
 Two eFlexPWM module synchronization

The doc is written for the ticket: https://community.nxp.com/thread/440967

The documentation talks about how to synchronize two or more eFlexPWM modules on the same

processor or different processor. There are applications which require more PWM channels for example

some SR(switch reluctance with multiple phases) motor control application or dual motor control

application using one processor or more processor. The eFlexPWM modules design itself allow multiple

eFlexPWM modules to synchronize. The eFlexPWM synchronization means that all PWM channels are

coherent, in other words, all PWM signal seems that they are from the same timer.

Two or more eFlexPWM module synchronization must meet two conditions, one is that all the

eFlexPWM module use the same clock source, another is that external signal can reset the PWM

generator counter. The first condition can be met easily because the eFlexPWM modules can be

configured to use the same clock source. For the second condition, pls refer to the following figure,

there are multiple signal can reset(init) the 16 bits counter, they are Local Sync, Master Reload, Master

Sync and PWM_EXT_SYNC, yes, we can use the PWM_EXT_SYNC signal to synchronize different

eFlexPWM module on the same processor or the eFlexPWM module on another processor.

For the Kinetis KV4x, KV5x and MC56F82xxx and MC56F84xxx, there is a crossbar, multiple signal can

drive the PWM_EXT_SYNC signal.

This is the crossbar figure of MC56F84789.

The PWMB0_EXT_SYNC input signal is the synchronization signal PWM_EXT_SYNC for SM0 of

eFlexPWMB module, which can reset PWMB sub-module0 counter, The PWMB1_EXT_SYNC input signal

can reset the PWMB sub-module1,….

The MC56F84789 has two eFlexPWM modules: eFlexPWMA and eFlexPWMB, the two module are

independent. Assume that you want to use eFlexPWMA to synchronize eFlexPWMB, for eFlexPWMA

module itself, you can use master sync to synchronize the other sub-modules of eFlexPWMA

module(SM1/SM2/SM3 of eFlexPWM). The eFlexPWMA module can generate the master sync signal to

reset all the sub-modules of eFlexPWMB(SM0/SM1/SM2/SM3 of eFlexPWMB). The master sync signal

can be from PWMA0_TRG1 if you set the bit1 of PWMA_SM0TCTRL register. The master sync means that
when the PWM counter matches with the PWMA_SM0VAL1, the signal will be generated.

In detail, this is the register configuration:

 INIT_SEL bits:

PWMA_SM0CTRL2: 3b’000

PWMA_SM1CTRL2: 3b’010

PWMA_SM2CTRL2: 3b’010

PWMB_SM0CTRL2: 3b’011

PWMB_SM1CTRL2: 3b’011

PWMB_SM2CTRL2: 3b’011

That the INIT_SEL bits is set as 3b’000 for PWMA_SM0CTRL2 means that SM0 of PWMA reset itself when the

PWM counter matches with PWMA_SM0_VAL1.

That the INIT_SEL bits is set as 3b’010 for PWMA_SM1CTRL2 and PWMA_SM2CTRL2 means that synchronization

signal from SM0 of PWMA reset counter of PWMA_SM1 and PWMA_SM2 when the PWM counter matches with

PWMA_SM0_VAL1.

That the INIT_SEL bits is set as 3b’011 for PWMB_SM0CTRL2, PWMB_SM1CTRL2 and PWMA_SM2CTRL2 means that

synchronization signal from external source reset counter of PWMB_SM0 ,PWMB_SM1 and of PWMB_SM2.

For inter-processor eFlexPWM synchronization, this is hardware connection. Firstly, output the

PWMA_TRIG1 signal to an output pad via crossbar for one processor, for example anyone of XBAR_OUT4 to

XBAR_OUT11, connect the signal to anyone of XB_IN2 to XB_IN11 for another processor via wire, it is

okay.

2. crossbar configuration.

The PWMA0_TRIG1 signal is routed to PWMB0_EXT_SYNC, PWMB1_EXT_SYNC, PWMB2_EXT_SYNC via crossbar, this is

the crossbar configuration:

XBARA_SEL26|=21<<8; //XBAR_OUT53

XBARA_SEL27|=21; //XBAR_OUT54

XBARA_SEL27|=21<<8; //XBAR_OUT55

Waveform of PWMA and PWMB:

In the above waveform of oscilloscope, the channel1 is PWMA_0A(GPIOE1 pin), the channel2 is

PWMA_1A(GPIOE3), the channel3 is PWMB_0A(GPIOG3), the channel4 is PWMB_1A(GPIOG1 pin).

From the waveform, we can see that all the PWMA and PWMB signals are synchronized.

Conclusion:

The documentation give a solution how to synchronize two independent eFlexPWM modules and give

corresponding code. The eFlexPWMA module uses master sync signal to synchronize SM1, SM2, SM3 of

eFlexPWMA. The SM0 of eFlexPWMA generate PWMA0_TRIG signal, the signal is used to trigger all sub module

of eFlexPWMB via crossbar. With test, the solution is feasible.

Appendix:

void PWMB_init(void)
{
 //SM0 initialization

 PWMB_SM0INIT=0xF000;
 PWMB_SM0VAL0=0x0000;
 PWMB_SM0VAL1=0x1000; //the modulo is 256
 PWMB_SM0VAL2=0xF800; //75% duty cycle
 PWMB_SM0VAL3=0x800;
 PWMB_SM0VAL4=0xF800; //25% duty cycle
 PWMB_SM0VAL5=0x800;
 PWMB_SM0CTRL2=0x300; //complementary mode for PWM0A and PWM0B, IP bus
clock,the INIT_SEL should be 11, which means

 //that the external signal will synchronize the module
 PWMB_SM0CTRL=0x3400; //4 PWM opportunity, PWM clock=Fclk
 PWMB_SM0OCTRL=0x0000; //PWM does not inverter, PWM forced to logic 0 in fault
state
 PWMB_SM0TCTRL=0x0000;
 PWMB_SM0INTEN=0x0000; //disable all interrupt
 PWMB_SM0DISMAP0=0x0000; //Disable fault mask
 PWMB_SM0DISMAP1=0x0000; //Disable fault mask
 PWMB_SM0DTCNT0=0x0000; //dead time is set to 0
 PWMB_SM0DTCNT1=0x0000;
 PWMB_SM0CTRL|=0x04;

 //SM1 module initialization

 PWMB_SM1INIT=0xF000;
 PWMB_SM1VAL0=0x0000;
 PWMB_SM1VAL1=0x1000; //the modulo is 256
 PWMB_SM1VAL2=0xF800; //75% duty cycle
 PWMB_SM1VAL3=0x800;
 PWMB_SM1VAL4=0xF800; //25% duty cycle
 PWMB_SM1VAL5=0x800;
 PWMB_SM1CTRL2=0x300; //complementary mode, IP bus clock, the INIT_SEL should
be 11, which means
 //that the external signal will synchronize the module
 PWMB_SM1CTRL=0x3400; //4 PWM opportunity, PWM clock=Fclk
 PWMB_SM1OCTRL=0x0000; //PWM does not inverter, PWM forced to logic 0
 PWMB_SM1TCTRL=0x0000;
 PWMB_SM1INTEN=0x0000;
 PWMB_SM1DISMAP0=0x0000; //Disable fault mask
 PWMB_SM1DISMAP1=0x0000; //Disable fault mask
 PWMB_SM1DTCNT0=0x0000; //dead time is set to 0
 PWMB_SM1DTCNT1=0x0000;
 PWMB_SM1CAPTCTRLX|=0x40; //PWMA1_X output
 PWMB_OUTEN|=0x0FF0; //enable PWM output
// PWMA_FCTRL)=0xF000; //fault logic setting
 PWMB_SM1CTRL|=0x04;

 //test PWM2_X output signal
 //when the SM2 module of PWMA is synchronized by SM0 sync signal, the
PWM1_X/PWM2_X/PWM3_X can output arbitary
 //waveform without any restriction because of PWMA_SMxVAL1 register,
only PWMA_SM0VAL1 register is used to control the
 //PWMA frequency
 PWMB_SM2INIT=0xF000;
 PWMB_SM2VAL0=0x0000;
 PWMB_SM2VAL1=0x1000; //the modulo is 256
 PWMB_SM2VAL2=0xF800; //75% duty cycle
 PWMB_SM2VAL3=0x800;
 PWMB_SM2VAL4=0xF800; //25% duty cycle
 PWMB_SM2VAL5=0x800;
 PWMB_SM2CTRL2=0x300; //complementary mode, IP bus clock, the INIT_SEL
should be 11, which means
 //that the external signal will synchronize the module
 PWMB_SM2CTRL=0x3400; //4 PWM opportunity, PWM clock=Fclk
 PWMB_SM2OCTRL=0x0000; //PWM does not inverter, PWM forced to logic 0

 PWMB_SM2TCTRL=0x0000;
 PWMB_SM2INTEN=0x0000;
 PWMB_SM2DISMAP0=0x0000; //Disable fault mask
 PWMB_SM2DISMAP1=0x0000; //Disable fault mask
 PWMB_SM2DTCNT0=0x0000; //dead time is set to 0
 PWMB_SM2DTCNT1=0x0000;
 PWMB_SM2CTRL|=0x04;
 //PWMA global register setting
 PWMB_OUTEN|=0x0FF0; //enable PWM output
 PWMB_MASK=0x0000; //disable PWM mask
 PWMB_SWCOUT=0x0000; //determine dead time logic
 //PWMA_FCTRL)=0xF000; //fault logic setting
 PWMB_MCTRL|=0x0007; //must use the instruction, otherwise, the counter
will disorder, IPOL is cleared, PWM23 manipulate the duty cycle

 return;
}

void PWMA_init(void)
{
 //SM0 initialization

 PWMA_SM0INIT=0xF000;
 PWMA_SM0VAL0=0x0000;
 PWMA_SM0VAL1=0x1000; //the modulo is 256
 PWMA_SM0VAL2=0xF800; //75% duty cycle
 PWMA_SM0VAL3=0x800;
 PWMA_SM0VAL4=0xF800; //25% duty cycle
 PWMA_SM0VAL5=0x800;
 PWMA_SM0CTRL2=0x0000; //complementary mode for PWM0A and PWM0B, IP bus clock
 PWMA_SM0CTRL=0x3400; //4 PWM opportunity, PWM clock=Fclk
 PWMA_SM0OCTRL=0x0000; //PWM does not inverter, PWM forced to logic 0 in fault
state
 PWMA_SM0TCTRL=0x0002; //generate PWMA0_TRIG1 signal, it will be routed to
trigger PWMB0_EXT_SYNC, PWMB1_EXT_SYNC, PWMB2_EXT_SYNC
 PWMA_SM0INTEN=0x0000; //disable all interrupt
 PWMA_SM0DISMAP0=0x0000; //Disable fault mask
 PWMA_SM0DISMAP1=0x0000; //Disable fault mask
 PWMA_SM0DTCNT0=0x0000; //dead time is set to 0
 PWMA_SM0DTCNT1=0x0000;
 PWMA_SM0CTRL|=0x04;

 //SM1 module initialization

 PWMA_SM1INIT=0xF000;
 PWMA_SM1VAL0=0x0000;
 PWMA_SM1VAL1=0x1000; //the modulo is 256
 PWMA_SM1VAL2=0xF800; //75% duty cycle
 PWMA_SM1VAL3=0x800;
 PWMA_SM1VAL4=0xF800; //25% duty cycle
 PWMA_SM1VAL5=0x800;
 PWMA_SM1CTRL2=0x200; //complementary mode, IP bus clock, the INIT_SEL should
be 10, which means
 //that the SM0 synchronize thw SM1, PWMX_INIT is set as a test
 PWMA_SM1CTRL=0x3400; //4 PWM opportunity, PWM clock=Fclk

 PWMA_SM1OCTRL=0x0000; //PWM does not inverter, PWM forced to logic 0
 PWMA_SM1TCTRL=0x0000;
 PWMA_SM1INTEN=0x0000;
 PWMA_SM1DISMAP0=0x0000; //Disable fault mask
 PWMA_SM1DISMAP1=0x0000; //Disable fault mask
 PWMA_SM1DTCNT0=0x0000; //dead time is set to 0
 PWMA_SM1DTCNT1=0x0000;
 PWMA_SM1CAPTCTRLX|=0x40; //PWMA1_X output
 PWMA_OUTEN|=0x0FF0; //enable PWM output
// PWMA_FCTRL)=0xF000; //fault logic setting
 PWMA_SM1CTRL|=0x04;

 //test PWM2_X output signal
 //when the SM2 module of PWMA is synchronized by SM0 sync signal, the
PWM1_X/PWM2_X/PWM3_X can output arbitary
 //waveform without any restriction because of PWMA_SMxVAL1 register,
only PWMA_SM0VAL1 register is used to control the
 //PWMA frequency
 PWMA_SM2INIT=0xF000;
 PWMA_SM2VAL0=0x0000;
 PWMA_SM2VAL1=0x1000; //the modulo is 256
 PWMA_SM2VAL2=0xF800; //75% duty cycle
 PWMA_SM2VAL3=0x800;
 PWMA_SM2VAL4=0xF800; //25% duty cycle
 PWMA_SM2VAL5=0x800;
 PWMA_SM2CTRL2=0x200; //complementary mode, IP bus clock, the INIT_SEL
should be 10, which means
 //that the SM0 synchronize the SM2 module
 PWMA_SM2CTRL=0x3400; //4 PWM opportunity, PWM clock=Fclk
 PWMA_SM2OCTRL=0x0000; //PWM does not inverter, PWM forced to logic 0
 PWMA_SM2TCTRL=0x0000;
 PWMA_SM2INTEN=0x0000;
 PWMA_SM2DISMAP0=0x0000; //Disable fault mask
 PWMA_SM2DISMAP1=0x0000; //Disable fault mask
 PWMA_SM2DTCNT0=0x0000; //dead time is set to 0
 PWMA_SM2DTCNT1=0x0000;
 PWMA_SM2CTRL|=0x04;
 //PWMA global register setting
 PWMA_OUTEN|=0x0FF0; //enable PWM output
 PWMA_MASK=0x0000; //disable PWM mask
 PWMA_SWCOUT=0x0000; //determine dead time logic
 // PWMA_FCTRL)=0xF000; //fault logic setting
 PWMA_MCTRL|=0x0007; //must use the instruction, otherwise, the counter
will disorder, IPOL is cleared, PWM23 manipulate the duty cycle

 return;
}

void FORCE_ENABLE(void)
{
 PWMB_SM0CTRL2|=0x80; //FORCE enable is set
 PWMB_SM0CTRL2&=0xFFC7;
 //set PWMA_SM0 in independent mode
 PWMB_SM0CTRL2|=0x2000; //set PWM in independent mode
 PWMB_DTSRCSEL|=0x0A;

}

void corssbarSetting(void)
{
 //set crossbar so that the PWMA_SM0 master sync can synchronize the PWMB sub
module
 XBARA_SEL26|=21<<8; //XBAR_OUT53
 XBARA_SEL27|=21; //XBAR_OUT54
 XBARA_SEL27|=21<<8; //XBAR_OUT55

}

void CLOCK_init(void)
{
 SIM_PCE3|=0x00FF; //enable PWMA and PWMB all channels
 SIM_PCE0|=0xFF7F; //enable all Timer and GPIO A/B/C/D/E/G/F
 SIM_PCE2|=0x180; //enable SAR ADC clock and Cyclic ADC clock
 return;
}

int main(void)
{

 DisableWatchdog;
 CLOCK_init();
 GPIOEG_init();
 PWMB_init();
 delay();
 PWMA_init();
 corssbarSetting();
 //PWM_ISR_SETTING();
 PWMB_MCTRL|=0x0100; //enable the PWM module
 PWMB_MCTRL|=0x0200; //enable the PWM module
 PWMB_MCTRL|=0x0400; //enable the PWM module
 PWMB_MCTRL|=0x0800; //enable the PWM module

 PWMA_MCTRL|=0x0100; //enable the PWM module
 PWMA_MCTRL|=0x0200; //enable the PWM module
 PWMA_MCTRL|=0x0400; //enable the PWM module
 PWMA_MCTRL|=0x0800; //enable the PWM module
 //asm(bfclr #300,sr); //enable interrupt
 for(;;)
 {}
 return(0);

}

