
CodeWarrior Development Studio for
QorIQ LS series - ARM V8 ISA,

Targeting Manual

Document Number: CWARMv8TM
Rev. 04/2015



CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

2 Freescale Semiconductor, Inc.



Contents

Section number Title Page

Chapter 1
Introduction

1.1 Release Notes....................................................................................................................................................................9

1.2 About this Manual.............................................................................................................................................................9

1.3 Accompanying Documentation........................................................................................................................................ 10

Chapter 2
Working with Projects

2.1 ARMv8 New Project wizard.............................................................................................................................................11

2.2 CodeWarrior ELF Importer wizard.................................................................................................................................. 13

2.3 Creating projects............................................................................................................................................................... 14

2.3.1 Creating CodeWarrior Bareboard project............................................................................................................ 15

2.3.2 Creating CodeWarrior Linux Application project............................................................................................... 15

2.4 Preprocess/Disassemble files............................................................................................................................................ 16

2.5 Debugging projects........................................................................................................................................................... 19

2.5.1 Debugging Bareboard project.............................................................................................................................. 19

2.5.2 Debugging Linux Application project................................................................................................................. 20

Chapter 3
ARMv8 Build Properties

3.1 Changing Build Properties................................................................................................................................................23

3.2 ARMv8 build settings.......................................................................................................................................................24

3.2.1 Target Processor...................................................................................................................................................26

3.2.2 Optimization.........................................................................................................................................................27

3.2.3 Warnings.............................................................................................................................................................. 29

3.2.4 Debugging............................................................................................................................................................30

3.2.5 Cross ARM GNU Assembler...............................................................................................................................30

3.2.5.1 Preprocessor......................................................................................................................................... 30

3.2.5.2 Includes................................................................................................................................................ 31

3.2.5.3 Warnings.............................................................................................................................................. 31

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 3



Section number Title Page

3.2.5.4 Miscellaneous.......................................................................................................................................32

3.2.6 Cross ARM C Compiler.......................................................................................................................................32

3.2.6.1 Preprocessor......................................................................................................................................... 33

3.2.6.2 Includes................................................................................................................................................ 33

3.2.6.3 Optimization.........................................................................................................................................34

3.2.6.4 Warnings.............................................................................................................................................. 34

3.2.6.5 Miscellaneous.......................................................................................................................................35

3.2.7 Cross ARM C Linker........................................................................................................................................... 35

3.2.7.1 General................................................................................................................................................. 36

3.2.7.2 Libraries............................................................................................................................................... 36

3.2.7.3 Miscellaneous.......................................................................................................................................38

3.2.8 Cross ARM GNU Create Flash Image.................................................................................................................39

3.2.8.1 General................................................................................................................................................. 39

3.2.9 Cross ARM GNU Create Listing......................................................................................................................... 40

3.2.9.1 General................................................................................................................................................. 40

3.2.10 Cross ARM GNU Print Size................................................................................................................................ 41

3.2.10.1 General................................................................................................................................................. 41

Chapter 4
Preparing target

4.1 Preparing hardware targets............................................................................................................................................... 43

4.2 Preparing simulator target.................................................................................................................................................43

4.2.1 Configuration....................................................................................................................................................... 43

4.2.2 Use cases ............................................................................................................................................................. 44

4.2.2.1 Bare metal debug................................................................................................................................. 44

4.2.2.2 U-Boot debug, Linux kernel debug, Linux application debug............................................................ 44

Chapter 5
Configuring Target

5.1 Target Connection configurator overview........................................................................................................................ 47

5.2 Configuration types...........................................................................................................................................................48

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

4 Freescale Semiconductor, Inc.



Section number Title Page

5.3 Operations with configurations.........................................................................................................................................49

5.4 Configure the target configuration using Target Connection Configurator......................................................................50

5.5 Generating GDB script from a configuration................................................................................................................... 52

5.6 Debugger server connection............................................................................................................................................. 53

5.7 Logging Configuration......................................................................................................................................................54

Chapter 6
FSL Debugger References

6.1 Customizing debug configuration.....................................................................................................................................57

6.1.1 Main..................................................................................................................................................................... 59

6.1.2 Debugger..............................................................................................................................................................61

6.1.3 Startup.................................................................................................................................................................. 62

6.1.4 Source...................................................................................................................................................................64

6.1.5 OS Awareness...................................................................................................................................................... 65

6.1.6 Other Symbols......................................................................................................................................................67

6.1.7 Common...............................................................................................................................................................68

6.1.8 Trace and Profile..................................................................................................................................................70

6.2 Registers features.............................................................................................................................................................. 71

6.2.1 Peripherals view...................................................................................................................................................71

6.2.2 GDB custom register commands......................................................................................................................... 72

6.3 OS awareness.................................................................................................................................................................... 73

6.3.1 Linux kernel awareness........................................................................................................................................73

6.3.1.1 List Linux kernel information.............................................................................................................. 73

6.3.1.1.1 GDB commands..................................................................................................................74

6.3.1.1.2 Eclipse view........................................................................................................................74

6.3.1.2 Linux kernel debug.............................................................................................................................. 74

6.3.1.2.1 GDB commands..................................................................................................................74

6.3.1.3 Linux kernel image version verification.............................................................................................. 77

6.3.2 U-Boot awareness................................................................................................................................................ 77

6.3.2.1 List U-Boot information.......................................................................................................................78

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 5



Section number Title Page

6.3.2.2 U-Boot image version verification.......................................................................................................78

6.4 Launch a hardware GDB debug session where no configuration is available..................................................................78

6.4.1 Create a debug configuration............................................................................................................................... 79

6.5 Memory tools GDB extensions.........................................................................................................................................79

6.6 Monitor commands........................................................................................................................................................... 81

6.7 I/O support........................................................................................................................................................................ 82

6.7.1 Configuring the UART library and simulator......................................................................................................84

Chapter 7
Flash programmer

7.1 Configuring flash programmer......................................................................................................................................... 87

7.2 Starting flash programmer................................................................................................................................................ 87

7.3 Using flash programmer................................................................................................................................................... 88

7.3.1 Erase flash memory..............................................................................................................................................89

7.3.2 Write binary file in flash memory .......................................................................................................................89

7.3.3 Dump flash memory content into binary file ...................................................................................................... 90

7.4 Switch current device used for flash programming.......................................................................................................... 90

Chapter 8
Use Cases

8.1 U-Boot debug....................................................................................................................................................................91

8.1.1 U-Boot setup........................................................................................................................................................ 91

8.1.2 Create an ARMv8 project for U-Boot debug.......................................................................................................91

8.1.3 U-Boot debug support..........................................................................................................................................93

8.1.3.1 Setting the source path mapping.......................................................................................................... 93

8.1.3.2 Debug capabilities................................................................................................................................96

8.2 Linux application debug................................................................................................................................................... 97

8.2.1 Linux setup...........................................................................................................................................................97

8.2.2 Network setup after booting the Linux on simulator........................................................................................... 98

8.2.3 Debugging simple Linux application...................................................................................................................101

8.2.3.1 Creating simple Linux application project...........................................................................................102

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

6 Freescale Semiconductor, Inc.



Section number Title Page

8.2.3.2 Updating RSE connection....................................................................................................................102

8.2.3.3 Using sysroot........................................................................................................................................105

8.2.3.4 Debugging Linux application project.................................................................................................. 107

8.2.4 Debugging a Linux application using a shared library........................................................................................ 108

8.2.4.1 Creating Linux shared library project.................................................................................................. 108

8.2.4.2 Updating RSE connection....................................................................................................................110

8.2.4.3 Updating launch configuration for Linux application using shared library.........................................110

8.2.4.4 Debugging Linux shared library project.............................................................................................. 111

8.2.5 Troubleshooting .................................................................................................................................................. 111

8.2.5.1 Networking...........................................................................................................................................111

8.3 Linux kernel debug........................................................................................................................................................... 113

8.3.1 Linux Kernel setup...............................................................................................................................................114

8.3.2 Create an ARMv8 project for Linux kernel debug.............................................................................................. 114

8.3.3 Linux Kernel debug support................................................................................................................................ 116

8.3.3.1 Setting the source path mapping.......................................................................................................... 116

8.3.3.2 Debug and Kernel Awareness capabilities...........................................................................................119

8.3.4 Module debugging............................................................................................................................................... 121

8.3.4.1 Module debugging use cases................................................................................................................121

8.3.4.2 Module debugging from Eclipse GUI..................................................................................................124

Chapter 9
Troubleshooting

9.1 Diagnostic Information Export......................................................................................................................................... 127

9.1.1 General settings for Diagnostic Information........................................................................................................127

9.1.2 Export Diagnostic Information............................................................................................................................ 129

9.2 Prevent core from entering non-recoverable state due to unmapped memory access...................................................... 133

9.3 Logging.............................................................................................................................................................................134

9.4 Recording..........................................................................................................................................................................134

9.5 Freescale Licensing...........................................................................................................................................................135

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 7



CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

8 Freescale Semiconductor, Inc.



Chapter 1
Introduction

This manual explains how to use the CodeWarrior Development Studio for QorIQ LS
series - ARM V8 ISA product. This chapter presents an overview of the manual.

The topics in this chapter are:

• Release Notes - Lists new features, bug fixes, and incompatibilities
• About this Manual - Describes the contents of this manual
• Accompanying Documentation - Describes supplementary CodeWarrior

documentation, third-party documentation, and references.

1.1 Release Notes
Release nots lists new features, bug fixes, and incompatibilities.

Before using the CodeWarrior IDE, read the developer notes. These notes contain
important information about last-minute changes, bug fixes, incompatible elements, or
other topics that may not be included in this manual.

NOTE
The release notes for specific components of the CodeWarrior
IDE are located in the ARMv8 folder in the CodeWarrior for
CW4NET installation directory.

1.2 About this Manual
This topic lists each chapter of this manual, which describes a different area of software
development.

The following table lists the contents of this manual.

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 9



Table 1-1. Manual contents

Chapter Description

Introduction This chapter.

Working with Projects Lists the various project types and explains how to create projects.

ARMv8 Build Properties Explains the CodeWarrior build tools and build tool configurations.

Preparing target Explains how to prepare for debug various target types.

Configuring Target Explains Target Connection Configuration (TCC) feature.

FSL Debugger References Explains debugger features.

Flash programmer Explains how to configure, start, and use flash programmer

Use Cases Lists U-Boot debug, Linux application debug, and Linux kernel debug use cases.

Troubleshooting Lists troubleshooting information.

1.3 Accompanying Documentation

The Documentation page describes the documentation included in this version of
CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA. You can access
the Documentation page by:

• Opening START_HERE.html in <CWInstallDir>\CW_ARMv8\ARMv8\Help folder
• Selecting Help > Documentation.

To view the online help for the CodeWarrior tools select Help > Help Contents from the
IDE menu bar.

Accompanying Documentation

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

10 Freescale Semiconductor, Inc.



Chapter 2
Working with Projects

This chapter lists the various project types and explains how to create and work with
projects.

2.1 ARMv8 New Project wizard
The New Project wizard presents a selection of sample projects preconfigured for build
using the bundled Linaro GCC toolchains.

Hello World projects for bareboard and Linux oriented (C, C++, ASM, static and shared
library) build/debug scenarios are enclosed with the product. As compared to the existing
CodeWarrior products, the New Project wizard functionality in CodeWarrior for ARMv8
has been refined to generating copies of the existing pre-configured projects.

All the debugger connection settings are refactored in the Target Connection
Configuration dialog.

The ARMv8 New Project wizard enables you to create both bareboard and Linux
Application projects. To access the ARMv8 New Project wizard, in the Workbench
window, select File > New > ARMv8 Stationary.

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 11



Figure 2-1. ARMv8 Project wizard

The table lists and explains the ARMv8 New Project wizard options.

Table 2-1. ARMv8 New Project wizard options

Option Description

Project name Enter the name for the new project in this text box.

Note: Do not use the reserved/special characters/symbols such as < (less than), > (greater than), :
(colon), " (double quote), / (forward slash), \ (backslash), | (vertical bar or pipe), ? (question mark), @
(at), * (asterisk) in the project name. The special characters/symbols in the project name may result in
an unexpected behavior.

Table continues on the next page...

ARMv8 New Project wizard

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

12 Freescale Semiconductor, Inc.



Table 2-1. ARMv8 New Project wizard options (continued)

Option Description

Use default location Stores the files required to build the program in the current workspace directory. The project files are
stored in the default location. Clear the Use default location checkbox and click Browse to select a
new location.

Location Specifies the directory that contains the project files. Click Browse to navigate to the desired directory.
This option is available only when Use default location checkbox is clear.

Available
Stationaries

List the various stationaries available for you to create a project. The stationaries are categorized under:
Bareboard and Linux Application Debug.

2.2 CodeWarrior ELF Importer wizard
The CodeWarrior ELF Importer wizard allows users to import CodeWarrior ELF images
of various types.

• Linux Application
• Bare-board
• Linux Kernel
• U-boot

You can access the wizard from File > New > CodeWarrior ELF Importer.

Figure 2-2. CodeWarrior ELF Importer, Select executable

Chapter 2 Working with Projects

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 13



Once the executable is selected the image type is auto-detected based on the symbol
table. The user can overwrite the value by selecting another type.

Figure 2-3. CodeWarrior ELF Importer, type is auto-detected

An error message is displayed and the user is not allowed to finish the project creation if
the selected executable is not a binary or doesn’t have the ELF format.

The created project contains the ELF image as a linked resource and also a default launch
configuration file with all the setup ready to debug.

Figure 2-4. Project creation with CodeWarrior ELF Importer wizard

The user only needs to open the launch configuration file, review/change the settings, and
start the debug session.

Creating projects

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

14 Freescale Semiconductor, Inc.



2.3 Creating projects
This section explains how to use the ARMv8 New Project wizard to quickly create new
projects with default settings, build and launch configurations.

The section explains:
• Creating CodeWarrior Bareboard project
• Creating CodeWarrior Linux Application project

2.3.1 Creating CodeWarrior Bareboard project

You can create a CodeWarrior Bareboard project using the ARMv8 Stationary wizard.

1. From CodeWarrior IDE menu bar, select File > New > ARMv8 Stationary
2. From Available stationaries, select ARMv8 > Bare board > Hello World C

Project.
3. In Project name text box, enter FirstProjectTest.

NOTE
The Location text box shows the default workspace
location. To change this location, uncheck the Use default
location text box and click Browse to select a new
location.

4. Click Finish.

The new project appears in the Project Explorer view.

NOTE
Before you build and debug the project, ensure that the
target board is ready. For details, see Preparing target.

5. Build the bare metal project.
6. Debug the bare metal project. Refer Debugging Bareboard project.

You can create a CodeWarrior Bareboard project for following configurations:
• Assembly Project
• C Project
• C Static Library Project
• C++ Project
• C++ Static Library Project

Chapter 2 Working with Projects

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 15



2.3.2 Creating CodeWarrior Linux Application project

You can create a CodeWarrior Bareboard project using the ARMv8 Stationary wizard.

1. From CodeWarrior IDE menu bar, select File > New > ARMv8 Stationary.
2. From Available stationaries, select ARMv8 > Linux Application Debug > Hello

World C Project.
3. In Project name text box, enter FirstLinuxProject.

NOTE
The Location text box shows the default workspace
location. To change this location, uncheck the Use default
location text box and click Browse to select a new
location.

4. Click Finish.

The new project appears in the Project Explorer view.

NOTE
Before you build and debug the project, ensure that the
target board is ready. For details, see Preparing target.

5. Build the Linux application project.
6. Debug the Linux application project. Refer Debugging projects

You can create a Linux application project for following configurations:
• C Project
• C Static Library Project
• C Shared Library Project
• C++ Project
• C++ Static Library Project

For further details about application debug projects, refer Linux Application Debug.

2.4 Preprocess/Disassemble files
You can access the Preprocess/Disassemble commands from the Project Explorer or
Editor view.

The Preprocess/Disassemble commands are available to the user:

Preprocess/Disassemble files

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

16 Freescale Semiconductor, Inc.



• from the menu that appears when you right-click on a file in the Project Explorer
view, or

• from the menu that appears when you open the file in the Editor view and right-click
inside the Editor view.

Figure 2-5. Project Explorer view and Editor view

The result of preprocessing a file or disassembling an object code is provided to the user
in the Editor. Upon invocation, the Preprocess command preprocesses the C/C++/ASM
file and shows the resulting text in a new file. Similarly, upon invocation, the
Disassemble command compiles and disassembles the C/C++/ASM file or directly
disassembles the binary file. In all the cases, the resulted files are located in the active
configuration directory.

Chapter 2 Working with Projects

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 17



Figure 2-6. Editor view

NOTE
A new Console is created for each operation.

Preprocess/Disassemble files

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

18 Freescale Semiconductor, Inc.



Figure 2-7. Console view

The user can define or modify preprocessor/disassembler options in the Project
Properties dialog > Settings > Tool Settings page.

2.5 Debugging projects
When you use the ARMv8 Project wizard to create a new project, the wizard sets the
debugger settings of the project's launch configurations to default values. You can change
these default values based on your requirements.

To debug a project:
1. From the CodeWarrior IDE menu bar, select Run > Debug Configurations.

The Debug Configurations dialog appears. The left side of this dialog box has a list
of debug configurations that apply to the current application.

The ARMv8 Project wizard adds a default launch configuration in all application sample
projects. The debugger settings are mapped to the default values but you can change
these values based on your requirements.

2.5.1 Debugging Bareboard project

This topic describes how to debug a bareboard project.

Chapter 2 Working with Projects

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 19



Ensure that the project contains the default launch configuration file of type GDB
Hardware Debugging, named as <projectName>.launch. To start debugging a project:

1. In the Debug Configuration dialog, select the available launch configuration.
2. Select a Target Connection Configurator. For details on this, refer Target Connection

configurator overview and Configure the target configuration using Target
Connection Configurator

3. Click Apply in the Debug Configurations dialog. The IDE saves your settings.
4. Click Debug.

The IDE switches to the Debug perspective. The debugger downloads your program
to the target board and halts execution at the first statement of main().

Figure 2-8. Debugging bareboard project

2.5.2 Debugging Linux Application project

This topic describes how to debug a Linux application project.

Ensure that the project contains the default launch configuration file of type C/C++
Remote Application, named as <projectName>.launch.

Debugging projects

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

20 Freescale Semiconductor, Inc.



The CodeWarrior software creates a default ssh with scp connection, named
ScpConnection, when it is opened for the first time. This connection is available in the
Remote Systems view. The default launch configuration file used in a Linux Application
debug project points to this connection. The user can change the default settings, for
example the IP of the Linux target.

Figure 2-9. Scp Connection

To start debugging a project:

NOTE
If target is accessible on a port different than the default 22, like
in the case of the ssh tunnelling to other port, the tunelling port
should be specified instead.

1. In the Debug Configuration dialog, select the available launch configuration.
2. Click Debug.

NOTE
For further details, refer Linux Application Debug.

Chapter 2 Working with Projects

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 21



Figure 2-10. Debugging Linux Application project

Debugging projects

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

22 Freescale Semiconductor, Inc.



Chapter 3
ARMv8 Build Properties

A build configuration is a named collection of build tools options. The set of options in a
given build configuration causes the build tools to generate a final binary with specific
characteristics. For example, the binary produced by a "Debug" build configuration might
contain symbolic debugging information and have no optimizations, while the binary
product by a "Release" build configuration might contain no symbolics and be highly
optimized.

For details about how ARMv8 projects are managed and all the available toolchains, refer
ARM GNU Eclipse documentation available at: http://gnuarmeclipse.livius.net/blog/
documentation

NOTE
Freescale Semiconductor, Inc. does not own ARM GNU
Eclipse documentation. The documents are mentioned solely
for the reference purpose.

3.1 Changing Build Properties

The New Bareboard Project wizard creates a set of build properties for the project.

You can modify these build properties to better suit your needs.

Perform these steps to change build properties:

1. Start the IDE.
2. In the CodeWarrior Projects view, select the project for which you want to modify

the build properties.
3. Select Project > Properties.

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 23

http://gnuarmeclipse.livius.net/blog/documentation/
http://gnuarmeclipse.livius.net/blog/documentation/


The Properties window appears. The left side of this window has a properties list.
This list shows the build properties that apply to the current project.

4. Expand the C/C++ Build property.
5. Select Settings.

The Properties window shows the corresponding build properties.

6. Use the Configuration drop-down list to specify the launch configuration for which
you want to modify the build properties.

7. Click the Tool Settings tab.

The corresponding page appears.

8. From the list of tools on the Tool Settings page, select the tool for which you want to
modify properties.

9. Change the settings that appear in the page.
10. Click Apply.

The IDE saves your new settings.

You can select other tool pages and modify their settings. When you finish, click OK to
save your changes and close the Properties window.

3.2 ARMv8 build settings

The Properties for <project> window shows the corresponding Settings page for a
project.

ARMv8 build settings

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

24 Freescale Semiconductor, Inc.



Figure 3-1. Settings page

The following table lists the build properties specific to developing software for ARM
Embedded Processors.

Chapter 3 ARMv8 Build Properties

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 25



The properties that you specify in the Tool Settings panels apply to the selected build
tool on the Tool Settings page of the Properties for <project> dialog box.

Table 3-1. Build Properties for Bare Metal project

Tool Settings Sub Tool Settings

Target Processor Target Processor

Optimization Optimization

Warnings Warnings

Debugging Debugging

Cross ARM GNU Assembler Preprocessor

Includes

Warnings

Miscellaneous

Cross ARM C Compiler Preprocessor

Includes

Optimization

Warnings

Miscellaneous

Cross ARM C Linker General

Libraries

Miscellaneous

Cross ARM GNU Create Flash Image General

Cross ARM GNU Create Listing General

Cross ARM GNU Print Size General

3.2.1 Target Processor

Use this panel to configure the target processor options.

The following table lists the options in the Target Processor panel.

Table 3-2. Target Processor options

Option Description

ARM family Use to specify the ARM family name.

Default: cortex-m3

Architecture Use to specify the target hardware architecture or processor name. The compiler can
take advantage of the extra instructions that the selected architecture provides and
optimize the code to run on a specific processor. The inline assembler might display
error messages or warnings if it assembles some processor-specific instructions for
the wrong target architecture.

Default: Toolchain default

Table continues on the next page...

ARMv8 build settings

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

26 Freescale Semiconductor, Inc.



Table 3-2. Target Processor options (continued)

Option Description

Instruction set Use to generate suitable interworking veneers when it links the assembler output. You
must enable this option if you write ARM code that you want to interwork with Thumb
code or vice versa. The only functions that need to be compiled for interworking are
the functions that are called from the other state. You must ensure that your code uses
the correct interworking return instructions.

Default: Thumb (-mthumb)

Thumb interwork (-mthumb-
interwork)

Check to have the processor generate Thumb code instructions. Clear to prevent the
processor from generating Thumb code instructions. The IDE enables this setting only
for architectures and processors that support the Thumb instruction set.

Default: Clear

Endianness Use to specify the byte order of the target hardware architecture:
• Little-little endian; right-most bytes (those with a higher address) are most

significant
• Big-big endian; left-most bytes (those with a lower address) are most significant

Default: Toolchain default

Float ABI Use to specify the float Application Binary Interface (ABI).

Default: Toolchain default

FPU Type Use to specify the type of floating-point unit (FPU) for the target hardware architecture:
The assembler might display error messages or warnings if the selected FPU
architecture is not compatible with the target architecture.

Default: Toolchain default

Unaligned access Use to specify unaligned access.

Default: Toolchain default

AArch64 family Use to specify the architecture family:
• Generic (-mcpu=generic)
• Large (-mcpu=large)
• Toolchain default

Default: Toolchain default

Feature crc Use to specify Feature crc.

Feature crypto Use to specify Feature crypts.

Feature fp Use to specify Feature fp.

Feature simd Use to specify Feature simd.

Code model Specifies the addressing mode that the linker uses when resolving references. This
setting is equivalent to specifying the -mcmodel keyword command-line option.

• Tiny (-mcmdel=tiny)
• Small (-mcmodel=small)
• Large (-mcmodel=large)
• Toolchain default

Strict align (-mstrict-align) Controls the use of non-standard ISO/IEC 9899-1990 ("C90") language features.

Other target flags Specify additional command line options; type in custom flags that are not otherwise
available in the UI.

Chapter 3 ARMv8 Build Properties

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 27



3.2.2 Optimization

Use this panel to configure the optimization options.

The following table lists the options in the Optimization panel.

Table 3-3. Optimization options

Option Description

Optimization level Specify the optimizations that you want the compiler to apply to the generated object
code:

• None (-O0)-Disable optimizations. This setting is equivalent to specifying the -
O0 command-line option. The compiler generates unoptimized, linear assembly-
language code.

• Optimize (-O1)-The compiler performs all target-independent (that is, non-
parallelized) optimizations, such as function inlining. This setting is equivalent to
specifying the -O1 command-line option. The compiler omits all target-specific
optimizations and generates linear assembly-language code.

• Optimize more (-O2)-The compiler performs all optimizations (both target-
independent and target-specific). This setting is equivalent to specifying the -O2
command-line option. The compiler outputs optimized, non-linear, parallelized
assembly-language code.

• Optimize most (-O3)-The compiler performs all the level 2 optimizations, then
the low-level optimizer performs global-algorithm register allocation. This setting
is equivalent to specifying the that is usually faster than the code generated from
level 2 optimizations.

• Optimize size (-Os)-The compiler optimizes object code at the specified
Optimization Level such that the resulting binary file has a smaller executable
code size, as opposed to a faster execution speed. This setting is equivalent to
specifying the -Os command-line option.

• Optimize for debugging (-Og)-The compiler optimizes object code at the
specified Optimization Level such that the resulting binary file has a faster
execution speed, as opposed to a smaller executable code size.

Message length (-fmessage-
length=0)

Check if you want to specify the maximum length in bytes for the message.

'char' is signed (-fsigned-char) Check to treat char declarations as signed char declarations.

Function sections (-ffunction-
sections)

Check to enable function sections.

Data sections (-fdata-sections) Check to enable data sections.

No common unitialized (-fno-
common)

Controls the placement of uninitialized global variables.

Do not inline functions (-fno-inline-
functions)

Suppresses automatic inlining of subprograms.

Assume freestanding environment (-
ffeestanding)

Asserts that compilation takes place in a freestanding environment. This implies -fno-
builtin.

Disable builtin (-fno-builtin) Switches off builtin functions.

Single precision constants (-fsingle-
precision-constant)

Check to enable single precision constants.

Position independent code (-fPIC) Select to instruct the build tools to generate position independent-code.

Other optimization flags Specify additional command line options; type in custom optimization flags that are not
otherwise available in the UI.

ARMv8 build settings

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

28 Freescale Semiconductor, Inc.



3.2.3 Warnings

Use this panel to configure the warning options.

The following table lists the options in the Warnings panel.

Table 3-4. Warnings options

Option Description

Check syntax only (-fsyntax-only) Check this option if you want to check the syntax of commands and throw a syntax
error.

Pedantic (-pedantic) Check if you want warnings like -pedantic, except that errors are produced rather than
warnings.

Pedantic warnings as errors (-
pedantic-errors)

Check this option if you want to inhibit the display of warning messages.

Inhibit all warnings (-w) Check this option if you want to enable all the warnings about constructions that some
users consider questionable, and that are easy to avoid (or modify to prevent the
warning), even in conjunction with macros.

Warn on various unused elements
(-Wunused)

Warn whenever some element (label, parameter, function, etc.) is unused.

Warn on uninitialized variables (-
Wuninitialised)

Warn whenever an automatic variable is used without first being initialized.

Enable all common warnings (-Wall) Check this option if you want to enable all the warnings about constructions that some
users consider questionable, and that are easy to avoid (or modify to prevent the
warning), even in conjunction with macros.

Enable extra warnings (-Wextra) Check this option to enable any extra warnings.

Warn on undeclared global function
(-Wmissing-declaration)

Check to warn if an undeclared global function is encountered.

Warn on implicit conversions (-
Wconversion)

Check to warn of implicit conversions.

Warn if pointer arithmetic (-
Wpointer-arith)

Check to warn if pointer arithmetic are used.

Warn if padding is not included (-
Wpadded)

Check to warn if padding is included in a structure either to align an element of the
structure or the whole structure.

Warn if shadowed variable (-
Wshadow)

Check to warn if shadowed variable are used.

Warn if suspicious logical ops (-
Wlogical-op)

Check to warn in case of suspicious logical operation.

Warn in struct is returned (-
Wagreggrate-return)

Check to warn if struct is returned.

Warn if floats are compared as
equal (-Wfloat-equal)

Check to warn if floats are compared as equal.

Generate errors instead of warnings
(-Werror)

Check to generate errors instead of warnings.

Other warning flags Specify additional command line options; type in custom warning flags that are not
otherwise available in the UI.

Chapter 3 ARMv8 Build Properties

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 29



3.2.4 Debugging

Use this panel to configure the debugging options.

The following table lists the options in the Debugging panel.

Table 3-5. Debugging options

Option Description

Debug level Specify the debug levels:
• None - No Debug level.
• Minimal ( -g1) - The compiler provides minimal debugging support.
• Default ( -g) - The compiler generates DWARF 1.xconforming debugging

information.
• Maximum ( -g3) - The compiler provides maximum debugging support.

Debug format Specify the debug formats for the compiler.

Generate prof information (-p) Generates extra code to write profile information suitable for the analysis program prof.
You must use this option when compiling the source files you want data about, and you
must also use it when linking.

Generate gprof information (-pg) Generates extra code to write profile information suitable for the analysis program
gprof. You must use this option when compiling the source files you want data about,
and you must also use it when linking.

Other debugging flags Specify additional command line options; type in custom debugging flags that are not
otherwise available in the UI.

3.2.5 Cross ARM GNU Assembler

Use this panel to configure the ARM GNU assembler options.

The following table lists the options in the Cross ARM GNU Assembler panel.

Table 3-6. Cross ARM GNU Assembler options

Option Description

Command Shows the location of the assembler executable file. Default: ${cross_prefix}${cross_c}$
{cross_suffix}

All Options Shows the actual command line the assembler will be called with. Default: -x assembler-
with-cpp -Xassembler -g

Expert settings

Command line pattern Shows the expert settings command line parameters. Default: ${COMMAND} $
{cross_toolchain_flags} ${FLAGS} -c ${OUTPUT_FLAG} ${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}

ARMv8 build settings

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

30 Freescale Semiconductor, Inc.



3.2.5.1 Preprocessor

Use this panel to configure the ARM GNU assembler preprocessor options.

The following table lists the options in the Cross ARM GNU Assembler Preprocessor
panel.

Table 3-7. Cross ARM GNU Assembler Preprocessor options

Option Description

Use preprocessor Check this option to use the preprocessor for the assembler.

Do not search system directories
(-nostdinc)

Check this option if you do not want the assembler to search the system directories. By
default, this checkbox is clear. The assembler performs a full search that includes the
system directories.

Preprocess only (-E) Check this option if you want the assembler to preprocess source files and not to run the
compiler. By default, this checkbox is clear and the source files are not preprocessed.

Defined symbols (-D) Use this option to specify the substitution strings that the assembler applies to all the
assembly-language modules in the build target. Enter just the string portion of a
substitution string. The IDE prepends the -D token to each string that you enter. For
example, entering opt1 x produces this result on the command line: -Dopt1 x. Note: This
option is similar to the DEFINE directive, but applies to all assembly-language modules in
a build target.

Undefined symbols (-U) Undefines the substitution strings you specify in this panel.

3.2.5.2 Includes

Use this panel to configure the ARM GNU assembler includes options.

The following table lists the options in the Cross ARM GNU Assembler Includes panel.

Table 3-8. Cross ARM GNU Assembler Includes options

Option Description

Include paths (-l) This option changes the build target's search order of access paths to start with the system paths list.
The compiler can search #include files in several different ways. You can also set the search order as
follows: For include statements of the form #include"xyz", the compiler first searches user paths, then
the system paths For include statements of the form #include<xyz>, the compiler searches only system
paths This option is global.

Include files (-
include)

Use this option to specify the include file search path.

3.2.5.3 Warnings

Use this panel to configure the ARM GNU assembler warning options.

Chapter 3 ARMv8 Build Properties

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 31



The following table lists the options in the Cross ARM GNU Assembler Warnings
panel.

Table 3-9. Warnings options

Option Description

Other warning flags Specify additional command line options; type in custom warning flags that are not
otherwise available in the UI.

3.2.5.4 Miscellaneous

Use this panel to configure the ARM GNU assembler miscellaneous options.

The following table lists the options in the Cross ARM GNU Assembler Miscellaneous
panel.

Table 3-10. Cross ARM GNU Assembler Miscellaneous options

Option Description

Assembler flags Specify the flags that need to be passed with the assembler.

Generates assembler
listing (-Wa, -
adhlns="$@.lst")

Enables the assembler to create a listing file as it compiles assembly language into object code.

Save temporary files
(--save-temps Use
with caution!)

Store the usual “temporary” intermediate files permanently.

Verbose (-v) Check this option if you want the IDE to show each command-line that it passes to the shell, along with
all progress, error, warning, and informational messages that the tools emit. This setting is equivalent
to specifying the -v command-line option. By default this checkbox is clear. The IDE displays just error
messages that the compiler emits. The IDE suppresses warning and informational messages.

Other assembler
flags

Specify additional command line options; type in custom flags that are not otherwise available in the
UI.

3.2.6 Cross ARM C Compiler

Use this panel to configure the ARM C compiler options.

The following table lists the options in the Cross ARM C Compiler panel.

Table 3-11. Cross ARM C Compiler options

Option Description

Command Shows the location of the compiler executable file. Default: ${cross_prefix}${cross_c}$
{cross_suffix}

Table continues on the next page...

ARMv8 build settings

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

32 Freescale Semiconductor, Inc.



Table 3-11. Cross ARM C Compiler options (continued)

Option Description

All Options Shows the actual command line the compiler will be called with.

Expert settings

Command line patterns Shows the expert settings command line parameters. Default: ${COMMAND} $
{cross_toolchain_flags} ${FLAGS} -c ${OUTPUT_FLAG} ${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}

3.2.6.1 Preprocessor

Use this panel to configure the ARM C compiler preprocessor options.

The following table lists the options in the Cross ARM C Compiler Preprocessor
panel.

Table 3-12. Cross ARM GNU compiler Preprocessor options

Option Description

Use preprocessor Check this option to use the preprocessor for the compiler.

Do not search system directories
(-nostdinc)

Check this option if you do not want the compiler to search the system directories. By
default, this checkbox is clear. The compiler performs a full search that includes the
system directories.

Preprocess only (-E) Check this option if you want the compiler to preprocess source files and not to run the
compiler. By default, this checkbox is clear and the source files are not preprocessed.

Defined symbols (-D) Use this option to specify the substitution strings that the compiler applies modules in the
build target. Enter just the string portion of a substitution string. The IDE prepends the -D
token to each string that you enter. For example, entering opt1 x produces this result on
the command line: -Dopt1 x. Note: This option is similar to the DEFINE directive, but
applies to all assembly-language modules in a build target.

Undefined symbols (-U) Undefines the substitution strings you specify in this panel.

3.2.6.2 Includes

Use this panel to configure the ARM C compiler includes options.

Chapter 3 ARMv8 Build Properties

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 33



The following table lists the options in the Cross ARM C Compiler Includes panel.

Table 3-13. Cross ARM C Compiler Includes options

Option Description

Include paths (-l) This option changes the build target's search order of access paths to start with the system paths list.
The compiler can search #include files in several different ways. You can also set the search order as
follows: For include statements of the form #include"xyz", the compiler first searches user paths, then
the system paths For include statements of the form #include<xyz>, the compiler searches only system
paths This option is global.

Include files (-
include)

Use this option to specify the include file search path.

3.2.6.3 Optimization

Use this panel to configure the ARM C compiler optimization options.

The following table lists the options in the Optimization panel.

Table 3-14. Optimization options

Option Description

Language standard Select the programming language or standard to which the compiler should conform.
• ISO C90 (-ansi) - Select this option to compile code written in ANSI standard C.

The compiler does not enforce strict standards. For example, your code can
contain some minor extensions, such as C++ style comments (//), and $
characters in identifiers.

• ISO C99 (-std=c99) - Select this option to instruct the compiler to enforce stricter
adherence to the ANSI/ISO standard.

• Compiler Default (ISO C90 with GNU extensions) - Select this option to enforce
adherence to ISO C90 with GNU extensions.

• ISO C99 with GNU Extensions (-std=gnu99)

Other optimization flags Specify additional command line options; type in custom optimization flags that are not
otherwise available in the UI.

3.2.6.4 Warnings

Use this panel to configure the ARM C compiler warnings options.

The following table lists the options in the Warnings panel.

Table 3-15. Warnings options

Option Description

Warn if a global function has no
prototype (-Wmissing-prototype)

Warn if a global function has no prototype.

Table continues on the next page...

ARMv8 build settings

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

34 Freescale Semiconductor, Inc.



Table 3-15. Warnings options (continued)

Option Description

Warn if a function has no arg type (-
Wstrict-prototypes)

Warn if a function is declared or defined without specifying the argument types.

Warn if a wrong cast (-Wbad-
function-cast)

Warn whenever a function call is cast to a non-matching type.

Other warning flags Specify additional command line options; type in custom warning flags that are not
otherwise available in the UI.

3.2.6.5 Miscellaneous

Use this panel to configure the ARM C compiler miscellaneous options.

The following table lists the options in the Miscellaneous panel.

Table 3-16. Miscellaneous options

Option Description

Generates assembler
listing (-Wa, -
adhlns="$@.lst")

Enables the assembler to create a listing file as it compiles assembly language into object code.

Save temporary files
(--save-temps Use
with caution!)

Store the usual “temporary” intermediate files permanently.

Verbose (-v) Check this option if you want the IDE to show each command-line that it passes to the shell, along with
all progress, error, warning, and informational messages that the tools emit. This setting is equivalent
to specifying the -v command-line option. By default this checkbox is clear. The IDE displays just error
messages that the compiler emits. The IDE suppresses warning and informational messages.

Other compiler flags Specify additional command line options; type in custom flags that are not otherwise available in the
UI.

3.2.7 Cross ARM C Linker

Use this panel to configure the ARM C linker options.

The following table lists the options in the Cross ARM C Linker panel.

Table 3-17. Cross ARM C Linker options

Option Description

Command Shows the location of the linker executable file. Default: ${cross_prefix}${cross_c}$
{cross_suffix}

Table continues on the next page...

Chapter 3 ARMv8 Build Properties

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 35



Table 3-17. Cross ARM C Linker options (continued)

Option Description

All Options Shows the actual command line the assembler will be called with. Default: -T "$
{ProjDirPath}"/Linker_Files/aarch64elf.x -nostartfiles -nodefaultlibs -
L"C:\Users\b14174\workspace-15\FirstProjectTest" -Wl,-
Map,"FirstProjectTest.map"

Expert settings

Command line patterns Shows the expert settings command line parameters. Default: ${COMMAND} $
{cross_toolchain_flags} ${FLAGS} ${OUTPUT_FLAG} ${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}

3.2.7.1 General

Use this panel to configure the ARM C linker general options.

The following table lists the options in the General panel.

Table 3-18. General options

Option Description

Script files (-T) This option passes the -T argument to the linker file

Do not use standard start files
(-nostartfiles)

This option passes the -nostartfiles argument to the linker file. It does not allow the use of
the standard start files.

Do not use default libraries (-
nodefaultlibs)

This option passes the -nodefaultlibs argument to the linker file. It does not allow the use of
the default libraries.

No startup or default libs (-
nostdlib)

This option passes the -nostdlib argument to the linker file. It does not allow the use of
startup or default libs.

Remove unused sections (-
Xlinker --gc-sections)

This option passes the -Xlinker --gc-sections argument to the linker file. It removes the
unused sections.

Print removed sections (-
Xlinker --print-gc-sections)

This option passes the -Xlinker --print-gc-sections argument to the linker file. It ptints the
removed sections.

Omit all symbol information (-s) This option passes the -s argument to the linker file. This option omits all symbol information.

3.2.7.2 Libraries

Use this panel to configure the ARM C linker libraries options.

ARMv8 build settings

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

36 Freescale Semiconductor, Inc.



The following table lists the options in the Libraries panel.

Table 3-19. Libraries options

Option Description

Libraries (-l) This option changes the build target's search order of access paths to start with the system paths list.
The compiler can search #include files in several different ways. You can also set the search order as
follows: For include statements of the form #include"xyz", the compiler first searches user paths, then
the system paths. For include statements of the form #include<xyz>, the compiler searches only system
paths. This option is global.

Library search path
(-L)

Use this option to specify the include library search path.

Chapter 3 ARMv8 Build Properties

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 37



Figure 3-2. Libraries panel

3.2.7.3 Miscellaneous

Use this panel to configure the ARM C linker miscellaneous options.

The following table lists the options in the Miscellaneous panel.

ARMv8 build settings

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

38 Freescale Semiconductor, Inc.



Table 3-20. Miscellaneous options

Option Description

Linker flags This option specifies the flags to be passed with the linker file.

Other objects This option lists paths that the VSPA linker searches for objects. The linker searches the paths in the
order shown in this list.

Generate Map This option specifies the map filename. Default: $ {BuildArtifactFileBaseName}.map

Cross Reference (-
Xlinker --cref)

Check this option to instruct the linker to list cross-reference information on symbols. This includes
where the symbols were defined and where they were used, both inside and outside macros.

Print link map (-
Xlinker --printf-map)

Check this option to instruct the linker to print the map file.

Verbose (-v) Check this option to show verbose information, including hex dump of program segments in
applications; default setting

Other linker flags Specify additional command line options for the linker; type in custom flags that are not otherwise
available in the UI.

3.2.8 Cross ARM GNU Create Flash Image

Use this panel to configure the Cross ARM GNU create flash image options.

The following table lists the options in the Cross ARM GNU Create Flash Image
panel.

Table 3-21. Cross ARM GNU Create Flash Image options

Option Description

Command Shows the location of the executable file. Default: ${cross_prefix}${cross_objcopy}$
{cross_suffix}

All Options Shows the actual command line the assembler will be called with. Default:
"FirstProjectTest.elf" -O ihex

Expert settings

Command line patterns Shows the expert settings command line parameters. Default: ${COMMAND} ${FLAGS} $
{OUTPUT_FLAG} ${OUTPUT_PREFIX}${OUTPUT} ${INPUTS}

3.2.8.1 General

Use this panel to configure the Cross ARM GNU create flash image general options.

Chapter 3 ARMv8 Build Properties

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 39



The following table lists the options in the General panel.

Table 3-22. General options

Option Description

Output file format Defines the object file format.

Section: -j .text Select to define section: -j .text.

Section: -j .data Select to define section: -j .data.

Other sections (-j) Add other sections.

Other flags Specify additional command line options; type in custom flags that are not otherwise
available in the UI.

3.2.9 Cross ARM GNU Create Listing

Use this panel to configure the Cross ARM GNU create listing options.

The following table lists the options in the Cross ARM GNU Create Listing panel.

Table 3-23. Cross ARM GNU Create Listing options

Option Description

Command Shows the location of the executable file. Default: ${cross_prefix}${cross_objdump}$
{cross_suffix}}

All Options Shows the actual command line the assembler will be called with. Default:
"FirstProjectTest.elf" --source --all-headers --demangle --line-numbers
--wide

Expert settings

Command line patterns Shows the expert settings command line parameters. Default: ${COMMAND} ${FLAGS} $
{OUTPUT_FLAG} ${OUTPUT_PREFIX}${OUTPUT} ${INPUTS}

3.2.9.1 General

Use this panel to configure the Cross ARM GNU create listing general options.

The following table lists the options in the General panel.

Table 3-24. General options

Option Description

Display source Check to display source.

Display all headers Check to display headers in the listing file; disassembler writes listing headers, titles, and
subtitles to the listing file

Demangle names Check to demangle names.

Table continues on the next page...

ARMv8 build settings

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

40 Freescale Semiconductor, Inc.



Table 3-24. General options (continued)

Option Description

Display debugging info Check to display debugging information.

Disassemble Check to disassembles all section content and sends the output to a file. This command is
global and case-sensitive.

Display file headers Check to display the contents of the overall file header.

Display line numbers Check to display the line numbers.

Display relocation info Check to displays the relocation entries in the file.

Display symbols Check to display the symbols.

Wide line Check to display wide lines.

Other flags Specify additional command line options for the linker; type in custom flags that are not
otherwise available in the UI.

3.2.10 Cross ARM GNU Print Size

Use this panel to configure the Cross ARM GNU print size options.

The following table lists the options in the Cross ARM GNU Print Size panel.

Table 3-25. Cross ARM GNU Print Size options

Option Description

Command Shows the location of the executable file. Default: $${cross_prefix}${cross_size}$
{cross_suffix}

All Options Shows the actual command line the assembler will be called with. Default: --format=berkeley
"FirstProjectTest.elf"

Expert settings

Command line patterns Shows the expert settings command line parameters. Default: ${COMMAND} ${INPUTS} $
{FLAGS}}

3.2.10.1 General

Use this panel to configure the Cross ARM GNU print size options.

The following table lists the options in the General panel.

Table 3-26. General options

Option Description

Size format Select size format: Berkeley or SysV

Hex Select to choose Hex.

Table continues on the next page...

Chapter 3 ARMv8 Build Properties

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 41



Table 3-26. General options (continued)

Option Description

Show totals Select to show totals.

Other flags Specify additional command line options for the linker; type in custom flags that are not
otherwise available in the UI.

ARMv8 build settings

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

42 Freescale Semiconductor, Inc.



Chapter 4
Preparing target

This chapter lists how to prepare for debug various target types:
• Preparing hardware targets
• Preparing simulator target

4.1 Preparing hardware targets
Please refer to the Getting Started Guide for a description on how to prepare the
supported hardware targets.

4.2 Preparing simulator target
This topic explains how to configure and start simulator.

To configure and start the simulator, perform these steps:

4.2.1 Configuration

This topic explains how to configure simulator.

1. If you’re running the CodeWarrior software on a Linux machine, note that the
simulator is already unpacked under Common/CCSSim folder, skip steps 2-4 .

2. If you're running the CodeWarrior software on a Windows machine and you have
installed the Simulator package on a remote Linux64 machine during the installation of
CodeWarrior software, skip steps 3-4.

3. Get the simulator from the CodeWarrior layout:

<Layout>/Common/CCSSim/LS_SIM_RELEASE_0_x_0_00xxx.tgz

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 43



4. Move the file to the Linux x86_64 machine and untar it.

5. For information about licensing the simulator, see section "Licensing" in the
Layerscape Simulator User Guide.

4.2.2 Use cases

This section lists the simulator use cases.

• Bare metal debug
• U-boot debug, Linux kernel debug, Linux application debug

4.2.2.1 Bare metal debug

To perform bare metal debug:

1. If you're running the CodeWarrior software on a Windows machine, navigate to the
linux64 folder inside the unpacked archive of the simulator you have set up on the Linux
x86_64 machine

2. If you're running the CodeWarrior software on a Linux machine, navigate to the
Common/CCSSim folder inside the CodeWarrior installation folder.

3. For details about the simulator start-up scripts available for debugging, see section
"Layerscape architecture flavors and simulator start-up scripts" in the Layerscape
Simulator User Guide.

4. For bare metal debug on LS2085A, run the following simulator start-up script:

./start_sim_bare_metal

4.2.2.2 U-Boot debug, Linux kernel debug, Linux application debug

This topic explains steps to perform U-Boot, Linux kernel, and Linux application debug.

To perform U-Boot, Linux kernel, and Linux application debug:

1. On top of the simulator start-up scripts, there is a package consisting of a set of SDK
binary images (U-Boot, Linux kernel) and a start-up script called run-sim.sh, which
loads all the mentioned images and begins execution on the primary GPP core. For
details, see "Using ls2-sim-support scripts (run-sim.sh) and CodeWarrior" section in
the Layerscape Simulator User Guide.

Preparing simulator target

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

44 Freescale Semiconductor, Inc.



2. If you have your custom SDK images, copy them in the images folder from ls2-sim
support package.

3. In a console, navigate to the ls2-sim-support folder.
4. Set the LS2_SIM_BASE_DIR environment variable to point to the location of the simulator

scripts.
5. For U-Boot debug and Linux kernel debug, run:

./run-sim.sh -g

6. For Linux application debug, run

./run-sim.sh

Wait until the Linux kernel is booted and the Linux login prompt appears.
7. If you need complete details about the run-sim.sh parameters, run:

 ./run-sim.sh -h

Chapter 4 Preparing target

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 45



Preparing simulator target

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

46 Freescale Semiconductor, Inc.



Chapter 5
Configuring Target
The Target Connection Configuration (TCC) feature lets you configure the probe and the
target hardware.

TCC eases out the configuration process due to the auto- discovery capabilities and live
validation of the configuration. TCC lets you use one configuration for multiple projects
by setting it as the active configuration (configure once debug all projects), but if more
than one configuration is required, you can add as many configuration as necessary. TCC
can be used as an RCP application for eclipse allowing the user to benefit from the full
capabilities either way.

This chapter lists:
• Target Connection configurator overview
• Configuration types
• Operations with configurations
• Configure the target configuration using Target Connection Configurator
• Generating GDB script from a configuration
• Debugger server connection
• Logging Configuration

5.1 Target Connection configurator overview
You can view all existing configuration, manage configurations, and set the active
configuration using the Target Connection manager.

To access the Target Connection manager (using eclipse ), select Window > Preferences
> Target Connection Configuration. You will be able to see the Target Connection
manager in the right panel of the Preferences window.

Besides the possibility to configure the target connection through the preferences, you
can access the same capabilities available in the Target Connection View.

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 47



To access the Target Connections view, select Window > Show View > Other > Target
Connections.

The view lists a brief information about the current connection.

Figure 5-1. Target Connection view

5.2 Configuration types
There are two type of target connection configuration: user-defined and pre-defined.

The pre-defined configurations are marked with orange icons with Freescale logo.Unlike,
user-defined configuration, pre-defined configurations cannot be removed. Also, the user
doesn’t have access to the pre-defined configuration file; therefore the pre-defined
configurations cannot be imported or exported.

However, the pre-defined configuration can be duplicated and saved under a different
name.

Configuration types

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

48 Freescale Semiconductor, Inc.



Figure 5-2. Configuration types

5.3 Operations with configurations
This topic explains the target connection configuration options.

The table below lists the target connection configuration options that you can use to
manage configurations, view all existing configuration, and set the active configuration.

Table 5-1. Target Connections Configurations options

Option Description

Add Use to create a new configuration.

Edit Use to edit the selected configuration. Modify the configuration then click OK to save
the changes.

Table continues on the next page...

Chapter 5 Configuring Target

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 49



Table 5-1. Target Connections Configurations options (continued)

Option Description

Duplicate Use to duplicate an existing configuration. You can edit the duplicated configuration.

Remove Use to remove an existing configuration. Select the configuration you want to delete,
and click Remove.

Export Use to export a configuration to the workspace. Select the configuration you want to
export. Click Export. Select the location in the workspace where you want to export
the configuration and click OK to finish.

Import Use to import a configuration from the workspace. Select the configuration you want to
import to the internal configuration folder. Click Import.

Set Active configuration Check the checkbox next to the configuration to set it as Active Configuration.

View details about a configuration TCC panel lets you determine whether a configuration is pre-defined or user-defined
by using different color icons; Orange for pre-defined and Green for user-defined.
Also, if a configuration is not complete and cannot be used for debug, TCC panel
marks it as (Incomplete).

5.4 Configure the target configuration using Target
Connection Configurator

To configure the target configuration in Target Connection Configurator, you need to
select the debugged processor and the probe.

1. Choose the debugged core from the launch configuration file.
2. In order to connect to the target, select a connection type, such as simulator or

hardware. And configure the probe options, such as IP, serial number for USB
connection.
The available probes depend on the selected processor. For example, since there is
CWTAP support for LS2085A-Lite1 and LS2085A, CWTAP probe is supported
additional to Simulator. In case you select CWTAP, you could use probe discovery
capability.

NOTE
in this release, the list of detected CWTAPs also includes
the probes connected to other processors in addition to the
one selected.

a. Click the Search for HW probes button to automatically discover the probes
connected to the local machine or network for SoCs that support CWTAP (for
SoCs that support only simulators the button will be disabled).

Configure the target configuration using Target Connection Configurator

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

50 Freescale Semiconductor, Inc.



Figure 5-3. Target Connection Configurator

Chapter 5 Configuring Target

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 51



Figure 5-4. Search for probes
b. When the user selects one of the discovered probes, the target configuration will

use the selected CWTAP and the selected probe attributes will be updated
accordingly.

3. Select Preserve Probe Configuration to make all CWTAP configurations
disappear. In this case, you will have to specify only CCS server used to access the
CWTAP.

4. Check the Use Target Init checkbox to load/edit the gdb file and launch the target
init GDB script.

5. You can load/save and edit the gdb script in the Target Init File tab page.

The script is loaded by GDB and it is run automatically before launching a debug
session. Initialization script is embedded in the TCC configuration.

6. Click Apply to save and set the new target connection as an active configuration. To
set an active configuration, select the check box corresponding to the target
connection to be set as active configuration. The active configuration acts as source
for the target connection data necessary to start a debug session.

NOTE
In the Target Connection view, the active configuration
name is displayed in bold.

5.5 Generating GDB script from a configuration
TCC configures the target by sending a set of commands to the GDB server.

These commands can be exported and viewed as a .gdb script. To export the .gdb script:

Generating GDB script from a configuration

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

52 Freescale Semiconductor, Inc.



1. Configure the target configuration using Target Connection Configurator.
2. Click Generate GDB script.

The GDB script with the parameters configured in the target connection dialog are
outputted in the Output Console view. Export the GDB script to the required file
using Export log into file.

GDB script can be used as it is when starting a debug session from the (GDB)
console mode.

5.6 Debugger server connection
Each target connection configuration allows the user to select the type of connection to
use with GTA: a local server or a remote connection to an already set up GTA server.

• Debug Server Connection
• Start local server: Automatically starts the GTA first time when a certain

command is issued to GTA. The GTA will be stopped when the user chooses to
use a remote GTA or the CodeWarrior software is closed.

• Connect to: User can specify the server address and IP of an already running
debug server.

In the CodeWarrior Connection Server section the user can specify the
connection server parameters.

• CodeWarrior Connection Server
• Start Local Server: GTA starts and configures the connection server.

• Connect to: The connection server is already started/configured and the GTA
can use it.

Chapter 5 Configuring Target

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 53



Figure 5-5. Debug Server Connection

5.7 Logging Configuration
The Logging Configuration preference panel can be used to enable the protocol logging
(ccs).

Using this panel, the user can configure the logging level and choose the destination for
the collected info:

• an Eclipse console, PROTOCOL Logging Console. The console is visible only when
Enable logging to Eclipse console is selected

• a file

Logging Configuration

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

54 Freescale Semiconductor, Inc.



Figure 5-6. Logging Configuration panel

The INFO level for logging adds more information to the output, for example register
IDs, memory addresses, memory spaces. But it does not output the contents for register
values, memory, and JTAG chain expansion (for get_config_chain() command).

For details about monitor log commands, refer Logging.

Chapter 5 Configuring Target

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 55



Logging Configuration

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

56 Freescale Semiconductor, Inc.



Chapter 6
FSL Debugger References
This chapter lists:

• Customizing debug configuration
• Registers features
• OS awareness
• Linux kernel awareness
• Launch a hardware GDB debug session where no configuration is available
• Memory tools GDB extensions
• Monitor commands

6.1 Customizing debug configuration
You can use the Debug Configurations dialog to customize various aspects of a debug
configuration.

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 57



Figure 6-1. Debug Configurations dialog

NOTE
The CodeWarrior debugger shares some pages, such as
Connection and Download. The settings that you specify in
these pages also apply to the selected debugger.

To modify a debug configuration:
1. Click Run > Debug Configurations in the CodeWarrior IDE.

The Debug Configurations dialog appears.
2. Make the required changes, and click the Apply button to save the pending changes.
3. To undo the pending changes, click the Revert button.

The IDE restores the last set of saved settings to all pages of the Debug
Configurations dialog. The Revert button appears disabled until you make new
pending changes.

Customizing debug configuration

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

58 Freescale Semiconductor, Inc.



4. A debug configuration can be saved within the project by setting its location relative
to the project loaded in the current workspace. For this, click the Common tab, and in
the Shared file option, select a project directory where you want to save the debug
configuration. Now, you can import the project into another workspace without
loosing the debug configuration file.

5. Click the Close button to close the Debug Configurations dialog.

The tabs in the Debug Configurations dialog box are:
• Main
• Debugger
• Startup
• Source
• OS Awareness
• Other Symbols
• Common
• Trace and Profile

6.1.1 Main

Use this page to specify the project and the application you want to run or debug.

Chapter 6 FSL Debugger References

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 59



Figure 6-2. Main tab

The Main tab options are explained in the following table.

Table 6-1. Main tab options

Option Description

C/C++ Application Specifies the name of the C or C++ application.

Variables Click to open the Select build variable dialog box and select the build variables to be
associated with the program. Note: The dialog box displays an aggregation of multiple variable
databases and not all these variables are suitable to be used from a build environment.

Search Project Click to open the Program Selection dialog box and select a binary.

Browse Click Browse to select a different C/C++ application.

Project Specifies the project to associate with the selected debug launch configuration. Click Browse
to select a different project.

Build (if required) before
launching

Controls how auto build is configured for the launch configuration. Changing this setting
overrides the global workspace setting and can provide some speed improvements. NOTE:
These options are set to default and collapsed when Connect debug session type is selected.

Build configuration Specifies the build configuration either explicitly or use the current active configuration.

Select configuration using
‘C/C++ Application’

Select/clear to enable/disable automatic selection of the configuration to be built, based on the
path to the program.

Enable auto build Enables auto build for the debug configuration which can slow down launch performance.

Table continues on the next page...

Customizing debug configuration

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

60 Freescale Semiconductor, Inc.



Table 6-1. Main tab options (continued)

Option Description

Disable auto build Disables auto build for the debug configuration which may improve launch performance. No
build action will be performed before starting the debug session. You have to rebuild the
project manually.

Use Active (default) Uses the global auto build settings.

Configure Workspace
Settings

Opens the Launching preference panel where you can change the workspace settings. It will
affect all projects that do not have project specific settings.

6.1.2 Debugger

Use this page to select a debugger to use when debugging an application.

Figure 6-3. Debugger tab

Chapter 6 FSL Debugger References

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 61



The Debugger tab options are explained in the following table.

Table 6-2. Debugger tab options

Option Description

GDB Setup

GDB Command Specifies the GDB command. For example: ${eclipse_home}..\ARMv8\gdb\bin\aarch64-fsl-
gdb.exe.

Browse Click to navigate.

Variables Click to select variables.

Target Connection Configuration

Verify memory
download

If selected, download validation is performed after binary is downloaded to target. The console
displays the validation result in an output similar to the one presented below.

Section .note.gnu.build-id, range 0x400000 -- 0x400024: matched.

Section .text, range 0x400040 -- 0x400568: matched.

Section .rodata, range 0x400568 -- 0x400578: matched.

Section .data, range 0x410578 -- 0x410cd0: matched.

If checkbox is deselected, validation is not performed and the above output is not displayed.

In GDB command line, a user can execute the compare-sections command after the
executable is loaded to target (using the load command), and same output will be displayed. A
typical GDB session with download validation is presented in the example below.

target extended-remote host:port 
mon ctx set current :ccs:LS2085A:A57#0
attach 1
load elf_file
file elf_file
compare-sections

Use launch specific
connection

Select to specify the target connection configuration in this launch. This will override the
configuration specified globally in Window->Preferences dialog.

Configuration Enabled when Use launch specific connection is checked. Use to select the required configuration.

Core Select the core to debug.

Use all cores Select if your application uses all cores (SMP).

Force thread list
update on suspend

Click if you want to force thread list update on suspend.

6.1.3 Startup

Use this page to specify the startup options and values to use when an application runs.

Customizing debug configuration

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

62 Freescale Semiconductor, Inc.



Figure 6-4. Startup tab

The following table list the Startup tab options.

Table 6-3. Startup tab options

Option Description

Reset and Delay
(seconds)

Select to reset the target at startup and delay the initialization for the specified amount of seconds

Halt Select to halt the target at startup

Load image Select to specify that an image should be loaded to the target

Use project binary Select to load the binary of the current project

Use file Select to load a different file

Workspace Click to select a file to load from the workspace

File System Click to select a file to load from the file system

Image offset (hex) Specify the offset on the target from where to load the image

Load symbols Select to specify that symbols should be loaded in the debugger

Use project binary Select to load symbols from the binary of the current project

Use file Select to load symbols from a different file

Workspace Click to select a file with symbols to load from the workspace

File System Click to select a file with symbols to load from the file system

Table continues on the next page...

Chapter 6 FSL Debugger References

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 63



Table 6-3. Startup tab options (continued)

Option Description

Symbol offset (hex) Specify an offset for the symbols

Set program counter at
(hex)

Select to set the PC at startup to a specified value

Set breakpoint at Select to set a breakpoint at a specified location

Resume Select to indicate the execution should resume

Run commands Specify commands to be run in the debugger after loading image / symbols

6.1.4 Source

Use this page to specify the location of source files used when debugging a C or C++
application.

By default, this information is taken from the build path of your project.

Figure 6-5. Source tab

Customizing debug configuration

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

64 Freescale Semiconductor, Inc.



The Source tab options are explained in the following table.

Table 6-4. Source tab options

Option Description

Source Lookup Path Lists the source paths used to load an image after connecting
the debugger to the target.

Add Click to add new source containers to the Source Lookup
Path search list.

Edit Click to modify the content of the selected source container.

Remove Click to remove selected items from the Source Lookup
Path list.

Up Click to move selected items up the Source Lookup Path
list.

Down Click to move selected items down the Source Lookup Path
list.

Restore Default Click to restore the default source search list.

Search for duplicate source files on the path Select to search for files with the same name on a selected
path.

6.1.5 OS Awareness

Use this page to specify whether the OS Awareness should be enabled.

Chapter 6 FSL Debugger References

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 65



Figure 6-6. OS Awareness tab

The following table list the OS Awareness tab options.

Table 6-5. OS Awareness tab options

Option Description

Enable OS Awareness Select to enable OS Awareness (and activate the other tab
options).

Linux Kernel Select to enable OS awareness for Linux Kernel.

U-boot Select to enable OS awareness for U-Boot.

Other Select to enable user-defined types of OS awareness.

Use CodeWarrior script for Linux Kernel Awareness Select to enable OS Awareness for Linux Kernel using
CodeWarrior specific script.

Use script Select to specify a custom script to enable OS Awareness.

Workspace Click to select a custom script from the workspace.

File System Click to select a custom script from the file system.

Suspend target when module insert or removal is detected Select to suspend target when module insert or removal is
detected.

Automatically load configured symbolic file at module init
detection

Select to automatically load symbolic files.

Auto-load module sybolic files list Lists automatically loaded symbolic files.

Customizing debug configuration

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

66 Freescale Semiconductor, Inc.



6.1.6 Other Symbols

Use this page to specify other symbols settings.

The Other Symbols tab allows reading additional symbol table information from one or
more elf files given by the user.

Figure 6-7. Other Symbols tab

The symbol table information is read by using the add-symbols command; this command is
similar to the GDB add-symbol-file command. However, unlike the add-symbol-file
command, the add-symbols doesn't require the user to provide the load address for the file.
The symbols from the elf file are loaded using the compile-time addresses for all
loadable sections in case this address is not given as a parameter.

If an address is given as a parameter, then the add-symbols command loads symbols for all
loadable sections based on the specified memory load address. Similar to the GDB
command add-symbol-file, the add-symbols may load symbols for only specific sections at
the given load addresses. In order to add symbols from more than one elf file, you only

Chapter 6 FSL Debugger References

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 67



need to add a new Load Symbols group specifying the new elf file and the load options.
To remove an elf file, press the Remove button corresponding to the Load Symbols
group you want to eliminate.

Option Description

Load Symbols Choose the elf ffile you want to use from either the file system or the
workspace.

Use addresses from file Select to load the symbols from the elf file using compile-time
addresses for all loadable sections.

Use load address (hex) Select to load symbols for all loadable sections based on the specified
memory load address. The input from the user is a hex address, without
the 0x prefix and it represents the load address in target memory
(address of first loadable section).

Use custom sections load address Select to load symbols for explicitly provided sections at the specified
load addresses. Here the user must specify the section and the load
address. Example: -s .text 0x80000000

6.1.7 Common

Use this page to specify the location to store your run configuration, standard input and
output, and background launch options.

Customizing debug configuration

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

68 Freescale Semiconductor, Inc.



Figure 6-8. Common tab

The following table lists and explains the Common tab options.

Table 6-6. Common tab options

Option Description

Save as

Local file Select to save the launch configuration locally.

Shared file Select to specifies the path of, or browse to, a workspace to
store the launch configuration file, and be able to commit it to
a repository.

Display in favorites menu Check to add the configuration name to Run or Debug menus
for easy selection.

Encoding Select an encoding scheme to use for console output.

Standard Input and Output

Allocate Console (necessary for input) Select to assign a console view to receive the output.

File Specify the file name to save output.

Browse Workspace Specifies the path of, or browse to, a workspace to store the
output file.

Browse File System Specifies the path of, or browse to, a file system directory to
store the output file.

Table continues on the next page...

Chapter 6 FSL Debugger References

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 69



Table 6-6. Common tab options (continued)

Option Description

Variables Select variables by name to include in the output file.

Append Check to append output. Uncheck to recreate file each time.

Port Check to redirect standard output ( stdout, stderr) of a
process being debugged to a user specified socket. Note:
You can also use the redirect command in debugger shell
to redirect standard output streams to a socket.

Act as Server Select to redirect the output from the current process to a
local server socket bound to the specified port.

Hostname/IP Address Select to redirect the output from the current process to a
server socket located on the specified host and bound to the
specified port. The debugger will connect and write to this
server socket via a client socket created on an ephemeral
port

Launch in background Check to launch configuration in background mode.

6.1.8 Trace and Profile

Use this page to specify trace and profile settings.

For any new project, go to Debug configuration, select a launch configuration from
GDB Hardware Debugging from the left panel and select the Trace and Profile tab
from the right panel.

Customizing debug configuration

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

70 Freescale Semiconductor, Inc.



Figure 6-9. Trace and Profile tab

6.2 Registers features
This topic explains Peripherals view and GDB customer register commands.

This section lists:
• Peripherals view
• GDB custom register commands

6.2.1 Peripherals view

The Peripherals view lists information about the processor system and platform ip-blocks
organized in the form of register groups and memory mapped register groups.

The registers are displayed in a tree view with three columns:
• Name – the name of the register or group
• Value – the value from of the register read from target

Chapter 6 FSL Debugger References

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 71



• Location – the address of the register or the address of the first register for groups
(applicable only for platform groups - MMR).

• Access – the access mode: R=read-only, RW=read-write, W=write-only
• Reset – the register reset value
• Description – the register description

Register and bit field values can be modified on target by clicking in the value cell and
entering a new value.

The view is automatically opened when a debug session is started and it is populated with
registers when the target is first suspended at program entry point. The view can also be
opened manually from the menu: Window > ShowView> Other > Peripherals or by
using the shortcut: Alt+Shift+Q, R.

6.2.2 GDB custom register commands

There are several GDB commands for manipulating system and platform registers.

The following commands are currently implemented:
• info reg-groups
• readreg
• writereg

To see a detailed description of each command enter "help <cmd>" in the GDB console.

The commands are querying into an SQLite DB associated with the target that is
currently debugged in order to fetch register information based on its name.

Registers features

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

72 Freescale Semiconductor, Inc.



Usage examples:

info reg-groups [GROUP_NAME]

readreg GROUP_NAME.REG_NAME

writereg GROUP_NAME.REG_NAME

6.3 OS awareness
OS awareness support in the CodeWarrior software is a group of features that simplify
and improve the user experience while debugging the OS-specific projects.

The OS awareness features are enabled from the OS Awareness tab in the Debug
Configurations dialog.

Currently, predefined support exists for debugging Linux kernel and U-Boot projects.
When importing an ELF image for a Linux kernel or U-Boot project using the
CodeWarrior Debug Projects wizard, the image type is auto-detected based on the
symbol table and the configuration of the options in the OS Awareness tab. The user can
manually change the options in the OS Awareness tab at any time. Advanced users can
also use custom scripts to add the OS awareness support for their specific projects.

6.3.1 Linux kernel awareness

This topic explains how to enable Linux kernel awareness.

To enable Linux kernel awareness, select the checkboxes Enable OS Awareness, Linux
Kernel , and Use CodeWarrior script for Linux Kernel Awareness in the OS
Awareness tab.

For details on how to create a Linux kernel project and start a debug session, see Linux
kernel debug.

6.3.1.1 List Linux kernel information

Linux kernel awareness allow users to see relevant Linux kernel operating system
information.

• Build time and kernel version

Chapter 6 FSL Debugger References

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 73



• Kernel module list

• Kernel thread list

The Linux kernel information is available in the command line and in the Eclipse view.

6.3.1.1.1 GDB commands

Once a debug session is started and debug is suspended, go to the gdb console and run
<gdb_command>. The following GDB commands are available:

• - ka-show-info: Prints Linux kernel general information

gdb) ka-show-info
Build Time = #7 Mon Mar 31 11:44:09 EEST 2014
Linux Version = 3.12.0+

• - ka-show-thread-list: Prints the kernel threads

(gdb) ka-show-thread-list 

Name Pid State Address Core

Swapper 0 running 0xffffffc0004de430 0

init 1 interruptible 0xffffffc079c50000 0

kthreadd 2 interruptible 0xffffffc079c50880 0

6.3.1.1.2 Eclipse view

When Linux kernel awareness is enabled from the OS Awareness tab, the OS Resources
view displays information about:

• Linux system information

• modules list

• kernel thread information

6.3.1.2 Linux kernel debug

Linux kernel module debugging is enabled by default when kernel awareness extensions
are enabled.

The following gdb commands are implemented for Linux kernel module debug.

OS awareness

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

74 Freescale Semiconductor, Inc.



6.3.1.2.1 GDB commands

GDB commands:
• - ka-show-module-list :

Description: Prints Linux kernel modules

(gdb) ka-show-module-list

Name Address

krng 0xffffffbffc010000

rng 0xffffffbffc00c000

• ka-module-load:

Description: Loads symbolics file for a kernel module.

The commands has the following parameters:
• (required) the kernel module symbolics file
• (optional) the module name, necessary when the symbolics file name and the

kernel module name are different

Example:

(gdb) ka-module-load /data/ARM_DEVEL/linux/ls2-linux/crypto/krng.o
              Symbol file /data/ARM_DEVEL/linux/ls2-linux/crypto/krng.o loaded 
sucessfully

• ka-module-unload:

Description: Unloads symbolics file for a kernel module.

The commands has one required parameter: the module name

Example:

(gdb) ka-module-unload rng
       Symbol file /data/ARM_DEVEL/linux/ls2-linux/crypto/rng.o unloaded sucessfully

• ka-module-files:

Description:Shows the loaded symbolics file for a kernel modules.

The command has an optional argument (integer > 0) representing the maximum
number of files

Example:

(gdb) ka-module-files
     Name           Loaded file
     rng            /data/ARM_DEVEL/linux/ls2-linux/crypto/rng.o
     krng           /data/ARM_DEVEL/linux/ls2-linux/crypto/krng.o
     

Chapter 6 FSL Debugger References

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 75



• ka-module-config-suspend:

Description: Configures module detect suspend action:

The command has one optional argument (boolean):
• True: suspend target when module insert/removal is detected
• False: do not suspend target when module insert/removal is detected

If no parameter is passed, the command returns the configuration value

Example:

(gdb) ka-module-config-suspend True
(gdb) ka-module-config-suspend True
          

• ka-module-config-auto-load:

Description: Configures module detect auto-load action:

The command has one optional argument (boolean):
• True: automatically load configured symbolic files at module init detection
• False: no not automatically load module symbolics at module init detection

If no parameter is passed, the command returns the configuration value.

Example:

(gdb) ka-module-config-auto-load True                
(gdb) ka-module-config-auto-load True

• ka-module-config-map-load:

Description: Adds the module symbolics file in the module configuration map.

If the auto-load is enabled, this symbolics file is automatically loaded when the
corresponding module is inserted.

The commands has the following parameters:
• (required) the kernel module symbolics file
• (optional) the module name, necessary when the symbolics file name and the

kernel module name are different

Example:

(gdb) ka-module-config-map-load /data/linux/crypto/krng.o

• ka-module-config-map-unload:

Unloads symbolics file from the module configuration map. The commands has one
required parameter: - the module name

Example:

OS awareness

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

76 Freescale Semiconductor, Inc.



(gdb) ka-module-config-map-unload krng

• ka-module-config-show:

Description:Shows the module configuration parameters. The command has an
optional argument (integer > 0) representing the maximum number of files shown
from the configuration map

Example:

(gdb) ka-module-config-show
Name                     Loaded file
rng                      /data/linux/crypto/rng.o
krng                     /data/linux/crypto/krng.o
          

6.3.1.3 Linux kernel image version verification

When Kernel awareness is enabled, CodeWarrior performs a Linux Kernel image version
verification to validate that the binary image on the target (uImage) matches the ELF
symbolic file (vmlinux) in the debugger.

When access to target version is available (after the u-boot copies the Linux kernel image
into DDRAM), the debugger performs the version verification. In case of mismatch, the
debugger prints the following message in the gdb console: Warning: Kernel image running on
the target is different than the vmlinux image in debugger.

In addition, the user can trigger at any time the version verification in the following way:
• From CLI using the ka-show-info commands. For example:

(gdb) ka-show-info 

Build Time = #2 SMP PREEMPT Thu Nov 13 10:09:26 EET 2014
Linux Version = 3.16.0-Layerscape2-SDK+gec37efe
Target version check : ELF image version matches target image version

In case of version mismatch, the Target version check message is Warning: Kernel
image running on the target is different than the vmlinux image in debugger. If the
access to target version is not available yet, the Target version check message is not
available yet. The user should check again after the u-boot copies the Linux kernel
image into the DDRAM.

• From Eclipse, OS Resources window, select System Info. The same information as
for the CLI command is shown here.

6.3.2 U-Boot awareness

This topic explains how to enable U-Boot awareness.

Chapter 6 FSL Debugger References

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 77



The U-Boot awareness features enhance and improve the usability for U-Boot debugging
by simplifying the debugging interface. The U-Boot awareness feature provides:

• a single debug session for all U-Boot booting phases that allows user to debug from
the first instruction after reset to relocation in DDRAM

• U-Boot command line prompt for booting the Linux kernel

With U-Boot awareness, the debugger automatically detects each U-Boot stage using
debugger eventpoints and performs specific actions, such as setting the relocation offset
for DDRAM.

To enable the U-Boot awareness features, select the checkboxes Enable OS Awareness,
U-boot, and Use CodeWarrior script for U-boot Awareness in the OS Awareness tab.
For details on how to create a U-Boot project and how to start a debug session, see U-
boot Debug.

6.3.2.1 List U-Boot information

When U-Boot awareness is enabled from the OS Awareness tab, the OS Resources view
displays information about:

• U-Boot version, configuration, and build time
• Memory, that is RAM size, RAM top, relocation address, and relocation offset.

However, this information is displayed only when the data is available after
relocation.

6.3.2.2 U-Boot image version verification

For U-Boot, CodeWarrior performs the same kind of checking as for Linux kernel image.
In the same way, the mismatch warning is shown in the gdb console when the U-Boot
version is available and the user can check the version at any time from Eclipse, OS
Resource window, selecting “Version”.

6.4 Launch a hardware GDB debug session where no
configuration is available

This topic explains how to launch a hardware GDB debug session.

Launch a hardware GDB debug session where no configuration is available

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

78 Freescale Semiconductor, Inc.



Before you proceed, ensure that you have an ARMv8 project in your workspace, which is
compiled, and the binary elf file is available.

To launch the debug session, you need to:

1. Create a debug configuration
2. Configure the target configuration using Target Connection Configurator

6.4.1 Create a debug configuration

To create a debug configuration:
1. Select the ARMv8 project in the Project Explorer view.
2. Select Debug > Debug Configurations. The Debug Configurations dialog appears.
3. Right-click GDB Hardware Debugging and select New.
4. Select the Main tab.
5. Make sure that the text box under the C/C++ Application option specifies the elf file

path of the project you want to use. For example, Debug/<project name>.elf
6. Select the Debugger tab.
7. In the text box under the GDB Command option set the path to gdb. For example, $

{eclipse_home}..\ARMv8\gdb\bin\aarch64-fsl-gdb.exe

8. Click the Debug button.

NOTE
For details about configuring target connection, refer Configure
the target configuration using Target Connection Configurator

6.5 Memory tools GDB extensions
This topic explains memory tools GDB extensions.

In GDB console the following commands are available:

Table 6-7. Memory tools GDB extensions

Command Syntax Description

Memory fill lld-mbf start_addr end_addr
value

Fill the memory from start_addr to end_addr with data.

Example: lld-mbf 0x0 0x40 0xEE will fill 0x0..0x3f with bytes of value
0xEE

Table continues on the next page...

Chapter 6 FSL Debugger References

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 79



Table 6-7. Memory tools GDB extensions (continued)

Command Syntax Description

Memory compare lld-mbc addr1 addr2 addr3 The memory in the range addr1-addr2 is compared word by word to
memory starting from addr3.

Memory modify lld-mbm addr value Modify memory at specified address with the specified value.

Example: lld-mbm 0x10 0xff - Will change the word at 0x10 to
0x000000ff

Memory
Management Unit
view

mmu [-h] [-el {0,1,2,3}] [-t <virtual
address>]

Dump platform MMU state in a user readable format.

Optional arguments:
• -h, help: Shows this help message and exit.
• -el {0,1,2,3}: Specifies the exception level for which to read the

translations; if not specified, current exception level will be used.
• -t <virtual address>, --translate <virtual address>: Specifies the

virtual address to be translated.

NOTE: In order to see an output, you must be either in debug with a
bare board project or attached to a Linux session.

Example:

• Issuing mmu command without any parameters will list all the
MMU valid entries for the current exception level.

• Issuing mmu –el 3 command will list all the valid MMU entries
for the EL3 exception level.

• Issuing mmu –t 0x2000000 will translate the virtual address
0x2000000 to the corresponding physical address using MMU
state for the current exception level.

The figure below shows the output of the mmu command.

Figure 6-10. MMU view

For details about other GDB debug commands that can be run in GDB console from
console view, refer the GDB documentation available at: https://sourceware.org/gdb/
current/onlinedocs/gdb/

NOTE
Note that Freescale Semiconductor, Inc does not own GDB
documentation, and is mentioned solely for reference purpose.

Memory tools GDB extensions

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

80 Freescale Semiconductor, Inc.

https://sourceware.org/gdb/current/onlinedocs/gdb/
https://sourceware.org/gdb/current/onlinedocs/gdb/


6.6 Monitor commands
This topic explains monitor commands.

The following table lists the available monitor commands.

Command Syntax Description

Display contexts tree mon ctx id <ctx-id> list Displays the debug contexts tree having
as root the specified context. The
context has the format:
<connection>:<soc>: <core#no>

Set current context mon ctx set current ctx_id Set the context for the debug session.
This should be set after target extended-
remote and before attach. For a single
core application the context should look
like: <connection>:<soc>:<core#no>.
For a multicore application (SMP) the
context should be: <connection>:<soc>

mon ctx get current Show the current context

mon ctx id <ctx-id> info List all properties of the specified context

mon ctx id <ctx-id> set <prop-name>
<value>

Set a property for the specified context

Memory access monitor mem read [context] address
access_size space count

Read memory from address using the
provided access size, memory space
(see list-ms sub-command) and count. If
present, the context can be a core
context; otherwise the current context is
used. The result is displayed as a
hexadecimal encoded byte stream.

Example: monitor mem
read :ccs:LS2085A:A57#0 0x89ab1234
4 virtual 1

Memory access monitor mem write [context] address
access_size space data

Write memory to address using the
provided access size and memory space
(virtual, physical -see list-ms sub-
command). If present, the context can
be a core context; otherwise the current
context is used. The data is presented
as a series of hexadecimal byte values.

Example: monitor mem
write :ccs:LS2085A:A57#0 0x89ab1234
1 virtual 1234

Memory spaces monitor mem list-ms (context) Lists the available memory spaces. If
present, the context can be core contex;
otherwise the current context is used.

Reset monitor reset debug Performs reset and keeps cores in
debug mode.

Table continues on the next page...

Chapter 6 FSL Debugger References

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 81



Autodiscovery - probes 1 monitor discover probes [utap|etap|gtap|
cwtap]

Discover reachable probes of requested
type or all if the type is missing

Autodiscovery - JTAG IDCODEs 1 monitor discover idcodes <probe> Discover the JTAG IDCODEs of the
devices connected to the specified
probe. For example, Eg: monitor
discover idcodes cwtap:fsl022dab
0x0A01E01D

Autodiscovery - SoCs1 monitor discover socs <probe> Discover the possible SoCs connected
to the specified probe. For example,
monitor discover socs cwtap:fsl022dab
LS2085A-Lite1

1. Auto-discovery commands are not supported while using simulators.

6.7 I/O support

Librarian I/O model is divided into 2 modes.

Librarian I/O model is divided into 2 modes:
• UART_C_Static_Lib_Bare: printf support through UART port.
• simrdimon: I/O operations through debugger console.

NOTE
These libraries are compiled by using the highest optimize level
for speed (-O3) and no debug data (no DWARF information).
The user can recompile these libraries to change the compiler
options and use the new libraries in their projects. Projects for
these library are located at
{CW_ARMv8}\ARMv8\CodeWarrior_Examples

There are two examples in ARMv8 stationary wizard:
• C (HelloWorld_C_Base)
• C++ (HelloWorld_CPP_Bare)

The default I/O mode is debugger console; in other words the simrdimon library is used.
The user can verify the status by looking at the Other linker flag text box, which
contains --specs="${ProjDirPath}/lib/simrdimon.specs". Navigate to Cross ARM C (or C++)
Linker > Miscellaneous from the left pane under Tool Settings tab, to see Other linker
flag text box.

I/O support

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

82 Freescale Semiconductor, Inc.



Figure 6-11. Properties dialog - simrdimon.specs

The user can switch to the I/O UART model by changing the file spec for UART model.
The user should replace the simrdimon.specs with uart.specs in the Other linker flags
text box from Cross ARM C (or C++) Linker-- > Miscellaneous.

Chapter 6 FSL Debugger References

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 83



Figure 6-12. Properties dialog - uart.specs

6.7.1 Configuring the UART library and simulator

The simulator is using tio_console for UART redirection. Please refer to the Simulator
documentation for further information.

I/O support

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

84 Freescale Semiconductor, Inc.



By default, just the start_sim_ uboot script displays a separate tio_console window. In
case of using the start_sim_bare_metal simulator, you can specify -use_tio_console
argument on the command line to enable the tio_console.

The UART library needs to match the simulator configuration regarding the actual duart
port in use, and the backward compatibility support:

• By default the simulator is using “duart1_1” configuration, which means the second
port of the duart1 controller (configured in scripts/console.py). The UART library
project is configured accordingly to include duartB.c file in the compilation. In case
the simulator configuration is changed, the library needs to be recompiled to include
the appropriate file in the compilation process (A = duart1_0, B = duart1_1, C =
duart2_0, D = duart2_1).

• The simulator uses a SIM_BACKWARD_COMPATIBILITY parameter to force
conformance to different architecture specs versions. The DUART register offsets
have been changed between the two specs, so the UART library needs to match the
simulator. In the duart_config.h file, BACKWARD_COMPATIBILITY needs to be
defined to match SIM_BACKWARD_COMPATIBILITY parameter in the
simulator. By default the start_sim_uboot simulator used
SIM_BACKWARD_COMPATIBILITY=1, while start_sim_bare_metal simulator
uses SIM_BACKWARD_COMPATIBILITY=0.

If changes are needed in the UART library project, the recompiled library needs to be
added to the wizard-generated projects (HelloWorld_C_Bare or HelloWorld_CPP_Bare).

Chapter 6 FSL Debugger References

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 85



I/O support

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

86 Freescale Semiconductor, Inc.



Chapter 7
Flash programmer
Flash programming is done using python script.

{CW Install Dir}\CW_ARMv8\ARMv8\gdb_extensions\flash\cwflash.py

7.1 Configuring flash programmer
To configure the flash programmer, open the cwflash.py script in an editor and modify the
connection parameters in accordance to your setup.

• BOARD_TYPE – supported options are “QDS” and “RDB” for the corresponding
board types.

• FLASH_TYPE – supported options are “nor” and “nand”. Please take into account
that some device types may not be supported for the selected board.

First two options should be sufficient for most of the use cases (CodeWarrior TAP
connected through USB to GDB host machine). However, if additional configuration
is required, please update the next parameters too.

• CWTAP_CONN - If empty, it assumes that CWTAP uses an USB connection. For
Ethernet connection please set the IP address. For example: CWTAP_CONN =
"192.168.0.1".

• SOC_NAME – name of the SoC. For example: LS2085A.
• JTAG_SPEED – JTAG frequency used by debugger to communicate with the target.
• CCS_PORT, CCS_IP – IP and port of the CCS instance. If a local connection is used

(CCS_IP = "127.0.0.1"), debugger will automatically start a CCS instance if none is
available on that port.

• GTA_IP, GTA_PORT – IP and port of the GTA (GDB server). This option should be
modified if you want to have multiple sessions at the same time.

• GDB_TIMEOUT - Number of seconds to wait for the remote target responses.

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 87



7.2 Starting flash programmer
This topic explains steps to start the flash programmer.

To start the flash programmer, perform the following steps:
1. Open a terminal and switch to the following location:

{CW Install Dir}\CW_ARMv8\ARMv8\gdb\bin 

2. Start GDB from this location:
• Windows: Run aarch64-fsl-gdb.bat
• Linux: Run ./aarch64-fsl-gdb

3. Execute cwflash.py script.

source ../../gdb_extensions/flash/cwflash.py

If the connection is successful, the output is shown as follows:

Figure 7-1. Output

Using flash programmer

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

88 Freescale Semiconductor, Inc.



7.3 Using flash programmer
This section explains the operations supported by flash programmer.

• Erase flash memory
• Write binary file in flash memory
• Dump flash memory content into binary file

7.3.1 Erase flash memory

This topic explains command to erase an area of flash device.

To erase an area of the flash device, use the following command:

fl_erase offset size

where:
• <offset>: Specifies the offset inside the device.
• <size>: Specifies the size of the area that will be erased.

For example:

fl_ erase 0x40000 0x100

Type fl_erase –h for command help.

7.3.2 Write binary file in flash memory

This topic explains command to write binary file in the flash memory.

To write binary file in the flash memory, use the following command:

fl_write offset data [size] [-–erase]

where:
• <offset>: Specifies the offset inside the device. If offset is not specified, it is assumed

to be 0.
• <data>: Specifies the path to the file to be written in the flash or a hex sequence.
• <size>: Specifies how much data from the file should be written. If file size is not

specified, entire file is written.
• <erase>: Specifies if erase should be performed first.

For example:

fl_write 0x40000 u-boot.bin –-erase

Type fl_write –h for command help.

Chapter 7 Flash programmer

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 89



NOTE
The path to binary file must not contain spaces.

7.3.3 Dump flash memory content into binary file

This topic explains command to dump the contents of the flash memory into a binary file.

To dump the contents of the flash memory into a binary file, use the following command:

fl_dump offset size [–f FILE]

where:
• <offset>: Specifies the offset inside the device.
• <size>: Specifies the size of data to be read.
• <-f>: Specifies the path to the file where the data will be saved.

For example:

fl_dump 0x40000 0x20000 –f dump.bin

Type fl_dump –h for command help.

NOTE

The path to binary file must not contain spaces.

7.4 Switch current device used for flash programming
This topic explains command to switch current device used for flash programming.

To switch the current device used for flash programming, use the following command:

fl_current flash_type

For example:

fl_current nor

NOTE

If the command succeeds, the output appears as shown in -.

Switch current device used for flash programming

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

90 Freescale Semiconductor, Inc.



Chapter 8
Use Cases

This chapter lists:

• U-Boot debug
• Linux application debug
• Linux kernel debug

8.1 U-Boot debug
This topic describes the steps required to perform a U-Boot debug using CodeWarrior
Development Studio for QorIQ LS series - ARM V8 ISA.

This topic lists the steps to:
• Build the U-Boot sources and the auxiliary tools.
• Perform U-Boot debug in CodeWarrior Development Studio for QorIQ LS series -

ARM V8 ISA.

8.1.1 U-Boot setup

This topic explains U-Boot build.

For details on U-Boot build, refer SDK Documentation.

8.1.2 Create an ARMv8 project for U-Boot debug

This topic explains steps to create an ARMv8 bare metal project for U-Boot debug.

To create an ARMv8 bare metal project for U-Boot debug, perform these steps:

1. Open CodeWarrior for ARMv8.
2. Import a U-Boot image as described in CodeWarrior ELF Importer wizard.

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 91

http://www.freescale.com/webapp/sps/site/overview.jsp?code=CW_BSP&tid=SWnT


3. Select Run > Debug Configurations to open the Debug Configurations dialog.
4. Click on the Startup tab.

a. Set breakpoint at: _start.
b. Select the Resume checkbox.

NOTE
Step (b) should be done only if nothing is running yet
on the target board, or in case you have just started the
target board, but have not started U-Boot. However, in
case you simply attach it to a running U-Boot session
the above step should be skipped. PC will reflect the
current PC while U-Boot is running.

Figure 8-1. Startup tab
5. Set up the target connection configuration, as explained in Configuring Target.
6. Click the Debug button to initiate the debug session. The debugger should stop at

_start symbol.

U-Boot debug

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

92 Freescale Semiconductor, Inc.



Figure 8-2. Debugger stops at _start symbol

8.1.3 U-Boot debug support

This section explains steps to perform U-Boot debug in CodeWarrior Development
Studio for QorIQ LS series - ARM V8 ISA.

8.1.3.1 Setting the source path mapping

This topic explains steps to load symbols and set source path mapping.

To load symbols and set source path mapping, perform these steps:
1. Locate the file suggested by the debugger.

Chapter 8 Use Cases

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 93



Figure 8-3. Locate source
2. The stack and the source views appears as in the following figure.

NOTE
You can add a static map entry using the Edit Source
Lookup Path button to avoid locating file using the Locate
File button, whenever a new file is requested.

U-Boot debug

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

94 Freescale Semiconductor, Inc.



Figure 8-4. Stack and sources
3. Click the Resume button. Alternatively, press the F8 key.

NOTE
If everything is setup correctly and the target is simulator,
clicking the Resume button (F8), will show the next U-
Boot log and the build time in the tio_console from the
Linux machine. The log will be available within 4-5
seconds after clicking the button.

4. If you want to start the U-Boot debug again, close/terminate the actual connection. If
you are using the simulator target, stop the simulator consoles, restart the simulator
consoles, and debug again.

NOTE
Currently, the restart/reset features are not supported by
simulator.

NOTE
If you want to attach to the same U-Boot session,
disconnect the CodeWarrior software and reconnect again.
You will not need to set the PC and the path mapping is
correct.

Chapter 8 Use Cases

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 95



Figure 8-5. tio_console

8.1.3.2 Debug capabilities

This topic explains steps to bring-up the U-Boot.

1. The multicore debug is also supported if you want to inspect the secondary cores
after release in the last stage.

a. Select the Use all cores checkbox in the Debugger tab.

Figure 8-6. Debugger tab

U-Boot debug

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

96 Freescale Semiconductor, Inc.



b. When teh debugging startes, you can see stack/registers for every core. Note that
the run control is per SoC and not per core.

Figure 8-7. Debug view

2. Double-click a line to inspect breakpoints. You can inspect these using:
• Breakpoints view
• info breakpoints command from the GDB shell.

3. You can perform the step operations till the U-Boot boots up.

8.2 Linux application debug
This document describes the steps required to perform Linux Application Debug using
CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA. This document
lists the steps to:

• Build the Linux sources and auxiliary tools
• Networking support
• Perform Linux application debug in CodeWarrior Development Studio for QorIQ LS

series - ARM V8 ISA

8.2.1 Linux setup

For details on Linux setup, refer SDK Documentation.

Chapter 8 Use Cases

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 97

http://www.freescale.com/webapp/sps/site/overview.jsp?code=CW_BSP&tid=SWnT


8.2.2 Network setup after booting the Linux on simulator

This section is only needed for Linux application debug when running on the simulator:

1. After Linux is booted on the simulator target, on the linux host PC, create a virtual
interface used to communicate with the simulator, using next command:

<path_to_ls2-sim-support/scripts>./tuntap_if_configure.sh create ARM1 5A:F2:FE:A4:93:48 
172.20.51.2

2. After above command, you should make a bridge between the virtual local interface
ARM1 and WRIOP0 mac #1, using next command:

<path_to_ls2-sim-support/scripts>./start_tio_bridge.sh -m w0_m4 -n ARM1

3. On the Linux booted on the simulator target, run ifconfig command to provide an IP
address, as shown below. Also you can test the connectivity between eth0 (embedded
linux) to ARM1 (virtual NIC on the Linux Host PC) using ping

Figure 8-8. Run ifconfig command

Linux application debug

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

98 Freescale Semiconductor, Inc.



4. You can also run a PING test from ARM1 (virtual NIC on the Linux Host PC) to
eth0 (embedded linux) as shown below:

Chapter 8 Use Cases

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 99



Figure 8-9. PING test from ARM1 (virtual NIC on the Linux Host PC) to eth0

Linux application debug

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

100 Freescale Semiconductor, Inc.



NOTE
If the TCP connection between ARM1 (virtual NIC on the
Linux Host PC) and eth0 (embedded linux) is slow when
the ping command is executed (e.g. the time is more than
200 ms), you need to increase the timeout limit in GDB to
wait for the remote target to respond. The default value is 2
seconds. You can add the command in the .gdbinit file. To
set the timeout limit at 10 seconds, the command is: set
remotetimeout 10

5. You need to create SSH tunnels to access the internal IP addresses of the embedded
Linux of the simulator from a different machine. This step is required only when
CodeWarrior and the simulator are running on different machines.

a. Create SSH tunnel for port where gdbserver is running on the embedded Linux
using next command:

ssh -L <Extenal IP Linux Host>:<PORT for gdbserver, e.g. 1234>:<IP of the Embedded 
Linux in Simulator>:<port for gdbserver, e.g. 1234> root@<IP address of the 
Embedded Linux in
simulator>e.g.: sudo ssh -L 10.171.73.65:1234:172.20.51.1:1234  root@172.20.51.1

b. Create SSH tunnel for port where SSH server is running on the embedded linux
using next command:

ssh -L <Extenal IP Linux Host>:<PORT for ssh server forward, e.g. 81>:<IP of the 
Embedded Linux in Simulator>:<default port for ssh server - 22> root@<IP address of 
the Embedded 
Linux in simulator>e.g.: sudo ssh -L 10.171.73.65:81:172.20.51.1:22 root@172.20.51.1

NOTE

If you are not running the tunneling commands for the
first time, you may receive a warning that host
identification has changed. For removing that warning
and to be able to make the tunneling, you need to
remove the key linux target from known_hosts using
this command:

ssh-keygen -f "/root/.ssh/known_hosts" -R 172.20.51.1

6. On the embedded Linux, run the next command: touch ~/.hushlogin.

8.2.3 Debugging simple Linux application

This topic explains how to create a simple Linux application project, update RSE
connection, enable full debug support, and debug the Lniux application project.

• Creating simple Linux application project

Chapter 8 Use Cases

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 101



• Updating RSE connection
• Using sysroot
• Debugging Linux application project

8.2.3.1 Creating simple Linux application project

This topic explains steps to create a ARMv8 Linux application project.

To create a ARMv8 Linux application project:
1. Open CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA.
2. Select File > New > ARMv8 Stationary > Linux Application Debug > Hello

World C Project.
3. Specify a project name.
4. Click Finish.
5. Select the newly created Linux application project in the Project Explorer view.
6. Select Project > Build project.

8.2.3.2 Updating RSE connection

This topic explains how to change the settings in a default RSE connection.

The IP/hostname and the SCP port of the Linux target must be set to the correct values.
For example, if your target is the simulator and the CodeWarrior software is running on a
different machine (refer Network setup after booting the Linux on simulator), the IP
Connection and SCP port must be changed accordingly to the values configured in step 3
of Network setup after booting the Linux on simulator. To change the default values
perform the following steps:

1. Select Windows > Show View > Other.

The Show View dialog appears.

2. Navigate to Remote Systems > Remote Systems.

The Remote Systems view appears.

3. Right-click the default Remote System Explorer (RSE) connection, ScpConnection.
4. Select Properties > Host.

Linux application debug

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

102 Freescale Semiconductor, Inc.



Figure 8-10. ScpConnection properties

The Properties for ScpConnection dialog appears.

5. Specify the IP of the Linux target in the Host name text box, and click OK.

Chapter 8 Use Cases

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 103



6. Right-click Scp Files in the Remote Systems view, and select Properties.

Linux application debug

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

104 Freescale Semiconductor, Inc.



The Properties for Scp Files dialog appears.

7. Select Subsystem.
8. Specify the port number. For example, 81 instead of 22.
9. Specify User ID as root.

Figure 8-11. Select UserID
10. Click OK.

NOTE
For a full debug support, it is recommended to perform the
steps in section, Using sysroot.

8.2.3.3 Using sysroot

This section is required only if you want to enable full debug support (inside target
system libraries) for the Linux application project.

Chapter 8 Use Cases

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 105



NOTE
Before you proceed, ensure that you have completed all the
steps in Updating RSE connection.

To enable full debug support for a Linux application project, perform these steps:
1. GDB should be configured to use the target system libraries.

a. On the host PC, create a folder rootfs and a sub-directory lib.
b. Copy the following libraries: libc, ld, libphtread in the rootfs/lib/ folder. You can

find these libraries at ${CW_Layout}\Cross_Tools\gcc-linaro-aarch64-linux-
gnu-4.8.3\aarch64-linux-gnu. Use the full library name as you see it on target, for
example libpthread.so.0, ld-linux-aarch64.so.1, libc.so.6.

c. Create a *.gdbinit file on the file system. For example, test.gdbinit
d. Add following content in the .gdbinit file:

 set sysroot <host_path_to_rootfs>

For example, set sysroot C:\Users\u12345\Desktop\rootfs

NOTE
If you are running the CodeWarrior software on the
same Linux machine where you have compiled the
yocto, you can directly set up in the gdbinit file the
sysroot from yocto:

set sysroot /home/u12345/Desktop/LS2_setup/SDK_phase_2.0/
Layerscape2-SDK-20140829-yocto/build_ls2085a-
simu_release/tmp/sysroots/ls2085a-simu

2. Add missing settings in launch configuration file.
a. Right-click the project and select Debug As > Debug Configurations.

The Debug Configurations dialog appears.

b. Expand C/C++ Remote Application, select the launch configuration for the
Linux application project you want to debug.

c. Click the Main sub tab in the Debugger tab.
d. Browse to *.gdbinit path in GDB command file field.

Linux application debug

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

106 Freescale Semiconductor, Inc.



Figure 8-12. Debugger tab - Main
e. Click Apply.

8.2.3.4 Debugging Linux application project

This topic explains steps to debug a Linux application project.

To debug a Linux application project:
1. From the CodeWarrior IDE menu bar, select Run > Debug Configurations.

Chapter 8 Use Cases

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 107



2. In the Debug Configuration dialog, expand C/C++ Remote Application and select
the launch configuration for the Linux application project you want to debug.

3. Click Debug.

8.2.4 Debugging a Linux application using a shared library

This topic explains:
• Creating Linux shared library project
• Updating RSE connection
• Using sysroot
• Debugging Linux shared library project

8.2.4.1 Creating Linux shared library project

To create an ARMv8 Linux application project using a shared library, perform these
steps:

1. Open CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA.
2. Select File > New > ARMv8 Stationary > Linux Application Debug > Hello

World C Shared Library Project.

Linux application debug

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

108 Freescale Semiconductor, Inc.



3. Provide a project name.
4. Click Finish.
5. Select the project node in the Project Explorer view.
6. Build all configurations:

The project has two build configurations:
• LibExample - Builds the shared library
• SharedLibTest (the active configuration) - Uses the shared library

a. Right-click the project and select Build Configurations > Set Active >
LibExample.

b. Build project. The lib<project_name>.so library is created.

Figure 8-13. Build configurations

Chapter 8 Use Cases

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 109



c. Select the project, right-click and select Build Configurations > Set Active >
SharedLibTest.

d. Build project. The <project_name>.elf library is created.

8.2.4.2 Updating RSE connection

Refer to the steps in Updating RSE connection.

8.2.4.3 Updating launch configuration for Linux application using
shared library

This topic explains steps to set the launch configuration for a Linux application project
that uses a shared library

To set the launch configuration for a Linux application project that uses a shared library,
perform the following steps:

1. Perform all the steps in Using sysroot.
2. Manually download the .so shared library to the Linux target (to the/lib path).
3. Copy the .so shared library to the sysroot location. (Refer Using sysroot, step 1d)

The location can be:
a. The rootfs/lib/ folder you created on your host PC (Refer Using sysroot, step 1a)
b. The lib from the sysroot location from yocto, if you are using the CodeWarrior

software on the same Linux machine where you have compiled the yocto and
you are using the sysroot from yocto.

Example:

 /home/u12345/Desktop/LS2_setup/SDK_phase_2.0/Layerscape2-SDK-20140829- yocto/
build_ls2085a-simu_release/tmp/sysroots/ls2085a-simu/lib

4. Add missing settings in launch configuration file.
a. Right-click the project and select Debug As > Debug Configurations. The

Debug Configurations dialog appears.
b. Expand C/C++ Remote Application, select the Linux shared library project you

want to debug.
c. Click the Shared Libraries sub tab and click Add to add the path to the *.so

library you created in Creating Linux shared library project. The path is

${ProjDirPath}/LibExample

Linux application debug

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

110 Freescale Semiconductor, Inc.



Figure 8-14. Debugger tab - Shared Libraries
d. Click Apply.

8.2.4.4 Debugging Linux shared library project

To debug Linux shared library project, refer to the steps in Debugging Linux application
project

8.2.5 Troubleshooting

This topic explains steps to troubleshoot networking support in Linux target running on
the simulator.

8.2.5.1 Networking

Chapter 8 Use Cases

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 111



If networking support is not available on the simulator target, the CodeWarrior software
and the target can still communicate over a virtual serial device. The simulator provides a
TIO client acting as a pass-through between a simulated serial device (target) and TCP/IP
port (host running the simulator). The full schema about how gdb client will interconnect
with the gdb server can be observed below:

1. On the linux host, start in a new terminal window the tio serial bridge by using the
TIO hub settings reported by tio_console: “TIO hub : localhost 47177”

cd <sim_path>/dtsim_release/linux64/
./bin/tio_serial_bridge -ser duart1_0 -port 50002 -hub localhost:47177

2. On the linux target, start the gdbserver manually as below:

gdbserver --multi /dev/ttyS0

3. If your Linux Application is already deployed on the linux target you should make
the steps from chapter 6.2 (attach to a running application or you can set up the
application as a parameter for the gdbserver), but with the next gdb parameters in
IDE:

Linux application debug

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

112 Freescale Semiconductor, Inc.



4. If you want to download the application over gdb, please make next steps:
a. cd <path_to>/Layout/ARMv8/gdb/bin
b. ./aarch64-fsl-gdb
c. set remotetimeout 10
d. target extended-remote localhost:50002
e. remote put <path_to_local_elf_file> <remote_elf_name>

5. Once the elf file is downloaded on the target go back to step 3 (attach to the
application using gdbserver and gdb).

6. [Optional step] From gdb command line (without eclipse) can be performed next
steps to make debug:

a. cd <path_to>/Layout/ARMv8/gdb/bin
b. ./aarch64-fsl-gdb
c. set remotetimeout 10
d. target extended-remote localhost:50002
e. remote put <path_to_local_elf_file> <remote_elf_name>
f. set remote exec-file a.elf
g. file <path_to_local_elf_file>
h. break main
i. run

8.3 Linux kernel debug

Chapter 8 Use Cases

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 113



This document describes the steps required to perform Linux kernel debug using
CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA. This document
explains:

• Building the U-Boot, Linux sources, and the auxiliary tools.
• Performing Linux Kernel debug in CodeWarrior Development Studio for QorIQ LS

series - ARM V8 ISA.

8.3.1 Linux Kernel setup

For details on Linux kernel build, refer SDK Documentation.

NOTE
In order to perform Linux kernel debug, please ensure that the
kernel image is build with debug symbols. For enabling the
debug symbols:

1. Run bitbake virtual/kernel -c menuconfig.

2. Go to General Setup, disable the option Compile also
drivers which will not load. Note that without performing this
step the option below will not appear in menuconfig.

3. Select Kernel Hacking -> Compile-time checks and
compiler options, enable option “Compile the kernel with
debug info”.

8.3.2 Create an ARMv8 project for Linux kernel debug

To create an ARMv8 bare metal project for U-Boot debug, perform these steps:

1. Open CodeWarrior for ARMv8.
2. Import a Linux Kernel image as described in CodeWarrior ELF Importer wizard.
3. Select Run > Debug Configurations to open the Debug Configurations dialog.
4. Click the Startup tab.

a. Set breakpoint at: 0x80080000.
b. Check the Resume button.

NOTE
Step (b) should be done only if nothing is running yet
on the target board, or in case you have just started the
target board but have not started the Linux Kernel.

Linux kernel debug

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

114 Freescale Semiconductor, Inc.

http://www.freescale.com/webapp/sps/site/overview.jsp?code=CW_BSP&tid=SWnT


However, in case you simply attach it to a running the
Linux Kernel session the above step should be skipped.
PC will reflect the current PC while the Linux Kernel
is running.

Figure 8-15. Startup tab
5. Set up the target connection configuration, as explained in Configuring Target.
6. Click the Debug button to initiate the debug session. The debugger should stop at

0x80080000 – kernel entry point address.

Chapter 8 Use Cases

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 115



Figure 8-16. Debug Session Window

8.3.3 Linux Kernel debug support

This section explains the steps required to perform Linux kernel debug in CodeWarrior
Development Studio for QorIQ LS series - ARM V8 ISA.

This section includes:
• Setting the source path mapping
• Debug and Kernel Awareness capabilities

8.3.3.1 Setting the source path mapping

This section explains the steps required to load symbols and set source path mapping.

Perform the following steps:

Linux kernel debug

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

116 Freescale Semiconductor, Inc.



1. Click the Refresh Debug Views button to refresh the debug views updated with the
new stack and the registers view.

2. Close the Source not found window.
3. Double- click the stack for triggering the source-level mapping request.
4. Locate the file suggested by the debugger.

Figure 8-17. Locate source window

The following figure shows stack and the source views added.

Chapter 8 Use Cases

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 117



Figure 8-18. Stack and sources added

NOTE
You can add a static map entry using the Edit Source
Lookup Path button to avoid locating file using the Locate
File button, whenever a new file is requested

5. To go ahead with next important step in Linux kernel debug (start_kernel), you need
to set up a breakpoint there using this command: break start_kernel in the same gdb
console.

6. Click the Resume button. Alternatively, press the F8 key. The breakpoint will be hit.
7. Click the Refresh Debug Views button to refresh the debug views updated with the

new stack and the registers view.
8. Close the Source not found window.
9. Double-click the stack for triggering the source-level mapping request.

10. Locate the file suggested by the debugger.

Linux kernel debug

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

118 Freescale Semiconductor, Inc.



Figure 8-19. Debug console
11. For details about debug and kernel awareness capabilities, see Debug and Kernel

Awareness capabilities.
12. Click the Resume button to run the vmlinux. Alternatively, press the F8 key.

NOTE
If everything is setup correctly, clicking the Resume button
(F8) will show the next linux log in the tio_console from
the Linux machine.

13. To start the Linux Kernel debug again, close/terminate the actual connection. If your
target is the simulator, stop the simulator consoles, restart the simulator consoles, and
debug again.

8.3.3.2 Debug and Kernel Awareness capabilities

This section explains various Debug and Kernel Awareness capabilities.

Perform the following steps:

Chapter 8 Use Cases

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 119



1. Select Window > Show view > Disassembly to enable the Disassembly view.
2. Double-click a line to inspect breakpoints. You can inspect them using:

• Breakpoints view
• info breakpoints command from GDB shell

3. Set up hardware breakpoints using hbreak command from GDB console.
4. You can also perform step in, step over, and step return finctions from the GUI.

5. Add watchpoints (data breakpoints) using the Toogle Watchpoint option from the
context menu.

NOTE
A watchpoint only makes sense for a global variable (or to
a global memory address).

Figure 8-20. Toggle Watchpoint option

Linux kernel debug

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

120 Freescale Semiconductor, Inc.



The watchpoint is then listed in the Breakpoints view.

Figure 8-21. Breakpoints view

You can also add watchpoints using the drop-down menu in the Breakpoint view.

Use CodeWarrior software to see some important information about the linux kernel, for
example general information, build time, modules list, threads list and so on. To see the
full Kernel Awareness capabilities, refer Linux kernel awareness.

8.3.4 Module debugging

This topic explains:
• Module debugging use cases
• Module debugging from Eclipse GUI

8.3.4.1 Module debugging use cases

1. Loading and unloading module’s symbols file

Chapter 8 Use Cases

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 121



The runtime address when the kernel relocates the kernel module it is known only at
runtime after the module is loaded while the module’s symbols file contains only the
compile time address information. Therefore module symbols file can be loaded only
when the module is loaded into the kernel (e.g. using insmod or modprobe
command).

Two symbols files are generated after a module compilation: <module_name>.ko
and <module_name>.o. The .ko file should be copied to the target and loaded using
insmod/modprobe Linux command. The .o file it is the symbols file to be loaded into
the debugger.

The kernel module’s symbols file can be loaded in two ways:
a. Manually, using the ka-module-load command. The command should be

executed after the module is loaded. The typical use cases are:
• Configure debugger to suspend when the module insert is detected. When

the debugger suspend, load the corresponding module’s symbols file.
• The module being inserted, suspend the target execution and load the

corresponding symbols file.
b. Automatically ( ka-module-config-auto-load=True.), using ka-module-config-

map-loadWhen automatic loading mode is enabled, the debugger detects when a
module is inserted (insmod or modprobe) and automatically searches the
configured symbols file mapping and loads the symbols file. Before inserting the
module, the user should add the corresponding symbols file into the symbols file
mapping using ka-module-config-map-load command. This command can be run
at any time (before and after module loading), but the symbols file is loaded only
when the debugger detects that the corresponding module has been inserted.

The user can unload the module’s symbol file if the symbols file is already loaded.
When the module is removed (rmmod), the debugger automatically unloads the
module symbols file, independent of the value of ka-module-config-auto-load. This
is done because the module relocation addresses are not valid anymore and even on a
new module insertion there will be different relocation addresses.

2. Setting breakpoints in module
Breakpoints in module’s source code or at a specific module function can be set at
any time, even the module symbols file is not loaded into the debugger.If the
module’s symbols file is loaded, the breakpoint is set/enabled and the module
relocation address is displayed in the breakpoint properties.

(gdb)  break krng_mod_initBreakpoint 3
        at 0xffffffbffc03a000: file crypto/krng.c, line 50.(gdb) info
        breakpoints Num     Type            Disp Enb Address             What3       
breakpoint      keep y   
      0xffffffbffc03a000 in krng_mod_init at crypto/krng.c:50

Linux kernel debug

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

122 Freescale Semiconductor, Inc.



If the module’s symbols file is not loaded, the debugger could not resolve the
corresponding breakpoint relocation address, but will set the breakpoint as
“pending”. When the module is inserted and the module’s symbols file is loaded, the
debugger will refresh the “pending” breakpoints resolving the relocation address.

The debugger behavior for “pending” breakpoint is configurable using “set
breakpoint pending” command with the following values:

• “auto”: this is the default value. When the breakpoint is set from command line
interface, the debugger asks the user to select one of the following values. From
Eclipse/gdb-MI, the “auto” value will make the breakpoint pending “on”

• “on” breakpoint “pending” is enabled
• “off” breakpoint “pending” is disabled. With this setting, the breakpoint can not

be set when the module’s symbols file is not loaded
3. Debug Linux kernel module from the module_init function

There are several ways of doing kernel module debug from the module_init function:
a. Without suspend at module insertion

• Add the symbols file to the configured map using the command ka-module-
config-map-load.

• Enable module auto-load
• Set a breakpoint to the module’s init function. The breakpoint will be

“pending”, as the module is not loaded yet.
• Insert the module (insmod). The debugger will stop at the module’s init

function
b. With suspend at module insertion

• Enable suspend at module insertion
• Insert the module. The debugger will suspend the target
• Load the symbols file using ka-module-load command
• Set a breakpoint to the module’s init function. The breakpoint will be

resolved as the module and the symbols file are loaded
• Run. The debugger will stop at the module’s init function

4. Module insertion and removal detection
Module insertion and removal detection is implemented by setting a special
breakpoint (named eventpoint) in Linux Kernel code (not module code).

• When the module is prepared to be executed, but before running the module’s
init function

• And when the module is prepared to be remove, after running the module’s
delete function

These debugger specific breakpoints are not visible to the user. The command “ info
breakpoints ” displays no information about these breakpoints.

The eventpoints information can be displayed using the command “ maintenance info
breakpoints ”:

Chapter 8 Use Cases

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 123



(gdb)
        maintenance info breakpoints Num     Type            Disp Enb 
Address             What-1      breakpoint      keep y    0xffffffc0000ef8fc in
        load_module at kernel/module.c:3020 inf 1-2      breakpoint      keep y    
0xffffffc0000eddd4 in
        free_module at kernel/module.c:1840 inf 1(gdb)

The eventpoints have negative breakpoint numbers and the user can not modify the
breakpoint properties (e.g. delete breakpoint).

8.3.4.2 Module debugging from Eclipse GUI

Before launching the module debugging session, set the following options in the OS
Awareness tab:

• Check Suspend target when module insert or removal is detected.
• Check Automatically load configured symbolic files at module init detection.

If the option, Automatically load configured symbolic files at module init detection is
enabled, the debugger loads the user defined list of module symbolics files, used to
configure the gdb, in the Auto-load module symbolic files list section . The module
symbolics file name signifies the module name, for example the symbolics file rng.o will
refer to module rng.

To load a different symbolics file, the Module Management dialog, which is available at
runtime from OS resources View, should be used.

1.
In the OS resources View , click .
The Module Management dialog appears with the currently available modules. The
dialog will also show if the symbolics files for a module is loaded.

Linux kernel debug

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

124 Freescale Semiconductor, Inc.



2. Click Load symbolics to load a symbolics file for a module.

The Select module symbolics file dialog appears.

3. The user can choose a different symbolics file for a module if before opening the
Select module symbolics file dialog the module was selected from the list. In this
case, the dialog will ask to confirm the mapping between the current symbolics file
and the module.

4. Click OK.

Chapter 8 Use Cases

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 125



Linux kernel debug

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

126 Freescale Semiconductor, Inc.



Chapter 9
Troubleshooting

This section lists:
• Diagnostic Information Export
• Logging
• I/O support

9.1 Diagnostic Information Export

The Diagnostic Information Wizard feature allows you to export error log information to
Freescale support group to diagnose the issue you have encountered while working on the
CodeWarrior product.

You can export diagnostic information in the following two ways:

• Whenever an error dialog invokes to inform some exception has occurred, the dialog
displays an option to open the Export wizard. You can then choose the files you want
to send to Freescale support.

• You can manually open the Export wizard to generate an archive of logs and files to
report any issue that you have encountered.

9.1.1 General settings for Diagnostic Information

You can specify general settings for diagnostic information using the Preferences dialog.

To set general settings for diagnostic information, follow the steps given below:

1. Choose Windows > Preferences from the IDE menu bar.

The Preferences dialog appears.

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 127



Figure 9-1. Preferences dialog - Diagnostic Information
2. Expand the General group and choose Diagnostic Information .

The Diagnostic Information page appears.

3. Enter the number of days for which you want to display the diagnostic information
details in the export wizard.

4. Select the Privacy option by dragging the bar to low, medium and high.

Privacy level setting is used to filter the content of the logs.

• Low: The file is sent as is.

Diagnostic Information Export

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

128 Freescale Semiconductor, Inc.



• Medium: The personal information is obfuscated. You can click on the
customize option to view or modify filter.

• High: The personal information is removed. Filters are used in the rest of the
content.

5. Click Customize to set privacy filters.

The Customize Filters dialog appears. You can add, remove, and modify filters.

6. Click OK .

Figure 9-2. Diagnostic Information - Customize Filters
7. Enter Contact Name and Contact Email in the contact information textbox. This

information is optional though Freescale will not share this information with anyone.
8. Click Restore Defaults to apply default factory settings.
9. Click OK .

9.1.2 Export Diagnostic Information

You can export diagnostic information into an archive file in workspace.

Follow the steps given below to export diagnostic information into an archive.

1. Open Diagnostic Information wizard, either by:

Chapter 9 Troubleshooting

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 129



• Selecting Help > Report CodeWarrior Bug, or

• Through an error reporting dialog such as below. Click the Diagnostic
Information link in the error dialog.

The Diagnostic Information Wizard appears.

Diagnostic Information Export

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

130 Freescale Semiconductor, Inc.



Figure 9-3. Export - Diagnostic Information Wizard
2. Select the checkbox under the Source column to select the information that will be

exported into the archive file.

NOTE
You must select at least one file for export.

3. Click Browse to select a different archive file location.
4. Select the Privacy option or click Customize to set your privacy level. The

Customize Filters dialog appears.

NOTE
You can open the Customize Filters dialog through
Customize button in the Diagnostic Information Export
Wizard ( General settings for Diagnostic Information)or in

Chapter 9 Troubleshooting

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 131



the Preferences dialog ( General settings for Diagnostic
Information).

5. Click Preview to view the text that will be sent to Freescale from the wizard.

The Preview details dialog appears.

Figure 9-4. Preview details dialog

Diagnostic Information Export

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

132 Freescale Semiconductor, Inc.



You can also check if more filters are needed to protect any sensitive information
from leakage.

6. Click OK .
7. Click Next in the Diagnostic Information Export Wizard.

The Reproducible Details page appears.

Figure 9-5. Reproducible Details page
8. Enter the reproducible steps and any other relevant information in the Details to

recreate the issue textbox.
9. Click Add to add additional files to the archive file for diagnosis.

10. Click Finish.

Chapter 9 Troubleshooting

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 133



9.2 Prevent core from entering non-recoverable state due to
unmapped memory access

The ARM core can enter in a non-recoverable state when a speculative access to an
unmapped memory happens.

Also this can happen for accesses to memory regions that are marked as valid in the
MMU, but the undelying memory interface is either misconfigured or absent. For
example, access to a memory range dedicated to PCIe without a proper initialization for
the PCIe controller or access to memory holes as defined in the SoC memory map can
cause core to enter in a non-recoverable state.

If the debugger detects a failed attempt to stop the core in such situation, it samples the
value of the External PC Debug register (EDPCSR) in order to provide the program
location where the program has hanged. An error message is displayed informing the user
that the stop attempt has failed and listing the collected PC sample value.

Although the debug session is not reliable from this point onwards and must be
terminated, the PC value allows the user to identify and fix the application problem that
has caused the core to enter into the non-recoverable state. The user needs to make sure
that the MMU is configured from the application in such a way that all valid translations
point to the actual memory.

9.3 Logging

GDB logs are used to save output of the GDB commands to a file.There are two types of
logs: GDB and GDB RSP server.

• GDB logs - Configured with standard GDB log control commands.

For details about GDB log control commands, refer https://sourceware.org/gdb/
onlinedocs/gdb/Logging-Output.html

• GDB RSP server log - Configured with GDB monitor commands. For details about
GDB monitor commands, run the command monitor help log.

The log messages from the GDB RSP server are grouped in different categories, and
each category can be associated with one or more log destinations, such as console,
file, and socket.

Logging

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

134 Freescale Semiconductor, Inc.

https://sourceware.org/gdb/onlinedocs/gdb/Logging-Output.html
https://sourceware.org/gdb/onlinedocs/gdb/Logging-Output.html


9.4 Recording

GDB provides the possibility to record all commands typed during a command-line
debug session and save these to a file.

To enable this feature from command line GDB:
• (gdb) set history size unlimited – command history size defaults to 256; “unlimited”

recommended
• (gdb) set history filename <filename> - the file where to save the recording (default:

“.gdb_history”, located in the GDB executable home directory)
• (gdb) set history save on – all following commands will be recorded;

NOTE
The recorded command history is written to a file only
upon exiting GDB.

After ending a debug session and exiting GDB, the “.gdb_history” file can be
inspected and eventually edited. Optionally, when restarting the debug session, all
commands from the recording may be replayed as a gdb script:

 (gdb) source .gdb_history

9.5 Freescale Licensing

The Freescale Eclipse licensing feature lets the user see and manage the available
licenses for the installed Freescale products.

The Freescale Eclipse Licensing feature appears to the user in two different ways:

• A warning dialog box appears after each time the CodeWarrior starts if a licensed
product is going to expire soon, hasn’t been activated yet, or is disabled because of
license expiration.

Chapter 9 Troubleshooting

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 135



Figure 9-6. Freescale Licensing warning dialog
• The Freescale Licenses window displays all installed licensed products and their

status (“licensed”, “expiring in X days”, “expired”). It can be opened from Help >
Freescale Licenses.

Figure 9-7. Freescale Licenses dialog

There is also a Freescale Licenses preference panel which allows the user to customize
specific aspects of the license plugins:

• whether the license expiration warning window should be displayed or not
• after how much delay, the expiration warning window should appear

Freescale Licensing

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

136 Freescale Semiconductor, Inc.



Figure 9-8. Freescale Licensing preference page

NOTE

The Freescale License plugin is not responsible for enabling or
disabling a feature based on its license status, but only to
monitor that status, and display it to the user. The plugin itself
is responsible to enable or disable itself.

Chapter 9 Troubleshooting

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

Freescale Semiconductor, Inc. 137



Freescale Licensing

CodeWarrior Development Studio for QorIQ LS series - ARM V8 ISA, Targeting Manual, Rev. 04/2015

138 Freescale Semiconductor, Inc.



How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, and QorIQ are trademarks
of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Layerscape
is trademark of Freescale Semiconductor, Inc. All other product or
service names are the property of their respective owners. ARM,
Cortex, Cortex-A53, Cortex-A57, and TrustZone are registered
trademarks of ARM Limited (or its subsidiaries) in the EU and/or
elsewhere. All rights reserved.

© 2014-2015, Freescale Semiconductor, Inc.

Document Number CWARMv8TM
Revision 04/2015

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Chapter 1: Introduction
	Release Notes
	About this Manual
	Accompanying Documentation

	Chapter 2: Working with Projects
	ARMv8 New Project wizard
	CodeWarrior ELF Importer wizard
	Creating projects
	Creating CodeWarrior Bareboard project
	Creating CodeWarrior Linux Application project

	Preprocess/Disassemble files
	Debugging projects
	Debugging Bareboard project
	Debugging Linux Application project


	Chapter 3: ARMv8 Build Properties
	Changing Build Properties
	ARMv8 build settings
	Target Processor
	Optimization
	Warnings
	Debugging
	Cross ARM GNU Assembler
	Preprocessor
	Includes
	Warnings
	Miscellaneous

	Cross ARM C Compiler
	Preprocessor
	Includes
	Optimization
	Warnings
	Miscellaneous

	Cross ARM C Linker
	General
	Libraries
	Miscellaneous

	Cross ARM GNU Create Flash Image
	General

	Cross ARM GNU Create Listing
	General

	Cross ARM GNU Print Size
	General



	Chapter 4: Preparing target
	Preparing hardware targets
	Preparing simulator target
	Configuration
	Use cases
	Bare metal debug
	U-Boot debug, Linux kernel debug, Linux application debug



	Chapter 5: Configuring Target
	Target Connection configurator overview
	Configuration types
	Operations with configurations
	Configure the target configuration using Target Connection Configurator
	Generating GDB script from a configuration
	Debugger server connection
	Logging Configuration

	Chapter 6: FSL Debugger References
	Customizing debug configuration
	Main
	Debugger
	Startup
	Source
	OS Awareness
	Other Symbols
	Common
	Trace and Profile

	Registers features
	Peripherals view
	GDB custom register commands

	OS awareness
	Linux kernel awareness
	List Linux kernel information
	GDB commands
	Eclipse view

	Linux kernel debug
	GDB commands

	Linux kernel image version verification

	U-Boot awareness
	List U-Boot information
	U-Boot image version verification


	Launch a hardware GDB debug session where no configuration is available
	Create a debug configuration

	Memory tools GDB extensions
	Monitor commands
	I/O support
	Configuring the UART library and simulator


	Chapter 7: Flash programmer
	Configuring flash programmer
	Starting flash programmer
	Using flash programmer
	Erase flash memory
	Write binary file in flash memory
	Dump flash memory content into binary file

	Switch current device used for flash programming

	Chapter 8: Use Cases
	U-Boot debug
	U-Boot setup
	Create an ARMv8 project for U-Boot debug
	U-Boot debug support
	Setting the source path mapping
	Debug capabilities


	Linux application debug
	Linux setup
	Network setup after booting the Linux on simulator
	Debugging simple Linux application
	Creating simple Linux application project
	Updating RSE connection
	Using sysroot
	Debugging Linux application project

	Debugging a Linux application using a shared library
	Creating Linux shared library project
	Updating RSE connection
	Updating launch configuration for Linux application using shared library
	Debugging Linux shared library project

	Troubleshooting
	Networking


	Linux kernel debug
	Linux Kernel setup
	Create an ARMv8 project  for Linux kernel debug
	Linux Kernel debug support
	Setting the source path mapping
	Debug and Kernel Awareness capabilities

	Module debugging
	Module debugging use cases
	Module debugging from Eclipse GUI



	Chapter 9: Troubleshooting
	Diagnostic Information Export
	General settings for Diagnostic Information
	Export Diagnostic Information

	Prevent core from entering non-recoverable state due to unmapped memory access
	Logging
	Recording
	Freescale Licensing


