
 PWM_X signal of eFlexPWM module

The eFlexPWM module is integrated in DSC family, Kinetis KV family and MPC56xx family, it is an

important module in motor control application, switch mode power supply or the other energy control

application.

The eFlexPWM module has 4 sub-modules: SM0, SM1, SM2, SM3, each sub-module can output 3 PWM

signal: PWM_nA, PWM_nB and PWM_nX, the n is sub module index. The PWM_nA, PWM_nB can be

independent or complementary, the PWM_nX is an extended PWM channel. For example, this is the

eFlexPWMA module PWM signal output pins of MC56F84789:

GPIOE1 PWMA_0A

GPIOE0 PWMA_0B

GPIOG8 PWMB_0X PWMA_0X

GPIOE3 PWMA_1A

GPIOE2 PWMA_1B

GPIOG9 PWMB_1X PWMA_1X

GPIOE5 PWMA_2A

GPIOE4 PWMA_2B

GPIOG10 PWMB_2X PWMA_2X

GPIOE7 PWMA_3A

GPIOE6 PWMA_3B

GPIOF6 PWMA_3X PWMB_3X

It is a question what is function of PWM_nX, how to generate and control the timing of PWM_nX, what

is the restriction of PWM_nX signal.

 The documentation talks about the PWM_nX signal, give the register setting to set up the duty cycle

and tricks to control the waveform of PWM_nX.

For the PWM_nA and PWM_nB, it is clear that PWM_SMn_VAL2 controls the rising edge of PWM_nA,

PWM_SMn_VAL3 controls the falling edge of PWM_nA; that PWM_SMn_VAL4 controls the rising edge

of PWM_nB, PWM_SMn_VAL5 controls the falling edge of PWM_nB. But for the PWM_nX, it is confused

in RM, in fact the that PWM_SMn_VAL0 controls the rising edge of PWM_nX, PWM_SMn_VAL1 controls

the falling edge of PWM_nX.

In general, all the PWM signals are synchronized, but of course, it is application by application. If all the

PWM signals are required to be synchronized(of course, this is the generic case), we use the master sync

signal from SM0 to synchronize all the other sub-module, in detail, the PWM_SM0_VAL1 generates the

master sync signal to synchronize the SM0/SM1/SM2/SM3, in the case, PWM_SM1_VAL1/

PWM_SM2_VAL1/ PWM_SM3_VAL1 are not used, they can be used to control the falling edge of the

PWM_1X, PWM_2X, PWM_3X. The rising edge of PWM_1X, PWM_2X, PWM_3X are controlled by the

PWM_SM1_VAL0/ PWM_SM2_VAL0/ PWM_SM3_VAL0.

For the PWM_0X, because the PWM_SM0_VAL1 register is used to control the period of all PWM

signal(the period is PWM_SM0_VAL1- PWM_SM0_INIT), so the PWM_0X signal falling edge can NOT be

controlled, in other words, the PWM_0X waveform is restricted.

In conclusion, the eFlexPWM module can generate 2*4+3=11 PWM signal with controllable edges, and

one half-controllable PWM signal.

 GPIOG8/PWMA_0X GPIOE1/PWM_0A GPIOG9/PWMA_1X

PWMA_SM0_VAL0 PWMA_SM0_VAL1 PWMA_SM1_VAL0 PWMA_SM1_VAL1

0x0000 0x1000/0xF000 0xF800 0x800

PWMA_SM0VAL0=0x0000;

PWMA_SM0VAL1=0x1000; generate signal PWMA_0X yellow signal

PWMA_SM1VAL0=0xF800;

PWMA_SM1VAL1=0x800; generate signal PWMA_1X blue signal

PWMA_SM0VAL2=0xF800;

PWMA_SM0VAL3=0x800; generate signal PWMA_0A pink signal

int main(void)
{

 DisableWatchdog;
 CLOCK_init();
 GPIOEG_init();
 PWMA_init();
 //PWM_ISR_SETTING();
 //PWMX_Function();
 PWMA_MCTRL|=0x0100; //enable the PWM module
 PWMA_MCTRL|=0x0200; //enable the PWM module
 PWMA_MCTRL|=0x0400; //enable the PWM module
 PWMA_MCTRL|=0x0800; //enable the PWM module
 //asm(bfclr #300,sr); //enable interrupt
 for(;;)
 {}
 return(0);

}

void PWMA_init(void)
{
 //SM0 initialization

 PWMA_SM0INIT=0xF000;
 PWMA_SM0VAL0=0x0000;
 PWMA_SM0VAL1=0x1000; //the modulo is 256
 PWMA_SM0VAL2=0xF800; //75% duty cycle
 PWMA_SM0VAL3=0x800;
 PWMA_SM0VAL4=0xF800; //25% duty cycle
 PWMA_SM0VAL5=0x800;
 PWMA_SM0CTRL2=0x0000; //complementary mode for PWM0A and PWM0B, IP bus clock
 PWMA_SM0CTRL=0x3400; //4 PWM opportunity, PWM clock=Fclk
 PWMA_SM0OCTRL=0x0000; //PWM does not inverter, PWM forced to logic 0 in fault
state
 PWMA_SM0TCTRL=0x0002; //generate PWMA0_TRIG1 signal, it will be routed to
trigger PWMB0_EXT_SYNC, PWMB1_EXT_SYNC, PWMB2_EXT_SYNC
 PWMA_SM0INTEN=0x0000; //disable all interrupt
 PWMA_SM0DISMAP0=0x0000; //Disable fault mask
 PWMA_SM0DISMAP1=0x0000; //Disable fault mask
 PWMA_SM0DTCNT0=0x0000; //dead time is set to 0
 PWMA_SM0DTCNT1=0x0000;
 PWMA_SM0CTRL|=0x04;

 //SM1 module initialization

 PWMA_SM1INIT=0xF000;
 PWMA_SM1VAL0=0xF800; //set the PWMA_1X duty cycle
 PWMA_SM1VAL1=0x800; //the modulo is 256
 PWMA_SM1VAL2=0xF800; //75% duty cycle

 PWMA_SM1VAL3=0x800;
 PWMA_SM1VAL4=0xF800; //25% duty cycle
 PWMA_SM1VAL5=0x800;
 PWMA_SM1CTRL2=0x200; //complementary mode, IP bus clock, the INIT_SEL should
be 10, which means
 //that the SM0 synchronize thw SM1, PWMX_INIT is set as a test
 PWMA_SM1CTRL=0x3400; //4 PWM opportunity, PWM clock=Fclk
 PWMA_SM1OCTRL=0x0000; //PWM does not inverter, PWM forced to logic 0
 PWMA_SM1TCTRL=0x0000;
 PWMA_SM1INTEN=0x0000;
 PWMA_SM1DISMAP0=0x0000; //Disable fault mask
 PWMA_SM1DISMAP1=0x0000; //Disable fault mask
 PWMA_SM1DTCNT0=0x0000; //dead time is set to 0
 PWMA_SM1DTCNT1=0x0000;
 PWMA_SM1CAPTCTRLX|=0x40; //PWMA1_X output
 PWMA_OUTEN|=0x0FF0; //enable PWM output
// PWMA_FCTRL)=0xF000; //fault logic setting
 PWMA_SM1CTRL|=0x04;

 //test PWM2_X output signal
 //when the SM2 module of PWMA is synchronized by SM0 sync signal, the
PWM1_X/PWM2_X/PWM3_X can output arbitary
 //waveform without any restriction because of PWMA_SMxVAL1 register,
only PWMA_SM0VAL1 register is used to control the
 //PWMA frequency
 PWMA_SM2INIT=0xF000;
 PWMA_SM2VAL0=0x0000;
 PWMA_SM2VAL1=0x1000; //the modulo is 256
 PWMA_SM2VAL2=0xF800; //75% duty cycle
 PWMA_SM2VAL3=0x800;
 PWMA_SM2VAL4=0xF800; //25% duty cycle
 PWMA_SM2VAL5=0x800;
 PWMA_SM2CTRL2=0x200; //complementary mode, IP bus clock, the INIT_SEL
should be 10, which means
 //that the SM0 synchronize the SM2 module
 PWMA_SM2CTRL=0x3400; //4 PWM opportunity, PWM clock=Fclk
 PWMA_SM2OCTRL=0x0000; //PWM does not inverter, PWM forced to logic 0
 PWMA_SM2TCTRL=0x0000;
 PWMA_SM2INTEN=0x0000;
 PWMA_SM2DISMAP0=0x0000; //Disable fault mask
 PWMA_SM2DISMAP1=0x0000; //Disable fault mask
 PWMA_SM2DTCNT0=0x0000; //dead time is set to 0
 PWMA_SM2DTCNT1=0x0000;
 PWMA_SM2CTRL|=0x04;
 //PWMA global register setting
 PWMA_OUTEN|=0x0FF0; //enable PWM output
 PWMA_MASK=0x0000; //disable PWM mask
 PWMA_SWCOUT=0x0000; //determine dead time logic
 // PWMA_FCTRL)=0xF000; //fault logic setting
 PWMA_MCTRL|=0x0007; //must use the instruction, otherwise, the counter
will disorder, IPOL is cleared, PWM23 manipulate the duty cycle
 PWMA_OUTEN|=0x03; // enable PWMA_1X signal
 return;
}

Conclusiuon:

each eFlexPWM has 4 sub-modules:SM0, SM1,SM2, SM3, each sub-module can output three

PWM signals:PWM_nA, PWM_nB, PWM_nX. In the condition that all the PWM signal are

synchronized, user can get 11 PWM signal with rising/falling edge controllable

completely for PWM_0A, PWM_0B; PWM_1A, PWM_1B, PWM_1X; PWM_2A, PWM_2B, PWM_2X;

PWM_3A, PWM_3B, PWM_3X; But the PWM_0X falling edge can not be controlled, in other

words, it is half-controllable.

