, all in a special debug environment. No user-accessible resources need to be sacrificed to
perform debugging operations.

The DSP56800E JTAG port is used to provide an interface for the Enhanced OnCE module to the DSC
JTAG pins. This TAP controller is designed to be incorporated into a chip multi–JTAG TAP Linking
Module (JTAG TLM) system. The JTAG TLM is a dedicated, user-accessible, test access port (TAP)
system that is compatible with the IEEE Standard 1149.1a-1993, IEEE Standard Test Access Port and
Boundary-Scan Architecture.

This chapter presents an overview of the capabilities of the JTAG and Enhanced OnCE modules. Because
their operation is dependent upon the architecture of a specific DSP56800E device, the exact
implementation is necessarily device dependent.

11.1 Enhanced OnCE Module
The Enhanced OnCE module provides emulation and debug capability directly on the chip, eliminating the
need for expensive and complicated stand-alone in-circuit emulators (ICEs). The Enhanced OnCE module
permits full-speed, non-intrusive emulation on a user’s target system. This section describes the Enhanced
OnCE emulation environment for use in debugging real-time embedded applications.
Freescale SemiconductorJTAG and Enhanced On-Chip Emulation (Enhanced OnCE) 11-1

JTAG and Enhanced On-Chip Emulation (Enhanced OnCE)
Because emulation capabilities are tied to the particular implementation of a DSP56800E–based device,
the user’s manual for the appropriate device should be consulted for complete details on implementation
and supported functions.

11.1.1 Enhanced OnCE Module Capabilities
The capabilities of the Enhanced OnCE module include the following:

• Examine or modify the contents of any core or memory-mapped peripheral register

• Examine and modify program or data memory

• Step at full speed on one or more instructions

• Save a programmable change-of-flow instruction capture to the trace buffer

• Display the contents of the real-time instruction trace buffer

• Allow the transfer of data between the core and external host in real-time program execution by
using peripheral-mapped transmit and receive registers

• Access Enhanced OnCE registers and programming model by either the DSP56800E software or
the debugging system through the JTAG port

• Provide status of Enhanced OnCE events in a status register or on an output pin from the core

• Count a variety of events including clock cycles and instructions executed

• Enter debug mode in any of the following ways:

— microprocessor instruction

— the actions of the Enhanced OnCE module

— the core JTAG port

— a special debug request input pin to the core

• Interrupt or break into debug mode on program memory addresses (fetch, read, write, or read and
write access)

• Interrupt or break into debug mode on accesses to data memory or on-chip peripheral registers
(read, write, or read and write access) and for byte, word, or long data type accesses

• Save or restore the current state of the chip’s pipeline

• Display the contents of the real-time instruction trace buffer

• Return to normal user mode from debug mode

These capabilities will be explained in more detail in the following sections. Additional debugging and
emulation capabilities may be provided on particular DSP56800E-based devices. Consult the user’s
manual for the particular device for more information.

11.2 Enhanced OnCE System Level View
A system level view of the Enhanced OnCE module resources is shown in Figure 11-1. Although the
Enhanced OnCE module is currently contained in the DSP56800E core, they are conceptually shown
separate in this picture for a simpler understanding of the debug port capabilities.

In this conceptual diagram, the DSP56800E core contains the core’s execution units, core register files, etc.
It is this block that executes DSP56800E instructions. The Enhanced OnCE module can be viewed as a
11-2 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Enhanced OnCE System Level View
separate module which acts concurrently with the DSP56800E core. This module contains its own
programming model, simple Enhanced OnCE instructions, and its own units:

• Enhanced OnCE Control Unit, which contains:

— Enhanced OnCE Control

— Step Counter

— Realtime Data Transfer Unit

• Breakpoint Unit

• Trace Buffer

After being properly initialized and programmed for breakpoint triggering and associated actions, the
EOnCE module operates in parallel with the DSP56800E core. As the DSP56800E core is executing
instructions, the Enhanced OnCE module can do the following:

• Receive new Enhanced OnCE commands

• Read / Write Enhanced OnCE registers through the JTAG interface
(can also be accessed through the DSP56800E core’s system buses)

• Monitor DSP56800E buses for breakpoint conditions

• Capture DSP56800E program addresses when appropriate in the Trace Buffer

• Generate any of several different Enhanced OnCE interrupt requests

• Halt the DSP56800E core upon a certain debug event so it enters the Debug processing state

If the DSP56800E core has been halted by entering the Debug processing state, the Enhanced OnCE module
is still capable of receiving new commands as well as reading or writing any of the Enhanced OnCE
registers.

Figure 11-1. DSP56800E On-Chip System with Debug Port

Program
Memory

IP-BUS

Data
Memory

IP-Bus
Bridge

DSP56800E

Core

JTAG

PIC

Trace
Buffer

System Buses

JTAG
Pins

EOnCE
Control

Breakpoint
Unit
Freescale SemiconductorJTAG and Enhanced On-Chip Emulation (Enhanced OnCE) 11-3

JTAG and Enhanced On-Chip Emulation (Enhanced OnCE)
NOTE:

The Enhanced OnCE blocks shown in Figure 11-1 (EOnCE Control,
Breakpoint Unit, and Trace Buffer) are actually located inside the
DSP56800E core. The figure is only conceptual and was drawn this way
to better demonstrate how these individual blocks are used in a
DSP56800E system.

11.3 Accessing the Enhanced OnCE Module
Resources in the Enhanced OnCE module can be accessed either through the JTAG port or under software
program control from the DSC core. These two methods allow debugging activity to be controlled either
by a host development system or by a program that is executing on the DSP56800E device. The two
methods are discussed below.

11.3.1 External Interaction via JTAG
Development and debugging systems can control Enhanced OnCE debugging actions by communicating
with the Enhanced OnCE via the JTAG port. All of the Enhanced OnCE resources are available serially
through the normal JTAG access protocol.

When interacting via JTAG, the DSP56800E JTAG and Enhanced OnCE modules are tightly coupled. The
interface for both modules is handled by the JTAG port, which communicates with the host software
development and debug systems. Figure 11-2 shows a block diagram of the JTAG/Enhanced OnCE
modules and the JTAG terminals used in the external interface.

The JTAG acts as an external interface controller for the Enhanced OnCE, transparently passing all
communication between the Enhanced OnCE and the host development system. The JTAG port enables
interaction with the debug capabilities provided by the Enhanced OnCE, and its external serial interface is
used by the Enhanced OnCE module for sending and receiving debugging commands and data.

A special JTAG instruction is executed to enable communication with the Enhanced OnCE module. While
Enhanced OnCE communication is active, the JTAG module transparently transfers all data that is
received on the JTAG port to the Enhanced OnCE module.

The JTAG port can also act as a completely independent module. When it is disabled, it has no impact on
the function of the core.
11-4 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Accessing the Enhanced OnCE Module
Figure 11-2. JTAG/Enhanced OnCE Interface Block Diagram

11.3.2 Core Access to the Enhanced OnCE Module
The core can also access the Enhanced OnCE module directly executing DSP56800E instructions which
access the Enhanced OnCE module as memory mapped registers. This technique operates independent of
the JTAG port.

Access to the Enhanced OnCE module from the DSC core is enabled through a set of memory-mapped
registers. All of the Enhanced OnCE resources are available through the memory mapped registers,
allowing access to the port via normal instruction execution. When accessed in this manner, there is no
need to access the port via JTAG.

Core access provides the ability to initialize the Enhanced OnCE module, use its resources, and monitor its
actions under program control. It also allows data to be uploaded or downloaded between the core and each
of the four Enhanced OnCE submodules. Both polled and interrupt driven communication between the
core and the Enhanced OnCE module is supported where appropriate.

Test
Access

Port
Controller

Enhanced OnCE

Status & Control

PAB

XAB1

Enhanced OnCE

JTAG

Breakpoint Logic

Trace Buffer
(Eight stages)

Enhanced OnCE

Queue

Step Counter

Step Logic

Command

Instruction

CORE_TDI

CORE_TDO

TMS

TCK

TLM_RES_B

CORETAP_EN

CORE_TLM_SEL

Event Counter

Transmit Register

Receive Register

TX/RX Logic

PAB

PAB

CDBR / CDBW
Freescale SemiconductorJTAG and Enhanced On-Chip Emulation (Enhanced OnCE) 11-5

JTAG and Enhanced On-Chip Emulation (Enhanced OnCE)
An unlocking sequence must first be executed by the core to gain access to the Enhanced OnCE module.
This prevents accidental access to the Enhanced OnCE resources. Core access to the Enhanced OnCE
module can optionally be disabled via the JTAG port to prevent programs from affecting the Enhanced
OnCE module’s operation.

11.3.3 Other Supported Interactions
The DSP56800E supports two instructions, DEBUGEV and DEBUGHLT, that will trigger actions in the
Enhanced OnCE module when executed by the DSP56800E core. The DEBUGEV instruction causes a
debugging event to be generated, similar to the generation of a breakpoint trigger. The DEBUGHLT
instruction is used to halt the core, placing it in the Debug processing state, where state information can be
easily read and modified.

11.4 Enhanced OnCE and the Processing States
The DSP56800E core supports six different processing states (see Table 11-1).

11.4.1 Using the Debug Processing State
The Debug processing state is a state where the core is halted, breakpoints and other resources can be
initialized and setup for debugging, and on-chip registers and memory locations can be examined and
modified. The chip is often placed in the Debug processing state to initialize the Enhanced OnCE module
for a debug system. It is also possible for the core to enter the Debug processing state immediately upon
exiting reset to setup a debug session before the core begins executing instructions.

Any of the following can place the core in the Debug processing state:

• Hardware reset with JTAG DEBUG_REQUEST in the JTAG Instruction Register (IR)

• JTAG DEBUG_REQUEST placed in the JTAG IR during

— STOP mode

— WAIT mode

— wait states

• Pulling the core debug_req_b pin low for three peripheral clock cycles

Table 11-1. Processing States

State Description

Normal The state of the core where instructions are normally executed.

Reset The state where the core is forced into a known reset state. The first program instruction
is fetched upon exiting this state.

Exception The state of interrupt processing, where the core transfers program control from its cur-
rent location to an interrupt service routine using the interrupt vector table.

Wait A low power state where the core is shut down but the peripherals and the interrupt
machine remain active.

Stop A low power state where the core, the interrupt machine, and most (if not all) of the
peripherals are shut down.

Debug The state where the core is halted and all registers in the Enhanced On-Chip Emulation
(EOnCE) port of the processor are accessible for program debug.
11-6 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Enhanced OnCE and the Processing States
• Execution of the DEBUGHLT instruction while the EOnCE is powered up

• Step Counter expires while configured for debug request

• Trace Buffer is full and configured for debug request

• Breakpoint Unit Triggers occurs when programed for debug request

11.4.2 Debugging and the Other Processing States
It is not necessary, however, to place the core in the Debug processing state to initialize the module. An
alternative technique is to first setup the desired Enhanced OnCE resources and then to enable these
resources. This can either be done through the JTAG port or through Core access via setup routines located
in an application, typically executed in the Normal processing state.

The Enhanced OnCE module also has the capability to generate interrupt requests in response to difference
debug events, each with its own dedicated interrupt vectors in the DSP56800E interrupt vector table. The
Enhanced OnCE exception trap is available to the user so that when a debug event is detected, an interrupt
can be generated and the program can initiate the appropriate handler routine. This allows the core to
perform many different actions in response to Debug events without halting the core. Instead, the event is
serviced by executing a dedicated interrupt service routine.

NOTE:

Care must be taken when the core is in the Stop processing states. In this
state, all core clocks are disabled and it is not possible to access the
Enhanced OnCE module. The JTAG interface provides the means of
polling the device status (sampled in the capture-IR state). The core JTAG
TAP will bring the core out of Stop or Wait modes when
DEBUG_REQUEST is decoded in the TAP IR. A small amount of
additional power above the minimum possible will be expended by the
core TAP logic if the core TAP is utilized during Stop mode.
Freescale SemiconductorJTAG and Enhanced On-Chip Emulation (Enhanced OnCE) 11-7

JTAG and Enhanced On-Chip Emulation (Enhanced OnCE)
11.4.3 Enhanced OnCE Module Architecture
The Enhanced OnCE module is composed of several submodules, each of which performs a different task:

• Command, status, control, instruction execution

• Breakpoint unit

• Step counter

• Change-of-flow trace buffer

• Enhanced OnCE transmit and receive registers

Together, these submodules provide a full-featured emulation and debug environment. External
communication with the Enhanced OnCE module is handled via the JTAG port, although it operates
independently. The operations of the Enhanced OnCE module can occur independently of the main
DSP56800E core logic, requiring no core resources. Alternatively, DSP56800E software can directly
program, control, and communicate with the Enhanced OnCE module.

11.4.3.1 Command, Status, and Control

The command, status, and control portion of the Enhanced OnCE module handles the processing of
emulation and debugging commands from a host development system. Communication with the external
host system are provided by the JTAG port module and passed transparently through to this logic, which is
responsible for coordinating all emulation and debugging activity. This enables emulation and debug
processing to occur independently of the main DSP56800E processor core instructions in a non-intrusive
fashion. The Enhanced OnCE module can also enable the core to enter debug mode.

Status bits can be examined to determine which source caused the processor was halted. Additional bits are
provided to report the condition of the Trace Buffer.
11-8 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Enhanced OnCE and the Processing States
11.4.3.2 Breakpoint Unit

Traditionally, processors have set a breakpoint in program memory by replacing the instruction at the
breakpoint address with an illegal instruction that causes a breakpoint exception. This technique is limiting
in that breakpoints can only be set in RAM at the beginning of an opcode and not on an operand. In
addition, breakpoints can never be set on data memory locations.

The DSP56800E Enhanced OnCE breakpoint unit provides a breakpoint unit with hardware trigger
generation blocks containing address comparators for setting breakpoints on program or data memory
accesses. Breakpoints can be set on program ROM as well as program RAM locations.

The DSP56800E Enhanced OnCE breakpoint unit includes two trigger modules, a 16-bit counter, and
combining logic to trigger breakpoints from a substantially wider variety of conditions than traditional
processors. These conditions include accessing a particular memory location or value, the occurrence of a
particular number of events, or a combination of these conditions. In response to a breakpoint trigger, the
breakpoint unit can generate an interrupt, control trace buffer or counter operation, or halt the core.
Figure 11-3 is a diagram of the breakpoint unit.

Figure 11-3. Breakpoint Unit Block Diagram

The Breakpoint Unit capabilities will be demonstrated in detail in Section 11.4.4, “Effectively Using the
Debug Port,” on page 11-13.

11.4.3.2.1 Trigger Blocks

The first trigger block, shown in Figure 11-4, can be programmed for program fetches, reads, writes or
memory accesses. It can also be programmed for data memory reads, writes, or accesses. Triggering is also
possible for on-chip peripheral register accesses, since these registers are implemented as
data-memory-mapped registers.

[0:PAB]XAB1

Trigger 1

Combining
Logic

CDBR/CDBW[0:PAB]

Trigger 2

16-Bit Counter

Select
Action

Breakpoint Start Halt

Read/Write

Fetch

DEBUGEV

Overflow or

instruction

saturation

Interrupt Trace
Buffer

Trace
Buffer

32-bit
Mask

Output
Action
Freescale SemiconductorJTAG and Enhanced On-Chip Emulation (Enhanced OnCE) 11-9

JTAG and Enhanced On-Chip Emulation (Enhanced OnCE)
Figure 11-4. Trigger 1 Logic

The second trigger block, shown in Figure 11-5, can be programmed for program fetches, or data memory
reads, writes, or accesses on 8, 16, or 32-bit data. It is also possible to mask bits in the second trigger block
to only examine desired bit fields.

Figure 11-5. Trigger 2 Logic

11.4.3.2.2 16-bit Counter

The breakpoint unit contains a 16-bit counter which can be programmed to act in one of two different
modes. In triggering mode, the counter is used to count occurrences of a desired trigger condition. In
capture mode, the counter can instead independently count clock cycles or instructions executed between
two points of interest.

In capture mode, the breakpoint counter can also be cascaded with the step counter to create a 40-bit
counter for longer time measurements.

Memory Address
Multiplexer

XAB1 PAB

Breakpoint 1
Address Register

JTAG

Core Peripheral Bus

Comparator

24 24

Match 1

Read/Write

Fetch

Memory Address
Multiplexer

CDRB/CDBW PAB

Breakpoint 2
Address Register

JTAG

Core Peripheral Bus

Comparator

24 24

Read/Write

Fetch

Optional Inverter

Mask

Match 2

Breakpoint 2 JTAG

Core Peripheral BusMask Register
11-10 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Enhanced OnCE and the Processing States
11.4.3.2.3 Combining Logic

The breakpoint unit combining logic supports combinations of breakpoints. This allows for the execution
of OR and AND operations as well as the sequencing of more than one breakpoint.

11.4.3.3 Step Counter

This submodule also provides the capability for full-speed instruction stepping. A 24-bit instruction step
counter provides for up to 16,777,216 instructions to be executed at full speed before the processor core is
interrupted (or halted) and enters the Debug processing state. This capability allows the user to single step
through a program or to execute whole functions at a time.

This counter can be used very effectively in combination with the Breakpoint Unit capabilities for more
complex debugging scenarios. This will be demonstrated in detail in Section 11.4.4, “Effectively Using the
Debug Port,” on page 11-13.

11.4.3.4 Change-of-Flow Trace Buffer

To ease debugging activity and to help keep track of program flow, a read-only buffer is provided that
tracks the change-of-program-flow execution history of an application. It can store the address of the most
recent change-of-flow instruction as well as the addresses of the previous seven change-of-flow
instructions. The trace buffer is intended to provide a snapshot of the recent execution history of the
DSP56800E processor core. This buffer is capable of capturing any combination of the following
execution flow events:

• Interrupts—captures the address of the interrupt vector and the target address of returns

• Subroutines—captures the target address of JSR and BSR instructions

• Conditional branches, whether taken or not, forward or backward—captures the target addresses for
the Bcc, Jcc, BRSET, and BRCLR instructions

Sequential program flow can be assumed to have occurred between the recorded instructions, so it is
possible for the user to reconstruct the program execution flow extending back quite a number of
instructions. To complete the execution history, a circular pointer is used to indicate the location of the
buffer that holds the address of the most recent change-of-flow instruction. The pointer is then
decremented while reading the eight buffer locations to obtain a sequential trace of these instructions back
in time.

The Enhanced OnCE module provides flexible control over the trace buffer. Starting and stopping capture
into the buffer is programmable, so capture only occurs when it is needed. Once the eight-position buffer is
filled, there are several programmable options for what action the Enhanced OnCE module takes:

• No action—Buffer continues to capture change of flows.

• Halt buffer—Buffer capture is stopped.

• Enter debug—Buffer capture is stopped and core enters debug mode.

• Interrupt—Buffer capture is stopped and an interrupt occurs.

11.4.3.5 Realtime Data Transfer Unit

The Realtime Data Transfer Unit enables the user to transmit data from the DSP56800E processor core to
the external host through the JTAG port, and enables the core to receive data from the external host, in
real-time program execution.
Freescale SemiconductorJTAG and Enhanced On-Chip Emulation (Enhanced OnCE) 11-11

JTAG and Enhanced On-Chip Emulation (Enhanced OnCE)
Figure 11-6. Realtime Data Transfer Unit

The 32-bit transmit and receive registers are memory mapped in the core’s data memory. The core writes
to the transmit register and reads the receive register in parallel via the DSP56800E instruction set, and the
host writes to the receive register and reads the transmit register serially through the JTAG interface.

Communication between these registers and the core can be either polled or interrupt driven. Status bits
indicate when the transmit or the receive portion need servicing. Similarly, interrupts can be enabled
separately for the transmit and receive portions, signalling to the core that the Realtime Data Transfer Unit
should be serviced.

Core

TX Data
Interrupt

Serial Input

RX Data
Interrupt

TXRX
Status Register

32-bit
RX Data Shifter

1

32

Serial Output
1

32

Data Buses

32-bit
TX Data Shifter
11-12 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Enhanced OnCE and the Processing States
11.4.4 Effectively Using the Debug Port
Different features in the above blocks of the Enhanced OnCE module can be used together and
programmed in different manners for handling complex as well as simpler debugging problems. This
section demonstrates how to best program the above modules and what triggering is available. It also
shows what actions are allowed once a particular debug event or set of events has occurred.

11.4.4.1 Using the Step Counter

The 24-bit step counter can be used in the two manners presented below. If not needed for either of these,
it can be used to create a 40-bit Capture Counter as shown in Section 11.4.4.3, “Capture Counter,” on page
11-20.

11.4.4.1.1 Usage upon Exiting the Debug Processing State

In its simplest usage, the Step Counter can be used for full speed execution of a programmable number of
clock cycles before performing an action. In this case, the Breakpoint Unit still generate a Breakpoint Unit
Trigger for everything except halting the core and entering the Debug processing state. This is the
configuration used, for example, when single stepping.

Figure 11-7. Step Counter — Started upon Exiting Debug State

In another simple usage, the Step Counter can be used for full speed execution of a programmable number
of clock cycles before performing an action. In this case, the Breakpoint Unit can now generate a
Breakpoint Unit Trigger for halting the core upon this trigger and entering the Debug processing state.

Figure 11-8. Step Counter — Started upon Exiting Debug State with Breakpoint Active

11.4.4.1.2 Step Counter Actions

Table 11-7 lists the possible actions when using the Step Counter.

24-Bit
Step Counter

Halt Trace Halt
Buffer Core

Select
Action

Exit Debug State

24-Bit
Step Counter

Halt
Core

Select
Action

Exit Debug State

Breakpoint Unit Trigger
Freescale SemiconductorJTAG and Enhanced On-Chip Emulation (Enhanced OnCE) 11-13

JTAG and Enhanced On-Chip Emulation (Enhanced OnCE)
11.4.4.1.3 Other Step Counter Configurations

The Step Counter. can also be configured to work with the Breakpoint Unit, covered in Section 11.4.4.2.3,
“Combining the Breakpoint Unit with the Step Counter,” on page 11-19, as well as the Capture Counter as
discussed in Section 11.4.4.3.3, “Using the Capture Counter with the Step Counter,” on page 11-23.

11.4.4.2 Using the Breakpoint Unit

The Breakpoint Unit is used to generate trigger(s) for any one of the following:

• Traditional breakpointing

• Start and/or Stop triggers for Trace Buffer Capture

• Start and/or Stop triggers for measuring cycles executed in the Capture Counter

This section covers the first two uses. Triggers for the Capture Counter will be covered in Section 11.4.4.3,
“Capture Counter,” on page 11-20.

The breakpoint triggering capabilities can be examined using the block diagram in Figure 11-9. This unit is
capable of generating two triggers. There are also inputs for DEBUGEV instruction execution as well as an
overflow condition within the core. These four different inputs are then combined in the Combining Logic
to get the final Breakpoint Unit Trigger, which can then be used to perform one of several different actions
or can also be passed to a different block such as the step counter.

Table 11-2. Step Counter Operation

Start Step Counter Trigger for Step Counter Action Action Performed

Case SC-1 Exit Debug State Step Counter reaches zero Enter Debug state

Case SC-2 Halt Trace Buffer Capture when
Step Counter reaches zero.

Case SC-3 Step Counter reaches zero OR
Breakpoint Unit Trigger arrives

Enter Debug state
11-14 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Enhanced OnCE and the Processing States
Figure 11-9. Breakpoint Unit Block Diagram

[0:PAB]XAB1

Trigger 1

Combining
Logic

CDBR/CDBW[0:PAB]

Trigger 2

16-Bit Counter

Select
Action

Breakpoint Start Halt

Read/Write

Fetch

DEBUGEV

Overflow or

instruction

saturation

Interrupt Trace
Buffer

Trace
Buffer

32-bit
Mask

Output
Action
Freescale SemiconductorJTAG and Enhanced On-Chip Emulation (Enhanced OnCE) 11-15

JTAG and Enhanced On-Chip Emulation (Enhanced OnCE)
11.4.4.2.1 Listing the Breakpoint Unit Triggers Available

The full set of breakpoint triggers which can be created by this unit is shown in Table 11-4 and Table 11-5,
where Table 11-4 contains most of the unit’s triggering capability and is combined with the capabilities of
Table 11-5 to get the final Breakpoint Unit Trigger generated from the unit.

The notation for these tables is explained below:

Table 11-3. Notation used in Breakpoint Unit Triggering

Notation Description

PAB-1 Trigger 1 configured to look for match on the PAB bus. On 1st occurrence of a
match, the trigger is asserted.

PAB-1* Trigger 1 configured to look for match on the PAB bus. On Nth occurrence of a
match, the trigger is asserted, where N is the programmed 16-bit counter value.

XAB1 Trigger 1 configured to look for match on the XAB1 bus. On 1st occurrence of a
match, the trigger is asserted.

XAB1* Trigger 1 configured to look for match on the XAB1 bus. On Nth occurrence of a
match, the trigger is asserted, where N is the programmed 16-bit counter value.

PAB-2 Trigger 2 configured to look for match on the PAB bus. On 1st occurrence of a
match, the trigger is asserted.

PAB-2* Trigger 2 configured to look for match on the PAB bus. On Nth occurrence of a
match, the trigger is asserted, where N is the programmed 16-bit counter value.

CDB — Data Value Trigger 2 configured to look for an 8-bit, 16-bit, or 32-bit match on a data value
on the CDB bus. In addition, any bits in the value can be masked to look at only
a portion of the data value. On 1st occurrence of a match, the trigger is asserted.

Fetch The trigger is only asserted on instruction fetches from program memory. It is
not asserted if data is accessed from the program memory.

Access The trigger is only asserted on data accesses from memory. It is not asserted for
instruction fetches from the memory.

F/R/W/A The trigger is asserted on any access to the memory — instruction fetch, data
read, write, or access.

R/W/A The trigger is asserted on any data access to the memory — data read, write, or
access.

(expression)* The trigger is asserted on the Nth occurrence of detecting the expression. This
is used when breakpoints are ORed or ANDed together.

expr1 OR expr2 The trigger is asserted when “expr1” occurs OR when “expr2” occurs. The
occurrence of either asserts the trigger.

expr1 AND expr2 The trigger is asserted when “expr1” occurs at the same time as when “expr2”
occurs. Both must occurrence for the trigger to be asserted. This is particularly
useful for examining a data value at a particular location in data memory.

expr1 ==> expr2 “expr1” must first occur, followed by “expr2”. When this occurs, the condition
becomes true and the trigger is asserted.
11-16 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Enhanced OnCE and the Processing States
Table 11-4. First Part of Breakpoint Unit Trigger(s)— 16-bit Counter Available for Triggering

First Breakpoint
Trigger

Op
Second Breakpoint

Trigger
Comments

Single Triggers

PAB-1* — F/R/W/A (none) Nth occurrence of F/R/W/A on PAB bus, Trigger 1

XAB1* — R/W/A (none) Nth occurrence of R/W/A on XAB1 bus, Trigger 1

ORed Triggers

PAB-1 — Fetch OR PAB-2* — Fetch 1st Fetch on PAB Trig1, or Nth Fetch Trig2

(PAB-1 — Fetch OR PAB-2 — Fetch)* Nth occur, (1st F on PAB Trig1, or 1st F Trig2)

PAB-1* — Access OR PAB-2 — Fetch Nth Access on PAB Trig1, or 1st Fetch Trig2

PAB-1 — Access OR PAB-2* — Fetch 1st Access on PAB Trig1, or 1st Fetch Trig2

(PAB-1 — Access OR PAB-2 — Fetch)* Nth occur, (1st A on PAB Trig1, or 1st F Trig2)

PAB-2* — Fetch OR XAB1 — Access Nth F on PAB Trig2, or 1st A on XAB1

PAB-2 — Fetch OR XAB1* — Access 1st F on PAB Trig2, or Nth A on XAB1

ANDed Triggers

(XAB1 — R/W/A AND CDB — Data Value)* Nth occur, (1st R/W/A XAB1 Trig1 and CDB Trig2)

Sequenced Triggers

PAB-1* — Fetch ==> PAB-2 — Fetch Nth F on PAB Trig1 followed by 1st F PAB Trig2

PAB-2 — Fetch ==> PAB-1* — Fetch 1st F on PAB Trig2 followed by Nth F PAB Trig1

PAB-1* — Access ==> PAB-2 — Fetch Nth A on PAB Trig1 followed by 1st F PAB Trig2

PAB-1 — Access ==> PAB-2* — Fetch 1st A on PAB Trig1 followed by Nth F PAB Trig2

PAB-2* — Fetch ==> PAB-1 — Access Nth F on PAB Trig2 followed by 1st A PAB Trig1

PAB-2 — Fetch ==> PAB-1* — Access 1st F on PAB Trig2 followed by Nth A PAB Trig1

XAB1* — R/W/A ==> PAB-2 — Fetch Nth R/W/A XAB1 Trig1 followed 1st F PAB Trig2

XAB1 — R/W/A ==> PAB-2* — Fetch 1st R/W/A XAB1 Trig1 followed Nth F PAB Trig2

PAB-2* — Fetch ==> XAB1 — R/W/A Nth F PAB Trig2 followed 1st R/W/A XAB1 Trig1

PAB-2 — Fetch ==> XAB1* — R/W/A 1st F PAB Trig2 followed Nth R/W/A XAB1 Trig1
Freescale SemiconductorJTAG and Enhanced On-Chip Emulation (Enhanced OnCE) 11-17

JTAG and Enhanced On-Chip Emulation (Enhanced OnCE)
The final Breakpoint Unit trigger will then be one of the following:

This is true except for the cases where the Breakpoint Unit is used to generate both the Start and Stop
triggers.

11.4.4.2.2 Breakpoint Unit Actions

Once a valid Breakpoint Unit Trigger has occurred, one of the following actions can be performed. Other
actions can be found in further sections which use “Breakpoint Unit Trigger” as a triggering condition.

The “Signal Watchpoint” action listed above refers to simply toggling the event terminal, one of the
terminals available as an output of the Enhanced OnCE module.

Generation of Two Triggers — Start and Stop

PAB-1 — Fetch
=> Start Trace Buffer

— PAB-2 — Fetch
=> Stop Trace Buffer

Start Trace Buffer on 1st Fetch on PAB Trig1 and
Stop Trace on 1st Fetch on PAB Trigger 2

PAB-1 — Access
=> Start Trace Buffer

— PAB-2 — Fetch
=> Stop Trace Buffer

Start Trace Buffer on 1st Access on PAB Trig1
and Stop Trace on 1st Fetch on PAB Trigger 2

PAB-2 — Fetch
=> Start Trace Buffer

— PAB-1 — Access
=> Stop Trace Buffer

Start Trace Buffer on 1st Fetch on PAB Trig2 and
Stop Trace on 1st Access on PAB Trigger 1

Table 11-5. Breakpoint Unit Trigger — 16-bit Counter Available for Triggering

Breakpoint Unit Trigger

Case 1 (First Part of Breakpoint trigger) OR Enabled DEBUGEV OR Enabled Limiting

Case 2 (First Part of Breakpoint trigger) => (Enabled DEBUGEV OR Enabled Limiting)

Table 11-6. Possible Breakpoint Unit Actions

Trigger for Action Action Performed

Case BK1 Breakpoint Unit Trigger Enter Debug state

Case BK2 Generate Breakpoint Unit Interrupt Request

Case BK3 Start Trace Buffer Capture

Case BK4 Halt Trace Buffer Capture

Case BK5 Signal Watchpoint

Table 11-4. First Part of Breakpoint Unit Trigger(s)— 16-bit Counter Available for Triggering

First Breakpoint
Trigger

Op
Second Breakpoint

Trigger
Comments
11-18 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Enhanced OnCE and the Processing States
11.4.4.2.3 Combining the Breakpoint Unit with the Step Counter

The breakpoint unit can work in conjunction with the 24-bit step counter so that the action is taken a
specified number of clock cycles after the breakpoint condition is detected. This configuration is illustrated
in Figure 11-10.

Figure 11-10. Triggering the Step Counter with the Breakpoint Unit

11.4.4.2.4 Breakpoint Unit — Step Counter Actions

Table 11-7 lists the possible actions when using the Step Counter, where the Breakpoint Unit can use any
of the configurations in Table 11-4 and Table 11-5.

Table 11-7. Breakpoint Unit — Step Counter Operation

Start Step Counter Trigger for Step Counter Action Action Performed

Case BKSC1 Breakpoint Unit Trigger Step Counter reaches zero Enter Debug state

Case BKSC2 Generate Step Counter
Interrupt Request

Case BKSC3 Start Trace Buffer Capture when
Breakpoint Unit Trigger arrives.

Halt Trace Buffer Capture when
Step Counter reaches zero.

[0:PAB]XAB1

Breakpoint 1

Combining
Logic

CDBR/CDBW[0:PAB]

Breakpoint 2

16-Bit Counter

Select
Action

Read/Write

Fetch

DEBUGEV

Overflow or

instruction

saturation

32-bit
Mask

24-Bit
Step Counter

Start
Trace
Buffer

Breakpoint Unit
Trigger

Halt TraceHalt
BufferCore

Step Counter
Interrupt

Select
Action
Freescale SemiconductorJTAG and Enhanced On-Chip Emulation (Enhanced OnCE) 11-19

JTAG and Enhanced On-Chip Emulation (Enhanced OnCE)
11.4.4.3 Capture Counter

The Breakpoint Unit can also be configured as a Capture Counter to measure the number of clocks
executed between two different points. The Capture Counter can be configured as 16-bits or 40-bits.

11.4.4.3.1 16-Bit Capture Counter (Non-Cascaded)

In this case, the 16-bit breakpoint counter is configured to count clocks between two different points and is
no longer available for generating breakpoint triggers. The Non-Cascaded configuration (Figure 11-11)
uses the 16-bit counter providing count values up to 216.

Figure 11-11. Capture Counter — 16-bit Configuration (Non-Cascaded)

The Capture Counter is configured by the user to count any of the three inputs to the MUX above:

• Clocks executed

• Clocks executed without Wait States

• Instructions executed

The counter measures any of these three values between two different points — the counter start trigger
and the counter stop trigger. The triggers supported are shown in Table 11-8.

Table 11-8. Starting and Stopping the Capture Counter — Non-Cascaded

Counter Start
Trigger

Counter Stop
Trigger

Case CCT1 PAB Trigger 1 PAB Trigger 2

Case CCT2 PAB Trigger 2 PAB Trigger 1

Case CCT3 Breakpoint Unit Trigger Enter Debug state

Case CCT4 Exit Reset or Debug state Breakpoint Unit Trigger

Case CCT5 Execute DEBUGEV Breakpoint Unit Trigger

Case CCT6 Limit occurs Breakpoint Unit Trigger

Case CCT7 Execute DEBUGEV
or Limit occurs

Breakpoint Unit Trigger

16-Bit Breakpoint
Counter

Counter Halt

Clocks

Clocks w/o Wait States

Interrupt Core

MUX
Instructions Executed

Select
Action

Status
Bits

Start StopStart
11-20 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Enhanced OnCE and the Processing States
Cases CCT1 and CCT2 directly use the first and second triggers of the Breakpoint Unit as Start and Stop
triggers. The remaining cases use the Breakpoint Unit to generate either the Start trigger (case CCT3) or
the Stop trigger (remaining cases). These remaining cases use any of the triggers supported in Table 11-9:

Note that the triggers above do not support the ability of triggering on the Nth occurrence because the
16-bit counter is now dedicated to counting operations, and no longer available for breakpoint triggering.

Table 11-9. First Part of Breakpoint Unit Trigger— 16-bit Counter in Capture Mode

First Breakpoint
Trigger

Op
Second Breakpoint

Trigger
Comments

Single Triggers

PAB-1 — F/R/W/A (none) 1st F/R/W/A on PAB Bus, Trigger 1

XAB1 — R/W/A (none) 1st R/W/A on XAB1 Bus, Trigger 1

ORed Triggers

PAB-1 — Fetch OR PAB-2 — Fetch 1st Fetch on PAB Trig1 or 1st Fetch PAB Trig2

PAB-1 — Access OR PAB-2 — Fetch 1st Access on PAB Trig1 or 1st Fetch PAB Trig2

PAB-2 — Fetch OR XAB1 — Access 1st F on PAB Trig2 or 1st Access XAB1 Trig1

ANDed Triggers

XAB1 — R/W/A AND CDB — Data Value 1st R/W/A on XAB1 Trig1 and CDB Data Val Trig2

Sequenced Triggers

PAB-1 — Fetch ==> PAB-2 — Fetch 1st F on PAB Trig1 followed by 1st F PAB Trig2

PAB-1 — Access ==> PAB-2 — Fetch 1st A on PAB Trig1 followed by 1st F PAB Trig2

PAB-2 — Fetch ==> PAB-1 — Access 1st F on PAB Trig2 followed by 1st A PAB Trig1

XAB1 — R/W/A ==> PAB-2 — Fetch 1st R/W/A XAB1 Trig1 followed 1st F PAB Trig2

PAB-2 — Fetch ==> XAB1 — R/W/A 1st F PAB Trig2 followed 1st XAB1 R/W/A Trig2

Generation of Two Triggers — Start and Stop

PAB-1 — Fetch
=> Start Capture Ctr

— PAB-2 — Fetch
=> Stop Capture Ctr

Start Capture on 1st Fetch on PAB Trig 1 and Stop
Capture on 1st Fetch on PAB Trig2

PAB-1 — Access
=> Start Capture Ctr

— PAB-2 — Fetch
=> Stop Capture Ctr

Start Capture on 1st Access on PAB Trig 1 and
Stop Capture on 1st Fetch on PAB Trig2

PAB-2 — Fetch
=> Start Capture Ctr

— PAB-1 — Access
=> Stop Capture Ctr

Start Capture on 1st Fetch on PAB Trig 2 and Stop
Capture on 1st Access on PAB Trig1
Freescale SemiconductorJTAG and Enhanced On-Chip Emulation (Enhanced OnCE) 11-21

JTAG and Enhanced On-Chip Emulation (Enhanced OnCE)
The final Breakpoint Unit trigger will then be one of the following:

NOTE:

The equation in Table 11-10 above can be used except for the cases
entitled “Generation of Two Triggers — Start and Stop” where the
Breakpoint Unit is used to generate both the Start and Stop triggers.

11.4.4.3.2 Actions for 16-Bit Capture Counter (Non-Cascaded)

Table 11-11 shows the actions which can be performed when the Capture Counter expires. Note the
unusual triggering which can be performed to check that the counter expires before a Stop trigger arrives.
Similarly, the reverse triggering is also supported - trigger only if the Stop trigger arrives before the
counter expires.

Table 11-10. Breakpoint Unit Trigger — for 16-bit Capture Counter

Breakpoint Unit Trigger

Case 1 (First Part of Breakpoint trigger) OR Enabled DEBUGEV OR Enabled Limiting

Case 2 (First Part of Breakpoint trigger) => (Enabled DEBUGEV OR Enabled Limiting)

Table 11-11. Possible Capture Counter Actions — Non-Cascaded

Trigger for Action Action Performed

Case CC1 Capture Counter reaches zero before
Counter Stop Trigger occurs

— OR —

Capture Counter reaches zero
(for cases where no Stop Trigger is configured)

Enter Debug state

Case CC2 Generate EOnCE Interrupt Request

Case CC3 Set Capture Counter status bits — CS, CZ

Case CC4 Signal Watchpoint

Case CC5 Counter Stop Trigger occurs before
Capture Counter reaches zero

Enter Debug state

Case CC6 Generate EOnCE Interrupt Request

Case CC7 Signal Watchpoint
11-22 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Enhanced OnCE and the Processing States
11.4.4.3.3 Using the Capture Counter with the Step Counter

The Capture Counter can also work in conjunction with the 24-bit step counter so that the action is taken a
specified number of clock cycles after a Capture Counter trigger is generated. This configuration is
illustrated in Figure 11-12.

Figure 11-12. Triggering the Step Counter with the Capture Counter

This configuration also uses the Start-Stop triggers listed in Table 11-8, where the Breakpoint Unit can use
any of the configurations in Table 11-9 and Table 11-10.

11.4.4.3.4 16-bit Capture Counter — Step Counter Actions

Table 11-12 shows the actions which can be performed in this configuration. Note the unusual triggering
which can be performed to check that the Capture Counter expires before a Stop trigger arrives. Similarly,
the reverse triggering is also supported - trigger only if the Stop trigger arrives before the Capture Counter
expires.

Table 11-12. Possible Capture Counter Actions — Non-Cascaded

Trigger for Action Action Performed

Case CCSC1 Capture Counter reaches zero before
Counter Stop Trigger occurs
=> Step Counter reaches zero

— OR —

Capture Counter reaches zero
=> Step Counter reaches zero
(for cases where no Stop Trigger is configured)

Enter Debug state

Case CCSC2 Generate Step Counter Interrupt Request

Case CCSC3 Start Trace Buffer Capture when
Capture Counter reaches zero.

Halt Trace Buffer Capture when
Step Counter reaches zero.

Case CCSC4 Counter Stop Trigger occurs before
Capture Counter reaches zero
=> Step Counter reaches zero

Enter Debug state

Case CCSC5 Generate Step Counter Interrupt Request

Case CCSC6 Start Trace Buffer Capture when
Capture Counter reaches zero.

Halt Trace Buffer Capture when
Step Counter reaches zero.

24-Bit
Step Counter

Start
Trace
Buffer

Capture Counter
Trigger

Halt TraceHalt
BufferCore

Step Counter
Interrupt

Select
Action

16-Bit Breakpoint
Counter

Clocks

Clocks w/o Wait States MUX
Instructions Executed

Start StopStart
Freescale SemiconductorJTAG and Enhanced On-Chip Emulation (Enhanced OnCE) 11-23

JTAG and Enhanced On-Chip Emulation (Enhanced OnCE)
11.4.4.3.5 40-Bit Capture Counter (Cascaded)

If additional counter bits are needed, the Capture Counter can also be cascaded with the 24-bit step counter
to provide 40-bit counting operations. This configuration is illustrated in Figure 11-12.

Figure 11-13. Capture Counter — 40-bit Configuration (Cascaded)

This configuration also uses the Start-Stop triggers listed in Table 11-8, where the Breakpoint Unit can use
any of the configurations in Table 11-9 and Table 11-10.

11.4.4.3.6 Actions for 40-Bit Capture Counter (Cascaded)

The actions supported by this configuration are the same as those listed in Table 11-11.

11.4.4.4 Programmable Trace Buffer

The Trace Buffer is used to the change-of-flows selected by the user. Separate control bits are available for
the following five cases, allowing any combination of these to be selected by the user:

• Interrupts—captures the address of the interrupt vector and target address of RTI and FRTID

• Subroutines—captures target address of JSR and BSR instructions

• Change-of-Flow Not Taken —captures target address of Bcc, Jcc, BRSET, BRCLR instructions

• Change-of-Flow Case 0 —captures target address of Jcc or forward branches of Bcc, BRSET,
BRCLR instructions

• Change-of-Flow Case 1 —captures the target address of backward branches of Bcc, BRSET,
BRCLR instructions

16-Bit Breakpoint
Counter

Counter Halt

Clocks

Clocks w/o Wait States

Interrupt Core

MUX
Instructions Executed

Select
Action

Status
Bits

Start StopStart

24-Bit Breakpoint
Counter
11-24 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Enhanced OnCE and the Processing States
Figure 11-14. Programmable Trace Buffer

Several different options are available for starting and/or stopping Trace Buffer capture (Table 11-13). In
addition, Trace Buffer capture can also be programmed to stop once it has filled (Table 11-14). The
Breakpoint Unit Trigger can use any of the configurations in Table 11-9 and Table 11-10.

The Trace Buffer can be programmed to perform any of the actions listed in Table 11-14 when the Trace
Buffer is full:

Table 11-13. Starting and Stopping Trace Buffer Capture

Start
Trigger

Stop
Trigger

Case 1 PAB Trigger 1 PAB Trigger 2

Case 2 Breakpoint Unit Trigger —

Case 3 Exit Debug state Breakpoint Unit Trigger

Table 11-14. Possible Actions on Trace Buffer Full

Action Performed

Case TBF1 No Action Performed — Trace Buffer continues to capture
new addresses, overwriting the old addresses as needed.

Case TBF2 Buffer Capture Halted — TBH is asserted

Case TBF3 Buffer Capture Halted — Enter Debug state

Case TBF4 Buffer Capture Halted — Generate Trace Buffer Interrupt Request

8-Location
Trace buffer

PAB

Start Capture

Stop Capture

Address
Selection

Trace BufferHalt
InterruptCapture

Status
Bits

Conditional Branches and Jumps
Interrupts, Subroutines

Trace Buffer Full

Halt
Core

Select
Action
Freescale SemiconductorJTAG and Enhanced On-Chip Emulation (Enhanced OnCE) 11-25

JTAG and Enhanced On-Chip Emulation (Enhanced OnCE)
The Trace Buffer can also be configured to Start and Stop capture as shown in Section 11.4.4.2.4,
“Breakpoint Unit — Step Counter Actions,” on page 11-19 and Section 11.4.4.3.3, “Using the Capture
Counter with the Step Counter,” on page 11-23.

11.4.5 Example Breakpoint Scenarios
The following are examples of the variety of conditions that can trigger a breakpoint or step counter action.

• Fetch, read, write, or read or write of specific program address
Example: PAB == $000080.

• Read, write, or read or write of specific data address
Example: XAB1 == $0C0000.

• The nth occurrence of an instruction
Example: 500 occurrences of PAB == $008794.

• Either of two instructions
Example: PAB == $3792 || PAB == $7E45

• A sequence of two instructions
Example: PAB == $3792 → PAB == $7E45

• The nth occurrence of an instruction followed by another instruction
Example: 1037 occurrences of PAB == $394 → PAB == 7E45

• Write a specific value to a data address
Example: XAB1 == $00FFE7 && CDBW == $AAAA

• Read value from data address
Example: XAB1 == $00FFE7 && CDBR == $5555

• Read a data value other than the one specified from a particular data address
Example: XAB1 == $00FFE7 && CDBR != $AAAA

• Read or write a particular set of bits from/to a data address
Example: XAB1 == $00FFE7 && CDBW[2:0] == 011b

• Either of two program addresses or a DEBUGEV instruction followed by n instructions
Example: PAB == $3792 || PAB == $7E45 || DEBUGEV → 4000 instructions

• A sequence of two program addresses followed by a DEBUGEV instruction followed by n
instructions
Example: PAB == $3792 → PAB == $7E45 → DEBUGEV → 4000 instructions

• The nth occurrence of an instruction followed by another instruction followed by an overflow
condition followed by m instructions
Example: 900 occurrences of PAB == $3792 → PAB == $7E45 → OV → 9 instructions

• A particular bit pattern not occurring at a specific data address followed by n instructions
Example: XAB1 == $00FFE7 && CDB[14:12] != 011b → 20,000 instructions

• The nth occurrence of the above condition followed by m instructions
Example: 400 occurrences of (XAB1 == $00FFE7 && CDB[14:12] != 011b) → 350 instructions
11-26 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

JTAG Port
11.5 JTAG Port
The DSP56800E core Joint Test Action Group (JTAG) test access port (TAP) provides the interface for the
Enhanced OnCE module to the DSC JTAG pins. This TAP controller is designed to be incorporated into a
chip multi–JTAG TAP Linking Module (JTAG TLM) system. The JTAG TLM is a dedicated,
user-accessible, test access port (TAP) system that is compatible with the IEEE Standard 1149.1a-1993,
IEEE Standard Test Access Port and Boundary-Scan Architecture. Problems associated with testing
high-density circuit boards have led to the development of this standard under the sponsorship of the Test
Technology Committee of IEEE and the JTAG. If the core TAP is not incorporated into a JTAG TLM
system it will not be compliant with the IEEE 1149.1a-1993 standard, but the TAP will still serve as an
interface to the core Enhanced OnCE module. Specific details on the implementation of the JTAG port for
a given DSP56800E–based device are provided in the user’s manual for that device.

11.5.1 JTAG Capabilities
The DSP56800E JTAG port has the following capabilities:

• Provides queried identification information for the DSP56800E core (manufacturer, technology
process, part, and version numbers)

• Provides a means of accessing the Enhanced OnCE module controller and circuits to control a target
system

• Provides a means of entering the debug mode of operation

• Bypasses the TAP through a single-bit register in the Shift-DR-Scan path

The following sections provide an overview of the port’s architecture and commands.

11.5.2 JTAG Port Architecture
The JTAG port consists of the following components:

• Serial communication interface

• Command decoder and interpreter

• DSP56800E identification register

The serial interface provides the communication link between the core and the host development or debug
system. All JTAG data is sent over this interface. Enhanced OnCE commands and data from the host
system can also sent over this interface if accessed via JTAG. It is implemented as a serial interface to
occupy as few external pins on the device as possible. For a full description of the interface signals, consult
the user’s manual for the specific device.

Commands sent to the JTAG module are decoded and processed by the command decoder. Commands for
the JTAG port are completely independent from the DSP56800E instruction set, and they are executed in
parallel by the JTAG logic.

The JTAG module contains the DSP56800E identification register, which provides a unique ID for each
revision of the DSP56800E core. This register enables a development system to determine the
manufacturer, process technology, part, and revision numbers of the DSP56800E core via the JTAG port.
Freescale SemiconductorJTAG and Enhanced On-Chip Emulation (Enhanced OnCE) 11-27

JTAG and Enhanced On-Chip Emulation (Enhanced OnCE)
11.5.2.1 JTAG Terminal Description

As described in the IEEE 1149.1a-1993 specification, a JTAG TAP requires a minimum of 4 pins to
support TDI, TDO, TCK, and TMS signals. TDI and TDO are the serial input and output, respectively.
TCK is the serial clock input and TMS is an input used to selectively step through the JTAG state machine.
A fifth pin TRST is an optional asynchronous reset pin for the chip JTAG TLM system (refer to the
particular chip users manual to see if this pin is available).

These pins for the core JTAG port are CORE_TDI, CORE_TDO, TCK, TMS. The core pin functions are
described in Table 11-15. The core JTAG TAP also uses the TLM_RESET_B pin to provide an
asynchronous reset of the core JTAG port from the chip JTAG TLM. If TRST is present on a chip the core
TLM_RESET_B pin will always be asserted whenever TRST is asserted.

The core JTAG TAP must be enabled (CORE_TAP_EN asserted) before the core JTAG state machine will
follow the transitions and state of the TMS pin. The core TAP will only leave the Run-Test/Idle state to
enter the DR or IR states while the CORE_TAP_EN pin is asserted, and will return to Run-Test/Idle when
the pin is deasserted in the Update-DR state.

Table 11-15. JTAG Pin Descriptions

Pin Name Pin Description

CORE_TDI Test Data Input—This input pin to the core provides a serial input data
stream to the core TAP and the EOnCE module. It is sampled on the rising
edge of TCK.

CORE_TDO Test Data Output—This output pin provides a serial output data stream
from the core TAP and the EOnCE module. It is driven in the Shift-IR and
Shift-DR controller states of the core TAP state machine.

TCK Test Clock Input—This input pin provides the clock to synchronize the test
logic and shift serial data to and from the core EOnCE/JTAG port. When
accessing the EOnCE module through the JTAG TAP, the maximum
frequency for TCK is 1/4 the maximum frequency specified for the Hawk
Version 2 core.

TMS Test Mode Select Input—This input pin is used to sequence the core JTAG
TAP controller’s state machine. It is sampled on the rising edge of TCK.

TLM_RESET_B Test Reset—This input pin, comes from the chip TLM and provides an
asynchronous reset signal to the JTAG TAP controller,.

CORE_TAP_EN Core TAP Enable—This input, comes from the chip TLM module and gates
the input TMS signal to force the TAP controller to the Run-Test/Idle state
when the enable signal is deasserted (logic 0). When the enable signal is
asserted, the TAP controller will follow the transitions and state of the input
pin TMS signal.

CORE_TLM_SEL Core TLM Selects—This output from the core JTAG TAP selects the chip
TLM register for the data register to be scanned.
11-28 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

JTAG Port
11.5.2.2 Core JTAG Programming Model

Figure 11-15 shows the programming models for the core JTAG registers. There are 2 read/write registers
in the JTAG port: the IR, and the core Bypass Register. A third register, the Core Identification Register, is
read only.

11.5.2.3 Core JTAG Port Block Diagram

A block diagram of the JTAG port is shown in Figure 11-16.

Figure 11-15. JTAG Port Programming Model

INSTRUCTION
Core JTAG
Instruction

Register
Reset = $2

B3 B2 B1 B0

3 2 1 0

ID—(IR = $2)
Core Identification

Register
Reset = Core ID

Read

BYPASS—(IR = $F)
Core JTAG Bypass

Register
Reset = $0
Read/Write

0

7 6 5 4 3 2 1 011 10 9 815 14 13 12

23 22 21 20 19 18 17 1627 26 25 2431 30 29 28
Freescale SemiconductorJTAG and Enhanced On-Chip Emulation (Enhanced OnCE) 11-29

JTAG and Enhanced On-Chip Emulation (Enhanced OnCE)
The TAP controller provides access to the IR through the core JTAG port. The other core JTAG registers
must be individually selected by the IR.

11.5.2.4 Core TAP Controller

The TAP controller is a sixteen state synchronous finite state machine, used to sequence the core JTAG
port through its valid operations:

• Serially shift in or out a core JTAG instruction

• Update (and decode) the core JTAG Instruction Register

• Serially output the core ID code

• Serially shift in or out and update the EOnCE registers.

NOTE:

The core JTAG port oversees the shifting of data into and out of the
EOnCE port through the CORE_TDI and CORE_TDO pins, respectively.
The shifting, in this case, is guided by the same tap controller used when
shifting core JTAG Instruction Register (IR) information.

The TAP controller is shown in Figure 11-17. The TAP controller will asynchronously be reset to the
Test-Logic-Reset state upon assertion low of tlm_res_b pin. When the tlm_res_b signal is deasserted and
the core_tap_en pin is asserted, the TAP controller responds to changes of the TMS and TCK signals.
Transitions from one state to another occur on the rising edge of TCK. The value shown adjacent to each
state transition in this figure represents the signal present at TMS at the time of a rising edge of TCK.

Figure 11-16. Core JTAG Block Diagram

TAP
Controller

Core ID Register

Instruction Register

CORE_TDO

TMS
TCK

Core Bypass Register

Decode

CORE_TDI

To EOnCE Port

From EOnCE Port

TLM_RESET_B
CORE_TAP_EN

CORE_TLM_SEL
11-30 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

JTAG Port
When the core_tap_en pin is deasserted the TAP controller returns to the Run-Test/Idle state at the next
rising edge of TCK and remains there until the TAP is re-enabled to follow the transitions and state of the
TMS signal, by core_tap_en pin assertion.

There are two paths through the 16-state machine. The Shift-IR_Scan path is used to capture and load core
JTAG instructions into the core JTAG IR. The Shift-DR_Scan path captures and loads data into the other
core JTAG registers. The core TAP controller executes the last instruction decoded until a new instruction
is entered at the Update-IR state or until the Test-Logic-Reset state is entered. When using the core JTAG
port to access EOnCE module registers, accesses are first enabled by shifting the ENABLE_EOnCE
instruction into the core JTAG IR. After this is selected, the EOnCE module registers and commands are
read and written through the core JTAG pins using the Shift-DR_Scan path. Asserting the tlm_reset_b pin
low asynchronously forces the core JTAG state machine into the Test-Logic-Reset state.

Figure 11-17. TAP Controller State Diagram

Select-DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Test-Logic-Reset

Run-Test/Idle

Update-DR

1

0

0

1

0

1

1

0

1

1

0

0

1 0

Select-IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

1

0

1

1

0

1

1

0

0

1 0

01

0

1 1
Freescale SemiconductorJTAG and Enhanced On-Chip Emulation (Enhanced OnCE) 11-31

JTAG and Enhanced On-Chip Emulation (Enhanced OnCE)
11.5.3 JTAG Port Restriction — STOP Processing State
The core features a low-power stop mode, that is invoked by the Hawk V2 core executing a STOP
instruction. Since all Hawk V2 core clocks are disabled during Stop mode, the JTAG interface provides the
means of polling the device status (sampled in the capture-IR state). The core JTAG TAP will bring the
core out of Stop or Wait modes when DEBUG_REQUEST is decoded in the TAP IR. A small amount of
additional power above the minimum possible will be expended by the core TAP logic if the core TAP is
utilized during Stop mode.
11-32 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Appendix A
Instruction Set Details

This appendix contains detailed information about each instruction of the DSC core instruction set.
Section A.1, “Notation,” explains most of the notation that is used in Section A.2, “Instruction
Descriptions,” which shows the syntax of all allowed instructions and summarizes addressing modes,
condition codes, and instruction timing. Section A.5, “Instruction Opcode Encoding,” provides additional
details about the notation for opcode encoding.

For more detailed information on condition codes, see Appendix B, “Condition Code Calculation.”

A.1 Notation
Each instruction description abbreviates operands using the notation that is contained in the following
tables. Table A-1 on page A-2 defines the register notation that is used in general read and write
operations.
Freescale Semiconductor Instruction Set Details A-1

Table A-2 on page A-3 shows the registers that are available for use as pointers in address-register-indirect
addressing modes. The most common fields that are used in this table are Rn and RRR. This table also
shows the notation that is used for AGU registers in AGU arithmetic operations.

Table A-1. Register Fields for General-Purpose Writes and Reads

Register Field
Registers in this

Field
Comments

HHH
(source)

A1, B1, C1, D1
X0, Y0, Y1

Seven data ALU registers—four 16-bit MSP portions of the accumula-
tors and three 16-bit data registers that are used as source registers.
Note the usage of A1, B1, C1, and D1.

This field is identical to the FFF1 field.

HHH
(destination)

A, B, C, D
Y

X0, Y0, Y1

Seven data ALU registers—four 16-bit MSP portions of the accumula-
tors and three 16-bit data registers that are used as destination regis-
ters. Note the usage of A, B, C, and D. Writing word data to the 32-bit Y
register clears the Y0 portion.

HHH.L
(source)

A10, B10, C10, D10
Y

Five data ALU registers—four 32-bit MSP:LSP portions of the accumu-
lators and one 32-bit Y data register (Y1:Y0) that is used as a source
register.

Used for long memory accesses.

HHH.L
(destination)

A, B, C, D
Y

Five data ALU registers—four 32-bit MSP:LSP portions of the accumu-
lators and one 32-bit Y data register (Y1:Y0) that is used as a destina-
tion register.

Used for long memory accesses.

HHHH
(source)

A1, B1, C1, D1
X0, Y0, Y1
R0–R5, N

Seven data ALU and seven AGU registers that are used as source reg-
isters. Note the usage of A1, B1, C1, and D1.

HHHH
(destination)

A, B, C, D
Y

X0, Y0, Y1
R0–R5, N

Seven data ALU and seven AGU registers that are used as destination
registers. Note the usage of A, B, C, and D. Writing word data to the
32-bit Y register clears the Y0 portion.

HHHH.L
(source)

A10, B10, C10, D10
Y

R0–R5, N

Five data ALU and seven AGU registers that are used as source regis-
ters.

Used for long memory accesses. Also see dddd.L.

HHHH.L
(destination)

A, B, C, D
Y

R0–R5, N

Five data ALU and seven AGU registers that are used as destination
registers.

Used for long memory accesses. Also see dddd.L.
A-2 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Table A-3 shows the register set that is available for use in data ALU arithmetic operations. The most
common field that is used in this table is FFF.

Table A-2. Address Generation Unit (AGU) Registers

Register Field
Registers in this

Field
Comments

Rn R0–R5
N

SP

Eight AGU registers that are available as pointers for addressing and
address calculations

RRR
(or SSS)

R0–R5
N

Seven AGU registers that are available as sources and destinations
for move instructions

Rj R0, R1, R2, R3 Four pointer registers that are available as pointers for addressing

N3 N3 One index register that is available only for the second access in dual
parallel read instructions

M01 M01 Address modifier register

FIRA FIRA Fast interrupt return register

Table A-3. Data ALU Registers

Register
Field

Registers in this
Field

Comments

FFF A, B, C, D
Y

X0, Y0, Y1

Eight data ALU registers—four 36-bit accumulators, one 32-bit long regis-
ter Y, and three 16-bit data registers that are accessible during data ALU
operations.

FFF1 A1, B1, C1, D1
X0, Y0, Y1

Seven data ALU registers—four 16-bit MSP portions of the accumulators
and three 16-bit data registers that are accessible during data ALU opera-
tions.

This field is identical to the HHH (source) field. It is very similar to FFF, but
it indicates that the MSP portion of the accumulator is in use. Note the
usage of A1, B1, C1, and D1.

EEE A, B, C, D
X0, Y0, Y1

Seven data ALU registers—four accumulators and three 16-bit data regis-
ters that are accessible during data ALU operations.

This field is similar to FFF but is missing the 32-bit Y register. Used for
instructions where Y is not a useful operand (use Y1 instead).

fff A, B, C, D
Y

Four 36-bit accumulators and one 32-bit long register that are accessible
during data ALU operations.

FF A, B, C, D Four 36-bit accumulators that are accessible during data ALU operations.

DD X0, Y0, Y1 Three 16-bit data registers.

F A, B Two 36-bit accumulators that are accessible during parallel move instruc-
tions and some data ALU operations.

F1 A1, B1 The 16-bit MSP portions of two accumulators that are accessible as source
operands in parallel move instructions.
Freescale Semiconductor Instruction Set Details A-3

Table A-4 shows additional register fields that are available for move instructions.

Table A-4. Additional Register Fields for Move Instructions

Register Field
Registers in this

Field
Comments

DDDDD A, A2, A1, A0
B, B2, B1, B0

C, C1
D, D1

Y
Y1, Y0, X0

R0, R1, R2, R3
R4, R5, N, SP

M01, N3

OMR, SR
LA, LC
HWS

This field lists the CPU registers. It contains the contents of the HHHHH
and SSSS register fields.

Y is permitted only as a destination, not as a source.
Writing word data to the 32-bit Y register clears the Y0 portion.

Note that the C2, C0, D2, and D0 registers are not available within this
field. See the dd register field in this table for these registers

dd C2, D2, C0, D0 Extension and LS portion of the C and D accumulators.

This register set supplements the DDDDD field.

HHHHH A, A2, A1, A0
B, B2, B1, B0

C, C1
D, D1

Y
Y1, Y0, X0

This set designates registers that are written with signed values when
they are written with word values.

Y is permitted only as a destination, not as a source.

The registers in this field and SSSS combine to make the DDDDD reg-
ister field.

SSSS R0, R1, R2, R3
R4, R5, N, SP

M01, N3

LA, LC, HWS
OMR, SR

This set designates registers that are written with unsigned values when
they are written with word values.

The registers in this field and in HHHHH combine to make the DDDDD
register field.

dddd.L A2, B2, C2, D2
Y0, Y1, X0

SP, M01, N3,
LA, LA2, LC, LC2,
HWS, OMR, SR

Miscellaneous set of registers that can be placed onto or removed from
the stack 32 bits at a time.

This list supplements the registers in the HHHH.L field, which also can
access the stack via the MOVE.L instruction.
A-4 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Table A-5 provides an alphabetical overview of the fields and refers to the additional section and tables
that contain the precise encoding values.

Table A-5. Opcode Encoding Fields

Encoding Field Description Location

AAA Top 3 address bits for branch Section A.5.7

AA Top 2 address bits for branch Section A.5.7

AAAAAA 6-bit positive offset for X:(R2+xx) addressing mode Section A.5.7

aaa Data ALU register (excluding Y) Table A-7

aaaaaa 6-bit negative offset for X:(SP–xx) addressing mode Section A.5.7

Aaaaaaa 7-bit signed offset for branch instructions Section A.5.7

bb Accumulator Table A-7

bbb Data ALU register Table A-7

BBBBB 5-bit signed integer immediate Section A.5.7

BBBBBB 6-bit signed integer immediate Section A.5.7

BBBBBBB 7-bit signed integer immediate Section A.5.7

ccc 16-bit data ALU register or accumulator portion Table A-7

CCC Condition code specifier Table A-17

CCCC Condition code specifier Table A-18

DD 16-bit data ALU register Table A-7

dddd Special 32-bit stack push/pop register Table A-13

ddddd Full set of DSP56800E registers Table A-12

DDDDD Full set of DSP56800E registers Table A-11

hhhhh DALU set registers Table A-11

SSSS Non-DALU set registers Table A-11

EEE Data ALU register (excluding Y) Table A-7

F A or B accumulator Table A-7

FF Accumulator Table A-7

fff Accumulator or Y Table A-7

FFF Data ALU register Table A-7

GGG Data ALU register Table A-10

GGG Parallel move destination register Table A-14

GGGG 24-bit AGU pointer register or 16-bit data ALU register Table A-10
Freescale Semiconductor Instruction Set Details A-5

Certain core instructions use symbols in the instruction field to represent operands or addressing modes in
the opcodes. These symbols are listed in Table A-6.

hhh Data ALU register Table A-13

hhhh Full set of DSP56800E registers Table A-13

iii 3-bit offset for X:(Rn+x) and X:(SP–x) addressing modes Table A-19

iiii 4-bit unsigned integer immediate Section A.5.7

JJ 16-bit data ALU register Table A-9

JJJ Accumulator or 16-bit data ALU register Table A-9

JJJJJ Two input registers for three-operand instructions Table A-8

m Addressing mode specifier Table A-16

MM Addressing mode specifier Table A-16

nnn 24-bit AGU pointer register or 16-bit data ALU register Table A-10

NNN 24-bit AGU pointer register Table A-10

Ppppppp 7-bit absolute address for X:<<pp addressing mode Section A.5.7

QQ 16-bit data ALU register Table A-9

qqq Two input registers for three-operand instructions Table A-8

QQQ Two input registers for three-operand instructions Table A-8

RR R0–R3 pointer registers Table A-10

RRR 24-bit AGU pointer register Table A-10

SSS 24-bit AGU pointer register Table A-10

U Single bit to indicate lower or upper byte in BRSET and
BRCLR

Section A.5.7

vvvv Dual parallel read destination registers Table A-15

Table A-6. Instruction Field Symbols

Symbol Meaning Reference

Q1
Q2

First source register in the QQQ field
Second source register in the QQQ field

Table A-8 on page A-332

Q3
Q4

First source register in the QQ field
Second source register in the QQ field

Table A-8 on page A-332

X:<ea_m> Addressing mode of ‘m’ field in single parallel move
or the first operand in a dual parallel read

Table A-16 on page A-345

Table A-5. Opcode Encoding Fields (Continued)

Encoding Field Description Location
A-6 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

A.2 Instruction Descriptions
The following section describes each instruction in the instruction set in complete detail. Aspects of each
instruction description are explained in Section A.1, “Notation.”

The “Operation” and “Assembler Syntax” fields appear at the beginning of each description. For
instructions that allow parallel moves, these fields include the parenthetical comment “(parallel move).”
Every description also includes an example. The example discusses the contents of all the registers and
memory locations that are referenced by the opcode and operand portion of the instruction, although it
does not discuss those that are referenced by the parallel move portion of the instruction.

Whenever an instruction uses an accumulator as both a destination operand for a data ALU operation and
as a source for a parallel move operation, the parallel move operation uses the value in the accumulator
prior to the execution of any data ALU operation.

A brief overview of the condition codes that are affected by each instruction is presented in each
instruction’s “Condition Codes Affected” section. For a more thorough discussion of condition code
calculation, refer to Appendix B, “Condition Code Calculation.”

For more information about the notation that is used in the “Instruction Opcode” sections of the instruction
descriptions, see Section A.5, “Instruction Opcode Encoding.”

X:<ea_v> Addressing mode of ‘vvvv’ field in the second oper-
and of a dual parallel read

Table A-15 on page A-344

X:<ea_MM> Addressing mode of ‘MM’ field for memory access Table A-16 on page A-345

Table A-6. Instruction Field Symbols

Symbol Meaning Reference
Freescale Semiconductor Instruction Set Details A-7

ABS Absolute Value ABS
Operation: Assembler Syntax:

|D| → D (one parallel move) ABS D (one parallel move)
|D| → D (no parallel move) ABS D (no parallel move)

Description: Take the absolute value of the destination operand (D) and store the result in the destination accumu-
lator or 16-bit register. Duplicate destination is not allowed when this instruction is used in conjunction
with a parallel read.

Example:

ABS A X:(R0)+,Y0 ; take ABS value, move data into Y0,
; update R0

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $F:FFFF:FFF2. The execution of the
ABS instruction takes the two’s-complement of that value and returns $0:0000:000E.

Note: When the D operand equals $8:0000:0000 (–16.0 when interpreted as a decimal fraction), the ABS in-
struction causes an overflow to occur since the result cannot be correctly expressed using the standard
36-bit, fixed-point, two’s-complement data representation. When saturation is enabled (SA = 1 in the
OMR register), data limiting will occur to value $F:8000:000. If saturation is not enabled, the value
will remain unchanged.

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the extended portion of accumulator result is in use
U — Set according to the standard definition of the U bit
N — Set if MSB of result is set
Z — Set if result equals zero
V — Set if overflow has occurred in result

Before Execution

FFF2FFFFF

A2 A1 A0

After Execution

000E00000

A2 A1 A0

0301SR 0311SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-8 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ABS Absolute Value ABS
Instruction Fields:

Parallel Moves:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

ABS FFF 1 1 Absolute value.

Data ALU Operation Parallel Memory Move

Operation Operands Source Destination1

1.The case where the destination of the data ALU operation is the same register as the destination of the par-
allel read operation is not allowed. Memory writes are allowed in this case.

ABS2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

F X:(Rj)+
X:(Rj)+N

X0
Y1
Y0
A
B
C
A1
B1

X0
Y1
Y0
A
B
C
A1
B1

X:(Rj)+
X:(Rj)+N

15 12 11 8 7 4 3 0

ABS F GGG,X:<ea_m> 0 0 0 0 1 G G G F 0 1 0 0 m R R

15 12 11 8 7 4 3 0

ABS F X:<ea_m>,GGG 0 0 1 0 1 G G G F 0 1 0 0 m R R

15 12 11 8 7 4 3 0

ABS FFF 0 1 1 1 0 1 F F F 0 1 0 0 1 1 1
Freescale Semiconductor Instruction Set Details A-9

ADC Add Long with Carry ADC
Operation: Assembler Syntax:

S + C + D → D (no parallel move) ADC S,D (no parallel move)

Description: Add the source operand (S) and the carry bit (C) to the second operand, and store the result in the des-
tination (D). The source operand (register Y) is first sign extended internally to form a 36-bit value
before being added to the destination accumulator. The result is not affected by the state of the satura-
tion bit (SA).

Usage: This instruction is typically used in multi-precision addition operations (see Section 5.5.1, “Extend-
ed-Precision Addition and Subtraction,” on page 5-29) when it is necessary to add together two num-
bers that are larger than 32 bits (as in 64-bit or 96-bit addition).

Example:

ADC Y,A ; add Y and carry to A

Explanation of Example:
Prior to execution, the 32-bit Y register—which is composed of the Y1 and Y0 registers—contains the
value $2000:8000, and the 36-bit accumulator contains the value $0:2000:8000. In addition, the initial
value of C is set to one. The ADC instruction automatically sign extends the 32-bit Y register to 36 bits
and adds this value to the 36-bit accumulator. The carry bit, C, is added into the LSB of this 36-bit
operation. The 36-bit result is stored back in the A accumulator, and the condition codes are set appro-
priately. The Y1:Y0 register pair is not affected by this instruction.

Note: C is set correctly for multi-precision arithmetic, using long-word operands only when the extension
register of the destination accumulator (FF2) contains only sign extension information (bits 31 through
35 are identical in the destination accumulator).

Condition Codes Affected:

L — Set if overflow has occurred in result
E — Set if the extended portion of accumulator result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 35 of accumulator result is set
Z — Set if accumulator result is zero; cleared otherwise
V — Set if overflow has occurred in accumulator result
C — Set if a carry (or borrow) occurs from bit 35 of accumulator result

Before Execution

800020000

A2 A1 A0

0301SR

80002000

Y1 Y0

After Execution

000140010

A2 A1 A0

0300SR

80002000

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-10 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ADC Add Long with Carry ADC
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

ADC Y,F 1 1 Add with carry (set C bit also)

15 12 11 8 7 4 3 0

ADC Y,F 0 1 1 1 0 1 0 0 F 0 0 0 0 1 1 1
Freescale Semiconductor Instruction Set Details A-11

ADD Add ADD
Operation: Assembler Syntax:

S + D → D (no parallel move) ADD S,D (no parallel move)
S + D → D (one parallel move) ADD S,D (one parallel move)
S + D → D (two parallel reads) ADD S,D (two parallel reads)

Description: Add the source register to the destination register and store the result in the destination (D). If the des-
tination is a 36-bit accumulator, 16-bit source registers are first sign extended internally and concate-
nated with 16 zero bits to form a 36-bit operand (the Y register is only sign extended). When the des-
tination is X0, Y0, or Y1, 16-bit addition is performed. In this case, if the source operand is one of the
four accumulators, the FF1 portion (properly sign extended) is used in the 16-bit addition; the FF2 and
FF0 portions are ignored. Similarly, if the destination is the Y register, the FF2 portion is ignored.

Usage: This instruction can be used for both integer and fractional two’s-complement data.

Example:

ADD X0,A X:(R2)+N,X0 ; 16-bit addition, load X0, update R2

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $0002, and the 36-bit A accumulator con-
tains the value $0:0058:1234. The ADD instruction automatically appends the 16-bit value in the X0
register with 16 LS zeros, sign extends the resulting 32-bit long word to 36 bits, and adds the result to
the 36-bit A accumulator. A new word is read into the X0 register and address register R2 is updated
by –1.

Note: The carry bit (C) in the CCR is set correctly using word or long-word source operands if the extension
register of the destination accumulator contains sign extension from bit 31 of the destination accumu-
lator. C is always set correctly using accumulator source operands.

Before Execution

123400580

A2 A1 A0

0002X0

After Execution

1234005A0

A2 A1 A0

3456X0

002001R2 002000R2

FFFFFFN FFFFFFN

0300SR 0310SR
A-12 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ADD Add ADD
Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the extended portion of the accumulator result is in use
U — Set if the result is unnormalized
N — Set if the high-order bit of the result is set
Z — Set if the result equals zero
V — Set if overflow has occurred in the result
C — Set if a carry occurs from the high-order bit of the result

Instruction Fields:

Parallel Moves:

Operation Operands C W Comments

ADD FFF,FFF 1 1 36-bit add two registers.

Data ALU Operation Parallel Memory Move

Operation Operands Source Destination1

1.The case where the destination of the data ALU operation is the same register as the destination of the par-
allel read operation is not allowed. Memory writes are allowed in this case.

ADD2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

X0,F
Y1,F
Y0,F
C,F

A,B
B,A

X:(Rj)+
X:(Rj)+N

X0
Y1
Y0
A
B
C
A1
B1

X0
Y1
Y0
A
B
C
A1
B1

X:(Rj)+
X:(Rj)+N

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-13

ADD Add ADD
Parallel Dual Reads:

Data ALU Operation1

1.This instruction is not allowed when the XP bit in the OMR is set (that is, when the instructions are executing
from data memory).

First Memory Read Second Memory Read

Operation Operands Source 1 Destination 1 Source 2 Destination 2

ADD2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

X0,F
Y1,F
Y0,F

A,B
B,A

X:(R0)+
X:(R0)+N
X:(R1)+

X:(R1)+N

Y0
Y1

X:(R3)+
X:(R3)–

X0

X:(R4)+
X:(R4)+N

Y0 X:(R3)+
X:(R3)+N3

X0

X:(R0)+
X:(R0)+N
X:(R4)+

X:(R4)+N

Y1 X:(R3)+
X:(R3)+N3

C

A-14 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ADD Add ADD
Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

15 12 11 8 7 4 3 0

ADD C,F GGG,X:<ea_m> 0 0 0 0 0 G G G F 1 1 0 0 m R R

15 12 11 8 7 4 3 0

ADD C,F X:<ea_m>,GGG 0 0 1 0 0 G G G F 1 1 0 0 m R R

15 12 11 8 7 4 3 0

ADD DD,F GGG,X:<ea_m> 0 0 0 0 0 G G G F J J J 0 m R R

15 12 11 8 7 4 3 0

ADD DD,F X:<ea_m>,GGG 0 0 1 0 0 G G G F J J J 0 m R R

15 12 11 8 7 4 3 0

ADD DD,F X:<ea_m>,reg1
 X:<ea_v>,reg2

0 1 1 0 0 0 v v F v J J 0 m 0 v

15 12 11 8 7 4 3 0

ADD FFF,FFF 0 1 1 1 1 0 F F F b b b 0 0 0 0

15 12 11 8 7 4 3 0

ADD ~F,F GGG,X:<ea_m> 0 0 0 0 0 G G G F 0 0 0 0 m R R

15 12 11 8 7 4 3 0

ADD ~F,F X:<ea_m>,GGG 0 0 1 0 0 G G G F 0 0 0 0 m R R

15 12 11 8 7 4 3 0

ADD ~F,F X:<ea_m>,reg1
 X:<ea_v>,reg2

0 1 1 0 0 0 v v F v 1 0 0 m 0 v
Freescale Semiconductor Instruction Set Details A-15

ADD.B Add Byte (Word Pointer) ADD.B
Operation: Assembler Syntax:

S + D → D (no parallel move) ADD.B S,D (no parallel move)

Description: Add a 9-bit signed immediate integer to the 8-bit portion of the destination register, and store the result
in the destination (D). The value is internally sign extended to 20 bits before the operation. If the des-
tination is a 16-bit register, it is first correctly sign extended before the 20-bit addition is performed.
The immediate integer is used to represent 8-bit unsigned values from 0 to 255 as well as the signed
range: –128 to 127. The condition codes are calculated based on the 8-bit result, with the exception of
the E and U bits, which are calculated based on the 20-bit result. The result is not affected by the state
of the saturation bit (SA).

Usage: This instruction can be used for both integer and fractional two’s-complement data.

Example:

ADD.B #$55,A ; add hex 55 to A accumulator

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:3122:1234. The ADD.B instruction
automatically sign extends the immediate value to 20 bits and then adds the result to the A2:A1 portion
of the A accumulator. The 8-bit result ($77) is stored back into the low-order 8 bits of A1.

Condition Codes Affected:

E — Set if the extension portion of the 20-bit result is in use
U — Set if the 20-bit result is unnormalized
N — Set if bit 7 of the result is set
Z — Set if the result equals zero
V — Set if overflow has occurred in the result
C — Set if a carry occurs from bit 7 of the result

Instruction Fields:

Instruction Opcodes:

Timing: 2 oscillator clock cycle

Memory: 2 program word

Operation Operands C W Comments

ADD.B #xxx,EEE 2 2 Add 9-bit signed immediate

Before Execution

123431220

A2 A1 A0

After Execution

123431770

A2 A1 A0

0300SR 0310SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 12 11 8 7 4 3 0

ADD.B #xxx,EEE 0 1 0 0 0 1 E E E 1 0 0 0 0 1 0

iiiiiiiiiiiiiiii
A-16 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ADD.BP Add Byte (Byte Pointer) ADD.BP
Operation: Assembler Syntax:

S + D → D (no parallel move) ADD.BP S,D (no parallel move)

Description: Add a byte stored in memory to the 8-bit portion of the destination register, and store the result in the
destination (D). The value is internally sign extended to 20 bits before the operation. If the destination
is a 16-bit register, it is first correctly sign extended before the 20-bit addition is performed. The con-
dition codes are calculated based on the 8-bit result, with the exception of the E and U bits, which are
calculated based on the 20-bit result. Absolute addresses are expressed as byte addresses. The result is
not affected by the state of the saturation bit (SA).

Usage: This instruction can be used for both integer and fractional two’s-complement data.

Example:

ADD.BP X:$4000,A ; add byte at word address $2000
; to A accumulator

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:3122:1234. The ADD.BP instruc-
tion automatically sign extends the memory byte to 20 bits and then adds the result to the A2:A1 por-
tion of the A accumulator. The 8-bit result ($77) is stored back into the low-order 8 bits of A1.

Condition Codes Affected:

E — Set if the extension portion of the 20-bit result is in use
U — Set if the 20-bit result is unnormalized
N — Set if bit 7 of the result is set
Z — Set if the result equals zero
V — Set if overflow has occurred in the result
C — Set if a carry occurs from bit 7 of the result

Before Execution

123431220

A2 A1 A0

After Execution

123431770

A2 A1 A0

FF55(word address) X:$2000 FF55 X:$2000

0300SR 0310SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-17

ADD.BP Add Byte (Byte Pointer) ADD.BP
Instruction Fields:

Instruction Opcodes:

Timing: 2–3 oscillator clock cycles

Memory: 2–3 program words

Operation Operands C W Comments

ADD.BP X:xxxx,EEE 2 2 Add memory byte to register; address is expressed as
byte addressX:xxxxxx,EEE 3 3

15 12 11 8 7 4 3 0

ADD.BP X:xxxx,EEE 0 1 0 0 0 1 E E E 1 0 0 0 1 1 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

ADD.BP X:xxxxxx,EEE 1 1 1 0 0 A A A 0 A 1 1 A A A A

0 1 0 0 0 1 E E E 1 0 0 0 1 1 0

AAAAAAAAAAAAAAAA
A-18 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ADD.L Add Long ADD.L
Operation: Assembler Syntax:

S + D → D (no parallel move) ADD.L S,D (no parallel move)

Description: Add a long-word value in memory or a 16-bit signed immediate value to the second operand, and store
the result in the destination (D). Source values are internally sign extended to 36 bits before the addi-
tion. Condition codes are calculated based on the 32-bit result, with the exception of the E and U bits,
which are calculated based on the 36-bit result for accumulator destinations. Absolute addresses point-
ing to long elements must always be even aligned (that is, pointing to the lowest 16 bits).

Usage: This instruction can be used for both integer and fractional two’s-complement data.

Example:

ADD.L X:$4000,A ; add long value at word address $4001:4000
; to A accumulator

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:6666:1111. The ADD.L instruction
automatically sign extends the long value at address X:$4001:4000 to 36 bits and adds the result to the
A accumulator. The 32-bit result ($8888:2222) is stored back into the accumulator.

Condition Codes Affected:

E — Set if the extended portion of the 36-bit result is in use
U — Set if the 36-bit result is unnormalized
N — Set if bit 31 of the result is set
Z — Set if bits 31–0 of the result are zero
V — Set if overflow has occurred in the result
C — Set if a carry occurs from bit 31 of the result

Before Execution

111166660

A2 A1 A0

After Execution

222288880

A2 A1 A0

2222X:$4001 2222 X:$4001

0300SR 032ASR

1111X:$4000 1111 X:$4000

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-19

ADD.L Add Long ADD.L
Instruction Fields:

Instruction Opcodes:

Timing: 2–3 oscillator clock cycles

Memory: 2–3 program words

Operation Operands C W Comments

ADD.L X:xxxx,fff 2 2 Add memory long to register

X:xxxxxx,fff 3 3

#xxxx,fff 2 2 Add a 16-bit immediate value sign extended to 32 bits
to a data register

15 12 11 8 7 4 3 0

ADD.L #xxxx,fff 0 1 0 0 0 1 f f f 1 0 0 0 0 1 1

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

ADD.L X:xxxx,fff 0 1 0 0 0 1 f f f 1 0 0 0 1 1 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

ADD.L X:xxxxxx,fff 1 1 1 0 0 A A A 0 A 1 1 A A A A

0 1 0 0 0 1 f f f 1 0 0 0 1 1 1

AAAAAAAAAAAAAAAA
A-20 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ADD.W Add Word ADD.W
Operation: Assembler Syntax:

S + D → D (no parallel move) ADD.W S,D (no parallel move)

Description: Add the source operand to the second operand (register or memory), and store the result in the desti-
nation (D). The source operand (except for a short immediate operand) is first sign extended internally
to form a 20-bit value; this value is concatenated with 16 zero bits to form a 36-bit value when the des-
tination is one of the four accumulators. A short immediate (0–31) source operand is zero extended
before the addition. The addition is then performed as a 20-bit operation. Condition codes are calcu-
lated based on the size of the destination.

Usage: This instruction can be used for both integer and fractional two’s-complement data.

Example:

ADD.W #3,A ; add decimal 3 to A

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:0058:1234. The ADD.W instruction
automatically sign extends the immediate value to 20 bits and adds the result to accumulator A. The
result is stored back in A.

Condition Codes Affected:

L — Set if overflow has occurred in the result
E — Set if the extended portion of the 20-bit result is in use
U — Set if the 20-bit result is unnormalized
N — Set if the high-order bit of the result is set
Z — Set if the result equals zero (accumulator bits 35–0 or bits 15–0 of a 16-bit register)
V — Set if overflow has occurred in the result
C — Set if a carry occurs from the high-order bit of the result

Before Execution

123400580

A2 A1 A0

0300SR

After Execution

1234005B0

A2 A1 A0

0310SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-21

ADD.W Add Word ADD.W
Instruction Fields:

Operation Operands C W Comments

ADD.W X:(Rn),EEE 2 1 Add memory word to register

X:(Rn+xxxx),EEE 3 2

X:(SP–xx),EEE 3 1

X:xxxx,EEE 2 2

X:xxxxxx,EEE 3 3

EEE,X:(SP–xx) 4 2 Add register to memory word, storing the result back to
memoryEEE,X:xxxx 3 2

#<0–31>,EEE 1 1 Add an immediate integer 0–31 (zero extended)

#xxxx,EEE 2 2 Add a signed 16-bit immediate
A-22 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ADD.W Add Word ADD.W
Instruction Opcodes:

Timing: 1–4 oscillator clock cycle(s)

Memory: 1–3 program word(s)

15 12 11 8 7 4 3 0

ADD.W #<0–31>,EEE 0 1 0 0 0 1 E E E 0 0 B B B B B

15 12 11 8 7 4 3 0

ADD.W #xxxx,EEE 0 1 0 0 0 1 E E E 1 0 0 0 0 0 0

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

ADD.W EEE,X:(SP–xx) 0 1 0 0 0 0 E E E 1 a a a a a a

$E702

15 12 11 8 7 4 3 0

ADD.W EEE,X:xxxx 0 1 1 1 0 1 E E E 1 0 1 0 1 1 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

ADD.W X:(Rn),EEE 0 1 0 0 0 1 E E E 1 0 1 R 1 R R

15 12 11 8 7 4 3 0

ADD.W X:(Rn+xxxx),EEE 0 1 0 0 0 1 E E E 1 0 1 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

ADD.W X:(SP–xx),EEE 0 1 0 0 0 0 E E E 1 a a a a a a

15 12 11 8 7 4 3 0

ADD.W X:xxxx,EEE 0 1 0 0 0 1 E E E 1 0 0 0 1 0 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

ADD.W X:xxxxxx,EEE 1 1 1 0 0 A A A 0 A 1 1 A A A A

0 1 0 0 0 1 E E E 1 0 0 0 1 0 0

AAAAAAAAAAAAAAAA
Freescale Semiconductor Instruction Set Details A-23

ADDA Add AGU Register ADDA
Operation: Assembler Syntax:

S + D → D (no parallel move) ADDA S,D (no parallel move)
S1 + S2 → D (no parallel move) ADDA S1,S2,D (no parallel move)

Description: Add an AGU register or immediate value to an AGU register or a data ALU register, and store the re-
sult in the second AGU register, a separate address pointer register, or the N register. The addition is
performed using 24-bit two’s-complement arithmetic. Immediate values that are less than 24 bits in
length are either sign extended or zero extended to 24 bits before the addition takes place. Refer to
Section 6.8.4.3 on page 6-28 when using “ADDA #<immediate_value>,Rn” in Modulo Addressing.

Example:

ADDA #$254,R0,R1 ; add hex 254 to R0 and store the result in R1

Explanation of Example:
The address pointer register R0 initially contains $005000, while R1 initially contains $17C624. When
the ADDA #$254,R0,R1 instruction is executed, the immediate hexadecimal value 254 is added to
the value in R0, and the result is stored in address register R1.

Condition Codes Affected:
The condition codes are not affected by this instruction

Instruction Fields:

Operation Operands C W Comments

ADDA Rn,Rn 1 1 Add first operand to the second and store the result in the sec-
ond operand.

Rn,Rn,N 1 1 Add first operand to the second and store result in the N regis-
ter.

#<0–15>,Rn 1 1 Add unsigned 4-bit value to Rn.

#<0–15>,Rn,N 1 1 Add an unsigned 4-bit value to an AGU register and store
result in the N register.

#xxxx,Rn,Rn 2 2 Add first register with a signed 17-bit immediate value and
store the result in Rn.

#xxxx,Rn 2 2 An alternate syntax for the preceding instruction if the second
source and the destination are the same.

#xxxxxx,Rn,Rn 3 3 Add first register with a 24-bit immediate value and store the
result in Rn.

#xxxxxx,Rn 3 3 An alternate syntax for the preceding instruction if the second
source and the destination are the same.

#xxxx,HHH,Rn 4 2 Add a data register with an unsigned 16-bit value and store
the result in Rn. HHH is accessed as a signed 16-bit word.

#xxxxxx,HHH,Rn 5 3 Add a data register with a 24-bit immediate value and store
the result in Rn. HHH is accessed as a signed 16-bit word.

Before Execution

17C624R1

After Execution

005000R0 005000R0

005254R1
A-24 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ADDA Add AGU Register ADDA
Instruction Opcodes:

Timing: 1–5 oscillator clock cycle(s)

Memory: 1–3 program word(s)

Note: Refer to Section 6.8.4.3 on page 6-28 when ADDA is used in Modulo Arithmetic.

15 12 11 8 7 4 3 0

ADDA #<0–15>,Rn 1 0 0 0 i i i i 0 1 1 1 R 0 R R

15 12 11 8 7 4 3 0

ADDA #<0–15>,Rn,N 1 0 0 0 i i i i 0 1 1 1 R 1 R R

15 12 11 8 7 4 3 0

ADDA #xxxx,HHH,Rn 1 0 0 0 0 1 1 0 h 0 1 h R h R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

ADDA #xxxx,Rn,Rn 1 0 0 0 V 0 1 0 n 0 1 n R n R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

ADDA #xxxxxx,HHH,Rn 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 0 0 0 0 1 1 0 h 0 1 h R h R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

ADDA #xxxxxx,Rn,Rn 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 0 0 0 0 0 1 0 n 0 1 n R n R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

ADDA Rn,Rn 1 0 0 0 1 0 0 1 n 0 1 n R n R R

15 12 11 8 7 4 3 0

ADDA Rn,Rn,N 1 0 0 0 1 1 0 1 n 0 1 n R n R R
Freescale Semiconductor Instruction Set Details A-25

ADDA.L Add to Left-Shifted AGU Register ADDA.L
Operation: Assembler Syntax:

(S << 1) + D → D (no parallel move) ADDA.L S,D (no parallel move)
S1 + (S2 << 1) → D (no parallel move) ADDA.L S1,S2,D (no parallel move)

Description: Left shift one of the source operands by one (S or S2), and add it either to the destination or to the other
source operand (S1). Store the result in the destination AGU register (D).

Usage: The ADDA.L instruction is most useful for accessing arrays of long words in memory. The address of
an element in the array is calculated by adding the base address to the index value multiplied by 2
(since long words occupy 2 words in memory). The ADDA.L instruction can accomplish this in one
step.

Example:

ADDA.L #$4000,R0,R1 ; add $4000 to left-shifted R0 and store the
; result in R1

Explanation of Example:
The address pointer register R0 initially contains $000044, while R1 initially contains $000624. When
the ADDA.L #$4000,R0,R1 instruction is executed, R0 is internally shifted 1 bit to the left, result-
ing in the intermediate value $000088. The immediate value $4000 is then added to the shifted value,
and the result ($004088) is stored in address register R1.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Before Execution

000624R1

After Execution

000044R0 000044R0

004088R1
A-26 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ADDA.L Add to Left-Shifted AGU Register ADDA.L
Instruction Fields:

Instruction Opcodes:

Timing: 1–5 oscillator clock cycle(s)

Memory: 1–3 program word(s)

Operation Operands C W Comments

ADDA.L Rn,Rn 1 1 Add first operand, left shifted 1 bit, to the second, and store the
result in the second operand

Rn,Rn,N 1 1 Add first operand, left shifted 1 bit, to the second, and store result
in the N register

#xxxx,Rn,Rn 2 2 Add first register, left shifted 1 bit, with an unsigned 16-bit imme-
diate value, and store the result in Rn

#xxxx,Rn 2 2 An alternate syntax for the preceding instruction if the second
source and the destination are the same

#xxxxxx,Rn,Rn 3 3 Add first register, left shifted 1 bit, with a 24-bit immediate value,
and store the result in Rn

#xxxxxx,Rn 3 3 An alternate syntax for the preceding instruction if the second
source and the destination are the same

#xxxx,HHH,Rn 4 2 Add data register, left shifted 1 bit, with unsigned 16-bit immedi-
ate value, store result in Rn; HHH is accessed as 16-bit signed

#xxxxxx,HHH,Rn 5 3 Add data register, left shifted 1 bit, with a 24-bit immediate value,
and store the result in Rn; HHH is accessed as 16-bit signed

15 12 11 8 7 4 3 0

ADDA.L #xxxx,HHH,Rn 1 0 0 0 0 1 1 1 h 0 1 h R h R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

ADDA.L #xxxx,Rn,Rn 1 0 0 0 0 0 1 1 n 0 1 n R n R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

ADDA.L #xxxxxx,HHH,Rn 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 0 0 0 0 1 1 1 h 0 1 h R h R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

ADDA.L #xxxxxx,Rn,Rn 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 0 0 0 0 0 1 1 n 0 1 n R n R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

ADDA.L Rn,Rn 1 0 0 0 1 0 0 0 n 0 1 n R n R R

15 12 11 8 7 4 3 0

ADDA.L Rn,Rn,N 1 0 0 0 1 1 0 0 n 0 1 n R n R R
Freescale Semiconductor Instruction Set Details A-27

ALIGNSP Align Stack Pointer ALIGNSP
Operation: Assembler Syntax:

If SP is odd: ALIGNSP(no parallel move)
SP + 2 → SP

else if SP is even:
SP + 3 → SP

SP → X:(SP)
SP + 2 → SP

Description: The ALIGNSP instruction aligns the stack pointer register (SP) correctly for a long-word value to be
pushed onto the stack. The SP should point to the (odd) upper word address of the long word in order
for it to be pushed and popped properly. The ALIGNSP instruction guarantees that the SP points to an
odd word address and that at least 2 words are available to receive the long-word value. The value of
the SP previous to the alignment adjustment is placed on the stack (as a long word) so the stack can be
restored to its original state.

Usage: ALIGNSP should be used to align the stack prior to pushing a long-word value.

Example: ALIGNSP ; align the stack for a long word
MOVE.L Y,X:(SP)+ ; push long word on stack

Explanation of Example:
The SP register initially has a value of $001001. Since the initial value of SP is odd, it is only incre-
mented by two, the original value is pushed onto the stack, and SP is updated. After ALIGNSP is ex-
ecuted, the SP has a new value of $001005. The MOVE.L instruction adds two to the SP (for the
post-increment) after pushing register Y onto the stack, setting the final SP value to $001007.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 3 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

ALIGNSP 3 1 Save SP to the stack and align SP for long memory accesses, pointing
to an empty location

X:$1001

Before Execution After Execution

5499
0000

X:$1001 5499
0000

‘Y1’
‘Y0’
0000
1001

SPX:$1007

X:$1005

SP

X:$1006

X:$1000 X:$1000

X:$1004
X:$1003

X:$1002

15 12 11 8 7 4 3 0

ALIGNSP 1 1 1 0 0 1 1 1 0 0 0 0 0 1 0 0
A-28 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

AND.L AND Long AND.L
Operation: Assembler Syntax:

S • D → D (no parallel move) AND.L S,D (no parallel move)
where • denotes the logical AND operator

Description: Perform a logical AND operation on the source operand and the destination operand, and store the re-
sult in the destination. This instruction is a 32-bit operation. If the destination is a 36-bit accumulator,
the AND operation is performed on the source and bits 31–0 of the accumulator. The remaining bits
of the destination accumulator are not affected. If the source is a 16-bit register, it is first internally
concatenated with 16 zero bits to form a 32-bit operand. If the source is an immediate 5-bit constant,
it is first zero extended to form a 32-bit operand. When the destination is an accumulator, bits 35–32
remain unchanged. The result is not affected by the state of the saturation bit (SA).

Usage: This instruction is used for the logical AND of two registers or of a register and a small immediate
value. The ANDC instruction is appropriate for performing an AND operation on a 16-bit immediate
value and a register or memory location.

Example:

AND.L Y,A ; logically AND Y with A10

Explanation of Example:
Prior to execution, the 32-bit Y register contains the value $7F00:00FF, and the 36-bit A accumulator
contains the value $6:1234:5678. The AND.L Y,A instruction performs a logical AND operation on
the 32-bit value in the Y register and on bits 31–0 of the A accumulator (A10), and it stores the 36-bit
result in the A accumulator. Bits 35–32 in the A2 register are not affected by this instruction.

Condition Codes Affected:

N — Set if bit 31 of accumulator or register result is set
Z — Set if bits 31–0 of accumulator or register result are zero
V — Always cleared

Before Execution

567812346

A2 A1 A0

After Execution

007812006

A2 A1 A0

0302SR 0300SR

00FF7F00

Y1 Y0

00FF7F00

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-29

AND.L AND Long AND.L
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

AND.L #<0–31>,fff 1 1 AND with a zero-extended 5-bit positive immediate
integer (0–31)

FFF,fff 1 1 32-bit logical AND

15 12 11 8 7 4 3 0

AND.L #<0–31>,fff 0 1 0 0 0 1 f f f 1 1 B B B B B

15 12 11 8 7 4 3 0

AND.L FFF,fff 0 1 1 1 1 0 f f f b b b 1 1 0 0
A-30 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

AND.W AND Word AND.W
Operation: Assembler Syntax:

S • D → D (no parallel move) AND.W S,D (no parallel move)
S • D[31:16] → D[31:16] (no parallel move) AND.W S,D (no parallel move)

where • denotes the logical AND operator

Description: Perform a logical AND operation on the source operand (S) and the destination operand (D), and store
the result in the destination. This instruction is a 16-bit operation. If the destination is a 36-bit accumu-
lator, the operation is performed on the source and bits 31–16 of the accumulator. The remaining bits
of the destination accumulator are not affected. If the source is an immediate 5-bit constant, it is first
zero extended to form a 32-bit operand. The result is not affected by the state of the saturation bit (SA).

Usage: This instruction is used for the logical AND of two registers or of a register and a small immediate
value. The ANDC instruction is appropriate for performing an AND operation on a 16-bit immediate
value and a register or memory location.

Example:

AND.W X0,A ; logically AND X0 with A1

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $7F00, and the 36-bit A accumulator con-
tains the value $6:1234:5678. The AND.W X0,A instruction performs a logical AND operation on the
16-bit value in the X0 register and on bits 31–16 of the A accumulator (A1), and it stores the 36-bit
result in the A accumulator. Bits 35–32 in the A2 register and bits 15–0 in the A0 register are not af-
fected by this instruction.

Condition Codes Affected:

N — Set if bit 31 of accumulator result or MSB of register result is set
Z — Set if bits 31–16 of accumulator result or all bits of register result are zero
V — Always cleared

Before Execution

567812346

A2 A1 A0

7F00X0

After Execution

567812006

A2 A1 A0

7F00X0

030FSR 0301SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-31

AND.W AND Word AND.W
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

AND.W #<0–31>,EEE 1 1 AND with a zero-extended 5-bit positive immediate inte-
ger (0–31)

EEE,EEE 1 1 16-bit logical AND

15 12 11 8 7 4 3 0

AND.W #<0–31>,EEE 0 1 0 1 0 1 E E E 1 1 B B B B B

15 12 11 8 7 4 3 0

AND.W EEE,EEE 0 1 1 1 1 0 E E E a a a 1 0 0 0
A-32 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ANDC Logical AND Immediate ANDC
Operation: Assembler Syntax:

#xxxx • D → D (no parallel move) ANDC #iiii,D (no parallel move)
#xxxx • X:<ea> → X:<ea> (no parallel move) ANDC #iiii,X:<ea>(no parallel move)
where • denotes the logical AND operator

Implementation Note:
This instruction is implemented by the assembler as an alias to the BFCLR instruction, with the 16-bit
immediate value inverted (one’s-complement) and used as the bit mask. It will dis-assemble as a
BFCLR instruction.

Description: Perform a logical AND operation on a 16-bit immediate data value with the destination operand, and
store the results back into the destination. C is also modified as described in “Condition Codes Affect-
ed.” This instruction performs a read-modify-write operation on the destination and requires two des-
tination accesses.

Example:

ANDC #$0055,X:$5000 ; AND with immediate data

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$5000 contains the value $FFFF. Execution of the
instruction performs a logical AND operation on the 16-bit value in X:$5000 (that is, $FFFF) and the
mask value $0055 and stores the result in X:$5000. The C bit is set because all of the bits selected by
the inverted value of the mask are set.

Condition Codes Affected:

For destination operand SR:
For this destination only, the C bit is not updated as is done for all other destination operands.
All SR bits except bits 14–10 are updated with values from the bitfield unit.
Bits 14–10 of the mask operand must be set.

For other destination operands:
L — Set if data limiting occurred during 36-bit source move
C — Set if all bits specified by the one’s-complement of the mask are set

Cleared if at least 1 bit specified by the one’s-complement of the mask is not set

Note: If all bits in the mask are set, the instruction executes two NOPs and sets the C bit.

Instruction Fields:
Refer to the section on the BFCLR instruction for legal operand and timing information.

Before Execution

FFFFX:$5000

0300SR

After Execution

0055X:$5000

0301SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-33

ASL Arithmetic Shift Left ASL
Operation: Assembler Syntax:

(see following figure) ASL D (no parallel move)
ASL D (one parallel move)
ASL D (two parallel reads)

:

Description: Arithmetically shift the destination operand (D) 1 bit to the left, and store the result in the destination.
The MSB of the destination prior to the execution of the instruction is shifted into C, and a zero is shift-
ed into the LSB of the destination. If the destination is the Y register, the MSB is bit 31. A duplicate
destination is not allowed when ASL is used in conjunction with a parallel read. For arithmetic shifts
left on 16-bit registers, refer to ASL.W.

Usage: This instruction can be used to cast a long to an integer value.

Example:

ASL A X:(R3)+N,Y0; shift A left by 1, update R3 and Y0

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $A:0111:0222. Execution of the ASL
instruction shifts the 36-bit value in the A accumulator 1 bit to the left and stores the result back in the
A accumulator. C is set by the operation because bit 35 of A was set prior to the execution of the in-
struction. The V bit of CCR (bit 1) is also set because bit 35 of A has changed during the execution of
the instruction. The U bit of CCR (bit 4) is set because the result is not normalized, the E bit of CCR
(bit 5) is set because the extension portion of the result is in use, and the L bit of CCR (bit 6) is set
because an overflow has occurred. A new value for register Y0 is read and address register R3 is up-
dated by the contents on index register N.

Condition Codes Affected:

SZ — Set according to the standard definition of SZ (parallel move)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the extension portion of accumulator result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 35 of accumulator result is set
Z — Set if accumulator result equals zero
V — Set if bit 35 of accumulator result is changed due to left shift
C — Set if bit 35 of accumulator was set prior to the execution of the instruction

C

D0D2 D1

0

Before Execution

02220111A

A2 A1 A0

0300SR

After Execution

044402224

A2 A1 A0

0373SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-34 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ASL Arithmetic Shift Left ASL
Instruction Fields:

Parallel Moves:

Operation Operands C W Comments

ASL fff 1 1 Arithmetic shift left entire register by 1 bit.

Data ALU Operation Parallel Memory Move

Operation Operands Source Destination1

1.The case where the destination of the data ALU operation is the same register as the destination of the par-
allel read operation is not allowed. Memory writes are allowed in this case.

ASL2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

F X:(Rj)+
X:(Rj)+N

X0
Y1
Y0
A
B
C
A1
B1

X0
Y1
Y0
A
B
C
A1
B1

X:(Rj)+
X:(Rj)+N
Freescale Semiconductor Instruction Set Details A-35

ASL Arithmetic Shift Left ASL
Parallel Dual Reads:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Data ALU Operation1

1.This instruction is not allowed when the XP bit in the OMR is set (that is, when the instructions are executing
from data memory).

First Memory Read Second Memory Read

Operation Operands Source 1 Destination 1 Source 2 Destination 2

ASL2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

F X:(R0)+
X:(R0)+N
X:(R1)+

X:(R1)+N

Y0
Y1

X:(R3)+
X:(R3)–

X0

X:(R4)+
X:(R4)+N

Y0 X:(R3)+
X:(R3)+N3

X0

X:(R0)+
X:(R0)+N
X:(R4)+

X:(R4)+N

Y1 X:(R3)+
X:(R3)+N3

C

15 12 11 8 7 4 3 0

ASL F GGG,X:<ea_m> 0 0 0 1 0 G G G F 0 1 1 0 m R R

15 12 11 8 7 4 3 0

ASL F X:<ea_m>,GGG 0 0 1 1 0 G G G F 0 1 1 0 m R R

15 12 11 8 7 4 3 0

ASL F X:<ea_m>,reg1
 X:<ea_v>,reg2

0 1 1 1 0 1 v v F v 1 1 0 m 0 v

15 12 11 8 7 4 3 0

ASL fff 0 1 1 1 0 0 f f f 1 1 0 0 0 1 1
A-36 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ASL.W Arithmetic Shift Left ASL.W
Operation: Assembler Syntax:

(see following figure) ASL.W D (no parallel move)
:

Description: Arithmetically shift the destination operand (D) 1 bit to the left, and store the result in the destination
register. The MSB, bit 15 of the destination prior to the execution of the instruction, is shifted into C,
and a zero is shifted into the LSB of the destination. This instruction is used only when the destination
is X0, Y0, or Y1 register. For the purpose of calculating condition code, the 16-bit register is first sign
extended and concatenated to 16 zero bits to form a 36-bit operand. For arithmetic shifts left on the Y
register or accumulator, refer to ASL.

Example:

ASL.W Y0 ; shift Y0 left by 1

Explanation of Example:
Prior to execution, the 16-bit Y0 register contains the value $C000. Execution of the ASL.W instruc-
tion shifts the 16-bit value in Y0 by 1 bit to the left and stores the result back in Y0. C is set by the
operation because bit 15 of Y0 was set prior to the execution of the instruction. The N bit is set because
the MSB of the result is set.

Condition Codes Affected:

L — Set if overflow has occurred in result
E — Set if the extension portion of the result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 15 of result is set
Z — Set if the result equals zero
V — Set if bit 15 of result is changed due to left shift
C — Set if bit 15 of was set prior to the execution of the instruction

C 0

015

Before Execution

0300SR

After Execution

0309SR

C0002000

Y1 Y0

80002000

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-37

ASL.W Arithmetic Shift Left ASL.W
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

ASL.W DD 1 1 Arithmetic shift left entire register by 1 bit

15 12 11 8 7 4 3 0

ASL.W DD 0 1 1 1 0 0 1 D D 1 1 0 0 0 1 1
A-38 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ASL16 Arithmetic Shift Left 16 Bits ASL16
Operation: Assembler Syntax:

S << 16 → D (no parallel move) ASL16 S,D (no parallel move)

Description: Arithmetically shift the source operand to the left by 16 bits, and store the result in the destination (D).
This operation effectively places the LSP of the source register into the MSP of the destination register.
The low-order 16 bits of the destination are always set to zero. Bits are shifted into the extension reg-
ister (FF2) if the destination is an accumulator. When the destination operand is a 16-bit register, the
LSP of an accumulator or Y register is written to it. When both the source and destination are 16-bit
registers, the destination is cleared. The result is not affected by the state of the saturation bit (SA).

Example:

ASL16 Y,A ; shift Y left 16 bits, store in A

Explanation of Example:
Prior to execution, the Y register contains the value to be shifted ($0000:7FFF). The contents of the
destination register are not important prior to execution because they have no effect on the calculated
value. The ASL16 instruction arithmetically shifts the value $0000:7FFF by 16 bits to the left and plac-
es the result in the destination register A.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

ASL16 FFF,FFF 1 1 Arithmetic shift left the first operand by 16 bits, placing
result in the destination operand

FFF 1 1 An alternate syntax for the preceding instruction if the
source and the destination are the same

Before Execution

345634560

A2 A1 A0

After Execution

00007FFF0

A2 A1 A0

7FFF0000

Y1 Y0

7FFF0000

Y1 Y0

15 12 11 8 7 4 3 0

ASL16 FFF,FFF 0 1 1 1 1 1 F F F b b b 0 1 0 1
Freescale Semiconductor Instruction Set Details A-39

ASLA 1-Bit Left Shift AGU Register ASLA
Operation: Assembler Syntax:

S << 1 → D (no parallel move) ASLA S,D (no parallel move)

Description: Arithmetically shift the source address register 1 bit to the left, and store the result in the destination
register.

Example:

ASLA R1,R0 ; shift R1 left 1 bit and store in R0

Explanation of Example:
Prior to execution, the R1 register contains the value $004444, and the R0 register contains $00B360.
Execution of the ASLA instruction shifts the value in R1 by 1 bit to the left and stores the result
($008888) in the R0 register.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

ASLA Rn,Rn 1 1 Arithmetic shift left AGU register by 1 bit

Rn 1 1 An alternate syntax for the preceding instruction if the
source and the destination are the same

Before Execution

004444R1

After Execution

00B360R0 008888R0

004444R1

15 12 11 8 7 4 3 0

ASLA Rn,Rn 1 0 0 0 0 0 0 0 n 0 1 n R n R R
A-40 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ASLL.L Multi-Bit Arithmetic Left Shift Long ASLL.L
Operation: Assembler Syntax:

If S[15] = 0 or S is not a register,
D << S → D (no parallel move) ASLL.L S,D (no parallel move)
Else
D >> –S → D (no parallel move) ASLL.L S,D (no parallel move)

Description: Arithmetically shift the second operand to the left by the value contained in the 5 lowest bits of the first
operand (or by an immediate integer). Store the result back in the destination (D) with zeros shifted
into the LSB. The shift count can be a 5-bit positive immediate integer or the value contained in X0,
Y0, Y1, or the MSP of an accumulator. For 36- and 32-bit destinations, the MSP:LSP are shifted with
sign extension from bit 31 (the FF2 portion is ignored). If the shift count in a register is negative (bit
15 is set), the direction of the shift is reversed, maintaining sign integrity. The result is not affected by
the state of the saturation bit (SA).

Example:

ASLL.L Y0,A ; shift A left by amount in Y0 and store in A

Explanation of Example:
Prior to execution, the A accumulator contains the value to be shifted ($0123:4567), and the Y0 regis-
ter contains the amount by which to shift ($04). The ASLL.L instruction arithmetically shifts the value
$0123:4567 by 4 bits to the left and places the result in the destination register A. Since the destination
is an accumulator, the extension word (A2) is filled with sign extension.

Condition Codes Affected:

N — Set if MSB of result is set
Z — Set if result equals zero

Before Execution

456701230

A2 A1 A0

After Execution

567012340

A2 A1 A0

0300SR 0300SR

00242000

Y1 Y0

00242000

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-41

ASLL.L Multi-Bit Arithmetic Left Shift Long ASLL.L
Instruction Fields:

Instruction Opcodes:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

ASLL.L #<0–31>,fff 2 1 Arithmetic shift left by a 5-bit positive immediate integer

EEE,FFF 2 1 Bi-directional arithmetic shift of destination by value in
the first operand: positive –> left shift

15 12 11 8 7 4 3 0

ASLL.L #<0–31>,fff 0 1 0 0 0 1 f f f 0 1 B B B B B

15 12 11 8 7 4 3 0

ASLL.L EEE,FFF 0 1 1 1 1 1 F F F a a a 1 1 1 0
A-42 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ASLL.W Multi-Bit Arithmetic Left Shift Word ASLL.W
Operation: Assembler Syntax:

S1 << S2 → D (no parallel move) ASLL.W S1,S2,D (no parallel move)
D << S → D (no parallel move) ASLL.W S,D (no parallel move)

Description: This instruction can have two or three operands. It arithmetically shifts the source operand S1 or D to
the left by the value contained in the lowest 4 bits of either S2 or S, respectively (or by an immediate
integer), and stores the result in the destination (D) with zeros shifted into the LSB. The shift count can
be a 4-bit positive integer, a value in a 16-bit register, or the MSP of an accumulator. For 36- and 32-bit
destinations, only the MSP is shifted and the LSP is cleared, with sign extension from bit 31 (the FF2
portion is ignored). The result is not affected by the state of the saturation bit (SA).

Example:

ASLL.W Y1,X0,A ; shift Y1 left by amount in X0 and store in A

Explanation of Example:
Prior to execution, the Y1 register contains the value to be shifted ($AAAA), and the least significant
4 bits of the X0 register contain the amount by which to shift ($4). The contents of the destination reg-
ister are not important prior to execution because they have no effect on the calculated value. The
ASLL.W instruction arithmetically shifts the value $AAAA by 4 bits to the left and places the result
in the destination register A. Since the destination is an accumulator, the extension word (A2) is filled
with sign extension, and the LSP (A0) is cleared.

Condition Codes Affected:

N — Set if MSB of result is set
Z — Set if result equals zero

Note: If the CM bit is set, N is cleared. When the destination is a 16-bit register, condition codes are based
on the 16-bit result.

Before Execution

345634560

A2 A1 A0

0014X0

After Execution

0000AAA0F

A2 A1 A0

0014X0

0300
SR

0308SR

8000AAAA

Y1 Y0

8000AAAA

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-43

ASLL.W Multi-Bit Arithmetic Left Shift Word ASLL.W
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

ASLL.W #<0–15>,FFF 1 1 Arithmetic shift left by a 4-bit positive immediate integer

EEE,FFF 1 1 Arithmetic shift left destination by value specified in 4
LSBs of the first operand

Y1,X0,FFF
Y0,X0,FFF
Y1,Y0,FFF
Y0,Y0,FFF
A1,Y0,FFF
B1,Y1,FFF
C1,Y0,FFF
C1,Y1,FFF

1 1 Arithmetic shift left the first operand by value specified in
4 LSBs of the second operand; place result in FFF

15 12 11 8 7 4 3 0

ASLL.W #<0–15>,FFF 0 1 0 1 1 1 F F F 1 1 1 B B B B

15 12 11 8 7 4 3 0

ASLL.W EEE,FFF 0 1 1 1 1 1 F F F a a a 1 0 1 0

15 12 11 8 7 4 3 0

ASLL.W Q1,Q2,FFF 0 1 1 1 0 0 F F F Q Q Q 1 1 1 0
A-44 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ASR Arithmetic Shift Right ASR
Operation: Assembler Syntax:

(see following figure) ASR D (no parallel move)
ASR D (one parallel move)
ASR D (two parallel reads)

Description: Arithmetically shift the destination operand (D) 1 bit to the right and store the result in the destination
accumulator. The LSB of the destination prior to the execution of the instruction is shifted into C, and
the MSB of the destination is held constant. When the destination register is Y or a 16-bit register, the
MSB is bit 31 or bit 15, respectively. A duplicate destination is not allowed when ASR is used in con-
junction with a parallel read.

Example:

ASR B X:(R3)+,Y0; divide B by 2, load Y0, and update R3

Explanation of Example:
Prior to execution, the 36-bit B accumulator contains the value $8:AAAA:AAAA. Execution of the
ASR instruction shifts the 36-bit value in the B accumulator 1 bit to the right and stores the result back
in the B accumulator. C is cleared by the operation because bit 0 of A was cleared prior to the execution
of the instruction. The N bit of CCR (bit 3) is set because bit 35 of the result in A is set. The E bit of
CCR (bit 5) is set because the extension portion of B is used by the result.

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if data limiting has occurred during parallel move
E — Set if the extension portion of result is in use
U — Set according to the standard definition of the U bit
N — Set if MSB of result is set
Z — Set if result equals zero
V — Always cleared
C — Set if bit 0 of source operand was set prior to the execution of the instruction

Note: Condition code results depend on the size of the destination operand.

(parallel move)

D0D2 D1

C

MSB

Before Execution

AAAAAAAA8

B2 B1 B0

0300SR

After Execution

55555555C

B2 B1 B0

0328SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-45

ASR Arithmetic Shift Right ASR
Instruction Fields:

Parallel Moves:

Operation Operands C W Comments

ASR FFF 1 1 Arithmetic shift right entire register by 1 bit.

Data ALU Operation Parallel Memory Move

Operation Operands Source Destination1

1.The case where the destination of the data ALU operation is the same register as the destination of the par-
allel read operation is not allowed. Memory writes are allowed in this case.

ASR2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

F X:(Rj)+
X:(Rj)+N

X0
Y1
Y0
A
B
C
A1
B1

X0
Y1
Y0
A
B
C
A1
B1

X:(Rj)+
X:(Rj)+N
A-46 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ASR Arithmetic Shift Right ASR
Parallel Dual Reads:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Data ALU Operation1

1.This instruction is not allowed when the XP bit in the OMR is set (that is, when the instructions are executing
from data memory).

First Memory Read Second Memory Read

Operation Operands Source 1 Destination 1 Source 2 Destination 2

ASR2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

F X:(R0)+
X:(R0)+N
X:(R1)+

X:(R1)+N

Y0
Y1

X:(R3)+
X:(R3)–

X0

X:(R4)+
X:(R4)+N

Y0 X:(R3)+
X:(R3)+N3

X0

X:(R0)+
X:(R0)+N
X:(R4)+

X:(R4)+N

Y1 X:(R3)+
X:(R3)+N3

C

15 12 11 8 7 4 3 0

ASR F GGG,X:<ea_m> 0 0 0 1 1 G G G F 0 1 1 0 m R R

15 12 11 8 7 4 3 0

ASR F X:<ea_m>,GGG 0 0 1 1 1 G G G F 0 1 1 0 m R R

15 12 11 8 7 4 3 0

ASR F X:<ea_m>,reg1
X:<ea_v>,reg2

0 1 1 1 0 1 v v F v 1 0 0 m 0 v

15 12 11 8 7 4 3 0

ASR FFF 0 1 1 1 0 0 F F F 1 1 0 1 0 1 1
Freescale Semiconductor Instruction Set Details A-47

ASR16 Arithmetic Shift Right 16 Bits ASR16
Operation: Assembler Syntax:

S >> 16 → D (no parallel move) ASR16 S,D (no parallel move)

Description: Arithmetically shift the source operand to the right by 16 bits, and store the result in the destination
(D), sign extending to the left. This operation effectively places the MSP of the source register into the
LSP of the destination register, propagating the sign bit through the MSP (and the extension register
for accumulator destinations). If the source is an accumulator, both the extension register and MSP are
shifted. When the destination operand is a 16-bit register, the sign information is written to it. For ex-
ample, if the source is an accumulator, the 4 bits of the EXT are written to the lower 4 bits of the des-
tination register with sign extension. If the source is a 16-bit register or the Y register, the msb (sign
bit) is written with sign extension. The result is not affected by the state of the saturation bit (SA).

Usage: This instruction can be used to cast an integer to a long value.

Example 1:
ASR16 Y,A ; shift long in Y right by 16 bits and place in A

Explanation of Example:
Prior to execution, the Y register contains the value to be shifted ($A1A2:A3A4). The contents of the
destination register are not important prior to execution because they have no effect on the calculated
value. The ASR16 instruction arithmetically shifts the value $A1A2:A3A4 by 16 bits to the right, sign
extends to a full 36 bits, and places the result in the destination register A.

Example 2:
ASR16 Y,X0 ; shift sign bit in Y right by 16 bits and sign extend

Explanation of Example:
Prior to execution, the Y register contains the value to be shifted ($A3A2:A1A0). The contents of the
destination register are not important prior to execution because they have no effect on the calculated
value. Since the destination is a 16-bit register, the ASR16 instruction arithmetically shifts the value
of the sign bit by 16 bits to the right with sign extension, and places the result in the destination register
X0.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Before Execution

345634560

A2 A1 A0

After Execution

A1A2FFFFF

A2 A1 A0

A3A4A1A2

Y1 Y0

A3A4A1A2

Y1 Y0

Before Execution

A1A0A3A2

Y1 Y0

After Execution

A1A0A3A2

Y1 Y0

0000

X0

FFFF

X0
A-48 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ASR16 Arithmetic Shift Right 16 Bits ASR16
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

1 program word

Memory: 1 program word

Operation Operands C W Comments

ASR16 FFF,FFF 1 1 Arithmetic shift right the first operand by 16 bits, placing
result in the destination operand.

FFF 1 1 An alternate syntax for the above instruction if the
source and the destination are the same.

15 12 11 8 7 4 3 0

ASR16 FFF,FFF 0 1 1 1 1 1 F F F b b b 0 1 1 0
Freescale Semiconductor Instruction Set Details A-49

ASRA 1-Bit Arithmetic Shift Right AGU Register ASRA
Operation: Assembler Syntax:

D >> 1 → D (no parallel move) ASRA D (no parallel move)

Description: Arithmetically shift the address register operand 1 bit to the right, and store the result back in the reg-
ister.

Example:

ASRA R0 ; arithmetically shift R0 to the right 1 bit

Explanation of Example:
Prior to execution, the R0 register contains $80B360. Execution of the ASRA instruction shifts the val-
ue in the R0 register 1 bit to the right and stores the result ($C059B0) back in R0.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

ASRA Rn 1 1 Arithmetic shift right AGU register by 1 bit

Before Execution After Execution

80B360R0 C059B0R0

15 12 11 8 7 4 3 0

ASRA Rn 1 0 0 0 0 1 0 1 0 0 1 1 R 0 R R
A-50 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ASRAC Arithmetic Right Shift with Accumulate ASRAC
Operation: Assembler Syntax:

(S1 >> S2) + D → D (no parallel move) ASRAC S1,S2,D (no parallel move)

Description: Arithmetically shift the first 16-bit source operand (S1) to the right by the value contained in the lowest
4 bits of the second source operand (S2), and accumulate the result with the value in the destination
(D). Operand S1 is internally sign extended and concatenated with 16 zero bits to form a 36-bit value
before the shift operation. The result is not affected by the state of the saturation bit (SA).

Usage: This instruction is typically used for multi-precision arithmetic right shifts.

Example:

ASRAC Y1,X0,A ; arithmetic right shift Y1 by 4 and
; accumulate in A

Explanation of Example:
Prior to execution, the Y1 register contains the value that is to be shifted ($C003), the X0 register con-
tains the amount by which to shift ($4), and the destination accumulator contains $0:0000:0099. The
ASRAC instruction arithmetically shifts the value $C003 by 4 bits to the right and accumulates this
result with the value that is already in the destination register A.

Condition Codes Affected:

N — Set if bit 35 of accumulator result is set
Z — Set if accumulator result equals zero

Note: If the SA bit is set, the N bit is equal to bit 31 of the result.
If the SA bit is clear, the N bit is equal to bit 35 of the result.

Before Execution

009900000

A2 A1 A0

00F4X0

After Execution

3099FC00F

A2 A1 A0

00F4X0

0300SR 0308SR

8000C003

Y1 Y0

8000C003

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-51

ASRAC Arithmetic Right Shift with Accumulate ASRAC
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

ASRAC Y1,X0,FF
Y0,X0,FF
Y1,Y0,FF
Y0,Y0,FF
A1,Y0,FF
B1,Y1,FF
C1,Y0,FF
C1,Y1,FF

1 1 Arithmetic word shift with accumulation

15 12 11 8 7 4 3 0

ASRAC Q1,Q2,FF 0 1 1 1 0 0 0 F F Q Q Q 0 1 1 0
A-52 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ASRR.L Multi-Bit Arithmetic Right Shift Long ASRR.L
Operation: Assembler Syntax:

If S[15] = 0 or S is not a register,
D >> S → D (no parallel move) ASRR.L S,D (no parallel move)
Else
D << –S → D (no parallel move) ASRR.L S,D (no parallel move)

Description: Arithmetically shift the second operand to the right by the value contained in the 5 lowest bits of the
first operand (or by an immediate integer), and store the result back in the destination (D). The shift
count can be a 5-bit positive immediate integer or the value contained in X0, Y0, Y1, or the MSP of
an accumulator. For 36- and 32-bit destinations, the MSP:LSP are shifted, with sign extension from bit
31 (the FF2 portion is ignored). If the shift count in a register is negative (bit 15 is set), the direction
of the shift is reversed, maintaining sign integrity. The result is not affected by the state of the satura-
tion bit (SA).

Example:

ASRR.L Y0,A ; shift A right by the amount in Y0 and
; store result in A

Explanation of Example:
Prior to execution, the A accumulator contains the value that is to be shifted ($0123:4567), and the Y0
register contains the amount by which to shift ($FFFC). Since the count is a negative number, the shift
is reversed—that is, the value will be shifted left. The ASRR.L instruction arithmetically shifts the val-
ue $0123:4567 by 4 bits to the left and places the result in the destination register A.

Condition Codes Affected:

N — Set if the MSB of the result is set
Z — Set if the result equals zero

Note: Condition code results depend on the size of the destination operand.

Before Execution

456701230

A2 A1 A0

After Execution

567012340

A2 A1 A0

0300SR 0300SR

FFFC2000

Y1 Y0

FFFC2000

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-53

ASRR.L Multi-Bit Arithmetic Right Shift Long ASRR.L
Instruction Fields:

Instruction Opcodes:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

ASRR.L #<0–31>,fff 2 1 Arithmetic shift right by a 5-bit positive immediate integer

EEE,FFF 2 1 Bi-directional arithmetic shift of destination by value in the
first operand: positive –> right shift

15 12 11 8 7 4 3 0

ASRR.L #<0–31>,fff 0 1 0 0 1 1 f f f 1 1 B B B B B

15 12 11 8 7 4 3 0

ASRR.L EEE,FFF 0 1 1 1 1 1 F F F a a a 1 1 0 0
A-54 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ASRR.W Multi-Bit Arithmetic Right Shift Word ASRR.W
Operation: Assembler Syntax:

S1 >> S2 → D (no parallel move) ASRR.W S1,S2,D (no parallel move)
D >> S → D (no parallel move) ASRR.W S,D (no parallel move)

Description: This instruction can have two or three operands. Arithmetically shift either the source operand S1 or
D to the right by the value contained in the lowest 4 bits of either S2 or S, respectively (or by an im-
mediate integer), and store the result in the destination (D). The shift count can be a 4-bit positive in-
teger, a value in a 16-bit register, or the MSP of an accumulator. For 36- and 32-bit destinations, only
the MSP is shifted and the LSP is cleared, with sign extension from bit 31 (the FF2 portion is ignored).
The result is not affected by the state of the saturation bit (SA).

Example 1: ASRR.W Y1,Y0,A ; arithmetic right shift of 16-bit Y1 by
; least 4 bits of Y0

Explanation of Example:
Prior to execution, the Y1 register contains the value that is to be shifted ($AAAA), and the Y0 register
contains the number by which to shift (least 4 bits of $FFF1 = 1). The contents of the destination reg-
ister are not important prior to execution because they have no effect on the calculated value. The
ASRR.W instruction arithmetically shifts the value $AAAA by 1 bit to the right and places the result
in the destination register A with sign extension (the LSP is cleared).

Example 2: ASRR.W Y1,A ; arithmetic right shift of 16-bit A1 by
; least 4 bits of Y1

Explanation of Example:
Prior to execution, A1 contains the value that is to be shifted ($AAAA), and the Y1 register contains
the amount by which to shift ($1). The ASRR.W instruction arithmetically shifts the sign extended val-
ue $AAAA by 1 bit to the right and places the result in the destination register A (the LSP is cleared).

Before Execution

567812340

A2 A1 A0

After Execution

0000D555F

A2 A1 A0

0300SR 0308SR

FFF1AAAA

Y1 Y0

FFF1AAAA

Y1 Y0

Before Execution

4567AAAA0

A2 A1 A0

After Execution

0000D555F

A2 A1 A0

0300SR 0308SR

000F0001

Y1 Y0

000F0001

Y1 Y0
Freescale Semiconductor Instruction Set Details A-55

ASRR.W Multi-Bit Arithmetic Right Shift Word ASRR.W
Condition Codes Affected:

N — Set if MSB of result is set
Z — Set if result equals zero

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

ASRR.W #<0–15>,FFF 1 1 Arithmetic shift right by a 4-bit positive immediate integer

EEE,FFF 1 1 Arithmetic shift right the destination by value specified in
4 LSBs of the first operand

Y1,X0,FFF
Y0,X0,FFF
Y1,Y0,FFF
Y0,Y0,FFF
A1,Y0,FFF
B1,Y1,FFF
C1,Y0,FFF
C1,Y1,FFF

1 1 Arithmetic shift right of the first operand by value speci-
fied in 4 LSBs of the second operand; place result in FFF

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 12 11 8 7 4 3 0

ASRR.W #<0–15>,FFF 0 1 0 1 1 1 F F F 1 1 0 B B B B

15 12 11 8 7 4 3 0

ASRR.W EEE,FFF 0 1 1 1 1 1 F F F a a a 1 0 0 0

15 12 11 8 7 4 3 0

ASRR.W Q1,Q2,FFF 0 1 1 1 0 0 F F F Q Q Q 0 0 1 0
A-56 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Bcc Branch Conditionally Bcc
Operation: Assembler Syntax:

If (cc), then PC + <OFFSET> → PC Bcc <OFFSET7>
else PC + 1 → PC Bcc <OFFSET18>

Bcc <OFFSET22>

Description: If the specified condition is true, program execution continues at the location PC + displacement. The
PC contains the address of the next instruction. If the specified condition is false, the PC is increment-
ed, and program execution continues sequentially. The offset can be 7, 18, or 22 bits; 7- and 18-bit
offsets are sign extended to 21 bits.

The term “cc” specifies the following:

Example:

BNE <LABEL ; branch to LABEL if Z condition is zero
INC.W A
INC.W A

LABEL
ADD B,A

See Table 3-14 on page 3-27 for usage of forcing operator “<LABEL.”

Explanation of Example:
In this example, if the Z bit is zero when the BNE instruction is executed, program execution skips the
two INC.W instructions and continues with the ADD instruction. If the specified condition is not true,
no branch is taken, the program counter is incremented by one, and program execution continues with
the first INC.W instruction. The Bcc instruction uses a PC-relative offset of two for this example.

“cc” Mnemonic Condition

CC (HS*) — carry clear (higher or same) C = 0

CS (LO*) — carry set (lower) C = 1

EQ — equal Z = 1

GE — greater than or equal N ⊕ V = 0

GT — greater than Z + (N ⊕ V) = 0

HI* — higher C • Z = 1

LE — less than or equal Z + (N ⊕ V) = 1

LS* — lower or same C + Z = 1

LT — less than N ⊕ V = 1

NE — not equal Z = 0

NN — not normalized Z + (U • E) = 0

NR — normalized Z + (U • E) = 1

* Only available when CM bit set in the OMR

Xdenotes the logical complement of X
+denotes the logical OR operator
•denotes the logical AND operator
⊕denotes the logical exclusive OR operator
Freescale Semiconductor Instruction Set Details A-57

Bcc Branch Conditionally Bcc
Restrictions:

Refer to Section 10.4, “Pipeline Dependencies and Interlocks,” on page 10-26.

Condition Codes Affected:
The condition codes are tested but not modified by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 3–6 oscillator clock cycles

Memory: 1–3 program word(s)

Operation Operands C1

1.The clock-cycle count depends on whether the branch is taken. The first value applies if the branch is taken,
and the second applies if it is not.

W Comments

Bcc <OFFSET7> 5 or 3 1 7-bit signed offset

<OFFSET18> 5 or 4 2 18-bit signed offset

<OFFSET22> 6 or 5 3 22-bit signed offset

15 12 11 8 7 4 3 0

Bcc <OFFSET7> 1 0 1 0 C C C C 0 A a a a a a a

15 12 11 8 7 4 3 0

Bcc <OFFSET18> 1 1 1 0 0 C C C 0 1 1 0 1 C A A

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

Bcc <OFFSET22> 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 0 0 C C C 0 1 1 0 1 C 0 0

AAAAAAAAAAAAAAAA
A-58 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

BFCHG Test Bitfield and Change BFCHG
Operation: Assembler Syntax:

(<bitfield> of destination) → (<bitfield> of destination)BFCHG #iiii,X:<ea> (no parallel move)
BFCHG #iiii,D (no parallel move)

Description: Test all selected bits of the destination operand. If all selected bits are set, C is set; otherwise, C is
cleared. Then complement the selected bits, and store the result in the destination. A 16-bit immediate
value is used to specify which bits are tested and changed. Those bits that are set in the immediate value
are the same bits that are tested and changed in the destination; those bits that are cleared in the imme-
diate value are ignored in the destination. This instruction performs a read-modify-write operation on
the destination memory location or register and requires two destination accesses.

Usage: This instruction is very useful in performing I/O and flag bit manipulation.

Example:

BFCHG #$0310,X:$5000 ; test and change bits 4, 8, and 9
; in a data memory location

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$5000 contains the value $0010. Execution of the
BFCHG instruction tests the state of bits 4, 8, and 9 in X:$5000, does not set C (because all of the se-
lected bits were not set), and then complements the bits.

Condition Codes Affected:

For destination operand SR:
For this destination only, the C bit is not updated as is done for all other destination operands.
All SR bits except bits 14–10 are updated with values from the bitfield unit.
Bits 14–10 of the mask operand must be cleared.

For other destination operands:
L — Set if data limiting occurred during 36-bit source move
C — Set if all bits specified by the mask are set

Cleared if at least 1 bit specified by the mask is not set

Note: If all bits in the mask are cleared, the instruction executes two NOPs and sets the C bit.

Before Execution

0010X:$5000

0301SR

After Execution

0300X:$5000

0300SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-59

BFCHG Test Bitfield and Change BFCHG
Instruction Fields:

Operation Operands C W Comments

BFCHG #<MASK16>,DDDDD 2 2 BFCHG tests all targeted bits defined by the 16-bit immedi-
ate mask. If all targeted bits are set, then the C bit is set.
Otherwise it is cleared. Then the instruction inverts all
selected bits.

All registers in DDDDD are permitted except HWS and Y.

#<MASK16>,dd 2 2

#<MASK16>,X:(Rn) 2 2

#<MASK16>,X:(Rn+xxxx) 3 3

#<MASK16>,X:(SP–xx) 3 2

#<MASK16>,X:aa 2 2

#<MASK16>,X:<<pp 2 2

#<MASK16>,X:xxxx 3 3

#<MASK16>,X:xxxxxx 4 4
A-60 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

BFCHG Test Bitfield and Change BFCHG
Instruction Opcodes:

Timing: 2–4 oscillator clock cycles

Memory: 2–4 program words

15 12 11 8 7 4 3 0

BFCHG #<MASK16>,DDDDD 1 0 0 0 0 1 0 1 0 1 0 d d d d d

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFCHG #<MASK16>,X:(Rn) 1 0 0 0 0 1 0 0 0 1 0 0 R 0 R R

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFCHG #<MASK16>,X:(Rn+xxxx) 1 0 0 0 0 1 0 0 0 1 0 0 R 1 R R

AAAAAAAAAAAAAAAA

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFCHG #<MASK16>,X:(SP–xx) 1 0 1 0 0 1 0 0 1 1 a a a a a a

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFCHG #<MASK16>,X:<<pp 1 0 1 0 0 1 0 1 1 1 p p p p p p

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFCHG #<MASK16>,X:xxxx 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0

AAAAAAAAAAAAAAAA

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFCHG #<MASK16>,X:xxxxxx 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0

AAAAAAAAAAAAAAAA

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFCHG #<MASK16>,dd 1 0 0 0 0 1 0 0 0 1 0 1 0 0 d d

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFCHG #<MASK16>,X:aa 1 0 1 0 0 1 0 1 1 0 p p p p p p

iiiiiiiiiiiiiiii
Freescale Semiconductor Instruction Set Details A-61

BFCLR Test Bitfield and Clear BFCLR
Operation: Assembler Syntax:

0 →(<bitfield> of destination) (no parallel move) BFCLR #iiii,X:<ea> (no parallel move)
BFCLR #iiii,D (no parallel move)

Description: Test all selected bits of the destination operand. If all selected bits are set, C is set; otherwise, C is
cleared. Then clear the selected bits, and store the result in the destination. A 16-bit immediate value
is used to specify which bits are tested and cleared. Those bits that are set in the immediate value are
the same bits that are tested and cleared in the destination; those bits that are cleared in the immediate
value are ignored in the destination. This instruction performs a read-modify-write operation on the
destination memory location or register and requires two destination accesses.

Usage: This instruction is very useful in performing I/O and flag bit manipulation.

Example:

BFCLR #$0310,X:$5000 ; test and clear bits 4, 8, and 9 in
; an on-chip peripheral register

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$5000 contains the value $7FF5. Execution of the
BFCLR instruction tests the state of bits 4, 8, and 9 in X:5000, sets the C bit (because all the selected
bits were set), and then clears the selected bits.

Condition Codes Affected:

For destination operand SR:
For this destination only, the C bit is not updated as is done for all other destination operands.
All SR bits except bits 14–10 are updated with values from the bitfield unit.
Bits 14–10 of the mask operand must be cleared.

For other destination operands:
L — Set if data limiting occurred during 36-bit source move
C — Set if all bits specified by the mask are set

Cleared if at least 1 bit specified by the mask is not set

Note: If all bits in the mask are cleared, the instruction executes two NOPs and sets the C bit.

Before Execution

7FF5X:$5000

0300SR

After Execution

7CE5X:$5000

0301SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-62 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

BFCLR Test Bitfield and Clear BFCLR
Instruction Fields:

Operation Operands C W Comments

BFCLR #<MASK16>,DDDDD 2 2 BFCLR tests all the targeted bits defined by the 16-bit
immediate mask. If all the targeted bits are set, then the C
bit is set. Otherwise it is cleared. Then the instruction
clears all selected bits.

All registers in DDDDD are permitted except HWS and Y.

#<MASK16>,dd 2 2

#<MASK16>,X:(Rn) 2 2

#<MASK16>,X:(Rn+xxxx) 3 3

#<MASK16>,X:(SP–xx) 3 2

#<MASK16>,X:aa 2 2

#<MASK16>,X:<<pp 2 2

#<MASK16>,X:xxxx 3 3

#<MASK16>,X:xxxxxx 4 4
Freescale Semiconductor Instruction Set Details A-63

BFCLR Test Bitfield and Clear BFCLR

Timing: 2–4 oscillator clock cycles

Memory: 2–4 program words

15 12 11 8 7 4 3 0

BFCLR #<MASK16>,DDDDD 1 0 0 0 0 0 0 1 0 1 0 d d d d d

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFCLR #<MASK16>,X:(Rn) 1 0 0 0 0 0 0 0 0 1 0 0 R 0 R R

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFCLR #<MASK16>,X:(Rn+xxxx) 1 0 0 0 0 0 0 0 0 1 0 0 R 1 R R

AAAAAAAAAAAAAAAA

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFCLR #<MASK16>,X:(SP–xx) 1 0 1 0 0 0 0 0 1 1 a a a a a a

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFCLR #<MASK16>,X:<<pp 1 0 1 0 0 0 0 1 1 1 p p p p p p

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFCLR #<MASK16>,X:xxxx 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0

AAAAAAAAAAAAAAAA

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFCLR #<MASK16>,X:xxxxxx 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0

AAAAAAAAAAAAAAAA

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFCLR #<MASK16>,dd 1 0 0 0 0 0 0 0 0 1 0 1 0 0 d d

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFCLR #<MASK16>,X:aa 1 0 1 0 0 0 0 1 1 0 p p p p p p

iiiiiiiiiiiiiiii
A-64 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

BFSET Test Bitfield and Set BFSET
Operation: Assembler Syntax:

1 → (<bitfield> of destination) (no parallel move) BFSET #iiii,X:<ea> (no parallel move)
BFSET #iiii,D (no parallel move)

Description: Test all selected bits of the destination operand. If all selected bits are set, C is set; otherwise, C is
cleared. Then set the selected bits, and store the result in the destination memory. A 16-bit immediate
value is used to specify which bits are tested and set. Those bits that are set in the immediate value are
the same bits that are tested and set in the destination; those bits that are cleared in the immediate value
are ignored in the destination. This instruction performs a read-modify-write operation on the destina-
tion memory location or register and requires two destination accesses.

Usage: This instruction is very useful in performing I/O and flag bit manipulation.

Example:

BFSET #$CC00,X:$5000 ; set bits in peripheral register

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$5000 contains the value $3300. Execution of the
instruction tests the state of bits 10, 11, 14, and 15 in X:$5000, clears the C bit (because none of the
selected bits was set), and then sets the selected bits.

Condition Codes Affected:

For destination operand SR:
For this destination only, the C bit is not updated as is done for all other destination operands.
All SR bits except bits 14–10 are updated with values from the bitfield unit.
Bits 14–10 of the mask operand must be cleared.

For other destination operands:
L — Set if data limiting occurred during 36-bit source move
C — Set if all bits specified by the mask are set

Cleared if at least 1 bit specified by the mask is not set

Note: If all bits in the mask are cleared, the instruction executes two NOPs and sets the C bit.

Before Execution

3300X:$5000

0301SR

After Execution

FF00X:$5000

0300SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-65

BFSET Test Bitfield and Set BFSET
Instruction Fields:

Operation Operands C W Comments

BFSET #<MASK16>,DDDDD 2 2 BFSET tests all the targeted bits defined by the 16-bit
immediate mask. If all the targeted bits are set, then the C
bit is set. Otherwise it is cleared. Then the instruction sets
all selected bits.

All registers in DDDDD are permitted except HWS and Y.

#<MASK16>,dd 2 2

#<MASK16>,X:(Rn) 2 2

#<MASK16>,X:(Rn+xxxx) 3 3

#<MASK16>,X:(SP–xx) 3 2

#<MASK16>,X:aa 2 2

#<MASK16>,X:<<pp 2 2

#<MASK16>,X:xxxx 3 3

#<MASK16>,X:xxxxxx 4 4
A-66 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

BFSET Test Bitfield and Set BFSET
Instruction Opcodes:

Timing: 2–4 oscillator clock cycles

Memory: 2–4 program words

15 12 11 8 7 4 3 0

BFSET #<MASK16>,DDDDD 1 0 0 0 0 0 1 1 0 1 0 d d d d d

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFSET #<MASK16>,X:(Rn) 1 0 0 0 0 0 1 0 0 1 0 0 R 0 R R

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFSET #<MASK16>,X:(Rn+xxxx) 1 0 0 0 0 0 1 0 0 1 0 0 R 1 R R

AAAAAAAAAAAAAAAA

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFSET #<MASK16>,X:(SP–xx) 1 0 1 0 0 0 1 0 1 1 a a a a a a

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFSET #<MASK16>,X:<<pp 1 0 1 0 0 0 1 1 1 1 p p p p p p

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFSET #<MASK16>,X:xxxx 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0

AAAAAAAAAAAAAAAA

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFSET #<MASK16>,X:xxxxxx 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0

AAAAAAAAAAAAAAAA

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFSET #<MASK16>,dd 1 0 0 0 0 0 1 0 0 1 0 1 0 0 d d

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFSET #<MASK16>,X:aa 1 0 1 0 0 0 1 1 1 0 p p p p p p

iiiiiiiiiiiiiiii
Freescale Semiconductor Instruction Set Details A-67

BFTSTH Test Bitfield High BFTSTH
Operation: Assembler Syntax:

Test <bitfield> of destination for ones(no parallel move) BFTSTH#iiii,X:<ea>(no parallel move)
BFTSTH#iiii,D (no parallel move)

Description: Test all selected bits of the destination operand. If all selected bits are set, C is set; otherwise, C is
cleared. A 16-bit immediate value is used to specify which bits are tested. Those bits that are set in the
immediate value are the same bits that are tested in the destination; those bits that are cleared in the
immediate value are ignored in the destination. This instruction performs two destination accesses.

Usage: This instruction is very useful for testing I/O and flag bits.

Example:

BFTSTH #$0310,X:5000 ; test high bits 4, 8, and 9 in
; an on-chip peripheral register

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$FFE2 contains the value $0FF0. Execution of the
instruction tests the state of bits 4, 8, and 9 in X:$FFE2 and sets the C bit (because all the selected bits
were set).

Condition Codes Affected:

For destination operand SR:
Bits 14–10 of the mask operand must be cleared.

For other destination operands:
L — Set if data limiting occurred during 36-bit source move
C — Set if all bits specified by the mask are set

Cleared if at least 1 bit specified by the mask is not set

Note: If all bits in the mask are cleared, the instruction executes two NOPs and sets the C bit.

Before Execution

0FF0X:$5000

0300SR

After Execution

0FF0X:$5000

0301SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-68 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

BFTSTH Test Bitfield High BFTSTH
Instruction Fields:

Operation Operands C W Comments

BFTSTH #<MASK16>,DDDDD 2 2 BFTSTH tests all the targeted bits defined by the 16-bit
immediate mask. If all the targeted bits are set, then the C
bit is set. Otherwise it is cleared.

All registers in DDDDD are permitted except HWS and Y.

#<MASK16>,dd 2 2

#<MASK16>,X:(Rn) 2 2

#<MASK16>,X:(Rn+xxxx) 3 3

#<MASK16>,X:(SP–xx) 3 2

#<MASK16>,X:aa 2 2

#<MASK16>,X:<<pp 2 2

#<MASK16>,X:xxxx 3 3

#<MASK16>,X:xxxxxx 4 4
Freescale Semiconductor Instruction Set Details A-69

BFTSTH Test Bitfield High BFTSTH
Instruction Opcodes:

Timing: 2–4 oscillator clock cycles

Memory: 2–4 program words

15 12 11 8 7 4 3 0

BFTSTH #<MASK16>DDDDD 1 0 0 0 1 1 0 1 0 1 0 d d d d d

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFTSTH #<MASK16>,X:(Rn) 1 0 0 0 1 1 0 0 0 1 0 0 R 0 R R

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFTSTH #<MASK16>,X:(Rn+xxxx) 1 0 0 0 1 1 0 0 0 1 0 0 R 1 R R

AAAAAAAAAAAAAAAA

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFTSTH #<MASK16>,X:(SP–xx) 1 0 1 0 1 1 0 0 1 1 a a a a a a

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFTSTH #<MASK16>,X:<<pp 1 0 1 0 1 1 0 1 1 1 p p p p p p

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFTSTH #<MASK16>,X:xxxx 1 0 0 0 1 1 0 0 0 1 0 1 0 1 0 0

AAAAAAAAAAAAAAAA

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFTSTH #<MASK16>,X:xxxxxx 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 0 0 0 1 1 0 0 0 1 0 1 0 1 0 0

AAAAAAAAAAAAAAAA

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFTSTH #<MASK16>,dd 1 0 0 0 1 1 0 0 0 1 0 1 0 0 d d

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFTSTH #<MASK16>,X:aa 1 0 1 0 1 1 0 1 1 0 p p p p p p

iiiiiiiiiiiiiiii
A-70 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

BFTSTL Test Bitfield Low BFTSTL
Operation: Assembler Syntax:

Test <bitfield> of destination for zeros (no parallel move) BFTSTL#iiii,X:<ea>(no parallel move)
 BFTSTL#iiii,D (no parallel move)

Description: Test all selected bits in the destination operand. If all selected bits are clear, C is set; otherwise, C is
cleared. A 16-bit immediate value is used to specify which bits are tested. Those bits that are set in the
immediate value are the same bits that are tested in the destination; those bits that are cleared in the
immediate value are ignored in the destination. This instruction performs two destination accesses.

Usage: This instruction is very useful for testing I/O and flag bits.

Example:

BFTSTL #$0310,X:$5000 ; test low bits 4, 8, and 9 in
; an on-chip peripheral register

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$5000 contains the value $0CC0. Execution of the
instruction tests the state of bits 4, 8, and 9 in X:$5000 and sets the C bit (because all the selected bits
were cleared).

Condition Codes Affected:

For destination operand SR:
Bits 14–10 of the mask operand must be cleared.

For other destination operands:
L — Set if data limiting occurred during 36-bit source move
C — Set if all bits specified by the mask are set

Cleared if at least 1 bit specified by the mask is not set

Note: If all bits in the mask are cleared, the instruction executes two NOPs and sets the C bit.

Before Execution

0CC0X:$5000

0300SR

After Execution

0CC0X:$5000

0301SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-71

BFTSTL Test Bitfield Low BFTSTL
Instruction Fields:

Operation Operands C W Comments

BFTSTL #<MASK16>,DDDDD 2 2 BFTSTL tests all the targeted bits defined by the 16-bit
immediate mask. If all the targeted bits are clear, then the
C bit is set. Otherwise it is cleared.

All registers in DDDDD are permitted except HWS and Y.

#<MASK16>,dd 2 2

#<MASK16>,X:(Rn) 2 2

#<MASK16>,X:(Rn+xxxx) 3 3

#<MASK16>,X:(SP–xx) 3 2

#<MASK16>,X:aa 2 2

#<MASK16>,X:<<pp 2 2

#<MASK16>,X:xxxx 3 3

#<MASK16>,X:xxxxxx 4 4
A-72 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

BFTSTL Test Bitfield Low BFTSTL
Instruction Opcodes:

Timing: 2–4 oscillator clock cycles

Memory: 2–4 program words

15 12 11 8 7 4 3 0

BFTSTL #<MASK16>DDDDD 1 0 0 0 1 0 0 1 0 1 0 d d d d d

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFTSTL #<MASK16>,X:(Rn) 1 0 0 0 1 0 0 0 0 1 0 0 R 0 R R

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFTSTL #<MASK16>,X:(Rn+xxxx) 1 0 0 0 1 0 0 0 0 1 0 0 R 1 R R

AAAAAAAAAAAAAAAA

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFTSTL #<MASK16>,X:(SP–xx) 1 0 1 0 1 0 0 0 1 1 a a a a a a

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFTSTL #<MASK16>,X:<<pp 1 0 1 0 1 0 0 1 1 1 p p p p p p

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFTSTL #<MASK16>,X:xxxx 1 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0

AAAAAAAAAAAAAAAA

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFTSTL #<MASK16>,X:xxxxxx 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0

AAAAAAAAAAAAAAAA

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFTSTL #<MASK16>,dd 1 0 0 0 1 0 0 0 0 1 0 1 0 0 d d

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

BFTSTL #<MASK16>,X:aa 1 0 1 0 1 0 0 1 1 0 p p p p p p

iiiiiiiiiiiiiiii
Freescale Semiconductor Instruction Set Details A-73

BRA Branch BRA
Operation: Assembler Syntax:

PC + <OFFSET> → PC BRA <OFFSET7>
BRA <OFFSET18>
BRA <OFFSET22>

Description: Branch to the location in program memory at PC + displacement. The PC contains the address of the
next instruction. The displacement is a 7-bit, 18-bit, or 22-bit signed value that is sign extended to form
the PC-relative offset.

Example:

BRA LABEL ; jump to instruction at “LABEL”
INC.W A ; these two instructions are skipped
INC.W A

LABEL
ADD B,A ; execution resumes here

Explanation of Example:
In this example, program execution skips the two INC.W instructions and continues with the ADD in-
struction. The BRA instruction uses a PC-relative offset of two for this example.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Restrictions:
A BRA instruction used within a DO loop cannot begin at the LA or LA – 1 within that DO loop.
A BRA instruction cannot be repeated using the REP instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 5–6 oscillator clock cycles

Memory: 1–3 program word(s)

Operation Operands C W Comments

BRA <OFFSET7> 5 1 7-bit signed offset

<OFFSET18> 5 2 18-bit signed offset

<OFFSET22> 6 3 22-bit signed offset

15 12 11 8 7 4 3 0

BRA <OFFSET7> 1 0 1 0 1 0 0 1 0 A a a a a a a

15 12 11 8 7 4 3 0

BRA <OFFSET18> 1 1 1 0 0 0 0 1 0 1 1 0 1 1 A A

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

BRA <OFFSET22> 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 0 0 0 0 1 0 1 1 0 1 1 0 0

AAAAAAAAAAAAAAAA
A-74 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

BRAD Delayed Branch BRAD
Operation: Assembler Syntax:

Execute instructions in next 2 words BRAD <OFFSET7>
PC + <OFFSET> → PC BRAD <OFFSET18>

BRAD <OFFSET22>

Description: Branch to the location in program memory at PC + displacement, but first execute the instruction or
instructions in the following 2 program words. The PC contains the address of the next instruction. The
displacement is a 7-bit, 18-bit, or 22-bit signed value that is sign extended to form the PC-relative off-
set.

Example:

BRAD LABEL ; delayed branch to “LABEL”
 INC.W A ; these two increments are executed
 INC.W A ; before the branch!
...

LABEL
ADD B,A

Explanation of Example:
In this example, the program executes the two INC.W instructions that follow the BRAD instruction,
and then it continues with the ADD instruction that follows LABEL.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Restrictions:
A BRAD instruction used within a DO loop cannot begin at the LA or LA – 1 within that DO loop.
A BRAD instruction cannot be repeated using the REP instruction.

Refer to Section 4.3.2, “Delayed Instruction Restrictions,” on page 4-14.
Freescale Semiconductor Instruction Set Details A-75

BRAD Delayed Branch BRAD
Instruction Fields:

Instruction Opcodes:

Timing: 3–4 oscillator clock cycles

Memory: 1–3 program word(s)

Operation Operands C W Comments

BRAD <OFFSET7> 3 1 Delayed branch with 7-bit signed offset; must fill 2 delay slots

<OFFSET18> 3 2 Delayed branch with 18-bit signed offset; must fill 2 delay slots

<OFFSET22> 4 3 Delayed branch with 22-bit signed offset; must fill 2 delay slots

15 12 11 8 7 4 3 0

BRAD <OFFSET7> 1 0 1 0 1 0 1 1 0 A a a a a a a

15 12 11 8 7 4 3 0

BRAD <OFFSET18> 1 1 1 0 0 0 1 1 0 1 1 0 1 1 A A

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

BRAD <OFFSET22> 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 0

AAAAAAAAAAAAAAAA
A-76 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

BRCLR Branch if Bits Clear BRCLR
Operation: Assembler Syntax:

Branch if <bitfield> of destination is all zeros (no parallel move) BRCLR #<MASK8>,X:<ea>,AA
BRCLR #<MASK8>,D,AA

Description: Test all selected bits of the destination operand. If all the selected bits are clear, C is set, and program
execution continues at the location in program memory at PC + displacement. Otherwise, C is cleared,
and execution continues with the next sequential instruction. A 16-bit immediate value is used to spec-
ify which bits are tested. Those bits that are set in the immediate value are the same bits that are tested
in the destination; those bits that are cleared in the immediate value are ignored in the destination.

Usage: This instruction is useful in performing I/O flag polling.

Example:

BRCLR #$0068,X:$5000,LABEL ; next two instructions
; are bypassed

INC.W A
INC.W A

LABEL
ADD B,A

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$5000 contains the value $FF00. Execution of the
BRCLR instruction tests the state of bits 3, 5, and 6 in X:$5000 and sets the C bit (because all the mask
bits were clear). Since C is set, program execution is then transferred to the address offset from the
current program counter by the displacement that is specified in the instruction.

Condition Codes Affected:

For destination operand SR:
— Bits 14–10 of the mask operand must be cleared.

For other destination operands:
L — Set if data limiting occurred during 36-bit source move
C — Set if all bits specified by the mask are set

Cleared if at least 1 bit specified by the mask is not set

Note: If all bits in the mask are cleared, C is set, and the branch is taken.

Before Execution

FF00X:$5000

0300SR

After Execution

FF00X:$5000

0301SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-77

BRCLR Branch if Bits Clear BRCLR
Instruction Fields:

Operation Operands C1

1.The first cycle count refers to the case when the condition is true and the branch is taken. The
second cycle count refers to the case when the condition is false and the branch is not taken.

W Comments

BRCLR #<MASK8>,DDDDD,AA 7/5 2 BRCLR tests all the targeted bits defined by
the immediate mask. If all the targeted bits
are clear, then the carry bit is set and a
PC-relative branch occurs. Otherwise it is
cleared and no branch occurs.

All registers in DDDDD are permitted except
HWS and Y.

MASK8 specifies a 16-bit immediate value,
where either the upper or lower 8 bits contain
all zeros. AA specifies a 7-bit PC-relative off-
set.

#<MASK8>,dd,AA 7/5 2

#<MASK8>,X:(Rn),AA 7/5 2

#<MASK8>,X:(Rn+xxxx),AA 8/6 3

#<MASK8>,X:(SP–xx),AA 8/6 2

#<MASK8>,X:aa,AA 7/5 2

#<MASK8>,X:<<pp,AA 7/5 2

#<MASK8>,X:xxxx,AA 7/5 3

#<MASK8>,X:xxxxxx,AA 8/6 4
A-78 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

BRCLR Branch if Bits Clear BRCLR
Instruction Opcodes:

Timing: 5–8 oscillator clock cycles

Memory: 2–4 program words

15 12 11 8 7 4 3 0

BRCLR #<MASK8>,DDDDD,AA 1 0 0 0 1 0 1 1 0 1 0 d d d d d

iiiiiiiiUAaaaaaa

15 12 11 8 7 4 3 0

BRCLR #<MASK8>,X:(Rn),AA 1 0 0 0 1 0 1 0 0 1 0 0 R 0 R R

iiiiiiiiUAaaaaaa

15 12 11 8 7 4 3 0

BRCLR #<MASK8>,X:(Rn+xxxx),AA 1 0 0 0 1 0 1 0 0 1 0 0 R 1 R R

AAAAAAAAAAAAAAAA

iiiiiiiiUAaaaaaa

15 12 11 8 7 4 3 0

BRCLR #<MASK8>,X:(SP–xx),AA 1 0 1 0 1 0 1 0 1 1 a a a a a a

iiiiiiiiUAaaaaaa

15 12 11 8 7 4 3 0

BRCLR #<MASK8>,X:<<pp,AA 1 0 1 0 1 0 1 1 1 1 p p p p p p

iiiiiiiiUAaaaaaa

15 12 11 8 7 4 3 0

BRCLR #<MASK8>,X:xxxx,AA 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0

AAAAAAAAAAAAAAAA

iiiiiiiiUAaaaaaa

15 12 11 8 7 4 3 0

BRCLR #<MASK8>,X:xxxxxx,AA 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0

AAAAAAAAAAAAAAAA

iiiiiiiiUAaaaaaa

15 12 11 8 7 4 3 0

BRCLR #<MASK8>,dd,AA 1 0 0 0 1 0 1 0 0 1 0 1 0 0 d d

iiiiiiiiUAaaaaaa

15 12 11 8 7 4 3 0

BRCLR #<MASK8>,X:aa,AA 1 0 1 0 1 0 1 1 1 0 p p p p p p

iiiiiiiiUAaaaaaa
Freescale Semiconductor Instruction Set Details A-79

BRSET Branch if Bits Set BRSET
Operation: Assembler Syntax:

Branch if <bitfield> of destination is all ones (no parallel move) BRSET #<MASK8>,X:<ea>,AA
BRSET #<MASK8>,D,AA

Description: Test all selected bits of the destination operand. If all the selected bits are set, C is set, and program
execution continues at the location in program memory at PC + displacement. Otherwise, C is cleared,
and execution continues with the next sequential instruction. A 16-bit immediate value is used to spec-
ify which bits are tested. Those bits that are set in the immediate value are the same bits that are tested
in the destination; those bits that are cleared in the immediate value are ignored in the destination.

Usage: This instruction is useful in performing I/O flag polling.

Example:

BRSET #$0500,X:$5000,LABEL ; next two instructions
; are bypassed

INC.W A
INC.W A

LABEL
ADD B,A

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$5000 contains the value $0FF0. Execution of the
BRSET instruction tests the state of bits 8 and 10 in X:$5000 and sets the C bit (because all the mask
bits were set). Since C is set, program execution is then transferred to the address offset from the cur-
rent program counter by the displacement that is specified in the instruction.

Condition Codes Affected:

For destination operand SR:
— Bits 14–10 of the mask operand must be cleared.

For other destination operands:
L — Set if data limiting occurred during 36-bit source move
C — Set if all bits specified by the mask are set

Cleared if at least 1 bit specified by the mask is not set

Note: If all bits in the mask are cleared, C is set and the branch is taken.

Before Execution

0FF0X:$5000

0300SR

After Execution

0FF0X:$5000

0301SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-80 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

BRSET Branch if Bits Set BRSET
Instruction Fields:

Operation Operands C1

1.The first cycle count refers to the case when the condition is true and the branch is taken. The second cycle
count refers to the case when the condition is false and the branch is not taken.

W Comments

BRSET #<MASK8>,DDDDD,AA 7/5 2 BRSET tests all the targeted bits defined by the imme-
diate mask. If all the targeted bits are set, then the carry
bit is set and a PC-relative branch occurs. Otherwise it
is cleared and no branch occurs.

All registers in DDDDD are permitted except HWS and
Y.

MASK8 specifies a 16-bit immediate value, where
either the upper or lower 8 bits contain all zeros. AA
specifies a 7-bit PC-relative offset.

#<MASK8>,dd,AA 7/5 2

#<MASK8>,X:(Rn),AA 7/5 2

#<MASK8>,X:(Rn+xxxx),AA 8/6 3

#<MASK8>,X:(SP–xx),AA 8/6 2

#<MASK8>,X:aa,AA 7/5 2

#<MASK8>,X:<<pp,AA 7/5 2

#<MASK8>,X:xxxx,AA 7/5 3

#<MASK8>,X:xxxxxx,AA 8/6 4
Freescale Semiconductor Instruction Set Details A-81

BRSET Branch if Bits Set BRSET
Instruction Opcodes:

Timing: 5–8 oscillator clock cycles

Memory: 2–4 program words

15 12 11 8 7 4 3 0

BRSET #<MASK8>,DDDDD,AA 1 0 0 0 1 1 1 1 0 1 0 d d d d d

iiiiiiiiUAaaaaaa

15 12 11 8 7 4 3 0

BRSET #<MASK8>,X:(Rn),AA 1 0 0 0 1 1 1 0 0 1 0 0 R 0 R R

iiiiiiiiUAaaaaaa

15 12 11 8 7 4 3 0

BRSET #<MASK8>,X:(Rn+xxxx),AA 1 0 0 0 1 1 1 0 0 1 0 0 R 1 R R

AAAAAAAAAAAAAAAA

iiiiiiiiUAaaaaaa

15 12 11 8 7 4 3 0

BRSET #<MASK8>,X:(SP–xx),AA 1 0 1 0 1 1 1 0 1 1 a a a a a a

iiiiiiiiUAaaaaaa

15 12 11 8 7 4 3 0

BRSET #<MASK8>,X:<<pp,AA 1 0 1 0 1 1 1 1 1 1 p p p p p p

iiiiiiiiUAaaaaaa

15 12 11 8 7 4 3 0

BRSET #<MASK8>,X:xxxx,AA 1 0 0 0 1 1 1 0 0 1 0 1 0 1 0 0

AAAAAAAAAAAAAAAA

iiiiiiiiUAaaaaaa

15 12 11 8 7 4 3 0

BRSET #<MASK8>,X:xxxxxx,AA 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 0 0 0 1 1 1 0 0 1 0 1 0 1 0 0

AAAAAAAAAAAAAAAA

iiiiiiiiUAaaaaaa

15 12 11 8 7 4 3 0

BRSET #<MASK8>,dd,AA 1 0 0 0 1 1 1 0 0 1 0 1 0 0 d d

iiiiiiiiUAaaaaaa

15 12 11 8 7 4 3 0

BRSET #<MASK8>,X:aa,AA 1 0 1 0 1 1 1 1 1 0 p p p p p p

iiiiiiiiUAaaaaaa
A-82 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

BSR Branch to Subroutine BSR
Operation: Assembler Syntax:

SP + 1 → SP BSR <OFFSET18> or <OFFSET22>
PC → X:(SP)
SP + 1 → SP
SR → X:(SP)
PC + <OFFSET> → PC

Description: Place the PC and SR on the software stack and branch to the location in program memory at PC + dis-
placement. The PC contains the address of the next instruction. The displacement is an 18-bit or 22-bit
signed value that is sign extended to form the PC-relative offset.

Example:

BSR LABEL ; branch to PC-relative address “LABEL”

Explanation of Example:
In this example, program execution is transferred to the subroutine at the PC-relative address that is
represented by LABEL. The relative offset that is given by the label can be an 18- or 22-bit signed
value.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Restrictions:
Refer to Section 10.4, “Pipeline Dependencies and Interlocks,” on page 10-26.

Instruction Fields:

Instruction Opcodes:

Timing: 5–6 oscillator clock cycles

Memory: 2–3 program words

Operation Operands C W Comments

BSR <OFFSET18> 5 2 18-bit signed offset

<OFFSET22> 6 3 22-bit signed offset

15 12 11 8 7 4 3 0

BSR <OFFSET18> 1 1 1 0 0 0 1 0 0 1 1 0 1 1 A A

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

BSR <OFFSET22> 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 0 0 0 1 0 0 1 1 0 1 1 0 0

AAAAAAAAAAAAAAAA
Freescale Semiconductor Instruction Set Details A-83

CLB Count Leading Bits CLB
Operation: Assembler Syntax:

If S[MSB] = 0 CLB S,D (no parallel move)
(# of leading zeros – 1) in S → D

else
(# of leading ones – 1) in S → D

Description: Count the number of leading bits in the source operand, and place that number minus one in the desti-
nation. The bits to count are based on the high-order bit of the source operand: if the high-order bit is
zero, the number of zeros in the source operand (minus one) is placed in the destination. If the source
register is an accumulator, the extension portion is ignored, and only the bits in the FF10 portion are
counted. The result is not affected by the state of the saturation bit (SA). This instruction is used in
conjunction with the ASLL.L instruction to normalize a number.

Example:

CLB A,X0 ; count leading bits in A, placing
; result minus one in X0

Explanation of Example:
The A register initially contains the value $F:D7B2:4836, and the X0 register contains $AAAA. After
the CLB A,X0 instruction is executed, the value $0001 is placed in X0, since there are two leading
ones in the value contained in A10. In order to normalize A, this instruction may be followed by the
operation ASLL.L X0,A (the resulting normalized number would be $F:AF64:906C).

Condition Codes Affected:

N — Set if the high-order bit of the result is set
Z — Set if the result is zero
V — Always cleared

Instruction Fields:

Operation Operands C W Comments

CLB FFF,EEE 1 1 Count leading bits (minus one); designed to operate
with the ASLL and ASRR instructions

Before Execution

4836D7B20

A2 A1 A0

7FFFX0

After Execution

4836D7B20

A2 A1 A0

0001X0

030FSR 0301SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-84 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

CLB Count Leading Bits CLB
Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

15 12 11 8 7 4 3 0

CLB FFF,EEE 0 1 1 1 1 0 E E E b b b 1 0 1 1
Freescale Semiconductor Instruction Set Details A-85

CLR Clear Accumulator CLR
Operation: Assembler Syntax:

0 → D (no parallel move) CLR D (no parallel move)
0 → D (one parallel move) CLR D (one parallel move)
0 → D (two parallel reads) CLR D (two parallel reads)

Description: Set the A or B accumulator to zero. Data limiting may occur during a parallel write.

Example:

CLR A A,X:(R0)+; save A into memory before clearing it

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $2:3456:789A. Execution of the
CLR A instruction sets the A accumulator to zero, and the saturation value $7FFF is written to mem-
ory.

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if data limiting has occurred during parallel move
E — Always cleared
U — Always set
N — Always cleared
Z — Always set
V — Always cleared

Note: This instruction operates only on the A and B accumulator registers. The CLR.W instruction should
be used to clear any of the other registers (including A and B if desired).

Instruction Fields:

Operation Operands C W Comments

CLR F 1 1 Clear 36-bit accumulator and set condition codes.
Also see CLR.W.

Before Execution

789A34562

A2 A1 A0

After Execution

000000000

A2 A1 A0

032FSR 03D5SR

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-86 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

CLR Clear Accumulator CLR
Parallel Moves:

Data ALU Operation Parallel Memory Move

Operation Operands Source Destination1

1.The case where the destination of the data ALU operation is the same register as the destination of the par-
allel read operation is not allowed. Memory writes are allowed in this case.

CLR2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

F X:(Rj)+
X:(Rj)+N

X0
Y1
Y0
A
B
C
A1
B1

X0
Y1
Y0
A
B
C
A1
B1

X:(Rj)+
X:(Rj)+N
Freescale Semiconductor Instruction Set Details A-87

CLR Clear Accumulator CLR
Parallel Dual Reads:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Data ALU Operation1

1.This instruction is not allowed when the XP bit in the OMR is set (that is, when the instructions are executing
from data memory).

First Memory Read Second Memory Read

Operation Operands Source 1 Destination 1 Source 2 Destination 2

CLR2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

F X:(R0)+
X:(R0)+N
X:(R1)+

X:(R1)+N

Y0
Y1

X:(R3)+
X:(R3)–

X0

X:(R4)+
X:(R4)+N

Y0 X:(R3)+
X:(R3)+N3

X0

X:(R0)+
X:(R0)+N
X:(R4)+

X:(R4)+N

Y1 X:(R3)+
X:(R3)+N3

C

15 12 11 8 7 4 3 0

CLR F 0 1 1 1 0 1 1 1 F 1 0 0 0 1 1 1

15 12 11 8 7 4 3 0

CLR F GGG,X:<ea_m> 0 0 0 0 1 G G G F 0 1 1 0 m R R

15 12 11 8 7 4 3 0

CLR F X:<ea_m>,GGG 0 0 1 0 1 G G G F 0 1 1 0 m R R

15 12 11 8 7 4 3 0

CLR F X:<ea_m>,reg1
 X:<ea_v>,reg2

0 1 1 1 0 1 v v F v 0 1 0 m 0 v
A-88 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

CLR.B Clear Byte (Word Pointer) CLR.B
Operation: Assembler Syntax:

0 → D (no parallel move) CLR.B D (no parallel move)

Description: Set a byte in memory to zero. Addresses are expressed as word pointers.

Example:

CLR.B X:(SP-1) ; clear a byte in the stack

Explanation of Example:
The contents of the upper byte from stack address $004442 are cleared.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 1–3 oscillator clock cycle(s)

Memory: 1–3 program word(s)

Operation Operands C W Comments

CLR.B X:(SP) 1 1 Clear a byte in memory using appropriate addressing
modeX:(Rn+xxxx) 2 2

X:(Rn+xxxxxx) 3 3

Before Execution After Execution

X:$4443 3333 X:$4443 3333

X:$4442 2222 X:$4442 0022

004443SP 004443SP

15 12 11 8 7 4 3 0

CLR.B X:(Rn+xxxx) 1 1 0 1 1 0 0 1 1 1 1 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

CLR.B X:(Rn+xxxxxx) 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 1 0 0 1 1 1 1 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

CLR.B X:(SP) 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1
Freescale Semiconductor Instruction Set Details A-89

CLR.BP Clear Byte (Byte Pointer) CLR.BP
Operation: Assembler Syntax:

0 → D (no parallel move) CLR.BP D (no parallel move)

Description: Set a byte in memory to zero. An absolute address is expressed as a byte address.

Example:

CLR.BP X:$3065 ; set byte at (byte) address $3065 to zero

Explanation of Example:
The byte value in X memory at byte address $3065 is cleared. Note that this address is equivalent to
the upper byte of word address $1832.

Condition Codes Affected:
The condition codes are not affected by this instruction.

$3064

$3066

$3068

$3062

X Memory

22 11

7 0

77

44 33

55
88
66

Byte
Addresses 70

$3064

$3066

$3068

$3062

X Memory

22 11

7 0

77

00 33

55
88
66

Byte
Addresses 70

Before Execution After Execution
A-90 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

CLR.BP Clear Byte (Byte Pointer) CLR.BP
Instruction Fields:

Instruction Opcodes:

Timing: 1–3 oscillator clock cycle(s)

Memory: 1–3 program word(s)

Operation Operands C W Comments

CLR.BP X:(RRR) 1 1 Clear a byte in memory

X:(RRR)+ 1 1

X:(RRR)– 1 1

X:(RRR+N) 2 1

X:(RRR+xxxx) 2 2

X:(RRR+xxxxxx) 3 3

X:xxxx 2 2

X:xxxxxx 3 3

15 12 11 8 7 4 3 0

CLR.BP X:(RRR+xxxx) 1 1 0 1 1 0 0 1 1 1 1 0 N 1 N N

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

CLR.BP X:(RRR+xxxxxx) 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 1 0 0 1 1 1 1 0 N 1 N N

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

CLR.BP X:<ea_MM> 1 1 0 1 1 0 0 1 1 0 1 M N M N N

15 12 11 8 7 4 3 0

CLR.BP X:xxxx 1 1 0 1 1 0 0 1 1 1 1 1 1 1 0 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

CLR.BP X:xxxxxx 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 1 0 0 1 1 1 1 1 1 1 0 1

AAAAAAAAAAAAAAAA
Freescale Semiconductor Instruction Set Details A-91

CLR.L Clear Long CLR.L
Operation: Assembler Syntax:

0 → D (no parallel move) CLR.L D (no parallel move)

Description: Set a long word in memory to zero. The destination address of the long word that is to be cleared must
be an even word pointer value, and it indicates the address of the lower half of the long word.

Example:

CLR.L X:$3000 ; set long word at address $3000 to zero

Explanation of Example:
The long-word value in X memory at the address $3000 is cleared.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Operation Operands C W Comments

CLR.L X:(Rn) 1 1 Clear a long in memory

X:(Rn)+ 1 1

X:(Rn)– 1 1

X:(Rn+N) 2 1

X:(Rn+xxxx) 2 2

X:(Rn+xxxxxx) 3 3

X:xxxx 2 2

X:xxxxxx 3 3

$3000

$3001

$3002

$2FFF

X Memory

1111

15 0

4444

2222
3333

Word
Addresses

Before Execution After Execution

$3000

$3001

$3002

$2FFF

X Memory

1111

15 0

4444

0000

0000

Word
Addresses
A-92 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

CLR.L Clear Long CLR.L
Instruction Opcodes:

Timing: 1–3 oscillator clock cycle(s)

Memory: 1–3 program word(s)

15 12 11 8 7 4 3 0

CLR.L X:(Rn+xxxx) 1 1 0 1 1 1 1 1 0 1 1 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

CLR.L X:(Rn+xxxxxx) 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 1 1 1 1 0 1 1 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

CLR.L X:<ea_MM> 1 1 0 1 1 1 1 1 0 0 1 M R M R R

15 12 11 8 7 4 3 0

CLR.L X:xxxx 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

CLR.L X:xxxxxx 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1

AAAAAAAAAAAAAAAA
Freescale Semiconductor Instruction Set Details A-93

CLR.W Clear Word CLR.W
Operation: Assembler Syntax:

0 → D (no parallel move) CLR.W D (no parallel move)

Description: Set a word in memory or in an ALU register to zero. If an accumulator register or an AGU address
register is specified, the entire register is cleared.

Example:

CLR.W X:$3000 ; set word at (word) address $3000 to zero

Explanation of Example:
The word value in X memory at the address $3000 is cleared.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Note: This instruction should be used instead of the CLR instruction for clearing accumulator registers in all
new programs.

Instruction Fields:

Operation Operands C W Comments

CLR.W DDDDD 1 1 Clear a register. The instruction clears an entire accu-
mulator when FF is specified, and it clears an entire
AGU register when Rn is specified.

X:(Rn) 1 1 Clear a word in memory.

X:(Rn)+ 1 1

X:(Rn)– 1 1

X:(Rn+N) 2 1

X:(Rn)+N 1 1

X:(Rn+xxxx) 2 2

X:(Rn+xxxxxx) 3 3

X:aa 1 1

X:<<pp 1 1

X:xxxx 2 2

X:xxxxxx 3 3

$3000

$3001

$3002

$2FFF

X Memory

1111

15 0

4444

2222
3333

Word
Addresses

Before Execution After Execution

$3000

$3001

$3002

$2FFF

X Memory

1111

15 0

4444

0000

3333

Word
Addresses
A-94 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

CLR.W Clear Word CLR.W
Instruction Opcodes:

Timing: 1–3 oscillator clock cycle(s)

Memory: 1–3 program word(s)

15 12 11 8 7 4 3 0

CLR.W DDDDD 1 0 0 0 D D D D D 0 0 0 1 1 1 1

15 12 11 8 7 4 3 0

CLR.W X:(Rn)+N 1 1 0 1 1 1 1 1 0 1 0 1 R 1 R R

15 12 11 8 7 4 3 0

CLR.W X:(Rn+xxxx) 1 1 0 1 1 1 1 1 0 1 0 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

CLR.W X:(Rn+xxxxxx) 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 1 1 1 1 0 1 0 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

CLR.W X:<ea_MM> 1 1 0 1 1 1 1 1 0 0 0 M R M R R

15 12 11 8 7 4 3 0

CLR.W X:<<pp 1 1 0 0 1 1 1 1 0 1 p p p p p p

15 12 11 8 7 4 3 0

CLR.W X:xxxx 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

CLR.W X:xxxxxx 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

CLR.W X:aa 1 1 0 0 1 1 1 1 0 0 p p p p p p
Freescale Semiconductor Instruction Set Details A-95

CMP Compare CMP
Operation: Assembler Syntax:

D – S (one parallel move) CMP S,D (one parallel move)
D – S (no parallel move) CMP S,D (no parallel move)

Description: Subtract the first operand from the second operand and update the CCR without storing the result. If
the second operand is a 36-bit accumulator, 16-bit source registers are first sign extended internally
and concatenated with 16 zero bits to form a 36-bit operand. When the second operand is X0, Y0, or
Y1, 16-bit subtraction is performed. In this case, if the first operand is one of the four accumulators;
the FF1 portion (properly sign extended) is used in the 16-bit subtraction (the FF2 and FF0 portions
are ignored).

Usage: This instruction can be used for both integer and fractional two’s-complement data.

Note: In order for the carry bit (C) to be set correctly as a result of the subtraction, the operands must be prop-
erly sign extended. The destination can be improperly sign extended by writing the FF1 portion explic-
itly prior to executing the compare, so that FF2 might not represent the correct sign extension. This
note particularly applies to the case in which the source is extended to compare 16-bit operands, such
as X0 with A1.

Example:

CMP Y0,A X0,X:(R1)+N ; compare Y0 and A, save X0, update R1

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:0020:0000, and the 16-bit Y0 reg-
ister contains the value $0024. Execution of the CMP Y0,A instruction automatically appends the
16-bit value in the Y0 register with 16 LS zeros, sign extends the resulting 32-bit long word to 36 bits,
subtracts the result from the 36-bit A accumulator, and updates the CCR (leaving the A accumulator
unchanged).

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the extension portion of the result is in use
U — Set if result is not normalized
N — Set if bit 35 of the result is set
Z — Set if result equals zero
V — Set if overflow has occurred in result
C — Set if a carry (or borrow) occurs from bit 35 of the result

Before Execution

000000200

A2 A1 A0

0300SR

After Execution

000000200

A2 A1 A0

0319SR

00242000

Y1 Y0

00242000

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-96 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

CMP Compare CMP
Instruction Fields:

Parallel Moves:

Operation Operands C W Comments

CMP EEE,EEE 1 1 36-bit compare two accumulators or data registers.

X:(Rn),FF 2 1 Compare memory word with 36 bit accumulator.

Also see CMP.W.

Note: Condition codes are set based on a 36-bit
result. See CMP.W for condition codes on 16 bits.

X:(Rn+xxxx),FF 3 2

X:(SP–xx),FF 3 1

X:xxxx,FF 2 2

X:xxxxxx,FF 3 3

#<0–31>,FF 1 1 Compare accumulator with an immediate integer 0–31.

#xxxx,FF 2 2 Compare accumulator with a signed 16-bit immediate.

Data ALU Operation Parallel Memory Move

Operation Operands Source Destination1

1.The case where the destination of the data ALU operation is the same register as the destination of the par-
allel read operation is not allowed. Memory writes are allowed in this case.

CMP2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

X0,F
Y1,F
Y0,F
C,F

A,B
B,A

X:(Rj)+
X:(Rj)+N

X0
Y1
Y0
A
B
C
A1
B1

X0
Y1
Y0
A
B
C
A1
B1

X:(Rj)+
X:(Rj)+N
Freescale Semiconductor Instruction Set Details A-97

CMP Compare CMP
Instruction Opcodes:

Timing: 1–3 oscillator clock cycle(s)

Memory: 1–3 program word(s)

15 12 11 8 7 4 3 0

CMP #<0–31>,FF 0 1 0 1 1 1 0 F F 0 0 B B B B B

15 12 11 8 7 4 3 0

CMP #xxxx,FF 0 1 0 1 1 1 0 F F 1 0 0 0 0 0 0

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

CMP C,F GGG,X:<ea_m> 0 0 0 1 1 G G G F 1 1 0 0 m R R

15 12 11 8 7 4 3 0

CMP C,F X:<ea_m>,GGG 0 0 1 1 1 G G G F 1 1 0 0 m R R

15 12 11 8 7 4 3 0

CMP DD,F GGG,X:<ea_m> 0 0 0 1 1 G G G F J J J 0 m R R

15 12 11 8 7 4 3 0

CMP DD,F X:<ea_m>,GGG 0 0 1 1 1 G G G F J J J 0 m R R

15 12 11 8 7 4 3 0

CMP EEE,EEE 0 1 1 1 1 0 E E E a a a 0 1 0 0

15 12 11 8 7 4 3 0

CMP X:(Rn),FF 0 1 0 1 1 1 0 F F 1 0 1 R 1 R R

15 12 11 8 7 4 3 0

CMP X:(Rn+xxxx),FF 0 1 0 1 1 1 0 F F 1 0 1 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

CMP X:(SP–xx),FF 0 1 0 1 1 0 0 F F 1 a a a a a a

15 12 11 8 7 4 3 0

CMP X:xxxx,FF 0 1 0 1 1 1 0 F F 1 0 0 0 1 0 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

CMP X:xxxxxx,FF 1 1 1 0 0 A A A 0 A 1 1 A A A A

0 1 0 1 1 1 0 F F 1 0 0 0 1 0 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

CMP ~F,F GGG,X:<ea_m> 0 0 0 1 1 G G G F 0 0 0 0 m R R

15 12 11 8 7 4 3 0

CMP ~F,F X:<ea_m>,GGG 0 0 1 1 1 G G G F 0 0 0 0 m R R
A-98 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

CMP.B Compare Byte CMP.B
Operation: Assembler Syntax:

D – S (no parallel move) CMP.B S,D (no parallel move)

Description: Compare 8-bit portions of two registers or a register and an immediate value. The two operands are
subtracted to perform the comparison, and the CCR is updated accordingly. The result of the subtrac-
tion operation is not stored. The result is not affected by the state of the saturation bit (SA).

Usage: This instruction can be used for both integer and fractional two’s-complement data.

Note: This instruction subtracts 8-bit operands. When a register is specified, the low-order 8 bits of the reg-
ister is used for the comparison, unless the register is an accumulator, in which case the low-order
8 bits of the FF1 portion are used. Both registers and immediate values are sign extended internally to
20 bits before comparison.

Example:

CMP.B #$24,A ; compare value in A accumulator to hex 24

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:0020:0000. Execution of the CMP.B
instruction automatically sign extends the immediate value to 20 bits, sign extends the low-order 8 bits
of A1, and subtracts the immediate from the accumulator. The CCR is updated based on the result of
the 8-bit comparison; the A accumulator is unchanged.

Condition Codes Affected:

E — Set if the extension portion of the 20-bit result is in use
U — Set if the 20-bit result is not normalized
N — Set if bit 7 of the result is set
Z — Set if result equals zero
V — Set if overflow has occurred in result
C — Set if a carry (or borrow) occurs from bit 7 of the result

Before Execution

000000200

A2 A1 A0

0300SR

After Execution

000000200

A2 A1 A0

0319SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-99

CMP.B Compare Byte CMP.B
Instruction Fields:

Instruction Opcodes:

Timing: 1–2 oscillator clock cycle(s)

Memory: 1–2 program word(s)

Operation Operands C W Comments

CMP.B EEE,EEE 1 1 Compare the 8-bit byte portions of two data registers

#<0–31>,EEE 1 1 Compare the byte portion of a data register with an
immediate integer 0–31

#xxx,EEE 2 2 Compare with a 9-bit signed immediate integer

15 12 11 8 7 4 3 0

CMP.B #<0–31>,EEE 0 1 0 1 0 1 E E E 0 1 B B B B B

15 12 11 8 7 4 3 0

CMP.B #xxx,EEE 0 1 0 1 1 1 E E E 1 0 0 0 0 1 0

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

CMP.B EEE,EEE 0 1 1 1 1 0 E E E a a a 0 1 0 1
A-100 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

CMP.BP Compare Byte (Byte Pointer) CMP.BP
Operation: Assembler Syntax:

D – S (no parallel move) CMP.BP S,D (no parallel move)

Description: Compare a byte in memory with the 8-bit portion of a register. The two operands are subtracted to per-
form the comparison, and the CCR is updated accordingly. The result of the subtraction operation is
not stored. The result is not affected by the state of the saturation bit (SA).

Usage: This instruction can be used for both integer and fractional two’s-complement data.

Note: This instruction subtracts 8-bit operands. The low-order 8 bits of the register is used for the compari-
son, unless the register is an accumulator, in which case the low-order 8 bits of the FF1 portion are
used. Both the register and the byte located in memory are sign extended internally to 20 bits before
the comparison.

Example:

CMP.BP X:$3065,A ; compare byte at X:$3065 and A

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:0020:0000, and location $3065 in
data memory contains $44. Execution of the CMP.BP instruction automatically sign extends the mem-
ory byte and low-order 8 bits of A1 to 20 bits, and then it subtracts the memory value from the accu-
mulator. The CCR is updated based on the result of the 8-bit comparison; the A accumulator is un-
changed. Note that this address is equivalent to the upper byte of word address $1832.

Condition Codes Affected:

E — Set if the extension portion of the 20-bit result is in use
U — Set if the 20-bit result is not normalized
N — Set if bit 7 of the result is set
Z — Set if result equals zero
V — Set if overflow has occurred in result
C — Set if a carry (or borrow) occurs from bit 7 of the result

Before Execution

000000200

A2 A1 A0

0300SR

After Execution

000000200

A2 A1 A0

0319SR

$3064

$3066
$3068

$3062

X Memory

22 11

7 0

77

44 33

55
88
66

Byte
Addresses

70

$3064

$3066
$3068

$3062

X Memory

22 11

7 0

77

44 33

55
88
66

Byte
Addresses

70

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-101

CMP.BP Compare Byte (Byte Pointer) CMP.BP
Instruction Fields:

Instruction Opcodes:

Timing: 2–3 oscillator clock cycles

Memory: 2–3 program words

Operation Operands C W Comments

CMP.BP X:xxxx,EEE 2 2 Compare memory byte with register

X:xxxxxx,EEE 3 3

15 12 11 8 7 4 3 0

CMP.BP X:xxxx,EEE 0 1 0 1 1 1 E E E 1 0 0 0 1 1 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

CMP.BP X:xxxxxx,EEE 1 1 1 0 0 A A A 0 A 1 1 A A A A

0 1 0 1 1 1 E E E 1 0 0 0 1 1 0

AAAAAAAAAAAAAAAA
A-102 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

CMP.L Compare Long CMP.L
Operation: Assembler Syntax:

D – S (no parallel move) CMP.L S,D (no parallel move)

Description: Compare 32-bit portions of two registers, a register and a long word in memory, or a register and a
16-bit immediate value (sign extended to 32 bits). The two operands are subtracted to perform the com-
parison, and the CCR is updated accordingly. The result of the subtraction operation is not stored. The
result is not affected by the state of the saturation bit (SA).

Usage: This instruction can be used for both integer and fractional two’s-complement data.

Note: This instruction subtracts 32-bit operands. All values are sign extended internally to 36 bits before the
comparison.

Example:

CMP.L Y,A ; 32-bit compare of Y and A

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:0020:0000. Execution of the
CMP.L Y,A instruction automatically sign extends both operands to 36 bits and then subtracts the Y
register from the accumulator. The CCR is updated based on the result of the 32-bit comparison; both
registers are unchanged.

Condition Codes Affected:

E — Set if the extension portion of the 36-bit result is in use
U — Set if the 36-bit result is not normalized
N — Set if bit 31 of the result is set
Z — Set if result equals zero
V — Set if overflow has occurred in result
C — Set if a carry (or borrow) occurs from bit 31 of the result

Before Execution

000000200

A2 A1 A0

0300SR

After Execution

000000200

A2 A1 A0

0319SR

00000024

Y1 Y0

00000024

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-103

CMP.L Compare Long CMP.L
Instruction Fields:

Instruction Opcodes:

Timing: 1–3 oscillator clock cycle(s)

Memory: 1–3 program word(s)

Operation Operands C W Comments

CMP.L FFF,FFF 1 1 Compare the 32-bit long portions of two data registers
or accumulators

X:xxxx,fff 2 2 Compare memory long with a data register

X:xxxxxx,fff 3 3

#xxxx,fff 2 2 Compare a 16-bit immediate value, sign extended to
32 bits, with a data register

15 12 11 8 7 4 3 0

CMP.L #xxxx,fff 0 1 0 1 1 1 f f f 1 0 0 0 0 1 1

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

CMP.L FFF,FFF 0 1 1 1 1 0 F F F b b b 0 1 1 1

15 12 11 8 7 4 3 0

CMP.L X:xxxx,fff 0 1 0 1 1 1 f f f 1 0 0 0 1 1 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

CMP.L X:xxxxxx,fff 1 1 1 0 0 A A A 0 A 1 1 A A A A

0 1 0 1 1 1 f f f 1 0 0 0 1 1 1

AAAAAAAAAAAAAAAA
A-104 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

CMP.W Compare Word CMP.W
Operation: Assembler Syntax:

D – S (no parallel move) CMP.W S,D (no parallel move)

Description: Compare two 16-bit operands. The operands are subtracted, and the CCR is updated based on the re-
sult. The result of the subtraction operation is not stored.

Usage: This instruction can be used for both integer and fractional two’s-complement data.

Note: This instruction subtracts 16-bit operands. When an accumulator is used as one of the operands, the
FF1 portion is compared. Registers and 16-bit immediate values are sign extended internally to 20 bits
before the subtraction is performed. Five-bit immediate values are zero extended to 20 bits. The CCR
is updated based on the 16-bit result, with the exception of the U and E bits, which are based on the
20-bit result.

Example:

CMP.W Y0,A ; compare Y0 and A

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:0020:0000, and the 16-bit Y0 reg-
ister contains the value $0024. Execution of the CMP.W Y0,A instruction automatically sign extends
the 16-bit value in Y0 to 20 bits and subtracts the result from the FF2:FF1 portion of the A accumula-
tor. The CCR is updated based on the result of the subtraction. Neither the Y0 nor the A registers are
changed.

Condition Codes Affected:

E — Set if the extension portion of the 20-bit result is in use
U — Set if the 20-bit result is not normalized
N — Set if bit 15 of the result is set
Z — Set if result equals zero
V — Set if overflow has occurred in result
C — Set if a carry (or borrow) occurs from bit 15 of the result

Before Execution

000000200

A2 A1 A0

0300SR

After Execution

000000200

A2 A1 A0

0319SR

00242000

Y1 Y0

00242000

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-105

CMP.W Compare Word CMP.W
Instruction Fields:

Operation Operands C W Comments

CMP.W EEE,EEE 1 1 Compare the 16-bit word portions of two data registers
or accumulators

X:(Rn),EEE 2 1 Compare memory word with a data register or the word
portion of an accumulatorX:(Rn+xxxx),EEE 3 2

X:(SP–xx),EEE 3 1

X:xxxx,EEE 2 2

X:xxxxxx,EEE 3 3

#<0–31>,EEE 1 1 Compare the word portion of a data register with an
immediate integer 0–31

#xxxx,EEE 2 2 Compare the word portion of a data register with a
signed 16-bit immediate
A-106 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

CMP.W Compare Word CMP.W
Instruction Opcodes:

15 12 11 8 7 4 3 0

CMP.W #<0–31>,DD 0 1 0 1 1 1 1 D D 0 0 B B B B B

15 12 11 8 7 4 3 0

CMP.W #<0–31>,FF 0 1 0 0 1 1 0 F F 0 0 B B B B B

15 12 11 8 7 4 3 0

CMP.W #xxxx,DD 0 1 0 1 1 1 1 D D 1 0 0 0 0 0 0

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

CMP.W #xxxx,FF 0 1 0 0 1 1 0 F F 1 0 0 0 0 0 0

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

CMP.W EEE,EEE 0 1 1 1 1 0 E E E a a a 0 1 1 0

15 12 11 8 7 4 3 0

CMP.W X:(Rn),DD 0 1 0 1 1 1 1 D D 1 0 1 R 1 R R

15 12 11 8 7 4 3 0

CMP.W X:(Rn),FF 0 1 0 0 1 1 0 F F 1 0 1 R 1 R R

15 12 11 8 7 4 3 0

CMP.W X:(Rn+xxxx),DD 0 1 0 1 1 1 1 D D 1 0 1 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

CMP.W X:(Rn+xxxx),FF 0 1 0 0 1 1 0 F F 1 0 1 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

CMP.W X:(SP–xx),DD 0 1 0 1 1 0 1 D D 1 a a a a a a

15 12 11 8 7 4 3 0

CMP.W X:(SP–xx),FF 0 1 0 0 1 0 0 F F 1 a a a a a a

15 12 11 8 7 4 3 0

CMP.W X:xxxx,DD 0 1 0 1 1 1 1 D D 1 0 0 0 1 0 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

CMP.W X:xxxx,FF 0 1 0 0 1 1 0 F F 1 0 0 0 1 0 0

AAAAAAAAAAAAAAAA
Freescale Semiconductor Instruction Set Details A-107

CMP.W Compare Word CMP.W
Instruction Opcodes:(continued)

Timing: 1–3 oscillator clock cycle(s)

Memory: 1–3 program word(s)

15 12 11 8 7 4 3 0

CMP.W X:xxxxxx,FF 1 1 1 0 0 A A A 0 A 1 1 A A A A

0 1 0 0 1 1 0 F F 1 0 0 0 1 0 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

CMP.W X:xxxxxx,DD 1 1 1 0 0 A A A 0 A 1 1 A A A A

0 1 0 1 1 1 1 D D 1 0 0 0 1 0 0

AAAAAAAAAAAAAAAA
A-108 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

CMPA Compare AGU Registers CMPA
Operation: Assembler Syntax:

D – S (no parallel move) CMPA S,D (no parallel move)

Description: Compare two AGU address registers by subtracting the source from the destination, and update the
CCR based on the result of the subtraction. The result of the subtraction operation is not stored.

Example:

CMPA R0,R1 ; compare R0 and R1

Explanation of Example:
Prior to execution, the R0 register contains the value $082473, R1 contains the value $002473, and the
status register (SR) contains $0300. Execution of the CMPA R0,R1 instruction subtracts R0 from R1
and updates the CCR, leaving the registers unchanged.

Condition Codes Affected:

N — Set if bit 23 of the result is set
Z — Set if result equals zero
V — Set if overflow has occurred in result
C — Set if a borrow occurs from bit 23 of the result

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

CMPA Rn,Rn 1 1 24-bit compare between two AGU registers

Before Execution

002473R1

After Execution

082473R0

002473R1

0309SR

082473R0

0300SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 12 11 8 7 4 3 0

CMPA Rn,Rn 1 0 0 0 1 1 1 1 n 0 1 n R n R R
Freescale Semiconductor Instruction Set Details A-109

CMPA.W Compare AGU Registers (Word) CMPA.W
Operation: Assembler Syntax:

D – S (no parallel move) CMPA.W S,D (no parallel move)

Description: Compare the low-order 16 bits of two AGU address registers by subtracting the source from the des-
tination, and update the CCR based on the result of the subtraction. The result of the subtraction oper-
ation is not stored.

Usage: This instruction is provided for compatibility with the DSP56800 CMPA instruction, and it should be
used when only 16-bit address comparisons are required.

Example:

CMPA.W R0,R1 ; compare R0 and R1

Explanation of Example:
Prior to execution, the R0 register contains the value $082473, R1 contains the value $002473, and the
status register (SR) contains $0300. Execution of the CMPA.W R0,R1 instruction subtracts the
low-order 16 bits of R0 from the low-order 16 bits of R1 and updates the CCR, leaving the registers
unchanged. In this case, both address registers are considered equal.

Condition Codes Affected:

N — Set if bit 15 of the result is set
Z — Set if result equals zero
V — Set if overflow has occurred in result
C — Set if a borrow occurs from bit 15 of the subtraction

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

CMPA.W Rn,Rn 1 1 16-bit compare between two AGU registers

Before Execution

002473R1

0300SR

After Execution

082473R0

002473R1

0304SR

082473R0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 12 11 8 7 4 3 0

CMPA.W Rn,Rn 1 0 0 0 1 1 1 0 n 0 1 n R n R R
A-110 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

DEBUGEV Generate Debug Event DEBUGEV
Operation: Assembler Syntax:

Generate a debugging event DEBUGEV

Description: Generate a debugging event in the Enhanced OnCE module. For more information on the Enhanced
OnCE port and hardware debugging support, see the manual for the appropriate DSC device.

Note: This instruction is equivalent to the DSP56800 DEBUG instruction. Programs that are being ported
from the DSP56800 should use this instruction in place of the DEBUG instruction to remain compat-
ible with the DSP56800 behavior.

Condition Codes Affected:
No condition codes are affected.

Instruction Fields:

Instruction Opcodes:

Timing: 3 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

DEBUGEV 3 1 Generate a debug event

15 12 11 8 7 4 3 0

DEBUGEV 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1
Freescale Semiconductor Instruction Set Details A-111

DEBUGHLT Enter Debug Mode DEBUGHLT
Operation: Assembler Syntax:

Enter the debug processing state DEBUGHLT

Description: Enter the debug processing state and wait for Enhanced OnCE port commands, if this state is enabled
in the Enhanced OnCE unit. If this state is not enabled, then the processor simply executes two NOPs
and continues program execution. For more information on the Enhanced OnCE port and hardware de-
bugging support, see the manual for the appropriate DSC device.

Note: This instruction is not compatible with the DSP56800 DEBUG instruction. Please see the DEBUGEV
instruction for information on DSP56800–compatible debugging.

Condition Codes Affected:
No condition codes are affected.

Instruction Fields:

Instruction Opcodes:

Timing: 3 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

DEBUGHLT 3 1 Enter debug processing state

15 12 11 8 7 4 3 0

DEBUGHLT 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1
A-112 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

DEC.BP Decrement Byte (Byte Pointer) DEC.BP
Operation: Assembler Syntax:

D – 1 → D (no parallel move) DEC.BP D (no parallel move)

Description: Decrement a byte value in memory. The value is internally sign extended to 20 bits before being dec-
remented. The low-order 8 bits of the result are stored back to memory. The condition codes are cal-
culated based on the 8-bit result, with the exception of the E and U bits, which are calculated based on
the 20-bit result. Absolute addresses are expressed as byte addresses. The result is not affected by the
state of the saturation bit (SA).

Usage: This instruction is typically used when integer data is processed.

Example:

DEC.BP X:$3065 ; decrement the byte at (byte) address $3065

Explanation of Example:
Prior to execution, the value at byte address X:$3065 is $00. Execution of the DEC.BP instruction dec-
rements this value by one and generates the result, $FF, with a borrow (the carry bit is set). The result
is negative since bit 7 is set. Note that this address is equivalent to the upper byte of word address
$1832.

Condition Codes Affected:

E — Set if the extension portion of the 20-bit result is in use
U — Set if the 20-bit result is unnormalized
N — Set if bit 7 of the result is set
Z — Set if the result is zero
V — Set if overflow has occurred in result
C — Set if a carry (or borrow) occurs from bit 7 of the result

$3064

$3066

$3068

$3062

X Memory

22 11

7 0

77

00 33

55
88
66

Byte
Addresses 7

$3064

$3066

$3068

$3062

X Memory

22 11

7 0

77

FF 33

55
88
66

Byte
Addresses 70

Before Execution After Execution

0300SR 0319SR

0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-113

DEC.BP Decrement Byte (Byte Pointer) DEC.BP
Instruction Fields:

Instruction Opcodes:

Timing: 3–4 oscillator clock cycles

Memory: 2–3 program words

Operation Operands C W Comments

DEC.BP X:xxxx 3 2 Decrement byte in memory

X:xxxxxx 4 3

15 12 11 8 7 4 3 0

DEC.BP X:xxxx 0 1 0 0 1 1 1 0 0 1 0 0 0 1 1 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

DEC.BP X:xxxxxx 1 1 1 0 0 A A A 0 A 1 1 A A A A

0 1 0 0 1 1 1 0 0 1 0 0 0 1 1 0

AAAAAAAAAAAAAAAA
A-114 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

DEC.L Decrement Long DEC.L
Operation: Assembler Syntax:

D – 1 → D (no parallel move) DEC.L D (no parallel move)

Description: Decrement a long-word value in a register or memory. When an operand located in memory is operated
on, the low-order 32 bits of the result are stored back to memory. The condition codes are calculated
based on the 32-bit result. Absolute addresses pointing to long elements must always be even aligned
(that is, pointing to the lowest 16 bits).

Usage: This instruction is typically used when integer data is processed.

Example:

DEC.L X:$2000 ; decrement value in location: $2001:2000 by 1

Explanation of Example:
Prior to execution, the 32-bit value at location $2001:2000 is $1000:0000. Execution of the DEC.L in-
struction subtracts this value by one and generates $0FFF:FFFF. The CCR is updated based on the re-
sult of the subtraction.

Condition Codes Affected:

E — Set if the extension portion of the result is in use
U — Set if the 32-bit result is unnormalized
N — Set if bit 31 of the result is set
Z — Set if the result is zero
V — Set if overflow has occurred in result
C — Set if a carry (or borrow) occurs from bit 31 of the result

$2000
1000
0000

$2001
$2000

0FFF
FFFF

$2001

0301SR 0310SR

Before Execution After Execution
X Memory X Memory

$1FFF $1FFF

0300SR

8000 8000

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-115

DEC.L Decrement Long DEC.L
Instruction Fields:

Instruction Opcodes:

Timing: 1–4 oscillator clock cycle(s)

Memory: 1–3 program word(s)

Operation Operands C W Comments

DEC.L fff 1 1 Decrement long

X:xxxx 3 2 Decrement long in memory

X:xxxxxx 4 3

15 12 11 8 7 4 3 0

DEC.L X:xxxx 0 1 0 0 1 1 1 0 0 1 0 0 0 1 1 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

DEC.L X:xxxxxx 1 1 1 0 0 A A A 0 A 1 1 A A A A

0 1 0 0 1 1 1 0 0 1 0 0 0 1 1 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

DEC.L fff 0 1 1 1 0 0 f f f 0 0 1 1 0 1 1
A-116 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

DEC.W Decrement Word DEC.W
Operation: Assembler Syntax:

D – 1 → D (one parallel move) DEC.W D (one parallel move)
D – 1 → D (no parallel move) DEC.W D (no parallel move)

Description: Decrement a 16-bit destination by one. If the destination is an accumulator, only the EXT and MSP
portions of the accumulator are used and the LSP remains unchanged. The condition codes are calcu-
lated based on the 16-bit result (or on the 20-bit result for accumulators).

Usage: This instruction is typically used when integer data is processed.

Example:

DEC.W A X:(R2)+,X0 ; Decr the 20 MSBs of A, update R2,X0

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:0001:0033. Execution of the
DEC.W instruction decrements by one the upper 20 bits of the A accumulator and sets the zero bit in
the CCR. A new value is read in parallel and stored in register X0; the address register R2 is post-in-
cremented.

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the extension portion of the result is in use
U — Set if result is unnormalized
N — Set if bit MSB of the result is set
Z — Set if the result is zero (20 MSB for accumulator destinations)
V — Set if overflow has occurred in result
C — Set if a carry (or borrow) occurs from bit 15 of the result (bit 35 for accumulators)

Note: When the destination is one of the four accumulators, condition code calculations follow the rules for
20-bit arithmetic; otherwise, the rules for 16-bit arithmetic apply.

A Before Execution

003300010

A2 A1 A0

A After Execution

003300000

A2 A1 A0

0300SR 0314SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-117

DEC.W Decrement Word DEC.W
Instruction Fields:

Parallel Moves:

Operation Operands C W Comments

DEC.W EEE 1 1 Decrement word.

X:(Rn) 3 1 Decrement word in memory using appropriate address-
ing mode.X:(Rn+xxxx) 4 2

X:(SP–xx) 4 1

X:xxxx 3 2

X:xxxxxx 4 3

Data ALU Operation Parallel Memory Move

Operation Operands Source Destination1

1.The case where the destination of the data ALU operation is the same register as the destination of the par-
allel read operation is not allowed. Memory writes are allowed in this case.

DEC.W2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

F X:(Rj)+
X:(Rj)+N

X0
Y1
Y0
A
B
C
A1
B1

X0
Y1
Y0
A
B
C
A1
B1

X:(Rj)+
X:(Rj)+N
A-118 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

DEC.W Decrement Word DEC.W
Instruction Opcodes:

Timing: 1–4 oscillator clock cycle(s)

Memory: 1–3 program word(s)

15 12 11 8 7 4 3 0

DEC.W EEE 0 1 1 1 0 0 E E E 0 0 0 1 0 1 1

15 12 11 8 7 4 3 0

DEC.W F GGG,X:<ea_m> 0 0 0 0 0 G G G F 0 0 1 0 m R R

15 12 11 8 7 4 3 0

DEC.W F X:<ea_m>,GGG 0 0 1 0 0 G G G F 0 0 1 0 m R R

15 12 11 8 7 4 3 0

DEC.W X:(Rn) 0 1 0 0 1 1 1 0 0 1 0 1 R 1 R R

15 12 11 8 7 4 3 0

DEC.W X:(Rn+xxxx) 0 1 0 0 1 1 1 0 0 1 0 1 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

DEC.W X:(SP–xx) 0 1 0 0 1 0 1 0 0 1 a a a a a a

15 12 11 8 7 4 3 0

DEC.W X:xxxx 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

DEC.W X:xxxxxx 1 1 1 0 0 A A A 0 A 1 1 A A A A

0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0

AAAAAAAAAAAAAAAA
Freescale Semiconductor Instruction Set Details A-119

DECA Decrement AGU Register DECA
Operation: Assembler Syntax:

D – 1 → D (no parallel move) DECA D (no parallel move)

Description: Decrement a value in an AGU pointer register. The full 24-bit value of the pointer register is used when
decrementing.

Usage: This instruction can be used to step backwards through a memory buffer.

Example:

DECA R0 ; decrement R0

Explanation of Example:
Prior to execution, the R0 register contains $002222. Execution of the DECA R0 instruction causes
the value in R0 to be reduced by one, and the result ($002221) is stored back in R0.

Condition Codes Affected:
The condition codes are not modified by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

DECA Rn 1 1 Decrement AGU register by one

Before Execution After Execution

002222R0 002221R0

15 12 11 8 7 4 3 0

DECA Rn 1 0 0 0 0 1 0 0 1 0 1 1 R 0 R R
A-120 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

DECA.L Decrement Long in AGU Register DECA.L
Operation: Assembler Syntax:

D – 2 → D (no parallel move) DECA.L D (no parallel move)

Description: Decrement a value in an AGU pointer register by two. The full 24-bit value of the pointer register is
used when decrementing.

Usage: This instruction is used to step backwards through a memory buffer that is composed of long-word val-
ues. Since each long word consists of 2 words, this instruction can be used to step through a buffer by
every other word.

Example:

DECA.L R0 ; decrement R0 by 2

Explanation of Example:
Prior to execution, the R0 register contains $002222. Execution of the DECA.L R0 instruction causes
the value in the R0 to be reduced by two, and the result ($002220) is stored back in R0.

Condition Codes Affected:
The condition codes are not modified by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

DECA.L Rn 1 1 Decrement AGU register by two

Before Execution After Execution

002222R0 002220R0

15 12 11 8 7 4 3 0

DECA.L Rn 1 0 0 0 0 1 0 0 1 0 1 1 R 1 R R
Freescale Semiconductor Instruction Set Details A-121

DECTSTA Decrement and Test AGU Register DECTSTA
Operation: Assembler Syntax:

D – 1 → D (no parallel move) DECTSTA D (no parallel move)
D – 0

Description: Decrement a value in an AGU pointer register and then compare the result to zero, updating the con-
dition codes based on the comparison. The full 24-bit value of the pointer register is used when decre-
menting.

Usage: This instruction can be used to step backwards through a memory buffer, testing to see that the pointer
is still valid after each step.

Example:

DECTSTA R0 ; decrement R0 and then compare to 0

Explanation of Example:
Prior to execution, the R0 register contains $002222. Execution of the DECTSTA R0 instruction caus-
es the value in R0 to be reduced by one, and the result ($002221) is stored back in R0. The updated
value in R0 is then compared with zero, and the CCR is updated accordingly.

Condition Codes Affected:

N — Set if bit 23 of the result is set
Z — Set if all bits in the result are zero
V — Set if overflow has occurred in result
C — Set if a borrow occurs from bit 23 of the result

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

DECTSTA Rn 1 1 Decrement and test AGU register

Before Execution After Execution

002222R0 002221R0

0308SR 0300SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 12 11 8 7 4 3 0

DECTSTA Rn 1 0 0 0 0 1 0 0 1 0 1 0 R 1 R R
A-122 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

DIV Divide Iteration DIV
Operation: Assembler Syntax:

(see following figure) DIV S,D (no parallel move)

Description: This instruction is a divide iteration that is used to calculate 1 bit of the result of a division. After the
correct number of iterations, this instruction will divide the destination operand (D)—dividend or nu-
merator—by the source operand (S)—divisor or denominator—and store the result in the destination
accumulator. The 32-bit dividend must be a positive value that is correctly sign extended to 36 bits and
that is stored in the full 36-bit destination accumulator. The 16-bit divisor is a signed value and is
stored in the source operand. (The division of signed numbers is handled using the techniques docu-
mented in Section 5.3.4, “Division,” on page 5-21.) This instruction can be used for both integer and
fractional division. Each DIV iteration calculates 1 quotient bit using a non-restoring division algo-
rithm (see the description that follows). After the execution of the first DIV instruction, the destination
operand holds both the partial remainder and the formed quotient. The partial remainder occupies the
high-order portion of the destination accumulator and is a signed fraction. The formed quotient occu-
pies the low-order portion of the destination accumulator (A0 or B0, C0, or D0) and is a positive frac-
tion. One bit of the formed quotient is shifted into the LSB of the destination accumulator at the start
of each DIV iteration. The formed quotient is the true quotient if the true quotient is positive. If the true
quotient is negative, the formed quotient must be negated. For fractional division, valid results are ob-
tained only when |D| < |S|. This condition ensures that the magnitude of the quotient is less than one
(that is, it is fractional) and precludes division by zero.

The DIV instruction calculates 1 quotient bit based on the divisor and the previous partial remainder.
To produce an N-bit quotient, the DIV instruction is executed N times, where N is the number of bits
of precision that is desired in the quotient (1 < N < 16). Thus, for a full-precision (16-bit) quotient,
16 DIV iterations are required. In general, executing the DIV instruction N times produces an N-bit
quotient and a 32-bit remainder, which has (32 – N) bits of precision and whose N MSBs are zeros.
The partial remainder is not a true remainder and must be corrected (due to the non-restoring nature of
the division algorithm) before it may be used. Therefore, once the divide is complete, it is necessary
to reverse the last DIV operation and restore the remainder to obtain the true remainder. The result is
not affected by the state of the saturation bit (SA).

The DIV instruction uses a non-restoring division algorithm that consists of the following operations:

1. Compare the source and destination operand sign bits. An exclusive OR operation is performed on
bit 35 of the destination operand and bit 15 of the source operand.

2. Shift the partial remainder and the quotient. The 36-bit destination accumulator is shifted 1 bit to the
left. C is moved into the LSB (bit 0) of the accumulator.

D1 + S D1

D0D2 D1

C;

D[35] ⊕ S[15] = 1If

Then

D1 – S D1

D0D2 D1

C;

Else
Freescale Semiconductor Instruction Set Details A-123

DIV Divide Iteration DIV
3. Calculate the next quotient bit and the new partial remainder. The 16-bit source operand (signed

divisor) is either added to or subtracted from the MSP of the destination accumulator (FF1 portion),
and the result is stored back into the MSP of the destination accumulator. If the result of the exclusive
OR operation in the first step was one (that is, the sign bits were different), the source operand S is
added to the accumulator. If the result of the exclusive OR operation was zero (that is, the sign bits
were the same), the source operand S is subtracted from the accumulator. Due to the automatic sign
extension of the 16-bit signed divisor, the addition or subtraction operation correctly sets the C bit
with the next quotient bit.

Usage: The DIV iteration instruction can be used in one of several different division algorithms, depending on
the needs of an application. Section 5.3.4, “Division,” on page 5-21 shows the correct usage of this in-
struction for fractional and integer division routines, discusses in detail issues related to division, and
provides several examples. The division routine is greatly simplified if both operands are positive, or
if it is not necessary also to calculate a remainder.

Condition Codes Affected:

L — Set if overflow bit V is set
V — Set if the MSB of the destination operand (bit 35 for an accumulator,

bit 35 after sign extension for the Y register) is changed as a result
of the instruction’s left shift operation; otherwise, V is cleared

C — Set if MSB of the result is zero (bit 35 for an accumulator,
bit 35 after sign extension for the Y register)

Example:

DIV Y0,A ; divide A by Y0

Explanation of Example:
This example shows only a single iteration of the division instruction. Please refer to Section 5.3.4,
“Division,” on page 5-21 for a complete description of a division algorithm.

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Before Execution

000007020

A2 A1 A0

0301SR

After Execution

00010E000

A2 A1 A0

0301SR

00042000

Y1 Y0

00042000

Y1 Y0
A-124 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

DIV Divide Iteration DIV
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

DIV FFF1,fff 1 1 Divide iteration

15 12 11 8 7 4 3 0

DIV FFF1,fff 0 1 1 1 1 0 f f f c c c 1 1 1 1
Freescale Semiconductor Instruction Set Details A-125

DO Start Hardware DO Loop DO
Operation: Assembler Syntax:

HWS0 → HWS1; DO S,D
LC → LC2
LA → LA2
LF → NL
PC → HWS0
S → LC
D → LA
1 → LF

Operation When Loop Completes (End-of-Loop Processing):

If NL == 1
LC2 → LC, LA2 → LA

HWS1 → HWS0
NL → LF
0 → NL

Description: Begin a hardware DO loop that is to be repeated for the number of times specified in the instruction’s
source operand, and whose range of execution is terminated by the destination operand. The source
operand specifies the loop count and can be either an immediate 6-bit unsigned value or an on-chip
register value, and the destination operand is a 16- or 21-bit absolute address. No overhead other than
the execution of the DO instruction is required to set up this loop. When a DO loop is executed, the
instructions are actually fetched each time through the loop. Therefore, a DO loop can be interrupted.

The DO instruction performs hardware looping on a single instruction or a block of instructions. DO
loops can be nested up to two deep, accelerating more complex algorithms.

Example 1:
DO #40,END_CPY ; Set up hardware DO loop
MOVE.L X:(R0)+,A ; Copy a 32-bit memory location
MOVE.L A10,X:(R1)+ ;

END_CPY

Explanation of Example:
This example copies a block of forty 32-bit memory locations from one area of memory to another.

When a hardware DO loop is initiated, the following events occur:

1. When the DO instruction is executed, the contents of the LC register are copied to the LC2
register, and LC is loaded with the loop count that the instruction specifies.

2. The old contents of the LA register are copied to the LA2 register, and the LA register is
loaded with the address of the last instruction word in the loop. If a 16-bit address is
specified, the upper 8 bits of LA are cleared.

3. The address of the first instruction in the program loop (top-of-loop address) is pushed onto
the hardware stack. This push sets the LF bit and updates the NL bit, as occurs with any
hardware stack push.

Instructions in the loop are then executed. The address of each instruction is compared to the value in
LA to see if it is the last instruction in the loop. When the end of the loop is reached, the loop count
register is checked to see if the loop should be repeated. If the value in LC is greater than one, LC is
decremented and the loop is re-started from the top. If LC is equal to one, the loop has been executed
for the proper number of times and should be exited.

When a hardware loop ends, the hardware stack is popped (and the popped value is discarded), the LA2
register is copied to LA, the LC2 register is copied to LC, and the NL bit in the operating mode register
is copied to the LF bit. Instruction execution then continues at the address that immediately follows the
end-of-loop address.
A-126 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

DO Start Hardware DO Loop DO
Explanation of Example:(continued)

One hardware stack location is used for each nested DO or DOSLC loop. Thus, a two-deep hardware
stack allows for a maximum of two nested loops. The REP instruction does not use the hardware stack,
so repeat loops can be nested within DO loops.

Example 2:
MOVE.W #0,X0
.
.
.
DO X0,END_CPY ; Loop count is zero upon entry
MOVE.L X:(R0)+,A ; Copy a 32-bit memory location
MOVE.L A10,X:(R1)+ ;

END_CPY

Explanation of Example:
A loop count of zero is specified, so the instructions in the body of the loop are skipped, and execution
continues with the instruction immediately following the loop body.

Note that an immediate loop count of zero for the DO instruction is not allowed and will be rejected
by the assembler. A loop count of zero can only be specified by using a register that is loaded with zero
as the argument to the DO instruction, or by placing a zero in the LC register and executing DOSLC.

A DO loop normally terminates when the body of the loop has been executed for the specified number
of times (the end of the loop has been reached, and LC is one). Alternately, a DO loop terminates if the
count specified is zero, which causes the body of the loop to be skipped entirely.

When the inner loop of a nested loop terminates naturally, the LA2 and LC2 registers are copied into
the LA and LC registers, respectively, restoring these two registers with their values for the outer loop.
A loop is determined to be a nested inner loop if the OMR’s NL bit is set. If the NL bit is not set, the
LA and LC registers are not modified when a loop is terminated or skipped.

If it is necessary to terminate a DO loop early, use one of the techniques discussed in Section 8.5.4.1,
“Allowing Current Block to Finish and Then Exiting,” on page 8-20 and Section 8.5.6.2, “Nesting a
DO Loop Within a DO Loop,” on page 8-22.

During the end-of-loop processing, the NL bit is written into the LF, and the NL bit is cleared. The
contents of the second HWS location (HWS1) are written into the first HWS location (HWS0). Instruc-
tion fetches now continue at the address of the instruction that follows the last instruction in the DO
loop.

DO loops can also be nested as shown in Section 8.5.6, “Nested Hardware Looping,” on page 8-22.
When DO loops are nested, the end-of-loop addresses must also be nested and are not allowed to be
equal. The assembler generates an error message when DO loops are improperly nested.

Note: The assembler calculates the end-of-loop address that is to be loaded into LA by subtracting one from
the absolute address specified in the destination operand. This process occurs to accommodate the case
in which the last instruction in the DO loop is a multiple-word instruction. Thus, the end-of-loop ab-
solute address in the source code must represent the address of the instruction after the last instruction
in the loop.

The LF is cleared by a hardware reset.

Note: Any data dependencies due to pipelining also apply to the pair of instructions formed by the last in-
struction in the DO loop and the first instruction of the DO loop.
Freescale Semiconductor Instruction Set Details A-127

DO Start Hardware DO Loop DO
Example 3:

DO #cnt1,END ; begin DO loop
MOVE.W X:(R0),A
REP #cnt2 ; nested REP loop
ASL A ; repeat this instruction
MOVE.W A,X:(R0)+ ; last instruction in DO loop

END : ; (outside DO loop)

Explanation of Example:
This example illustrates a DO loop with a REP loop nested within the DO loop. In this example, “cnt1”
values are fetched from memory; each value is left shifted by “cnt2” counts and is stored back in mem-
ory. The DO loop executes “cnt1” times while the ASL instruction inside the REP loop executes for a
number of times equal to “cnt1” × “cnt2.” The END label is located at the first instruction past the end
of the DO loop, as mentioned previously.

Condition Codes Affected:

LF — Set when a DO loop is in progress
L — Set if data limiting occurred

Restrictions: Refer to Section 10.4, “Pipeline Dependencies and Interlocks,” on page 10-26.

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-128 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

DO Start Hardware DO Loop DO
Instruction Fields:

Instruction Opcodes:

Timing: 3–8 oscillator clock cycles

Memory: 2–3 program words

Operation Operands C W Comments

DO #<1–63>,<ABS16> 3 2 At least 2 instruction words in the loop (t = 0 in the opcode field).

#<1–63>,<ABS21> 4 3

#<1–63>,<ABS16> 5 2 Only 1 instruction word in the loop (t = 1 in the opcode field).

#<1–63>,<ABS21> 6 3

DDDDD,<ABS16> 7 2 If LC value is zero, body of loop is skipped (adds 2 instruction
cycles).
When looping with a value in an accumulator, use A1, B1, C1, or
D1 to avoid saturation when reading the accumulator.
Any DDDDD register is allowed except C2, D2, C0, D0,
C, D, Y, M01, N3, LA, LA2, LC, LC2, SR, OMR, and HWS.

DDDDD,<ABS21> 8 3

Note: The immediate value of zero is not allowed.

15 12 11 8 7 4 3 0

DO #<1–63>,<ABS16> 1 1 1 0 1 0 0 t 0 0 B B B B B B

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

DO #<1–63>,<ABS21> 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 0 1 0 0 t 0 0 B B B B B B

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

DO DDDDD,<ABS16> 1 1 1 0 1 0 1 1 0 0 0 d d d d d

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

DO DDDDD,<ABS21> 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 0 1 0 1 1 0 0 0 d d d d d

AAAAAAAAAAAAAAAA
Freescale Semiconductor Instruction Set Details A-129

DOSLC DO Loop with Value in LC DOSLC
Operation: Assembler Syntax:

HWS0 → HWS1; DOSLC D
LA → LA2
LF → NL
PC → HWS0
D → LA
1 → LF

Operation When Loop Completes (End-of-Loop Processing):

If NL == 1
LC2 → LC, LA2 → LA

HWS1 → HWS0
NL → LF
0 → NL

Description: Begin a hardware DO loop that is to be repeated for the number of times specified in the loop counter
(LC) register. The value of LC must be loaded prior to executing this instruction. If the value in LC is
zero or negative, the instructions in the body of the loop are skipped. The destination operand D can
be a 16- or 21-bit absolute address. See the section on the DO instruction for more information on hard-
ware looping.

Example:

MOVEU.W #count,LC ; load LC register
...
DOSLC END ; begin DO loop with value in LC
MOVE.W X:(R0),A
NEG A ; negate value from buffer
MOVE.W A,X:(R0)+ ; last instruction in DO loop

END : ; (outside DO loop)

Explanation of Example:
This example illustrates a DO loop with a pre-existing value for LC. For a number of words in the buff-
er equal to “count,” the loop reads word values from a buffer in memory, negates them, and writes the
values back. The END label is located at the first instruction past the end of the DO loop.

Condition Codes Affected:

LF — Set when a DO loop is in progress

Restrictions:
Refer to Section 10.4, “Pipeline Dependencies and Interlocks,” on page 10-26.

LF * * * * * I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-130 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

DOSLC DO Loop with Value in LC DOSLC
Instruction Fields:

Instruction Opcodes:

Timing: 3–4 oscillator clock cycles

Memory: 2–3 program words

Operation Operands C W Comments

DOSLC <ABS16> 3 2 If LC ≤ 0, the body of the loop is skipped, adding 3 additional
cycles.

A minimum of 2 instruction words is required in the loop. The
assembler will generate an error if the loop body is less than 2
words.

<ABS21> 4 3

15 12 11 8 7 4 3 0

DOSLC <ABS16> 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

DOSLC <ABS21> 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1

AAAAAAAAAAAAAAAA
Freescale Semiconductor Instruction Set Details A-131

ENDDO End Current DO Loop ENDDO
Operation: Assembler Syntax:

If NL == 1 ENDDO
LC2 → LC, LA2 → LA

HWS1 → HWS0
NL → LF
0 → NL

Description: Terminate the current hardware DO loop immediately. Normally, a hardware DO loop is terminated
when the last instruction of the loop is executed and the current LC equals one, but this instruction can
terminate a loop before normal completion. If the value of the current DO LC is needed, it must be read
before the execution of the ENDDO instruction. Initially, the LF is restored from the NL bit, and the
top-of-loop address is purged from the HWS. The contents of the second HWS location are written into
the first HWS location, and the NL bit is cleared.

Example:

DO Y0,ENDLP ; execute loop ending at ENDLP for (Y0)
times

:
MOVE.W LC,A ; get current value of loop counter (LC)
CMP Y1,A ; compare loop counter with value in Y1
JNE CONTINU ; go to ONWARD if LC not equal to Y1
ENDDO ; LC equal to Y1, restore all DO regis-

ters
JMP ENDLP ; go to NEXT

CONTINU : ; LC not equal to Y1, continue DO loop
: ; (last instruction in DO loop)

ENDLP MOVE.W #$1234,X0 ; (first instruction AFTER DO loop)

Explanation of Example:
This example illustrates the use of the ENDDO instruction to terminate the current DO loop. The value
of the LC is compared with the value in the Y1 register to determine if execution of the DO loop should
continue. The ENDDO instruction updates certain program controller registers but does not automat-
ically jump past the end of the DO loop. Thus, if this action is desired, a JMP or BRA instruction (such
as JMP NEXT) must be included after the ENDDO instruction to transfer program control to the first
instruction past the end of the DO loop.

Note: The ENDDO instruction updates the program controller registers appropriately but does not automat-
ically jump past the end of the loop. This must be done explicitly by the programmer if it is desired.

Restrictions:
Refer to Section 10.4, “Pipeline Dependencies and Interlocks,” on page 10-26.

Condition Codes Affected:

The condition codes are not affected by this instruction.
A-132 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ENDDO End Current DO Loop ENDDO
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

ENDDO 1 1 Remove one value from the hardware stack and update the NL and
LF bits appropriately

Note: Does not branch to the end of the loop

15 12 11 8 7 4 3 0

ENDDO 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1
Freescale Semiconductor Instruction Set Details A-133

EOR.L Logical Exclusive OR Long EOR.L
Operation: Assembler Syntax:

S ⊕ D→ D (no parallel move) EOR.L FFF,fff (no parallel move)
S ⊕ D → D (one parallel move) EOR.L C,F (one parallel move)

where ⊕ denotes the logical exclusive OR operator

Description: Perform a logical exclusive OR operation on the source operand with the destination operand, and store
the result in the destination. This instruction is a 32-bit operation. If the destination is a 36-bit accumu-
lator, the exclusive OR operation is performed on the source with bits 31–0 of the accumulator. The
remaining bits of the destination accumulator are not affected. If the source is a 16-bit register, the
EOR.L operation is performed on the source and bits 31–16 of the destination. The other bits of the
destination remain unchanged. The result is not affected by the state of the saturation bit (SA).

Usage: This instruction is used for the logical exclusive OR of two registers. If an exclusive OR of a 16-bit
immediate value with a register or memory location is desired, the EORC instruction is appropriate.

Example:

EOR.L Y,B ;Exclusive OR of Y with B10

Explanation of Example:
Prior to execution, the 32-bit Y register contains the value $FF00:FF00, and the 36-bit B accumulator
contains the value $5:5555:CC89. The EOR.L Y,B instruction performs a logical exclusive OR op-
eration on the 32-bit value in the Y register with bits 31–0 of the B accumulator (B10) and stores the
36-bit result in the B accumulator. The the extension portion (B2) is not affected by the operation.

Condition Codes Affected:

N — Set if bit 31 of accumulator result or the MSB of the register result is set
Z — Set if bits 31–0 of accumulator result or all bits of the register result are zero
V — Always cleared

Before Execution

CC8955555

B2 B1 B0

After Execution

3389AA555

B2 B1 B0

FF00FF00

Y1 Y0

FF00FF00

Y1 Y0

030FSR 0309SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-134 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

EOR.L Logical Exclusive OR Long EOR.L
Instruction Fields:

Parallel Moves:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

EOR.L FFF,fff 1 1 32-bit exclusive OR (XOR).

Data ALU Operation Parallel Memory Move

Operation Operands Source Destination1

1.The case where the destination of the data ALU operation is the same register as the destination of the par-
allel read operation is not allowed. Memory writes are allowed in this case.

EOR.L2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

C,F X:(Rj)+
X:(Rj)+N

X0
Y1
Y0
A
B
C
A1
B1

X0
Y1
Y0
A
B
C
A1
B1

X:(Rj)+
X:(Rj)+N

15 12 11 8 7 4 3 0

EOR.L C,F GGG,X:<ea_m> 0 0 0 1 1 G G G F 0 1 0 0 m R R

15 12 11 8 7 4 3 0

EOR.L C,F X:<ea_m>,GGG 0 0 1 1 1 G G G F 0 1 0 0 m R R

15 12 11 8 7 4 3 0

EOR.L FFF,fff 0 1 1 1 1 0 f f f b b b 1 1 1 0
Freescale Semiconductor Instruction Set Details A-135

EOR.W Logical Exclusive OR Word EOR.W
Operation: Assembler Syntax:

S ⊕ D → D (no parallel move) EOR.W S,D (no parallel move)
S ⊕ D[31:16] → D[31:16] (no parallel move) EOR.W S,D (no parallel move)

where ⊕ denotes the logical exclusive OR operator

Description: Perform a logical exclusive OR operation on the source operand (S) with the destination operand (D),
and store the result in the destination. This instruction is a 16-bit operation. If the destination is a 36-bit
accumulator, the exclusive OR operation is performed on the source with bits 31–16 of the accumula-
tor. The remaining bits of the destination accumulator are not affected. The result is not affected by the
state of the saturation bit (SA).

Usage: This instruction is used for the logical exclusive OR of two registers. If an exclusive OR of a 16-bit
immediate value with a register or memory location is desired, the EORC instruction is appropriate.

Example:

EOR.W Y1,B ;Exclusive OR of Y1 with B1

Explanation of Example:
Prior to execution, the 16-bit Y1 register contains the value $FF00, and the 36-bit B accumulator con-
tains the value $5:5555:6789. The EOR.W Y1,B instruction performs a logical exclusive OR opera-
tion on the 16-bit value in the Y1 register with bits 31–16 of the B accumulator (B1) and stores the
36-bit result in the B accumulator. The lower word of the accumulator (B0) and the extension byte (B2)
are not affected by the operation.

Condition Codes Affected:

N — Set if bit 31 of accumulator result or MSB of register result is set
Z — Set if bits 31–16 of accumulator result or all bits of register result are zero
V — Always cleared

Before Execution

678955555

B2 B1 B0

After Execution

6789AA555

B2 B1 B0

8000FF00

Y1 Y0

8000FF00

Y1 Y0

030FSR 0309SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-136 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

EOR.W Logical Exclusive OR Word EOR.W
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

EOR.W EEE,EEE 1 1 16-bit exclusive OR (XOR)

15 12 11 8 7 4 3 0

EOR.W EEE,EEE 0 1 1 1 1 0 E E E a a a 1 0 1 0
Freescale Semiconductor Instruction Set Details A-137

EORC Logical Exclusive OR Immediate EORC
Operation: Assembler Syntax:

#xxxx ⊕ X:<ea> → X:<ea>(no parallel move) EORC #iiii,X:<ea> (no parallel move)
#xxxx ⊕ D → D(no parallel move) EORC #iiii,D (no parallel move)

where ⊕ denotes the logical exclusive OR operator

Implementation Note:
This instruction is implemented by the assembler as an alias to the BFCHG instruction, and it uses the
16-bit immediate value as the bit mask. This instruction will dis-assemble as a BFCHG instruction.

Description: Perform a logical exclusive OR operation on a 16-bit immediate data value with the destination oper-
and (D), and store the results back into the destination. C is also modified as described in “Condition
Codes Affected.” This instruction performs a read-modify-write operation on the destination and re-
quires two destination accesses.

Example:

EORC #$0FF0,X:$5000; Exclusive OR with immediate data

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$5000 contains the value $5555. Execution of the
instruction tests the state of bits 4–11 in X:$5000, does not set C (because all of the selected bits were
not set), and then complements the bits.

Condition Codes Affected:

For destination operand SR:
All SR bits except bits 14–10 are updated with values from the bitfield unit.
Bits 14–10 of the mask operand must be cleared.

For other destination operands:
L — Set if data limiting occurred during 36-bit source move
C — Set if all bits specified by the mask are set

Cleared if at least 1 bit specified by the mask is not set

Note: If all bits in the mask are cleared, the instruction executes two NOPs and sets the C bit.

Instruction Fields:
Refer to the section on the BFCHG instruction for legal operand and timing information.

Before Execution

5555X:$5000

0300SR

After Execution

5AA5X:$5000

0300SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-138 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

FRTID Delayed Return from Fast Interrupt FRTID
Operation: Assembler Syntax:

Swap shadow registers, then FRTID
return from fast interrupt service routine

Description: Refer to Section 9.3.2.2, “Fast Interrupt Processing,” on page 9-6.

Condition Codes Affected:

All bits are set according to the value removed from the stack

Restrictions:
Refer to Section 4.3.2, “Delayed Instruction Restrictions,” on page 4-14.

Instruction Fields:

Instruction Opcodes:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

FRTID 2 1 Delayed return from interrupt, restoring 21-bit PC and SR from
the stack; must fill 2 word slots

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 12 11 8 7 4 3 0

FRTID 1 1 1 0 0 1 1 1 0 0 0 1 1 0 1 0
Freescale Semiconductor Instruction Set Details A-139

ILLEGAL Illegal Instruction Interrupt ILLEGAL
Operation: Assembler Syntax:

Begin illegal instruction exception routine ILLEGAL (no parallel move)

Description: Normal instruction execution is suspended, and illegal instruction exception processing is initiated.
The interrupt priority level bits (I1 and I0) are set to 11 in the status register. The purpose of the illegal
interrupt is to force the DSC into an illegal instruction exception for test purposes. Executing an
ILLEGAL instruction is a fatal error; the exception routine should indicate this condition and cause the
system to be re-started.

If the ILLEGAL instruction is in a DO loop at the LA and the instruction at the LA – 1 is being inter-
rupted, then LC will be decremented twice. This situation is due to the same mechanism that causes
LC to be decremented twice if JSR, REP, and so on are located at the LA.

Since REP is uninterruptable, the result of repeating an ILLEGAL instruction is that the interrupt is
not taken until after the REP completes. After servicing the interrupt, program control returns to the
address of the second word that follows the ILLEGAL instruction. Of course, the ILLEGAL interrupt
service routine should abort further processing, and the processor should be re-initialized.

Usage: The ILLEGAL instruction provides a means for testing the interrupt service routine that is executed
when an illegal instruction is encountered. This capability allows a user to verify that the interrupt ser-
vice routine can correctly recover from an illegal instruction and re-start the application. The
ILLEGAL instruction is not used in normal programming.

Example:

ILLEGAL

Explanation of Example: See the description.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 4 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

ILLEGAL 4 1 Execute the illegal instruction exception. This instruction is made avail-
able so that code can be written to test and verify interrupt handlers for
illegal instructions.

15 12 11 8 7 4 3 0

ILLEGAL 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0
A-140 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

IMAC.L Integer Multiply with Accumulate Long IMAC.L
Operation: Assembler Syntax:

D + (S1 × S2) → D (no parallel move) IMAC.L S1,S2,D (no parallel move)

Description: Multiply the two signed 16-bit source operands, and add the 32-bit integer product to the destination
(D). Both source operands must be located in the FF1 portion of an accumulator. The destination for
this instruction can be an accumulator or the Y register. If an accumulator is used as the destination,
the product is first sign extended from bit 31 and a 36-bit addition is then performed. The result is not
affected by the state of the saturation bit (SA).

Example:

IMAC.L A1,B1,Y

Explanation of Example:
Prior to execution, the A accumulator contains the value $0:0002:FFFF, the B accumulator contains
$0:0004:1234, and the 32-bit Y register contains $0000:0002. Execution of the IMAC.L instruction
multiplies the 16-bit signed value in A1 by the 16-bit signed value in B1, adds the resulting sign-ex-
tended product to the 32-bit Y register, and stores the 32-bit signed result ($0000:000A) into Y.

Condition Codes Affected:

L — Set if overflow has occurred in result
E — Set if the extension portion of the result is in use
U — Set if the result is unnormalized
N — Set if bit 35 (or 31) of the result is set
Z — Set if the result is zero
V — Set if overflow has occurred in result

Condition codes are calculated based on the 36-bit result if the destination is an accumulator, and on
the 32-bit result if the destination is the Y register.

Before Execution

FFFF00020

A2 A1 A0

After Execution

123400040

B2 B1 B0

FFFF00020

A2 A1 A0

123400040

B2 B1 B0

0300SR 0310SR

00020000

Y1 Y0

000A0000

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-141

IMAC.L Integer Multiply with Accumulate Long IMAC.L
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

IMAC.L FFF1,FFF1,fff 1 1 Integer 16 × 16 multiply-accumulate with 32-bit result

15 12 11 8 7 4 3 0

IMAC.L FFF1,FFF1,fff 0 1 1 0 1 1 f f f J J J J J 0 0
A-142 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

IMACUS Integer MAC Unsigned and Signed IMACUS
Operation: Assembler Syntax:

D + (S1 × S2) → D (S1 unsigned; S2 signed) IMACUS S1,S2,D (no parallel move)

Description: Multiply one unsigned 16-bit source operand by one signed 16-bit operand, and add the 32-bit integer
product to the destination (D). The order of the registers is important. The first source register (S1)
must contain the unsigned value, and the second source (S2) must contain the signed value to produce
the correct integer multiplication. The destination for this instruction is always the Y register. The re-
sult is not affected by the state of the saturation bit (SA).

Usage: This instruction is used to perform extended-precision multiplication calculations. It provides a meth-
od for calculating one of the intermediate values that is needed when a 32-bit × 32-bit multiplication
is performed, for example. See Section 5.5.3, “Multi-Precision Integer Multiplication,” on page 5-32
for an example that uses the IMACUS instruction.

Example:

IMACUS A0,B1,Y ; multiply unsigned A0 and signed B1,; add to Y

Explanation of Example:
Prior to execution, the A accumulator contains the value $0:FFFF:0002, the B accumulator contains
$0:FFFE:1234, and the 32-bit Y register contains $0000:0004. Execution of the IMACUS instruction
multiplies the 16-bit unsigned value in A0 by the 16-bit signed value in B1, adds the resulting 32-bit
product to the 32-bit Y register, and stores the result ($0000:0000) into Y.

Condition Codes Affected:
The condition codes are not modified by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

IMACUS A0,A1,Y
A0,B1,Y
A0,C1,Y
A0,D1,Y

B0,C1,Y
B0,D1,Y
C0,C1,Y
C0,D1,Y

1 1 Integer 16 × 16 multiply-accumulate:
F0 (unsigned) × F1 (signed)

Before Execution

0002FFFF0

A2 A1 A0

After Execution

1234FFFE0

B2 B1 B0

0002FFFF0

A2 A1 A0

1234FFFE0

B2 B1 B0

00040000

Y1 Y0

00000000

Y1 Y0

15 12 11 8 7 4 3 0

IMACUS q1.l,q2.h,Y 0 1 1 1 0 0 1 0 1 q q q 0 1 1 1
Freescale Semiconductor Instruction Set Details A-143

IMACUU Integer MAC Two Unsigned Values IMACUU
Operation: Assembler Syntax:

D + (S1 × S2) → D (S1 unsigned; S2 unsigned) IMACUU S1,S2,D (no parallel move)

Description: Multiply the two unsigned 16-bit source operands (S1 and S2), and add the 32-bit integer product to
the destination (D). The destination for this instruction is always the Y register. The result is not af-
fected by the state of the saturation bit (SA).

Usage: This instruction is used to perform extended-precision multiplication calculations. It provides a meth-
od for calculating one of the intermediate values that is needed when a 32-bit × 32-bit multiplication
is performed, for example. See Section 5.5.3, “Multi-Precision Integer Multiplication,” on page 5-32
for an example that uses the IMACUU instruction.

Example:

IMACUU A0,B1,Y ; multiply unsigned in A0 and B1, add to Y

Explanation of Example:
Prior to execution, the A accumulator contains the value $0:FFFF:0002, the B accumulator contains
$0:FFFE:1234, and the 32-bit Y register contains $0000:0004. Execution of the IMACUU instruction
multiplies the 16-bit unsigned value in A0 by the 16-bit unsigned value in B1, adds the resulting 32-bit
product to the 32-bit Y register, and stores the 32-bit unsigned result ($0002:0000) into Y.

Condition Codes Affected:
The condition codes are not modified by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

IMACUU A0,A1,Y
A0,B1,Y
A0,C1,Y
A0,D1,Y
B0,C1,Y
B0,D1,Y
C0,C1,Y
C0,D1,Y

1 1 Integer 16 × 16 multiply-accumulate:
F0 (unsigned) × F1 (unsigned)

Before Execution

0002FFFF0

A2 A1 A0

After Execution

1234FFFE0

B2 B1 B0

0002FFFF0

A2 A1 A0

1234FFFE0

B2 B1 B0

00040000

Y1 Y0

00000002

Y1 Y0

15 12 11 8 7 4 3 0

IMACUU q1.l,q2.h,Y 0 1 1 1 0 0 1 1 1 q q q 0 1 1 1
A-144 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

IMPY.L Integer Multiply Long IMPY.L
Operation: Assembler Syntax:

S1 × S2 → D (no parallel move) IMPY.L S1,S2,D (no parallel move)

Description: Multiply the two signed 16-bit source operands, and place the 32-bit product in the destination (D).
Both source operands must be located in the FF1 portion of an accumulator or in X0, Y0, or Y1. The
destination for this instruction can be an accumulator or the Y register. If an accumulator is used for
the destination, the result is sign extended from bit 31 into the extension portion (FF2) of the accumu-
lator. The result is not affected by the state of the saturation bit (SA).

Example:

IMPY.L A1,B1,Y ; integer mult with 32-bit result

Explanation of Example:
Prior to execution, the A accumulator contains the value $0:0002:FFFF, the B accumulator contains
$0:FFFE:1234, and the 32-bit Y register contains $0001:37A2. Execution of the IMPY.L instruction
multiplies the 16-bit (signed) positive value in A1 by the (signed) negative 16-bit value in B1, and
stores the (signed) 32-bit negative result ($FFFF:FFFC) into Y. The negative bit is set to indicate the
sign of the result.

Condition Codes Affected:

L — Set if overflow has occurred in result
E — Set if the extension portion of the result is in use
U — Set if the result is unnormalized
N — Set if bit 35 (or 31) of the result is set
Z — Set if the result is zero
V — Set if overflow has occurred in result

Condition codes are calculated based on the 36-bit result if the destination is an accumulator, and on
the 32-bit result if the destination is the Y register.

Before Execution

FFFF00020

A2 A1 A0

After Execution

1234FFFE0

B2 B1 B0

FFFF00020

A2 A1 A0

1234FFFE0

B2 B1 B0

0300SR 0318SR

37A20001

Y1 Y0

FFFCFFFF

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-145

IMPY.L Integer Multiply Long IMPY.L
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

IMPY.L FFF1,FFF1,fff 1 1 Integer 16 × 16 multiply with 32-bit result

15 12 11 8 7 4 3 0

IMPY.L FFF1,FFF1,fff 0 1 1 0 1 1 f f f J J J J J 0 1
A-146 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

IMPY.W Integer Multiply Word IMPY.W
Operation: Assembler Syntax:

S1 × S2 → D (no parallel move) IMPY.W S1,S2,D (no parallel move)

Description: Perform an integer multiplication on the two 16-bit, signed, integer source operands (S1 and S2), and
store the lowest 16 bits of the integer product in the destination (D). If the destination is an accumula-
tor, the product is stored in the MSP with sign extension while the LSP remains unchanged. The order
of the first two operands is not important. The V bit is set if the calculated integer product does not fit
into 16 bits. The result is not affected by the state of the saturation bit (SA).

Usage: This instruction is useful in general computing when it is necessary to multiply two integers and the
nature of the computation can guarantee that the result fits in a 16-bit destination. In this case, it is bet-
ter to place the result in the MSP (FF1 portion) of an accumulator because more instructions have ac-
cess to this portion than to the other portions of the accumulator.

Example:

IMPY.W A1,Y0,A ; integer 16-bit multiplication

Explanation of Example:
Prior to execution, the A accumulator contains the value $4:0002:1234, and the data ALU register Y0
contains the 16-bit (signed) negative integer value $FFFE. Execution of the IMPY.W instruction inte-
ger multiplies the (signed) positive value in A1 and the (signed) negative value in Y0, and stores the
(signed) negative result ($FFFC) in A1. A0 remains unchanged, and A2 is sign extended. The negative
bit is set to indicate the sign of the result.

Condition Codes Affected:

L — Set if overflow has occurred in the 16-bit result
N — Set if bit 15 of the result is set
Z — Set if the 16-bit result or 20 MSBs of a destination accumulator equal zero
V — Set if overflow occurs in the 16-bit result

Note: A 31-bit integer product is calculated for this instruction, while the lowest 16 bits are stored in the des-
tination register. When SA or CM are set, the N bit is set to the value in bit 30 of the internally com-
puted result. When SA and CM are zero, the N bit is set to the value in bit 15 of the result.

Before Execution

123400024

A2 A1 A0

After Execution

1234FFFCF

A2 A1 A0

0300SR 0308SR

FFFE2000

Y1 Y0

FFFE2000

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-147

IMPY.W Integer Multiply Word IMPY.W
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

IMPY.W Y1,X0,FFF
Y0,X0,FFF
Y1,Y0,FFF
Y0,Y0,FFF
A1,Y0,FFF
B1,Y1,FFF
C1,Y0,FFF
C1,Y1,FFF

1 1 Integer 16 × 16 multiply with 16-bit result.

When the destination is the Y register or an accumula-
tor, the LSP portion is unchanged by the instruction.

Note: Assembler also accepts the first two operands
when they are specified in the opposite order.

15 12 11 8 7 4 3 0

IMPY.W Q1,Q2,FFF 0 1 1 1 0 0 F F F Q Q Q 1 0 1 0
A-148 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

IMPYSU Integer Multiply Signed and Unsigned IMPYSU
Operation: Assembler Syntax:

S1 × S2 → D (S1 signed; S2 unsigned) IMPYSU S1,S2,D (no parallel move)

Description: Multiply one signed 16-bit source operand by one unsigned 16-bit operand, and place the 32-bit integer
product in the destination (D). The order of the registers is important. The first source register (S1)
must contain the signed value, and the second source (S2) must contain the unsigned value to produce
the correct integer multiplication. The destination for this instruction is always the Y register. The re-
sult is not affected by the state of the saturation bit (SA).

Usage: This instruction is used to perform extended-precision multiplication calculations. It provides a meth-
od for calculating one of the intermediate values that is needed when a 32-bit × 32-bit multiplication
is performed, for example. See Section 5.5.3, “Multi-Precision Integer Multiplication,” on page 5-32
for an example that uses the IMPYSU instruction.

Example:

IMPYSU A1,B0,Y ; multiply signed A1 to unsigned B0, store in Y

Explanation of Example:
Prior to execution, the A accumulator contains the value $0:FFFE:1234, the B accumulator contains
$0:0000:0002, and the 32-bit Y register contains $1234:5678. Execution of the IMPYSU instruction
multiplies the 16-bit (signed) negative value in A1 by the 16-bit (unsigned) positive value in B0 and
stores the (signed) negative result ($FFFF:FFFC) into Y.

Condition Codes Affected:
The condition codes are not modified by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

IMPYSU A1,A0,Y
A1,B0,Y
A1,C0,Y
A1,D0,Y

B1,C0,Y
B1,D0,Y
C1,C0,Y
C1,D0,Y

1 1 Integer 16 × 16 multiply:
F1 (signed) × F0 (unsigned)

Before Execution

1234FFFE0

A2 A1 A0

After Execution

000200000

B2 B1 B0

1234FFFE0

A2 A1 A0

000200000

B2 B1 B0

56781234

Y1 Y0

FFFCFFFF

Y1 Y0

15 12 11 8 7 4 3 0

IMPYSU q1.h,q2.l,Y 0 1 1 1 0 0 1 0 0 q q q 0 1 1 1
Freescale Semiconductor Instruction Set Details A-149

IMPYUU Unsigned Integer Multiply IMPYUU
Operation: Assembler Syntax:

S1 × S2 → D (S1 unsigned; S2 unsigned) IMPYUU S1,S2,D (no parallel move)

Description: Multiply the two unsigned 16-bit source operands (S1 and S2), and place the 32-bit product in the des-
tination (D). If the destination is an accumulator, the 32-bit product is stored in the MSP:LSP with ze-
ros propagated in the extension portion (FF2) of the accumulator. The result is not affected by the state
of the saturation bit (SA).

Usage: This instruction is used to perform extended-precision multiplication calculations. It provides a meth-
od for calculating one of the intermediate values that is needed when a 32-bit × 32-bit multiplication
is performed, for example. See Section 5.5.3, “Multi-Precision Integer Multiplication,” on page 5-32
for an example that uses the IMPYUU instruction.

Example:

IMPYUU A1,B0,Y ; multiply two unsigned integers, store in Y

Explanation of Example:
Prior to execution, the A accumulator contains the value $0:FFFE:1234, the B accumulator contains
$0:0000:0002, and the 32-bit Y register contains $1234:5678. Execution of the IMPYUU instruction
multiplies the 16-bit (positive) unsigned value in A1 by the 16-bit unsigned value in B0 and stores the
unsigned result ($0001:FFFC) into Y.

Condition Codes Affected:
The condition codes are not modified by this instruction.

Before Execution

1234FFFE0

A2 A1 A0

After Execution

000200000

B2 B1 B0

1234FFFE0

A2 A1 A0

000200000

B2 B1 B0

56781234

Y1 Y0

FFFC0001

Y1 Y0
A-150 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

IMPYUU Unsigned Integer Multiply IMPYUU
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

IMPYUU A1,A0,Y
A1,B0,Y
A1,C0,Y
A1,D0,Y
B1,C0,Y
B1,D0,Y
C1,C0,Y
C1,D0,Y

1 1 Integer 16 × 16 multiply:
F1 (unsigned) × F0 (unsigned)

A0,A0,FF
A0,B0,FF
A0,C0,FF
A0,D0,FF
B0,C0,FF
B0,D0,FF
C0,C0,FF
C0,D0,FF

1 1 Integer 16 × 16 multiply:
F0 (unsigned) × F0 (unsigned)

15 12 11 8 7 4 3 0

IMPYUU q1.l,q2.l,FF 0 1 1 1 0 0 0 F F q q q 0 1 1 1

15 12 11 8 7 4 3 0

IMPYUU q1.h,q2.l,Y 0 1 1 1 0 0 1 1 0 q q q 0 1 1 1
Freescale Semiconductor Instruction Set Details A-151

INC.BP Increment Byte (Byte Pointer) INC.BP
Operation: Assembler Syntax:

D + 1 → D (no parallel move) INC.BP D (no parallel move)

Description: Increment a byte value in memory. The value is internally sign extended to 20 bits before being incre-
mented. The low-order 8 bits of the result are stored back to memory. The condition codes are calcu-
lated based on the 8-bit result, with the exception of the E and U bits, which are calculated based on
the 20-bit result. Absolute addresses are expressed as byte addresses. The result is not affected by the
state of the saturation bit (SA).

Usage: This instruction is typically used when integer data is processed.

Example:

INC.BP X:$3065 ; increment the byte at (byte) address $3065

Explanation of Example:
Prior to execution, the value at byte address X:$3065 is $00. Execution of the INC.BP instruction in-
crements this value by one and generates the result $01. Note that this address is equivalent to the upper
byte of word address $1832.

Condition Codes Affected:

E — Set if the extension portion of the 20-bit result is in use
U — Set if the 20-bit result is unnormalized
N — Set if bit 7 of the result is set
Z — Set if the result is zero
V — Set if overflow has occurred in result
C — Set if a carry occurs from bit 7 of the result

$3064

$3066

$3068

$3062

X Memory

22 11

7 0

77

00 33

55
88
66

Byte
Addresses 70

$3064

$3066

$3068

$3062

X Memory

22 11

7 0

77

01 33

55
88
66

Byte
Addresses 70

Before Execution After Execution

0300SR 0310SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-152 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

INC.BP Increment Byte (Byte Pointer) INC.BP
Instruction Fields:

Instruction Opcodes:

Timing: 3–4 oscillator clock cycles

Memory: 2–3 program words

Operation Operands C W Comments

INC.BP X:xxxx 3 2 Increment byte in memory

X:xxxxxx 4 3

15 12 11 8 7 4 3 0

INC.BP X:xxxx 0 1 0 0 1 1 1 0 1 1 0 0 0 1 1 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

INC.BP X:xxxxxx 1 1 1 0 0 A A A 0 A 1 1 A A A A

0 1 0 0 1 1 1 0 1 1 0 0 0 1 1 0

AAAAAAAAAAAAAAAA
Freescale Semiconductor Instruction Set Details A-153

INC.L Increment Long INC.L
Operation: Assembler Syntax:

D + 1 → D (no parallel move) INC.L D (no parallel move)

Description: Increment a long-word value in a register or memory. When an operand located in memory is operated
on, the low-order 32 bits of the result are stored back to memory. The condition codes are calculated
based on the 32-bit result. Absolute addresses pointing to long elements must always be even aligned
(that is, pointing to the lowest 16 bits).

Usage: This instruction is typically used when integer data is processed.

Example:

INC.L A ; increment value in A by one

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:0020:0000. Execution of the INC.L
instruction adds one to the A accumulator. The CCR is updated based on the result of the addition.

Condition Codes Affected:

E — Set if the extension portion of the 36-bit result is in use
U — Set if the 36-bit result is unnormalized
N — Set if bit 31 of the result is set
Z — Set if the result is zero
V — Set if overflow has occurred in result
C — Set if a carry occurs from bit 31 of the result

Before Execution

000000200

A2 A1 A0

After Execution

000100200

A2 A1 A0

0300SR 0310SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-154 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

INC.L Increment Long INC.L
Instruction Fields:

Instruction Opcodes:

Timing: 1–4 oscillator clock cycle(s)

Memory: 1–3 program word(s)

Operation Operands C W Comments

INC.L fff 1 1 Increment long

X:xxxx 3 2 Increment long in memory

X:xxxxxx 4 3

15 12 11 8 7 4 3 0

INC.L X:xxxx 0 1 0 0 1 1 1 0 1 1 0 0 0 1 1 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

INC.L X:xxxxxx 1 1 1 0 0 A A A 0 A 1 1 A A A A

0 1 0 0 1 1 1 0 1 1 0 0 0 1 1 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

INC.L fff 0 1 1 1 0 0 f f f 0 0 1 0 0 1 1
Freescale Semiconductor Instruction Set Details A-155

INC.W Increment Word INC.W
Operation: Assembler Syntax:

D + 1 → D (one parallel move) INC.W D (one parallel move)
D + 1 → D (no parallel move) INC.W D (no parallel move)

Description: Increment a 16-bit destination by one. If the destination is an accumulator, only the EXT and MSP por-
tions of the accumulator are used and the LSP remain unchanged. The condition codes are calculated
based on the 16-bit result (or on the 20-bit result for accumulators).

Usage: This instruction is typically used when integer data is processed.

Example:

INC.W A X:(R0)+,X0 ; Increment the 20 MSBs of A and
; update X0 and R0

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:FFFF:0033. Execution of the
INC.W instruction increments by one the upper 20 bits of the A accumulator and sets the E and U bits
in the CCR. A new value is read in parallel and stored in register X0; the address register R0 is post-in-
cremented.

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the extension portion of the result is in use
U — Set if result is unnormalized
N — Set if MSB of the result is set
Z — Set if the result is zero (20 MSB for accumulator destinations)
V — Set if overflow has occurred in result
C — Set if a carry (or borrow) occurs from bit 15 of the result (bit 35 for accumulators)

Note: When the destination is one of the four accumulators, condition code calculations follow the rules for
20-bit arithmetic; otherwise, the rules for 16-bit arithmetic apply.

Before Execution

0033FFFF0

A2 A1 A0

After Execution

003300001

A2 A1 A0

0300SR 0330SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-156 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

INC.W Increment Word INC.W
Instruction Fields:

Parallel Moves:

Operation Operands C W Comments

INC.W EEE 1 1 Increment word.

X:(Rn) 3 1 Increment word in memory using appropriate address-
ing mode.X:(Rn+xxxx) 4 2

X:(SP–xx) 4 1

X:xxxx 3 2

X:xxxxxx 4 3

Data ALU Operation Parallel Memory Move

Operation Operands Source Destination1

1.The case where the destination of the data ALU operation is the same register as the destination of the par-
allel read operation is not allowed. Memory writes are allowed in this case.

INC.W2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

F X:(Rj)+
X:(Rj)+N

X0
Y1
Y0
A
B
C
A1
B1

X0
Y1
Y0
A
B
C
A1
B1

X:(Rj)+
X:(Rj)+N
Freescale Semiconductor Instruction Set Details A-157

INC.W Increment Word INC.W
Instruction Opcodes:

Timing: 1–4 oscillator clock cycle(s)

Memory: 1–3 program word(s)

15 12 11 8 7 4 3 0

INC.W EEE 0 1 1 1 0 0 E E E 0 0 0 0 0 1 1

15 12 11 8 7 4 3 0

INC.W F GGG,X:<ea_m> 0 0 0 0 0 G G G F 0 1 1 0 m R R

15 12 11 8 7 4 3 0

INC.W F X:<ea_m>,GGG 0 0 1 0 0 G G G F 0 1 1 0 m R R

15 12 11 8 7 4 3 0

INC.W X:(Rn) 0 1 0 0 1 1 1 0 1 1 0 1 R 1 R R

15 12 11 8 7 4 3 0

INC.W X:(Rn+xxxx) 0 1 0 0 1 1 1 0 1 1 0 1 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

INC.W X:(SP–xx) 0 1 0 0 1 0 1 0 1 1 a a a a a a

15 12 11 8 7 4 3 0

INC.W X:xxxx 0 1 0 0 1 1 1 0 1 1 0 0 0 1 0 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

INC.W X:xxxxxx 1 1 1 0 0 A A A 0 A 1 1 A A A A

0 1 0 0 1 1 1 0 1 1 0 0 0 1 0 0

AAAAAAAAAAAAAAAA
A-158 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Jcc Jump Conditionally Jcc
Operation: Assembler Syntax:

If (cc), then S → PC Jcc S {<ABS19> or <ABS21>}
else PC + 1 → PC

Description: If the specified condition is true, program execution continues at the effective address specified in the
instruction. If the specified condition is false, the PC is incremented and program execution continues
sequentially. The effective address is a 19- or 21-bit absolute address.

The term “cc” specifies the following:

Example:

JCS LABEL ; jump to LABEL if carry bit is set
INC.W A
INC.W A

LABEL
ADD B,A

Explanation of Example:
In this example, if C is one when the JCS instruction is executed, program execution skips the two
INC.W instructions and continues with the ADD instruction. If the specified condition is not true, no
jump is taken, the program counter is incremented by one, and program execution continues with the
first INC.W instruction. The Jcc instruction uses a 19-bit absolute address for this example.

Restrictions:
Refer to Section 10.4, “Pipeline Dependencies and Interlocks,” on page 10-26.

Condition Codes Affected:
The condition codes are tested but not modified by this instruction.

“cc” Mnemonic Condition

CC (HS*)— carry clear (higher or same) C = 0

CS (LO*)— carry set (lower) C = 1

EQ— equal Z = 1

GE— greater than or equal N ⊕ V = 0

GT— greater than Z + (N ⊕ V) = 0

LE— less than or equal Z + (N ⊕ V) = 1

LT— less than N ⊕ V = 1

NE— not equal Z = 0

NN— not normalized Z + (U • E) = 0

NR— normalized Z + (U • E) = 1

* Only available when CM bit is set in the OMR

Xdenotes the logical complement of X
+denotes the logical OR operator
•denotes the logical AND operator
⊕denotes the logical exclusive OR operator
Freescale Semiconductor Instruction Set Details A-159

Jcc Jump Conditionally Jcc
Instruction Fields:

Instruction Opcodes:

Timing: 4–6 oscillator clock cycles

Memory: 2–3 program words

Operation Operands C1

1.The clock-cycle count depends on whether the jump is taken. The first value applies if the jump is taken, and
the second applies if it is not.

W Comments

Jcc <ABS19> 5 or 4 2 19-bit absolute address

<ABS21> 6 or 5 3 21-bit absolute address

15 12 11 8 7 4 3 0

Jcc <ABS21> 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 0 0 C C C 0 1 0 1 0 C 0 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

Jcc <ABS19> 1 1 1 0 0 C C C 0 1 0 1 A C A A

AAAAAAAAAAAAAAAA
A-160 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

JMP Unconditional Jump JMP
Operation: Assembler Syntax:

S → PC JMP S {(N) or <ABS19> or <ABS21>}

Description: Jump to program memory at the location given by the instruction’s effective address, which can be the
value in the N register or a 19- or 21- bit absolute address.

Example:

JMP LABEL

Explanation of Example:
In this example, program execution is transferred to the address represented by LABEL. The DSC core
supports up to 21-bit program addresses.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Restrictions:
Refer to Section 10.4, “Pipeline Dependencies and Interlocks,” on page 10-26.

Instruction Fields:

Instruction Opcodes:

Timing: 4–5 oscillator clock cycles

Memory: 1–3 program word(s)

Operation Operands C W Comments

JMP (N) 5 1 Jump to target contained in N register

<ABS19> 4 2 19-bit absolute address

<ABS21> 5 3 21-bit absolute address

15 12 11 8 7 4 3 0

JMP <ABS21> 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 0 0 0 0 1 0 1 0 1 0 1 0 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

JMP (N) 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1

15 12 11 8 7 4 3 0

JMP <ABS19> 1 1 1 0 0 0 0 1 0 1 0 1 A 1 A A

AAAAAAAAAAAAAAAA
Freescale Semiconductor Instruction Set Details A-161

JMPD Delayed Unconditional Jump JMPD
Operation: Assembler Syntax:

Execute instructions in next 2 words JMPD S {<ABS19> or <ABS21>}
S→ PC

Description: Jump to program memory at the location that is given by the instruction’s effective address, but execute
the following 2 words of instructions before completing the jump. That is, execute the next two 1-word
instructions or the next single 2-word instruction following the JMPD instruction before jumping to
the destination address.

Example:

JMPD LABEL ; delayed JMP to label
 ADD.W #1,X0 ; first delay slot
 NOP ; second delay slot (unused)
...

LABEL ; JMP target address

Explanation of Example:
In this example, program execution is transferred to the address represented by LABEL after the two
1-word instructions following the JMPD instruction are executed.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Restrictions:
Refer to Section 10.4, “Pipeline Dependencies and Interlocks,” on page 10-26.
Refer to Section 4.3.2, “Delayed Instruction Restrictions,” on page 4-14.

Instruction Fields:

Instruction Opcodes:

Timing: 2–3 oscillator clock cycles

Memory: 2–3 program words

Operation Operands C W Comments

JMPD <ABS19> 2 2 Delayed jump with 19-bit absolute address; must fill 2 delay slots

<ABS21> 3 3 Delayed jump with 21-bit absolute address; must fill 2 delay slots

15 12 11 8 7 4 3 0

JMPD <ABS21> 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 0 0 0 1 1 0 1 0 1 0 1 0 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

JMPD <ABS19> 1 1 1 0 0 0 1 1 0 1 0 1 A 1 A A

AAAAAAAAAAAAAAAA
A-162 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

JSR Jump to Subroutine JSR
Operation: Assembler Syntax:

SP + 1 → SP JSR S {(RRR) or <ABS19> or <ABS21>}
PC → X:(SP)
SP + 1 → SP
SR → X:(SP)
S → PC

Description: Jump to subroutine in program memory located at the effective address specified by the operand. The
operand can be a 19- or 21-bit absolute address or a register.

Example:

JSR LABEL ; jump to absolute address indicated by “LABEL”

Explanation of Example:
In this example, program execution is transferred to the subroutine at the address that is represented by
LABEL. The DSC core supports program addresses up to 21 bits wide.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Restrictions:
Refer to Section 10.4, “Pipeline Dependencies and Interlocks,” on page 10-26.

Instruction Fields:

Instruction Opcodes:

Timing: 4–5 oscillator clock cycles

Memory: 1–3 program word(s)

Operation Operands C W Comments

JSR (RRR) 5 1 Push 21-bit return address and jump to target address contained
in the RRR register

<ABS19> 4 2 Push 21-bit return address and jump to 19-bit target address

<ABS21> 5 3 Push 21-bit return address and jump to 21-bit target address

15 12 11 8 7 4 3 0

JSR (RRR) 1 1 1 0 0 1 1 0 0 0 0 1 N 1 N N

15 12 11 8 7 4 3 0

JSR <ABS19> 1 1 1 0 0 0 1 0 0 1 0 1 A 1 A A

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

JSR <ABS21> 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 0 0 0 1 0 0 1 0 1 0 1 0 0

AAAAAAAAAAAAAAAA
Freescale Semiconductor Instruction Set Details A-163

LSL.W Logical Shift Left Word LSL.W
Operation: Assembler Syntax:

(see following figure) LSL.W D (no parallel move)

Description: Logically shift 16 bits of the destination operand (D) by 1 bit to the left, and store the result in the des-
tination. If the destination is a 36-bit accumulator, the result is stored in the MSP of the accumulator
(FF1 portion), and the remaining portions of the accumulator are not modified. The MSB of the desti-
nation (bit 31 if the destination is a 36-bit accumulator) prior to the execution of the instruction is shift-
ed into C, and zero is shifted into the LSB of D1 (bit 16 if the destination is a 36-bit accumulator). The
result is not affected by the state of the saturation bit (SA).

Example:

LSL.W B ; multiply B1 by 2

Explanation of Example:
Prior to execution, the 36-bit B accumulator contains the value $6:C555:00AA. Execution of the
LSL.W instruction shifts the 16-bit value in the B1 register by 1 bit to the left and stores the result back
in the B1 register. The C bit is set because bit 31 of B1 was set prior to the execution of the instruction.
The N bit is also set because bit 31 of accumulator B is set. The overflow bit V is always cleared.

Condition Codes Affected:

N — Set if bit 31 of an accumulator result or bit 15 of a 16-bit register result is set
Z — Set if the MSP of result or all bits of a 16-register result are zero
V — Always cleared
C — Set if bit 31 of accumulator or bit 15 of a 16-bit register was set prior to the execution

of the instruction

C

D0D2 D1

0UnchangedUnch.

Before Execution

00AAC5556

B2 B1 B0

0302SR

After Execution

00AA8AAA6

B2 B1 B0

0309SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-164 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

LSL.W Logical Shift Left Word LSL.W
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

LSL.W EEE 1 1 1-bit logical shift left word

15 12 11 8 7 4 3 0

LSL.W EEE 0 1 1 1 0 0 E E E 1 1 1 0 0 1 1
Freescale Semiconductor Instruction Set Details A-165

LSR.W Logical Shift Right Word LSR.W
Operation: Assembler Syntax:

(see following figure) LSR.W D (no parallel move)

Description: Logically shift 16 bits of the destination operand (D) by 1 bit to the right, and store the result in the
destination. If the destination is a 36-bit accumulator, the result is stored in the MSP of the accumulator
(FF1 portion), and the remaining portions of the accumulator are not modified. The LSB of the desti-
nation (bit 16 if the destination is a 36-bit accumulator) prior to the execution of the instruction is shift-
ed into C, and zero is shifted into the MSB of D1 (bit 31 if the destination is a 36-bit accumulator). The
result is not affected by the state of the saturation bit (SA).

Example:

LSR.W B ; divide B1 by 2 (B1 considered unsigned)

Explanation of Example:
Prior to execution, the 36-bit B accumulator contains the value $F:0001:00AA. Execution of the
LSR.W instruction shifts the 16-bit value in the B1 register by 1 bit to the right and stores the result
back in the B1 register. C is set by the operation because bit 0 of B1 was set prior to the execution of
the instruction. The Z bit of CCR (bit 2) is also set because the result in B1 is zero. The overflow bit
(V) is always cleared.

Condition Codes Affected:

N — Always cleared
Z — Set if the MSP of result or all bits of a 16-register result are zero
V — Always cleared
C — Set if bit 31 of accumulator or bit 15 of a 16-bit register was set prior to the execution

of the instruction

0

D0D2 D1

CUnchangedUnch.

Before Execution

00AA0001F

B2 B1 B0

After Execution

00AA0000F

B2 B1 B0

0302SR 0305SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-166 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

LSR.W Logical Shift Right Word LSR.W
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

LSR.W EEE 1 1 1-bit logical shift right word

15 12 11 8 7 4 3 0

LSR.W EEE 0 1 1 1 0 0 E E E 1 1 1 1 0 1 1
Freescale Semiconductor Instruction Set Details A-167

LSR16 Logical Shift Right 16 Bits LSR16
Operation: Assembler Syntax:

S >> 16 → D (no parallel move) LSR16 S,D (no parallel move)

Description: Logically shift the source operand to the right by 16 bits, and store the result in the destination (D),
zero extending to the left. This operation effectively places the MSP of the source register into the LSP
of the destination register, propagating zero bits through the MSP and the extension register (for accu-
mulator destinations). If the source is an accumulator, both the extension register and MSP are shifted.
When the destination operand is a 16-bit register, the MSP of an accumulator or Y register is written
to it. If both the source and destination are 16-bit registers, the destination is cleared. The result is not
affected by the state of the saturation bit (SA).

Usage: This instruction can be used to cast an unsigned integer to a long value.

Example:

LSR16 Y,A; ; shift MSP of Y into A0

Explanation of Example:
Prior to execution, the Y register contains the value to be shifted ($A1A2:A3A4). The contents of the
destination register are not important prior to execution because they have no effect on the calculated
value. The LSR16 instruction logically shifts the value $A1A2:A3A4 by 16 bits to the right, zero ex-
tends to a full 36 bits, and places the result in the destination register A.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

LSR16 FFF,FFF 1 1 Logical shift right the first operand by 16 bits, placing
result in the destination operand (new bits zeroed)

FFF 1 1 An alternate syntax for the preceding instruction if the
source and the destination are the same

Before Execution

345634560

A2 A1 A0

After Execution

A1A200000

A2 A1 A0

A3A4A1A2

Y1 Y0

A3A4A1A2

Y1 Y0

15 12 11 8 7 4 3 0

LSR16 FFF,FFF 0 1 1 1 1 1 F F F b b b 0 1 1 1
A-168 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

LSRA Logical Shift Right AGU Register LSRA
Operation: Assembler Syntax:

D >> 1 → D (no parallel move) LSRA D (no parallel move)

Description: Logically shift the address register operand 1 bit to the right, and store the result back in the register.

Example:

LSRA R0 ; logically shift R0 to the right 1 bit

Explanation of Example:
Prior to execution, the R0 register contains $A0A0A0. Execution of the LSRA R0 instruction shifts
the value in the R0 register 1 bit to the right, and stores the result ($505050) back in R0.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

LSRA Rn 1 1 Logical shift right AGU register by 1 bit

Before Execution After Execution

A0A0A0R0 505050R0

15 12 11 8 7 4 3 0

LSRA Rn 1 0 0 0 0 1 0 1 0 0 1 1 R 1 R R
Freescale Semiconductor Instruction Set Details A-169

LSRAC Logical Shift Right with Accumulate LSRAC
Operation: Assembler Syntax:

(S1 >> S2) + D →D (no parallel move) LSRAC S1,S2,D (no parallel move)

Description: Logically shift the first 16-bit source operand (S1) to the right by the value contained in the lowest
4 bits of the second source operand (S2), and accumulate the result with the value in the destination
(D). Operand S1 is internally zero extended and concatenated with 16 zero bits to form a 36-bit value
before the shift operation. The result is not affected by the state of the saturation bit (SA).

Usage: This instruction is used for multi-precision logical right shifts.

Example:

LSRAC Y1,X0,A ; logical right shift Y1 by 4 and
; accumulate in A

Explanation of Example:
Prior to execution, the Y1 register contains the value to be shifted ($C003), the lowest 4 bits of the X0
register contain the amount by which to shift ($4), and the destination accumulator contains
$0:0000:0099. The LSRAC instruction logically shifts the value $C003 by 4 bits to the right and ac-
cumulates this result with the value that is already in accumulator A.

Condition Codes Affected:

N — Set if bit 35 of accumulator result is set
Z — Set if accumulator result equals zero

Note: If the SA bit is set, the N bit is equal to bit 31 of the result; if SA is cleared, N is equal to bit 35 of the
result.

Before Execution

009900000

A2 A1 A0

00F4X0

After Execution

30990C000

A2 A1 A0

00F4X0

0300SR 0300SR

8000C003

Y1 Y0

8000C003

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-170 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

LSRAC Logical Shift Right with Accumulate LSRAC
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

LSRAC Y1,X0,FF
Y0,X0,FF
Y1,Y0,FF
Y0,Y0,FF
A1,Y0,FF
B1,Y1,FF
C1,Y0,FF
C1,Y1,FF

1 1 Logical word shift right with accumulation

15 12 11 8 7 4 3 0

LSRAC Q1,Q2,FF 0 1 1 1 0 1 0 F F Q Q Q 0 1 1 0
Freescale Semiconductor Instruction Set Details A-171

LSRR.L Multi-Bit Logical Right Shift Long LSRR.L
Operation: Assembler Syntax:

If S[15] = 0 or S is not a register,
D >> S → D (no parallel move) LSRR.L S,D (no parallel move)
Else
D << –S → D (no parallel move) LSRR.L S,D (no parallel move)

Description: Logically shift the second operand to the right by the value contained in the 5 lowest bits of the first
operand (or by an immediate integer), and store the result back in the destination (D). The shift count
can be a 5-bit positive immediate integer or the value contained in X0, Y0, Y1, or the MSP of an ac-
cumulator. For 36- and 32-bit destinations, the MSP:LSP are shifted, with zero extension from bit 31
(the FF2 portion is ignored). If the shift count in a register is negative (bit 15 is set), the direction of
the shift is reversed. The result is not affected by the state of the saturation bit (SA).

Example:

LSRR.L Y1,A ; left shift 32-bit A10 by Y1

Explanation of Example:
Prior to execution, the A accumulator contains the value to be shifted, $F:F123:3456, and the Y1 reg-
ister contains the amount by which to shift ($10 = 16). The LSRR.L instruction logically shifts the des-
tination accumulator 16 bits to the right and places the result back in A.

Condition Codes Affected:

N — Set if the MSB of the result is set
Z — Set if the result equals zero

Note: Condition code results are set according to the size of the destination operand.

Before Execution

3456F123F

A2 A1 A0

After Execution

F12300000

A2 A1 A0

0300SR 0300SR

80000010

Y1 Y0

80000010

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-172 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

LSRR.L Multi-Bit Logical Right Shift Long LSRR.L
Instruction Fields:

Instruction Opcodes:

Timing: 2 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

LSRR.L #<0–31>,fff 2 1 Logical shift right by a 5-bit positive immediate integer

EEE,FFF 2 1 Bi-directional logical shift destination by value in the first
operand: positive –> right shift

15 12 11 8 7 4 3 0

LSRR.L #<0–31>,fff 0 1 0 0 1 1 f f f 0 1 B B B B B

15 12 11 8 7 4 3 0

LSRR.L EEE,FFF 0 1 1 1 1 1 F F F a a a 1 1 0 1
Freescale Semiconductor Instruction Set Details A-173

LSRR.W Multi-Bit Logical Right Shift Word LSRR.W
Operation: Assembler Syntax:

D >> S → D (no parallel move) LSRR.W S,D (no parallel move)
S1 >> S2 → D (no parallel move) LSRR.W S1,S2,D (no parallel move)

Description: This instruction can have two or three operands. Logically shift the source operand S1 or D to the right
by the value contained in the lowest 4 bits of either S2 or S, respectively (or by an immediate integer),
and store the result in the destination (D). The shift count can be a 4-bit positive integer, a value in a
16-bit register, or the MSP of an accumulator. For 36- and 32-bit destinations, only the MSP is shifted
and the LSP is cleared, with zero extension from bit 31 (the FF2 portion is ignored). The result is not
affected by the state of the saturation bit (SA).

Example 1:
LSRR.W Y1,Y0,A ; logical right shift of 16-bit Y1 by

; least 4 bits of Y0

Explanation of Example:
Prior to execution, the Y1 register contains the value to be shifted ($AAAA), and the Y0 register con-
tains the amount by which to shift (least 4 bits of $FFF1 = 1). The contents of the destination register
are not important prior to execution because they have no effect on the calculated value. The LSRR.W
instruction logically shifts the value $AAAA by 1 bit to the right and places the result in the destination
register A (the LSP is cleared).

Example 2:
LSRR.W Y1,A ; logical right shift of 16-bit A1 by

; least 4 bits of Y1

Explanation of Example:
Prior to execution, A1 contains the value that is to be shifted ($AAAA), and the Y1 register contains
the amount by which to shift ($1). The LSRR.W instruction logically shifts the zero-extended value
$AAAA by 1 bit to the right and places the result in the destination register A (the LSP is cleared).

Before Execution

345634560

A2 A1 A0

After Execution

000055550

A2 A1 A0

0300SR 0300SR

FFF1AAAA

Y1 Y0

FFF1AAAA

Y1 Y0

Before Execution

4567AAAAF

A2 A1 A0

After Execution

000055550

A2 A1 A0

0300SR 0300SR

000F0001

Y1 Y0

000F0001

Y1 Y0
A-174 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

LSRR.W Multi-Bit Logical Right Shift Word LSRR.W
Condition Codes Affected:

N — Set if MSB of result is set
Z — Set if accumulator result equals zero

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

LSRR.W #<0–15>,FFF 1 1 Logical shift right by a 4-bit positive immediate integer
(sign extends into FF2)

EEE,FFF 1 1 Logical shift right destination by value specified in 4
LSBs of the first operand (sign extends into FF2)

Y1,X0,FFF
Y0,X0,FFF
Y1,Y0,FFF
Y0,Y0,FFF
A1,Y0,FFF
B1,Y1,FFF
C1,Y0,FFF
C1,Y1,FFF

1 1 Logical shift right the first operand by value specified in
4 LSBs of the second operand; places result in FFF,
sign extends into FF2

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 12 11 8 7 4 3 0

LSRR.W #<0–15>,FFF 0 1 0 1 1 1 F F F 0 1 0 B B B B

15 12 11 8 7 4 3 0

LSRR.W EEE,FFF 0 1 1 1 1 1 F F F a a a 1 0 0 1

15 12 11 8 7 4 3 0

LSRR.W Q1,Q2,FFF 0 1 1 1 0 1 F F F Q Q Q 0 0 1 0
Freescale Semiconductor Instruction Set Details A-175

MAC Multiply-Accumulate MAC
Operation: Assembler Syntax:

D + (S1 × S2) → D (no parallel move) MAC (+)S1,S2,D (no parallel move)
D + (S1 × S2) → D (one parallel move) MAC (+)S1,S2,D (one parallel move)
D + (S1 × S2) → D (two parallel reads) MAC S1,S2,D (two parallel reads)

Description: Multiply the two signed 16-bit source operands, and add or subtract the 32-bit fractional product to or
from the destination (D). Both source operands must be located in the FF1 portion of an accumulator
or in X0, Y0, or Y1. The fractional product is first sign extended before the 36-bit addition (or subtrac-
tion) is performed. If the destination is one of the 16-bit registers, it is first sign extended internally and
concatenated with 16 zero bits to form a 36-bit operand before the operation to the fractional product;
the high-order 16 bits of the result are then stored.

Usage: This instruction is used for the multiplication and accumulation of fractional data or integer data when
a full 32-bit product is required (see Section 5.3.3, “Multiplication,” on page 5-18). When the destina-
tion is a 16-bit register, this instruction is useful only for fractional data.

Example:

MAC Y0,X0,A X:(R0)+,Y0 X:(R3)+,X0 ; fractional MAC, two reads

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $0280 (or fractional value 0.019531250),
the 16-bit Y0 register contains the value $0200 (or fractional value 0.015625), and the 36-bit A accu-
mulator contains the value $0:0000:8000 (or fractional value 0.000015259). Execution of the MAC
instruction multiplies the 16-bit signed value in the X0 register by the 16-bit signed value in Y0 (yield-
ing the fractional product result of $000A:0000 = 0.000305176), adds the resulting 32-bit product to
the 36-bit A accumulator, and stores the result ($0:000A:8000 = 0.00320435) back into the A accumu-
lator. In parallel, X0 and Y0 are updated with new values that are fetched from the data memory, and
the two address registers (R0 and R3) are post-incremented by one.

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the extension portion of accumulator result is in use
U — Set according to the standard definition of the U bit
N — Set if MSB of result is set
Z — Set if accumulator result equals zero
V — Set if overflow has occurred in accumulator result

Before Execution

800000000

A2 A1 A0

0280X0

After Execution

8000000A0

A2 A1 A0

0288X0

0300SR 0310SR

0200FF00

Y1 Y0

0300FF00

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-176 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MAC Multiply-Accumulate MAC
Instruction Fields:

Parallel Moves:

Parallel Dual Reads:

Operation Operands C W Comments

MAC (±)FFF1,FFF1,FFF 1 1 Fractional multiply-accumulate; multiplication
result optionally negated before accumulation.

Data ALU Operation Parallel Memory Move

Operation Operands Source Destination1

1.The case where the destination of the data ALU operation is the same register as the destination of the par-
allel read operation is not allowed. Memory writes are allowed in this case.

MAC2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

Y1,X0,F
Y0,X0,F
Y1,Y0,F
Y0,Y0,F

A1,Y0,F
B1,Y1,F
C1,Y0,F
C1,Y1,F

–C1,Y0,F
–C1,Y1,F

X:(Rj)+
X:(Rj)+N

X0
Y1
Y0
A
B
C
A1
B1

X0
Y1
Y0
A
B
C
A1
B1

X:(Rj)+
X:(Rj)+N

Data ALU Operation1

1.This instruction is not allowed when the XP bit in the OMR is set (that is, when the instructions are executing
from data memory).

First Memory Read Second Memory Read

Operation Operands Source 1 Destination 1 Source 2 Destination 2

MAC2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

Y1,X0,F
Y1,Y0,F
Y0,X0,F
C1,Y0,F

X:(R0)+
X:(R0)+N
X:(R1)+

X:(R1)+N

Y0
Y1

X:(R3)+
X:(R3)–

X0

X:(R4)+
X:(R4)+N

Y0 X:(R3)+
X:(R3)+N3

X0

X:(R0)+
X:(R0)+N
X:(R4)+

X:(R4)+N

Y1 X:(R3)+
X:(R3)+N3

C

Freescale Semiconductor Instruction Set Details A-177

MAC Multiply-Accumulate MAC
Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

15 12 11 8 7 4 3 0

MAC –C1,Q2,F GGG,X:<ea_m> 0 0 0 1 0 G G G F Q Q Q 1 m R R

15 12 11 8 7 4 3 0

MAC –C1,Q2,F X:<ea_m>,GGG 0 0 1 1 0 G G G F Q Q Q 1 m R R

15 12 11 8 7 4 3 0

MAC FFF1,FFF1,FFF 0 1 1 0 1 0 F F F J J J J J 0 0

15 12 11 8 7 4 3 0

MAC Q1,Q2,F GGG,X:<ea_m> 0 0 0 0 1 G G G F Q Q Q 1 m R R

15 12 11 8 7 4 3 0

MAC Q1,Q2,F X:<ea_m>,GGG 0 0 1 0 1 G G G F Q Q Q 1 m R R

15 12 11 8 7 4 3 0

MAC Q3,Q4,F X:<ea_m>,reg1
 X:<ea_v>,reg2

0 1 1 0 0 1 v v F v Q Q 1 m 0 v

15 12 11 8 7 4 3 0

MAC –FFF1,FFF1,FFF 0 1 1 0 1 1 F F F J J J J J 1 0
A-178 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MACR Multiply-Accumulate and Round MACR
Operation: Assembler Syntax:

D + (S1 × S2) + r → D (no parallel move) MACR (+)S1,S2,D (no parallel move)
D + (S1 × S2) + r → D (one parallel move) MACR S1,S2,D (one parallel move)
D + (S1 × S2) + r → D (two parallel reads) MACR S1,S2,D (two parallel reads)

Description: Multiply the two signed 16-bit source operands, add or subtract the 32-bit fractional product to or from
the third operand, and round and store the result in the destination (D). Both source operands must be
located in the FF1 portion of an accumulator or in X0, Y0, or Y1. The fractional product is first sign
extended before the 36-bit addition is performed, followed by the rounding operation. If the destination
is one of the 16-bit registers, it is first sign extended internally and concatenated with 16 zero bits to
form a 36-bit operand before being added to the fractional product. The addition is then followed by
the rounding operation, and the high-order 16 bits of the result are then stored. This instruction uses
the rounding technique that is selected by the R bit in the OMR. When the R bit is cleared (default
mode), convergent rounding is selected; when the R bit is set, two’s-complement rounding is selected.
Refer to Section 5.9, “Rounding,” on page 5-43 for more information about the rounding modes. Note
that the rounding operation always zeros the LSP of the result if the destination (D) is an accumulator
or the Y register.

Usage: This instruction is used for the multiplication, accumulation, and rounding of fractional data.

Example:

MACR Y0,X0,A X:(R0)+,Y0 X:(R3)+,X0 ; multiply-accumulate
; fractional with rounding

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $0280 (or fractional value 0.019531250),
the 16-bit Y0 register contains the value $0200 (or fractional value 0.015625), and the 36-bit A accu-
mulator contains the value $0:0000:8000 (or fractional value 0.000015259). Execution of the MACR
instruction multiplies the 16-bit signed value in the X0 register by the 16-bit signed value in Y0 (yield-
ing the fractional product result of $000A:0000 = 0.000305176), adds the resulting 32-bit product to
the 36-bit A accumulator ($0:000A:8000 = 0.00320435), rounds the result, and stores the rounded re-
sult ($0:000A:0000 = 0.000305176) back into the A accumulator. In parallel, X0 and Y0 are updated
with new values that are fetched from the data memory, and the two address registers (R0 and R3) are
post-incremented by one. In this example, the default rounding technique (convergent rounding) is per-
formed (bit R in the OMR is cleared). If two’s-complement rounding is utilized (R bit is set), the result
in accumulator A is $0:000B:0000 = 0.000335693.

Before Execution

800000000

A2 A1 A0

0280X0

After Execution

0000000A0

A2 A1 A0

0288X0

0300SR 0310SR

0200FF00

Y1 Y0

0300FF00

Y1 Y0
Freescale Semiconductor Instruction Set Details A-179

MACR Multiply-Accumulate and Round MACR
Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the extended portion of accumulator result is in use
U — Set according to the standard definition of the U bit
N — Set if MSB of result is set
Z — Set if result equals zero
V — Set if overflow has occurred in result

Instruction Fields:

Parallel Moves:

Operation Operands C W Comments

MACR (±)FFF1,FFF1,FFF 1 1 Fractional MAC with round; multiplication result
optionally negated before addition.

Data ALU Operation Parallel Memory Move

Operation Operands Source Destination1

1.The case where the destination of the data ALU operation is the same register as the destination of the par-
allel read operation is not allowed. Memory writes are allowed in this case.

MACR2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

Y1,X0,F
Y0,X0,F
Y1,Y0,F
Y0,Y0,F

A1,Y0,F
B1,Y1,F
C1,Y0,F
C1,Y1,F

X:(Rj)+
X:(Rj)+N

X0
Y1
Y0
A
B
C
A1
B1

X0
Y1
Y0
A
B
C
A1
B1

X:(Rj)+
X:(Rj)+N

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-180 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MACR Multiply-Accumulate and Round MACR
Parallel Dual Reads:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Data ALU Operation1

1.This instruction is not allowed when the XP bit in the OMR is set (that is, when the instructions are executing
from data memory).

First Memory Read Second Memory Read

Operation Operands Source 1 Destination 1 Source 2 Destination 2

MACR2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

Y1,X0,F
Y1,Y0,F
Y0,X0,F
C1,Y0,F

X:(R0)+
X:(R0)+N
X:(R1)+

X:(R1)+N

Y0
Y1

X:(R3)+
X:(R3)–

X0

X:(R4)+
X:(R4)+N

Y0 X:(R3)+
X:(R3)+N3

X0

X:(R0)+
X:(R0)+N
X:(R4)+

X:(R4)+N

Y1 X:(R3)+
X:(R3)+N3

C

15 12 11 8 7 4 3 0

MACR FFF1,FFF1,FFF 0 1 1 0 1 0 F F F J J J J J 1 0

15 12 11 8 7 4 3 0

MACR Q1,Q2,F GGG,X:<ea_m> 0 0 0 1 1 G G G F Q Q Q 1 m R R

15 12 11 8 7 4 3 0

MACR Q1,Q2,F X:<ea_m>,GGG 0 0 1 1 1 G G G F Q Q Q 1 m R R

15 12 11 8 7 4 3 0

MACR Q3,Q4,F X:<ea_m>,reg1
X:<ea_v>,reg2

0 1 1 1 0 1 v v F v Q Q 1 m 0 v

15 12 11 8 7 4 3 0

MACR –FFF1,FFF1,FFF 0 1 1 0 1 1 F F F J J J J J 1 1
Freescale Semiconductor Instruction Set Details A-181

MACSU Multiply-Accumulate Signed × Unsigned MACSU
Operation: Assembler Syntax:

D + (S1 × S2) → D (S1 signed, S2 unsigned) MACSU S1,S2,D (no parallel move)

Description: Multiply one signed 16-bit source operand by one unsigned 16-bit operand, and add the 32-bit frac-
tional product to the destination (D). The order of the registers is important. The first source register
(S1) must contain the signed value, and the second source (S2) must contain the unsigned value to pro-
duce correct fractional results. The fractional product is first sign extended before the 36-bit addition
is performed. If the destination is one of the 16-bit registers, only the high-order 16 bits of the fractional
result are stored. The result is not affected by the state of the saturation bit (SA). Note that for 16-bit
destinations, the sign bit may be lost for large fractional magnitudes.

Usage: In addition to single-precision multiplication of a signed-times-unsigned value and accumulation, this
instruction is used for multi-precision multiplications, as shown in Section 5.5, “Extended- and
Multi-Precision Operations,” on page 5-29.

Example:

MACSU Y1,B1,A ; multiply signed Y1 to unsigned B1 and
; accumulate in A

Explanation of Example:
Prior to execution, the 16-bit Y1 register contains the (signed) negative value $FFF4, and the 16-bit
B1 register contains the (unsigned) positive value $0002. Execution of the MACSU instruction multi-
plies the 16-bit signed value in the Y1 register by the 16-bit unsigned value in B1 (yielding the frac-
tional product result of $FFFF:FFD0), then adds the sign extended result to the A accumulator, and
stores the signed result ($F:FFFF:FFF0) back into the A accumulator.

Condition Codes Affected:

L — Set if overflow has occurred in result
E — Set if the extended portion of the result is in use
U — Set according to the standard definition of the U bit
N — Set if MSB of result is set
Z — Set if result equals zero
V — Set if overflow has occurred in result

Before Execution

002000000

A2 A1 A0

0300SR

After Execution

FFF0FFFFF

A2 A1 A0

0318SR

345600020

B2 B1 B0

345600020

B2 B1 B0

8000FFF4

Y1 Y0

8000FFF4

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-182 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MACSU Multiply-Accumulate Signed × Unsigned MACSU
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

MACSU X0,Y1,EEE
X0,Y0,EEE
Y0,Y1,EEE
Y0,Y0,EEE
Y0,A1,EEE
Y1,B1,EEE
Y0,C1,EEE
Y1,C1,EEE

1 1 16 × 16 => 32-bit unsigned/signed fractional MAC.

The first operand is treated as signed and the second as
unsigned.

15 12 11 8 7 4 3 0

MACSU Q2,Q1,EEE 0 1 1 1 0 1 E E E Q Q Q 1 1 1 0
Freescale Semiconductor Instruction Set Details A-183

MOVE.B Move Byte (Word Pointer) MOVE.B
Operation: Assembler Syntax:

S → D (no parallel move) MOVE.B S,D (no parallel move)

Description: Move an 8-bit value from a register to memory or from memory to a register. Register-indirect memory
locations are specified with word pointers, offsets are specified as byte offsets, and absolute addresses
are specified as byte addresses. Register operands are affected as follows:

– If the source operand is a 16-bit register, the lower 8 bits are moved.
– If the destination operand is a 16-bit register, the lower 8 bits are written and the upper 8 bits are

filled with sign extension.
– If the source operand is an accumulator, the lower 8 bits of FF1 are moved.
– If the destination operand is an accumulator, the lower 8 bits of FF1 are written, FF2 and the upper

8 bits of FF1 are filled with sign extension, and FF0 is zero filled.
– If the destination operand is the Y register, the lower 8 bits of Y1 are written, the upper 8 bits of Y1

are filled with sign extension, and Y0 is zero filled.
Example 1:

MOVE.B X:(R0+$21),A ; move byte from memory into A

Explanation of Example:
Prior to the memory move, the accumulator register A contains the value $0:6677:8899. After execu-
tion of the MOVE.B X:(R0+$21),A instruction, the FF1 portion of A is updated with the value in
memory that is pointed to by the word pointer R0, with a byte offset of $21, which results in the upper
byte of the word memory X:$4454. The results is sign extended through bit 35 of A. The FF0 portion
of A is filled with zero. The content of the A accumulator becomes $F:FF90:0000.

Example 2:
MOVE.B X:(R0+$20),X:$2223 ; move byte from memory into memory

Explanation of Example:
Prior to execution, the word location X:$1111 contains the value $3333. After execution of the
MOVE.B X:(R0+$20),X:$2223 instruction, the lower byte of the word memory location pointed
to by (R0+$20), which is location X:$4454, is written to the upper byte of the word memory location
X:$1111, which is specified as X:$2223 in byte address. The value at X:$1111 becomes $6033.

Before Execution After Execution

004444R0 004444R0

X:$4454 9060 X:$4454 9060

889966770

A2 A1 A0

0000FF90F

A2 A1 A0

Before Execution After Execution

X:$1111 3333 X:$1111 6033

004444R0 004444R0

X:$4454 9060 X:$4454 9060
A-184 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MOVE.B Move Byte (Word Pointer) MOVE.B
Condition Codes Affected:

The condition codes are not affected by this instruction.

Instruction Fields:

Instruction Opcodes:

Operation Source Destination C W Comments

MOVE.B X:(Rn+xxxx) HHH 2 2 Signed 16-bit offset

X:(Rn+xxxxxx) HHH 3 3 24-bit offset

X:(SP) HHH 1 1 Pointer is SP

HHH X:(RRR+x) 2 1 x: offset ranging from 0 to 7

HHH X:(Rn+xxxx) 2 2 Signed 16-bit offset

HHH X:(Rn+xxxxxx) 3 3 24-bit offset

HHH X:(SP–x) 2 1 x: offset ranging from 1 to 8

HHH X:(SP) 1 1 Pointer is SP

X:(Rn+xxxx) X:xxxx 3 3 Signed 16-bit offset

Notes: • Each absolute address operand is specified as a byte address. In this address, all bits except the LSB
select the appropriate word location in memory, and the LSB selects the upper or lower byte of that word.

• Pointer Rn is a word pointer.
• Offsets x, xxxx, and xxxxxx are byte offsets.

15 12 11 8 7 4 3 0

MOVE.B HHH,X:(RRR+x) 1 0 0 1 1 h h h 0 0 i i N i N N

15 12 11 8 7 4 3 0

MOVE.B HHH,X:(SP–x) 1 0 0 1 1 h h h 0 0 i i 1 i 1 1

15 12 11 8 7 4 3 0

MOVE.B HHH,X:(Rn+xxxx) 1 1 0 1 0 h h h 1 1 1 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.B HHH,X:(Rn+xxxxxx) 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 0 h h h 1 1 1 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.B HHH,X:(SP) 1 1 0 1 0 h h h 1 0 1 1 1 1 1 1

15 12 11 8 7 4 3 0

MOVE.B X:(Rn+xxxx),HHH 1 1 1 1 0 h h h 1 1 1 0 R 0 R R

AAAAAAAAAAAAAAAA
Freescale Semiconductor Instruction Set Details A-185

MOVE.B Move Byte (Word Pointer) MOVE.B
Instruction Opcodes:(continued)

Timing: 1–3 oscillator clock cycle(s)

Memory: 1–3 program word(s)

15 12 11 8 7 4 3 0

MOVE.B X:(Rn+xxxx),X:xxxx 1 1 1 1 0 1 1 0 1 1 1 0 R 0 R R

AAAAAAAAAAAAAAAA.s

AAAAAAAAAAAAAAAA.d

15 12 11 8 7 4 3 0

MOVE.B X:(Rn+xxxx),Y 1 1 0 1 0 1 1 0 1 1 1 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.B X:(Rn+xxxxxx),HHH 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 1 0 h h h 1 1 1 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.B X:(Rn+xxxxxx),Y 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 0 1 1 0 1 1 1 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.B X:(SP),HHH 1 1 1 1 0 h h h 1 0 1 1 1 1 1 1

15 12 11 8 7 4 3 0

MOVE.B X:(SP),Y 1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1
A-186 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MOVE.BP Move Byte (Byte Pointer) MOVE.BP
Operation: Assembler Syntax:

S → D (no parallel move) MOVE.BP S,D (no parallel move)

Description: Move an 8-bit value from a register to memory, from memory to a register, or between two memory
locations. Register-indirect memory locations are specified with byte pointers, offsets are specified as
byte offsets, and absolute addresses are specified as byte addresses. Register operands are affected as
follows:

– If the source operand is a 16-bit register, the lower 8 bits are moved.
– If the destination operand is a 16-bit register, the lower 8 bits are written and the upper 8 bits are

filled with sign extension.
– If the source operand is an accumulator, the lower 8 bits of FF1 are moved.
– If the destination operand is an accumulator, the lower 8 bits of FF1 are written, FF2 and the upper

8 bits of FF1 are filled with sign extension, and FF0 is zero filled.
– If the destination operand is the Y register, the lower 8 bits of Y1 are written, the upper 8 bits of Y1

are filled with sign extension, and Y0 is zero filled.
Example 1:

MOVE.BP X:(R0)+,A; move byte into A, update R0

Explanation of Example:
Prior to the memory move, the accumulator register A contains the value $0:6677:8888. After execu-
tion of the MOVE.BP X:(R0)+,A instruction, the lower 8 bits of A1 are updated with the value in
memory pointed to by the byte pointer R0, the result is sign extended through bit 35 of A, and the FF0
portion is filled with zero. The value in A becomes $F:FF96:0000. The R0 pointer is then incremented
by one.

Example 2:
MOVE.BP X0,X:(R0+$21) ; move byte into data memory location

Explanation of Example:
Prior to the memory move, the word memory location X:$2232 contains the value $9060. After exe-
cution of the MOVE.BP X0,X:(R0+$21) instruction, the lower 8 bits of X0 are written to the upper
byte of the word memory location X:$2232. This memory location is the result of the effective address
(R0+$21) in bytes.

Before Execution After Execution

X:$2222 6996 X:$2222 6996

888866770

A2 A1 A0

0000FF96F

A2 A1 A0

004444R0 004445R0

Before Execution After Execution

X:$2232 9060 X:$2232 AA60

004444R0 004444R0

X0 77AA X0 77AA
Freescale Semiconductor Instruction Set Details A-187

MOVE.BP Move Byte (Byte Pointer) MOVE.BP
Condition Codes Affected:

The condition codes are not affected by this instruction.

Instruction Fields:

Operation Source Destination C W Comments

MOVE.BP X:(RRR)
X:(RRR)+
X:(RRR)–

HHH 1 1 Move signed byte from memory

X:(RRR+N) HHH 2 1 Address = Rn+N

X:(RRR+xxxx) HHH 2 2 Unsigned 16-bit offset

X:(RRR+xxxxxx) HHH 3 3 24-bit offset

X:xxxx HHH 2 2 Unsigned 16-bit address

X:xxxxxx HHH 3 3 24-bit address

HHH X:(RRR)
X:(RRR)+
X:(RRR)–

1 1 Move signed byte to memory

HHH X:(RRR+N) 2 1 Address = Rn+N

HHH X:(RRR+xxxx) 2 2 Unsigned 16-bit offset

HHH X:(RRR+xxxxxx) 3 3 24-bit offset

HHH X:xxxx 2 2 Unsigned 16-bit address

HHH X:xxxxxx 3 3 24-bit address

X:(RRR)
X:(RRR)+
X:(RRR)–

X:xxxx 2 2 Move byte from one memory location to
another; RRR used as a byte pointer

X:(RRR+N) X:xxxx 3 2 RRR used as a byte pointer

X:(RRR+xxxx) X:xxxx 3 3 Unsigned 16-bit offset; RRR used as a byte
pointer

X:xxxx X:xxxx 3 3 16-bit absolute address

Notes: • Each absolute address operand is specified as a byte address. In this address, all bits except the LSB
select the appropriate word location in memory, and the LSB selects the upper or lower byte of that word.

• Pointer RRR is a byte pointer.
• Offsets xxxx and xxxxxx are byte offsets.
A-188 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MOVE.BP Move Byte (Byte Pointer) MOVE.BP
Instruction Opcodes:

15 12 11 8 7 4 3 0

MOVE.BP HHH,X:(RRR+xxxx) 1 1 0 1 0 h h h 1 1 1 0 N 1 N N

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.BP HHH,X:(RRR+xxxxxx) 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 0 h h h 1 1 1 0 N 1 N N

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.BP HHH,X:<ea_MM> 1 1 0 1 0 h h h 1 0 1 M N M N N

15 12 11 8 7 4 3 0

MOVE.BP HHH,X:xxxx 1 1 0 1 0 h h h 1 1 1 1 1 1 0 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.BP HHH,X:xxxxxx 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 0 h h h 1 1 1 1 1 1 0 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.BP X:(RRR+xxxx),HHH 1 1 1 1 0 h h h 1 1 1 0 N 1 N N

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.BP X:(RRR+xxxx),X:xxxx 1 1 1 1 0 1 1 0 1 1 1 0 N 1 N N

AAAAAAAAAAAAAAAA.s

AAAAAAAAAAAAAAAA.d

15 12 11 8 7 4 3 0

MOVE.BP X:(RRR+xxxx),Y 1 1 0 1 0 1 1 0 1 1 1 0 N 1 N N

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.BP X:(RRR+xxxxxx),HHH 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 1 0 h h h 1 1 1 0 N 1 N N

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.BP X:(RRR+xxxxxx),Y 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 0 1 1 0 1 1 1 0 N 1 N N

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.BP X:<ea_MM>,HHH 1 1 1 1 0 h h h 1 0 1 M N M N N
Freescale Semiconductor Instruction Set Details A-189

MOVE.BP Move Byte (Byte Pointer) MOVE.BP
Instruction Opcodes:(continued)

Timing: 1–3 oscillator clock cycles

Memory: 1–3 program words

15 12 11 8 7 4 3 0

MOVE.BP X:<ea_MM>,X:xxxx 1 1 1 1 0 1 1 0 1 0 1 M N M N N

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.BP X:<ea_MM>,Y 1 1 0 1 0 1 1 0 1 0 1 M N M N N

15 12 11 8 7 4 3 0

MOVE.BP X:xxxx,HHH 1 1 1 1 0 h h h 1 1 1 1 1 1 0 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.BP X:xxxx,X:xxxx 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1

AAAAAAAAAAAAAAAA.s

AAAAAAAAAAAAAAAA.d

15 12 11 8 7 4 3 0

MOVE.BP X:xxxx,Y 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.BP X:xxxxxx,HHH 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 1 0 h h h 1 1 1 1 1 1 0 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.BP X:xxxxxx,Y 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 1

AAAAAAAAAAAAAAAA
A-190 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MOVE.L Move Long MOVE.L
Operation: Assembler Syntax:

S → D (no parallel move) MOVE.L S,D (no parallel move)

Description: Move a 32-bit value between a register and memory, between two memory locations, or between two
registers, or load a memory or a register with an immediate value. Register-indirect memory locations
are specified with word pointers, offsets of constants are specified as word offsets, an offset of the N
register is specified as a long offset, and absolute addresses are specified as word addresses. The ad-
dress of the data memory location to be accessed must be an even word address.

When a memory location is accessed using MOVE.L, two consecutive locations—an even address lo-
cation and the next higher odd address location—are accessed for both reading and writing. If pointer
RRR is used, it points to the even-address location. If pointer SP is used, it points to the odd-address
location.

Register operands are affected as follows:

– When an accumulator is a source, the value of the FF1 and FF0 portions are loaded into the
destination.

– When any other register (32-bit or smaller) is a source, the value of the entire register is loaded into
the destination.

– When an accumulator is a destination, the FF1 and FF0 portions are written with the source value
and sign extended through bit 35.

– When an RRR register is a destination, the entire register is filled with the source value and sign
extended if the source is a sign immediate data (otherwise zero extended).

– When any other register (32-bit or smaller) is a destination, the entire register is filled with the
source value.

Example 1:
MOVE.L X:(SP-$2),Y ; move long word from stack into Y

Explanation of Example:
Prior to the memory move, the Y register contains the value $1234:5678. After execution of the
MOVE.L X:(SP),Y instruction, Y is updated with the value in memory (on the stack) that is pointed
to by the SP register, with a long-word offset of two. Y becomes $3333:2222, and SP remains un-
changed. Note that since this value is a reference to a long word on the stack, an odd word address is
specified and points to the upper word of the long. The base address of the long word retrieved is
$001112.

Before Execution After Execution

X:$1113 3333 X:$1113 3333

X:$1112 2222 X:$1112 2222

001115SP 001115SP

56781234

Y1 Y0

22223333

Y1 Y0
Freescale Semiconductor Instruction Set Details A-191

MOVE.L Move Long MOVE.L
Example 2:

MOVE.L A10,X:(R3+$1000) ; move long word to stack

Explanation of Example:
Prior to the memory move, the memory locations X:$5444 and X:$5445 contain the values
$3333:2222, respectively. After execution of the MOVE.L instruction, location X:$5444 is updated
with the value in the FF0 portion of accumulator A, and X:$5445 is updated with the value in the FF1
portion of accumulator A. These memory locations are pointed to by (R3+$1000). The final result is
that X:$5444 contains $4321 and X:$5445 contains $8765.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Before Execution After Execution

X:$5444 3333 X:$5444 4321

X:$5445 2222 X:$5445 8765

004444R3 004444R3

43218765F

A2 A1 A0

43218765F

A2 A1 A0
A-192 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MOVE.L Move Long MOVE.L
Instruction Fields:

Operation Source Destination C W Comments

MOVE.L X:(Rn)
X:(Rn)+
X:(Rn)–

HHHH.L 1 1 Move signed 32-bit long word to or from memory.

X:(SP)– dddd.L 1 1 Pop 32 bits from stack (does not modify bits 14–10 in SR).

X:(Rn+N) HHHH.L 2 1 Address = Rn+N.

X:(Rn+xxxx) HHHH.L 2 2 Signed 16-bit offset.

X:(Rn+xxxxxx) HHHH.L 3 3 24-bit offset.

X:(SP–xx) HHHH.L 2 1 Unsigned 6-bit offset left shifted 1 bit.

X:xxxx HHHH.L 2 2 Unsigned 16-bit address.

X:xxxxxx HHHH.L 3 3 24-bit address.

HHHH.L X:(Rn)
X:(Rn)+
X:(Rn)–

1 1 Move signed 32-bit long word to memory.
Note that Rn includes SP.

dddd.L X:(SP)+ 1 1 Push 32 bits onto stack.
SP not permitted in dddd.L.

HHHH.L X:(Rn+N) 2 1 Address = Rn+N.

HHHH.L X:(Rn+xxxx) 2 2 Signed 16-bit offset.

HHHH.L X:(Rn+xxxxxx) 3 3 24-bit offset.

HHHH.L X:(SP–xx) 2 1 Unsigned 6-bit offset left shifted 1 bit.

HHHH.L X:xxxx 2 2 Unsigned 16-bit address.

HHHH.L X:xxxxxx 3 3 24-bit address.

X:(SP–xx) X:xxxx 3 2 Move long from one memory location to another.

X:(Rn)
X:(Rn)+
X:(Rn)–

X:xxxx 2 2

X:(Rn+N) X:xxxx 3 2

X:(Rn+xxxx) X:xxxx 3 3 Signed 16-bit offset.

X:xxxx X:xxxx 3 3 16-bit absolute address.

#xxxx X:xxxx 3 3 Sign extend 16-bit value and move to 32-bit memory location.

#xxxxxxxx X:xxxx 4 4 Move to 32-bit memory location.

Notes: • The absolute address operand X:xxxx is specified as a word address.
• Pointer Rn is a word pointer.
• Offsets xx, xxxx, and xxxxxx are word offsets.
• N offsets are long offsets.
• RRR pointers must be even.
• SP pointers must be odd.
• Immediate offsets must be even.
• Absolute addresses must be even.
• Offset N can be even or odd since it is a long offset that will be shifted left by 1.
Freescale Semiconductor Instruction Set Details A-193

MOVE.L Move Long MOVE.L
Instruction Fields: (continued)

Operation Source Destination C W Comments

MOVE.L #<–16,15> HHH.L 1 1 4-bit integer data, sign extended to 36 bits.

#xxxx HHHH.L 2 2 Sign extend 16-bit immediate data to 36 bits when moving to
an accumulator; sign extend to 24 bits when moving to an AGU
register.
Use MOVEU.W to move unsigned 16-bit immediate data to the
AGU.

#xxxxxxxx HHH.L 3 3 Move signed 32-bit immediate data to a 32-bit accumulator.

#xxxxxx RRR 3 3 Move unsigned 24-bit immediate value to AGU register.

HHH.L RRR 1 1

RRR HHH.L 1 1 Move pointer register to data ALU register; zero extend the
24-bit value contained in the RRR register.

Notes: • The absolute address operand X:xxxx is specified as a word address.
• Pointer Rn is a word pointer.
• Offsets xx, xxxx, and xxxxxx are word offsets.
• N offsets are long offsets.
• RRR pointers must be even.
• SP pointers must be odd.
• Immediate offsets must be even.
• Absolute addresses must be even.
• Offset N can be even or odd since it is a long offset that will be shifted left by 1.
A-194 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MOVE.L Move Long MOVE.L
Instruction Opcodes:

15 12 11 8 7 4 3 0

MOVE.L #<–16,15>,HHH.L 1 1 1 0 1 1 1 h 0 h h B B B B B

15 12 11 8 7 4 3 0

MOVE.L #xxxx,HHH.L 1 1 1 0 0 1 0 0 0 0 0 0 0 h h h

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

MOVE.L #xxxx,RRR 1 1 1 0 0 1 0 0 0 0 0 0 1 S S S

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

MOVE.L #xxxx,X:xxxx 1 1 1 0 0 1 0 0 0 0 0 0 0 1 1 0

iiiiiiiiiiiiiiii

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.L #xxxxxx,RRR 1 1 1 0 0 1 0 0 0 0 0 1 1 S S S

iiiiiiiiiiiiiiii.lwr

iiiiiiiiiiiiiiii.upr

15 12 11 8 7 4 3 0

MOVE.L #xxxxxxxx,HHH.L 1 1 1 0 0 1 0 0 0 0 0 1 0 h h h

iiiiiiiiiiiiiiii.lwr

iiiiiiiiiiiiiiii.upr

15 12 11 8 7 4 3 0

MOVE.L #xxxxxxxx,X:xxxx 1 1 1 0 0 1 0 0 0 0 0 1 0 1 1 0

iiiiiiiiiiiiiiii.lwr

iiiiiiiiiiiiiiii.upr

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.L HHH.L,RRR 1 1 1 0 0 h h h 0 0 1 0 0 S S S

15 12 11 8 7 4 3 0

MOVE.L HHHH.L,X:(Rn+xxxx) 1 1 0 1 h h h h 0 1 1 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.L HHHH.L,X:(Rn+xxxxxx) 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 h h h h 0 1 1 0 R 0 R R

AAAAAAAAAAAAAAAA
Freescale Semiconductor Instruction Set Details A-195

MOVE.L Move Long MOVE.L
Instruction Opcodes:(continued)

15 12 11 8 7 4 3 0

MOVE.L HHHH.L,X:(SP–xx) 1 0 0 1 h h h h 1 1 a a a a a a

15 12 11 8 7 4 3 0

MOVE.L HHHH.L,X:<ea_MM> 1 1 0 1 h h h h 0 0 1 M R M R R

15 12 11 8 7 4 3 0

MOVE.L HHHH.L,X:xxxx 1 1 0 1 h h h h 0 1 1 1 1 1 0 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.L HHHH.L,X:xxxxxx 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 h h h h 0 1 1 1 1 1 0 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.L LA2,X:(SP)+ 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 1

15 12 11 8 7 4 3 0

MOVE.L RRR,HHH.L 1 1 1 0 0 h h h 0 1 1 0 0 S S S

15 12 11 8 7 4 3 0

MOVE.L X:(Rn+xxxx),HHHH.L 1 1 1 1 h h h h 0 1 1 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.L X:(Rn+xxxx),X:xxxx 1 1 1 1 0 1 1 0 0 1 1 0 R 0 R R

AAAAAAAAAAAAAAAA.s

AAAAAAAAAAAAAAAA.d

15 12 11 8 7 4 3 0

MOVE.L X:(Rn+xxxxxx),HHHH.L 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 1 h h h h 0 1 1 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.L X:(SP–xx),HHHH.L 1 0 1 1 h h h h 1 1 a a a a a a

15 12 11 8 7 4 3 0

MOVE.L X:(SP–xx),X:xxxx 1 0 1 1 0 1 1 0 1 1 a a a a a a

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.L X:(SP)–,dddd.L 1 1 1 0 0 1 0 1 0 0 0 1 d d d d
A-196 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MOVE.L Move Long MOVE.L
Instruction Opcodes:(continued)

Timing: 1–4 oscillator clock cycles

Memory: 1–4 program words

15 12 11 8 7 4 3 0

MOVE.L X:<ea_MM>,HHHH.L 1 1 1 1 h h h h 0 0 1 M R M R R

15 12 11 8 7 4 3 0

MOVE.L X:<ea_MM>,X:xxxx 1 1 1 1 0 1 1 0 0 0 1 M R M R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.L X:xxxx,HHHH.L 1 1 1 1 h h h h 0 1 1 1 1 1 0 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.L X:xxxx,X:xxxx 1 1 1 1 0 1 1 0 0 1 1 1 1 1 0 1

AAAAAAAAAAAAAAAA.s

AAAAAAAAAAAAAAAA.d

15 12 11 8 7 4 3 0

MOVE.L X:xxxxxx,HHHH.L 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 1 h h h h 0 1 1 1 1 1 0 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.L dddd.L,X:(SP)+ 1 1 1 0 0 1 0 1 0 0 0 0 d d d d

15 12 11 8 7 4 3 0

MOVE.L X:(SP)–,LA2 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 0
Freescale Semiconductor Instruction Set Details A-197

MOVE.W Move Word MOVE.W
Operation: Assembler Syntax:

S → D (two parallel reads) MOVE.W S,D (two parallel reads)
S → D (no parallel move) MOVE.W S,D (no parallel move)

Description: Move a 16-bit value from a register to memory, from memory to a register, from one memory location
to another, or from one register to another register, or load a register or a memory location with an im-
mediate value. All memory locations are specified with word pointers, offsets are specified as word
offsets, and absolute addresses are specified as word addresses.

Operands are affected as follows:

– When a 16-bit or FF2 register is a source, the entire register is loaded into the destination.
– When a 24-bit register is a source, the lower 16 bits are loaded into the destination.
– When a full accumulator is a source, the value of the FF1 portion is loaded into the destination.
– When a 16-bit or FF2 register is a destination, the entire register is filled with the source value.
– When a 24-bit register is a destination, the lower 16 bits are written and signed extended

appropriately. Refer to MOVEU.W for unsigned word initialization of AGU registers.
– When a full accumulator is a destination, the FF1 portion is written with the source value and sign

extended through bit 35; the FF0 portion is zero filled. Sign extension is also performed when the
source operand is an immediate value that is smaller than 16 bits.

– When the Y register is a destination, the Y1 portion is written and Y0 is zero filled.
– When the N register is used for post-update (for example, X:(Rn)+N), the value of N is truncated

to 16 bits and sign extended to 24 bits before it is added to Rn.
Example 1:

MOVE.W X:(R0+$20),A ; move word from memory into A

Explanation of Example:
Prior to the memory move, the accumulator register A contains the value $0:6677:8888. After execu-
tion of the MOVE.W X:(R0+$20),A instruction, the FF1 portion of A is updated with the value in
memory that is pointed to by the word pointer R0, with a word offset of $20 (word location $004464).
The FF2 portion of A is sign extended, and the FF0 portion of A is zero filled. The value in the A ac-
cumulator becomes $F:9060:0000; R0 is unchanged.

Before Execution After Execution

X:$4464 9060 X:$4464 9060

888866770

A2 A1 A0

00009060F

A2 A1 A0

004444R0 004444R0
A-198 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MOVE.W Move Word MOVE.W
Example 2:

MOVE.W X:(R0)+N,A1 ; move word from memory into A1

Explanation of Example:
Prior to the memory move, the accumulator register A contains the value $0:6677:8888. After execu-
tion of the MOVE.W X:(R0)+N,A1 instruction, the FF1 portion of A is updated with the value in
memory that is pointed to by the R0 register, word location $004444. The FF2 and FF0 portions of A
are unchanged. The value in the A accumulator becomes $0:9060:8888. R0 is post-updated to
$FFC444 as a result of 16-bit truncation and sign extension in N before the addition (R0)+N.

Condition Codes Affected:

SZ — Set according to the standard definition after moving an accumulator value to memory
L — Set if data limiting occurred during the move of an accumulator value to a memory

Before Execution After Execution

X:$4444 9060 X:$4444 9060

888866770

A2 A1 A0

888890600

A2 A1 A0

004444R0 FFC444R0

018000N 018000N

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-199

MOVE.W Move Word MOVE.W
Instruction Fields:

Operation Source Destination C W Comments

MOVE.W X:(Rn)
X:(Rn)+
X:(Rn)–

HHHHH 1 1 Move signed 16-bit integer word from memory

X:(Rn+N) HHHHH 2 1 Address = Rn+N

X:(Rn)+N HHHHH 1 1 Post-update Rn register

X:(Rn+x) HHH 2 1 x: offset ranging from 0 to 7

X:(Rn+xxxx) HHHHH 2 2 Signed 16-bit offset

X:(Rn+xxxxxx) HHHHH 3 3 24-bit offset

X:(SP–xx) HHH 2 1 Unsigned 6-bit offset

X:xxxx HHHHH 2 2 Unsigned 16-bit address

X:xxxxxx HHHHH 3 3 24-bit address

X:<<pp X0, Y1, Y0
A, B, C, A1, B1

1 1 6-bit peripheral address

X:aa X0, Y1, Y0
A, B, C, A1, B1

1 1 6-bit absolute short address

DDDDD X:(Rn)
X:(Rn)+
X:(Rn)–

1 1 Move signed 16-bit integer word to memory

DDDDD X:(Rn+N) 2 1 Address = Rn+N

DDDDD X:(Rn)+N 1 1 Post-update Rn register

HHH X:(Rn+x) 2 1 x: offset ranging from 0 to 7

DDDDD X:(Rn+xxxx) 2 2 Signed 16-bit offset

DDDDD X:(Rn+xxxxxx) 3 3 24-bit offset

HHHH X:(SP–xx) 2 1 Unsigned 6-bit offset

DDDDD X:xxxx 2 2 Unsigned 16-bit address

DDDDD X:xxxxxx 3 3 24-bit address

X0, Y1, Y0
A, B, C, A1, B1

R0–R5, N

X:<<pp 1 1 6-bit peripheral address

X0, Y1, Y0
A, B, C, A1, B1

R0–R5, N

X:aa 1 1 6-bit absolute short address

X:(Rn+x) X:xxxx 3 2 Move word from one memory location to
another; x: offset ranging from 0 to 7

X:(SP–xx) X:xxxx 3 2

X:(Rn)
X:(Rn)+
X:(Rn)–

X:xxxx 2 2

X:(Rn+N) X:xxxx 3 2

X:(Rn)+N X:xxxx 2 2

X:(Rn+xxxx) X:xxxx 3 3 Signed 16-bit offset

X:xxxx X:xxxx 3 3 16-bit absolute address
A-200 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MOVE.W Move Word MOVE.W
Instruction Fields: (continued)

Note: •The absolute address operand X:xxxx is specified as a word address.
• Pointer Rn is a word pointer.
• Offsets x, xx, xxxx, and xxxxxx are word offsets.

Parallel Dual Reads:

Operation Source Destination C W Comments

MOVE.W #<–64,63> HHHH 1 1 Signed 7-bit integer data (data is put in the
lowest 7 bits of the word portion of any accu-
mulator, and the LSP portion is set to zero)

X:xxxx 2 2 Signed 7-bit integer data (data put in the low
portion of the word)

#xxxx HHHHH 2 2 Signed 16-bit immediate data

dd 2 2 Move to C2, D2, C0, D0 registers

X:(Rn) 2 2

X:(Rn+xxxx) 3 3

X:(SP–xx) 2 2

X:<<pp 2 2 Move 16-bit immediate data to the last 64
locations of X data memory—peripheral regis-
ters

X:aa 2 2 Move 16-bit immediate data to the first 64
locations of X data memory

X:xxxx 3 3

X:xxxxxx 4 4

DDDDD HHHHH 1 1 Move signed word to register

HHH RRR 1 1 Move signed word to register

P:(Rj)+
P:(Rj)+N

X0, Y1, Y0
A, B, C, A1, B1

5 1 Read signed word from program memory. Not
allowed when the XP bit in the OMR is set

X0, Y1, Y0
A, B, C, A1, B1

R0–R5, N

P:(Rj)+
P:(Rj)+N

5 1 Write word to program memory. Not allowed
when the XP bit in the OMR is set.

Operation1

1.This instruction is not allowed when the XP bit in the OMR is set (that is, when the instructions are executing
from data memory).

First Memory Read Second Memory Read

Source 1 Destination 1 Source 2 Destination 2

MOVE.W2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

X:(R0)
X:(R0)+N
X:(R1)+

X:(R1)+N

Y0
Y1

X:(R3)+
X:(R3)–

X0

X:(R4)+
X:(R4)+N

Y0 X:(R3)+
X:(R3)+N3

X0

X:(R0)+
X:(R0)+N
X:(R4)+

X:(R4)+N

Y1 X:(R3)+
X:(R3)+N3

C

Freescale Semiconductor Instruction Set Details A-201

MOVE.W Move Word MOVE.W
Instruction Opcodes:

15 12 11 8 7 4 3 0

MOVE.W #xxxx,Y 1 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

MOVE.W DDDDD,Y 1 0 0 0 0 1 1 0 0 0 0 d d d d d

15 12 11 8 7 4 3 0

MOVE.W X:(Rn)+N,Y 1 1 0 1 0 1 1 0 0 1 0 1 R 1 R R

15 12 11 8 7 4 3 0

MOVE.W X:(Rn+x),Y 1 0 0 1 0 1 1 0 0 0 i i R i R R

15 12 11 8 7 4 3 0

MOVE.W X:(Rn+xxxx),Y 1 1 0 1 0 1 1 0 0 1 0 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.W X:(Rn+xxxxxx),Y 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 0 1 1 0 0 1 0 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.W X:(SP–xx),Y 1 0 0 1 0 1 1 0 0 1 a a a a a a

15 12 11 8 7 4 3 0

MOVE.W X:<ea_MM>,Y 1 1 0 1 0 1 1 0 0 0 0 M R M R R

15 12 11 8 7 4 3 0

MOVE.W X:xxxx,Y 1 1 0 1 0 1 1 0 0 1 1 1 1 1 0 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.W X:xxxxxx,Y 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 0 1 1 0 0 1 1 1 1 1 0 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.W #<–64,63>,HHHH 1 1 1 0 h h h h 1 B B B B B B B

15 12 11 8 7 4 3 0

MOVE.W #<–64,63>,X:xxxx 1 1 1 0 0 1 1 0 1 B B B B B B B

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.W #<–64,63>,Y 1 1 1 0 1 1 1 1 1 B B B B B B B
A-202 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MOVE.W Move Word MOVE.W
Instruction Opcodes:(continued)

15 12 11 8 7 4 3 0

MOVE.W #xxxx,X:(Rn) 1 0 0 0 0 1 1 0 0 1 0 0 R 0 R R

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

MOVE.W #xxxx,X:(Rn+xxxx) 1 0 0 0 0 1 1 0 0 1 0 0 R 1 R R

iiiiiiiiiiiiiiii

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.W #xxxx,X:(SP–xx) 1 0 1 0 0 1 1 0 1 1 a a a a a a

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

MOVE.W #xxxx,X:<<pp 1 0 1 0 0 1 1 1 1 1 p p p p p p

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

MOVE.W #xxxx,X:xxxx 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0

AAAAAAAAAAAAAAAA

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

MOVE.W #xxxx,X:xxxxxx 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0

AAAAAAAAAAAAAAAA

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

MOVE.W #xxxx,dd 1 0 0 0 0 1 1 0 0 1 0 1 0 0 d d

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

MOVE.W DDDDD,X:(Rn)+N 1 1 0 1 D D D D D 1 0 1 R 1 R R

15 12 11 8 7 4 3 0

MOVE.W DDDDD,X:(Rn+xxxx) 1 1 0 1 D D D D D 1 0 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.W #xxxx,X:aa 1 0 1 0 0 1 1 1 1 0 p p p p p p

iiiiiiiiiiiiiiii

iiiiiiiiiiiiiiii
Freescale Semiconductor Instruction Set Details A-203

MOVE.W Move Word MOVE.W
Instruction Opcodes:(continued)

15 12 11 8 7 4 3 0

MOVE.W DDDDD,X:xxxx 1 1 0 1 D D D D D 1 1 1 1 1 0 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.W DDDDD,X:xxxxxx 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 D D D D D 1 1 1 1 1 0 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.W GGGG,P:<ea_m> 1 0 0 0 G G G G 0 1 1 0 0 m R R

15 12 11 8 7 4 3 0

MOVE.W GGGG,X:<<pp 1 1 0 0 G G G G 0 1 p p p p p p

15 12 11 8 7 4 3 0

MOVE.W HHH,RRR 1 1 1 0 0 h h h 0 0 1 0 1 S S S

15 12 11 8 7 4 3 0

MOVE.W HHH,X:(Rn+x) 1 0 0 1 0 h h h 0 0 i i R i R R

15 12 11 8 7 4 3 0

MOVE.W HHHH,X:(SP–xx) 1 0 0 1 h h h h 0 1 a a a a a a

15 12 11 8 7 4 3 0

MOVE.W P:<ea_m>,GGG 1 0 0 0 0 G G G 0 1 1 0 1 m R R

15 12 11 8 7 4 3 0

MOVE.W X:(Rn)+N,X:xxxx 1 1 1 1 0 1 1 0 0 1 0 1 R 1 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.W GGGG,X:aa 1 1 0 0 G G G G 0 0 p p p p p p

15 12 11 8 7 4 3 0

MOVE.W DDDDD,X:<ea_MM> 1 1 0 1 D D D D D 0 0 M R M R R

15 12 11 8 7 4 3 0

MOVE.W DDDDD,X:(Rn+xxxxxx) 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 D D D D D 1 0 0 R 0 R R

AAAAAAAAAAAAAAAA
A-204 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MOVE.W Move Word MOVE.W
Instruction Opcodes:(continued)

15 12 11 8 7 4 3 0

MOVE.W X:<ea_MM>,X:xxxx 1 1 1 1 0 1 1 0 0 0 0 M R M R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

0 1 1 0 0 1 v v 0 v 0 0 0 m 0 v

15 12 11 8 7 4 3 0

MOVE.W X:<<pp,GGG 1 1 0 0 0 G G G 1 1 p p p p p p

15 12 11 8 7 4 3 0

MOVE.W X:xxxx,X:xxxx 1 1 1 1 0 1 1 0 0 1 1 1 1 1 0 0

AAAAAAAAAAAAAAAA.s

AAAAAAAAAAAAAAAA.d

15 12 11 8 7 4 3 0

MOVE.W X:aa,GGG 1 1 0 0 0 G G G 1 0 p p p p p p

15 12 11 8 7 4 3 0

MOVE.W X:<ea_m>,reg1
 X:<ea_v>,reg2

0 1 1 0 0 1 v v 0 v 0 0 0 m 0 v

15 12 11 8 7 4 3 0

MOVE.W X:(SP–xx),X:xxxx 1 0 1 1 0 1 1 0 0 1 a a a a a a

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.W X:(Rn+xxxx),X:xxxx 1 1 1 1 0 1 1 0 0 1 0 0 R 0 R R

AAAAAAAAAAAAAAAA.s

AAAAAAAAAAAAAAAA.d

15 12 11 8 7 4 3 0

MOVE.W X:(Rn+x),X:xxxx 1 0 1 1 0 1 1 0 0 0 i i R i R R

AAAAAAAAAAAAAAAA
Freescale Semiconductor Instruction Set Details A-205

MOVE.W Move Word MOVE.W
Instruction Opcodes:(continued)

Timing: 1–5 oscillator clock cycle(s)

Memory: 1–4 program word(s)

15 12 11 8 7 4 3 0

MOVE.W X:xxxx,HHHHH 1 1 1 1 d d d d d 1 1 1 1 1 0 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.W X:(Rn)+N,HHHHH 1 1 1 1 d d d d d 1 0 1 R 1 R R

15 12 11 8 7 4 3 0

MOVE.W X:(Rn+xxxx),HHHHH 1 1 1 1 d d d d d 1 0 0 R 0 R R

15 12 11 8 7 4 3 0

MOVE.W X:(SP–xx),HHH 1 0 1 1 0 h h h 0 1 a a a a a a

15 12 11 8 7 4 3 0

MOVE.W #xxxx,HHHHH 1 0 0 0 0 1 1 1 0 1 0 d d d d d

15 12 11 8 7 4 3 0

MOVE.W DDDDD,HHHHH 1 0 0 0 D D D D D 0 0 d d d d d

Note: These instructions only allow data ALU registers as destinations except register Y.

15 12 11 8 7 4 3 0

MOVE.W X:<ea_MM>,HHHHH 1 1 1 1 d d d d d 0 0 M R M R R

15 12 11 8 7 4 3 0

MOVE.W X:(Rn+xxxxxx),HHHHH 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 1 d d d d d 1 0 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.W X:xxxxxx,HHHHH 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 1 d d d d d 1 1 1 1 1 0 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVE.W X:(Rn+x),HHH 1 0 1 1 0 h h h 0 0 i i R i R R

iiiiiiiiiiiiiiii

AAAAAAAAAAAAAAAA
A-206 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MOVEU.B Move Unsigned Byte MOVEU.B
Operation: Assembler Syntax:

S → D (no parallel move) MOVEU.B S,D (no parallel move)

Description: Move an 8-bit value from memory to a register or from one memory location to another. The source
operand cannot be a register. Register-indirect memory locations are specified with word pointers, off-
sets are specified as byte offsets, and absolute addresses are specified as byte addresses. Register op-
erands are affected as follows:

– If the destination operand is a 16-bit register, the lower 8 bits are written and the upper 8 bits are
filled with zero extension.

– If the destination operand is the Y register, the lower 8 bits of Y1 are written, and the upper 8 bits
of Y1 and all of Y0 are filled with zero.

– If the destination operand is an accumulator, the lower 8 bits of FF1 are written, the upper 8 bits of
FF1 an FF2 are filled with zero extension, and FF0 is zero filled.

Example 1:
MOVEU.B X:(R0+$21),A ; move byte from memory into A

Explanation of Example:
Prior to the memory move, the accumulator register A contains the value $F:CCDD:2233. After exe-
cution of the MOVEU.B X:(R0+$21),A instruction, the low-order 8 bits of A1 are updated with the
value in memory that is pointed to by the word pointer R0, with a byte offset of $21, and the value is
zero extended through bit 35. The FF0 portion of A is zero filled. The value in the A accumulator be-
comes $0:0090:0000; R0 is unaffected.

Example 2:
MOVEU.B X:(SP),X0; move byte from memory into X0

Explanation of Example:
Prior to the memory move, the accumulator register X0 contains the value $DDEE. After execution of
the MOVEU.B X:(SP),X0 instruction, the low-order 8 bits of X0 are updated with the value in
memory that is pointed to by the word pointer SP, and the value is zero extended through bit 15. The
X0 register becomes $0096; SP is unaffected.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Before Execution After Execution

004444R0 004444R0

X:$4454 9060 X:$4454 9060

2233CCDDF

A2 A1 A0

000000900

A2 A1 A0

Before Execution

DDEEX0

After Execution

0096X0

004443SP 004443SP

X:$4443 6996 X:$4443 6996
Freescale Semiconductor Instruction Set Details A-207

MOVEU.B Move Unsigned Byte MOVEU.B
Instruction Fields:

Instruction Opcodes:

Operation Source Destination C W Comments

MOVEU.B X:(RRR+x) HHH 2 1 x: offset ranging from 0 to 7

X:(Rn+xxxx) HHH 2 2 Signed 16-bit offset

X:(Rn+xxxxxx) HHH 3 3 24-bit offset

X:(SP–x) HHH 2 1 x: offset ranging from 1 to 8

X:(SP) HHH 1 1 Pointer is SP

X:(RRR+x) X:xxxx 3 2 x: offset ranging from 0 to 7

X:(SP) X:xxxx 2 2 Signed 16-bit offset

X:(SP–x) X:xxxx 3 2 x: offset ranging from 1 to 8

Notes: • Each absolute address operand is specified as a byte address. In this address, all bits except the LSB
select the appropriate word location in memory, and the LSB selects the upper or lower byte of that word.

• Pointer Rn is a word pointer.
• Offsets x, xxxx, and xxxxxx are byte offsets

15 12 11 8 7 4 3 0

MOVEU.B X:(RRR+x),HHH 1 0 1 1 1 h h h 0 0 i i N i N N

15 12 11 8 7 4 3 0

MOVEU.B X:(RRR+x),X:xxxx 1 0 1 1 1 1 1 0 0 0 i i N i N N

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVEU.B X:(RRR+x),Y 1 0 0 1 1 1 1 0 0 0 i i N i N N

15 12 11 8 7 4 3 0

MOVEU.B X:(Rn+xxxx),HHH 1 1 1 1 1 h h h 1 1 1 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVEU.B X:(Rn+xxxx),Y 1 1 0 1 1 0 1 0 1 1 1 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVEU.B X:(Rn+xxxxxx),HHH 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 1 1 h h h 1 1 1 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVEU.B X:(Rn+xxxxxx),Y 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 1 0 1 0 1 1 1 0 R 0 R R

AAAAAAAAAAAAAAAA
A-208 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MOVEU.B Move Unsigned Byte MOVEU.B
Instruction Opcodes:(continued)

Timing: 1–3 oscillator clock cycle(s)

Memory: 1–3 program word(s)

15 12 11 8 7 4 3 0

MOVEU.B X:(SP),HHH 1 1 1 1 1 h h h 1 0 1 1 1 1 1 1

15 12 11 8 7 4 3 0

MOVEU.B X:(SP),Y 1 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1

15 12 11 8 7 4 3 0

MOVEU.B X:(SP–x),HHH 1 0 1 1 1 h h h 0 0 i i 1 i 1 1

15 12 11 8 7 4 3 0

MOVEU.B X:(SP–x),X:xxxx 1 0 1 1 1 1 1 0 0 0 i i 1 i 1 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVEU.B X:(SP–x),Y 1 0 0 1 1 1 1 0 0 0 i i 1 i 1 1

15 12 11 8 7 4 3 0

MOVEU.B X:(SP),X:xxxx 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1

AAAAAAAAAAAAAAAA
Freescale Semiconductor Instruction Set Details A-209

MOVEU.BP Move Unsigned Byte MOVEU.BP
(Byte Pointer)

Operation: Assembler Syntax:

S → D (no parallel move) MOVEU.BP S,D (no parallel move)

Description: Move an 8-bit value from memory to a register or between two memory locations. Register-indirect
memory locations are specified with byte pointers, offsets are specified as byte offsets, and absolute
addresses are specified as byte addresses. Register operands are affected as follows:

– If the destination operand is a 16-bit register, the lower 8 bits are written and the upper 8 bits are
filled with zero extension.

– If the destination operand is the Y register, the lower 8 bits of Y1 are written. The upper 8 bits of
Y1 and all of Y0 are filled with zero.

– If the destination operand is a full accumulator, the lower 8 bits of FF1 are written. FF2 and the
upper 8 bits of FF1 are filled with zero extension, and FF0 is zero filled.

Example 1:
MOVEU.BP X:(R0)+,A ; move byte into A, update R0

Explanation of Example:
Prior to the memory move, the accumulator register A contains the value $F:CCDD:2233. After exe-
cution of the MOVEU.BP X:(R0)+,A instruction, the FF1 portion of A is updated with the value in
memory that is pointed to by the byte pointer R0, and it is zero extended. The FF0 portion of A is zero
filled, resulting in the value $0:0099:0000. The R0 pointer is then incremented by one.

Example 2:
MOVEU.BP X:(R0+$21),Y0 ; move byte into Y0

Explanation of Example:
Prior to the memory move, the register Y0 contains the value $1111. After execution of the
MOVEU.BP X:(R0+$21),A instruction, the lower 8-bit portion of Y0 is updated with the value in
memory that is pointed to by the byte pointer R0, with an offset of $21 bytes, and is zero extended. The
Y0 register becomes $0088. The R0 pointer is unchanged.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Before Execution After Execution

X:$2222 5599 X:$2222 5599

2233CCDDF

A2 A1 A0

000000990

A2 A1 A0

004444R0 004445R0

Before Execution After Execution

X:$2232 8899 X:$2232 8899

004444R0 004444R0

111100FF

Y1 Y0

008800FF

Y1 Y0
A-210 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MOVEU.BP Move Unsigned Byte MOVEU.BP
(Byte Pointer)

Instruction Fields:

Operation Source Destination C W Comments

MOVEU.BP X:(RRR)
X:(RRR)+
X:(RRR)–

HHH 1 1 Move unsigned byte from memory

X:(RRR+N) HHH 2 1 Address = Rn+N

X:(RRR+xxxx) HHH 2 2 Unsigned 16-bit offset

X:(RRR+xxxxxx) HHH 3 3 24-bit offset

X:xxxx HHH 2 2 Unsigned 16-bit address

X:xxxxxx HHH 3 3 24-bit address

Notes: • Each absolute address operand is specified as a byte address. In this address, all bits except the LSB
select the appropriate word location in memory, and the LSB selects the upper or lower byte of that word.

• Pointer Rn is a byte pointer.
• Offsets xxxx and xxxxxx are byte offsets
Freescale Semiconductor Instruction Set Details A-211

MOVEU.BP Move Unsigned Byte MOVEU.BP
(Byte Pointer)

Instruction Opcodes:

Timing: 1–3 oscillator clock cycle(s)

Memory: 1–3 program word(s)

15 12 11 8 7 4 3 0

MOVEU.BP X:(RRR+xxxx),HHH 1 1 1 1 1 h h h 1 1 1 0 N 1 N N

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVEU.BP X:(RRR+xxxx),Y 1 1 0 1 1 0 1 0 1 1 1 0 N 1 N N

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVEU.BP X:(RRR+xxxxxx),HHH 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 1 1 h h h 1 1 1 0 N 1 N N

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVEU.BP X:(RRR+xxxxxx),Y 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 1 0 1 0 1 1 1 0 N 1 N N

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVEU.BP X:<ea_MM>,HHH 1 1 1 1 1 h h h 1 0 1 M N M N N

15 12 11 8 7 4 3 0

MOVEU.BP X:<ea_MM>,Y 1 1 0 1 1 0 1 0 1 0 1 M N M N N

15 12 11 8 7 4 3 0

MOVEU.BP X:xxxx,HHH 1 1 1 1 1 h h h 1 1 1 1 1 1 0 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVEU.BP X:xxxx,Y 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVEU.BP X:xxxxxx,HHH 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 1 1 h h h 1 1 1 1 1 1 0 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVEU.BP X:xxxxxx,Y 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1

AAAAAAAAAAAAAAAA

Note: All MOVEU.BP instructions only allow memory locations as source operands.
A-212 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MOVEU.W Move Unsigned Word MOVEU.W
Operation: Assembler Syntax:

S → D (no parallel move) MOVEU.W S,D (no parallel move)

Description: Move an unsigned 16-bit value from memory or a register to a register, or load a register with an im-
mediate value. All memory locations are specified with word pointers, offsets are specified as word
offsets, and absolute addresses are specified as word addresses.

Operands are affected as follows:

– When a 16-bit register is a destination, the entire register is filled with the source value.
– When a 24-bit register is a destination, the lower 16 bits are written and the upper 8 bits are filled

with zero.
– When the N register is used for post-update (for example, X:(Rn)+N), the value of N is truncated

to 16 bits and then sign extended to 24 bits before it is added to Rn.

Note: Only AGU registers are allowed as destination operands for this instruction.

Example 1:
MOVEU.W X:(R0+$21),R3 ; move word from memory to R3

Explanation of Example:
Prior to the memory move, the AGU register R3 contains the value $CCDD22. After execution of the
MOVEU.W X:(R0+$21),R3 instruction, the lower 16-bit portion of R3 is updated with the value in
memory that is pointed to by the R0 register, with a word offset of $21 (word location $004465). The
value is zero extended through bit 23, and the register R3 becomes $009060; R0 is unchanged.

Example 2:
MOVEU.W A,R0 ; move word from a register to an AGU register

Explanation of Example:
Prior to the memory move, the AGU register R0 contains the value $654321. After execution of the
MOVEU.W A,R0 instruction, the lower 16-bit portion of R0 is updated with the value in the FF1 por-
tion of the accumulator A. The value is zero extended through bit 23, and the register R0 becomes
$00CCDD.

Condition Codes Affected:
The condition codes are not affected by this instruction unless SR is specified as the destination.

Before Execution After Execution

X:$4465 9060 X:$4465 9060

004444R0 004444R0

CCDD22R3 009060R3

Before Execution After Execution

2233CCDDF

A2 A1 A0

2233CCDDF

A2 A1 A0

654321R0 00CCDDR0
Freescale Semiconductor Instruction Set Details A-213

MOVEU.W Move Unsigned Word MOVEU.W
Instruction Fields:

Operation Source Destination C W Comments

MOVEU.W X:(Rn)
X:(Rn)+
X:(Rn)–

SSSS 1 1 Move signed 16-bit integer word from memory

X:(Rn+N) SSSS 2 1 Address = Rn+N

X:(Rn)+N SSSS 1 1 Post-update Rn register

X:(Rn+xxxx) SSSS 2 2 Signed 16-bit offset

X:(Rn+xxxxxx) SSSS 3 3 24-bit offset

X:(SP–xx) SSS 2 1 Unsigned 6-bit offset

X:xxxx SSSS 2 2 Unsigned 16-bit address

X:xxxxxx SSSS 3 3 24-bit address

X:<<pp SSS 1 1 6-bit peripheral address

X:aa SSS 1 1 6-bit absolute short address

#xxxx SSSS 2 2 Unsigned 16-bit immediate data

DDDDD SSSS 1 1 Move unsigned word to register

P:(Rj)+
P:(Rj)+N

SSS 5 1 Read unsigned word from program memory.
Not allowed when the XP bit in the OMR is set.

Notes: • The absolute address operand X:xxxx is specified as a word address.
• Pointer Rn is a word pointer.
• Offsets x, xxxx, and xxxxxx are word offsets.
A-214 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MOVEU.W Move Unsigned Word MOVEU.W
Instruction Opcodes:

Timing: 1–5 oscillator clock cycle(s)

Memory: 1–3 program word(s)

15 12 11 8 7 4 3 0

MOVEU.W P:<ea_m>,SSS 1 0 0 0 1 S S S 0 1 1 0 1 m R R

15 12 11 8 7 4 3 0

MOVEU.W X:<<pp,SSS 1 1 0 0 1 S S S 1 1 p p p p p p

15 12 11 8 7 4 3 0

MOVEU.W X:aa,SSS 1 1 0 0 1 S S S 1 0 p p p p p p

Note: All MOVEU.W instructions only allow AGU registers as destinations.

15 12 11 8 7 4 3 0

MOVEU.W #xxxx,SSSS 1 0 0 0 0 1 1 1 0 1 0 d d d d d

15 12 11 8 7 4 3 0

MOVEU.W DDDDD,SSSS 1 0 0 0 D D D D D 0 0 d d d d d

15 12 11 8 7 4 3 0

MOVEU.W X:(SP–xx),SSS 1 0 1 1 h h h h 0 1 a a a a a a

15 12 11 8 7 4 3 0

MOVEU.W X:(Rn)+N,SSSS 1 1 1 1 D D D D D 1 0 1 R 1 R R

15 12 11 8 7 4 3 0

MOVEU.W X:(Rn+xxxx),SSSS 1 1 1 1 D D D D D 1 0 0 R 0 R R

15 12 11 8 7 4 3 0

MOVEU.W X:<ea_MM>,SSSS 1 1 1 1 D D D D D 0 0 M R M R R

15 12 11 8 7 4 3 0

MOVEU.W X:(Rn+xxxxxx),SSSS 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 1 D D D D D 1 0 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVEU.W X:xxxxxx,SSSS 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 1 D D D D D 1 1 1 1 1 0 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

MOVEU.W X:xxxx,SSSS 1 1 1 1 D D D D D 1 1 1 1 1 0 0

AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA

iiiiiiiiiiiiiiii
Freescale Semiconductor Instruction Set Details A-215

MPY Signed Multiply MPY
Operation: Assembler Syntax:

+ S1 × S2 → D (no parallel move) MPY (+)S1,S2,D (no parallel move)
S1 × S2 → D (one parallel move) MPY S1,S2,D (one parallel move)
S1 × S2 → D (two parallel reads) MPY S1,S2,D (two parallel reads)

Description: Multiply the two signed 16-bit source operands, and place the 32-bit fractional product in the destina-
tion (D). Both source operands must be located in the FF1 portion of an accumulator or in X0, Y0, or
Y1. If an accumulator is used as the destination, the result is sign extended into the extension portion
(FF2) of the accumulator. If the destination is one of the 16-bit registers, only the higher 16 bits of the
fractional product are stored.

Usage: This instruction is used for multiplication of fractional data or integer data when a full 32-bit product
is required (see Section 5.3.3, “Multiplication,” on page 5-18). When the destination is a 16-bit regis-
ter, this instruction is useful only for fractional data.

Example:

MPY Y0,X0,A X:(R0)+,Y0 X:(R3)+,X0 ; multiply X0 by Y0

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $02A0 (or fractional value 0.020507813),
the 16-bit Y0 register contains the value $0200 (or fractional value 0.015625). The contents of the des-
tination register are not important prior to execution because they have no effect on the calculated val-
ue. Execution of the MPY instruction multiplies the 16-bit signed value in the X0 register by the 16-bit
signed value in Y0 (yielding the fractional product result of $000A:8000 = 0.000320435) and stores
the result back into the A accumulator. In parallel, X0 and Y0 are updated with new values that are
fetched from the data memory, and the two address registers (R0 and R3) are post-incremented by one.

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ (parallel move)
L — Set if limiting (parallel move) has occurred
E — Set if the extended portion of the result is in use
U — Set according to the standard definition of the U bit
N — Set if MSB of result is set
Z — Set if result equals zero
V — Always cleared

Before Execution

000010000

A2 A1 A0

02A0X0

After Execution

8000000A0

A2 A1 A0

0288X0

0300SR 0310SR

0200FF00

Y1 Y0

0300FF00

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-216 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MPY Signed Multiply MPY
Instruction Fields:

Parallel Moves:

Operation Operands C W Comments

MPY FFF1,FFF1,FFF 1 1 Fractional multiply.

–Y1,X0,FFF
–Y0,X0,FFF
–Y1,Y0,FFF
–Y0,Y0,FFF
–A1,Y0,FFF
–B1,Y1,FFF
–C1,Y0,FFF
–C1,Y1,FFF

1 1 Fractional multiply where one operand is
negated before multiplication.

Note: Assembler also accepts first two
operands when they are specified in opposite
order.

Data ALU Operation Parallel Memory Move

Operation Operands Source Destination1

1.The case where the destination of the data ALU operation is the same register as the destination of the par-
allel read operation is not allowed. Memory writes are allowed in this case.

MPY2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

Y1,X0,F
Y0,X0,F
Y1,Y0,F
Y0,Y0,F

A1,Y0,F
B1,Y1,F
C1,Y0,F
C1,Y1,F

X:(Rj)+
X:(Rj)+N

X0
Y1
Y0
A
B
C
A1
B1

X0
Y1
Y0
A
B
C
A1
B1

X:(Rj)+
X:(Rj)+N
Freescale Semiconductor Instruction Set Details A-217

MPY Signed Multiply MPY
Parallel Dual Reads:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Data ALU Operation1

1.This instruction is not allowed when the XP bit in the OMR is set (that is, when the instructions are executing
from data memory).

First Memory Read Second Memory Read

Operation Operands Source 1 Destination 1 Source 2 Destination 2

MPY2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

Y1,X0,F
Y1,Y0,F
Y0,X0,F
C1,Y0,F

X:(R0)+
X:(R0)+N
X:(R1)+

X:(R1)+N

Y0
Y1

X:(R3)+
X:(R3)–

X0

X:(R4)+
X:(R4)+N

Y0 X:(R3)+
X:(R3)+N3

X0

X:(R0)+
X:(R0)+N
X:(R4)+

X:(R4)+N

Y1 X:(R3)+
X:(R3)+N3

C

15 12 11 8 7 4 3 0

MPY FFF1,FFF1,FFF 0 1 1 0 1 0 F F F J J J J J 0 1

15 12 11 8 7 4 3 0

MPY Q1,Q2,F GGG,X:<ea_m> 0 0 0 0 0 G G G F Q Q Q 1 m R R

15 12 11 8 7 4 3 0

MPY Q1,Q2,F X:<ea_m>,GGG 0 0 1 0 0 G G G F Q Q Q 1 m R R

15 12 11 8 7 4 3 0

MPY Q3,Q4,F X:<ea_m>,reg1
 X:<ea_v>,reg2

0 1 1 0 0 0 v v F v Q Q 1 m 0 v

15 12 11 8 7 4 3 0

MPY –Q1,Q2,FFF 0 1 1 1 0 1 F F F Q Q Q 0 0 1 1
A-218 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MPYR Signed Multiply and Round MPYR
Operation: Assembler Syntax:

+ S1 × S2 + r → D (no parallel move) MPYR (+)S1,S2,D (no parallel move)
S1 × S2 + r → D (one parallel move) MPYR S1,S2,D (one parallel move)
S1 × S2 + r → D (two parallel reads) MPYR S1,S2,D (two parallel reads)

Description: Multiply the two signed 16-bit source operands, round the 32-bit fractional product, and place the re-
sult in the destination (D). Both source operands must be located in the FF1 portion of an accumulator
or in X0, Y0, or Y1. The fractional product is sign extended before the rounding operation, and the
result is then stored in the destination. If the destination is one of the 16-bit registers, only the high-or-
der 16 bits of the rounded fractional result are stored. This instruction uses the rounding technique that
is selected by the R bit in the OMR. When the R bit is cleared (default mode), convergent rounding is
selected; when the R bit is set, two’s-complement rounding is selected. Refer to Section 5.9, “Round-
ing,” on page 5-43 for more information about the rounding modes. Note that the rounding operation
will always zero the LSP of the result if the destination (D) is an accumulator or the Y register.

Usage: This instruction is used for the multiplication and rounding of fractional data.

Example:

MPYR Y0,X0,A X:(R0)+,Y0 X:(R3)+,X0 ; multiply fractional
; signed and round

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $02A0 (or fractional value 0.020507813),
and the 16-bit Y0 register contains the value $0200 (or fractional value 0.015625). The contents of the
destination register are not important prior to execution because they have no effect on the calculated
value. Execution of the MPYR instruction multiplies the 16-bit signed value in the X0 register by the
16-bit signed value in Y0 (yielding the fractional product result of $000A:8000 = 0.000320435),
rounds the result, and stores the rounded result ($0:000A:0000 = 0.000305176) back into the A accu-
mulator. In parallel, X0 and Y0 are updated with new values that are fetched from the data memory,
and the two address registers (R0 and R3) are post-incremented by one. In this example, the default
rounding technique (convergent rounding) is performed (bit R in the OMR is cleared). If two’s-com-
plement rounding is utilized (R bit is set), the result in accumulator A is $0:000B:0000 = 0.000335693.

Before Execution

123410000

A2 A1 A0

02A0X0

After Execution

0000000A0

A2 A1 A0

0288X0

0300SR 0310SR

0200FF00

Y1 Y0

0300FF00

Y1 Y0
Freescale Semiconductor Instruction Set Details A-219

MPYR Signed Multiply and Round MPYR
Condition Codes Affected:

SZ — Set according to the standard definition of the SZ (parallel move)
L — Set if limiting (parallel move) has occurred
E — Set if the extended portion of the result is in use
U — Set according to the standard definition of the U bit
N — Set if MSB of result is set
Z — Set if result equals zero
V — Always cleared

Instruction Fields:

Parallel Moves:

Operation Operands C W Comments

MPYR FFF1,FFF1,FFF 1 1 Fractional multiply; result rounded.

–Y1,X0,FFF
–Y0,X0,FFF
–Y1,Y0,FFF
–Y0,Y0,FFF
–A1,Y0,FFF
–B1,Y1,FFF
–C1,Y0,FFF
–C1,Y1,FFF

1 1 Fractional multiply where one operand is
negated before multiplication; result is rounded.

Note: Assembler also accepts first two
operands when they are specified in opposite
order.

Data ALU Operation Parallel Memory Move

Operation Operands Source Destination1

1.The case where the destination of the data ALU operation is the same register as the destination of the par-
allel read operation is not allowed. Memory writes are allowed in this case.

MPYR2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

Y1,X0,F
Y0,X0,F
Y1,Y0,F
Y0,Y0,F

A1,Y0,F
B1,Y1,F

X:(Rj)+
X:(Rj)+N

X0
Y1
Y0
A
B
C
A1
B1

X0
Y1
Y0
A
B
C
A1
B1

X:(Rj)+
X:(Rj)+N

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-220 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MPYR Signed Multiply and Round MPYR
Parallel Dual Reads:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Data ALU Operation1

1.This instruction is not allowed when the XP bit in the OMR is set (that is, when the instructions are executing
from data memory).

First Memory Read Second Memory Read

Operation Operands Source 1 Destination 1 Source 2 Destination 2

MPYR2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

Y1,X0,F
Y1,Y0,F
Y0,X0,F
C1,Y0,F

X:(R0)+
X:(R0)+N
X:(R1)+

X:(R1)+N

Y0
Y1

X:(R3)+
X:(R3)–

X0

X:(R4)+
X:(R4)+N

Y0 X:(R3)+
X:(R3)+N3

X0

X:(R0)+
X:(R0)+N
X:(R4)+

X:(R4)+N

Y1 X:(R3)+
X:(R3)+N3

C

15 12 11 8 7 4 3 0

MPYR FFF1,FFF1,FFF 0 1 1 0 1 0 F F F J J J J J 1 1

15 12 11 8 7 4 3 0

MPYR Q1,Q2,F GGG,X:<ea_m> 0 0 0 1 0 G G G F Q Q Q 1 m R R

15 12 11 8 7 4 3 0

MPYR Q1,Q2,F X:<ea_m>,GGG 0 0 1 1 0 G G G F Q Q Q 1 m R R

15 12 11 8 7 4 3 0

MPYR Q3,Q4,F X:<ea_m>,reg1
X:<ea_v>,reg2

0 1 1 1 0 0 v v F v Q Q 1 m 0 v

15 12 11 8 7 4 3 0

MPYR –Q1,Q2,FFF 0 1 1 1 0 1 F F F Q Q Q 1 0 1 1
Freescale Semiconductor Instruction Set Details A-221

MPYSU Signed × Unsigned Multiply MPYSU
Operation: Assembler Syntax:

S1 × S2 → D (S1 signed; S2 unsigned) MPYSU S1,S2,D (no parallel move)

Description: Multiply one signed 16-bit source operand by one unsigned 16-bit operand, and place the 32-bit frac-
tional product in the destination (D). The order of the registers is important. The first source register
(S1) must contain the signed value, and the second source (S2) must contain the unsigned value to pro-
duce correct fractional results. If the destination is one of the 16-bit registers, only the high-order
16 bits of the fractional result are stored. The result is not affected by the state of the saturation bit
(SA). Note that for 16-bit destinations, the sign bit may be lost for large fractional magnitudes.

Usage: In addition to single-precision multiplication of a signed value times an unsigned value, this instruction
is also used for multi-precision multiplications, as shown in Section 5.5, “Extended- and Multi-Preci-
sion Operations,” on page 5-29.

Example:

MPYSU X0,Y0,A ; multiply signed X0 by unsigned Y0
; and store the result in A

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the (signed) negative value $FFF4, and the 16-bit
Y0 register contains the (unsigned) positive value $0002. The contents of the destination register are
not important prior to execution because they have no effect on the calculated value. Execution of the
MPYSU instruction multiplies the 16-bit signed value in the X0 register by the 16-bit unsigned value
in Y0 (yielding the fractional product result of $FFFF:FFD0) and stores the signed result
($F:FFFF:FFD0) back into the A accumulator.

Condition Codes Affected:

L — Set if overflow has occurred in result
E — Set if the extended portion of the result is in use
U — Set according to the standard definition of the U bit
N — Set if MSB of result is set
Z — Set if result equals zero
V — Set if overflow has occurred in result

Before Execution

000000000

A2 A1 A0

FFF4X0

After Execution

FFD0FFFFF

A2 A1 A0

FFF4X0

0300SR 0318SR

00022000

Y1 Y0

00022000

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-222 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MPYSU Signed × Unsigned Multiply MPYSU
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

MPYSU X0,Y1,EEE
X0,Y0,EEE
Y0,Y1,EEE
Y0,Y0,EEE
Y0,A1,EEE
Y1,B1,EEE
Y0,C1,EEE
Y1,C1,EEE

1 1 16 × 16 => 32-bit signed-and-unsigned fractional multi-
ply.

The first operand is treated as signed and the second as
unsigned.

15 12 11 8 7 4 3 0

MPYSU Q2,Q1,EEE 0 1 1 1 0 1 E E E Q Q Q 1 0 1 0
Freescale Semiconductor Instruction Set Details A-223

NEG Negate Register NEG
Operation: Assembler Syntax:

0 – D → D (no parallel move) NEG D (no parallel move)
0 – D → D (one parallel move) NEG D (one parallel move)

Description: The destination operand (D) is subtracted from zero, and the two’s-complement result is stored in the
destination (D). If the destination is a 16-bit register, it is first sign extended internally and concatenat-
ed with 16 zero bits to form a 36-bit operand (the Y register is only sign extended).

Example:

NEG B X0,X:(R3)+ ; 0 - B → B, save X0, update R3

Explanation of Example:
Prior to execution, the 36-bit B accumulator contains the value $0:00AA:FF00. The NEG instruction
takes the two’s-complement of the value in the B accumulator and stores the 36-bit result
($F:FF55:0100) back in the B accumulator. The value for X0 is stored in memory and the address reg-
ister R3 is post-incremented by one. The N bit is set because the result is negative.

Note: When the D operand equals $8:0000:0000 (–16.0 when interpreted as a decimal fraction), the NEG
instruction causes an overflow to occur since the result cannot be correctly expressed using the stan-
dard 36-bit, fixed-point, two’s-complement data representation. When saturation is enabled (the OMR
register’s SA bit is set to one), data limiting will occur to value $F:8000:0000. If saturation is not en-
abled, the value will remain unchanged.

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ (parallel move)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the extension portion of result is in use
U — Set according to the standard definition of the U bit
N — Set if bit MSB of result is set
Z — Set if the result equals zero
V — Set if overflow has occurred in the result
C — Set if a borrow is generated from the MSB of the result

Before Execution

FF0000AA0

B2 B1 B0

0300SR

After Execution

0100FF55F

B2 B1 B0

0319SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-224 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

NEG Negate Register NEG
Instruction Fields:

Parallel Moves:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

NEG FFF 1 1 Two’s-complement negation.

Data ALU Operation Parallel Memory Move

Operation Operands Source Destination1

1.The case where the destination of the data ALU operation is the same register as the destination of the par-
allel read operation is not allowed. Memory writes are allowed in this case.

NEG2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

F X:(Rj)+
X:(Rj)+N

X0
Y1
Y0
A
B
C
A1
B1

X0
Y1
Y0
A
B
C
A1
B1

X:(Rj)+
X:(Rj)+N

15 12 11 8 7 4 3 0

NEG F GGG,X:<ea_m> 0 0 0 0 1 G G G F 0 0 1 0 m R R

15 12 11 8 7 4 3 0

NEG F X:<ea_m>,GGG 0 0 1 0 1 G G G F 0 0 1 0 m R R

15 12 11 8 7 4 3 0

NEG FFF 0 1 1 1 1 1 F F F b b b 1 1 1 1
Freescale Semiconductor Instruction Set Details A-225

NEG.BP Negate Byte (Byte Pointer) NEG.BP
Operation: Assembler Syntax:

0 – D→ D (no parallel move) NEG.BP D (no parallel move)

Description: Compute the two’s-complement of a byte value in memory. The value is internally sign extended to
20 bits before being negated. The low-order 8 bits of the result are stored back to memory. The condi-
tion codes are calculated based on the 8-bit result, with the exception of the E and U bits, which are
calculated based on the 20-bit result. Absolute addresses are expressed as byte addresses. The result is
not affected by the state of the saturation bit (SA).

Usage: This instruction is typically used when integer data is processed.

Example:

NEG.BP X:$3065 ; negate the byte at (byte) address $3065

Explanation of Example:
Prior to execution, the value at byte address X:$3065 is $44. Execution of the NEG.BP instruction com-
putes the two’s-complement of this value and generates the result $BC with a borrow (the carry bit is
set). The result is negative since bit 7 is set. Note that this address is equivalent to the upper byte of
word address $1832.

Condition Codes Affected:

E — Set if the extension portion of the 20-bit result is in use
U — Set if the 20-bit result is unnormalized
N — Set if bit 7 of the result is set
Z — Set if the result is zero
V — Set if overflow has occurred in result
C — Set if a borrow occurs from bit 7 of the result

$3064

$3066
$3068

$3062

X Memory

22 11

7 0

77

44 33

55
88
66

Byte
Addresses 70

$3064

$3066

$3068

$3062

X Memory

22 11

7 0

77

BC 33

55
88
66

Byte
Addresses 70

Before Execution After Execution

030FSR 0319SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-226 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

NEG.BP Negate Byte (Byte Pointer) NEG.BP
Instruction Fields:

Instruction Opcodes:

Timing: 3–4 oscillator clock cycles

Memory: 2–3 program words

Operation Operands C W Comments

NEG.BP X:xxxx 3 2 Negate byte in memory

X:xxxxxx 4 3

15 12 11 8 7 4 3 0

NEG.BP X:xxxx 0 1 0 0 1 1 1 1 0 1 0 0 0 1 1 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

NEG.BP X:xxxxxx 1 1 1 0 0 A A A 0 A 1 1 A A A A

0 1 0 0 1 1 1 1 0 1 0 0 0 1 1 0

AAAAAAAAAAAAAAAA
Freescale Semiconductor Instruction Set Details A-227

NEG.L Negate Long NEG.L
Operation: Assembler Syntax:

0 – D→ D (no parallel move) NEG.L D (no parallel move)

Description: Compute the two’s-complement of a long-word value in memory. When an operand located in mem-
ory is operated on, the low-order 32 bits of the result are stored back to memory. The condition codes
are calculated based on the 32-bit result. Absolute addresses pointing to long elements must always be
even aligned (that is, pointing to the lowest 16 bits).

Usage: This instruction is typically used when integer data is processed.

Example:

NEG.L X:$2000 ; negate the long word at address $2001:2000

Explanation of Example:
Prior to execution, the 32-bit value at location $2001:2000 is $00AA:FF00. Execution of the
NEG.L instruction computes the two’s-complement of this value and generates $FF55:0100. The CCR
is updated based on the result of the subtraction.

Condition Codes Affected:

E — Set if the extension portion of the 36-bit result is in use
U — Set if the 36-bit result is unnormalized
N — Set if bit 31 of the result is set
Z — Set if the result is zero
V — Set if overflow has occurred in result
C — Set if a borrow occurs from bit 31 of the result

$2001

$2002

$2003

$2000

X Memory

FF00

15 0

0000

00AA

0001

Word
Addresses

Before Execution After Execution

$2001

$2002

$2000

X Memory

0100

15 0

0000

FF55

0001

Word
Addresses

$2003

030FSR 0319SR030FSR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-228 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

NEG.L Negate Long NEG.L
Instruction Fields:

Instruction Opcodes:

Timing: 3–4 oscillator clock cycles

Memory: 2–3 program words

Operation Operands C W Comments

NEG.L X:xxxx 3 2 Negate long in memory

X:xxxxxx 4 3

15 12 11 8 7 4 3 0

NEG.L X:xxxx 0 1 0 0 1 1 1 1 0 1 0 0 0 1 1 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

NEG.L X:xxxxxx 1 1 1 0 0 A A A 0 A 1 1 A A A A

0 1 0 0 1 1 1 1 0 1 0 0 0 1 1 1

AAAAAAAAAAAAAAAA
Freescale Semiconductor Instruction Set Details A-229

NEG.W Negate Word NEG.W
Operation: Assembler Syntax:

0 – D→ D (no parallel move) NEG.W D (no parallel move)

Description: Compute the two’s-complement of a word value in memory. The value is internally sign extended to
20 bits before being subtracted from zero. The low-order 16 bits of the result are stored back to mem-
ory. The condition codes are calculated based on the 16-bit result, with the exception of the E and U
bits, which are calculated based on the 20-bit result.

Usage: This instruction is typically used when integer data is processed.

Example:

NEG.W X:$2000 ; negate the word at address $2000

Explanation of Example:
Prior to execution, the 16-bit value at location $2000 is $FF00. Execution of the NEG.W instruction
computes the two’s-complement of this value and generates $0100. The CCR is updated based on the
result of the subtraction.

Condition Codes Affected:

E — Set if the extension portion of the 20-bit result is in use
U — Set if the 20-bit result is unnormalized
N — Set if bit 15 of the result is set
Z — Set if the result is zero
V — Set if overflow has occurred in result
C — Set if a borrow occurs from bit 15 of the result

$2001

$2002

$2003

$2000

X Memory

FF00

15 0

0000

00AA

0001

Word
Addresses

Before Execution After Execution

$2001

$2002

$2003

$2000

X Memory

0100

15 0

0000

00AA

0001

Word
Addresses

0300SR 0311SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-230 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

NEG.W Negate Word NEG.W
Instruction Fields:

Instruction Opcodes:

Timing: 3–4 oscillator clock cycles

Memory: 1–3 program word(s)

Operation Operands C W Comments

NEG.W X:(Rn) 3 1 Negate word in memory using appropriate addressing
modeX:(Rn+xxxx) 4 2

X:(SP–xx) 4 1

X:xxxx 3 2

X:xxxxxx 4 3

15 12 11 8 7 4 3 0

NEG.W X:(Rn) 0 1 0 0 1 1 1 1 0 1 0 1 R 1 R R

15 12 11 8 7 4 3 0

NEG.W X:(Rn+xxxx) 0 1 0 0 1 1 1 1 0 1 0 1 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

NEG.W X:(SP–xx) 0 1 0 0 1 0 1 1 0 1 a a a a a a

15 12 11 8 7 4 3 0

NEG.W X:xxxx 0 1 0 0 1 1 1 1 0 1 0 0 0 1 0 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

NEG.W X:xxxxxx 1 1 1 0 0 A A A 0 A 1 1 A A A A

0 1 0 0 1 1 1 1 0 1 0 0 0 1 0 0

AAAAAAAAAAAAAAAA
Freescale Semiconductor Instruction Set Details A-231

NEGA Negate AGU Register NEGA
Operation: Assembler Syntax:

0 – D → D (no parallel move) NEGA D (no parallel move)

Description: The destination pointer register is subtracted from zero, and the result is stored back in the destination
register.

Example:

NEGA R2 ; negate value in R2

Explanation of Example:
Prior to execution, the R2 register contains the value $000001. The NEGA R2 instruction takes the
two’s-complement of the value in R2 and stores the 24-bit result ($FFFFFF) back into R2.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

NEGA Rn 1 1 Negate AGU register

Before Execution

000001R2

After Execution

FFFFFFR2

15 12 11 8 7 4 3 0

NEGA Rn 1 0 0 0 0 1 0 1 0 0 1 0 R 1 R R
A-232 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

NOP No Operation NOP
Operation: Assembler Syntax:

PC + 1 → PC NOP

Description: Increment the PC. Pending pipeline actions, if any, are completed. Execution continues with the in-
struction following the NOP.

Example:

NOP ;increment the program counter

Explanation of Example:
The NOP instruction increments the PC and completes any pending pipeline actions.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

NOP 1 1 No operation

15 12 11 8 7 4 3 0

NOP 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0
Freescale Semiconductor Instruction Set Details A-233

NORM Normalize Accumulator Iteration NORM
Operation: Assembler Syntax:

If (E • U • Z = 1) then NORM R0,D(no parallel move)
ASL D and Rn – 1 → Rn

else if (E = 1) then
ASR D and Rn + 1→ Rn

else
NOP

where X denotes the logical complement of X, and • denotes the logical AND operator

Description: Perform one normalization iteration on the specified destination operand (D), update the address reg-
ister R0 based upon the results of that iteration, and store the result back in the destination accumulator.
This is a 36-bit operation. If the accumulator extension is not in use, the accumulator is unnormalized,
and if the accumulator is not zero, then the destination operand is arithmetically shifted 1 bit to the left,
and the specified address register is decremented by one. If the accumulator extension register is in use,
the destination operand is arithmetically shifted 1 bit to the right, and the specified address register is
incremented by 1. If the accumulator is normalized or zero, a NOP is executed, and the specified ad-
dress register is not affected. Since the operation of the NORM instruction depends on the CCR bits
E, U, and Z, these bits must correctly reflect the current state of the destination accumulator prior to
the execution of the NORM instruction. The L and V bits in the CCR will be cleared unless they have
been improperly set up prior to the execution of the NORM instruction.

Example:

TST A ;establish condition codes for NORM
REP #31 ;maximum number of iterations (31) needed
NORM R0,A ;perform one normalization iteration

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:0000:8000, and the R0 address reg-
ister contains the value $000000. The repetition of the NORM instruction normalizes the value in the
36-bit accumulator and stores the resulting number of shifts that are performed during that normaliza-
tion process in the R0 address register. A negative value reflects the number of left shifts performed
during the normalization process, while a positive value reflects the number of right shifts performed.
In this example, 15 left shifts are required for normalization.

Before Execution

800000000

A2 A1 A0

After Execution

000040000

A2 A1 A0

0310SR 0300SR(after TSTA)

000000R0 FFFFF1R0
A-234 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

NORM Normalize Accumulator Iteration NORM
Condition Codes Affected:

L — Set if overflow has occurred in accumulator result
E — Set if the extended portion of accumulator result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 35 of accumulator result is set
Z — Set if accumulator result equals zero
V — Set if bit 35 is changed as a result of a left shift

Instruction Fields:

Instruction Opcodes:

Timing: 4 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

NORM R0,F 4 1 Normalization iteration instruction for normalizing the F accumulator

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 12 11 8 7 4 3 0

NORM R0,F 0 1 1 1 0 1 0 1 F 0 0 0 0 1 1 1
Freescale Semiconductor Instruction Set Details A-235

NOT.W Logical Complement Word NOT.W
Operation: Assembler Syntax:

D → D (no parallel move) NOT.W D (no parallel move)
where the bar over the D (D) denotes the logical NOT operator

Description: Compute the one’s-complement of the destination operand (D), and store the result in the destination.
This instruction is a 16-bit operation. If the destination is a 36-bit accumulator, the one’s-complement
is performed on bits 31–16 of the accumulator. The remaining bits of the destination accumulator are
not affected. The result is not affected by the state of the saturation bit (SA).

Example:

NOT.W A ;Compute one’s-complement of A1

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $5:FFFF:5678. The NOT.W instruction
computes the one’s-complement of bits 31–16 of the A accumulator (A1) and stores the result back in
the A1 register. The remaining portions of the A accumulator are not affected.

Condition Codes Affected:

N — Set if MSB of result is set
Z — Set if bits 31–16 of accumulator result or all bits of the register result are zero
V — Always cleared

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

NOT.W EEE 1 1 One’s-complement (bit-wise negation)

Before Execution

5678FFFF5

A2 A1 A0

0300SR

After Execution

567800005

A2 A1 A0

0304SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 12 11 8 7 4 3 0

NOT.W EEE 0 1 1 1 0 0 E E E 1 0 0 0 0 1 1
A-236 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

NOTC Logical Complement with Carry NOTC
Operation: Assembler Syntax:

D → D (no parallel move) NOTC D (no parallel move)

Implementation Note:
This instruction is implemented by the assembler as an alias to the BFCHG instruction, with the 16-bit
immediate mask set to $FFFF. This instruction will dis-assemble as a BFCHG instruction.

Description: Take the one’s-complement of the destination operand (D), and store the result in the destination. This
instruction is a 16-bit operation. If the destination is a 36-bit accumulator, the one’s-complement is
performed on bits 31–16 of the accumulator. The remaining bits of the destination accumulator are not
affected. C is also modified as described in “Condition Codes Affected.”

Example:

NOTC R2 ; take the one’s-complement of R2

Explanation of Example:
Prior to execution, the R2 register contains the value $555555. The execution of the instruction com-
plements the value in R2. C is modified as described in “Condition Codes Affected.”

Condition Codes Affected:

L — Set if data limiting occurred during 36-bit source move
C — Set if all bits specified by the mask are set

Cleared if at least 1 bit specified by the mask is not set

Note: The status register cannot be a destination operand for the NOTC instruction.

Instruction Fields:
Refer to the section on the BFCHG instruction for legal operand and timing information.

Before Execution

0301SR

After Execution

0300SR

555555R2 00AAAAR2

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-237

OR.L Logical Inclusive OR Long OR.L
Operation: Assembler Syntax:

S + D → D (no parallel move) OR.L S,D (no parallel move)
where + denotes the logical inclusive OR operator

Description: Perform a logical OR operation on the source operand (S) with the destination operand (D), and store
the result in the destination. This instruction is a 32-bit operation. The destination must be an accumu-
lator or the 32-bit Y register. The source can be any data ALU register. If the destination is a 36-bit
accumulator, the OR.L operation is performed on the source and bits 31–0 of the accumulator. The re-
maining bits of the destination accumulator are not affected. If the source is a 16-bit register, the OR.L
operation is performed on the source and bits 31–16 of the destination. The other bits of the destination
remain unchanged. The result is not affected by the state of the saturation bit (SA).

Description:

Usage: This instruction is used for the logical OR of two registers. If it is desired to perform an OR on a 16-bit
immediate value with a register or memory location, then the ORC instruction is appropriate.

Example:

OR.L Y,B ; OR Y with B

Explanation of Example:
Prior to execution, the 16-bit Y register contains the value $FF0000FF, and the 36-bit B accumulator
contains the value $0:1234:5678. The OR.L Y,B instruction performs a logical OR on B10 and Y and
stores the result back into the B accumulator.

Condition Codes Affected:

N — Set if bit 31 of accumulator result or MSB of register result is set
Z — Set if bits 31–0 of accumulator result or all bits of register result are zero
V — Always cleared

Instruction Fields:

Operation Operands C W Comments

OR.L FFF,fff 1 1 32-bit logical OR

Before Execution

567812340

B2 B1 B0

After Execution

56FFFF340

B2 B1 B0

0300SR 0308SR

00FFFF00

Y1 Y0

00FFFF00

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-238 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

OR.L Logical Inclusive OR Long OR.L
Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

15 12 11 8 7 4 3 0

OR.L FFF,fff 0 1 1 1 1 0 f f f b b b 1 1 0 1
Freescale Semiconductor Instruction Set Details A-239

OR.W Logical Inclusive OR Word OR.W
Operation: Assembler Syntax:

S + D → D (no parallel move) OR.W S,D (no parallel move)
where + denotes the logical inclusive OR operator

Description: Perform a logical OR operation on the source operand (S) with the destination operand (D), and store
the result in the destination. This instruction is a 16-bit operation. If the destination is a 36-bit accumu-
lator, the OR operation is performed on the source with bits 31–16 of the accumulator. The remaining
bits of the destination accumulator are not affected. The result is not affected by the state of the satu-
ration bit (SA).

Usage: This instruction is used for the logical OR of two registers. If it is desired to perform an OR operation
on a 16-bit immediate value with a register or memory location, the ORC instruction is appropriate.

Example:

OR.W Y1,B ; OR Y1 with B

Explanation of Example:
Prior to execution, the 16-bit Y1 register contains the value $FF00, and the 36-bit B accumulator con-
tains the value $0:1234:5678. The OR.W Y1,B instruction performs a logical OR on the 16-bit value
in the Y1 register with B1 and stores the 36-bit result in the B accumulator.

Condition Codes Affected:

N — Set if bit 31 of accumulator result or MSB of register result is set
Z — Set if bits 31–16 of accumulator result or all bits of register result are zero
V — Always cleared

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

OR.W EEE,EEE 1 1 16-bit logical OR

Before Execution

567812340

B2 B1 B0

After Execution

5678FF340

B2 B1 B0

0300SR 0308SR

8000FF00

Y1 Y0

8000FF00

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 12 11 8 7 4 3 0

OR.W EEE,EEE 0 1 1 1 1 0 E E E a a a 1 0 0 1
A-240 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ORC Logical Inclusive OR Immediate ORC
Operation: Assembler Syntax:

#xxxx + X:<ea> → X:<ea>(no parallel move) ORC #iiii,X:<ea> (no parallel move)
#xxxx + D → D(no parallel move) ORC #iiii,D (no parallel move)
where + denotes the logical inclusive OR operator

Implementation Note:
This instruction is implemented by the assembler as an alias to the BFSET instruction, with the 16-bit
immediate value used as the bit mask. This instruction will dis-assemble as a BFSET instruction.

Description: Perform a logical OR operation on a 16-bit immediate data value with the destination operand (D), and
store the results back into the destination. C is also modified as described in “Condition Codes Affect-
ed.” This instruction performs a read-modify-write operation on the destination and requires two des-
tination accesses.

Example:

ORC #$5555,X:$7C30 ; OR with immediate data

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$7C30 contains the value $00AA. Execution of the
instruction performs a logical OR of $00AA and the mask (immediate value $5555) and stores the re-
sult in X:$7C3A. The C bit is not set because all mask bits are not set.

Condition Codes Affected:

For destination operand SR:
For this destination only, the C bit is not updated as is done for all other destination operands
All SR bits except bits 14–10 are updated with values from the bitfield unit.
Bits 14–10 of the mask operand must be cleared.

For other destination operands:
L — Set if data limiting occurred during 36-bit source move
C — Set if all bits specified by the mask are set

Cleared if at least 1 bit specified by the mask is not set

Note: If all bits in the mask are cleared, the instruction executes two NOPs and sets the C bit.

Instruction Fields:
Refer to the section on the BFSET instruction for legal operand and timing information.

Before Execution

00AAX:$7C30

0300SR

After Execution

55FFX:$7C30

0300SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-241

REP Repeat Next Instruction REP
Operation: Assembler Syntax:

LC → TEMP; #xx → LC REP #xx
Repeat next instruction until LC = 1
TEMP → LC

LC → TEMP; S → LC REP S
Repeat next instruction until LC = 1
TEMP → LC

Description: Repeat the single-word instruction that immediately follows the REP instruction for the specified num-
ber of times. The value that specifies the number of times the given instruction is to be repeated is load-
ed into the 16-bit LC register. The contents of the 16-bit LC register are treated as unsigned (that is,
always positive). The single-word instruction is then executed for the specified number of times, dec-
rementing the LC after each execution until LC equals one. When the REP instruction is in effect, the
repeated instruction is fetched only one time, and it remains in the instruction register for the duration
of the loop count. Thus, the REP instruction is not interruptible. When the REP instruction is entered,
the contents of the LC register are stored in an internal temporary register, and they are restored into
the LC register when the REP loop is exited. If LC is set equal to zero, the instruction is not repeated
and execution continues with the instruction immediately following the instruction that was to be re-
peated. The instruction’s effective address specifies the address of the value that is to be loaded into
the LC.

The REP instruction allows all registers on the DSC core to specify the number of loop iterations ex-
cept for the registers C2, D2, C0, D0, C, D, Y, M01, N3, LA, LA2, LC, LC2, SR, OMR, and HWS. If
immediate short data is instead used to specify the loop count, the 6 LSBs of the LC register are loaded
from the instruction, and the upper 7 MSBs are cleared.

Note: If a full accumulator is specified as a source operand, and if the data out of the accumulator indicates
that extension is in use, the value that is to be loaded into the LC register will be limited to a
16-bit-maximum, positive or negative saturation constant. If positive saturation occurs, the limiter
places $7FFF onto the bus. This value is loaded into the LC register as the maximum unsigned positive
loop count that is allowed. If negative saturation occurs, the limiter places $8000 onto the bus.

Note: Once the REP instruction and the REP loop are in progress, they may not be interrupted until the REP
loop completes.

Restrictions:
The REP instruction can repeat any single-word instruction—except the REP instruction itself and any
instruction that changes program flow. The following instructions are not allowed to follow a REP in-
struction:

An instruction that is more than 1 program word in length
An instruction that accesses program memory
A REP instruction
Any instruction that changes program flow
A SWI, SWI #x, SWILP, DEBUGEV, DEBUGHLT, WAIT, or STOP instruction
A Tcc, SWAP SHADOWS, or ALIGNSP instruction

Also, a REP instruction cannot be the last instruction in a DO loop (at the LA). The assembler will
generate an error if any of the preceding instructions are found immediately following a REP instruc-
tion.
A-242 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

REP Repeat Next Instruction REP
Example 1:

REP X0 ; repeat (X0) times
INC.W Y1 ; increment the Y1 register

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $0003, and the 16-bit LC register contains
the value $00A5. Execution of the REP X0 instruction stores X0 in the LC register. Then, the sin-
gle-word INC.W instruction that immediately follows the REP instruction is repeated $0003 times.
The contents of the LC register that existed before the REP loop began are restored when the REP loop
is exited.

Example 2:
REP X0 ; repeat (X0) times
INC.W Y1 ; increment the Y1 register
ASL.W Y1 ; multiply the Y1 register by 2

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $0000, and the 16-bit LC register contains
the value $00A5. Execution of the REP X0 instruction stores X0 in the LC register. Since the loop
count is zero, the single-word INC.W instruction that immediately follows the REP instruction is
skipped, and execution continues with the ASL.W instruction. The contents of the LC register that ex-
isted before the REP loop began are restored when the REP loop is exited.

Condition Codes Affected:

L — Set if data limiting occurred using accumulator as source operand

Before Execution

0003X0

After Execution

0003X0

00A5LC 00A5LC

80000000

Y1 Y0

80000003

Y1 Y0

Before Execution

0000X0

After Execution

0000X0

00A5LC 00A5LC

80000005

Y1 Y0

8000000A

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-243

REP Repeat Next Instruction REP
Instruction Fields:

Instruction Opcodes:

Timing: 2 or 5 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

REP #<0–63> 2 1 Hardware repeat a 1-word instruction with immediate loop count.

DDDDD 5 1 Hardware repeat a 1-word instruction with loop count specified in
register. Skip next instruction if the value of the register is zero.

Any DDDDD register is allowed except C2, D2, C0, D0,
C, D, Y, M01, N3, LA, LA2, LC, LC2, SR, OMR, and HWS.

15 12 11 8 7 4 3 0

REP #<0–63> 1 1 1 0 1 0 1 0 0 0 B B B B B B

15 12 11 8 7 4 3 0

REP DDDDD 1 1 1 0 1 0 1 1 0 0 1 d d d d d
A-244 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

RND Round RND
Operation: Assembler Syntax:

D + r → D (one parallel move) RND D (one parallel move)
D + r → D (no parallel move) RND D (no parallel move)

Description: Round the 36-bit or 32-bit value in the specified destination operand (D). If the destination is an accu-
mulator, store the result in the EXT:MSP portions of the accumulator and clear the LSP. When the des-
tination is the 32-bit Y register, store the result in Y1 and clear Y0. This instruction uses the rounding
technique that is selected by the R bit in the OMR. When the R bit is cleared (default mode), conver-
gent rounding is selected; when the R bit is set, two’s-complement rounding is selected. Refer to
Section 5.9, “Rounding,” on page 5-43 for more information about the rounding modes.

Example:

RND A ; round A accumulator into A2:A1, zero A0

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:1234:789A for case I and the value
$0:1234:8000 for case II and case III. Execution of the RND instruction rounds the value in the A ac-
cumulator into the MSP of the A accumulator (A1) and then zeros the LSP of the A accumulator (A0).
Case I assumes that convergent rounding is selected. Case II and case III demonstrate convergent
rounding versus two’s-complement rounding by applying them to the same initial value. The only con-
dition under which these algorithms generated different results is when A1 is even and A0 contains the
boundary value $8000.

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if overflow has occurred in result
E — Set if the extended portion of result is in use
U — Set according to the standard definition of the U bit
N — Set if MSB of result is set
Z — Set if result equals zero
V — Set if overflow has occurred in result

After Execution

0 1234 0000

A2 A1 A0

Before Execution (R = 0; convergent)

0 1234 789A

A2 A1 A0

After Execution

0 1234 0000

A2 A1 A0

Before Execution (R = 0; convergent)

0 1234 8000

A2 A1 A0

After Execution

0 1235 0000

A2 A1 A0

Before Execution (R = 1; two’s-complement)

0 1234 8000

A2 A1 A0

I

II

III

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-245

RND Round RND
Instruction Fields:

Parallel Moves:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

RND fff 1 1 Round.

Data ALU Operation Parallel Memory Move

Operation Operands Source Destination1

1.The case where the destination of the data ALU operation is the same register as the destination of the par-
allel read operation is not allowed. Memory writes are allowed in this case.

RND2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

F X:(Rj)+
X:(Rj)+N

X0
Y1
Y0
A
B
C
A1
B1

X0
Y1
Y0
A
B
C
A1
B1

X:(Rj)+
X:(Rj)+N

15 12 11 8 7 4 3 0

RND F GGG,X:<ea_m> 0 0 0 1 0 G G G F 0 0 1 0 m R R

15 12 11 8 7 4 3 0

RND F X:<ea_m>,GGG 0 0 1 1 0 G G G F 0 0 1 0 m R R

15 12 11 8 7 4 3 0

RND fff 0 1 1 1 0 0 f f f 1 0 0 1 0 1 1
A-246 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ROL.L Rotate Left Long ROL.L
Operation: Assembler Syntax:

(see following figure) ROL.L D (no parallel move)

Description: Logically shift 32 bits of the destination operand (D) 1 bit to the left, and store the result in the desti-
nation. The result is stored in the MSP and LSP of the accumulator (FF10 portion). The accumulator
extension register is not modified. The MSB of the accumulator (bit 31) prior to execution is shifted
into C, and the previous value of C is shifted into the LSB of the accumulator. The result is not affected
by the state of the saturation bit (SA).

Example:

ROL.L B ; rotate B10 left 1 bit

Explanation of Example:
Prior to execution, the 36-bit B accumulator contains the value $0:C000:80AA. Execution of the
ROL.L instruction shifts the 32-bit value in the B10 register 1 bit to the left, shifting bit 31 into C, ro-
tating C into bit 0, and storing the result back in the B10 register.

Condition Codes Affected:

C — Set if bit 31 of accumulator was set prior to the execution of the instruction

C

D0D2 D1

Unch.

Before Execution

80AAC0000

B2 B1 B0

0301SR

After Execution

015580010

B2 B1 B0

0301SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-247

ROL.L Rotate Left Long ROL.L
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

ROL.L F 1 1 Rotate 32-bit register left by 1 bit through the carry bit

15 12 11 8 7 4 3 0

ROL.L F 0 1 1 1 0 1 1 0 F 0 0 0 0 1 1 1
A-248 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ROL.W Rotate Left Word ROL.W
Operation: Assembler Syntax:

(see following figure) ROL.W D (no parallel move)

Description: Logically shift 16 bits of the destination operand (D) 1 bit to the left, and store the result in the desti-
nation. If the destination is a 36-bit accumulator, the result is stored in the MSP of the accumulator
(FF1 portion), and the remaining portions of the accumulator are not modified. The MSB of the desti-
nation (bit 31 for accumulators or bit 15 for registers) prior to the execution of the instruction is shifted
into C, and the previous value of C is shifted into the LSB of the destination (bit 16 if the destination
is a 36-bit accumulator). The result is not affected by the state of the saturation bit (SA).

Example:

ROL.W B ; rotate B1 left 1 bit

Explanation of Example:
Prior to execution, the 36-bit B accumulator contains the value $0:C000:80AA. Execution of the
ROL.W instruction shifts the 16-bit value in the B1 register 1 bit to the left, shifting bit 31 into C, ro-
tating C into bit 16, and storing the result back in the B1 register.

Condition Codes Affected:

N — Set if bit 31 of accumulator result is set (bit 15 of X0,Y0,Y1)
Z — Set if bits 31–16 of accumulator result are zero (bits 15–0 of X0,Y0,Y1)
V — Always cleared
C — Set if bit 31 of accumulator (bit 15 of X0,Y0,Y1) was set prior to the execution

of the instruction

C

D0D2 D1

UnchangedUnch.

Before Execution

80AAC0000

B2 B1 B0

0301SR

After Execution

80AA80010

B2 B1 B0

0309SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-249

ROL.W Rotate Left Word ROL.W
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

ROL.W EEE 1 1 Rotate 16-bit register left by 1 bit through the carry bit

15 12 11 8 7 4 3 0

ROL.W EEE 0 1 1 1 0 0 E E E 1 0 1 0 0 1 1
A-250 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ROR.L Rotate Right Long ROR.L
Operation: Assembler Syntax:

(see following figure) ROR.L D (no parallel move)
:

Description: Logically shift 32 bits of the destination operand (D) 1 bit to the right, and store the result in the des-
tination. The result is stored in the MSP and LSP of the accumulator (FF10 portion). The accumulator
extension portion is not modified. The LSB of the destination (bit 0) prior to the execution of the in-
struction is shifted into C, and the previous value of C is shifted into the MSB of the destination (bit
31). The result is not affected by the state of the saturation bit (SA).

Example:

ROR.L B ;rotate B1 right 1 bit

Explanation of Example:
Prior to execution, the 36-bit B accumulator contains the value $0:C000:80AA. Execution of the
ROR.L instruction shifts the 32-bit value in the B10 register 1 bit to the right, shifting bit 0 into C,
rotating C into bit 31, and storing the result back in the B10 register.

Condition Codes Affected:

C — Set if bit 0 of source operand was set prior to the execution of the instruction

C

D0D2 D1

Unch.

Before Execution

80AAC0000

B2 B1 B0

0301SR

After Execution

4055E0000

B2 B1 B0

0300SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-251

ROR.L Rotate Right Long ROR.L
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

ROR.L F 1 1 Rotate 32-bit register right by 1 bit through the carry bit

15 12 11 8 7 4 3 0

ROR.L F 0 1 1 1 0 1 1 0 F 1 0 0 0 1 1 1
A-252 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ROR.W Rotate Right Word ROR.W
Operation: Assembler Syntax:

(see following figure) ROR.W D (no parallel move)
:

Description: Logically shift 16 bits of the destination operand (D) 1 bit to the right, and store the result in the des-
tination. If the destination is a 36-bit accumulator, the result is stored in the MSP of the accumulator
(FF1 portion), and the remaining portions of the accumulator are not modified. The LSB of the desti-
nation (bit 16 for a 36-bit accumulator) prior to the execution of the instruction is shifted into C, and
the previous value of C is shifted into the MSB of the destination (bit 31 for a 36-bit accumulator). The
result is not affected by the state of the saturation bit (SA).

Example:

ROR.W B ;rotate B1 right 1 bit

Explanation of Example:
Prior to execution, the 36-bit B accumulator contains the value $0:C000:80AA. Execution of the
ROR.W B instruction shifts the 16-bit value in the B1 register 1 bit to the right, shifting bit 16 into C,
rotating C into bit 31, and storing the result back in the B1 register.

Condition Codes Affected:

N — Set if bit 31 of accumulator result or bit 15 of result for X0, Y0, or Y1 is set
Z — Set if bits 31–16 of accumulator result or all bits of result for X0, Y0, or Y1 are zero
V — Always cleared
C — Set if bit 16 of accumulator or bit 0 of X0, Y0, or Y1 was set prior to the execution of the

instruction

C

D0D2 D1

UnchangedUnch.

Before Execution

80AAC0000

B2 B1 B0

0301SR

After Execution

80AAE0000

B2 B1 B0

0308SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-253

ROR.W Rotate Right Word ROR.W
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

ROR.W EEE 1 1 Rotate 16-bit register right by 1 bit through the carry bit

15 12 11 8 7 4 3 0

ROR.W EEE 0 1 1 1 0 0 E E E 1 0 1 1 0 1 1
A-254 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

RTI Return from Interrupt RTI
Operation: Assembler Syntax:

X:(SP) → SR RTI
SP – 1→ SP
SR[14:10],X:(SP) → PC
SP – 1→ SP

Description: Return to normal execution at the end of an interrupt service routine. The return restores the status reg-
ister (SR) and program counter (PC) from the software stack. The previous PC is lost, and execution
resumes at the address that is indicated by the (restored) PC. Bits 10 through 14 of the SR contain the
upper 5 bits of the original PC at the time of the interrupt.

Example:

RTI ; pull the SR and PC registers from the stack

Explanation of Example:
The RTI instruction pulls the 16-bit PC and the 16-bit SR from the stack and updates the system SP.
Program execution continues at $04754C (PC bits 16–20 are obtained from bits 10–14 of the restored
status register). The example shows a level 1 interrupt source.

Restrictions:
Refer to Section 10.4, “Pipeline Dependencies and Interlocks,” on page 10-26.

Condition Codes Affected:

All bits are set according to the value removed from the stack

Instruction Fields:

Instruction Opcodes:

Timing: 8 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

RTI 8 1 Return from interrupt, restoring 21-bit PC and SR from the stack

Before Execution

1008X:$0101

0219SR

After Execution

1008X:$0101

1008SR

754CX:$0100754CX:$0100

000101SP 0000FFSP

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 12 11 8 7 4 3 0

RTI 1 1 1 0 0 1 1 1 0 0 0 0 1 0 0 1
Freescale Semiconductor Instruction Set Details A-255

RTID Delayed Return from Interrupt RTID
Operation: Assembler Syntax:

X:(SP) → SR RTID
SP – 1→ SP
SR[14:10],X:(SP) → PC
SP – 1→ SP
Execute instructions in next 3 delay slots

Description: Return to normal execution at the end of an interrupt service routine, but execute the instructions in the
next 3 words of the instruction before returning. The return restores the status register (SR) and pro-
gram counter (PC) from the software stack. The previous PC is lost, and execution resumes at the ad-
dress that is indicated by the (restored) PC. Bits 10 through 14 of the SR contain the upper 5 bits of the
original PC at the time of the interrupt.

Example:

RTID ; return from ISR
BFTSTH #$8001,A1 ; first 2 delay slots
NOP ; last delay slot (unused)
...

OTHERCODE

Explanation of Example:
The RTID instruction pulls the 16-bit PC and the 16-bit SR from the stack and updates the system SP.
Program execution continues at $04754C (PC bits 16–20 are obtained from bits 10–14 of the restored
status register). The example shows a level 1 interrupt source.

Restrictions:
Refer to Section 10.4, “Pipeline Dependencies and Interlocks,” on page 10-26.
Refer to Section 4.3.2, “Delayed Instruction Restrictions,” on page 4-14.

Condition Codes Affected:

All set according to value removed from stack

Before Execution

1108X:$0101

0214SR

After Execution

1108X:$0101

1108SR

754CX:$0100754CX:$0100

000101SP 0000FFSP

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-256 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

RTID Delayed Return from Interrupt RTID
Instruction Fields:

Instruction Opcodes:

Timing: 5 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

RTID 5 1 Delayed return from interrupt, restoring 21-bit PC and SR from
the stack; must fill 3 delay slots

15 12 11 8 7 4 3 0

RTID 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1
Freescale Semiconductor Instruction Set Details A-257

RTS Return from Subroutine RTS
Operation: Assembler Syntax:

X:(SP) → (stored SR; discarded) RTS
SP – 1→ SP
SR[14:10],X:(SP) → PC
SP – 1→ SP

Description: Return from a call to a subroutine. To perform the return, RTS pulls and discards the previously pushed
SR (except bits 10–14) and pops the PC from the software stack. The previous PC is lost. The SR is
not affected except for bits 10–14, which contain the upper 5 bits of the (restored) PC.

Example:

RTS ; pull and discard the SR from the stack (except bits 10–14),
; pull the PC from the stack

Explanation of Example:
The segment of code where the example instruction resides is located within the lower 64K words of
program memory. The segment shown is the returning portion of the routine. The example assumes
that the routine is invoked using a 3-word BSR instruction located at address $047549. The RTS in-
struction pulls the 16-bit PC and bits 10–14 of the stored SR from the software stack and updates the
SP. Program execution continues at $04754C (PC bits 16–20 are obtained from bits 10–14 of the re-
trieved status register).

Restrictions:
Refer to Section 10.4, “Pipeline Dependencies and Interlocks,” on page 10-26.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 8 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

RTS 8 1 Return from subroutine, restoring 21-bit PC from the stack

Before Execution

1008X:$0101

0009SR

After Execution

1008X:$0101

1009SR

754CX:$0100754CX:$0100

000101SP 0000FFSP

15 12 11 8 7 4 3 0

RTS 1 1 1 0 0 1 1 1 0 0 0 0 1 0 0 0
A-258 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

RTSD Delayed Return from Subroutine RTSD
Operation: Assembler Syntax:

X:(SP) → (stored SR; discarded) RTSD
SP – 1→ SP
SR[14:10],X:(SP) → PC
SP – 1→ SP
Execute instructions in next 3 delay slots

Description: Return from a call to a subroutine, but execute the instructions in the next 3 words of instruction before
returning. To perform the return, RTSD pulls and discards the previously pushed SR (except bits
10–14) and pops the PC from the software stack. The previous PC is lost. The SR is not affected except
for bits 10–14, which contain the upper five bits of the (restored) PC.

Example:

RTSD ; restore PC from the stack
MOVE.W A,X:$7000 ; save A1, 2-word delay slot
MOVE.W B,X:$0010 ; save B1, 1-word delay slot
NOP ; extra slot (not used)
...

OTHERCODE

Explanation of Example:
The segment of code where the example resides is located within the lower 64K words of program
memory. The segment shown is the returning portion of the routine. The example assumes that the rou-
tine is invoked using a 3-word BSR instruction located at address $047549. The RTSD instruction
pulls the 16-bit PC and the stored SR from the software stack and updates the SP. The instructions in
the following 3 delay slots are then executed, and then program execution continues at $04754C (PC
bits 16–20 are obtained from bits 10–14 of the retrieved status register). In the example, the NOP in-
struction falls outside the 3-word delay slots, and therefore it is never executed.

Restrictions:
Refer to Section 10.4, “Pipeline Dependencies and Interlocks,” on page 10-26.
Refer to Section 4.3.2, “Delayed Instruction Restrictions,” on page 4-14.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Before Execution

1008X:$0101

0004SR

After Execution

1008X:$0101

1004SR

754CX:$0100754CX:$0100

000101SP 0000FFSP
Freescale Semiconductor Instruction Set Details A-259

RTSD Delayed Return from Subroutine RTSD
Instruction Fields:

Instruction Opcodes:

Timing: 5 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

RTSD 5 1 Delayed return from subroutine, restoring 21-bit PC from the
stack; must fill 3 delay slots

15 12 11 8 7 4 3 0

RTSD 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0
A-260 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

SAT Saturate SAT
Operation: Assembler Syntax:

Saturate S → D (no parallel move) SAT S,D (no parallel move)
Saturate S → Y0 (one parallel move) SAT S,Y0 (one parallel move)

Description: Transfer the value in an accumulator to another register, substituting a positive or negative fixed con-
stant if necessary to prevent the value from overflowing the destination register. The result is not af-
fected by the state of the saturation bit (SA). The algorithm that is used to determine if the constant
should be substituted is discussed in Section 5.8, “Saturation and Data Limiting,” on page 5-39.

Usage: This instruction is used to force saturation to take place. If the SA bit in the operating mode register
has been cleared, disabling saturation, the SAT instruction can be used after a calculation to manually
force saturation.

Example:

SAT B,Y0 A,X:(R2)+ ; transfer value in B to Y0, with saturation
; store A1 (with limiter active) to memory
; and update pointer

Explanation of Example:
Prior to execution, R2 contains the value $1000, and the B accumulator contains the value
$3:A000:00FF. Since this value makes use of the extension register (it does not contain just sign ex-
tension), this value cannot be represented by a 16-bit word, and transferring the value to the Y0 register
would result in overflow. When the SAT instruction is executed, it substitutes the largest positive in-
teger, resulting in a value of $7FFF in Y0. The parallel write has a similar effect since the value in A
($C:A000:00FF) cannot be represented by a 16-bit word. This value is saturated to the maximum
16-bit negative value and $8000 is written to memory. The L bit is set because limiting occurs in the
parallel move. The value of R2 is post-incremented by one.

Condition Codes Affected:

SZ — Set by result of parallel write to memory according to the standard definition
L — Set if overflow has occurred in the parallel move

This bit is not affected by the SAT operation.

Before Execution

00FFA0003

B2 B1 B0

After Execution

00FFA0003

B2 B1 B0

0300SR 03C0SR

4226A7633

A2 A1 A0

X:$1000

4226A7633

A2 A1 A0

00FFA000C

A2 A1 A0

F799

00FFA000C

A2 A1 A0

X:$1000 8000

00002000

Y1 Y0

7FFF2000

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-261

SAT Saturate SAT
Instruction Fields:

Parallel Moves:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

SAT FF,FFF 1 1 Saturate and transfer 32-bit accumulator.

FF 1 1 An alternate syntax for the preceding instruction if the
source and the destination are the same.

Data ALU Operation Parallel Memory Move

Operation Operands Source Destination1

1.The case where the destination of the data ALU operation is the same register as the destination of the par-
allel read operation is not allowed. Memory writes are allowed in this case.

SAT2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

F,Y0 X:(Rj)+
X:(Rj)+N

X0
Y1
Y0
A
B
C
A1
B1

X0
Y1
Y0
A
B
C
A1
B1

X:(Rj)+
X:(Rj)+N

15 12 11 8 7 4 3 0

SAT F,Y0 GGG,X:<ea_m> 0 0 0 0 0 G G G F 0 1 0 0 m R R

15 12 11 8 7 4 3 0

SAT F,Y0 X:<ea_m>,GGG 0 0 1 0 0 G G G F 0 1 0 0 m R R

15 12 11 8 7 4 3 0

SAT FF,FFF 0 1 1 1 1 1 F F F 0 b b 0 1 0 0
A-262 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

SBC Subtract Long with Carry SBC
Operation: Assembler Syntax:

D – S – C → D (no parallel move) SBC S,D (no parallel move)

Description: Subtract the source operand (S) and the carry bit (C) from the second operand, and store the result in
the destination (D). The source operand (S) is always register Y, which is first sign extended internally
to form a 36-bit value before being subtracted from the destination accumulator. The result is not af-
fected by the state of the saturation bit (SA).

Usage: This instruction is typically used in multi-precision subtraction operations (see Section 5.5.1, “Extend-
ed-Precision Addition and Subtraction,” on page 5-29) when it is necessary to subtract together two
numbers that are larger than 32 bits, as in 64-bit or 96-bit subtraction.

Example:

SBC Y,A ; subtract Y and carry bit from A

Explanation of Example:
Prior to execution, the 32-bit Y register—which is composed of the Y1 and Y0 registers—contains the
value $3FFF:FFFE, and the 36-bit accumulator contains the value $0:4000:0000. In addition, the initial
value of C is one. The SBC instruction automatically sign extends the 32-bit Y registers to 36 bits and
subtracts this value from the 36-bit accumulator. The carry bit (C) is also subtracted from the LSB of
this 36-bit operation. The 36-bit result is stored back in the A accumulator, and the condition codes are
set appropriately. The Y1:Y0 register pair is not affected by this instruction.

Note: C is set correctly for multi-precision arithmetic, using long-word operands only when the extension
register of the destination accumulator (FF2) contains only sign extension information (bits 31 through
35 are identical in the destination accumulator).

Condition Codes Affected:

L — Set if overflow has occurred in result
E — Set if the extension portion of accumulator result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 35 of accumulator result is set
Z — Set if accumulator result equals zero; cleared otherwise
V — Set if overflow has occurred in accumulator result
C — Set if a carry (or borrow) occurs from bit 35 of accumulator result

Before Execution

000040000

A2 A1 A0

0301SR

FFFE3FFF

Y1 Y0

After Execution

000100000

A2 A1 A0

0310SR

FFFE3FFF

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-263

SBC Subtract Long with Carry SBC
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

SBC Y,F 1 1 Subtract with carry (set C bit also)

15 12 11 8 7 4 3 0

SBC Y,F 0 1 1 1 0 1 0 0 F 1 0 0 0 1 1 1
A-264 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

STOP Stop Instruction Processing STOP
Operation: Assembler Syntax:

Enter the stop processing state STOP

Description: Enter the stop processing state. All activity in the processor is suspended until the RESET pin is as-
serted, a hardware interrupt signal is asserted, or an on-chip peripheral asserts a signal to exit the stop
processing state. The stop processing state is a very low-power standby mode where all clocks to the
DSC core and interrupt controller (as well as the clocks to many of the on-chip peripherals, such as
serial ports) are gated off. It is still possible for timers to continue to run in the stop state. In these cases
the timers can be individually powered down at the peripheral itself for lower power consumption. The
clock oscillator can also be disabled for lowest power consumption.

When the exit from the stop state is caused by a low level on the RESET pin, the processor enters the
reset processing state. The time to recover from the stop state using RESET depends on a clock stabi-
lization delay that is controlled by the stop delay (SD) bit in the OMR.

When the exit from the stop state is caused by a hardware interrupt request, the processor enters the
exception processing state. The processor services the highest-priority pending interrupt, which may
or may not be the same interrupt that awakened the processor from stop mode. Refer to Section 9.5,
“Stop Processing State,” on page 9-12 for details on the stop mode.

Restrictions:
A STOP instruction cannot be repeated using the REP instruction.
A STOP instruction cannot be the last instruction in a DO loop (that is, at the LA).

Example:

STOP ; enter low-power standby mode

Explanation of Example:
As described in the “Description,” the STOP instruction suspends all processor activity until the pro-
cessor is reset or interrupted. The STOP instruction puts the processor in a low-power standby mode.
No new instructions are fetched until the processor exits the STOP processing state.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: Dependent upon chip implementation

Memory: 1 program word

Operation Operands C W Comments

STOP Dependent upon chip implementation 1 Enter STOP low-power mode

15 12 11 8 7 4 3 0

STOP 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0
Freescale Semiconductor Instruction Set Details A-265

SUB Subtract SUB
Operation: Assembler Syntax:

D – S → D (no parallel move) SUB S,D (no parallel move)
D – S → D (one parallel move) SUB S,D (one parallel move)
D – S → D (two parallel reads) SUB S,D (two parallel reads)

Description: Subtract the source register from the destination register and store the result in the destination (D). If
the destination is a 36-bit accumulator, 16-bit source registers are first sign extended internally and
concatenated with 16 zero bits to form a 36-bit operand (the Y register is only sign extended). When
the destination is X0, Y0, or Y1, 16-bit subtraction is performed. In this case, if the source operand is
one of the four accumulators; the FF1 portion (properly sign extended) is used in the 16-bit subtraction
(the FF2 and FF0 portions are ignored). Similarly, if the destination is the Y register, the FF2 portion
is ignored.

Usage: This instruction can be used for both integer and fractional two’s-complement data.

Example 1:
SUB Y0,A X:(R2)+N,Y1 ; 36-bit subtract, load Y1, update R2

Explanation of Example:
Prior to execution, the 16-bit Y0 register contains the negative value $8003, and the 36-bit A accumu-
lator contains the value $4:8058:1234. The SUB instruction automatically appends the 16-bit value in
the Y0 register with 16 LS zeros, sign extends the resulting 32-bit long word to 36 bits. This value is
then subtracted from the 36-bit A accumulator. Thus, 16-bit operands are always subtracted from the
MSP of A or B (A1 or B1) with the results correctly extending into the extension register (A2 or B2).

Before Execution

123480584

A2 A1 A0

After Execution

123400555

A2 A1 A0

0300SR 0331SR

80032000

Y1 Y0

80034FFF

Y1 Y0
A-266 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

SUB Subtract SUB
Example 2:

SUB A,Y0 ; 16-bit subtract

Explanation of Example:
Prior to execution, the 16-bit Y0 register contains the negative value $8003, and the 36-bit A accumu-
lator contains the value $4:8058:1234. Since the destination is a 16-bit register, the value in A1 is first
sign extended before being subtracted from Y0. The operation generates a 16-bit negative result in Y0
(setting the N bit in the CCR). The C bit is set because a borrow took place and the result is unnormal-
ized.

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the extended portion of the result is in use
U — Set if the result is unnormalized
N — Set if the high-order bit of the result is set
Z — Set if the result equals zero
V — Set if overflow has occurred in the result
C — Set if a borrow occurs from the high-order bit of the result

Instruction Fields:

Operation Operands C W Comments

SUB FFF,FFF 1 1 36-bit subtract two registers.

Before Execution

123480584

A2 A1 A0

After Execution

123480584

A2 A1 A0

0300SR 0319SR

80032000

Y1 Y0

FFAB2000

Y1 Y0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-267

SUB Subtract SUB
Parallel Moves:

Parallel Dual Reads:

Data ALU Operation Parallel Memory Move

Operation Operands Source Destination1

1.The case where the destination of the data ALU operation is the same register as the destination of the par-
allel read operation is not allowed. Memory writes are allowed in this case.

SUB2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

X0,F
Y1,F
Y0,F
C,F

A,B
B,A

X:(Rj)+
X:(Rj)+N

X0
Y1
Y0
A
B
C
A1
B1

X0
Y1
Y0
A
B
C
A1
B1

X:(Rj)+
X:(Rj)+N

Data ALU Operation1

1.This instruction is not allowed when the XP bit in the OMR is set (that is, when the instructions are executing
from data memory).

First Memory Read Second Memory Read

Operation Operands Source 1 Destination 1 Source 2 Destination 2

SUB2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

X0,F
Y1,F
Y0,F

A,B
B,A

X:(R0)+
X:(R0)+N
X:(R1)+

X:(R1)+N

Y0
Y1

X:(R3)+
X:(R3)–

X0

X:(R4)+
X:(R4)+N

Y0 X:(R3)+
X:(R3)+N3

X0

X:(R0)+
X:(R0)+N
X:(R4)+

X:(R4)+N

Y1 X:(R3)+
X:(R3)+N3

C

A-268 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

SUB Subtract SUB
Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

15 12 11 8 7 4 3 0

SUB C,F GGG,X:<ea_m> 0 0 0 1 0 G G G F 1 1 0 0 m R R

15 12 11 8 7 4 3 0

SUB C,F X:<ea_m>,GGG 0 0 1 1 0 G G G F 1 1 0 0 m R R

15 12 11 8 7 4 3 0

SUB DD,F GGG,X:<ea_m> 0 0 0 1 0 G G G F J J J 0 m R R

15 12 11 8 7 4 3 0

SUB DD,F X:<ea_m>,GGG 0 0 1 1 0 G G G F J J J 0 m R R

15 12 11 8 7 4 3 0

SUB DD,F X:<ea_m>,reg1
X:<ea_v>,reg2

0 1 1 1 0 0 v v F v J J 0 m 0 v

15 12 11 8 7 4 3 0

SUB FFF,FFF 0 1 1 1 1 0 F F F b b b 0 0 0 1

15 12 11 8 7 4 3 0

SUB ~F,F GGG,X:<ea_m> 0 0 0 1 0 G G G F 0 0 0 0 m R R

15 12 11 8 7 4 3 0

SUB ~F,F X:<ea_m>,GGG 0 0 1 1 0 G G G F 0 0 0 0 m R R

15 12 11 8 7 4 3 0

SUB ~F,F X:<ea_m>,reg1
X:<ea_v>,reg2

0 1 1 1 0 0 v v F v 1 0 0 m 0 v
Freescale Semiconductor Instruction Set Details A-269

SUB.B Subtract Byte SUB.B
Operation: Assembler Syntax:

D – S → D (no parallel move) SUB.B S,D (no parallel move)

Description: Subtract a 9-bit signed immediate integer from the 8-bit portion of the destination register, and store
the result in the destination (D). The value is internally sign extended to 20 bits before the operation.
If the destination is a 16-bit register, it is first sign extended before the subtraction is performed. The
immediate integer is used to represent 8-bit unsigned values from 0 to 255 as well as the signed range:
–128 to 127. The condition codes are calculated based on the 8-bit result, with the exception of the E
and U bits, which are calculated based on the 20-bit result. The result is not affected by the state of the
saturation bit (SA).

Usage: This instruction can be used for both integer and fractional two’s-complement data.

Example:

SUB.B #$58,A ; subtract hex 58 from A accumulator

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:3158:1234. The SUB.B instruction
automatically sign extends the immediate value to 20 bits and subtracts the result from the A2:A1 por-
tion of the A accumulator. The 8-bit result ($00) is stored back into the low-order 8 bits of A1.

Condition Codes Affected:

E — Set if the extension portion of the 20-bit result is in use
U — Set if the 20-bit result is unnormalized
N — Set if bit 7 of the result is set
Z — Set if the result equals zero
V — Set if overflow has occurred in the result
C — Set if a borrow occurs from bit 7 of the result

Before Execution

123431580

A2 A1 A0

After Execution

123431000

A2 A1 A0

0300SR 0314SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-270 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

SUB.B Subtract Byte SUB.B
Instruction Fields:

Instruction Opcodes:

Timing: 2 oscillator clock cycles

Memory: 2 program words

Operation Operands C W Comments

SUB.B #xxx,EEE 2 2 Subtract 9-bit signed immediate

15 12 11 8 7 4 3 0

SUB.B #xxx,EEE 0 1 0 1 0 1 E E E 1 0 0 0 0 1 0

iiiiiiiiiiiiiiii
Freescale Semiconductor Instruction Set Details A-271

SUB.BP Subtract Byte (Byte Pointer) SUB.BP
Operation: Assembler Syntax:

D – S → D (no parallel move) SUB.BP S,D (no parallel move)

Description: Subtract a byte stored in memory from the 8-bit portion of the destination register, and store the result
in the destination (D). The value is internally sign extended to 20 bits before the operation. If the des-
tination is a 16-bit register, it is first correctly sign extended before the subtraction is performed. The
condition codes are calculated based on the 8-bit result, with the exception of the E and U bits, which
are calculated based on the 20-bit result. Absolute addresses are expressed as byte addresses. The result
is not affected by the state of the saturation bit (SA).

Usage: This instruction can be used for both integer and fractional two’s-complement data.

Example:

SUB.BP X:$4000,A ; subtract byte in memory from A accumulator

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:3100:1234. The SUB.BP instruction
automatically sign extends the memory byte to 20 bits and subtracts the result from the A2:A1 portion
of the A accumulator. The 8-bit result ($10) is stored back into the low-order 8 bits of A1. The C bit
in the CCR is set because a borrow took place.

Condition Codes Affected:

E — Set if the extension portion of the 20-bit result is in use
U — Set if the 20-bit result is unnormalized
N — Set if bit 7 of the result is set
Z — Set if the result equals zero
V — Set if overflow has occurred in the result
C — Set if a borrow occurs from bit 7 of the result

Before Execution

123431000

A2 A1 A0

After Execution

123431100

A2 A1 A0

44F0(word address) X:$2000 44F0 X:$2000

0300SR 0311SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-272 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

SUB.BP Subtract Byte (Byte Pointer) SUB.BP
Instruction Fields:

Instruction Opcodes:

Timing: 2–3 oscillator clock cycles

Memory: 2–3 program words

Operation Operands C W Comments

SUB.BP X:xxxx,EEE 2 2 Subtract memory byte from register

X:xxxxxx,EEE 3 3

15 12 11 8 7 4 3 0

SUB.BP X:xxxx,EEE 0 1 0 1 0 1 E E E 1 0 0 0 1 1 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

SUB.BP X:xxxxxx,EEE 1 1 1 0 0 A A A 0 A 1 1 A A A A

0 1 0 1 0 1 E E E 1 0 0 0 1 1 0

AAAAAAAAAAAAAAAA
Freescale Semiconductor Instruction Set Details A-273

SUB.L Subtract Long SUB.L
Operation: Assembler Syntax:

D – S → D (no parallel move) SUB.L S,D (no parallel move)

Description: Subtract a long-word value in memory or a 16-bit signed immediate value from the destination register,
and store the result in the destination (D). Source values are internally sign extended to 36 bits before
the subtraction. Condition codes are calculated based on the 32-bit result, with the exception of the E
and U bits, which are calculated based on the 36-bit result for accumulator destinations. Absolute ad-
dresses pointing to long elements must always be even aligned (that is, pointing to the lowest 16 bits).

Usage: This instruction can be used for both integer and fractional two’s-complement data.

Example:

SUB.L #$1000,A ; subtract hex 1000 from A accumulator

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:3158:1234. The SUB.L instruction
automatically sign extends the immediate value to 36 bits and subtracts the result from the A accumu-
lator. The 36-bit result ($0:3158:0234) is stored back into the accumulator.

Condition Codes Affected:

E — Set if the extension portion of the result is in use
U — Set if the result is unnormalized
N — Set if bit 31 of the result is set
Z — Set if bits 31–0 of the result are zero
V — Set if overflow has occurred in the result
C — Set if a borrow occurs from bit 31 of the result

Before Execution

123431580

A2 A1 A0

After Execution

023431580

A2 A1 A0

0300SR 0310SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-274 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

SUB.L Subtract Long SUB.L
Instruction Fields:

Instruction Opcodes:

Timing: 2–3 oscillator clock cycles

Memory: 2–3 program words

Operation Operands C W Comments

SUB.L X:xxxx,fff 2 2 Subtract memory long from register

X:xxxxxx,fff 3 3

#xxxx,fff 2 2 Subtract a 16-bit immediate value sign extended to
32 bits to a data register

15 12 11 8 7 4 3 0

SUB.L #xxxx,fff 0 1 0 1 0 1 f f f 1 0 0 0 0 1 1

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

SUB.L X:xxxx,fff 0 1 0 1 0 1 f f f 1 0 0 0 1 1 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

SUB.L X:xxxxxx,fff 1 1 1 0 0 A A A 0 A 1 1 A A A A

0 1 0 1 0 1 f f f 1 0 0 0 1 1 1

AAAAAAAAAAAAAAAA
Freescale Semiconductor Instruction Set Details A-275

SUB.W Subtract Word SUB.W
Operation: Assembler Syntax:

D – S → D (no parallel move) SUB.W S,D (no parallel move)

Description: Subtract the source operand from the destination register, and store the result in the destination (D).
The source operand (except for a short immediate operand) is first sign extended internally to form a
20-bit value; this value is concatenated with 16 zero bits to form a 36-bit value when the destination is
one of the four accumulators. A short immediate (0–31) source operand is zero extended before the
subtraction. The subtraction is then performed as a 20-bit operation. Condition codes are calculated
based on the size of the destination.

Usage: This instruction can be used for both integer and fractional two’s-complement data.

Example:

SUB.W X:(R2),A ; 16-bit subtraction

Explanation of Example:
Prior to execution, the 16-bit value at memory location X:$4000 is $0058, and the 36-bit A accumula-
tor contains the value $0:0058:1234. The SUB.W instruction automatically sign extends the memory
value to 20 bits and subtracts the result from the A2:A1 portion of the accumulator. The result is stored
back in A1.

Condition Codes Affected:

L — Set if overflow has occurred in the result
E — Set if the extension portion of the 20-bit result is in use
U — Set if the 20-bit result is unnormalized
N — Set if the high-order bit of the result is set
Z — Set if the result equals zero (accumulator bits 35–0 or bits 15–0 of a 16-bit register)
V — Set if overflow has occurred in the result
C — Set if a borrow occurs from the high-order bit of the result

Before Execution

123400580

A2 A1 A0

0058X:$4000

After Execution

123400000

A2 A1 A0

0058X:$4000

0300SR 0310SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-276 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

SUB.W Subtract Word SUB.W
Instruction Fields:

Instruction Opcodes:

Timing: 1–3 oscillator clock cycle(s)

Memory: 1–3 program word(s)

Operation Operands C W Comments

SUB.W X:(Rn),EEE 2 1 Subtract memory word from register

X:(Rn+xxxx),EEE 3 2

X:(SP–xx),EEE 3 1

X:xxxx,EEE 2 2

X:xxxxxx,EEE 3 3

#<0–31>,EEE 1 1 Subtract an immediate value 0–31

#xxxx,EEE 2 2 Subtract a signed 16-bit immediate

15 12 11 8 7 4 3 0

SUB.W #<0–31>,EEE 0 1 0 1 0 1 E E E 0 0 B B B B B

15 12 11 8 7 4 3 0

SUB.W #xxxx,EEE 0 1 0 1 0 1 E E E 1 0 0 0 0 0 0

iiiiiiiiiiiiiiii

15 12 11 8 7 4 3 0

SUB.W X:(Rn),EEE 0 1 0 1 0 1 E E E 1 0 1 R 1 R R

15 12 11 8 7 4 3 0

SUB.W X:(Rn+xxxx),EEE 0 1 0 1 0 1 E E E 1 0 1 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

SUB.W X:(SP–xx),EEE 0 1 0 1 0 0 E E E 1 a a a a a a

15 12 11 8 7 4 3 0

SUB.W X:xxxx,EEE 0 1 0 1 0 1 E E E 1 0 0 0 1 0 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

SUB.W X:xxxxxx,EEE 1 1 1 0 0 A A A 0 A 1 1 A A A A

0 1 0 1 0 1 E E E 1 0 0 0 1 0 0

AAAAAAAAAAAAAAAA
Freescale Semiconductor Instruction Set Details A-277

SUBA Subtract AGU Registers SUBA
Operation: Assembler Syntax:

D – S → D (no parallel move) SUBA S,D (no parallel move)

Description: Subtracts an AGU register or immediate value from an AGU pointer register, storing the result in the
destination register. The subtraction is performed using 24-bit two’s-complement arithmetic. If an im-
mediate value is the source operand for the operation, it is zero extended to 24 bits before the subtrac-
tion takes place.

Example:

SUBA R0,R1 ; subtract R0 from R1 and store in R1

Explanation of Example:
The address pointer register R0 initially contains $0002C4, while R1 initially contains $1712C4. When
the SUBA R0,R1 instruction is executed, the value in R0 is subtracted from R1, and the result
($171000) is stored in address register R1.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

SUBA Rn,Rn 1 1 Subtract the first operand from the second and store the result
in the second operand

#<1–64>,SP 1 1 Subtract a 6-bit unsigned immediate value from the SP and
store in the stack pointer

Before Execution

1712C4R1

After Execution

0002C4R0 0002C4R0

171000R1

15 12 11 8 7 4 3 0

SUBA Rn,Rn 1 0 0 0 1 0 1 1 n 0 1 n R n R R

15 12 11 8 7 4 3 0

SUBA #<1–64>,SP 1 0 0 1 1 1 1 1 0 1 a a a a a a
A-278 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

SUBL Shift Left and Subtract SUBL
Operation: Assembler Syntax:

(D << 1) – A → B (special parallel reads) SUBL A,D,B X:(R1)+, AD

Description: Subtract the A accumulator from two times accumulator D. The result is stored in accumulator B, and
new values are loaded into accumulators A and D from the data memory location pointed to by R1.
The address pointer R1 is then post-incremented. The result is not affected by the state of the saturation
bit (SA).

Usage: The SUBL instruction is designed to accelerate the fast Fourier transform (FFT) algorithm.

Example:

SUBL A,D,B X:(R1)+,AD ; shift and subtract A from D,
; update A and D from memory

Explanation of Example:
Prior to execution, the A accumulator contains the value $0:0080:0000, and the D accumulator con-
tains $0:0742:5555. The D1 register is then sign extended and shifted left 1 bit, resulting in the inter-
mediate value $0:0E84:AAAA. The value in A1 is then subtracted, and the result ($0:0E04:AAAA) is
stored in the B accumulator. A new value is read into accumulators A and D; the address register is
post-incremented by 1.

Note: The operands for the instruction are always the A, D, and B accumulators, in that order. The parallel
move that occurs is also always of the same type, where both the A and D accumulators are updated
from memory. The syntax for this instruction always appears as shown in the example.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Parallel Moves:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

SUBL A,D,B X:(R1)+,AD 1 1 Shift accumulator left and subtract word value

Before Execution

000000800

A2 A1 A0

After Execution

FFFFFFFFF

B2 B1 B0

000063C20

A2 A1 A0

AAAA0E040

B2 B1 B0

555507420

D2 D1 D0

000063C20

D2 D1 D0

15 12 11 8 7 4 3 0

SUBL A,D,B X:(R1)+,AD 0 1 1 1 0 1 0 0 1 0 0 1 0 1 1 1
Freescale Semiconductor Instruction Set Details A-279

SWAP Swap Shadow Registers SWAP
Operation: Assembler Syntax:

Shadowed address registers→ temporary registers SWAP SHADOWS (no parallel move)
Shadow registers → shadowed address registers
Temporary registers → shadow registers

Description: Exchange the values in the shadowed registers—R0, R1, N, and M01 on the DSP56800E core, or all
Rn, N, N3, and M01 on the DSP56800EX core—with their corresponding shadow registers. This is the
only instruction that can access the shadow registers.

Example:

SWAP SHADOWS ; exchange shadowed registers with shadow registers

Explanation of Example:
The SWAP instruction places the values in the shadow registers that exist prior to execution into the
shadowed registers, and it stores the values that are in the shadowed registers prior to execution in the
shadow registers.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operand C W Comments

SWAP SHADOWS 1 1 Swap the value in the shadowed registers—R0, R1, N, and M01 reg-
isters on the DSP56800E core, or all Rn, N, N3, and M01 registers
on the DSP56800EX core—with their shadow registers. This is the
only instruction that accesses the shadow registers.

15 12 11 8 7 4 3 0

SWAP SHADOWS 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0
A-280 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

SWI Software Interrupt SWI
Operation: Assembler Syntax:

Begin SWI exception processing SWI
SWI #x

Description: Suspend normal instruction execution, and begin SWI exception processing if #x > the current inter-
rupt priority level. The interrupt priority level, which is specified by the I1 and I0 bits in the SR, is set
to (#x + 1) when the interrupt service routine is entered. If no operand is specified, priority level 3
(highest, non-maskable) is assumed.

Example:

SWI ; begin SWI exception processing

Explanation of Example:
The SWI instruction suspends normal instruction execution and initiates SWI exception processing.

Restrictions:
A SWI instruction cannot be repeated using the REP instruction.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 1 or 4 oscillator clock cycle(s)—see “Instruction Fields”

Memory: 1 program word

Operation Operands C W Comments

SWI #<0–2> 1 1 Request interrupt servicing at interrupt priority level 0, 1, or 2 as spec-
ified by the instruction parameter

SWI 4 1 Execute the trap exception at the highest interrupt priority level, level
3 (non-maskable)

15 12 11 8 7 4 3 0

SWI 1 1 1 0 0 1 1 0 0 0 0 0 0 0 1 1

15 12 11 8 7 4 3 0

SWI #0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0

15 12 11 8 7 4 3 0

SWI #1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1

15 12 11 8 7 4 3 0

SWI #2 1 1 1 0 0 1 1 0 0 0 0 0 0 0 1 0
Freescale Semiconductor Instruction Set Details A-281

SWILP Lowest-Priority Software Interrupt SWILP
Operation: Assembler Syntax:

Request lowest-priority SWI exception processing SWILP

Description: Post a lowest-priority interrupt request. If the current interrupt priority level is set too high for this in-
struction to interrupt the execution core, the instruction is ignored and subsequent instructions are
fetched and executed as normal. This instruction does not modify the I1 and I0 interrupt mask bits
when it is processed.

Example:

SWILP ; request lowest-priority interrupt processing

Explanation of Example:
Lowest-priority interrupt processing is requested, if the interrupt priority level is set low enough to al-
low it.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

SWILP 1 1 Request interrupt servicing at the lowest interrupt priority level (lower
than level 0)

15 12 11 8 7 4 3 0

SWILP 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 1
A-282 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

SXT.B Sign Extend Byte SXT.B
Operation: Assembler Syntax:

S[7] → D[MSB:8] (no parallel move) SXT.B S,D (no parallel move)
S[7:0] → D[7:0] (no parallel move)

Description: Sign extend a byte that is located in the source register, and place the extended value into the destina-
tion (D). If the destination register is an accumulator, the value is aligned such that the original byte
value is located in the low-order 8 bits of the MSP of the destination accumulator (or Y register). If the
source is a 16-bit register, it is internally concatenated with 16 zero bits to form a 32-bit value. The
upper 8 bits of this value corresponds to the sign extension from bit 23 and then moved to the destina-
tion. If the destination is a 16-bit register, only the upper 16 bits of this value are stored. The result is
not affected by the state of the saturation bit (SA).

Usage: SXT.B can be used to sign extend a 24-bit value into an accumulator by using the Y register as the
source for the operation.

Example:

SXT.B X0,A ; sign extend byte in X0 and place in A

Explanation of Example:
Initially, the A accumulator holds the value $C:26A7:1A36, and the X0 register holds $81F3. The byte
in X0 is sign extended to form the 32-bit value $FFF3:0000 and stored in the A accumulator (with
4 bits sign extension).

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

SXT.B FFF,FFF 1 1 Sign extend byte. When the destination is the Y regis-
ter or an accumulator, the LSP portion is cleared if the
source is a 16-bit register.

FFF 1 1 An alternate syntax for the preceding instruction if the
source and the destination are the same.

Before Execution

81F3X0

After Execution

81F3X0

1A3626A7C

A2 A1 A0

0000FFF3F

A2 A1 A0

15 12 11 8 7 4 3 0

SXT.B FFF,FFF 0 1 1 1 1 1 F F F b b b 0 0 1 1
Freescale Semiconductor Instruction Set Details A-283

SXT.L Sign Extend Long SXT.L
Operation: Assembler Syntax:

S[31] → D[MSB:32] (no parallel move) SXT.L S,D (no parallel move)
S[31:0] → D[31:0] (no parallel move)

Description: Sign extend a long word that is located in the source register, and place the extended value into the
destination (D). If the destination register is an accumulator, the high-order bit of the source is repli-
cated into the extension portion (FF2) of the accumulator. The result is not affected by the state of the
saturation bit (SA).

Usage: SXT.L is used to ensure that the accumulator extension register correctly reflects the sign of a
long-word value that is moved into it.

Example:

SXT.L B,A ; sign extend long word in Y and place in A

Explanation of Example:
Initially, the A accumulator holds the value $0:26A7:0000, and the B accumulator holds
$0:80F3:1CC2. When the SXT.L instruction is executed, the value in B is sign extended to 36 bits and
placed in accumulator A.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Note: Saturation will not occur when this instruction is executed, even if the SA bit in the OMR is set.

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

SXT.L FF,FFF 1 1 Sign extend long and transfer without saturating

FF 1 1 An alternate syntax for the preceding instruction if the
source and the destination are the same

1CC280F30

B2 B1 B0

1CC280F30

B2 B1 B0

Before Execution After Execution

000026A70

A2 A1 A0

1CC280F3F

A2 A1 A0

15 12 11 8 7 4 3 0

SXT.L FF,FFF 0 1 1 1 1 1 F F F 0 F F 0 0 0 1
A-284 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

SXTA.B Sign Extend Byte in AGU Register SXTA.B
Operation: Assembler Syntax:

D[7] → D[23:8] (no parallel move) SXTA.B D (no parallel move)

Description: Take the byte that is located in the low-order 8 bits of the destination AGU address register, and sign
extend it to fill all 24 bits, replicating bit 7 through bits 23–8.

Example:

SXTA.B R2 ; sign extend byte in R2

Explanation of Example:
Initially, the R2 AGU register holds the value $0000F3. After the SXTA.B R2 instruction is executed,
bit 7 is replicated through the high-order 16 bits. The result is $FFFFF3.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

SXTA.B Rn 1 1 Sign extend the value in an AGU register from bit 7

Before Execution After Execution

FFFFF3R20000F3R2

15 12 11 8 7 4 3 0

SXTA.B Rn 1 0 0 0 0 1 0 1 1 0 1 1 R 1 R R
Freescale Semiconductor Instruction Set Details A-285

SXTA.W Sign Extend Word in AGU Register SXTA.W
Operation: Assembler Syntax:

S[15] → D[23:16] (no parallel move) SXTA.W D (no parallel move)

Description: Take the word that is located in the low-order 16 bits of the destination AGU address register, and sign
extend it to fill all 24 bits, replicating bit 15 through bits 23–16.

Example:

SXTA.W R2 ; sign extend word in R2

Explanation of Example:
Initially, the R2 AGU register holds the value $0083F7. After the SXTA.W R2 instruction is executed,
bit 15 is replicated through the high-order 8 bits. The result is $FF83F7.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

SXTA.W Rn 1 1 Sign extend the value in an AGU register from bit 15

Before Execution After Execution

FF83F7R20083F7R2

15 12 11 8 7 4 3 0

SXTA.W Rn 1 0 0 0 0 1 0 1 1 0 1 0 R 1 R R
A-286 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Tcc Transfer Conditionally Tcc
Operation: Assembler Syntax:

If (cc), then S → D Tcc S,D (no parallel move)
If (cc), then S → D and R0 → R1 Tcc S,D R0,R1

Description: Transfer data from the specified source register (S) to the specified destination (D) if the specified con-
dition is true. If the source is a 16-bit register, it is first sign extended and concatenated to 16 zero bits
to form a 36-bit value (the Y register is only sign extended) before the transfer. When the saturation
bit (SA) is set, saturation may occur if necessary—that is, the value transferred is substituted by the
maximum positive (or negative) value. If a second source register R0 and a second destination register
R1 are also specified, the instruction transfers the value from address register R0 to address register
R1 if the specified condition is true. If the specified condition is false, a NOP is executed.

Usage: When used after the CMP instruction, the Tcc instruction can perform many useful functions such as
a “maximum value” or “minimum value” function. The desired value is stored in the destination accu-
mulator. If address register R0 is used as an address pointer into an array of data, the address of the
desired value is stored in the address register R1. The Tcc instruction can be used after any instruction
and allows efficient searching and sorting algorithms.

The term “cc” specifies the following:

Note: This instruction is considered to be a move-type instruction. Due to pipelining, if an address register
(R0 or R1 for the Tcc instruction) is changed using a move-type instruction, the new contents of the
destination address register will not be available for use during the following instruction (that is, there
is a single-instruction-cycle pipeline delay).

“cc” Mnemonic Condition

CC (HS*)— carry clear (higher or same) C = 0

CS (LO*)— carry set (lower) C = 1

EQ— equal Z = 1

GE— greater than or equal N ⊕ V = 0

GT— greater than Z + (N ⊕ V) = 0

LE— less than or equal Z + (N ⊕ V) = 1

LT— less than N ⊕ V = 1

NE— not equal Z = 0

* Only available when the CM bit in the OMR is set

+denotes the logical OR operator
⊕denotes the logical exclusive OR operator
Freescale Semiconductor Instruction Set Details A-287

Tcc Transfer Conditionally Tcc
Example:

CMP X0,A ; compare X0 and A (sort for minimum)
TGT X0,A R0,R1 ; transfer X0 → A and R0 → R1 if X0 <

Explanation of Example:
In this example, the value in A ($0:0124:FFFF) is larger than the expanded value in X0 ($0:0024:0000)
and the specified condition is true. The contents of the expanded X0 register are transferred to the
36-bit A accumulator, and the contents of the 24-bit R0 address register are transferred to the address
register R1. If the specified condition were false, a NOP instruction would be executed.

Condition Codes Affected:
The condition codes are tested but not modified by this instruction.

Before Execution

FFFF01240

A2 A1 A0

0024X0

After Execution

000000240

A2 A1 A0

0024X0

002800R0 002800R0

007900R1 002800R1
A-288 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Tcc Transfer Conditionally Tcc
Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation
Data ALU Transfer AGU Transfer

C W Comments
Source Destination Source Destination

Tcc DD F (No transfer) 1 1 Conditionally transfer one register

A B (No transfer) 1 1

B A (No transfer) 1 1

DD F R0 R1 1 1 Conditionally transfer one data ALU regis-
ter and one AGU register

A B R0 R1 1 1

B A R0 R1 1 1

Note: The Tcc instruction does not allow the following condition codes: HI, LS, NN, and NR.

15 12 11 8 7 4 3 0

Tcc DD,F 0 1 1 1 0 C C C F 0 J J 1 1 1 1

15 12 11 8 7 4 3 0

Tcc DD,F R0,R1 0 1 1 1 0 C C C F 1 J J 1 1 1 1

15 12 11 8 7 4 3 0

Tcc ~F,F 0 1 1 1 0 C C C F 0 1 0 1 1 1 1

15 12 11 8 7 4 3 0

Tcc ~F,F R0,R1 0 1 1 1 0 C C C F 1 1 0 1 1 1 1
Freescale Semiconductor Instruction Set Details A-289

TFR Transfer Data ALU Register TFR
Operation: Assembler Syntax:

S → D (no parallel move) TFR S,D (no parallel move)
S → D (one parallel move) TFR S,D (one parallel move)
S → D (two parallel reads) TFR S,D (two parallel reads)

Description: Transfer data from the specified source data ALU register (S) to the specified data ALU destination
(D). The TFR instruction can be used to move the full 36-bit contents from one accumulator to another.
This transfer occurs with saturation when the saturation bit, SA, is set. An exception to this is when an
accumulator is transferred to the Y register. If the source is a 16-bit register, it is first sign extended
and concatenated to 16 zero bits to form a 36-bit value (the Y register is only sign extended) before the
transfer. The TFR instruction only affects the L and SZ bits in the CCR (which can be set by data move-
ment that is associated with the instruction’s parallel operations).

Usage: This instruction is very similar to a MOVE instruction but has two uses. First, it can be used to perform
a 36-bit transfer of one accumulator to another. Second, when used with a parallel move, this instruc-
tion allows a register move and a memory move to occur simultaneously in 1 instruction that executes
in 1 instruction cycle.

Example:

TFR B,A X:(R0)+,Y1 ; move B to A and update Y1, R0

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $3:0123:0123, and the 36-bit B accu-
mulator contains the value $3:CCCC:EEEE. Execution of the TFR instruction moves the 36-bit value
in B into the 36-bit A accumulator. If the saturation bit is set (SA = 1) in the OMR register, the saturated
value $0:7FFF:FFFF would be transferred to A.

Condition Codes Affected:

SZ — Set by result of parallel write to memory according to the standard definition
L — Set if data limiting has occurred during parallel move

EEEECCCC3

B2 B1 B0

EEEECCCC3

B2 B1 B0

Before Execution

012301230

A2 A1 A0

After Execution

EEEECCCC3

A2 A1 A0

0300SR 0300SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-290 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

TFR Transfer Data ALU Register TFR
Instruction Fields:

Parallel Moves:

Operation Operands C W Comments

TFR FFF,fff 1 1 Transfer register to register.

Data ALU Operation Parallel Memory Move

Operation Operands Source Destination1

1.The case where the destination of the data ALU operation is the same register as the destination of the par-
allel read operation is not allowed. Memory writes are allowed in this case.

TFR2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

X0,F
Y1,F
Y0,F
C,F

A,B
B,A

X:(Rj)+
X:(Rj)+N

X0
Y1
Y0
A
B
C
A1
B1

X0
Y1
Y0
A
B
C
A1
B1

X:(Rj)+
X:(Rj)+N
Freescale Semiconductor Instruction Set Details A-291

TFR Transfer Data ALU Register TFR
Parallel Dual Reads:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Data ALU Operation1

1.This instruction is not allowed when the XP bit in the OMR is set (that is, when the instructions are executing
from data memory).

First Memory Read Second Memory Read

Operation Operands Source 1 Destination 1 Source 2 Destination 2

TFR2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

A,B
B,A

X:(R0)+
X:(R0)+N
X:(R1)+

X:(R1)+N

Y0
Y1

X:(R3)+
X:(R3)–

X0

X:(R4)+
X:(R4)+N

Y0 X:(R3)+
X:(R3)+N3

X0

X:(R0)+
X:(R0)+N
X:(R4)+

X:(R4)+N

Y1 X:(R3)+
X:(R3)+N3

C

15 12 11 8 7 4 3 0

TFR C,F GGG,X:<ea_m> 0 0 0 0 1 G G G F 1 1 0 0 m R R

15 12 11 8 7 4 3 0

TFR C,F X:<ea_m>,GGG 0 0 1 0 1 G G G F 1 1 0 0 m R R

15 12 11 8 7 4 3 0

TFR DD,F X:<ea_m>,GGG 0 0 1 0 1 G G G F J J J 0 m R R

15 12 11 8 7 4 3 0

TFR DD,F GGG,X:<ea_m> 0 0 0 0 1 G G G F J J J 0 m R R

15 12 11 8 7 4 3 0

TFR FFF,fff 0 1 1 1 1 1 f f f b b b 0 0 0 0

15 12 11 8 7 4 3 0

TFR ~F,F GGG,X:<ea_m> 0 0 0 0 1 G G G F 0 0 0 0 m R R

15 12 11 8 7 4 3 0

TFR ~F,F X:<ea_m>,GGG 0 0 1 0 1 G G G F 0 0 0 0 m R R

15 12 11 8 7 4 3 0

TFR ~F,F X:<ea_m>,reg1
 X:<ea_v>,reg2

0 1 1 1 0 1 v v F v 0 0 0 m 0 v
A-292 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

TFRA Transfer AGU Register TFRA
Operation: Assembler Syntax:

S → D (no parallel move) TFRA S,D (no parallel move)

Description: Transfer data from the specified source AGU register (S) to the specified destination AGU register (D).
TFRA uses the internal AGU data paths, and thus data does not pass through the data limiter.

Example:

TFRA R1,R0 ; transfer contents of R1 to R0

Explanation of Example:
Prior to execution, the R0 register contains the value $009BD6, and R1 contains $1A8C63. After the
TFRA R1,R0 instruction is executed, R0 gets a copy of the value in R1, $1A8C63.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

TFRA Rn,Rn 1 1 Transfer one AGU register to another

Before Execution After Execution

1A8C63R0009BD6R0

1A8C63R11A8C63R1

15 12 11 8 7 4 3 0

TFRA Rn,Rn 1 0 0 0 0 0 0 1 n 0 1 n R n R R
Freescale Semiconductor Instruction Set Details A-293

TST Test Accumulator TST
Operation: Assembler Syntax:

S – 0 (no parallel move) TST S (no parallel move)
S – 0 (one parallel move) TST S (one parallel move)

Description: Compare the specified source accumulator (S) with zero, and set the condition codes accordingly. No
result is stored, although the condition codes are updated. The result is not affected by the state of the
saturation bit (SA).

Example:

TST A X:(R0)+N,B ;set condition codes for the value
;in A, update B and R0

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $8:0203:0000, and the 16-bit SR con-
tains the value $0300. Execution of the TST instruction compares the value in the A register with zero
and updates the CCR accordingly. The contents of the A accumulator are not affected.

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if data limiting has occurred during parallel move
E — Set if the extension portion of accumulator result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 35 of accumulator result is set
Z — Set if accumulator result equals zero
V — Always cleared
C — Always cleared

Before Execution

000002038

A2 A1 A0

0300SR

After Execution

000002038

A2 A1 A0

0338SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-294 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

TST Test Accumulator TST
Instruction Fields:

Parallel Moves:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

TST FF 1 1 Test 36-bit accumulator.

Data ALU Operation Parallel Memory Move

Operation Operands Source Destination1

1.The case where the destination of the data ALU operation is the same register as the destination of the par-
allel read operation is not allowed. Memory writes are allowed in this case.

TST2

2.This instruction occupies only 1 program word and executes in 1 cycle for every addressing mode.

F X:(Rj)+
X:(Rj)+N

X0
Y1
Y0
A
B
C
A1
B1

X0
Y1
Y0
A
B
C
A1
B1

X:(Rj)+
X:(Rj)+N

15 12 11 8 7 4 3 0

TST F GGG,X:<ea_m> 0 0 0 1 1 G G G F 0 0 1 0 m R R

15 12 11 8 7 4 3 0

TST F X:<ea_m>,GGG 0 0 1 1 1 G G G F 0 0 1 0 m R R

15 12 11 8 7 4 3 0

TST FF 0 1 1 1 0 0 0 F F 0 1 1 1 0 1 1
Freescale Semiconductor Instruction Set Details A-295

TST.B Test Byte (Word Pointer) TST.B
Operation: Assembler Syntax:

S – 0 (no parallel move) TST.B S (no parallel move)

Description: Compare the byte portion of a register, or a byte that is located in memory, with zero, and set the con-
dition codes accordingly. If the source operand is a register, the byte is sign extended to 20 bits before
the comparison is performed. The N, Z, V, and C condition codes are calculated based on the 8-bit re-
sult. If the source operand is a register, the E and U condition codes are also calculated, but they are
based on the 20-bit result. The source operand is not modified. The result is not affected by the state
of the saturation bit (SA).

Example:

TST.B A ;set condition codes for the byte value in A

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $8:0283:0000, and the 16-bit SR con-
tains the value $0300. Execution of the TST.B instruction compares the value in the low-order 8 bits
of A1 with zero and updates the CCR accordingly. The contents of the A accumulator are not affected.

Condition Codes Affected:

E — Set if the extension portion of the 20-bit result is in use
U — Set if the 20-bit result is unnormalized
N — Set if bit 7 of the result is set
Z — Set if all bits in the result are zero
V — Always cleared
C — Always cleared

Before Execution

000002838

A2 A1 A0

0300SR

After Execution

000002838

A2 A1 A0

0318SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-296 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

TST.B Test Byte (Word Pointer) TST.B
Instruction Fields:

Instruction Opcodes:

Timing: 1–3 oscillator clock cycle(s)

Memory: 1–3 program word(s)

Operation Operands C W Comments

TST.B EEE 1 1 Test 8-bit byte in register

X:(SP) 1 1 Test a byte in memory using appropriate addressing
modeX:(Rn+xxxx) 2 2

X:(Rn+xxxxxx) 3 3

15 12 11 8 7 4 3 0

TST.B EEE 0 1 1 1 0 0 E E E 0 1 0 0 0 1 1

15 12 11 8 7 4 3 0

TST.B X:(Rn+xxxx) 1 1 0 1 1 0 0 0 1 1 1 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

TST.B X:(Rn+xxxxxx) 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 1 0 0 0 1 1 1 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

TST.B X:(SP) 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 1
Freescale Semiconductor Instruction Set Details A-297

TST.BP Test Byte (Byte Pointer) TST.BP
Operation: Assembler Syntax:

S – 0 (no parallel move) TST.BP S (no parallel move)

Description: Compare a byte that is located in memory with zero, and set the condition codes accordingly. The
source operand is not modified. The result is not affected by the state of the saturation bit (SA).

Example:

TST.BP X:$3065 ;set condition codes for the byte at $3065

Explanation of Example:
Prior to execution, the byte located at the (byte) address $3065 contains the value $C6, and the SR con-
tains the value $0300. Execution of the TST.BP instruction compares the byte in memory with zero
and updates the CCR accordingly. Note that this address is equivalent to the upper byte of word address
$1832.

Condition Codes Affected:

N — Set if bit 7 of the result is set
Z — Set if all bits in the result are zero
V — Always cleared
C — Always cleared

Before Execution

0300SR

After Execution

0308SR

$3064

$3066
$3068

$3062

X Memory

22 11

7 0

77

C6 33

55
88
66

Byte
Addresses 70

$3064

$3066
$3068

$3062

X Memory

22 11

7 0

77

06 33

55
88
66

Byte
Addresses 70

$3064

$3066
$3068

$3062

X Memory

22 11

7 0

77

C6 33

55
88
66

Byte
Addresses 70

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-298 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

TST.BP Test Byte (Byte Pointer) TST.BP
Instruction Fields:

Instruction Opcodes:

Timing: 1–3 oscillator clock cycle(s)

Memory: 1–3 program word(s)

Operation Operands C W Comments

TST.BP X:(RRR) 1 1 Test a byte in memory using appropriate addressing
modeX:(RRR)+ 1 1

X:(RRR)– 1 1

X:(RRR+N) 2 1

X:(RRR+xxxx) 2 2

X:(RRR+xxxxxx) 3 3

X:xxxx 2 2

X:xxxxxx 3 3

15 12 11 8 7 4 3 0

TST.BP X:<ea_MM> 1 1 0 1 1 0 0 0 1 0 1 M N M N N

15 12 11 8 7 4 3 0

TST.BP X:xxxx 1 1 0 1 1 0 0 0 1 1 1 1 1 1 0 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

TST.BP X:xxxxxx 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 1 0 0 0 1 1 1 1 1 1 0 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

TST.BP X:(RRR+xxxx) 1 1 0 1 1 0 0 0 1 1 1 0 N 1 N N

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

TST.BP X:(RRR+xxxxxx) 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 0 1 1 0 0 0 1 1 1 0 N 1 N N

AAAAAAAAAAAAAAAA
Freescale Semiconductor Instruction Set Details A-299

TST.L Test Long TST.L
Operation: Assembler Syntax:

S – 0 (no parallel move) TST.L S (no parallel move)

Description: Compare a long word in a register, or a long word that is located in memory, with zero, and set the
condition codes accordingly. If the source operand is a register, the long word is sign extended to
36 bits before the comparison is performed. The N, Z, V, and C condition codes are calculated based
on the 32-bit result. If the source operand is a register, the E and U condition codes are also calculated,
but using the 36-bit result. The source operand is not modified. The result is not affected by the state
of the saturation bit (SA).

Example:

TST.L A ;set condition codes for the long value in A10

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $8:0283:0000, and the 16-bit SR con-
tains the value $0330. Execution of the TST.L instruction compares the value in A10 with zero and
updates the CCR accordingly. The contents of the A accumulator are not affected.

Condition Codes Affected:

E — Set if the extension portion of the 36-bit result is in use
U — Set if the 36-bit result is unnormalized
N — Set if bit 31 of the result is set
Z — Set if all bits in the result are zero
V — Always cleared
C — Always cleared

Before Execution

000002838

A2 A1 A0

0330SR

After Execution

000002838

A2 A1 A0

0310SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-300 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

TST.L Test Long TST.L
Instruction Fields:

Instruction Opcodes:

Timing: 1–3 oscillator clock cycle(s)

Memory: 1–3 program word(s)

Operation Operands C W Comments

TST.L fff 1 1 Test 32-bit long in register

X:(Rn) 1 1 Test a long in memory using appropriate addressing
modeX:(Rn)+ 1 1

X:(Rn)– 1 1

X:(Rn+N) 2 1

X:(Rn+xxxx) 2 2

X:(Rn+xxxxxx) 3 3

X:(SP–xx) 2 1

X:xxxx 2 2

X:xxxxxx 3 3

15 12 11 8 7 4 3 0

TST.L X:(Rn+xxxx) 1 1 1 1 1 1 1 1 0 1 1 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

TST.L X:(Rn+xxxxxx) 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 1 1 1 1 1 0 1 1 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

TST.L X:(SP–xx) 1 0 1 1 1 1 1 1 1 1 a a a a a a

15 12 11 8 7 4 3 0

TST.L X:<ea_MM> 1 1 1 1 1 1 1 1 0 0 1 M R M R R

15 12 11 8 7 4 3 0

TST.L X:xxxx 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

TST.L X:xxxxxx 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

TST.L fff 0 1 1 1 0 0 f f f 0 1 1 0 0 1 1
Freescale Semiconductor Instruction Set Details A-301

TST.W Test Word TST.W
Operation: Assembler Syntax:

S – 0 (no parallel move) TST.W S (no parallel move)

Description: Compare 16 bits of the specified source register or memory location with zero, and set the condition
codes accordingly. No result is stored, although the condition codes are updated. The result is not af-
fected by the state of the saturation bit (SA).

Example:

TST.W X:$0007 ; set condition codes using X:$0007

Explanation of Example:
Prior to execution, location X:$0007 contains the value $FC00, and the 16-bit SR contains the value
$0300. The execution of the instruction compares the value in the X0 register with zero and updates
the CCR accordingly. The contents of location X:$0007 are not affected.

Note: This instruction does not set the same set of condition codes that the TST instruction does. Both in-
structions correctly set the V, N, Z, and C bits, but TST sets the E bit whereas TST.W does not. TST.W
is a 16-bit test operation when it is executed on an accumulator.

Condition Codes Affected:

N — Set if bit 15 of the result is set
Z — Set if all bits in the result are zero
V — Always cleared
C — Always cleared

Before Execution

FC00X:$0007

0300SR

After Execution

FC00X:$0007

0308SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-302 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

TST.W Test Word TST.W
Instruction Fields:

Operation Operands C W Comments

TST.W DDDDD
(except HWS and Y)

1 1 Test 16-bit word in register. All registers are allowed
except HWS and Y.
Limiting is not performed if an accumulator is specified.

X:(Rn) 1 1 Test a word in memory using appropriate addressing
mode.X:(Rn)+ 1 1

X:(Rn)– 1 1

X:(Rn+N) 2 1

X:(Rn)+N 1 1

X:(Rn+xxxx) 2 2

X:(Rn+xxxxxx) 3 3

X:(SP–xx) 2 1

X:aa 1 1

X:<<pp 1 1

X:xxxx 2 2

X:xxxxxx 3 3
Freescale Semiconductor Instruction Set Details A-303

TST.W Test Word TST.W
Instruction Opcodes:

Timing: 1–3 oscillator clock cycle(s)

Memory: 1–3 program word(s)

15 12 11 8 7 4 3 0

TST.W DDDDD 1 0 0 0 1 1 1 1 0 0 0 d d d d d

15 12 11 8 7 4 3 0

TST.W FF 0 1 1 1 0 0 0 F F 0 1 0 1 0 1 1

15 12 11 8 7 4 3 0

TST.W X:(Rn)+N 1 1 1 1 1 1 1 1 0 1 0 1 R 1 R R

15 12 11 8 7 4 3 0

TST.W X:(Rn+xxxx) 1 1 1 1 1 1 1 1 0 1 0 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

TST.W X:(Rn+xxxxxx) 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 1 1 1 1 1 0 1 0 0 R 0 R R

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

TST.W X:(SP–xx) 1 0 1 1 1 1 1 1 0 1 a a a a a a

15 12 11 8 7 4 3 0

TST.W X:<ea_MM> 1 1 1 1 1 1 1 1 0 0 0 M R M R R

15 12 11 8 7 4 3 0

TST.W X:<<pp 1 1 0 0 1 1 1 1 1 1 p p p p p p

15 12 11 8 7 4 3 0

TST.W X:xxxx 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

TST.W X:xxxxxx 1 1 1 0 0 A A A 0 A 1 1 A A A A

1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0

AAAAAAAAAAAAAAAA

15 12 11 8 7 4 3 0

TST.W X:aa 1 1 0 0 1 1 1 1 1 0 p p p p p p
A-304 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

TSTA.B Test Byte in AGU Register TSTA.B
Operation: Assembler Syntax:

S – 0 (no parallel move) TSTA.B S (no parallel move)

Description: Compare the low-order 8 bits of an AGU address register with zero, and set the condition codes ac-
cordingly. The N, Z, V, and C condition codes are calculated based on the 8-bit result. The source op-
erand is not modified.

Example:

TSTA.B R1 ;set condition codes for the byte value in R1

Explanation of Example:
Prior to execution, the R1 address register contains the value $003AF3, and the 16-bit SR contains the
value $0300. The execution of the TSTA.B R1 instruction compares the value in the low-order 8 bits
of R1 with zero and updates the CCR accordingly. The contents of R1 are not affected.

Condition Codes Affected:

N — Set if bit 7 of the result is set
Z — Set if all bits in the result are zero
V — Always cleared
C — Always cleared

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

TSTA.B Rn 1 1 Test byte portion of an AGU register

Before Execution After Execution

003AF3R1003AF3R1

0300SR 0308SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 12 11 8 7 4 3 0

TSTA.B Rn 1 0 0 0 0 1 0 0 0 0 1 0 R 1 R R
Freescale Semiconductor Instruction Set Details A-305

TSTA.L Test Long in AGU Register TSTA.L
Operation: Assembler Syntax:

S – 0 (no parallel move) TSTA.L S (no parallel move)

Description: Compare the contents of an AGU address register with zero, and set the condition codes accordingly.
The N, Z, V, and C condition codes are calculated based on the 24-bit result. The source operand is not
modified.

Example:

TSTA.L R1 ;set condition codes for the byte value in R1

Explanation of Example:
Prior to execution, the R1 address register contains the value $008AF3, and the 16-bit SR contains the
value $0338. The execution of the TSTA.L R1 instruction compares the value in R1 with zero and
updates the CCR accordingly. The contents of R1 are not affected.

Condition Codes Affected:

N — Set if bit 23 of the result is set
Z — Set if all bits in the result are zero
V — Always cleared
C — Always cleared

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

TSTA.L Rn 1 1 Test long portion of an AGU register

Before Execution After Execution

008AF3R1008AF3R1

0338SR 0330SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 12 11 8 7 4 3 0

TSTA.L Rn 1 0 0 0 0 1 0 0 0 0 1 1 R 1 R R
A-306 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

TSTA.W Test Word in AGU Register TSTA.W
Operation: Assembler Syntax:

S – 0 (no parallel move) TSTA.W S (no parallel move)

Description: Compare the low-order 16 bits of an AGU address register with zero, and set the condition codes ac-
cordingly. The N, Z, V, and C condition codes are calculated based on the 16-bit result. The source
operand is not modified.

Example:

TSTA.W R1 ;set condition codes for the byte value in R1

Explanation of Example:
Prior to execution, the R1 address register contains the value $008AF3, and the 16-bit SR contains the
value $0330. Execution of the TSTA.W instruction compares the low-order 16 bits of R1 with zero
and updates the CCR accordingly. The contents of R1 are not affected.

Condition Codes Affected:

N — Set if bit 15 of the result is set
Z — Set if all bits in the result are zero
V — Always cleared
C — Always cleared

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

TSTA.W Rn 1 1 Test word portion of an AGU register

Before Execution After Execution

008AF3R1008AF3R1

0330SR 0338SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 12 11 8 7 4 3 0

TSTA.W Rn 1 0 0 0 0 1 0 0 0 0 1 1 R 0 R R
Freescale Semiconductor Instruction Set Details A-307

TSTDECA.W Test and Decrement TSTDECA.W
Word in AGU Register

Operation: Assembler Syntax:

D – 0 TSTDECA.W D (no parallel move)
D – 1 → D (no parallel move)

Description: Compare the low-order 16 bits of an AGU address register with zero, and set the condition codes ac-
cordingly. The entire 24 bit field is then decremented by one, and the result is placed back into the des-
tination register.

Usage: This instruction can be used to step backwards through a memory buffer, testing to see that the pointer
is still valid after each step.

Example:

TSTDECA.W R0 ; compare R0 to 0, then decrement

Explanation of Example:
Prior to execution, the R0 register contains $00B360. The execution of the TSTDECA.W R0 instruc-
tion causes the value in the R0 to be compared to zero, updating the CCR accordingly. The value in
R0 is then reduced by one, and the result ($00B35F) is stored back in R0.

Note: This instruction operates on only the low-order 16 bits of the AGU pointer register. It is compatible
with the DSP56800 TSTW (Rn)- instruction, since both use 16-bit arithmetic.

Condition Codes Affected:

N — Set if bit 15 of the result is set
Z — Set if all bits in the result are zero
V — Always cleared
C — Always cleared

Before Execution After Execution

00B360R0 00B35FR0

0338SR 0338SR

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-308 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

TSTDECA.W Test and Decrement TSTDECA.W
Word in AGU Register

Instruction Fields:

Instruction Opcodes:

Timing: 3 oscillator clock cycles

Memory: 1 program word

Operation Operands C W Comments

TSTDECA.W Rn 3 1 Test and decrement AGU register.

Note: Only operates on the lower 16 bits of the register. The upper 8
bits are forced to zero.

This instruction is compatible with the DSP56800’s TSTW (Rn)-
instruction.

15 12 11 8 7 4 3 0

TSTDECA.W Rn 1 0 0 0 0 1 0 0 1 0 1 0 R 0 R R
Freescale Semiconductor Instruction Set Details A-309

WAIT Wait for Interrupt WAIT
Operation: Assembler Syntax:

Disable clocks to the processor core, WAIT
and enter the wait processing state.

Description: Enter the wait processing state. The internal clocks to the processor core and memories are gated off,
and all activity in the processor is suspended until an unmasked interrupt occurs. The clock oscillator
and the internal I/O peripheral clocks remain active.

When an unmasked interrupt at a higher priority level than the current one occurs or when an external
(hardware) processor reset occurs, the processor leaves the wait state and begins exception processing
of the unmasked interrupt or reset condition.

A WAIT instruction cannot be the last instruction in a DO loop (at the LA) and cannot be repeated
using the REP instruction.

Example:

WAIT ; enter low-power mode, wait for interrupt

Explanation of Example:
The WAIT instruction suspends normal instruction execution and waits for an unmasked interrupt or
external reset to occur. No new instructions are fetched until the processor exits the wait processing
state.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:
3

Instruction Opcodes:

Timing: Dependent upon chip implementation

Memory: 1 program word

Operation Operands C W Comments

WAIT Dependent upon chip implementation 1 Enter wait low-power mode

15 12 11 8 7 4 3 0

WAIT 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 1
A-310 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ZXT.B Zero Extend Byte ZXT.B
Operation: Assembler Syntax:

0 → D[MSB:8] (no parallel move) ZXT.B S,D (no parallel move)
S[7:0] → D[7:0]

Description: Zero extend a byte that is located in the source register, and place the extended value into the destina-
tion (D). If the destination register is an accumulator, the value is aligned such that the original byte
value is located in the low-order 8 bits of the MSP of the destination accumulator (or Y register). If the
source is a 16-bit register, it is internally concatenated with 16 zero bits to form a 32-bit value. The
upper 8 bits of this value corresponds to the zero extension from bit 24 and then moved to the destina-
tion. If the destination is a 16-bit register, only the upper 16 bits of this value are stored. The result is
not affected by the state of the saturation bit (SA).

Usage: ZXT.B can be used to zero extend a 24-bit value into an accumulator by using the Y register as the
source for the operation.

Example:

ZXT.B X0,A ; zero extend byte in X0 and place in A

Explanation of Example:
Initially, the A accumulator holds the value $C:26A7:1A36, and the X0 register holds $81F3. The byte
in X0 is zero extended to form the 32-bit value $00F3:0000 and stored in the A accumulator (with
4 bits of zero extension).

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

ZXT.B FFF,FFF 1 1 Zero extend byte. When the destination is the Y regis-
ter or an accumulator, the LSP portion is cleared if the
source is a 16-bit register.

FFF 1 1 An alternate syntax for the preceding instruction if the
source and the destination are the same.

Before Execution

81F3X0

After Execution

81F3X0

1A3626A7C

A2 A1 A0

000000F30

A2 A1 A0

15 12 11 8 7 4 3 0

ZXT.B FFF,FFF 0 1 1 1 1 1 F F F b b b 0 0 1 0
Freescale Semiconductor Instruction Set Details A-311

ZXTA.B Zero Extend Byte in AGU Register ZXTA.B
Operation: Assembler Syntax:

0 → D[23:8] (no parallel move) ZXTA.B D (no parallel move)

Description: Take the byte that is located in the low-order 8 bits of the destination AGU address register, and zero
extend it to fill all 24 bits.

Example:

ZXTA.B R2 ; sign extend byte in R2

Explanation of Example:
Initially, the R2 AGU register holds the value $1C70F3. After the ZXTA.B R2 instruction is execut-
ed, zeros are replicated through the high-order 16 bits. The result is $0000F3.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

ZXTA.B Rn 1 1 Zero extend the value in an AGU register from bit 7

Before Execution After Execution

0000F3R21C70F3R2

15 12 11 8 7 4 3 0

ZXTA.B Rn 1 0 0 0 0 1 0 1 1 0 1 1 R 0 R R
A-312 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

ZXTA.W Zero Extend Word in AGU Register ZXTA.W
Operation: Assembler Syntax:

0 → D[23:16] (no parallel move) ZXTA.W D (no parallel move)

Description: Take the word that is located in the low-order 16 bits of the destination AGU address register, and zero
extend it to fill all 24 bits.

Example:

ZXTA.W R2 ; sign extend word in R2

Explanation of Example:
Initially, the R2 AGU register holds the value $1283F7. After the ZXTA.W R2 instruction is executed,
zeros are replicated through the high-order 8 bits. The result is $0083F7.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

ZXTA.W Rn 1 1 Zero extend the value in an AGU register from bit 15

Before Execution After Execution

0083F7R21283F7R2

15 12 11 8 7 4 3 0

ZXTA.W Rn 1 0 0 0 0 1 0 1 1 0 1 0 R 0 R R
Freescale Semiconductor Instruction Set Details A-313

A.3 32 x 32 to 32/64 Multiply and MAC Instructions
This section presents a detailed definition of 32 x 32 → 32/64-bit multiply and MAC instructions
supported by the DSP56800EX core.

Most of these new integer and fractional multiply and MAC instructions are 32 x 32 → 32 bits. Some
provide 64-bit results.

For integer multiply and MAC instructions there are register-to-register-only instructions. For fractional
multiply and MAC instructions there are both register-to-register only and one parallel move instruction
variations. In general, the register-to-register-only instructions are limited to the A, B, C and Y registers for
source and destination, and the one parallel move instructions are limited to the B, C and Y registers for
source and A and B registers for destination. The one parallel move instructions can store/update the A, B,
C and Y registers using (Rn)+ or (Rn)+N addressing with Rn = {R0,R1,R2,R3}. Certain restrictions
beyond these general rules follow.

All of these multiply and MAC instructions are one word in length and take one clock cycle.

The multiply and MAC instructions follow the pipeline flow of existing 16 x 16 → 32 bit multiply and
MAC instructions. Address calculations, register accesses, memory access, and so on match the
corresponding existing instructions. The new MAC instructions use the "late" or EX2 execution cycle, as
do the existing MAC instructions. One difference is that all parallel fetches are of longword size.

The following instructions are implemented.

General encodings (see specific opcode encodings for limitations)

1.Register to register = "FF1,FF1,FF{:Y}" format allows:

Source (FF1,FF1 - order independent)

 A x A B x C

 A x B B x Y

 A x C C x C

 A x Y C x Y

Destination (FF)

 A, B, C, Y

Destination if 64 bit result ({:Y})

 Y = low-order 32 bits in Y

2.One parallel move = "Q1,Q2,F GG,X:<ea_m>" and "Q1,Q2,F X:<ea_m>,GG" formats allow:

Source (Q1,Q2 - order independent)

 B x Y

 C x Y

 -C x Y (MAC only)

Destination (F)

 A, B

One parallel move memory source/destination (GG)

 A, B, C, Y

One parallel move addressing (X:<ea_m>)
A-314 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

 (Rn)+ with Rn = {R0,R1,R2,R3}

 (Rn)+N with Rn = {R0,R1,R2,R3}

Register-to-register-only multiply and MAC instructions

Integer MAC:

IMAC32 FF1,FF1,FF - 32x32 = 64 bit; then accumulate lower 32 bits

Integer MPY:

IMPY32 FF1,FF1,FF - 32x32 = 64 bit; save lower 32 bits

IMPY64 FF1,FF1,FF:Y - 32x32 = 64 bit; save higher (in Acc), lower (in Y)

IMPY64UU FF1,FF1,FF:Y - 32x32 = 64 bit; save higher (in Acc), lower (in Y)

Fractional MAC:

MAC32 FF1,FF1,FF - 32x32 = 64 bit; accumulate higher 32 bits

MAC32 -FF1,FF1,FF - 32x32 = 64 bit; accumulate higher 32 bits

Fractional MPY:

MPY32 FF1,FF1,FF - 32x32 = 64 bit; save higher 32 bits

MPY32 -FF1,FF1,FF - 32x32 = 64 bit; save higher 32 bits

MPY64 FF1,FF1,FF:Y - 32x32 = 64 bit; save higher (in Acc), lower (in Y)

Register-to-register with one parallel move multiply and MAC instructions

Fractional MAC:

MAC32 Q1,Q2,F GG,X:<ea_m> - 32x32 = 64 bit; accumulate higher 32 bits

MAC32 Q1,Q2,F X:<ea_m>,GG - 32x32 = 64 bit; accumulate higher 32bits

Fractional MPY:

MPY32 Q1,Q2,F GG,X:<ea_m> - 32x32 = 64 bit; save higher 32 bits

MPY32 Q1,Q2,F X:<ea_m>,GG - 32x32 = 64 bit; save higher 32 bits
Freescale Semiconductor Instruction Set Details A-315

A.3.1 32 x 32 to 32/64 Multiplication and MAC Instruction
Details

All multiply and MAC instructions supported by the DSP56800EX core use the following encodings.

For register-to-register only, 2 sources defined by SSS

NOTE:

MPY32 -FF1,FF1,FF source only -B x Y, -C x Y.

SSS = SSS =

 0 → A,A 4 → B,C

 1 → A,B 5 → B,Y

 2 → A,C 6 → C,C

 3 → A,Y 7 → C,Y

For register-to-register only, destination defined by DD

DD =

 0 → A

 1 → B

 2 → C

 3 → Y (not valid for 64-bit operations)

For mul32 plus move, 2 sources defined by SS

SS =

 0 → B,Y

 1 → C,Y

 2 → -C,Y (MAC only)

 3 → RESERVED

For mul32 plus move, destination defined by F

F =

 0 → A

 1 → B

For mul32 plus move, move source/destination defined by GG

GG =

 0 → A

 1 → B

 2 → C

 3 → Y
A-316 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

For mul32 plus move, address determination defined by m, RR

m =

 0 → (Rn)+

 1 → (Rn)+N

RR =

 0 → R0

 1 → R1

 2 → R2

 3 → R3
Freescale Semiconductor Instruction Set Details A-317

IMAC32 Integer Multiply-Accumulate 32 bits IMAC32
Operation: Assembler Syntax:

S1 x S2 → D (no parallel move) IMAC32 S1,S2,D (no parallel move)

Description: Multiply two signed 32-bit source operands and add the lower 32-bits of the product to the destination
(D). Both source operands must be located in the {FF1,FF0} portion of an accumulator or the Y reg-
ister. The destination for this instruction can be an accumulator or the Y register. If an accumulator is
used for the destination, the product is first sign extended from bit 31 and a 36-bit addition is then per-
formed. The result is not affected by the state of the saturation bit (SA).

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Condition Codes Affected:

L — Set if overflow has occurred in result
E — Set if the extension portion of the result is in use
U — Set if the result is unnormalized
N — Set if bit 35 (or 31) of the result is set
Z — Set if the result is zero
V — Set if overflow has occurred in result

Condition codes are calculated based on the 36-bit result if the destination is an accumulator, and on
the 32-bit result if the destination is the Y register.

Operation Operands C W Comments

IMAC32 FF1,FF1,FF 1 1 Integer 32 x 32 mul-accumulate 32-bit results

IMAC32 FF1,FF1,FF 16’b0100_0010_00DD_0SSS

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-318 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

IMPY32 Integer Multiply 32 bits x 32 bits → 32 bits IMPY32
Operation: Assembler Syntax:

S1 x S2 → D (no parallel move) IMPY32 S1,S2,D (no parallel move)

Description: Multiply two signed 32-bit source operands and place the lower 32-bits of the product in the destina-
tion (D). Both source operands must be located in the {FF1,FF0} portion of an accumulator or the Y
register. The destination for this instruction can be an accumulator or the Y register. If an accumulator
is used for the destination, the results is sign extended from bit 31 into the extension portion (FF2) of
the accumulator. The result is not affected by the state of the saturation bit (SA).

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Condition Codes Affected:

L — Set if overflow has occurred in result
E — Set if the extension portion of the result is in use
U — Set if the result is unnormalized
N — Set if bit 35 (or 31) of the result is set
Z — Set if the result is zero
V — Set if overflow has occurred in result

Condition codes are calculated based on the 36-bit result if the destination is an accumulator, and on
the 32-bit result if the destination is the Y register.

Operation Operands C W Comments

IMPY32 FF1,FF1,FF 1 1 Integer 32 x 32 multiply 32-bit results

IMPY32 FF1,FF1,FF 16’b0100_0000_00DD_0SSS

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-319

IMPY64 Integer Multiply 32 bits x 32 bits → 64 bits IMPY64
Operation: Assembler Syntax:

S1 x S2 → D:Y (no parallel move) IMPY64 S1,S2,D:Y (no parallel move)

Description: Multiply two signed 32-bit source operands, place the upper 32-bits of the product in the destination
(D) accumulator and place the lower 32-bits of the product in the Y register. Both source operands
must be located in the {FF1,FF0} portion of an accumulator or the Y register. The destination for this
instruction can be an accumulator. For the accumulator, the results is sign extended from bit 63 into
the extension portion (FF2) of the accumulator. The result is not affected by the state of the saturation
bit (SA).

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Condition Codes Affected:

L — Set if overflow has occurred in result
E — Set if the extension portion of the result is in use
U — Set if the result is unnormalized
N — Set if bit 35 (or 31) of the result is set
Z — Set if the result is zero
V — Set if overflow has occurred in result

Condition codes are calculated based on the 36-bit result if the destination is an accumulator, and on
the 32-bit result if the destination is the Y register.

Operation Operands C W Comments

IMPY64 FF1,FF1,FF:Y 1 1 Integer 32 x 32 multiply 64-bit results

IMPY64 FF1,FF1,FF:Y 16’b0100_0000_10DD_0SSS

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-320 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

IMPY64UU Unsigned Integer Multiply IMPY64UU
32bits x 32 bits → 64 bits

Operation: Assembler Syntax:

S1 x S2 → D:Y (no parallel move) IMPY64UU S1,S2,D:Y (no parallel move)

Description: Multiply two unsigned 32-bit source operands, place the upper 32-bits of the product in the destination
(D) accumulator and place the lower 32-bits of the product in the Y register. Both source operands
must be located in the {FF1,FF0} portion of an accumulator.
The Y register is not legal as a source operand for this instruction.
The destination for this instruction can be an accumulator. For the accumulator, zeros are propagated
in the extension portion (FF2) of the accumulator. The result is not affected by the state of the satura-
tion bit (SA).

Instruction Fields:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Condition Codes Affected:
The condition codes are not modified by this instruction.

Operation Operands C W Comments

IMPY64UU FF1,FF1,FF:Y 1 1 Unsigned Integer 32 x 32 multiply 64-bit results

IMPY64UU FF1,FF1,FF:Y 16'b0100_0000_10DD_1SSS
Freescale Semiconductor Instruction Set Details A-321

MAC32 Fractional Multiply-Accumulate MAC32
32 bits x 32 bits → 32 bits

Operation: Assembler Syntax:

+/-S1 x S2 → D (no parallel move) MAC32 +/-S1,S2,D (no parallel move)

+/-S1 x S2 → D (one parallel move) MAC32 +/-S1,S2,D (one parallel move)

Description: Multiply two signed 32-bit source operands and add or subtract the higher 32-bits of the product from
the destination (D). Both source operands must be located in the {FF1,FF0} portion of an accumulator
or the Y register. The destination for this instruction can be an accumulator or the Y register. The high-
er 32-bits of the product are obtained by rounding the internal 64 bit multiply results. The rounding
technique is selected by the R bit in the OMR. When the R bit is cleared (default mode), convergent
rounding is selected; when the R bit is set, two’s-complement rounding is selected. If an accumulator
is used for the destination, the higher 32-bits of the product are first sign extended from bit 31 and a
36-bit addition is then performed.

Instruction Fields:

Parallel Moves:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

MAC32 +/-FF1,FF1,FF 1 1 Fractional 32 x 32 mul-accumulate 32-bit results

Operation Operands Comments

MAC32 Q1,Q2,F GG,X:<ea_m> 32x32 = 64 bit; accumulate higher 32 bits

Q1,Q2,F X:<ea_m>,GG 32x32 = 64 bit; accumulate higher 32 bits

MAC32 FF1,FF1,FF 16’b0100_0011_00DD_0SSS

MAC32 -FF1,FF1,FF 16’b0100_0011_00DD_1SSS

MAC32 Q1,Q2,F X:<ea_m>,GG 16’b0101_10GG_F0SS_0mRR

MAC32 Q1,Q2,F GG,X:<ea_m> 16’b0101_10GG_F0SS_1mRR
A-322 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MAC32 Fractional Multiply-Accumulate MAC32
32 bits x 32 bits → 32 bits

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the extension portion of accumulator result is in use
U — Set according to the standard definition of the U bit
N — Set if MSB of result is set
Z — Set if accumulator result equals zero
V — Set if overflow has occurred in accumulator result

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-323

MPY32 Fractional Multiply MPY32
32 bits x 32 bits → 32 bits

Operation: Assembler Syntax:

+/-S1 x S2 → D (no parallel move) MPY32 +/-S1,S2,D (no parallel move)

+/-S1 x S2 → D (one parallel move) MPY32 +/-S1,S2,D (one parallel move)

Description: Multiply two signed 32-bit source operands and place the higher 32-bits of the product from the des-
tination (D). Both source operands must be located in the {FF1,FF0} portion of an accumulator or the
Y register. The destination for this instruction can be an accumulator or the Y register. The higher
32-bits of the product are obtained by rounding the internal 64 bit multiply results. The rounding tech-
nique is selected by the R bit in the OMR. When the R bit is cleared (default mode), convergent round-
ing is selected; when the R bit is set, two’s-complement rounding is selected. For the accumulator, the
results is sign extended from bit 31 into the extension portion (FF2) of the accumulator.

Instruction Fields:

Parallel Moves:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Operation Operands C W Comments

MPY32 +/-FF1,FF1,FF 1 1 Fractional 32 x 32 mul-accumulate 32-bit results

Operation Operands Comments

MPY32 Q1,Q2,F GG,X:<ea_m> 32x32 = 64 bit; accumulate higher 32 bits

Q1,Q2,F X:<ea_m>,GG 32x32 = 64 bit; accumulate higher 32 bits

MPY32 FF1,FF1,FF 16’b0100_0001_00DD_0SSS

MPY32 -FF1,FF1,FF 16’b0100_0001_00DD_1SSS

MPY32 Q1,Q2,F X:<ea_m>,GG 16’b0101_00GG_F0SS_0mRR

MPY32 Q1,Q2,F GG,X:<ea_m> 16’b0101_00GG_F0SS_1mRR
A-324 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MPY32 Fractional Multiply MPY32
32 bits x 32 bits → 32 bits

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ (parallel move)
L — Set if limiting (parallel move) has occurred
E — Set if the extended portion of the result is in use
U — Set according to the standard definition of the U bit
N — Set if MSB of result is set
Z — Set if result equals zero
V — Always cleared

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Freescale Semiconductor Instruction Set Details A-325

MPY64 Fractional Multiply MPY64
32 bits x 32 bits → 64 bits

Operation: Assembler Syntax:

S1 x S2 → D (no parallel move) MPY64 S1,S2,D (no parallel move)

Description: Multiply two signed 32-bit source operands, place the upper 32-bits of the product in the destination
(D) accumulator and place the lower 32-bits of the product in the Y register. Both source operands
must be located in the {FF1,FF0} portion of an accumulator or the Y register. The destination for this
instruction can be an accumulator. For the accumulator, the results is sign extended from bit 63 into
the extension portion (FF2) of the accumulator.

Instruction Fields:

Parallel Moves:

Instruction Opcodes:

Timing: 1 oscillator clock cycle

Memory: 1 program word

Condition Codes Affected:

SZ — Set according to the standard definition of the SZ (parallel move)
L — Set if limiting (parallel move) has occurred
E — Set if the extended portion of the result is in use
U — Set according to the standard definition of the U bit
N — Set if MSB of result is set
Z — Set if result equals zero
V — Always cleared

Operation Operands C W Comments

MPY64 FF1,FF1,FF:Y 1 1 Fractional 32 x 32 multiply 64-bit results

Operation Operands Comments

MPY32 Q1,Q2,F GG,X:<ea_m> 32x32 = 64 bit; accumulate higher 32 bits

Q1,Q2,F X:<ea_m>,GG 32x32 = 64 bit; accumulate higher 32 bits

MPY64 FF1,FF1,FF 16’b0100_0001_10DD_0SSS

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-326 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

A.4 Test Bitfield and Set/Clear (BFSC) Instruction
This following is a detailed definition of the Test Bitfield and Set/Clear (BFSC) instruction supported by
the DSP56800EX core. This instruction performs a word-sized memory read-modify-write operation. The
read-modify-write is performed with a locked bus sequence, making this memory update autonomous.
This instruction also updates the condition code “C” bit based on a test of the read data.
Freescale Semiconductor Instruction Set Details A-327

BFSC Test Bitfield and Set/Clear BFSC
Operation: Assembler Syntax:

0/1 → (<bitfield> of destination) (no parallel move) BFSC #iiii,#iiii,X:<ea>(no parallel move)

BFSC bit_select_mask,operation_mask,X:<ea>

Description: Test all selected bits of the destination operation. The operand size is always word. The first
#<MASK16> field is the bit select mask. It is used to specify which bits are tested and then set or
cleared. The second #<MASK16> field is the operation mask. It is used to specify if a bit selected for
testing is set or cleared. The bits that are set in the immediate value of the bit select mask are the same
bits that are tested and set or cleared in the destination; the bits that are cleared in the immediate value
of the bit select mask are ignored in the destination. If a bit in the operation mask corresponding to a
selected bit in the immediate value of the bit select mask is set, then the corresponding bit in the des-
tination is set. If a bit in the operation mask corresponding to a selected bit in the immediate value of
the bit select mask is cleared, then the corresponding bit in the destination is cleared.

This instruction performs a read-modify-write operation on the destination memory location and re-
quires two destination accesses. Operation:

"C" condition code bit = ((source[15:0] & bit_select_mask[15:0]) ==
(operation_mask[15:0] & bit_select_mask[15:0]));
destination[15:0] = ((source[15:0] & ~bit_select_mask[15:0]) |
(operation_mask[15:0] & bit_select_mask[15:0]));

Usage: This instruction is very useful in performing I/O and flag bit manipulation.

Instruction Fields:

Instruction Opcodes:

Timing: 3 oscillator clock cycles

Memory: 3 program words

Condition Codes Affected:

C — Set if all bits specified by the value of the bit_select_mask match their associated value in the
operation_mask.
Clear if at least 1 bit specified by the value of the bit_select_mask does not match its associ-
ated value in the operation_mask.

Operation Operands C W Comments

BFSC #<MASK16>,#<MASK16>,X:(Rn) 3 3 Test bitfield and set/clear

BFSC #<MASK16>,#MASK16>,X:(Rn) 16’b0100_0011_1000_0RRR
A-328 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

A.5 Instruction Opcode Encoding
The following sections describe the notation that is used in the “Instruction Opcode” sections of the
instruction descriptions. This information allows instructions to be manually encoded into a binary pattern
or to be decoded from their binary form.

Figure A-1 shows an example of how instruction encodings are presented. In the grid on the right-hand
side, each box represents a single bit in the opcode. Where the bit is given as a binary digit, it represents the
actual value that is encoded in that position in the opcode. A letter in one of the bit positions indicates that
the encoding is variable, based on the operands or memory accesses that are used in the instruction.

Figure A-1. Example Instruction Encoding

In the example opcode for the MPY instruction in Figure A-1, five variable encoding fields are specified:
GGG, F, QQQ, m, and RR. Consult the tables in the following sections to determine their use, as follows:

• GGG specifies the destination register for the parallel move.

• F specifies the destination register for the multiplication.

• QQQ designates the two source registers for the multiplication.

• m selects the addressing mode that is used by the parallel move.

• RR selects the register holding the parallel move source address.

Using the values in the tables that follow this section, we can construct the encoding for the instruction
MPY Y1,B1,A X:(R1)+,Y1 as shown in Figure A-2.

Figure A-2. Encoding for the MPY Y1,B1,A X:(R1)+,Y1 Instruction

The tables in the following sections give the encoding fields that are used in the instruction encodings.

15 12 11 8 7 4 3 0

MPY Q1,Q2,F X:<ea_m>,GGG 0 0 1 0 0 G G G F Q Q Q 1 m R R

15 12 11 8 7 4 3 0

0 0 1 0 0 1 1 1 0 0 0 1 1 0 0 1

Y1 and B1 as source to MPY

Y1 as destination of parallel move

A register as destination for MPY

(Rn)+ addressing mode

R1 register as source for parallel move
Freescale Semiconductor Instruction Set Details A-329

A.5.1 Register Operand Encodings
Table A-7 contains the encoding fields that are used to specify data ALU registers in most instructions.
Note that different encoding field specifiers are sometimes used to indicate the same set of possible
registers.

Table A-7. Data ALU Register Operand Encodings

Encoding Field Value Register

DD 00 X0

01 Y0

10 (Reserved)

11 Y1

F

~F1
0 A

1 B

FF
bb

00 A

01 B

10 C

11 D

EEE
aaa

000 A

001 B

010 C

011 D

100 X0

101 Y0

110 (Reserved)

111 Y1

FFF
bbb

000 A

001 B

010 C

011 D

100 X0

101 Y0

110 Y

111 Y1
A-330 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

For instructions that have three operands, such as MACSU, a different encoding field is specified in the
instruction opcode. The values that are used to encode register parameters also vary depending on the
instruction specified. Table A-8 on page A-332 shows the data ALU register encodings for these
three-operand instructions.

fff 000 A

001 B

010 C

011 D

100 (Reserved)

101 (Reserved)

110 Y

111 (Reserved)

ccc 000 A1

001 B1

010 C1

011 D1

100 X0

101 Y0

110 (Reserved)

111 Y1

1.In some cases, the notation ~F (F preceded by a tilde) is used for the source register in a data ALU operation.
This notation is defined as follows: If F is the A accumulator, then ~F is the B accumulator; if F is the B accu-
mulator, then ~F is the A accumulator.

Table A-7. Data ALU Register Operand Encodings (Continued)

Encoding Field Value Register
Freescale Semiconductor Instruction Set Details A-331

Table A-8. Three-Operand Data ALU Instruction Register Encodings

Encoding Field Value First Source Register Second Source Register

QQ 00 Y0 X0

01 Y1 X0

10 C1 Y0

11 Y1 Y0

QQQ

for the following instruc-
tions:

ASRR.W
ASLL.W
LSRR.W
ASRAC
LSRAC

000 C1 Y1

001 B1 Y1

010 Y0 Y0

011 A1 Y0

100 Y0 X0

101 Y1 X0

110 C1 Y0

111 Y1 Y0

QQQ

for the MPYSU and
MACSU instructions

000 Y1 C1

001 Y1 B1

010 Y0 Y0

011 Y0 A1

100 X0 Y0

101 X0 Y1

110 Y0 C1

111 Y0 Y1

QQQ

for all other instructions

000 C1 Y1

001 Y1 B1

010 Y0 Y0

011 Y0 A1

100 X0 Y0

101 X0 Y1

110 C1 Y0

111 Y0 Y1
A-332 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

qqq

for the IMPYUU and
IMPYSU instructions

000 A1 A0

001 A1 B0

010 A1 C0

011 A1 D0

100 B1 C0

101 B1 D0

110 C1 C0

111 C1 D0

qqq

for the IMACUS and
IMACUU instructions

000 A0 A1

001 A0 B1

010 A0 C1

011 A0 D1

100 B0 C1

101 B0 D1

110 C0 C1

111 C0 D1

qqq

for the IMPYUU instruction
(third operand is FF)

000 A0 A0

001 A0 B0

010 A0 C0

011 A0 D0

100 B0 C0

101 B0 D0

110 C0 C0

111 C0 D0

Table A-8. Three-Operand Data ALU Instruction Register Encodings (Continued)

Encoding Field Value First Source Register Second Source Register
Freescale Semiconductor Instruction Set Details A-333

JJJJJ 00000 A1 A1

00001 A1 X0

00010 A1 Y1

00011 A1 Y0

00100 B1 A1

00101 B1 X0

00110 B1 Y1

00111 B1 Y0

01000 C1 A1

01001 C1 X0

01010 C1 Y1

01011 C1 Y0

Table A-8. Three-Operand Data ALU Instruction Register Encodings (Continued)

Encoding Field Value First Source Register Second Source Register
A-334 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

The final set of encodings for data ALU instruction register operands is for those instructions that support
a parallel move. These encodings are given in Table A-9 on page A-336.

JJJJJ
(continued)

01100 D1 A1

01101 D1 X0

01110 D1 Y1

01111 D1 Y0

10000 (Reserved) (Reserved)

10001 B1 B1

10010 B1 C1

10011 B1 D1

10100 (Reserved) (Reserved)

10101 X0 X0

10110 X0 Y1

10111 X0 Y0

11000 (Reserved) (Reserved)

11001 C1 D1

11010 C1 C1

11011 D1 D1

11100 (Reserved) (Reserved)

11101 Y1 Y0

11110 Y1 Y1

11111 Y0 Y0

Table A-8. Three-Operand Data ALU Instruction Register Encodings (Continued)

Encoding Field Value First Source Register Second Source Register
Freescale Semiconductor Instruction Set Details A-335

A.5.2 MOVE Instruction Register Encodings
Due to the wide variety of MOVE instructions that are supported by the core, there is a separate set of
encodings that is dedicated to specifying MOVE instruction source and destination register operands.
These encodings are presented in Table A-10 on page A-336.

Table A-9. Register Op Codes for DALU Instructions with Parallel Moves

Encoding Field Value Source Register Destination Register

JJJ 000 ~F F

001 F F

010 F or C F

011 F F

100 X0 F

101 Y0 F

110 C F

111 Y1 F

JJ 00 X0 F

01 Y0 F

10 ~F F

11 Y1 F

Table A-10. Register Encodings for MOVE Instructions

Encoding Field Value Register

nnn (for AGU source operands)
RRR

000 R0

001 R1

010 R2

011 R3

100 R4

101 R5

110 N

111 SP
A-336 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

NNN 000 R0

001 R1

010 R2

011 R3

100 R4

101 R5

110 N

111 (Reserved)

SSS 000 R0

001 R1

010 R2

011 R3

100 R4

101 R5

110 N

111 (Reserved)

RR 00 R0

01 R1

10 R2

11 R3

GGG 000 A

001 B

010 C

011 A1

100 X0

101 Y0

110 B1

111 Y1

Table A-10. Register Encodings for MOVE Instructions (Continued)

Encoding Field Value Register
Freescale Semiconductor Instruction Set Details A-337

A.5.3 Encodings for Instructions that Support the Entire
Register Set

Certain core instructions can be performed on any register in the entire register set. These include certain
types of MOVE instructions, the bit-manipulation instructions, and the hardware looping instructions
(including DO and REP).

One class of these instructions is MOVE instructions that operate differently depending on whether a value
is being loaded from memory into a register or is being stored from a register into memory. The register
encodings that are used with this type of instruction are given in Table A-11.

GGGG 0000 A

0001 B

0010 C

0011 A1

0100 X0

0101 Y0

0110 B1

0111 Y1

1000 R0

1001 R1

1010 R2

1011 R3

1100 R4

1101 R5

1110 N

1111 (Reserved)

Table A-10. Register Encodings for MOVE Instructions (Continued)

Encoding Field Value Register
A-338 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Table A-11. Encodings for Instructions with Different Load and Store Register Sets

Encoding Field Value
Register

Load Operation Store Operation

DDDDD
(data ALU registers)

00000 A A1

00010 B B1

00100 C C1

00110 D D1

01000 X0 X0

01010 Y0 Y0

01100 (Reserved) Y

01110 Y1 Y1

DDDDD
(accumulator registers)

00001 A1 A

00011 B1 B

00101 C1 C

00111 D1 D

01001 A2 A2

01011 B2 B2

01101 A0 A0

01111 B0 B0

DDDDD
(AGU registers)

10000 R0 R0

10010 R1 R1

10100 R2 R2

10110 R3 R3

11000 R4 R4

11010 R5 R5

11100 N N

11110 (Reserved) (Reserved)
Freescale Semiconductor Instruction Set Details A-339

The second class of instructions that can specify any register consists of the bit-manipulation instructions.
The encodings that are employed by these instructions are shown in Table A-12.

DDDDD
(other registers)

10001 SP SP

10011 N3 N3

10101 M01 M01

10111 HWS HWS

11001 OMR OMR

11011 SR SR

11101 LC LC

11111 LA LA

Table A-12. Bit-Manipulation Register Encodings

Encoding Field Value Register

ddddd
(general data ALU registers)

00000 A

00001 B

00010 C

00011 D

00100 X0

00101 Y0

00110 (Reserved)

00111 Y1

ddddd
(AGU registers)

01000 R0

01001 R1

01010 R2

01011 R3

01100 R4

01101 R5

01110 N

01111 (Reserved)

Table A-11. Encodings for Instructions with Different Load and Store Register Sets (Continued)

Encoding Field Value
Register

Load Operation Store Operation
A-340 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

The final class of instructions that can specify any register in the core register set consists of MOVE
instructions that access different portions of a register depending on the size of the data value that is being
moved. Table A-13 on page A-342 shows the register operand encodings for this type of instruction.

ddddd
(accumulator component registers)

10000 A1

10001 B1

10010 C1

10011 D1

10100 A2

10101 B2

10110 A0

10111 B0

ddddd
(miscellaneous registers)

11000 SP

11001 N3

11010 M01

11011 HWS

11100 OMR

11101 SR

11110 LC

11111 LA

Table A-12. Bit-Manipulation Register Encodings (Continued)

Encoding Field Value Register
Freescale Semiconductor Instruction Set Details A-341

Table A-13. Size-Dependent Register Encodings for MOVE Instructions

Encoding Field Value
Byte and Word Access Long-Word Access

Load Store Load Store

hhh 000 A A1 A A10

001 B B1 B B10

010 C C1 C C10

011 D D1 D D10

100 X0 X0 (Reserved) (Reserved)

101 Y0 Y0 (Reserved) (Reserved)

110 (Reserved) Y (Reserved) (Reserved)

111 Y1 Y1 Y Y

hhhh 0000 A A1 A A10

0001 B B1 B B10

0010 C C1 C C10

0011 D D1 D D10

0100 X0 X0 (Reserved) (Reserved)

0101 Y0 Y0 (Reserved) (Reserved)

0110 (Reserved) Y (Reserved) (Reserved)

0111 Y1 Y1 Y Y

1000 R0 R0 R0 R0

1001 R1 R1 R1 R1

1010 R2 R2 R2 R2

1011 R3 R3 R3 R3

1100 R4 R4 R4 R4

1101 R5 R5 R5 R5

1110 N N N N

1111 (Reserved) (Reserved) (Reserved) (Reserved)
A-342 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

A.5.4 Parallel Move Encoding
Some instructions support a parallel move or dual parallel read in conjunction with some other operation.
These instructions encode the source and destination registers for the parallel move or dual parallel read
separately from the registers that are used in the core operations. This section presents the encoding fields
that are used to specify the registers that are accessed in the parallel move portion of the instruction.

Instructions with a single parallel move of the forms “X:<ea_m>,GGG” and “GGG,X:<ea_m>” encode the
source or destination register using the values given in Table A-14 on page A-344.

dddd1 0000 A2 A2

0001 B2 B2

0010 C2 C2

0011 D2 D2

0100 X0 X0

0101 Y0 Y0

0110 LC2 LC2

0111 Y1 Y1

1000 SP SP

1001 N3 N3

1010 M01 M01

1011 HWS HWS

1100 OMR OMR

1101 SR SR

1110 LC LC

1111 LA LA

1.This encoding is only used for 32-bit stack push and pop operations.

Table A-13. Size-Dependent Register Encodings for MOVE Instructions (Continued)

Encoding Field Value
Byte and Word Access Long-Word Access

Load Store Load Store
Freescale Semiconductor Instruction Set Details A-343

The encoding for dual parallel reads is given in Table A-15.

Table A-14. Single Parallel Move Register Encoding

Encoding Field Value Register

GGG 000 A

001 B

010 C

011 A1

100 X0

101 Y0

110 B1

111 Y1

Table A-15. Dual Parallel Read Encoding

Encoding Field Value Primary Read Secondary Read

vvvv 0000 X:(R0),Y0 X:(R3)+,X0

0100 X:(R0),Y0 X:(R3)–,X0

1000 X:(R0),Y1 X:(R3)+,X0

1100 X:(R0),Y1 X:(R3)–,X0

0001 X:(R1),Y0 X:(R3)+,X0

0101 X:(R1),Y0 X:(R3)–,X0

1001 X:(R1),Y1 X:(R3)+,X0

1101 X:(R1),Y1 X:(R3)–,X0

0010 (Reserved)

0110 (Reserved)

1010 X:(R0),Y1 X:(R3)+,C

1110 X:(R0),Y1 X:(R3)+N3,C

0011 X:(R4),Y0 X:(R3)+,X0

0111 X:(R4),Y0 X:(R3)+N3,X0

1011 X:(R4),Y1 X:(R3)+,C

1111 X:(R4),Y1 X:(R3)+N3,C
A-344 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

A.5.5 Addressing Mode Encodings
The instructions that support a parallel move or dual parallel read must specify the addressing mode that is
used for the memory access or accesses. The encoding that is used to select the addressing mode is given in
Table A-16.
.

A.5.6 Conditional Instruction Encoding
The conditional branch, jump, and register-transfer instructions are encoded differently depending on the
condition specified. The encodings for the different conditions that are supported by the Tcc instruction are
presented in Table A-17.

The encoding for the conditions that are used in the conditional branch and jump instructions is given in
Table A-18 on page A-346.

Table A-16. Addressing Mode Encodings

Encoding Field Value Addressing Mode

MM 00 (Rn)+ or (SP)+

01 (Rn+N) or (SP+N)

10 (Rn)– or (SP)–

11 (Rn) or (SP)

m 0 (Rn)+

1 (Rn)+N

Table A-17. Condition Encoding for the Tcc Instruction

Encoding Field Value Condition

CCC 000 cc

001 cs

010 ne

011 eq

100 ge

101 lt

110 gt

111 le
Freescale Semiconductor Instruction Set Details A-345

A.5.7 Immediate and Absolute Address Encoding
A number of core instructions specify one operand using an immediate value or absolute address. These
values are encoded into the instruction using the following encoding fields:

• AAAAAA: 6-bit positive offset for X:(R2+xx) addressing mode. Allows positive offsets: 0 to 63.

• AAA: Top 3 address bits for 19-bit JMP, Jcc, and JSR instructions.

• AA: Top 2 address bits for 18-bit BRA, Bcc, and BSR instructions.

• Aaaaaaa: 7-bit signed offset for Bcc <OFFSET> and BRSET and BRCLR instructions. The U bit
in BRSET and BRCLR instructions is used to indicate if the mask corresponds to the upper byte
(U = 1) or the lower byte (U = 0). Aaaaaaa must never be all zeros when it is used with the Bcc
instruction.

• aaaaaa: 6-bit negative offset for the X:(SP–xx) addressing mode. Allows negative offsets from –1
to –64.

• BBBBBBB: 7-bit signed integer that is used by an instruction whose operands are of the form
“#<xx>,hhhh” or “#<xx>,F1”.

• BBBBBB: 6-bit unsigned integer that is used for DO and REP instructions. BBBBBB cannot be
zero for DO loops.

Table A-18. Condition Encoding for Jump and Branch Instructions

Encoding Field Value Condition

CCCC 0000 cc (same as hs—unsigned
higher or same)

0001 cs (same as lo—unsigned lower)

0010 ne

0011 eq

0100 ge

0101 lt

0110 gt

0111 le

1000 (Reserved)

1001

1010

1011

1100 hi (unsigned higher)

1101 ls (unsigned lower or same)

1110 nn

1111 nr
A-346 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

• BBBBB: 5-bit signed integer for some data ALU and MOVE instructions.

• iii: 3-bit offset for X:(Rn+x) and X:(SP–x) addressing modes. Allows positive offsets for the
X:(Rn+x) address mode from 0 to 7, and negative offsets from –1 to –8 for the X:(SP–x) addressing
mode. See Table A-19.

• iiii: 4-bit unsigned integer for AGU arithmetic calculations and the MOVE.L #xx,hhh instruction.

• Ppppppp: 7-bit absolute address for MOVE, data ALU, and bit-manipulation instructions using the
X:<<pp addressing mode. It is sign extended to allow access to both the peripherals and the first 64
locations in X memory.

Table A-19. Offset Values for iii Encoding

Encoded Value X:(Rn+x) Offset X:(SP–x) Offset

000 0 –8

001 1 –7

010 2 –6

011 3 –5

100 4 –4

101 5 –3

110 6 –2

111 7 –1
Freescale Semiconductor Instruction Set Details A-347

A-348 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Appendix B
Condition Code Calculation

The execution of DSC core instructions, in addition to performing the selected task, often updates other
state information in the execution core. The condition code bits in the status register (SR) reflect this state,
which can in turn affect the execution of subsequent instructions.

This appendix contains information on condition code calculation for each instruction in the instruction
set. It supplements the information given in Section 5.7, “Condition Code Calculation,” on page 5-38,
which should be consulted for additional information.

B.1 Factors Affecting Condition Code Calculation
In general, condition codes are calculated according to very simple rules. However, the exact calculation
can be affected by a number of factors. The size and type of operands that are used for a calculation, the
current condition code mode, and the operation of the MAC output limiter can all affect the way condition
codes are calculated. Each of these issues is discussed separately in the following sections.

B.1.1 Operand Size and Type
In order to understand how condition codes are calculated, it is important to understand how arithmetic
calculations are performed by the core. Depending on the size of the operands that are being used, the
values that are used for computation are sign extended or zero extended internally, and the condition codes
are based on the internal size that is used for calculation.

Operations in the data ALU are always performed with either 20- or 36-bit quantities. Operands that are
not 20 or 36 bits in size are internally extended before the computation is performed. This extension occurs
according to the same rules for alignment and extension that are used when values are loaded into an
accumulator. Figure B-1 on page B-2 shows the alignment and extension that are performed.
Freescale Semiconductor Condition Code Calculation B-1

Figure B-1. Internal Data ALU Alignment and Extension

Once extension and alignment is done, a 20- or 36-bit calculation is performed, and the result is stored
based on the destination size that is encoded in the opcode.

AGU operations are always performed using 24-bit quantities, and they always generate 24-bit results.
Logic in the AGU automatically extends operands that are smaller than 24 bits in size, based on the type of
operand specified. Figure B-2 shows the rules for extension based on the type of operand that is specified.

Figure B-2. Internal AGU Alignment and Extension

16-Bit Operands
Sign

Extension Zero Fill

8-Bit Operands Sign Extension Zero Fill

035 32 1631 15

035

5-Bit Immediate Operands Zero Extension Zero Fill

16 1521 20

32-Bit Operands
Sign

Extension

035 32 31

035 16 1524 23

36-Bit Operands

035

20-Bit Operands Zero Fill

035 16 15

17-Bit Immediate Operands

16-Bit Register Operands

6-Bit Immediate Operands

01623 15

01723 16

4-Bit Immediate Operands

4 3

24-Bit Operands

023

023

023

6 5

Zero
Extension

Zero
Extension

Sign
Extension

Sign
Extension

16-Bit Immediate Operands

01623 15

Zero
Extension
B-2 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

B.1.2 MAC Output Limiter
The core contains a MAC output limiter that can be enabled to perform automatic saturation on the results
of many data ALU operations before they are stored back into an accumulator. When saturated, results are
limited to fit within the FF1:FF0 portion of the accumulator, with the extension portion containing only
sign extension. Because results are limited to 32 bits, condition code calculation can be affected. The MAC
output limiter is enabled through setting the SA bit in the operating mode register (OMR).

The following bits are affected by the MAC output limiter:

• U—Cleared if saturation occurs in the MAC output limiter

• V—Set when saturation occurs in the MAC output limiter

The following bits are only affected in unusual cases:

• L—May be indirectly affected through effects on V bit

• N—Affected only when ASRAC, LSRAC, or IMPY.W are executed

• C—Affected only by ASL

Condition code calculation is not affected by the MAC output limiter for most test and comparison
instructions. However, it is possible for the MAC output limiter to affect the calculation of the U bit when
the CMP.W instruction is executed. See Section B.3, “Condition Code Summary by Instruction,” for more
information.

The MAC output limiter only affects operations in the data ALU. Move instructions, bit-manipulation
instructions, and AGU instructions are not affected. See Section 5.8.3, “Instructions Not Affected by the
MAC Output Limiter,” on page 5-42 for a complete list of data ALU instructions that are not affected.

NOTE:

When the MAC output limiter is enabled, condition codes are not always
set in an intuitive manner. It is best to examine each instruction to
determine the effect of the MAC output limiter on condition code
calculation.

B.1.3 Condition Code Mode
The data ALU’s condition code mode also affects condition code calculation. There are two condition code
modes: 36-bit mode, where the extension portion of the accumulator (the FF2 portion) is used when
condition codes are calculated, and 32-bit mode, where the extension registers are ignored. The mode is
selected using the condition code mode bit (CM) in the OMR. When this bit is set, 32-bit mode is selected,
and the accumulator extension registers are ignored when condition codes are calculated. When the CM bit
is cleared, 36-bit condition code mode is used.

Signed values can be computed in either way, but pay attention to the condition code mode when
performing unsigned operations. For correct operation, 32-bit condition code mode (CM bit set) must be
selected when TST and CMP instructions are executed before jump and branch instructions that use the HI,
HS, LO, or LS branch and jump conditions.

The condition code mode directly affects the following condition code bits:

• V—Set based on the MSB of the result’s MSP portion versus the extension portion

• Z—Set using only the MSP and LSP portions of the result versus the whole accumulator
Freescale Semiconductor Condition Code Calculation B-3

The following bits are only affected by the condition code mode in unusual cases:

• L—May be indirectly affected through effects on V bit

• N—Only affected by ASRAC, LSRAC, IMPY.W, and ASLL.W

• C—Only affected by ASL

The condition code mode does not affect any of the test and comparison instructions, such as TST.W and
CMP.BP. The condition code mode also only affects operations performed in the data ALU. It does not
affect operations that are performed outside the data ALU, such as move instructions, bit-manipulation
instructions, and AGU instructions.

NOTE:

Because of enhancements to the instruction set, it is generally not
necessary to operate the DSC in 32-bit condition code mode. New
instructions support test and compare operations for byte, word, and long
data types, as well as for full 36-bit accumulators. New applications should
not use 32-bit condition code mode.

B.2 Condition Code Register
A description of each of the bits in the status register is given in the following sections. Each description
given is the standard definition for each condition code bit, but the bits might be set or cleared slightly
differently depending on the instruction being executed. For the exact calculation for a given instruction,
see Section B.3, “Condition Code Summary by Instruction.”

The condition code register occupies the low-order 8 bits of the status register (SR).

SR Status Register
BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BIT 0

LF P4 P3 P2 P1 P0 I1 I0 SZ L E U N Z V C

TYPE rw r r r r r rw rw rw rw rw rw rw rw rw rw

RESET 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

Table B-1. Condition Code Bit Descriptions1

Name Description Settings

SZ
Bit 7

Size—Indicates growth beyond a certain point in
the size of an accumulator value

0 = Accumulator value is small.
1 = Accumulator value is large.

L
Bit 6

Limit—Indicates whether data limiting has been
performed since this bit was last cleared

0 = No limiting performed.
1 = Limiting has been performed.

E
Bit 5

Extension in Use—Indicates whether an accu-
mulator extension register is in use

0 = Extension not in use.
1 = Extension in use.

U
Bit 4

Unnormalized—Shows whether a result value
is normalized or not

0 = Normalized.
1 = Not normalized.

N
Bit 3

Negative—Indicates whether result of last oper-
ation was negative or positive

0 = Result was positive.
1 = Result was negative.
B-4 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

The condition code bits are updated automatically after each instruction is executed according to the rules
that are outlined in the following sections. Be careful when changing the values of the condition code bits
under program control, because the state of the condition code bits can affect the execution of subsequent
instructions.

B.2.1 Size Bit (SZ)
The SZ bit is a latching bit (sticky bit) that indicates that word growth is occurring in an algorithm. It is set
when a 36-bit accumulator is written to data memory if bits 30 and 29 of the source accumulator that is
used in the move operation are not the same—that is, if both are not ones or zeros. SZ is not affected
otherwise.

The SZ bit is designed for use in the FFT algorithm. It indicates that the next pass in the algorithm should
scale its results before computation, allowing FFT data to be scaled only on passes where necessary, which
in turn helps guarantee maximum accuracy in an FFT calculation.

The exact algorithm for calculating SZ is:

SZ = SZ | (Bit 30 ⊕ Bit 29)

The calculation of SZ is not affected by the condition code mode or by the operation of the MAC output
limiter. The SZ bit is latched once it is set, and it is cleared only by processor reset or by an instruction that
explicitly clears it.

B.2.2 Limit Bit (L)
The limit bit (L) is a latching bit (sticky bit) that indicates that overflow has occurred in a data ALU
operation or that limiting has occurred when one of the four accumulators (A, B, C, D) is moved with a
single move or through a parallel move.

L = L | V | (limiting due to a move)

L is not affected otherwise. The calculation of L is not directly affected by either the MAC output limiter
or the condition code mode. However, the MAC output limiter and the condition code mode do affect the
calculation of the overflow (V) bit, which may indirectly affect the calculation of L.

The TFR and TFRA instructions are register-to-register transfer instructions and are not considered
“move” instructions in the equation for calculating L. As a result, neither instruction will set the L bit, even
if saturation is enabled (SA = 1) and saturation occurs. Note that the TFR instruction can set the L bit if it
has a parallel move and if limiting occurs in that parallel move.

Z
Bit 2

Zero—Indicates whether result of last operation
was zero or not

0 = Result was non-zero.
1 = Result was zero.

V
Bit 1

Overflow—Indicates whether result of last oper-
ation overflowed its destination

0 = Did not overflow.
1 = Overflowed destination.

C
Bit 0

Carry—Set if a carry out or borrow was gener-
ated in addition or subtraction

0 = No carry occurred during operation.
1 = Carry-out occurred during operation.

1.For descriptions of bits 15–8 of the SR, see Table 8-2 on page 8-8.

Table B-1. Condition Code Bit Descriptions1 (Continued)

Name Description Settings
Freescale Semiconductor Condition Code Calculation B-5

The L bit is latched once it is set, and it is cleared only by processor reset or by an instruction that explicitly
clears it.

B.2.3 Extension in Use Bit (E)
The extension in use bit (E) indicates whether the extension portion of a data ALU result contains
significant bits or whether they are just sign extension. If E is cleared, then bits 35–31 of the result are
00000 or 11111. E is set otherwise.

The E bit is calculated based on the 20- or 36-bit internal result that is computed by the data ALU. E is thus
calculated regardless of whether the specified destination contains an extension register. See Section B.1.1,
“Operand Size and Type,” for more information on how the internal result is calculated.

The calculation of E is not affected by the condition code mode. If the MAC output limiter is enabled, the
E bit is set based on the result before it passes through the limiter. Saturation that occurs in the MAC
output limiter can result in the E bit being set even though the final result does not use the extension
portion of the accumulator.

B.2.4 Unnormalized Bit (U)
The unnormalized bit (U) is set to indicate that the result of a data ALU operation is not normalized. It is
set if the 2 most significant bits of the MSP of the result are the same, and it is cleared otherwise. The exact
computation is as follows:

U = (Bit 31 ⊕ Bit 30) for 20-, 32-, and 36-bit calculations

U = (Bit 15 ⊕ Bit 14) for 8- and 16-bit calculations

U is not affected by the condition code mode. When the MAC output limiter is enabled, and when limiting
is performed, this bit is always cleared. If no limiting is done by the MAC output limiter, U is computed
using the preceding equations.

In general, the calculation of the U bit when a CMP.W instruction is executed is not affected by the state of
the MAC output limiter. However, if the first operand to CMP.W is not a register (that is, it is a memory
location or an immediate value), and if the second operand is X0, Y0, or Y1, then the calculation of U can
be affected if the MAC output limiter is enabled.

B.2.5 Negative Bit (N)
The negative bit (N) indicates whether or not the result of a data ALU or an AGU calculation is negative. A
value is considered negative if the MSB of the result is set. Note that N is set based on the size of the
destination for the result, not on the internal (20- or 36-bit) size.

The condition code mode has no effect on the calculation of N for 8-, 16-, 24-, and 32-bit results. For 20-
or 36-bit results, N is based on bits 15 or 31 (respectively) if 32-bit condition code mode is selected. When
saturation is enabled (SA = 1), the N bit is set based on the result before it passes through the MAC output
limiter.

Calculation of the N bit is somewhat different for the ASLL.W, ASLL.L, ASRAC, LSRAC, and IMPY.W
instructions. See Section B.3.3, “Special Calculation Rules for Certain Instructions,” for more information.
B-6 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

B.2.6 Zero Bit (Z)
The zero bit (Z) is set if the result of a data ALU or an AGU operation is zero. A value is zero if all
significant bits are clear. The accumulator extension registers are not checked if 32-bit condition code
mode is active.

B.2.7 Overflow Bit (V)
The overflow bit (V) is set if an arithmetic overflow occurs in the result of a data ALU operation. Overflow
occurs when the carry into the result’s MSB is not equal to the carry out of the MSB. This inequality
indicates that the result of the ALU operation is not representable in the destination and that the result has
overflowed. The V bit is set based on the size of the destination operand, not on the internally calculated
(20- or 36-bit) value. If 32-bit condition code mode is selected, the extension portion of the destination is
ignored.

When saturation is enabled (SA = 1), V is set when saturation occurs. If saturation does not occur, the
preceding rules determine the V bit.

B.2.8 Carry Bit (C)
The carry bit (C) is set if a carry is generated out of the most significant bit (MSB) of the result for an
addition, or if a borrow is generated in a subtraction. It is cleared otherwise. C is always calculated based
on a carry or borrow out of the high-order bit (bit 31 for a 32-bit result). Note that for 20- and 36-bit
accumulator results, this bit will always be bit 35.

C is also used by a number of instructions to indicate conditions other than a carry out. The shift and rotate
instructions place the bit that is shifted or rotated out of the destination into the carry bit. The C bit is also
used by the bit-manipulation instructions to indicate the status of a bitfield comparison. See Table B-3 on
page B-9 for more information.
Freescale Semiconductor Condition Code Calculation B-7

B.3 Condition Code Summary by Instruction
A summary of condition code generation for every instruction appears in Table B-3 on page B-9. Note that
the condition code computations shown in Table B-3 may differ from those given in the individual
instruction descriptions in Appendix A, “Instruction Set Details.” In general, Table B-3 gives the core
implementation viewpoint, while the instruction descriptions give the user viewpoint.

B.3.1 Notation
Table B-2 presents the notation that is used in Table B-3 on page B-9.

B.3.2 Condition Code Calculation Table
Table B-3 on page B-9 lists the computation for the condition code bits for each instruction, using the
notation that is outlined in Table B-2. Any unusual condition code calculation, or changes to bits in the
upper half of the status register, are noted in the “Comments” column.

Table B-2. Condition Code Summary Table Notation

Notation Description

* Set by the result of the operation according to the standard definition.

— Not affected by the operation.

*8 Set by the result of the operation according to the definition for 8-bit results in Section B.2, “Condition
Code Register.”

*16 Set by the result of the operation according to the definition for 16-bit results in Section B.2, “Condition
Code Register.”

*32 Set by the result of the operation according to the definition for 32-bit results in Section B.2, “Condition
Code Register.”

*36 Set by the result of the operation according to the definition for 36-bit results in Section B.2, “Condition
Code Register.”

*xx Set by the result of the operation according to the size of destination. This instruction can manipulate
operands that are of different sizes.

=0 Cleared.

=1 Set.

? Set according to a special computation defined for the operation.

V L bit is set if overflow has occurred in result.

T L bit is set if limiting occurs when an accumulator is read during a parallel move or by the instruction
itself. An example of the latter case is BFCHG #$8000,A, which must first read the A accumulator
before performing the bit-manipulation operation.

VT L bit is set if overflow has occurred in result or if limiting occurs when an accumulator is read.
B-8 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Table B-3. Condition Code Summary (Sheet 1 of 5)

Instruction SZ L E U N Z V C Comments

ABS * VT *36 *36 *36 *36 *36 —

ADC — V *36 *36 *36 *36 *36 *36

ADD * VT *xx *xx *xx *xx *xx *xx
ADD.B — — *8 *8 *8 *8 *8 *8

ADD.BP — — *8 *8 *8 *8 *8 *8

ADD.L — — *32 *32 *32 *32 *32 *32

ADD.W — V *xx *xx *xx *xx *xx *xx
ADDA — — — — — — — —

ADDA.L — — — — — — — —

ALIGNSP — — — — — — — —
AND.L — C — — *32 *32 =0 —

AND.W — — — — *16 *16 =0 —

ASL * VT *xx *xx *xx *xx ? ? See Section B.3.3.1, “ASL and ASL.W,” for informa-
tion on the V and C bits.

ASL.W — VT *16 *16 *16 *16 ? ? See Section B.3.3.1, “ASL and ASL.W,” for informa-
tion on the V and C bits.

ASL16 — — — — — — — —
ASLA — — — — — — — —

ASLL.L — — — — ? *32 — — See Section B.3.3.2, “ASLL.W and ASLL.L,” for infor-
mation on how the N bit is set.

ASLL.W — — — — ? *32 — — See Section B.3.3.2, “ASLL.W and ASLL.L,” for infor-
mation on how the N bit is set.

ASR * T *xx *xx *xx *xx =0 ? C is set to the value in the LSB of the source operand
prior to the operation.

ASR16 — — — — — — — —

ASRA — — — — — — — —
ASRAC — — — — ? *36 — — If the OMR’s SA bit is one, then the N bit is equal to

bit 31 of the result. If SA is zero, then N is equal to bit
35 of the result.

ASRR.L — — — — *32 *32 — —
ASRR.W — — — — *32 *32 — —

Bcc — — — — — — — —

BFCHG — T — — — — — ? See Section B.3.3.4, “BFCHG, BFCLR, BFSET, BFT-
STH, and BRSET.”

BFCLR — T — — — — — ? See Section B.3.3.4, “BFCHG, BFCLR, BFSET, BFT-
STH, and BRSET.”

BFSC — T — — — — — ? See Section B.3.3.6, “BFSC.”
BFSET — T — — — — — ? See Section B.3.3.4, “BFCHG, BFCLR, BFSET, BFT-

STH, and BRSET.”
BFTSTH — T — — — — — ? See Section B.3.3.4, “BFCHG, BFCLR, BFSET, BFT-

STH, and BRSET.”
BFTSTL — T — — — — — ? See Section B.3.3.5, “BFTSTL and BRCLR.”

BRA — — — — — — — —

BRAD — — — — — — — —

BRCLR — T — — — — — ? See Section B.3.3.5, “BFTSTL and BRCLR.”
BRSET — T — — — — — ? See Section B.3.3.4, “BFCHG, BFCLR, BFSET, BFT-

STH, and BRSET.”
BSR — — — — — — — —

CLB — — — — *16 *16 =0 —

CLR * VT *36 *36 *36 *36 *36 —
Freescale Semiconductor Condition Code Calculation B-9

CLR.B — — — — — — — —

CLR.BP — — — — — — — —
CLR.L — — — — — — — —

CLR.W — — — — — — — —

CMP * VT *xx *xx *xx *xx *xx *xx

CMP.B — — *8 *8 *8 *8 *8 *8
CMP.BP — — *8 *8 *8 *8 *8 *8

CMP.L — — *32 *32 *32 ? *32 *32 If the destination is a 16-bit register, the Z bit is set
based on the LSP of the result. Otherwise, the Z bit is
set based on the full 32-bit quantity.

CMP.W — V *16 ? *16 *16 *16 *16 If the SA bit is set, if the first operand is not a register,
and if the second operand is Y1, Y0, or X0, the U bit
is cleared if saturation occurs during the comparison.
Otherwise, the normal definition for the U bit is used.

CMPA — — — — *24 *24 *24 *24

CMPA.W — — — — *16 *16 *16 *16
DEBUGEV — — — — — — — —

DEBUGHLT — — — — — — — —

DEC.BP — — *8 *8 *8 *8 *8 *8
DEC.L — — *32 *32 *32 *32 *32 *32

DEC.W * VT *xx *xx *xx *xx *xx *xx

DECA — — — — — — — —
DECA.L — — — — — — — —

DECTSTA — — — — *24 *24 *24 *24

DIV — V — — — — ? ? V is set if the MSB of the destination operand is
changed as a result of the left shift; it is cleared other-
wise. V is not affected by SA or CM.
C is set if the MSB of the result is zero; it is cleared
otherwise.

DO — T — — — — — — Affects LF and NL bits.
DOSLC — — — — — — — — Affects LF and NL bits.

ENDDO — — — — — — — — Condition Codes are not affected by this instruction.

EOR.L * T — — *32 *32 =0 —
EOR.W — — — — *16 *16 =0 —

FRTID Restored from the FISR register See Section 9.3.2.2, “Fast Interrupt Processing,” on
page 9-6.

ILLEGAL — — — — — — — — Sets I1 and I0 bits in the SR.

IMAC32 — V *xx *xx *xx *xx *xx —
IMAC.L — V *xx *xx *xx *xx *xx —

IMACUS — — — — — — — —

IMACUU — — — — — — — —
IMPY32 — V *xx *xx *xx *xx =0 — L is unchanged.

IMPY64 — V *xx *xx *xx *xx =0 — L is unchanged.

IMPY64UU — — — — — — — —

IMPY.L — V *xx *xx *xx *xx =0 — L is unchanged.
IMPY.W — V — — ? *16 *16 — See Section B.3.3.7, “IMPY.W,” for information on

how the N bit is set.
IMPYSU — — — — — — — —

IMPYUU — — — — — — — —

INC.BP — — *8 *8 *8 *8 *8 *8

Table B-3. Condition Code Summary (Sheet 2 of 5)

Instruction SZ L E U N Z V C Comments
B-10 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

INC.L — — *32 *32 *32 *32 *32 *32

INC.W * VT *xx *xx *xx *xx *xx *xx
Jcc — — — — — — — —

JMP — — — — — — — —

JMPD — — — — — — — —

JSR — — — — — — — —
LSL.W — — — — *16 *16 =0 ? C is set to the value in the MSB of the source oper-

and prior to the operation.
LSR.W — — — — *16 *16 =0 ? C is set to the value in the LSB of the source operand

prior to the operation.
LSR16 — — — — — — — —

LSRA — — — — — — — —

LSRAC — — — — ? *36 — — If the OMR’s SA bit is one, then the N bit is equal to
bit 31 of the result. If SA is zero, then N is equal to bit
35 of the result.

LSRR.L — — — — *32 *32 — —

LSRR.W — — — — *32 *32 — —
MAC * VT *xx *xx *xx *xx *xx —

MAC32 * VT *xx *xx *xx *xx *xx —

MACR * VT *xx *xx *xx *xx *xx —
MACSU — V *xx *xx *xx *xx *xx —

MOVE.B — — — — — — — —

MOVE.BP — — — — — — — —
MOVE.L — — — — — — — —

MOVE.W * T — — — — — —

MOVEU.B — — — — — — — —
MOVEU.BP — — — — — — — —

MOVEU.W Corresponding source bits Not affected unless SR is specified as the destination
in the instruction.

MPY * VT *xx *xx *xx *xx *xx — V is cleared.

MPY32 * VT *xx *xx *xx *xx *xx — V is cleared.
MPY64 * VT *xx *xx *xx *xx *xx — V is cleared.

MPYR * VT *xx *xx *xx *xx *xx — V is cleared.

MPYSU — V *xx *xx *xx *xx *xx — V is cleared; L is unchanged.
NEG * VT *xx *xx *xx *xx *xx *xx

NEG.BP — — *8 *8 *8 *8 *8 *8

NEG.L — — *32 *32 *32 ? *32 *32 If the destination is a 16-bit register, the Z bit is set
based on the LSP of the result. Otherwise, the Z bit is
set based on the full 32-bit quantity.

NEG.W — V *xx *xx *xx *xx *xx *xx

NEGA — — — — — — — —
NOP — — — — — — — —

NORM — V *36 *36 *36 *36 ? — See Section B.3.3.8, “NORM.”

NOT.W — — — — *16 *16 =0 —

OR.L — — — — *32 *32 =0 —
OR.W — — — — *16 *16 =0 —

REP — T — — — — — —

RND * VT *36 *36 *36 *36 *36 —

Table B-3. Condition Code Summary (Sheet 3 of 5)

Instruction SZ L E U N Z V C Comments
Freescale Semiconductor Condition Code Calculation B-11

ROL.L — — — — — — — ? C is set to the value in the MSB of the source oper-
and prior to the operation.

ROL.W — — — — *16 *16 =0 ? C is set to the value in the MSB of the source oper-
and prior to the operation.

ROR.L — — — — — — — ? C is set to the value in the LSB of the source operand
prior to the operation.

ROR.W — — — — *16 *16 =0 ? C is set to the value in the LSB of the source operand
prior to the operation.

RTI Restored from stack Updates P4–P0 bits in SR.

RTID Restored from stack Updates P4–P0 bits in SR.

RTS — — — — — — — — Updates P4–P0 bits in SR.
RTSD — — — — — — — — Updates P4–P0 bits in SR.

SAT * VT — — — — — —

SBC — V *36 *36 *36 *36 *36 *36
STOP — — — — — — — —

SUB * VT *xx *xx *xx *xx *xx *xx

SUB.B — — *8 *8 *8 *8 *8 *8
SUB.BP — — *8 *8 *8 *8 *8 *8

SUB.L — — *32 *32 *32 *32 *32 *32

SUB.W — V *xx *xx *xx *xx *xx *xx
SUBA — — — — — — — —

SUBL — — — — — — — —

SWAP — — — — — — — —
SWI — — — — — — — — Affects I1 and I0 bits in SR.

SWI #x — — — — — — — — Affects I1 and I0 bits in SR.

SWILP — — — — — — — — Does not affect I1 and I0 bits in SR; no change.
SXT.B — — — — — — — —

SXT.L — — — — — — — —

SXTA.B — — — — — — — —
SXTA.W — — — — — — — —

Tcc — — — — — — — —

TFR * T — — — — — — Only via parallel move.
TFRA — — — — — — — —

TST * VT *36 *36 *36 *36 =0 =0 On a data ALU register.

TST.B — — *8 *8 *8 *8 =0 =0 On a data ALU register.
— — — — *8 *8 =0 =0 On a memory location.

TST.BP — — — — *8 *8 =0 =0 On a memory location.

TST.L — — *32 *32 *32 ? =0 =0 On a data ALU register. If the destination is a 16-bit
register, the Z bit is set based on the LSP of the
result. Otherwise, the Z bit is set based on the full
32-bit quantity.

— — — — *32 *32 =0 =0 On a memory location.

TST.W — V *16 *16 *16 *16 =0 =0 On a data ALU accumulator (FF).

— V — — *16 *16 =0 =0 On remaining data ALU registers.

— — — — *16 *16 =0 =0 On a memory location.
TSTA.B — — — — *8 *8 =0 =0

TSTA.L — — — — *24 *24 =0 =0

TSTA.W — — — — *16 *16 =0 =0

Table B-3. Condition Code Summary (Sheet 4 of 5)

Instruction SZ L E U N Z V C Comments
B-12 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

TSTDECA.W — — — — *16 *16 =0 *16 Condition codes based on test operation before the
decrement occurs.

WAIT — — — — — — — —

ZXT.B — — — — — — — —
ZXTA.B — — — — — — — —

ZXTA.W — — — — — — — —

Table B-3. Condition Code Summary (Sheet 5 of 5)

Instruction SZ L E U N Z V C Comments
Freescale Semiconductor Condition Code Calculation B-13

B.3.3 Special Calculation Rules for Certain Instructions
There are a few instructions that cause the condition codes to be calculated in an unusual or non-intuitive
way. The following subsections detail these instructions and their particular condition code calculations.

B.3.3.1 ASL and ASL.W

In general, V is set if the MSB of the destination operand (bit 35 for an accumulator; bit 31 for the Y
register; or bit 15 for the X0, Y0, and Y1 registers) is changed as a result of the left shift. V is cleared
otherwise. If the MAC output limiter is enabled and saturation occurs, V is set. If 32-bit condition code
mode is selected (CM = 1), V is set to the value of the E bit after the operation occurs.

C is set to the value in the MSB of the source operand prior to the shift. For accumulator registers, the
MSB is bit 35 when 36-bit condition code mode is used or bit 31 when 32-bit condition code mode is used.
For the Y register, bit 31 is used. Bit 15 is the MSB for the X0, Y0, and Y1 registers.

B.3.3.2 ASLL.W and ASLL.L

If 32-bit condition code mode is selected (CM = 1), N is always cleared after either the ASLL.W or
ASLL.L instructions are executed. Otherwise, it is calculated as described in Section B.2.5, “Negative Bit
(N),” if 36-bit condition code mode is being used.

B.3.3.3 ASRAC and LSRAC

The calculation of N is somewhat unusual for the ASRAC and LSRAC instructions. When the MAC
output limiter is disabled (SA = 0) and the data ALU is set to 36-bit condition code mode (CM = 0), the N
bit is obtained from bit 35. If either 32-bit condition code mode is selected or saturation is enabled, the N
bit is set based on bit 31 of the result before it passes through the MAC output limiter.

B.3.3.4 BFCHG, BFCLR, BFSET, BFTSTH, and BRSET

The carry bit (C) is set if all bits that are specified by the bit mask are set to one; it is cleared otherwise.
Note that all the bits in the status register can be affected by BFCHG, BFCLR, and BFSET if the
destination operand is the status register.

B.3.3.5 BFTSTL and BRCLR

The carry bit (C) is set if all bits that are specified by the bit mask are cleared (set to zero). It is cleared
otherwise.

B.3.3.6 BFSC

The carry bit (C) is set if all bits specified by the value of the bit_select_mask match their associated value
in the operation_mask. The carry bit (C) is cleared if at least 1 bit specified by the value of the
bit_select_mask does not match its associated value in the operation_mask.
B-14 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

B.3.3.7 IMPY.W

For the IMPY.W instruction, a 31-bit integer product is calculated internally, and the lowest 16 bits of this
product are stored in the destination register. When the MAC output limiter is disabled and the data ALU is
set to 36-bit condition code mode (CM = 0), the N bit is set to the value in bit 15 of the result. If either
32-bit condition code mode is selected or the MAC output limiter is enabled (SA = 1), the N bit is set to the
value in bit 30 of the internally computed result. These two values differ only when the result overflows 16
bits.

V is set if the computed result does not fit in 16 bits and is cleared otherwise, regardless of the state of the
SA and CM bits.

B.3.3.8 NORM

In general, the overflow bit (V) is set if the MSB of the destination operand (bit 35 for an accumulator; bit
31 for the Y register; or bit 15 for the X0, Y0, and Y1 registers) is changed as a result of the left shift. V is
cleared otherwise. If the MAC output limiter is enabled and saturation occurs, V is set. If 32-bit condition
code mode is selected (CM = 1), V is set to the value of the E bit after the operation occurs.
Freescale Semiconductor Condition Code Calculation B-15

B-16 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Appendix C
Glossary

The following terms may be useful in understanding the material in this manual.

A/D analog-to-digital
The process or characteristic of converting an analog signal into a digital representation of
that signal. See also D/A.

ADC analog-to-digital converter
A circuit that performs an analog-to-digital conversion. See also DAC.

AGU address generation unit
The functional block within a processor that performs address calculations and that provides
memory access addresses.

ALU arithmetic logic unit
The functional block within a processor where arithmetic operations and logical operations
are performed. These operations include addition, multiplication, logical AND and OR
operations, shift and rotate operations, and so forth.

AMPS Advanced Mobile Phone Service
A cellular transmission system that is fundamentally analog. AMPS transmits voice signals
using an FM transmitter, just as a standard two-way radio does. The system performs call
supervision functions (on hook, off hook, hook flash, and so on) with various analog
signaling tones. However, AMPS signals for call setup with digital signaling. An important
variation of this system is NAMPS, which Freescale developed.

ASIC Application Specific Integrated Circuit
An integrated circuit that is designed for a specific task and that performs that task. An ASIC
cannot be reprogrammed to perform another task.

BGA ball grid array
A flat ceramic or plastic package, usually square, that is used to hold an integrated circuit.
The electrical leads, or pins, are located in a grid-like pattern on one of the flat sides, and the
leads somewhat resemble hemispheres. A BGA is similar to a PGA.

Bus
An electronic “traffic lane” that carries electrical signals through one chip to another chip. For
example, an address bus takes the electrical signals that define a certain memory address and
transfers them to a memory device (such as a RAM or ROM device).

CAS column address strobe
The signal that tells a memory device to accept the given address as a column address. CAS
is used with RAS and a row address to select a bit within the device.
Freescale Semiconductor Glossary C-1

CDMA Code Division Multiple Access
CDMA is a digital wireless transmission standard that is used in mobile telephones. It is a
form of spread-spectrum transmission, where the digitized voice is combined with a special
code that allows several users to share the same portion of the radio spectrum. The different
codes allow the various signals to be sorted at the receiving end. The current CDMA standard
was developed by QUALCOMM.

CISC complex instruction set computing
An architectural design concept that is usually associated with microprocessors. CISC chips
use instructions, or commands, that combine several steps into one.

CMOS complementary metal oxide semiconductor
CMOS is the semiconductor technology that is used in the transistors that are manufactured
into most microchips. CMOS transistors use almost no power when they are not needed.

CODEC COder/DECoder
A part that is used to convert analog signals to digital (coder) and digital signals to analog
(decoder).

COFF common object file format
A binary file format for storing compiled or assembled program data. COFF is used
extensively by Unix- and Windows-based application development systems.

COP computer operating properly
A term that usually refers to a timer that is similar to a watchdog timer. Under normal
operation, an application resets this timer periodically to indicate that the system is
functioning normally. If the timer is allowed to expire, it usually resets the system to
re-establish normal operation, on the assumption that something has gone wrong.

CPU central processing unit
The (usually) single integrated circuit (IC) that does the actual interpreting of program
instructions and processing of data in a computer.

D/A digital-to-analog
The process or characteristic of converting a digital representation of a signal into an analog
signal. See also A/D.

DAC digital-to-analog converter
A circuit that performs a digital-to-analog conversion. See also ADC.

DMA direct memory access
A feature that allows peripheral systems to access memory for both read and write operations
without the assistance of (and without affecting the state of) the processor.

DRAM dynamic random access memory
A type of memory component that is used to store information. “Dynamic” means the DRAM
devices need a constant “refresh” (pulse of current through all of the memory cells) to keep
the stored information.

DSL digital subscriber line
A communications technology that provides high-speed, two-way data communications over
standard analog phone lines.
C-2 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

DSC digital signal controller
Digital signal processing is the manipulation of analog information—such as sound,
photographic images, or transmitted signals—that has been converted into a digital form. A
digital signal controller, which is similar to a CPU, is a semiconductor device that is
optimized for the mathematics that is performed in digital signal processing.

EEPROM electrically erasable PROM
An EEPROM is similar to an EPROM, but it can be erased by applying an erase current to
the device, rather than by exposing it to ultraviolet light.

Enhanced On-Chip Emulation (Enhanced OnCE™)
The Enhanced OnCE port is a Freescale-designed module that is used to debug application
software that is used with the chip. The port is a separate on-chip block that allows
non-intrusive interaction with the DSC and is accessible through the pins of the JTAG
interface. The Enhanced OnCE port makes it possible to examine the contents of registers,
memory, or on-chip peripherals in a special debug environment. No user-accessible resources
need to be sacrificed to perform debugging operations.

EPROM erasable PROM
A programmable, read-only memory device that can be erased by being exposed to ultraviolet
light. EPROM devices maintain their contents even when electrical power is lost.

FIFO first in, first out
A data structure or device in which data items are removed in the order in which they are
added. The most common first-in-first-out data structure is called a queue. See also LIFO.

Flash memory
A type of non-volatile memory that retains data when power is removed. Flash memory
devices are similar to EPROMs, with the exception that flash memory devices can be
electrically erased (EPROMs must be exposed to ultraviolet light to be erased).

GPIO general-purpose input/output
An input/output interface that is not dedicated to any particular task, but that can be used to
transmit or receive data from a variety of other devices.

GSM Global System for Mobile Communications (previously Groupe Spécial Mobile)
A TDMA communications system that also has frequency-hopping and encryption features.
While TDMA is primarily a North American standard, GSM, which originated in Europe, is
rapidly being deployed worldwide.

GUI graphical user interface
A program interface that takes advantage of a computer's graphics capabilities to make the
program easier to use.

IC integrated circuit
Another name for a computer chip. An IC is a small electronic device that is made of a
semiconductor material.

ICE in-circuit emulator
A device that emulates a computer chip (typically a microprocessor) that can be used in place
of a real chip in a computer to assist in testing and debugging.

iDEN Integrated Dispatch Enhanced Network
A standard for wireless communications that was developed by Freescale, iDEN is based on
the TDMA standard. It enhances TDMA by adding special modulation and encoding
Freescale Semiconductor Glossary C-3

technologies that increase efficiency and enable higher transmission speeds. Devices based
on iDEN technology typically include multiple functions, such as telephony, paging, and
radio.

IEEE Institute of Electrical and Electronics Engineers
A technical professional association that focuses on disseminating information on electrical
and electronics technologies. IEEE’s activities include drafting standards and specifications
for all aspects of electronics and communications.

I/O input/output
I/O refers to any operation, program, or device whose purpose is to enter data into a processor
or to extract data from a processor. The term can also be used to distinguish
non-computational parts of a program from other parts that are strictly computational, or to
distinguish devices or units. For example, a serial port is an I/O unit, whereas an ALU is a
computational unit.

JTAG Joint Test Action Group
An industry group that defined the IEEE standard for boundary-scan and test capabilities on
an integrated circuit. The term JTAG is often used to refer to these capabilities, or to the test
access port (TAP) that is used to access this test logic.

K&R Kernighan and Ritchie
This abbreviation refers both to Brian Kernighan and Dennis Ritchie, the authors of The C
Programming Language, and to the book itself. This book is considered to be the definitive
reference text on the C language.

LIFO last in, first out
A data structure or device in which data items are removed in the reverse order from that in
which they are added, so the most recently added item is the first one to be removed. The most
common form of a last-in-first-out data structure is a stack. See also FIFO.

LSB least significant bit
The lowest numbered bit in a multi-bit data value; it is almost always bit 0. See also MSB.

LSP least significant portion
In a multi-part value, the portion that occupies the lowest numbered bits. For example, in a
32-bit value that is composed of two 16-bit portions, the least significant portion would be
the portion that occupies bits 15–0. See also MSP.

MAC multiply-accumulate
An operation that multiplies two numbers together and adds the product to a “running total.”
Dedicated hardware to perform multiply-accumulate operations is common in digital signal
controllers because DSC algorithms frequently perform this type of calculation. The term
multiply-accumulate can also function as a verb, and MAC can refer to a unit that performs
multiply-accumulate operations.

MCU microcontroller unit
Similar to a CPU, a microcontroller unit includes not only circuitry to execute instructions,
but also peripheral modules and specialized interfaces. An MCU is typically used in
embedded systems applications, while a CPU is found in general-purpose computers.

MIPS million instructions per second
A rough measure of processor performance, measuring the number of instructions that can be
executed in one second. However, some instructions require more or less time than others to
execute, and performance can be limited by other factors, such as memory and I/O speed.
C-4 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

MOS metal oxide semiconductor
A semiconductor manufacturing technology that is used to make the transistors that compose
a microchip. This process is still used, but CMOS technology largely supersedes it.

MSB most significant bit
The highest bit in a value: bit 31 for a 32-bit value, bit 7 for an 8-bit value, and so forth. See
also LSB.

MSP most significant portion
In a multi-part value, the portion that occupies the highest numbered bits. For example, in a
32-bit value that is composed of two 16-bit portions, the most significant portion would be
the portion that occupies bits 31–16. See also LSP.

NAMPS Narrowband Advanced Mobile Phone Service
A communications system, developed by Freescale, that is similar to AMPS. NAMPS uses a
narrower bandwidth channel and low-speed digital signaling for call supervision, which
increases efficiency and capacity as compared to AMPS.

OnCE™ On-Chip Emulation
See Enhanced On-Chip Emulation.

PAL programmable array logic
A device that can be programmed to perform certain logic functions. Once the device is
programmed, the programmed information can never be changed. Sometimes a PAL is called
a PLD (programmable logic device).

PC program counter
A register in a processor that holds the address of the next instruction to execute in a program.

PCS Personal Communications Service
A telecommunications standard that is used in North America. PCS is virtually identical to
the cellular standard, but it uses a different frequency.

PGA pin grid array
A square, flat, ceramic or plastic package that is used to hold an integrated circuit. The
electrical leads, or pins, are located in a grid-like pattern on one of the flat sides.

PLL phase-locked loop
An electronic circuit that controls an oscillator so that it maintains a constant phase angle
relative to a reference signal. A PLL can be used to multiply or divide an input clock
frequency to generate a different output frequency.

Pmem program (P) memory
The memory space where program instructions are stored. See also Xmem.

PQFP plastic quad flat pack
A square, flat, plastic package that is used to hold an integrated circuit. The electrical leads,
or pins, are located around all four sides of the package.

PROM programmable read-only memory
A read-only memory device whose contents are programmed using specialized equipment.
The contents of the device are maintained even when electrical power is lost.
Freescale Semiconductor Glossary C-5

QFP quad flat pack
A flat, rectangular package that is used to hold an integrated circuit. The electrical leads, or
pins, project from all four sides of the package. These packages are usually made of ceramic
materials; when one is made of plastic, it is called a PQFP. A TQFP is another variation.

RAS row address strobe
The signal that tells a memory device to accept the given address as a row address. RAS is
used with CAS and a column address to select a bit within the device.

RISC reduced instruction set computing
An architectural design concept that is usually associated with microprocessors. RISC chips
use simpler instructions, or commands, than CISC chips. They need to use more steps to
perform many functions that CISC chips perform in one step.

SDRAM synchronous dynamic random access memory
A type of DRAM that is capable of delivering bursts of data at very high speeds using a
synchronous interface.

SP stack pointer
A register inside a processor that holds the top address of a stack data structure in memory.

SPI serial peripheral interface
A Freescale-standard communications interface. An SPI allows full-duplex, synchronous,
serial communication between a processor and peripheral devices, including other
processors. See also SSI.

SRAM static random access memory
A memory device that is similar to DRAM, with the exception that the memory does not need
to be refreshed.

SSI synchronous serial interface
A communications interface that is very similar to but more powerful than an SPI. For
example, an SSI can use different clocks for receiving and transmitting data. SSIs are
optimized for communication with CODECs.

TAP test access port
An interface that is used to access the JTAG-standard boundary-scan and test unit on an
integrated circuit (typically a processor).

TDMA Time Division Multiple Access
TDMA is a digital wireless communications standard. Digitized voice communications are
sent in bursts that are timed in such a way so as not to interfere with other stations that are
using the same channel. An important variation of this system is GSM.

TQFP thin quad flat pack
See QFP.

WAP wireless application protocol
An application environment and a set of communication protocols for wireless devices that
is designed to enable manufacturer-, vendor-, and technology-independent access to the
Internet and advanced telephony services.

Xmem data (X) memory
The memory space in which data values (not program instructions) are stored. See also
Pmem.
C-6 DSP56800E and DSP56800EX Core Reference Manual Freescale Semiconductor

Index
Symbols

3-26, 3-38
< (forcing operator) 3-26
<< (forcing operator) 3-26
> (forcing operator) 3-26
>> (forcing operator) 3-26

A

A, see accumulator registers (A, B, C, and D)
A0, see least significant product registers (A0, B0, C0,

and D0)
A1, see most significant product registers (A1, B1, C1,

and D1)
A2, see extension registers (A2, B2, C2, and D2)
ABS instruction 4-3, 4-31, 4-49, A-8
accumulator data alignment 3-13
accumulator extension registers, see extension registers

(A2, B2, C2, and D2)
accumulator least significant product registers, see least

significant product registers (A0, B0, C0, and
D0)

accumulator most significant product registers, see most
significant product registers (A1, B1, C1, and
D1)

accumulator registers (A, B, C, and D) 2-9, 3-2 to 3-3,
5-2, 5-4 to 5-6

bit-manipulation operations 5-14
converting to 16-bit values 5-13
extension registers, using 5-9
notation 5-4 to 5-6, 5-9
portions, accessing 5-9
reading fractional values 5-12
reading integer data 5-12
saving and restoring 5-13
writing integer data 5-12
writing small operands 5-8

ADC instruction 4-3, 4-16, 4-31, A-10
ADD instruction 4-3, 4-31, 4-49 to 4-50,

A-12 to A-15
add with carry 4-31
ADD.B instruction 4-3, 4-31, A-16
ADD.BP instruction 4-3, 4-31, A-17
ADD.L instruction 4-3, 4-32, A-19
ADD.W instruction 4-3, 4-15, 4-32, A-21
ADDA instruction 4-8, 4-13, 4-42, A-24
ADDA.L instruction 4-8, 4-13, 4-42, A-26
addition 5-16
Freescale Semiconductor Ind
fractional 5-16 to 5-17
integer 5-16 to 5-17

address registers (R0–R5) 2-9, 6-3 to 6-4
addressing mode remapping 4-13
addressing modes 3-23

absolute 3-41
address register indirect 3-28
immediate 3-38
implicit 3-45
linear 6-20
modulo 6-20
post-update 3-30 to 3-32
register direct 3-28

AGU arithmetic instructions 4-7, 4-42
AGU registers 3-4

capabilities 6-6
data alignment 3-14
restrictions 6-6
shifting 4-42

ALIGNSP instruction 4-8, 4-15, 4-48, 10-3, A-28
ALU, see data arithmetic logic unit (data ALU)
analog signal processing 1-5
analog-to-digital conversion 1-5 to 1-6
AND.L instruction 4-7, 4-41, A-29
AND.W instruction 4-7, 4-41, A-31
ANDC instruction 4-7, 4-12, 4-15 to 4-16, 7-1, A-33
arithmetic instructions 4-3, 4-7
arithmetic overflow 8-9
ASL instruction 4-6, 4-39, 4-49 to 4-50, A-34, A-37
ASL.W instruction 4-6, 4-39, A-34, A-37
ASL16 instruction 4-6, 4-13, 4-39, A-39
ASLA instruction 4-8, 4-13, 4-42, A-40
ASLL.L instruction 4-6, 4-39, A-41
ASLL.W instruction 4-6, 4-39, A-43
ASR instruction 4-6, 4-39, 4-49 to 4-50, A-45
ASR16 instruction 4-6, 4-13, 4-39, A-48 to A-49
ASRA instruction 4-8, 4-42, A-50
ASRAC instruction 4-6, 4-39, A-51
ASRR.L instruction 4-6, 4-39, A-53
ASRR.W instruction 4-6, 4-40, A-55

B

B, see accumulator registers (A, B, C, and D)
B0, see least significant product registers (A0, B0, C0,

and D0)
B1, see most significant product registers (A1, B1, C1,

and D1)
B2, see extension registers (A2, B2, C2, and D2)
ex Index-i

Bcc instruction 4-11, 4-15, 4-46, 9-11, A-57 to A-58
BFCHG instruction 4-9, 4-12, 4-15 to 4-16, 4-43, 7-1,

A-59
BFCLR instruction 4-9, 4-12, 4-15 to 4-16, 4-44, 7-1,

A-62
BFSET instruction 4-9, 4-12, 4-15 to 4-16, 4-44, 7-1,

A-65
BFTSTH instruction 4-9, 4-44, 7-1, A-68
BFTSTL instruction 4-9, 4-45, 7-1, A-71
bit-manipulation instructions 4-9, 4-43, 7-1, 8-9
BR1CLR operation 7-8 to 7-10
BR1SET operation 7-8 to 7-10
BRA instruction 4-11, 4-15, 4-46, A-74
BRAD instruction 4-11, 4-14 to 4-15, 4-46, A-75
BRCLR instruction 4-11, 4-45, 7-1, 7-9, 9-11, A-77
breakpoints and breakpoint counter 11-8, 11-11
BRSET instruction 4-11, 4-45, 7-1, 7-9, 9-11, A-80
BSR instruction 4-11, 4-15, 4-46, 8-11, 8-15, A-83
bus and bit-manipulation unit 7-1
byte addresses 3-16, 6-7
byte ordering 6-8
byte pointers 3-18, 3-21 to 3-22, 6-4, 6-11, 6-13
byte variable alignment 3-16

C

C programming language 1-2, 6-11
C, see accumulator registers (A, B, C, and D) and carry

bit (C)
C0, see least significant product registers (A0, B0, C0,

and D0)
C1, see most significant product registers (A1, B1, C1,

and D1)
C2, see extension registers (A2, B2, C2, and D2)
carry bit (C) 8-9
CCPL, see current core interrupt priority level (CCPL)
CCR, see condition code register (CCR)
CDBR, see core data bus for reads (CDBR)
CDBW, see core data bus for writes (CDBW)
change-of-flow instructions 4-46
change-of-flow trace buffer 11-8, 11-11
circular buffer 6-20 to 6-22
CLB instruction 4-7, 4-41, 5-37, A-84
CLR instruction 4-3, 4-32, 4-49 to 4-50, A-86
CLR.B instruction 4-3, 4-32, A-89
CLR.BP instruction 4-3, 4-32, A-90
CLR.L instruction 4-3, 4-33, A-92
CLR.W instruction 4-3, 4-16, 4-33, A-94
CM, see condition code mode bit (CM)
CMP instruction 4-3, 4-34, 4-49, A-96
CMP.B instruction 4-3, 4-34, A-99
CMP.BP instruction 4-3, 4-34, A-101
CMP.L instruction 4-4, 4-34, A-103
CMP.W instruction 4-4, 4-35, A-105
CMPA instruction 4-7 to 4-8, 4-42, A-109
Index-ii DSP56800E and DSP56800EX C
CMPA.W instruction 4-7 to 4-8, 4-42, A-110
comparison operations 5-16
condition code mode bit (CM) 8-7, B-3
condition code register (CCR) 8-7, B-4
condition codes

calculation 5-38
modes 5-38

32-bit 5-38, 8-7
36-bit 5-38, 8-7

conditional transfer instructions 4-28
convergent rounding 5-43 to 5-44, 8-6
core data bus for reads (CDBR) 2-8
core data bus for writes (CDBW) 2-8
core programming model 2-2, 3-1
current core interrupt priority level (CCPL) 9-3, 10-24

D

D, see accumulator registers (A, B, C, and D)
D0, see least significant product registers (A0, B0, C0,

and D0)
D1, see most significant product registers (A1, B1, C1,

and D1)
D2, see extension registers (A2, B2, C2, and D2)
data alignment 3-13

in accumulators 3-13
in AGU registers 3-14
byte variables 3-16
in data registers 3-14
long-word variables 3-17, 3-19, 9-9
in memory 3-15
word variables 3-17

data arithmetic logic unit (data ALU) 5-1
accumulator registers, see accumulator registers (A,

B, C, and D)
input registers, see data registers (X0, Y1, and Y0)
overview of registers 3-3

data formats 3-6
data limiter 2-9, 5-2, 5-39, 8-10
data register data alignment 3-14
data registers (X0, Y1, and Y0) 2-9, 5-2 to 5-3
data size suffixes 3-9
data structures 6-11
data types 5-15

signed fractional 3-6
signed integer 3-6
unsigned fractional 3-7
unsigned integer 3-6

data-memory execution mode 8-6
debug processing state 9-1, 9-13, 11-6
DEBUGEV instruction 4-11, 4-16, 4-48, A-111
debugging 1-2, 2-2, 11-1
DEBUGHLT instruction 4-11, 4-16, 4-48, A-112
DEC.BP instruction 4-4, 4-35, A-113
DEC.L instruction 4-4, 4-35, A-115
ore Reference Manual Freescale Semiconductor

DEC.W instruction 4-4, 4-35, 4-49, A-117
DECA instruction 4-8, 4-42, A-120
DECA.L instruction 4-8, 4-42, A-121
DECTSTA instruction 4-7 to 4-8, 4-42, A-122
delay slots 4-14, 9-10, 10-9
delayed flow control instructions 4-14, 9-10
delayed instruction restrictions 4-15
digital signal processing 1-5
digital-to-analog conversion 1-5 to 1-6
DIV instruction 4-4, 4-35, A-123
division 5-21, A-123

general-purpose 5-22
overflow 5-24
positive with remainder 5-23
signed 5-22 to 5-23
unsigned 5-23
without remainder 5-23

DO instruction 2-11, 4-9, 4-15, 4-47, 8-11 to 8-12,
8-18 to 8-19, A-126

DO looping 8-7, A-126
DOSLC instruction 4-9, 4-15, 4-47, 8-18 to 8-19,

A-130
double-precision support 5-30 to 5-32
DSP56800 compatibility 2-1

CMPA.W instruction A-110
condition code calculation 5-38, 8-7
DEBUGEV instruction A-111
DEBUGHLT instruction A-112
memory accesses 3-17
operations on unsigned values 5-28
TSTDECA.W instruction A-309

dual parallel reads 3-11 to 3-12, 4-50, 6-2
duplicate operand remapping 4-13

E

E, see extension in use bit (E)
ENDDO instruction 2-11, 4-10, 4-15, 4-48,

A-132 to A-133
Enhanced OnCE, see Enhanced On-Chip Emulation

(Enhanced OnCE) module
Enhanced On-Chip Emulation (Enhanced OnCE)

module 1-2, 2-2, 9-9, 9-13, 11-1
EOR.L instruction 4-7, 4-41, 4-49, A-134 to A-135
EOR.W instruction 4-7, 4-41, A-136
EORC instruction 4-7, 4-12, 4-15 to 4-16, 7-1, A-134,

A-138
even alignment 3-19, 6-8, 9-9, A-19, A-115, A-154,

A-191, A-228, A-274
EX, see external X memory bit (EX)
exception processing state 9-1 to 9-2, 11-6
exceptions 9-2 to 9-3
execution pipeline 10-1
extended-precision arithmetic

addition 5-29
Freescale Semiconductor Ind
multiplication 4-30
subtraction 5-29

extension in use bit (E) 8-10
extension registers (A2, B2, C2, and D2) 3-2 to 3-3,

5-4, 5-9, 8-6, 8-10
external X memory bit (EX) 8-6

F

fast Fourier transform (FFT) 8-10
fast interrupt processing 8-12, 8-14, 8-16, 9-6, 10-13
fast interrupt return address register (FIRA) 2-10, 8-4,

8-14
fast interrupt status register (FISR) 2-10, 8-4, 8-12
FIRA, see fast interrupt return address register (FIRA)
FISR, see fast interrupt status register (FISR)
forcing operators (<<, >>, <, and >) 3-26
four-quadrant division 5-21
fractional addition 5-16 to 5-17
fractional data types 3-5
fractional multiplication 5-18
FRTID instruction 4-11, 4-15 to 4-16, 4-46, 9-7,

10-13, A-139

H

hardware looping 2-10, 8-3, 8-7, 8-11 to 8-12, 8-17,
8-19, 8-22

hardware stack 2-10, 8-3, 8-7, 8-11 to 8-12, 8-17,
8-19, 9-9

overflow 8-18, 9-12
underflow 8-3, 8-18

hardware stack register (HWS) 8-3 to 8-4, 8-12, 8-17
Harvard architecture, see memory architecture
high-level programming languages 1-2, 6-11, 8-16
HWS, see hardware stack register (HWS)

I

I0 and I1, see interrupt mask bits (I1 and I0)
ILLEGAL instruction 4-11, 4-48, 9-9, A-140
IMAC.L instruction 4-2, 4-29, A-141 to A-142
IMACUS instruction 4-2, 4-30, 5-28, 5-32, A-143
IMACUU instruction 4-2, 4-30, 5-32, A-144
IMPY.L instruction 4-2, 4-29, A-145
IMPY.W instruction 4-2, 4-29, A-147
IMPYSU instruction 4-2, 4-30, 5-28, 5-33, A-149
IMPYUU instruction 4-2, 4-31, 5-28, 5-33, A-150
INC.BP instruction 4-4, 4-35, A-152
INC.L instruction 4-4, 4-35, A-154
INC.W instruction 4-4, 4-36, 4-49, A-156
indexed address 3-33 to 3-37
instruction set summary 4-21
instructions

aliases 4-12
groups 4-1
ex Index-iii

pipeline 10-1
integer addition 5-16 to 5-17
integer arithmetic 5-19
integer data types 3-5
integer multiplication 5-18 to 5-19
interrupt arbitration unit 8-3
interrupt controller 8-3, 9-3, 9-10 to 9-12, 10-7, 10-9
interrupt mask bits (I1 and I0) 8-10, 9-2
interrupt priority level (IPL) 8-7, 8-10
interrupt processing 10-7

fast 9-6
normal 9-5

interrupt vector table 8-15, 9-8
interrupts 8-18 to 8-19, 8-25 to 8-26, 8-28, 9-2 to 9-3

latency 10-7, 10-22
sources

hardware 9-8
hardware stack overflow 9-9
illegal instruction 9-9
misaligned data access 9-9

IP-BUS 2-5 to 2-6
IPL, see interrupt priority level (IPL)

J

Jcc instruction 4-11, 4-15, 4-46, 9-11, A-159
JMP instruction 4-11, 4-15, 4-46, 8-26, A-161
JMPD instruction 4-11, 4-14 to 4-15, 4-46, A-162
Joint Test Action Group (JTAG) 11-1, 11-4
JR1CLR operation 7-10
JR1SET operation 7-10
JRCLR operation 7-8 to 7-9
JRSET operation 7-8 to 7-9
JSR instruction 4-11, 4-15, 4-46, 8-11, 8-15, 9-5,

A-163
JTAG and OnCE port pinout 11-28
JTAG, see Joint Test Action Group (JTAG)

L

L, see limit bit (L)
LA, see loop address register (LA)
LA2, see loop address register 2 (LA2)
Late Execution state 10-5
LC, see loop count register (LC)
LC2, see loop count register 2 (LC2)
least significant product registers (A0, B0, C0, and

D0) 3-2 to 3-3, 5-4, 5-9
LF, see loop flag bit (LF)
limit bit (L) 8-10
linear addressing 6-20
local variables 8-16 to 8-17
logic unit 5-5
logical instructions 4-7, 4-41, 5-25
long-word data alignment 3-17, 3-19, 9-9
Index-iv DSP56800E and DSP56800EX C
loop address register (LA) 2-10, 8-4, 8-12
loop address register 2 (LA2) 2-10, 8-4
loop count register (LC) 2-10, 8-4, 8-11 to 8-12
loop count register 2 (LC2) 2-10, 8-4, 8-11
loop flag bit (LF) 8-11
looping

instructions 4-9, 4-47
termination 8-20

looping control unit 8-3
LSL.W instruction 4-6, 4-40, A-164
LSR.W instruction 4-6, 4-40, A-166
LSR16 instruction 4-6, 4-13, 4-40, A-168
LSRA instruction 4-8, 4-43, A-169
LSRAC instruction 4-6, 4-40, A-170
LSRR.L instruction 4-6, 4-40, A-172
LSRR.W instruction 4-6, 4-40, A-174

M

M01, see modifier register (M01)
MA, see operating mode bits (MB and MA)
MAC instruction 4-2, 4-16, 4-29, 4-49 to 4-50, A-176
MAC output limiter 2-9, 5-2, 5-39, 5-41 to 5-43, 8-6
MACR instruction 4-2, 4-29, 4-49 to 4-50, 5-43, 8-6,

A-179
MACSU instruction 4-2, 4-31, 5-28, A-182
MB, see operating mode bits (MB and MA)
memory

architecture 2-5, 8-6
data alignment 3-15
symbols (X: and P:) 3-9

memory map 8-4
mode register (MR) 8-7
modifier register (M01) 2-10, 6-3, 6-5, 6-20 to 6-22,

9-2
modulo address arithmetic 6-3

addressing modes supported 6-29
bank wrapping 6-33
memory accesses

byte 6-22
long word 6-24
word 6-23

overview 6-20
programming the M01 register 6-22
setting up 6-32
side effects 6-34

modulo addressing 6-20
most significant product registers (A1, B1, C1, and

D1) 3-2 to 3-3, 5-4, 5-9
move instructions 4-10, 4-28, 4-51
MOVE.B instruction 4-10, 4-22, 4-26, A-184
MOVE.BP instruction 4-10, 4-21 to 4-22, 4-26, A-187
MOVE.L instruction 4-10, 4-23, 4-26 to 4-28, A-191
MOVE.W instruction 4-10, 4-24 to 4-29, 4-50, A-198
MOVEU.B instruction 4-10, 4-22, 4-26, A-207
ore Reference Manual Freescale Semiconductor

MOVEU.BP instruction 4-10, 4-22, A-210
MOVEU.W instruction 4-10, 4-24, 4-27 to 4-29,

A-213
MPY instruction 4-2, 4-29, 4-49 to 4-50, A-216
MPYR instruction 4-2, 4-30, 4-49 to 4-50, 5-43,

A-219
MPYSU instruction 4-2, 4-31, 5-28, A-222
multi-bit shifting instructions 4-6, 4-39
multiplication 5-18

extended-precision 4-30
fractional 5-18
integer 5-18 to 5-19
multi-precision 5-29, 5-32, 5-35
signed 5-33 to 5-34
single-precision 5-28
unsigned 5-28, 5-34

multiplication instructions 4-2
multiply-accumulator (MAC) unit 5-5

N

N, see offset registers (N and N3) and negative bit (N)
N3, see offset registers (N and N3)
NEG instruction 4-4, 4-36, 4-49, A-224
NEG.BP instruction 4-4, 4-36, A-226
NEG.L instruction 4-4, 4-36, A-228
NEG.W instruction 4-4, 4-36, A-230
NEGA instruction 4-8, 4-43, A-232
negative bit (N) 8-9
nested hardware looping 8-11 to 8-12, 8-22 to 8-23
nested interrupts 10-11, 10-14
nested looping bit (NL) 8-7, 8-18
NL, see nested looping bit (NL)
NOP instruction 4-11, 4-48, 8-23, A-233
NORM instruction 4-4, 4-41, 5-37, 10-3, A-234
normal interrupt processing 9-5
normal processing state 9-1, 11-6
normalizing 5-36 to 5-37, 8-9

using ASLL.L 5-37
using NORM 5-37

NOT.W instruction 4-7, 4-41, A-236
NOTC instruction 4-7, 4-12, 4-15 to 4-16, 7-1, A-237

O

odd alignment 3-19, 5-14, 9-9, A-28, A-191
offset registers (N and N3) 2-10, 6-3, 6-5
OMR, see operating mode register (OMR)
on-chip emulation, see Enhanced On-Chip Emulation

(Enhanced OnCE) module
operand remapping 4-13, 5-21

addressing modes 4-13
duplicate operands 4-13

operating mode bits (MB and MA) 8-6, 9-2
Freescale Semiconductor Ind
operating mode register (OMR) 2-10, 5-41, 8-4, 8-12,
8-25 to 8-26, 9-12

condition code mode bit (CM) 8-7
external X memory bit (EX) 8-6
nested looping bit (NL) 8-7
operating mode bits (MB and MA) 8-6
rounding bit (R) 8-6
saturation bit (SA) 8-6
stop delay bit (SD) 8-6
X or P memory bit (XP) 8-6

OR.L instruction 4-7, 4-41, A-238
OR.W instruction 4-7, 4-41, A-240
ORC instruction 4-7, 4-12, 4-15 to 4-16, 7-1, A-241
overflow

arithmetic 8-9
division 5-24

overflow bit (V) 8-9

P

P: (memory symbol) 3-9
P4–P0, see program counter extension bits (P4–P0)
PAB, see program memory address bus (PAB)
parallel moves 3-8, 5-4 to 5-5

dual parallel reads 3-11 to 3-12, 4-50, 6-2
instructions for 3-11
single parallel moves 3-11 to 3-12, 4-49

PC, see program counter (PC)
PDB, see program data bus (PDB)
peripheral registers 3-10
peripherals 9-2
phase-locked loop (PLL) 1-4
pipeline 10-1

dependencies 10-26
stalls 4-14, 10-26

PLL, see phase-locked loop (PLL)
popping the stack 8-15
power consumption 9-11 to 9-12
primary data address bus (XAB1) 2-8
processing states 9-1, 11-6

debug 9-13
exception 9-2
normal 9-1
reset 9-1
stop 9-12
wait 9-11

program control instructions 4-10
program controller registers 3-5
program counter (PC) 8-1, 8-3, 8-11
program counter extension bits (P4–P0) 8-11
program data bus (PDB) 2-8
program memory address bus (PAB) 2-8
programming languages, high-level 1-2, 6-11, 8-16
programming model (core) 2-2, 3-1
pushing the stack 8-14
ex Index-v

R

R, see rounding bit (R)
R0–R5, see address registers (R0–R5)
real-time debugging 1-2, 2-2, 11-1
receive register 11-8
register notation 4-17, 5-4, A-1
register-to-register moves 4-28, 4-51
REP instruction 4-10, 4-15, 4-48, 8-18, 8-22, 9-11,

10-3, 10-23, A-242
repeat (REP) looping 8-7, 8-18
reset processing state 9-1, 9-3, 11-6

entering 9-1
exiting 9-2

RND instruction 4-4, 4-36, 4-49, 5-43, 8-6,
A-245 to A-246

ROL.L instruction 4-6, 4-16, 4-40, A-247 to A-248
ROL.W instruction 4-6, 4-16, 4-40, A-249
ROR.L instruction 4-6, 4-16, 4-40, A-251
ROR.W instruction 4-6, 4-16, 4-40, A-253
rounding 5-5, 5-43

convergent 5-43 to 5-44, 8-6
two’s-complement 5-43, 5-46, 8-6

rounding bit (R) 8-6
RTI instruction 4-11, 4-15, 4-46, 8-11, 8-15, 9-6,

A-255
RTID instruction 4-11, 4-14 to 4-16, 4-47, 8-11, 8-15,

9-6, 10-9, A-256
RTS instruction 4-11, 4-15, 4-47, 8-11, 8-15, A-258
RTSD instruction 4-11, 4-14 to 4-15, 4-47, 8-11,

A-259

S

SA, see saturation bit (SA)
SAT instruction 4-4, 4-13, 4-36, 4-49, A-261 to A-262
saturation 5-5 to 5-6, 5-39, 8-6
saturation bit (SA) 8-6
SBC instruction 4-4, 4-16, 4-36, A-263
SD, see stop delay bit (SD)
secondary data address bus (XAB2) 2-8
secondary read offset register (N3), see offset registers

(N and N3)
secondary X data bus (XDB2) 2-8
shadow registers 6-6
shifting instructions 4-6, 4-39, 5-25
signal processing

analog 1-5
digital 1-5

signed data
fractional 3-6
integer 3-6

signed division 5-22 to 5-23
signed multiplication 5-33 to 5-34
single parallel moves 3-11 to 3-12, 4-49
Index-vi DSP56800E and DSP56800EX C
size bit (SZ) 8-10
software stack 6-4, 8-14 to 8-16
SP, see stack pointer register (SP)
SR, see status register (SR)
stack frame 8-16
stack pointer register (SP) 2-10, 3-18, 6-3 to 6-4, 8-12,

8-17
status register (SR) 2-10, 8-4, 8-7, 8-12, 8-25 to 8-26,

9-2, 9-12, 10-24
carry bit (C) 8-9, B-7
extension in use bit (E) 8-10, B-6
interrupt mask bits (I1 and I0) 8-10
limit bit (L) 8-10, B-5
loop flag bit (LF) 8-11
negative bit (N) 8-9, B-6
overflow bit (V) 8-9, B-7
program counter extension bits (P4–P0) 8-11
size bit (SZ) 8-10, B-5
unnormalized bit (U) 8-9, B-6
zero bit (Z) 8-9, B-7

sticky bit 8-10, B-5
stop delay bit (SD) 8-6
STOP instruction 4-10 to 4-11, 4-15, 4-48, 9-12,

10-23, A-265
stop mode 8-6
stop processing state 9-1, 9-12, 11-6
SUB instruction 4-4, 4-36, 4-49 to 4-50, A-266
SUB.B instruction 4-4, 4-36, A-270 to A-271
SUB.BP instruction 4-4, 4-36, A-272
SUB.L instruction 4-4, 4-37, A-274
SUB.W instruction 4-4, 4-37, A-276
SUBA instruction 4-8, 4-43, A-278
SUBL instruction 4-4, 4-49, A-279
subroutines 8-15 to 8-16
subtract with carry 4-36
subtraction 5-16
SWAP instruction 4-4, 4-15, 4-28, 6-5, A-280
SWI #x instruction 4-11, 4-15, 9-10
SWI instruction 4-11, 4-15, 4-48, 9-4, 9-10, 10-11,

A-281
SWILP instruction 4-11, 4-15, 4-48, 9-3, 9-10, A-282
SXT.B instruction 4-4, 4-13, 4-37, A-283
SXT.L instruction 4-4, 4-13, 4-37, A-284
SXTA.B instruction 4-8, 4-43, A-285
SXTA.W instruction 4-8, 4-43, A-286
SZ, see size bit (SZ)

T

TAP controller 11-30
TAP, see Joint Test Action Group (JTAG)
Tcc instruction 4-4, 4-15, 4-28, 9-11, A-287
test access port (TAP), see Joint Test Action Group

(JTAG)
TFR instruction 4-5, 4-37, 4-49 to 4-50, A-290, A-292
ore Reference Manual Freescale Semiconductor

TFRA instruction 4-8, 4-43, A-293
trace buffer 11-8, 11-11
transfer instructions

AGU 4-8, 4-43, A-293
data ALU 4-5, 4-28, 4-37, A-290

transmit and receive registers 11-8
TST instruction 4-5, 4-37, 4-49, A-294 to A-295
TST.B instruction 4-5, 4-37, A-296
TST.BP instruction 4-5, 4-37, A-298
TST.L instruction 4-5, 4-38, A-300
TST.W instruction 4-5, 4-16, 4-38, A-302
TSTA.B instruction 4-7 to 4-8, 4-43, A-305
TSTA.L instruction 4-7 to 4-8, 4-43, A-306
TSTA.W instruction 4-7 to 4-8, 4-43, A-307
TSTDECA.W instruction 4-7 to 4-8, 4-43, A-308
two’s-complement rounding 5-43, 5-46, 8-6
two-stage instructions 10-5

U

U, see unnormalized bit (U)
unnormalized bit (U) 8-9
unsigned arithmetic 5-27
unsigned data

fractional 3-7
integer 3-6

unsigned multiplication 5-28, 5-34

V

V, see overflow bit (V)
variables

byte 3-16
local 8-16 to 8-17
long-word 3-17, 3-19, 9-9
word 3-17

W

WAIT instruction 4-10, 4-12, 4-15, 4-48, 9-11, 10-23,
A-310

wait processing state 9-1, 9-11, 11-6
word addresses 3-16, 3-19, 6-7
word pointers 3-18 to 3-19, 3-21, 6-4, 6-8,

6-10 to 6-11, 6-13, 7-7
word variable alignment 3-17

X

X or P memory bit (XP) 4-29, 4-50, 8-6, A-14, A-36,
A-47, A-88, A-177, A-181, A-201, A-214,
A-218, A-221, A-268, A-292

X: (memory symbol) 3-9
X:<<pp addressing mode 2-5, 3-43
X0, see data registers (X0, Y1, and Y0)
XAB1, see primary data address bus (XAB1)
XDB2, see secondary X data bus (XDB2)
Freescale Semiconductor Ind
XP, see X or P memory bit (XP)
XRAM execution mode 8-23

entering 8-25
exiting 8-26
interrupts 8-28
restrictions 8-28

Y

Y0, see data registers (X0, Y1, and Y0)
Y1, see data registers (X0, Y1, and Y0)

Z

Z, see zero bit (Z)
zero bit (Z) 8-9
ZXT.B instruction 4-5, 4-13, 4-38, A-311
ZXTA.B instruction 4-8, 4-43, A-312
ZXTA.W instruction 4-8, 4-43, A-313
ex Index-vii

Index-viii DSP56800E and DSP56800EX C
ore Reference Manual Freescale Semiconductor

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2005, 2011. All rights reserved.

DSP56800ERM
Rev. 3, 09/2011

	About This Book
	Audience
	Organization
	Suggested Reading
	Conventions
	Definitions, Acronyms, and Abbreviations

	Chapter 1 Introduction
	1.1 Key Features
	1.2 Architectural Overview
	1.3 Example DSP56800EX Device
	1.4 Introduction to Digital Signal Processing

	Chapter 2 Core Architecture Overview
	2.1 Extending DSP56800E Architecture
	2.2 Extending DSP56800 Architecture
	2.3 Core Programming Model
	2.4 Dual Harvard Memory Architecture
	2.5 System Architecture and Peripheral Interface
	2.5.1 Core Block Diagram
	2.5.2 Address Buses
	2.5.3 Data Buses
	2.5.4 Data Arithmetic Logic Unit (ALU)
	2.5.5 Address Generation Unit (AGU)
	2.5.6 Program Controller and Hardware Looping Unit
	2.5.7 Bit-Manipulation Unit
	2.5.8 Enhanced On-Chip Emulation (Enhanced OnCE) Unit

	2.6 Blocks Outside the Core
	2.6.1 Program Memory
	2.6.2 Data Memory
	2.6.3 Bootstrap Memory
	2.6.4 External Bus Interface

	Chapter 3 Data Types and Addressing Modes
	3.1 Core Programming Model
	3.2 Data Types
	3.2.1 Data Formats
	3.2.1.1 Signed Integer
	3.2.1.2 Unsigned Integer
	3.2.1.3 Signed Fractional
	3.2.1.4 Unsigned Fractional

	3.2.2 Understanding Fractional and Integer Data

	3.3 Memory Access Overview
	3.3.1 Move Instruction Syntax
	3.3.1.1 Ordering Source and Destination
	3.3.1.2 Memory Space Syntax
	3.3.1.3 Specifying Data Size

	3.3.2 Instructions That Access Data Memory
	3.3.2.1 Signed and Unsigned Moves
	3.3.2.2 Moving Words from Memory to a Register
	3.3.2.3 Accessing Peripheral Registers

	3.3.3 Instructions That Access Program Memory
	3.3.4 Instructions with an Operand in Data Memory
	3.3.5 Parallel Moves
	3.3.5.1 Single Parallel Move
	3.3.5.2 Dual Parallel Read

	3.4 Data Alignment
	3.4.1 Data Alignment in Accumulators
	3.4.2 Data Alignment in Data Registers
	3.4.3 Data Alignment in 24-Bit AGU and Control Registers
	3.4.4 Data Alignment in 16-Bit AGU and Control Registers
	3.4.5 Data Alignment in Memory
	3.4.5.1 Byte and Word Addresses
	3.4.5.2 Byte Variable Alignment
	3.4.5.3 Word Variable Alignment
	3.4.5.4 Long-Word Alignment

	3.5 Memory Access and Pointers
	3.5.1 Word and Byte Pointers
	3.5.2 Accessing Word Values Using Word Pointers
	3.5.3 Accessing Long-Word Values Using Word Pointers
	3.5.4 Accessing Byte Values Using Word Pointers
	3.5.5 Accessing Byte Values Using Byte Pointers

	3.6 Addressing Modes
	3.6.1 Addressing Mode Summary
	3.6.2 Register-Direct Modes
	3.6.3 Address-Register-Indirect Modes
	3.6.3.1 No Update: (Rn)
	3.6.3.2 Post-Increment: (Rn)+
	3.6.3.3 Post-Decrement: (Rn)-
	3.6.3.4 Post-Update by Offset N: (Rn)+N, (R3)+N3
	3.6.3.5 Index by Offset N: (Rn+N)
	3.6.3.6 Index by 3-Bit Displacement: (RRR+x), (SP-x)
	3.6.3.7 Index by 6-Bit Displacement: (SP-xx)
	3.6.3.8 Index by 16-Bit Displacement: (Rn+xxxx)
	3.6.3.9 Index by 24-Bit Displacement: (Rn+xxxxxx)

	3.6.4 Immediate Address Modes
	3.6.4.1 4-Bit Immediate Data: #x
	3.6.4.2 5-Bit Immediate Data: #xx
	3.6.4.3 6-Bit Immediate Data: #xx
	3.6.4.4 7-Bit Immediate Data: #xx
	3.6.4.5 16-Bit Immediate Data: #xxxx
	3.6.4.6 32-Bit Immediate Data: #xxxxxxxx

	3.6.5 Absolute Address Modes
	3.6.5.1 Absolute Short Address: aa
	3.6.5.2 I/O Short Address: <<pp
	3.6.5.3 16-Bit Absolute Address: xxxx
	3.6.5.4 24-Bit Absolute Address: xxxxxx

	3.6.6 Implicit Address Modes
	3.6.7 Bit-Reverse Address Mode (DSP56800EX Core only)

	Chapter 4 Instruction Set Introduction
	4.1 Instruction Groups
	4.1.1 Multiplication Instructions
	4.1.2 Arithmetic Instructions
	4.1.3 Shifting Instructions
	4.1.4 Logical Instructions
	4.1.5 AGU Arithmetic Instructions
	4.1.6 Bit-Manipulation Instructions
	4.1.7 Looping Instructions
	4.1.8 Move Instructions
	4.1.9 Program Control Instructions

	4.2 Instruction Aliases
	4.2.1 The ANDC, EORC, ORC, and NOTC Aliases
	4.2.2 Instruction Operand Remapping
	4.2.2.1 Duplicate Operand Remapping
	4.2.2.2 Addressing Mode Remapping

	4.3 Delayed Flow Control Instructions
	4.3.1 Using Delayed Instructions
	4.3.2 Delayed Instruction Restrictions
	4.3.3 Delayed Instructions and Interrupts

	4.4 Instruction Set Summary
	4.4.1 Using the Instruction Summary Tables
	4.4.2 Register Field Notation
	4.4.3 Immediate Value Notation
	4.4.4 Instruction Summary Tables
	4.4.5 Parallel Move Summary Tables

	4.5 Register-to-Register Moves

	Chapter 5 Data Arithmetic Logic Unit
	5.1 Data ALU Overview and Architecture
	5.1.1 Data Registers (X0, Y1, Y0)
	5.1.2 Accumulator Registers (A, B, C, D)
	5.1.3 Multiply-Accumulator (MAC) and Logic Unit
	5.1.4 Single-Bit Accumulator Shifter
	5.1.5 Arithmetic and Logical Shifter
	5.1.6 Data Limiter and MAC Output Limiter

	5.2 Accessing the Accumulator Registers
	5.2.1 Accessing an Entire Accumulator
	5.2.1.1 Writing an Accumulator with a Small Operand
	5.2.1.2 Using the Extension Registers

	5.2.2 Accessing Portions of an Accumulator
	5.2.3 Reading and Writing Integer Data to an Accumulator
	5.2.4 Reading 16-Bit Results of DSC Algorithms
	5.2.5 Converting a 36-Bit Accumulator to a 16-Bit Value
	5.2.6 Saving and Restoring Accumulators
	5.2.7 Bit-Manipulation Operations on Accumulators

	5.3 Fractional and Integer Arithmetic
	5.3.1 DSP56800E Data Types
	5.3.2 Addition and Subtraction
	5.3.3 Multiplication
	5.3.3.1 Fractional Multiplication
	5.3.3.2 Integer Multiplication
	5.3.3.3 Operand Re-Ordering for Multiplication Instructions

	5.3.4 Division
	5.3.4.1 General-Purpose Four-Quadrant Division
	5.3.4.2 Positive Dividend and Divisor with Remainder
	5.3.4.3 Signed Dividend and Divisor with No Remainder
	5.3.4.4 Division Overflow

	5.3.5 Logical Operations
	5.3.6 Shifting Operations
	5.3.6.1 Shifting 16-Bit Words
	5.3.6.2 Shifting 32-Bit Long Words
	5.3.6.3 Shifting Accumulators by 16 Bits
	5.3.6.4 Shifting with Accumulation

	5.4 Unsigned Arithmetic Operations
	5.4.1 Condition Codes for Unsigned Operations
	5.4.2 Unsigned Single-Precision Multiplication

	5.5 Extended- and Multi-Precision Operations
	5.5.1 Extended-Precision Addition and Subtraction
	5.5.2 Multi-Precision Fractional Multiplication
	5.5.3 Multi-Precision Integer Multiplication
	5.5.3.1 Signed 32-Bit ° Signed 32-Bit with 32-Bit Result
	5.5.3.2 Unsigned 32-Bit ° Unsigned 32-Bit with 32-Bit Result
	5.5.3.3 Signed 32-Bit ° Signed 32-Bit with 64-Bit Result
	5.5.3.4 Other Applications of Multi-Precision Integer Multiplication

	5.6 Normalizing
	5.6.1 Normalized Values
	5.6.2 Normalizing Methods

	5.7 Condition Code Calculation
	5.7.1 Condition Code Modes
	5.7.2 Condition Codes and Data Sizes

	5.8 Saturation and Data Limiting
	5.8.1 Data Limiter
	5.8.2 MAC Output Limiter
	5.8.3 Instructions Not Affected by the MAC Output Limiter

	5.9 Rounding
	5.9.1 Convergent Rounding
	5.9.2 Two’s-Complement Rounding
	5.9.3 Rounding Examples

	Chapter 6 Address Generation Unit
	6.1 AGU Architecture
	6.1.1 Primary Address Arithmetic Unit
	6.1.2 Secondary Address Adder Unit
	6.1.3 Single-Bit Shifting Units

	6.2 AGU Programming Model
	6.2.1 Address Registers (R0-R5, N)
	6.2.2 Stack Pointer Register (SP)
	6.2.3 Offset Register (N)
	6.2.4 Secondary Read Offset Register (N3)
	6.2.5 Modifier Register (M01)
	6.2.6 Shadow Registers

	6.3 Using Address Registers
	6.4 Byte and Word Addresses
	6.5 Word Pointer Memory Accesses
	6.5.1 Accessing Bytes
	6.5.2 Accessing Long Words
	6.5.3 Accessing Data Structures
	6.5.4 Accessing Program Memory

	6.6 Byte Pointer Memory Accesses
	6.6.1 Byte Pointers vs. Word Pointers
	6.6.2 Byte Arrays

	6.7 AGU Arithmetic Instructions
	6.8 Linear and Modulo Address Arithmetic
	6.8.1 Linear Address Arithmetic
	6.8.2 Understanding Modulo Arithmetic
	6.8.3 Configuring Modulo Arithmetic
	6.8.3.1 Configuring for Byte and Word Accesses
	6.8.3.2 Configuring for Long Word Accesses

	6.8.4 Base Pointer and Offset Values in Modulo Instructions
	6.8.4.1 Operand Placement Table
	6.8.4.2 Example of Incorrect Modulo Operation
	6.8.4.3 Special Case - ADDA Instructions in Modulo Arithmetic
	6.8.4.3.1 Case 1. Adding a Positive Immediate Offset to a Pointer
	6.8.4.3.2 Case 2. Adding a Negative Immediate Offset to a Pointer

	6.8.4.4 Restrictions on the Offset Values

	6.8.5 Supported Memory Access Instructions
	6.8.5.1 Modulo Addressing for Word Memory Accesses
	6.8.5.2 Modulo Addressing for Byte and Long Memory Accesses
	6.8.5.3 Modulo Addressing for AGU Arithmetic Instructions

	6.8.6 Simple Circular Buffer Example
	6.8.7 Setting Up a Modulo Buffer
	6.8.8 Wrapping to a Different Bank
	6.8.9 Side Effects of Modulo Arithmetic
	6.8.9.1 When a Pointer Lies Outside a Modulo Buffer
	6.8.9.2 Restrictions on the Offset Register
	6.8.9.3 Memory Locations Not Accessible Using Modulo Arithmetic

	Chapter 7 Bit-Manipulation Unit
	7.1 Bit-Manipulation Unit Overview and Architecture
	7.1.1 8-Bit Mask Shift Unit
	7.1.2 16-Bit Masking Logic
	7.1.3 16-Bit Testing Logic
	7.1.4 16-Bit Logic Unit

	7.2 Bit-Manipulation Unit Operation
	7.2.1 Testing Bits
	7.2.2 Conditional Branching
	7.2.3 Modifying Selected Bits

	7.3 ANDC, EORC, ORC, and NOTC
	7.4 Other Bit-Manipulation Capabilities
	7.5 Programming Considerations
	7.5.1 Bit-Manipulation Operations on Registers
	7.5.2 Bit-Manipulation Operations on Byte Values
	7.5.2.1 Absolute Addresses
	7.5.2.2 Word Pointers with Byte Offsets

	7.5.3 Using Complex Addressing Modes
	7.5.4 Synthetic Conditional Branch and Jump Operations
	7.5.4.1 JRSET and JRCLR Operations
	7.5.4.2 BR1SET and BR1CLR Operations
	7.5.4.3 JR1SET and JR1CLR Operations

	Chapter 8 Program Controller
	8.1 Program Controller Architecture
	8.1.1 Instruction Latch and Decoder
	8.1.2 Program Counter
	8.1.3 Looping Control Unit
	8.1.4 Hardware Stack
	8.1.5 Interrupt Control Unit
	8.1.6 Interrupt Controller

	8.2 Program Controller Programming Model
	8.2.1 Operating Mode Register
	8.2.1.1 Operating Mode (MA and MB)-Bits 0-1
	8.2.1.2 External X Memory (EX)-Bit 3
	8.2.1.3 Saturation (SA)-Bit 4
	8.2.1.4 Rounding (R)-Bit 5
	8.2.1.5 Stop Delay (SD)-Bit 6
	8.2.1.6 X or P Memory (XP)-Bit 7
	8.2.1.7 Condition Code Mode (CM)-Bit 8
	8.2.1.8 Nested Looping (NL)-Bit 15

	8.2.2 Status Register
	8.2.2.1 Carry (C)-Bit 0
	8.2.2.2 Overflow (V)-Bit 1
	8.2.2.3 Zero (Z)-Bit 2
	8.2.2.4 Negative (N)-Bit 3
	8.2.2.5 Unnormalized (U)-Bit 4
	8.2.2.6 Extension in Use (E)-Bit 5
	8.2.2.7 Limit (L)-Bit 6
	8.2.2.8 Size (SZ)-Bit 7
	8.2.2.9 Interrupt Mask (I0-I1)-Bits 8-9
	8.2.2.10 Program Counter Extension (P0-P4)-Bits 10-14
	8.2.2.11 Loop Flag (LF)-Bit 15

	8.2.3 Loop Count Register
	8.2.4 Loop Count Register 2
	8.2.5 Loop Address Register
	8.2.6 Loop Address Register 2
	8.2.7 Hardware Stack Register
	8.2.8 Fast Interrupt Status Register
	8.2.9 Fast Interrupt Return Address

	8.3 Software Stack
	8.3.1 Pushing and Popping Values
	8.3.2 Subroutines
	8.3.3 Interrupt Service Routines
	8.3.4 Parameter Passing and Local Variables

	8.4 Hardware Stack
	8.5 Hardware Looping
	8.5.1 Repeat (REP) Looping
	8.5.2 DO Looping
	8.5.3 Specifying a Loop Count of Zero
	8.5.4 Terminating a DO Loop
	8.5.4.1 Allowing Current Block to Finish and Then Exiting
	8.5.4.2 Immediate Exit from a Hardware Loop

	8.5.5 Specifying a Large Immediate Loop Count
	8.5.6 Nested Hardware Looping
	8.5.6.1 Nesting a REP Loop Within a DO Loop
	8.5.6.2 Nesting a DO Loop Within a DO Loop
	8.5.6.3 Nesting a DO Loop Within a Software Loop

	8.6 Executing Programs from Data Memory
	8.6.1 Entering Data-Memory Execution Mode
	8.6.2 Exiting Data-Memory Execution Mode
	8.6.3 Interrupts in Data-Memory Execution Mode
	8.6.4 Restrictions on Data-Memory Execution Mode

	Chapter 9 Processing States
	9.1 Normal Processing State
	9.2 Reset Processing State
	9.3 Exception Processing State
	9.3.1 Interrupt Priority Structure
	9.3.2 Interrupt and Exception Processing
	9.3.2.1 Normal Interrupt Processing
	9.3.2.2 Fast Interrupt Processing

	9.3.3 Interrupt Sources
	9.3.3.1 External Hardware Interrupt Sources
	9.3.3.2 Hardware Interrupt Sources Within the Core
	9.3.3.2.1 Illegal Instruction Interrupt
	9.3.3.2.2 Hardware Stack Overflow Interrupt
	9.3.3.2.3 Misaligned Data Access Interrupt
	9.3.3.2.4 Debugging (Enhanced OnCE) Interrupts

	9.3.3.3 Software Interrupt Instructions
	9.3.3.3.1 SWI Instruction-Level 3
	9.3.3.3.2 SWI #x Instructions-Levels 0-2
	9.3.3.3.3 SWILP Instruction-Lowest Priority

	9.3.4 Non-Interruptible Instruction Sequences

	9.4 Wait Processing State
	9.4.1 Wait Mode Timing
	9.4.2 Disabling Wait Mode

	9.5 Stop Processing State
	9.5.1 Stop Mode Timing
	9.5.2 Disabling Stop Mode

	9.6 Debug Processing State

	Chapter 10 Instruction Pipeline
	10.1 Pipeline Stages
	10.2 Normal Pipeline Operation
	10.2.1 General Pipeline Operations
	10.2.2 Data ALU Execution Stages

	10.3 Pipeline During Interrupt Processing
	10.3.1 Standard Interrupt Processing Pipeline
	10.3.2 The RTID Instruction
	10.3.3 Nested Interrupts
	10.3.4 SWI and Illegal Instructions During Interrupt Processing
	10.3.5 Fast Interrupt Processing Pipeline
	10.3.6 Interrupting a Fast Interrupt Service Routine
	10.3.7 FIRQ Followed by Another Interrupt
	10.3.8 Interrupt Latency
	10.3.8.1 Interrupt Latency
	10.3.8.2 Re-Enabling Interrupt Arbitration
	10.3.8.3 Cases That Increase Interrupt Latency
	10.3.8.4 Delay When Enabling Interrupts via CCPL

	10.4 Pipeline Dependencies and Interlocks
	10.4.1 Data ALU Pipeline Dependencies
	10.4.2 AGU Pipeline Dependencies
	10.4.3 Instructions with Inherent Stalls
	10.4.3.1 Dependencies with Hardware Looping

	Chapter 11 JTAG and Enhanced On-Chip Emulation (Enhanced OnCE)
	11.1 Enhanced OnCE Module
	11.1.1 Enhanced OnCE Module Capabilities

	11.2 Enhanced OnCE System Level View
	11.3 Accessing the Enhanced OnCE Module
	11.3.1 External Interaction via JTAG
	11.3.2 Core Access to the Enhanced OnCE Module
	11.3.3 Other Supported Interactions

	11.4 Enhanced OnCE and the Processing States
	11.4.1 Using the Debug Processing State
	11.4.2 Debugging and the Other Processing States
	11.4.3 Enhanced OnCE Module Architecture
	11.4.3.1 Command, Status, and Control
	11.4.3.2 Breakpoint Unit
	11.4.3.2.1 Trigger Blocks
	11.4.3.2.2 16-bit Counter
	11.4.3.2.3 Combining Logic

	11.4.3.3 Step Counter
	11.4.3.4 Change-of-Flow Trace Buffer
	11.4.3.5 Realtime Data Transfer Unit

	11.4.4 Effectively Using the Debug Port
	11.4.4.1 Using the Step Counter
	11.4.4.1.1 Usage upon Exiting the Debug Processing State
	11.4.4.1.2 Step Counter Actions
	11.4.4.1.3 Other Step Counter Configurations

	11.4.4.2 Using the Breakpoint Unit
	11.4.4.2.1 Listing the Breakpoint Unit Triggers Available
	11.4.4.2.2 Breakpoint Unit Actions
	11.4.4.2.3 Combining the Breakpoint Unit with the Step Counter
	11.4.4.2.4 Breakpoint Unit - Step Counter Actions

	11.4.4.3 Capture Counter
	11.4.4.3.1 16-Bit Capture Counter (Non-Cascaded)
	11.4.4.3.2 Actions for 16-Bit Capture Counter (Non-Cascaded)
	11.4.4.3.3 Using the Capture Counter with the Step Counter
	11.4.4.3.4 16-bit Capture Counter - Step Counter Actions
	11.4.4.3.5 40-Bit Capture Counter (Cascaded)
	11.4.4.3.6 Actions for 40-Bit Capture Counter (Cascaded)

	11.4.4.4 Programmable Trace Buffer

	11.4.5 Example Breakpoint Scenarios

	11.5 JTAG Port
	11.5.1 JTAG Capabilities
	11.5.2 JTAG Port Architecture
	11.5.2.1 JTAG Terminal Description
	11.5.2.2 Core JTAG Programming Model
	11.5.2.3 Core JTAG Port Block Diagram
	11.5.2.4 Core TAP Controller

	11.5.3 JTAG Port Restriction - STOP Processing State

	Appendix A Instruction Set Details
	A.1 Notation
	A.2 Instruction Descriptions
	A.3 32 x 32 to 32/64 Multiply and MAC Instructions
	A.3.1 32 x 32 to 32/64 Multiplication and MAC Instruction Details

	A.4 Test Bitfield and Set/Clear (BFSC) Instruction
	A.5 Instruction Opcode Encoding
	A.5.1 Register Operand Encodings
	A.5.2 MOVE Instruction Register Encodings
	A.5.3 Encodings for Instructions that Support the Entire Register Set
	A.5.4 Parallel Move Encoding
	A.5.5 Addressing Mode Encodings
	A.5.6 Conditional Instruction Encoding
	A.5.7 Immediate and Absolute Address Encoding

	Appendix B Condition Code Calculation
	B.1 Factors Affecting Condition Code Calculation
	B.1.1 Operand Size and Type
	B.1.2 MAC Output Limiter
	B.1.3 Condition Code Mode

	B.2 Condition Code Register
	B.2.1 Size Bit (SZ)
	B.2.2 Limit Bit (L)
	B.2.3 Extension in Use Bit (E)
	B.2.4 Unnormalized Bit (U)
	B.2.5 Negative Bit (N)
	B.2.6 Zero Bit (Z)
	B.2.7 Overflow Bit (V)
	B.2.8 Carry Bit (C)

	B.3 Condition Code Summary by Instruction
	B.3.1 Notation
	B.3.2 Condition Code Calculation Table
	B.3.3 Special Calculation Rules for Certain Instructions
	B.3.3.1 ASL and ASL.W
	B.3.3.2 ASLL.W and ASLL.L
	B.3.3.3 ASRAC and LSRAC
	B.3.3.4 BFCHG, BFCLR, BFSET, BFTSTH, and BRSET
	B.3.3.5 BFTSTL and BRCLR
	B.3.3.6 BFSC
	B.3.3.7 IMPY.W
	B.3.3.8 NORM

	Appendix C Glossary

