
CodeWarrior Development Studio for
Microcontrollers Version 11.x

Profiling and Analysis Tools Users
Guide

Document Number: CWMCUSWAUG
Rev. 11.x, 07/2017

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

2 NXP Semiconductors

Contents

Section number Title Page

Chapter 1
Introduction

1.1 Release Notes..9

1.2 Accompanying Documentation.. 9

Chapter 2
Getting Started

2.1 Profiling and Analysis Tools.. 11

2.2 CodeWarrior Interface.. 12

2.3 Data Collection... 14

2.3.1 Trace Data.. 14

2.3.2 Critical Code Data..14

2.3.3 Timeline Data...15

2.3.4 Performance Data...15

2.3.5 Call Tree...15

2.3.6 Profiling Data...15

Chapter 3
Collecting Data

3.1 Creating New Project..17

3.1.1 Using HCS08 Target..18

3.1.2 Using ColdFire V1 Target..21

3.1.3 Using Kinetis Target.. 23

3.1.4 Using ColdFire V4e... 26

3.1.5 Using MPC56xx Target... 29

3.2 Configuring Launcher...31

3.2.1 Configure HCS08 Target... 31

3.2.2 Configure ColdFire V1 Target...38

3.2.3 Configure Kinetis Target... 42

3.2.3.1 Configuring Kinetis Cortex M0+ Core.. 47

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 3

Section number Title Page

3.2.3.2 Difference Between Kinetis Cores Cortex M4 and Cortex M0+...49

3.2.3.3 Trace Collection on Kinetis... 50

3.2.3.3.1 Embedded Trace Macrocell (ETM).. 50

3.2.3.3.1.1 Triggering Trace...51

3.2.3.3.2 Instrumentation Trace Macrocell (ITM)...52

3.2.3.3.2.1 Timestamps...53

3.2.3.3.2.2 Synchronization..53

3.2.3.3.3 Embedded Trace Buffer (ETB)...54

3.2.3.3.4 J-Trace...54

3.2.4 Configuring Advanced Settings on Kinetis... 55

3.2.5 Configure MPC56xx Target...68

3.2.6 Configure S12Z Target.. 68

3.2.7 Configure ColdFire V2-V4 Targets... 71

3.2.8 Configure DSC Target... 73

3.3 Collecting Data... 76

3.4 Viewing Data.. 77

3.4.1 Data Trace Import Dialog Box...79

3.4.2 Controlling Trace Generation.. 82

3.4.2.1 Resume/Suspend Toggle Button..82

3.4.2.2 Reset Button...83

Chapter 4
Viewing Data

4.1 Trace Data...85

4.1.1 Exporting Trace Data... 87

4.1.2 Configuring Time Unit and Time Format..88

4.1.3 Customizing Trace Data Viewer..90

4.2 Timeline.. 92

4.2.1 Selection Mode.. 93

4.2.2 Zoom Mode..94

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

4 NXP Semiconductors

Section number Title Page

4.2.3 Full View..94

4.2.4 Edit Groups.. 95

4.2.4.1 Add/Remove Function... 95

4.2.4.2 Edit Address Range of Function.. 96

4.2.4.3 Change Color... 96

4.2.4.4 Add/Remove Group... 96

4.2.4.5 Merge Groups/Functions..98

4.2.5 Configure Table... 99

4.3 Critical Code Data...99

4.3.1 Critical Code Tab... 101

4.3.2 File Coverage Tab..103

4.4 Performance Data..104

4.5 Call Tree..107

4.6 Importing Trace Data Offline... 109

Chapter 5
Setting Tracepoints (HCS08)

5.1 Conditions for Starting/Stopping Triggers... 115

5.2 Trace Modes..118

5.2.1 Setting Triggers in Continuously Mode...119

5.2.1.1 Instruction at Address A, Then Instruction at Address B are Executed...119

5.2.1.2 Instruction at Address A or Address B is Executed...124

5.2.1.3 Instruction Inside Range from Address A to Address B is Executed.. 125

5.2.1.4 Instruction at Address A is Executed and Value on Data Bus Match..129

5.2.1.5 Instruction at Address A is Executed and Value on Data Bus Mismatch..131

5.2.1.6 Memory Access Triggers... 131

5.2.2 Setting Triggers in Automatically Mode... 134

5.2.2.1 From the Disassembly View.. 134

5.2.2.2 On Data and Memory...137

5.2.2.3 LOOP1 Mode...140

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 5

Section number Title Page

5.2.2.4 Instruction Outside Range from Address A to Address B is Executed... 143

5.2.3 Setting Triggers in Collect Data Trace Mode.. 146

5.2.3.1 Capture Read/Write Values at Address B..146

5.2.3.2 Capture Read/Write Values at Address B, After Access at Address A... 150

5.2.4 Collecting Trace in Profile-Only Mode... 152

5.2.5 Collecting Trace in Expert Mode...154

5.3 Enabling and Disabling the Tracepoints... 155

Chapter 6
Setting Tracepoints (ColdFire V1)

6.1 Conditions for Starting/Stopping Triggers... 157

6.2 Trace Modes..159

6.2.1 Setting Triggers in Continuous Mode..159

6.2.1.1 Trace From Trigger A Onward.. 159

6.2.1.2 Trace From Trigger A to Trigger B... 162

6.2.2 Setting Triggers in Automatic (One-buffer) Mode.. 166

6.2.2.1 Trace From Trigger A Onward.. 166

6.2.2.2 Trace From Trigger A to Trigger B... 169

6.2.3 Setting Triggers in Profile-Only Mode.. 170

6.2.4 Setting Triggers in Expert Mode..171

6.3 Tracepoints on Data and Memory...173

6.3.1 From Variables View... 173

6.3.2 From Memory View...175

6.4 Enable and Disable Tracepoints..177

Chapter 7
Setting Tracepoints (Kinetis)

7.1 Setting Hardware Tracepoints...179

7.1.1 From Source Code - Kinetis Cortex M4 Core... 180

7.1.2 From Source Code - Kinetis Cortex M0+ Core... 184

7.1.3 From Trace and Profile Tab - Kinetis Cortex M4 Core...188

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

6 NXP Semiconductors

Section number Title Page

7.1.4 From Trace and Profile Tab - Kinetis Cortex M0+ Core...192

7.2 Setting Software Tracepoints..194

7.2.1 Setting Software Tracepoints Manually...194

7.2.1.1 Using Freescale Toolchain...195

7.2.1.2 Using GCC Toolchain..199

7.2.2 Setting Software Tracepoints Automatically... 202

7.3 Viewing Tracepoints...205

7.3.1 View Full Path of Tracepoint Attribute... 206

7.3.2 Group Tracepoints..206

7.3.3 Define Working Sets..207

7.3.4 Add New Analysispoint... 208

7.3.5 Enable/Disable Tracepoints... 209

7.3.6 Navigate to Tracepoint Line.. 210

7.3.7 Remove Tracepoints.. 210

7.3.8 Context Menu...210

Chapter 8
Data Visualization

8.1 Creating DSC Project..213

8.2 Configuring for Data Visualization.. 214

8.3 Setting Analysispoints for Data Visualization..215

8.3.1 Setting Data Analysispoints on Memory View..216

8.3.2 Setting Data Analysispoints on Variables View.. 217

8.3.3 Setting Register Analysispoints on Registers View...217

8.4 Collecting and Viewing Data..218

Chapter 9
Launching Scripts

9.1 Run Sample Python Script..225

9.2 Collect Trace Using Jython...227

9.3 Export Trace to CSV File... 229

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 7

Section number Title Page

9.4 Modify Sample Python Script...231

Chapter 10
Simple Instrumentation Profiling on ColdFire V2 - V4e Targets

10.1 Include Profiler Library and Files...234

10.2 Configure Project for Profiling... 236

10.3 Modify Source Code...239

10.4 Debug Application and Collect Profiling Information... 249

10.5 View Profiling Results..250

10.5.1 Flat View..252

10.5.2 Tree View...252

10.5.3 Class View... 253

Chapter 11

11.1 Trace Collection with Breakpoints... 255

Chapter 12
Configuring Trace Registers in Source Code

12.1 HCS08...259

12.2 ColdFire V1.. 260

Chapter 13
Low Power WAIT Mode

13.1 Configure Low Power WAIT State.. 265

13.2 View Low Power WAIT Results.. 267

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

8 NXP Semiconductors

Chapter 1
Introduction
The CodeWarrior Profiling and Analysis tool is designed to help you make your code
more efficient so that you can enhance the speed and performance of your applications.
The CodeWarrior Profiling and Analysis tool helps you get hard and reliable data using
which you can analyze the time spent by your code in performing various tasks. This user
guide explains how to use the CodeWarrior Profiling and Analysis tool.

In this chapter, refer to the following topics:

• Release Notes
• Accompanying Documentation

1.1 Release Notes
Before using the CodeWarrior IDE, read the developer notes. These notes contain
important information about last-minute changes, bug fixes, incompatible elements, or
other topics that may not be included in this user guide.

NOTE
The release notes for specific components of the CodeWarrior
IDE are located in the Release_Notes folder in the CodeWarrior
installation directory.

If you are new to the CodeWarrior IDE, read this chapter and the Getting Started chapter.
This chapter provides references to resources of interest to new users; the Getting Started
chapter helps you familiarize with the software features.

1.2 Accompanying Documentation
The Documentation page describes the documentation included in the CodeWarrior
Development Studio for Microcontrollers. You can access the Documentation page by:

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 9

• opening the START_HERE.html in the <CWInstallDir>\MCU\Help folder,
• selecting Help > Documentation from the IDE’s menu bar, or selecting Start >

Programs > Freescale CodeWarrior > CW for MCU v11.x > Documentation
from the Windows taskbar.

NOTE
To view the online help for the CodeWarrior tools, first select
Help > Help Contents from the IDE's menu bar. Next, select
required manual from the Contents list. For general
information about the CodeWarrior IDE and debugger, refer to
the Codewarrior Common Features Guide in this folder:
<CWInstallDir>\MCU\Help\PDF

Accompanying Documentation

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

10 NXP Semiconductors

Chapter 2
Getting Started
The CodeWarrior Profiling and Analysis tool lets you collect data of an application. You
can analyze this data to identify the bottlenecks, such as slow execution of routines or
heavily-used routines within the application. This chapter explains features of the CW
Profiling and Analysis tool, the CW interface that this tool uses, and the type of data that
is collected using the tool.

Refer to the following topics:

• Profiling and Analysis Tools
• CodeWarrior Interface
• Data Collection

2.1 Profiling and Analysis Tools

CodeWarrior Profiling and Analysis tools provide visibility into an application as it runs
on the hardware. This visibility can help you understand how your application runs, as
well as identify operational problems. The tools make it easy to collect the data.

Following are the basic features of the tools.

• Basic setup can be done using the Trace and Profile tab in the Debug
Configurations dialog box.

• Data files can be shared between teams.
• Support for the HCS08, Coldfire V1-V4, ColdFire+, ColdFire V4e, Kinetis, DSC

(Digital Signal Controller), MPC56xx, and S12Z targets.
• Trace is collected by setting triggers and using various trigger conditions -

Applicable for HCS08, ColdFire V1, Kinetis, DSC, and S12Z targets.
• Trace is collected even when no triggers are set - Applicable only for the HCS08

target.
• Profiling information is collected - Applicable for Coldfire V2-V4 and ColdFire V4e

targets.

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 11

• Depending on the target selected, Software Analysis will extract trace through
debugger using OSBDM/JTAG, P&E USB-ML-PPCNEXUS, P&E Universal
MultiLink, EthernetTAP, USB TAP, J-Trace, or Tracelink.

• Remote launch support to collect trace by running Software Analysis scripts from
Jython console.

The tools also provide user-friendly data viewing features and enables you to:

• step through trace data and the corresponding source code of that trace data
simultaneously

• display results in an intuitive and user friendly manner in the Trace Data , Critical
Code , Timeline , Performance , Call Tree , and Simple Profiler Data viewers

• export trace data, critical code data, profiling information into an Excel file
• copy and paste a line of the trace in a text file
• import trace data collected on all targets, HCS08, ColdFire V1-V4, ColdFire V4e,

Kinetis, MPC56xx, DSC and S12Z.

NOTE
Profiling is not supported on optimized code. Only the O0
optimization level is supported.

2.2 CodeWarrior Interface
The CodeWarrior Development Studio provides a common interface for developing,
debugging, and analyzing applications. The project-oriented Workbench window of
CodeWarrior IDE provides numerous perspectives containing views, editors, and controls
that appear in menus and toolbars.

CodeWarrior Interface

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

12 NXP Semiconductors

Figure 2-1. Workbench Window

Each perspective is a collection of views, which provides a set of functionality aimed at
accomplishing a specific type of task.

Following are the some of the views that are used in the profiling and analysis tools:

• CodeWarrior Projects view provides a hierarchical view of the project resources in
the Workbench window. Context menus provide file-management controls.

• Console view shows the process output including actions, messages, and errors. It
displays messages indicating when data collection is enabled, is in process, and is
complete.

• Software Analysis view provides a hierarchical view of the data sources, data files,
and data sets of the project.

• Simple Profiler Data Viewer provides flat, tree, and class-based view of the profiler
output.

After creating a project in the CodeWarrior IDE, build your application, define a launch
configuration, and wait for data collection and data display.

Chapter 2 Getting Started

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 13

NOTE
In case, you have installed Microcontrollers CodeWarrior in C
drive using an administrator account and created a stationery
project for profiling, the error messages are displayed on the
console when you try to launch the CodeWarrior from a guest
account.

2.3 Data Collection
You can collect the following types of data for an application when it runs on the target
hardware.

• Trace Data
• Critical Code Data
• Timeline Data
• Performance Data
• Call Tree
• Profiling Data - This does not require a target hardware, it uses the profiling system

2.3.1 Trace Data

The Trace Data viewer displays the trace data collected by the target hardware.

The features available for the Trace Data viewer include:

• stepping through trace data that is synchronized with the source code of the selected
address,

• exporting trace data to an Excel file,
• allowing column reordering, and
• copying and pasting a line of the trace data.

2.3.2 Critical Code Data

The critical code data is generated based on the trace data. The Critical Code Data
viewer displays name, start address, number of times each instruction is executed, and
code size of each function in the program. The Critical Code Data viewer displays the
detailed information of every instruction traced in the data.

Data Collection

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

14 NXP Semiconductors

The features available for the Critical Code Data viewer include:

• statistics at function level,
• statistics at instruction level,
• code view in source editor, and
• column ordering and sorting at function level.

2.3.3 Timeline Data

The timeline data displays a graphical view of the functions that are executed in the
application and the number of cycles each function takes when the application is run.

2.3.4 Performance Data

The performance data includes the metric and invocation information for each function
that executes in the application. The performance data during measurement enables you
to compare the relative efficiencies of various portions of your target program. Both
exclusive and inclusive timing measurements are provided in the performance data.

The parent-child calling relationships between your program's functions are also
provided. Each function pair consists of a caller and a callee with data provided for each.

2.3.5 Call Tree

The Call Tree data shows the general application flow in a hierarchical tree in which
statistics are displayed for each function.

2.3.6 Profiling Data

The profiling data is collected for the ColdFire V2-V4 and ColdFire V4e targets, which
do not have the hardware capability to collect trace data. The profiling data displays the
the summarized, detailed, and class-based information of each function profiled.

Chapter 2 Getting Started

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 15

Data Collection

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

16 NXP Semiconductors

Chapter 3
Collecting Data
The basic process of collecting data when an application runs on the HCS08, ColdFire
V1, Kinetis, and ColdFire V4e target hardware includes:

• creating and configuring a project for the target hardware,
• setting up the debugger launch configuration to collect the analysis data from the

target hardware, and
• running the application on the target hardware to collect data.

This process of collecting data is divided into:

• Creating New Project
• Configuring Launcher
• Collecting Data
• Viewing Data

3.1 Creating New Project

The CodeWarrior IDE is a project-oriented interface. You can use the New Project
wizard to create new Microcontrollers projects for hardware profiling.

• Using HCS08 Target
• Using ColdFire V1 Target
• Using Kinetis Target
• Using ColdFire V4e
• Using MPC56xx Target

NOTE
You must create a new project or open an existing project
before using the Profiling and Analysis tools.

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 17

3.1.1 Using HCS08 Target

To create a new Microcontrollers project using the HCS08 target:

1. Select File > New > Project.

The New Project dialog box appears.

2. Select Bareboard Project and click Next.

The Create an MCU Bareboard Project page appears.

3. Enter the name of your project in the Project Name text box.

NOTE
You can also open the Create an MCU Bareboard
Project page directly by selecting File > New >
Bareboard Project.

4. Clear the Use default location checkbox, and click Browse to specify a different
location for the new project. The default setting of the Use default location
checkbox is checked. The table below describes the Microcontrollers bareboard
project settings.

5. Click Next.

The Devices page appears.

6. Select the target device or board for your project from the HCS08 family. For
example, select S08 > HCS08QE Family > MC9SO8QE128.

Creating New Project

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

18 NXP Semiconductors

Figure 3-1. Devices Page
7. Click Next.

The Connections page appears.

8. Select the available connection.

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 19

NOTE
The Profiling supports all the connections except the
simulator.

9. Click Next.

The Languages page appears.

You can use this page to select the programming language that you want to use when
writing the program's source code. You can make multiple selections, creating the
code in multiple formats.

10. Do not change the default settings on the Languages page.
11. Click Next.

The Rapid Application Development page appears.

12. Accept the default settings and click Next.
13. Click Next.

The C/C++ Options page appears.

14. Do not change the default settings on the C/C++ Options page.
15. Click Finish.

The project proj-hcs08 is created and appears in the CodeWarrior Projects view.

Figure 3-2. CodeWarrior Projects View - HCS08 Project
16. Select the project in the CodeWarrior Projects view.
17. Select Project > Build Project to build the project.

This creates a new Microcontrollers project for the HCS08 target.

Creating New Project

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

20 NXP Semiconductors

NOTE
For details on creating a new MCU bareboard project, refer
CodeWarrior Development Studio for Microcontrollers V11.x
Targeting Manual located at <CWInstallDir>\CW MCU v11.x
\MCU\Help\PDF, where <CWInstallDir> is the location where
the CodeWarrior software is installed.

3.1.2 Using ColdFire V1 Target

To create a new Microcontrollers project using the ColdFire V1 target:

1. Select File > New > Project.

The New Project dialog box appears.

2. Select Bareboard Project and click Next.

The Create an MCU Bareboard Project page appears.

3. Enter the name of your project in the Project Name text box, and specify the
location of the project if you do not want to use the default location.

NOTE
You can also open the Create an MCU Bareboard
Project page directly by selecting File > New >
Bareboard Project.

4. Click Next.

The Devices page appears.

5. Select the target device or board for your project from the ColdFire V1 family. For
example, select ColdFire V1 > MCF51JM Family > MCF51JM128.

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 21

Figure 3-3. Devices Page
6. Click Next.

The Connections page appears.

7. Select the available connection from the Connections page.

Creating New Project

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

22 NXP Semiconductors

NOTE
The Profiling supports all the connections except the
simulator.

8. Click Next.

The ColdFire Build Options page appears.

9. Do not change the default settings on the ColdFire Build Options page.
10. Click Next.

The Rapid Application Development page appears.

11. Accept the default settings and click Finish.
12. The project proj-CFV1 is created and appears in the CodeWarrior Projects view.

Figure 3-4. CodeWarrior Projects View - ColdFire V1 Project
13. Select the project in the CodeWarrior Projects view.
14. Select Project > Build Project to build your project.

This creates a new Microcontrollers project for the ColdFire V1 target.

NOTE
For details on creating a new MCU bareboard project, refer
CodeWarrior Development Studio for Microcontrollers V11.x
Targeting Manual located at <CWInstallDir>\CW MCU v11.x
\MCU\Help\PDF, where <CWInstallDir> is the location where
the CodeWarrior software is installed.

3.1.3 Using Kinetis Target

To create a new Microcontrollers project using the Kinetis target:

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 23

1. Select File > New > Project.

The New Project dialog box appears.

2. Select Bareboard Project and click Next.

The Create an MCU Bareboard Project page appears.

3. Enter the name of your project in the Project Name text box, for example,
TraceProject, and specify the location of the project if you do not want to use the
default location.

NOTE
You can also open the Create an MCU Bareboard
Project page directly by selecting File > New >
Bareboard Project.

4. Click Next.

The Devices page appears.

5. Select the target device or board for your project from the Kinetis family. For
example, select Kinetis K Series > K4x Family > K40D (100 MHz) Family >
MK40DN512Z.

Creating New Project

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

24 NXP Semiconductors

Figure 3-5. Devices Page
6. Click Next.

The Connections page appears.

7. Select the available connection.

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 25

NOTE
The Profiling supports all the connections except the
simulator.

8. Click Next.

The Language and Build Tools Options page appears. By default, GCC ARM
Build Tools is selected; you can select Freescale tools by selecting the Freescale
option.

9. Do not change the default settings and click Next.

The Rapid Application Development page appears.

10. Click Finish.

The project TraceProject is created and appears in the CodeWarrior Projects view.

Figure 3-6. CodeWarrior Projects View - Kinetis Project
11. Select the project in the CodeWarrior Projects view.
12. Select Project > Build Project to build your project.

This creates a new Microcontrollers project for the Kinetis target.

NOTE
For details on creating a new MCU bareboard project, refer
CodeWarrior Development Studio for Microcontrollers V11.x
Targeting Manual located at <CWInstallDir>\CW MCU v11.x
\MCU\Help\PDF, where <CWInstallDir> is the location where
the CodeWarrior software is installed.

Creating New Project

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

26 NXP Semiconductors

3.1.4 Using ColdFire V4e

To create a new Microcontrollers project using the ColdFire V4e target:

1. Select File > New > Project.

The New Project dialog box appears.

2. Select Bareboard Project and click Next.

The Create an MCU Bareboard Project page appears.

3. Enter the name of your project in the Project Name text box, and specify the
location of the project if you do not want to use the default location.

4. Click Next.

The Devices page appears.

5. Select the target device or board for your project from the ColdFire V4e family. For
example, select ColdFire V4e > MCF548x > MCF5485.

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 27

Figure 3-7. Devices Page
6. Click Next.

The Connections page appears.

Creating New Project

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

28 NXP Semiconductors

7. Select the available connection.
8. Click Next.

The ColdFire Build Options page appears.

9. Check the Enable C++ Support checkbox.
10. Click Finish.

The project is created and appears in the CodeWarrior Projects view.

Figure 3-8. CodeWarrior Projects View - ColdFire V4e PRoject
11. Collect profiling information using the steps described in the chapter, Simple

Instrumentation Profiling on ColdFire V2 - V4e Targets.

This creates a new Microcontrollers project for the ColdFire V4e target.

NOTE
For more details, refer CodeWarrior Development Studio for
Microcontrollers V11.x Targeting Manual located at
<CWInstallDir>\CW MCU v11.x\MCU\Help\PDF, where
<CWInstallDir> is the location where the CodeWarrior
software is installed.

3.1.5 Using MPC56xx Target

To create a new Microcontrollers project using the MPC56xx target:

1. Select File > New > Bareboard Project.

The Create an MCU Bareboard Project page appears.

2. Enter the name of your project in the Project Name text box.
3. Click Next.

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 29

The Devices page appears.

4. Select the target device or board for your project from the MPC56xx family. For
example, select Qorivva > MPC56xxK Family > MPC5675K.

5. Click Next.

The Connections page appears.

6. Select the available connection, for example, P&E USB Multilink PPCNEXUS.
7. Click Next.

The LSM/DPM configuration page appears.

8. Click Next to display the Language and Build Tools Options page.
9. Click Finish.

The project is created and appears in the CodeWarrior Projects view.

Figure 3-9. CodeWarrior Projects View - MPC56xx Project
10. Select the project in the CodeWarrior Projects view.
11. Select Project > Build Project to build your project.

NOTE
You can create projects in a similar way on the ColdFire
V2- V4, DSC and e200 derivatives. For DSC, select the
required device from the 56800/E (DSC) family in the
Devices page of the New Project Wizard . The e200
derivative is the core of MPC56xx target.

Creating New Project

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

30 NXP Semiconductors

The MPC56xx target also supports MPC5668G and MPC5668E derivatives. The
MPC5668G/E derivatives are compatible 32-bit microcontrollers built on Power
Architecture technology. Both MPC5668G and MPC5668E have two e200 cores, e200z6
(Core 0) and e200z0 (Core 1). Only e200z6 core provides tracing capability with the
following features:

• Trace is collected only in overwrite mode
• Timestamp is always zero in the Trace Data viewer
• Only Trace Data and Timeline viewers are available

While creating a MPC5668G/E project, select Qorivva > MPC5668G/E Family >
MPC5668G/E to choose the required target and follow the New Project Wizard steps. In
the Power Architecture Core Configuration page, select the required core
configuration. Select e200z6+e200z0h if you want to work on both cores, else select
e200z6 to work on a single core.

3.2 Configuring Launcher

Before debugging an application, you need to configure the Trace and Profile settings
used for the current debug launcher.

• Configure HCS08 Target
• Configure ColdFire V1 Target
• Configure Kinetis Target
• Configuring Advanced Settings on Kinetis
• Configure MPC56xx Target
• Configure S12Z Target
• Configure ColdFire V2-V4 Targets
• Configure DSC Target

3.2.1 Configure HCS08 Target

To configure the launch configuration for the HCS08 target:

1. In the CodeWarrior Projects view, right-click the project and select Debug As >
Debug Configurations from the context menu.

The Debug Configurations dialog box appears.

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 31

2. In the Debug Configurations dialog box, expand the CodeWarrior configuration in
the tree structure on the left, and select the launch configuration corresponding to the
project you are using. For example, select proj-HCS08_FLASH_PnE U-MultiLink.

3. On the Main tab page, verify that proj-HCS08 is displayed in the Project field. If it
does not appear, click Browse and locate the project.

4. If the application is not displayed in the Application field, click Search Project to
select the application image.

Figure 3-10. Debug Configurations - Main Page

To configure the launch configuration for the measurement of data:

1. Click the Trace and Profile tab.
2. Check the Enable Trace and Profile checkbox to enable the Trace Mode Options

and Trace Start/Stop Conditions groups.

Configuring Launcher

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

32 NXP Semiconductors

Figure 3-11. Debug Configurations - Trace and Profile Page (HCS08)

The table below describes the various Trace and Profile options.

Table 3-1. Trace and Profile Options for HCS08

Group Options Descriptions

User Options Enable Logging When checked, creates a log file that
keeps details of the actions that took
place in the application. For example,
when the debug session terminated,
when the target execution resumed or
stopped.

Configuration Set in User Code When checked, lets you configure trace
registers from the application without
using the Trace and Profile page. In
this scenario, you can write the
appropriate registers in the source code
to configure the trace mode and triggers.

Table continues on the next page...

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 33

Table 3-1. Trace and Profile Options for HCS08 (continued)

Group Options Descriptions

To understand how to configure trace
registers in the application for the
HCS08 target, refer Configuring Trace
Registers in Source Code.

Trace Mode Options Collect Program Trace Consists of these options:
• Continuously - When selected,

collects the trace data
continuously. The trace buffer is
read, processed, and emptied
periodically, so that the Trace
Data viewer can collect all the
trace records generated by the
application. In this mode, the trace
data is not lost. It is a bit intrusive
as it stops the target repeatedly in
the background for collecting the
trace buffers.

• Automatically - When selected,
the entries in the buffer start
overwriting without interruption
when the data reaches at the end
of the buffer. If there is more trace
data than the size of the buffer, the
old entries will be overwritten.

• LOOP1 Mode - Lets you collect
the trace data without any
consecutive identical addresses. If
the next address to be stored in
FIFO is the same as the one
stored last time, it is ignored. This
mode is particularly useful with
short busy-wait type loops, which
are repeated a large number of
times or recursive calls, and is
recommended when you want to
view the coverage of that code,
but not necessarily the number of
times the code executed.

For more information, refer
MC9S08QE128 Reference Manual.
NOTE: The LOOP1 Mode option is
visible only for the debug version 3
(DbgVer 3) targets, that is HCS08 target
with three comparators. For any other
targets with two comparators, this option
is not visible.

Collect Data Trace Collects the trace data of the values of a
variable, which is located at the address
where trigger B is set, for all the
accesses (Read/Write/Both).

Profile-Only When selected, collects trace by
sampling the program counter (PC) from
time to time.

Table continues on the next page...

Configuring Launcher

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

34 NXP Semiconductors

Table 3-1. Trace and Profile Options for HCS08 (continued)

Group Options Descriptions

Expert When selected, enables the Configure
Expert Settings button and gives you
access to most of the on-chip DBG
module registers. To configure expert
settings, download the processor
specific manual from the site: http://
www.freescale.com/

Trace Start/Stop Conditions No Trigger Specifies that no triggers are set for
collecting trace. When no triggers are
set and trace is collected, the trace data
starts collecting from the beginning of
the application.

For more information on tracepoints,
refer Setting Tracepoints (HCS08).

Collect Trace From Trigger Starts collecting trace when the triggers
generate, that is when the condition for
A and B is met.

For more information on tracepoints,
refer Setting Tracepoints (HCS08).

Break on FIFO Full While debugging, suspends the
application automatically when buffer
gets full. The checkbox gets enabled in
the Automatically mode when the
Collect Trace From Trigger option is
selected.

Collect Trace Until Trigger Starts collecting trace and stops when
the condition for triggers, A and B is met.
This option is not enabled in the
Continuously mode.

For more information on tracepoints,
refer Setting Tracepoints (HCS08).

Break on Trigger Hit While debugging, suspends the
application automatically when the
trigger is hit, that is when the trigger
condition is met. The checkbox gets
enabled when the Collect Trace Until
Trigger option is selected.

Trigger Type Contains various conditions of triggers,
A and B for starting/stopping trace
collection.

For more information on tracepoints,
refer Setting Tracepoints (HCS08).

Instruction at Address A is Executed Starts trace from the address or source
line corresponding to trigger A. For more
information, refer Setting Triggers in
Automatically Mode.

Instruction at Address A or Address B is
Executed

Starts trace from the address or source
line corresponding to trigger A or trigger
B whichever occurs first.

Table continues on the next page...

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 35

Table 3-1. Trace and Profile Options for HCS08 (continued)

Group Options Descriptions

For more information, refer Instruction at
Address A or Address B is Executed.

Instruction Inside Range from Address A
to Address B is Executed

Starts trace when any instruction in the
range between trigger address A and
trigger address B is executed. That is,
when [address at trigger A] <= [current
address] <= [address at trigger B]

For more information, refer Instruction
Inside Range from Address A to Address
B is Executed.

NOTE: For the MC9S08PT60 target, the
Instruction Inside Range from
Address A to Address B is Executed
trigger will hit when any instruction inside
the range between trigger address A and
trigger address B matches with the data
on the bus or program address inside
the range.

Instruction Outside Range from Address
A to Address B is Executed

Starts trace when any instruction outside
the range between trigger address A and
trigger address B is executed. That is,
when [current address] < [address at
trigger A or address at trigger B] <
[current address].

For more information, refer Instruction
Outside Range from Address A to
Address B is Executed.

NOTE: For the MC9S08PT60 target, the
Instruction Outside Range from
Address A to Address B is Executed
trigger will hit when any instruction
outside the range between trigger
address A and trigger address B
matches with the data on the bus or
program address outside the range.

Instruction at Address A, Then
Instruction at Address B are Executed

Starts trace from trigger B only if trigger
A occurred before.

For more information, refer Instruction at
Address A, Then Instruction at Address
B are Executed.

Instruction at Address A is Executed
and Value on Data Bus Match

Collects the trace data from the
instruction where trigger A is set when
the value specified in the Value to
Compare on Data Bus text box
matches with the opcode read from
trigger A address, that is the value in
memory at trigger A address. For more
information, refer Instruction at Address
A is Executed and Value on Data Bus
Match.

Table continues on the next page...

Configuring Launcher

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

36 NXP Semiconductors

Table 3-1. Trace and Profile Options for HCS08 (continued)

Group Options Descriptions

NOTE: Because the hardware has a
small delay in enabling the triggers,
trace won't be collected as expected if
data match is done for the instruction
immediately following the line where
trigger is set.

Instruction at Address A is Executed
and Value on Data Bus Mismatch

Collects the trace data from the
instruction, where trigger A is set, on
data mismatch. That is, trace is triggered
at address A when the value specified in
the Value to Compare on Data Bus
text box does not match with the opcode
read from trigger A address.

For more information, refer Instruction at
Address A is Executed and Value on
Data Bus Mismatch.

Value to Compare on Data Bus Contains the value that you specify to be
matched or not matched with the opcode
read from trigger A address.

Capture Read/Write Values at Address
B

Captures accesses to the variable
address, where trigger B is set, after you
press resume. Appears only when the
Collect Data Trace mode is selected.

For more information, refer Capture
Read/Write Values at Address B.

Capture Read/Write Values at Address
B, After Access at Address A

Waits for the program to execute the
instruction at the address where trigger
A is set, monitors the variable address
where trigger B is set, and collects trace
from there. Appears only when the
Collect Data Trace mode is selected.

For more information, refer Capture
Read/Write Values at Address B, After
Access at Address A.

Trigger Selection Instruction Execute This option is related to how the
hardware executes triggering. An
address is triggered only when the
opcode is actually executed, but this
circuitry has a delay which sometimes
makes the very next instruction in
memory not caught in the trace when
you press resume. In this mode, the
output of the comparator must propagate
through an opcode tracking circuit before
triggering FIFO actions.

Memory Access When selected, allows memory access
to both variables and instructions.

For more information, refer Memory
Access Triggers.

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 37

NOTE
The Trigger Selection group is disabled if the No Trigger
option is selected in the Trace Start/Stop Conditions group.

3.2.2 Configure ColdFire V1 Target

To configure the launch configuration for the ColdFire V1 target:

1. In the CodeWarrior Projects view, right-click the project and select Debug As >
Debug Configurations from the context menu.

The Debug Configurations dialog box appears.

2. In the Debug Configurations dialog box, expand the CodeWarrior Download
configuration in the tree structure on the left, and select the launch configuration
corresponding to the project you are using. For example, select proj-
CFV1_FLASH_PnE U-MultiLink.

3. On the Main tab page, verify that proj-CFV1 is displayed in the Project field. If it
does not appear, click Browse and locate the project.

4. If the application is not displayed in the Application field, click Search Project to
select the application image.

Configuring Launcher

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

38 NXP Semiconductors

Figure 3-12. Debug Configurations - Main Page

To configure the launch configuration for measurement of data:

1. Click the Trace and Profile tab.
2. Check the Enable Trace and Profile checkbox to enable the disabled options on the

page.

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 39

Figure 3-13. Debug Configurations - Trace and Profile Page (ColdFire V1)

The table below describes the various Trace and Profile options.

Table 3-2. Trace and Profile Options for ColdFire V1

Group Options Descriptions

User Options Enable Logging Creates a log file that keeps details of
the actions that took place in the
application. For example, when the
debug session terminated, when the
target execution resumed or stopped.

Configuration Set in User Code When checked, lets you configure trace
registers from the application without
using the Trace and Profile page. In
this scenario, you can write the
appropriate registers in the source code
to configure the trace mode and triggers.

Table continues on the next page...

Configuring Launcher

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

40 NXP Semiconductors

Table 3-2. Trace and Profile Options for ColdFire V1 (continued)

Group Options Descriptions

To understand how to configure trace
registers in the application for the
ColdFire V1 target, refer Configuring
Trace Registers in Source Code.

Select Trace Mode Continuous When selected, collects the trace data
continuously. It produces best possible
trace and profile results because it
captures all executed instructions.
However, it is slow and intrusive as it
stops the target in the background every
about 500 cycles.

Automatic (One-buffer) When selected, captures only the last
instructions executed before the target
gets suspended. It is totally unintrusive.

Halt the Target when Trace Buffer Gets
Full

Appears only when the Automatic
(One-Buffer) option is selected. It acts
as a breakpoint for stopping the
application. If selected, stops the
application automatically when trace
buffer gets full.

Profile-Only. Sample PC every cycles When selected, captures the PC
address every N cycles, where N is
128/256/512.......16384. Trace is
mostly irrelevant in this mode, but Profile
Statistics will be fairly accurate for a long
cyclic run. This method is a bit intrusive
because it stops the target in the
background every about 8*N cycles.

Expert When selected, enables the Configure
Expert Settings button and lets you
configure the ColdFire V1 trace and
debug registers directly. To configure
expert settings, download the processor
specific manual from http://
www.freescale.com/.

Trace Start/Stop Conditions Includes various conditions of triggers,
A, B, and C, for starting and stopping
trace.

For more information, refer Conditions
for Starting/Stopping Triggers.

Target PC Address 2 Bytes Select this option to save 5-30% trace-
buffer space if your PC addresses never
exceed 16-bits (64K). This results in less
intrusiveness, or more instructions
traced, depending on the trace mode
you use.

This feature is not supported for the
Expert trace mode.

3 Bytes Select this default and recommended
option if the PC address length in your
program exceeds 16-bits (64K).

Table continues on the next page...

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 41

Table 3-2. Trace and Profile Options for ColdFire V1 (continued)

Group Options Descriptions

This feature is not supported for the
Expert trace mode.

Trace data values Read Data Traces the values of data operands
being read from the memory.

This feature is not supported for the
Profile-Only and Expert trace modes.

Write Data Traces the values of data operands
being written to the memory.

This feature is not supported for the
Profile-Only and Expert trace modes.

3.2.3 Configure Kinetis Target

The Kinetis target has different cores and trace modules. For example, Kinetis K series
has Cortex M4 core and Kinetis L series has Cortex M0+ core.

To configure the launch configuration for the Kinetis Cortex M4 core:

1. In the CodeWarrior Projects view, right-click the project and select Debug As >
Debug Configurations from the context menu.

The Debug Configurations dialog box appears.

2. In the Debug Configurations dialog box, expand the CodeWarrior Download
configuration in the tree structure on the left, and select the launch configuration
corresponding to the project you are using. For example, select
TraceProject_RAM_PnE U-MultiLink.

3. On the Main tab page, verify that name of the project, for example, TraceProject is
displayed in the Project field. If it does not appear, click Browse and locate the
project.

4. If the application is not displayed in the Application field, click Search Project to
select the application image.

Configuring Launcher

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

42 NXP Semiconductors

Figure 3-14. Debug Configurations - Main Page

To configure the launch configuration for the measurement of data:

1. Click the Trace and Profile tab.
2. Check the Enable Trace and Profile checkbox to enable the disabled options.

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 43

Figure 3-15. Debug Configurations - Trace and Profile Page (Kinetis Cortex M4 Core)

The table below describes the various Trace and Profile options.

Table 3-3. Trace and Profile Options for Kinetis Cortex M4 Core

Group Option Description

ETB Embedded Trace Buffer where collected
trace data is stored.

For more information, refer Embedded
Trace Buffer (ETB).

NOTE: For K11D, K12D, K21D and
K22D devices, ETB option is disabled
because these devices do not have
internal ETB buffer.

JTrace Enables trace collection by using the
Segger/J-Trace probe.

For more information, refer J-Trace.

Keep all trace buffers Keeps all trace collected by the J-Trace
or Tracelink (if Tracelink is selected)
probe and not only the last buffer
collected.

NOTE: If you check this checkbox and
collect trace, you might see some trace
missing between buffers because of

Table continues on the next page...

Configuring Launcher

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

44 NXP Semiconductors

Table 3-3. Trace and Profile Options for Kinetis Cortex M4 Core (continued)

Group Option Description

buffer overflow. A trace entry of Trace
buffer read finished in the Trace Data
viewer marks the point where an
individual buffer ends.

NOTE: This option is not the equivalent
of continuous mode; in the Keep all
trace buffers mode, all buffers are kept
and concatenated, independent of one
another. All data (including timestamps)
is saved as if each buffer was collected
alone, and timestamps for each
appended buffer start from 0.

TPIU Trace Port Interface Unit - Collects ETM
and ITM trace into the internal probe
buffer of size 4MB. TPIU is a block on
the processor that manages the output
of trace.

For more information, refer J-Trace.

SWO Serial Wire Output - Single pin serial
output that collects only ITM trace into
the buffer of size 4MB. SWO uses the
Serial Wire Debug (SWD) debug
connection. If selected, the Debug Port
Interface should be set as SWD.

Core clock ARM core clock in Mhz needed for the
serial connection setup. The core clock
can change due to multiple settings. For
example, when started, a K60 processor
rated at 100Mh works at 25Mhz, which is
the default value. You can change the
core clock value according to the
requirements.

Tracelink Provides support of trace collection for
32-bit device architectures using the
Tracelink (or multilink trace) probe.
When selected, it provides the same
options as JTrace.

Low Power Profiling Allows monitoring of low power Wait
states. This state lets peripherals to
function, while allowing CPU to go to
sleep reducing power.

For more information, refer Low Power
WAIT Mode.

Enable Logging If checked, creates a log file that keeps
details of the actions that took place
while executing the target to collect trace
data. For example, when the debug
session terminated, when the target
execution resumed or stopped.

Table continues on the next page...

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 45

Table 3-3. Trace and Profile Options for Kinetis Cortex M4 Core (continued)

Group Option Description

Continuous Trace Collection Allows you to collect continuous trace
data when checked. That is, it stops the
target in the background to read the
trace every time the FIFO is almost full.

ETM Enables/disables trace output from the
Embedded Trace Macrocell (ETM)
block. It controls the ETM port selection
bit from ETM's control register.

For more information, refer Embedded
Trace Macrocell (ETM).

Collect Program Trace Collects program trace.

ITM Enables/disables trace output from the
Instrumentation Trace Macrocell (ITM)
block.

For more information, refer
Instrumentation Trace Macrocell (ITM).

Collect Instrumentation trace Collects instrumentation trace.

Collect Profiling Counters Enables/disables the following profiling
counters at once:

• Cycle Count Event Generation -
increments and generates
synchronization and count events.

• Exception Trace - traces exception
entry, exit and return to a pre-
empted handler or thread.

• Exception Overhead Count -
exception overhead counter
counts the total cycles spent in
exception processing. For
example, entry stacking, return
unstacking, or preemption. An
event is emitted on counter
overflow which occurs after every
256 cycles.

• CPI Count
• Sleep Overhead Count
• LSU Count - increments on the

additional cycles required to
execute all load and store
instructions.

• Folded Instruction Count -
increments on any instruction that
executes in zero cycles.

The Kinetis K10/K20 50 Mhz and 72 MHz derivatives do not support ETB or ETM; they
collect ITM trace only. Also, these derivatives do not support TPIU module; the only
mode of collecting ITM trace is through SWO.

Configuring Launcher

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

46 NXP Semiconductors

The probes that can collect trace on Kinetis K10/K20 50 Mhz and 72 MHz derivatives
are J-Trace and J-link. You can debug but can not collect trace with P&E ARM
Multilink. The Trace and Profile tab for these derivatives has only JTrace and ITM
options enabled.

This topic contains the following sub-topics:
• Configuring Kinetis Cortex M0+ Core
• Difference Between Kinetis Cores Cortex M4 and Cortex M0+
• Trace Collection on Kinetis

3.2.3.1 Configuring Kinetis Cortex M0+ Core

Perform the following steps to configure Kinetis Cortex M0+ core:

1. In the CodeWarrior Projects view, right-click the project and select Debug As >
Debug Configurations from the context menu.

The Debug Configurations dialog box appears.

2. In the Debug Configurations dialog box, expand the CodeWarrior Download
configuration in the tree structure on the left, and select the launch configuration
corresponding to the project you are using. For example, select
Kl25_test_FLASH_PnE U-MultiLink.

3. Check that the file sa_mtb.c exists in the Sources folder of the CodeWarrior
Projects view.

4. Select the Trace and Profile tab.
5. Check the Enable Trace and Profile checkbox.
6. In the Trace Buffer Size drop-down box, change the value of the trace buffer size to

0x100 for the KL05 device and 0x200 for the KL25 device. There are a variable
number of predefined sizes depending on the target. The maximum value varies from
0x80 on KL05Z to 0x1000 on KL25Z128.

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 47

Figure 3-16. Setting Trace Buffer Size
7. Click Apply.

The Enable Trace and Profile message box appears displaying that MTB support is
enabled.

Configuring Launcher

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

48 NXP Semiconductors

Figure 3-17. Enable Trace and Profile Message Box
8. Click OK in the Enable Trace and Profile message box.
9. Build the project again.

NOTE
You can remove the MTB support from the project by using the
CodeWarrior Projects view. Right-click the project in the
CodeWarrior Projects view, and select Profiler > Remove
MTB support to remove the MTB support. You can select
Profiler > Add MTB support to add it again.

3.2.3.2 Difference Between Kinetis Cores Cortex M4 and Cortex M0+

The K series and L series of the Kinetis target have different cores, trace modules, and
raw trace format. However, the results available in the Software Analysis view look
identical.

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 49

The K series of the Kinetis target has the following features:
• Cortex M4 core
• ETM and ITM trace with an internal ETB buffer (2Kb) located in RAM
• DWT module for trace control/HW Tracepoints with four address comparators and a

large variety of resource counters

The L series of the Kinetis target has the following features:
• Cortex M0+ core
• Micro Trace Buffer (MTB) trace with an internal buffer, which is configurable up to

32Kb. MTB is located in SRAM. MTB trace is less compressed than ETM trace
having a ratio of 128 branches for 1Kb of buffer. Like ETM, MTB also supports
automatic and continuous trace.

• DWT module for trace control/HW Tracepoints with two address comparators and
no resource counter.

The differences between Kinetis Cortex M4 core and Cortex M0+ core with respect to
ETM and MTB are:

• MTB allows you to configure buffer size while ETB size is fixed.
• MTB shares the same SRAM memory as program and data, therefore the linker

control file is updated with a new section for MTB so that trace collection does not
interfere with program or data.

• MTB trace is not encoded with relative addresses (as ETM trace is), so it does not
require SYNC information. Therefore, in the automatic mode, none of the existing
trace will be lost doe to missing SYNC information.

• The K series supports real time trace collection by an external probe due to its TPIU
module. There are probes with large internal buffers which can collect this external
trace, for example, Segger J-Trace with 2-16Mb internal buffer; P&E Multilink
Trace with 128 Mb internal buffer. The L series does not support this feature.

3.2.3.3 Trace Collection on Kinetis

Tracing and profiling on the Kinetis target is divided into the following components:

• Embedded Trace Macrocell (ETM)
• Instrumentation Trace Macrocell (ITM)
• Embedded Trace Buffer (ETB)
• J-Trace

3.2.3.3.1 Embedded Trace Macrocell (ETM)

Configuring Launcher

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

50 NXP Semiconductors

An ETM is a debug component that enables reconstruction of program execution. ETM is
a high-speed, low-power debug tool that only supports instruction trace. Therefore, ETM
helps in minimizing area and reducing gate count.

The main features of an ETM are:

• Trace generation

Trace generation outputs information that helps understand the operation of the
processor. The trace protocol provides a real-time trace capability for processor cores
that are deeply embedded in much larger ASIC designs.

• Triggering and filtering

You can control tracing by specifying the exact set of triggering and filtering
resources required for a particular application. Resources include address
comparators, data value comparators, counters, and sequencers.

ETM compresses the trace information and writes it directly to an on-chip ETB. An
external Trace Port Analyzer (TPA) captures the trace information. The trace is read out
at low speed using the JTAG interface when the trace capture is complete.

When the trace has been captured, the profiling and analysis tool extracts the information
from ETB and decompresses it to provide a full disassembly, with symbols, of the code
that was executed.

3.2.3.3.1.1 Triggering Trace

You can use a trigger signal to specify when a trace run is to occur. You determine the
trigger condition by using the event logic (AND/OR) to configure the event resources,
such as address comparators and data value comparators.

The trigger event specifies the conditions that must be met to generate a trigger signal on
the trace port. When the trigger event occurs, the trigger is output as soon as possible, and
therefore might not be aligned with the rest of the trace. The trigger is output over the
trace port using a code that can be readily understood by the Trace Capture Device
(TCD).

The TCD uses the trigger in the following ways:

• Trace after

This is often called a start trigger that can indicate to the TCD that the trace
information must be collected from the trigger point onwards. A start trigger finds
out what happens after a particular event, for example, what happens after entering
an interrupt service routine. In addition, a small amount of trace data is collected

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 51

before the trigger condition. This enables the decompression software to synchronize
with the trace, ensuring that it can successfully decompress the code around the
trigger point.

• Trace before

This is often called a stop trigger which is used to stop collection of the trace. In this
case, the TCD acts like a large FIFO so that it always contains the most recent trace
information and the older information overflows out of the trace memory. The trigger
indicates that the FIFO must stop, so the memory contains all the trace information
before the trigger event. A stop trigger finds out what caused a certain event, for
example, to see what sequence of code was executed before entering an error handler
routine. In addition, a small amount of trace data is collected after the trigger
condition.

• Trace about

This is often called a center trigger which you can set between the start point and the
stop point. This allows trace memory to contain a defined number of events before
the trigger point and a defined number of events after the trigger point.

NOTE
The generation of a trigger does not affect the tracing in
any way. In any trace run, only a single trigger can be
generated by ETM.

3.2.3.3.2 Instrumentation Trace Macrocell (ITM)

ITM provides a memory-mapped register interface to allow applications to write logging/
event words to the optional external Trace Port Interface Unit (TPIU). ITM is an optional
application-driven trace source that supports printf style debugging to trace operating
system and application events, and generates diagnostic system information.

ITM also supports control and generation of timestamp information packets. The event
words and timestamp information are formed into packets and multiplexed with hardware
event packets from DWT.

NOTE
In order to collect ITM trace, DWT must be enabled. This is
because sync packet is not sent when ITM is enabled, the DWT
cycle counter function must be used to generate the sync packet
before writing any stimulus registers. This mechanism does not
effect ETM trace in any way.

Configuring Launcher

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

52 NXP Semiconductors

NOTE
If you collect ITM trace through TPIU (that is not using ETB
buffer), you may lose ITM packets when ITM trace throughput
is very high, especially when the executed code includes many
branches with less sequential instructions and there is a lot of
ETM trace generating. Since ETM has higher priority than ITM
and when the trace generation exceeds the trace port bandwidth,
the trace with the smaller priority is lost. To ensure enough
bandwidth for ITM trace, disable ETM and ITM profiling
counters and collect only ITM instrumentation trace with
stimulus register 1.

ITM supports Timestamps and Synchronization.

3.2.3.3.2.1 Timestamps

Timestamps provide information on the timing of event generation with respect to their
visibility at a trace output port. A timestamp packet can be generated and appended to a
single event packet, or a stream of back-to-back packets where multiple events generate a
packet stream with no idle time. The timestamp status information is merged with the
timestamp packets to indicate if the timestamp packet transfer is delayed by the FIFO, or
if there is a delay in the associated event packet transfer to the output FIFO. The
timestamp count continues until it can be sampled and delivered in a packet to the FIFO.

The ARMv7 processor can implement either or both of the following types of
timestamps:

• Local timestamps

Local timestamps provide delta timestamp values, which means that each local
timestamp indicates the elapsed time since generating the previous local timestamp.
The ITM generates local timestamps from timestamp clock in the ITM block. Each
time ITM generates a local timestamp packet, it resets this clock to provide the delta
functionality.

• Global timestamps

Global timestamps provide absolute timestamp values based on a system global
timestamp clock. They provide synchronization between different trace sources in
the system.

3.2.3.3.2.2 Synchronization

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 53

Synchronization packets are independent of timestamp packets. They are used to recover
bit to byte alignment information. The packets are required on synchronous TPIU ports
that are dedicated to an ARMv7-M core or in complex systems where multiple trace
streams are formatted into a single output. When enabled, synchronization packets are
emitted on a regular basis and can be used as a system heartbeat.

3.2.3.3.3 Embedded Trace Buffer (ETB)

ETB stores data that ETM or ITM or both produces. ETB provides on-chip storage of
trace data using a configurable sized RAM. This reduces the clock rate and removes the
requirement of high-speed for collecting trace data. The debugging tools access the
buffered data using a JTAG interface.

ETB contains a trace formatter, an internal input block that embeds the trace source ID
within the data to create a single trace stream. The trace formatter uses a protocol that
allows trace from several sources to be merged into a single stream and later separated.
This protocol outputs data in 16-byte frames.

The ETM and ITM blocks generate trace. The processor dumps the generated trace into
ETB, which is a memory buffer from the on-chip memory. The bottleneck here is how to
transfer the collected trace data from the chip's memory to the computer. This is where
probes are useful which implement a protocol that allows communication between the
chip and the computer. These probes have the ability to read registers and chip's memory.

ETB stores only 2KB of trace data and it transfers data at a very slow speed. An
alternative to ETB is to output the trace data to a port instead of storing it in the chip's
memory. There is a block on the processor that manages the output of trace called Trace
Port Interface Unit (TPIU). If the trace is output to an external port, it must be stored in
real-time, and therefore, a probe is necessary.

3.2.3.3.4 J-Trace

The J-Trace probe has an internal memory buffer of 4MB where it can store trace data. It
supports two modes of trace collection, TPIU (or Rawtrace) and Serial Wire Output
(SWO), depending on the configuration of the processor. TPIU can output complex trace,
that is both ETM and ITM. SWO is a lightweight standard and can only output ITM
trace. The benefits of using J-Trace probe is the bigger memory size and the better
collection speed. The drawback is that you cannot collect continuous trace, only the last
4MB of trace is stored.

To collect trace data on the Kinetis target using the JTrace connection:

Configuring Launcher

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

54 NXP Semiconductors

1. Create a Kinetis project with Segger J-Link connection selected in the Connections
screen.

2. Build the project.
3. Open the Debug Configurations dialog box.
4. Select your project in the tree structure on the left.
5. In the Main tab, click Edit . The Properties dialog box appears.
6. In the Connection tab, select SWD from the Debug port interface drop-down list.

Figure 3-18. Selecting Debug Port Interface for JTrace
7. Click OK.
8. Select the Trace and Profile tab and enable tracing and profiling.
9. Select the JTrace option and then select the SWO option.

NOTE
If you choose TPIU in the Trace and Profile tab for
JTrace, you can select either JTAG or SWD (Serial Wire
Debug) as debug port interface.

10. Click Apply.
11. Debug the application and collect trace.

Refer Collecting Data to know how to collect data on Kinetis target. Refer Viewing Data
to know how to view collected trace data.

3.2.4 Configuring Advanced Settings on Kinetis

To configure advanced settings for tracing and profiling on Kinetis:

1. Click Advanced Settings on the Trace and Profile tab of the Debug
Configurations dialog box.

The Preferences dialog box appears. For Kinetis Cortex M4, the default page is
ETM Settings.

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 55

NOTE
Use the Advanced Settings button if you want to configure
advanced settings for collecting trace.

NOTE
If you are configuring Kinetis Cortex M4 project, the
Preferences dialog box displays ETM, ITM, and ETB trace
settings since Kinetis Cortex M4 supports ETM and ITM
trace. Kinetis Cortex M0+ supports MTB trace, therefore,
the Preferences dialog box for a Kinetis Cortex M0+
project displays MTB trace settings only.

2. If you are configuring settings for Kinetis Cortex M4, ensure that the Enable ETM
Tracing checkbox is checked.

Configuring Launcher

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

56 NXP Semiconductors

Figure 3-19. Preferences Dialog Box

The table below describes the various options available on the ETM Settings page.

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 57

Table 3-4. Options Available in ETM Settings
Page

Group Option Description

General Settings Stall Processor If checked, enables the
FIFOFULL output that causes
the processor to stall when the
FIFO is close to overflow. When
cleared, the FIFOFULL output
remains low and the FIFO
overflows if there is a large
number of trace packets.

Trace All Branches If checked, all branch addresses
are collected. Otherwise, only
indirect branches are collected.
It enables reconstruction of the
program flow with the
information from the binary
executable.

Enable Timestamps Enables timestamping when
checked.

FIFOFULL Level (no. of bytes) Specifies the number of bytes
left in the FIFO, below which it is
considered full. When the space
left in the FIFO gets lower than
the specified value, the
FIFOFULL or SupressData
signal is asserted. For example,
setting the value to 15 causes
data trace suppression or
processor stalling, if enabled,
when there are less than 15 free
bytes in the FIFO.

Trace Conditions

Trace Start/Stop Control Specifies the watchpoint
comparator inputs that are used
as trace start and stop
resources.

NOTE: The same settings are
displayed for configuring MTB
trace in case you are using a
Kinetis M0+ project. The
difference is that in ETM, there
are 4 address comparators, and
in MTB, there are only 2.

Start Resource Selects the corresponding DWT
comparator to control trace start.

NOTE: Data Watchpoint and
Trace (DWT) is an optional
debug unit that provides
watchpoints, data tracing, and
system profiling for the
processor.

Table continues on the next page...

Configuring Launcher

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

58 NXP Semiconductors

Table 3-4. Options Available in ETM Settings Page
(continued)

Group Option Description

Stop Resource Selects the corresponding DWT
comparator to control trace stop.

Trigger Control Defines an event that generates
on meeting a condition and
appears in the trace data.

You can define resource A and
resource B and a function
between A and B. When the
function occurs, the event is
generated and is seen in the
Trace Data viewer.

Function Specifies the condition that must
be met to generate a trigger
signal on the trace port.

A Is the ETM event resource used
for triggering. It can take four
values:

• DWT comparator - Any of
the four comparators

• ETM - Counter at zero -
16-bit counter reload value

• Start/stop - Start or stop
tracepoint set in the
application

• Always true - Default
option that triggers all the
time

B Same as A.

Index Specifies the value of the
comparator if you select DWT
comparator in the A or B fields.

Collect Trace after Trigger When selected, changes the
value of Trigger Counter to 480
words in the Trigger Settings
section of the ETB Settings
page. This means that 480
words of trace will be collected
after trigger hit and 32 words will
be collected before trigger hit.

Collect Trace before Trigger When selected, changes the
value of Trigger Counter to 32
words in the Trigger Settings
section of the ETB Settings
page. This means that 32 words
of trace will be collected after
trigger hit and 480 words will be
collected before trigger hit.

Collect Trace about Trigger When selected, changes the
value of Trigger Counter to 256
words in the Trigger Settings

Table continues on the next page...

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 59

Table 3-4. Options Available in ETM Settings Page
(continued)

Group Option Description

section of the ETB Settings
page. This means that 256
words of trace will be collected
after trigger hit and 256 words
will be collected before trigger
hit.

Trace Enable Event Enables the trace when an event
occurs.

NOTE: It is not guaranteed that
trace will be generated exactly
when the event occurs. It may
have a few cycles delay.

Function Specifies the condition that must
be met to enable trace
collection. For example, if you
set A as DWT comparator 1
and set DWT comparator 1 to
fire at instruction at address
0x800 with mask 0xF, and
specify Function as A then the
Trace enable will be active
continuously between addresses
0x800 and 0x80F.

A Is the ETM event resource used
for collecting trace. It can take
four values:

• DWT comparator - Any of
the four comparators

• ETM - Counter at zero -
16-bit counter reload value

• Start/stop - Start or stop
tracepoint set in the
application

• Always true - Default
option that enables the
trace

B Same as A.

Index Specifies the value of the
comparator if you select DWT
comparator in the A or B fields.

Timestamp Event Generates a timestamp in trace
when the event gets activated.

Function Specifies the condition that must
be met to generate the
timestamp event.

A Is the ETM event resource used
for triggering. It can take four
values:

• DWT comparator - Any of
the four comparators

• ETM - Counter at zero -
16-bit counter reload value

Table continues on the next page...

Configuring Launcher

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

60 NXP Semiconductors

Table 3-4. Options Available in ETM Settings Page
(continued)

Group Option Description

• Start/stop - Start or stop
tracepoint set in the
application

• Always true - Default
option that triggers all the
time

B Same as A.

Index Specifies the value of the
comparator if you select DWT
comparator in the A or B fields.

ETM - Counter Reload Value Is the value with which the
counter is automatically loaded
when the register is
programmed and when the ETM
Programming bit is set. This is a
16- bit field that should be
specified in hexadecimal form.

The ETM counter decrements at
each ETM cycles. Once it
reaches 0, it generates an ETM -
Counter at zero event.

Comparator Settings Comparator 1, Comparator 2,
Comparator 3, Comparator 4

Allows choosing one of the four
DWT comparators to configure
trace conditions.

Generate Comparator Match
Event On

Allows selecting the event that
generates a comparator match.

Value Indicates the reference value
against which comparison is
done.

No. of bits to ignore Indicates the size of the ignore
mask (0 - 31 bits) applied to the
matching address range.

Match Data Size Defines the size of the data in
the associated comparator
register for value matching.

NOTE
Timestamps provide information on the timing of event
generation with respect to their visibility at a trace output
port.

3. Click ITM Settings on left to display its corresponding options on right.

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 61

Figure 3-20. ITM Settings Page

Configuring Launcher

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

62 NXP Semiconductors

The table below describes the various options available on the ITM Settings page.

Table 3-5. Options Available in ITM Settings
Page

Group Option Description

Enable ITM Tracing Enables ITM tracing

Synchronize Packages Enables packages
synchronization when checked.

Timestamp Enables ITM timestamping
(delta).

No Timestamps Disables timestamping.

Local Timestamps Defines the number of ITM clock
ticks on which the timestamp
counts. ITM clock is a clock on
20 bits.

Timestamp Prescaler: Modifies
the scaling of the timestamps
clock. For example, if set to 16,
the timestamp counts once
every 16 clock ticks.

Global Timestamps Defines the number of ATCLK
(or Advanced Trace Clock) ticks
on which the timestamp counts.
ATCLK is a clock on 48 bits, and
it is common to ETM and ITM.

Global Timestamp Frequency :
Decides when the global cycle
count is written in the trace
buffer, that is every 128/ 8192
cycles or at every packet.

Enable Stimulus Registers Each bit location corresponds to
a virtual stimulus register. When
a bit is set, a write to the
appropriate stimulus location
results in a packet being
generated, except when the
FIFO is full.

Use Select All or Clear All to
check or clear all the
checkboxes.

Cycle Counter Enable Enables cycle counter which
counts the number of core
cycles. The counting is
suspended when the core halts
in debug state.

Extension Counter Reload Value
(hex)

Defines the cycle count event
combining with Cycle Counter
Tap and Synchronization Packet
Rate.

Table continues on the next page...

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 63

Table 3-5. Options Available in ITM Settings Page
(continued)

Group Option Description

Cycle Counter Tap Selects a tap on the cycle
counter register - Tap at cycle
count bit 6 or Tap at cycle count
bit 10. This means that the Cycle
Counter Tap event fires at every
change of either bit 6 or bit 10 of
the cycle counter.

NOTE: Cycle count is a 32-bit,
incrementing (up) cycle counter.

Synchronization Packet Rate Selects a synchronization packet
rate. CYCCNTENA and
ITM_TCR.SYNCENA must also
be enabled for this feature.
Synchronization packets (if
enabled) are generated on tap
transitions (0 to1 or 1 to 0).

Event Generation Enable PC Sample Controls PC sample event
generation.

Enable Cycle Count Event
Generation

Enables cycle count, allowing it
to increment and generate
synchronization and count
events.

Enable Exception Trace Enables exception trace that
traces exception entry, exit and
return to a pre-empted handler
or thread.

Enable Exception Overhead
Count

Enables exception overhead
event.

NOTE: The exception overhead
counter counts the total cycles
spent in exception processing.
For example, entry stacking,
return unstacking, or pre-
emption. An event is emitted on
counter overflow which occurs
after every 256 cycles.

Enable CPI Count Enables the CPI count event.

Enable Sleep Overhead Count Enables sleep overhead count
event.

Enable LSU Count Enables the Load Store Unit
(LSU) count event.

NOTE: The LSU counter
increments on the additional
cycles required to execute all
load and store instructions.

Enable Folded Instruction Count Enables the folded instruction
count event.

Configuring Launcher

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

64 NXP Semiconductors

Table 3-5. Options Available in ITM Settings
Page

Group Option Description

NOTE: The folded instruction
counter increments on any
instruction that executes in zero
cycles.

4. Click ETB Settings on left to display its corresponding options on right.

Figure 3-21. ETB Settings Page

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 65

The table below describes the various options available on the ETM Settings page.

Table 3-6. Options Available in ETB Settings Page

Group Option Description

Enable ETB Trace Capture Enables ETB tracing.

Continuous Trace Collection Allows you to collect continuous trace
data.

Enable Enables the continuous trace collection
when checked. It also enables the
Almost Full Level checkbox.

Almost Full Level (no. of words) Indicates the number of words (of 4
bytes) for which the trace buffer is
considered almost full, and trace must
be read from the hardware memory. This
mode offers the possibility to collect the
trace data when the buffer gets full to
prevent data loss.

When the Embedded Trace Buffer (ETB)
becomes almost full, a signal is asserted
to cause an interrupt on the core or to
cause the core to halt. For now, the
profiling tools offer support only for
halting the core.

NOTE: The maximum and minimum
value for the Almost Full Level field is
application-dependant. However, the
safe maximum and minimum values are
450 and 50. The trace and profile results
might not be collected for any value
above 450 and below 50.

Trace Formatting Settings Trace formatting inserts the source ID
signal into a special format data packet
stream. Trace formatting is done to
enable trace data to be re-associated
with a trace source after data is read
back out of the ETB.

Enable Formatting When checked, prevents triggers from
being embedded into the formatted
stream.

Continuous Formatting Enables the continuous mode. In the
ETB, this mode corresponds to the
normal mode with the embedding of
triggers.

Stop on Flush Completion Stops trace formatting when a flush is
completed. This forces the FIFO to drain
off any partially completed packets.

Stop on Trigger Event Stops trace formatting when a trigger
event is observed. A trigger event occurs
when the trigger counter reaches zero
(where fitted) or the trigger counter is
zero (or not fitted) when the TRIGIN
signal is HIGH.

Table continues on the next page...

Configuring Launcher

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

66 NXP Semiconductors

Table 3-6. Options Available in ETB Settings Page (continued)

Group Option Description

Trigger Settings A trigger event occurs when the trigger
counter reaches zero, or when the
trigger counter is zero, when TRIGIN is
HIGH. The trigger counter register
controls how many words are written into
the trace RAM after a trigger event. After
the formatter is flushed in the normal or
continuous mode, a complete empty
frame is generated. This is a data
overhead of seven extra words in the
worst case. If the formatter is in bypass
mode, a maximum of two additional
words are stored for the trace capture
postamble.

Trigger Counter (no. of words) Defines the number of 32-bit words
remaining to be stored in the ETB Trace
RAM.

NOTE: The hardware buffer can hold
upto 512 words of trace. Trigger
Counter indicates how many words of
trace will be collected in the buffer
before and after the trigger gets
activated. The value in Trigger Counter
is the number of words of trace that will
be collected after trigger hit, the rest will
be collected before trigger hit. For
example, if the value is 32 then 32
words of trace will be collected after
trigger hit and 480 will be collected
before trigger hit.

The value of Trigger Counter depends
on the option selected from ETM
Settings page in the Trigger Control
tab.

Indicate Trigger on TRIGN Indicates a trigger on TRIGIN being
asserted.

Indicate Trigger on Trigger Event Indicates a trigger on a trigger event.

Indicate Trigger on Flush Completion Indicates a trigger on flush completion.

Flush Control Settings There are three flush generating
conditions that can be enabled together.
If more flush events are generated while
a flush is in progress, the current flush is
serviced before the next flush is started.
Only one request for each source of
flush can be pended. If a subsequent
flush request signal is deasserted while
the flush is still being serviced or
pended, a second flush is not generated.
Flush from FLUSHIN takes priority over
Flush from Trigger, which in turn is
completed before a manual flush is
activated.

Table continues on the next page...

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 67

Table 3-6. Options Available in ETB Settings Page (continued)

Group Option Description

Generate Flush Using FLUSHIN Generates flush using the FLUSHIN
interface.

Generate Flush Using Trigger Event Generates flush using the trigger event.

3.2.5 Configure MPC56xx Target

To configure the launch configuration for the MPC56xx target:

1. In the CodeWarrior Projects view, right-click the project and select Debug As >
Debug Configurations from the context menu.

The Debug Configurations dialog box appears.

2. In the Debug Configurations dialog box, expand the CodeWarrior Download
configuration in the tree structure on the left, and select the launch configuration
corresponding to the project you are using. For example, select
MPC5675K_RAM_PnE USB-ML-PPCNEXUS.

To configure the launch configuration for the measurement of data:

1. Click the Trace and Profile tab.
2. Check the Enable Trace and Profile checkbox.

This configures the launch configuration for the MPC56xx target.

NOTE
Tracing is not supported for MPC56xx processors with z0 core
as these processors do not have a trace buffer.

3.2.6 Configure S12Z Target

To configure the launch configuration for the S12Z target:

1. In the CodeWarrior Projects view, right-click the project and select Debug As >
Debug Configurations from the context menu.

The Debug Configurations dialog box appears.

Configuring Launcher

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

68 NXP Semiconductors

2. In the Debug Configurations dialog box, expand the CodeWarrior Download
configuration in the tree structure on the left, and select the launch configuration
corresponding to the project you are using. For example, select S12z_FLASH_PnE
U-MultiLink.

To configure the launch configuration for the measurement of data:

1. Click the Trace and Profile tab.
2. Check the Enable Trace and Profile checkbox.

Figure 3-22. Trace and Profile Tab Options of S12Z

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 69

The table below describes the various Trace and Profile options for S12Z architecture.

Table 3-7. Trace and Profile Options for S12Z

Group Option Description

User Options Enable Logging Creates a log file that keeps details of
the actions that took place in the
application. For example, when the
debug session terminated, when the
target execution resumed or stopped.

Target Configuration Continuous trace collection Allows you to collect continuous trace
data when checked. That is, it stops the
target in the background to read the
trace every time the FIFO is almost full.

Enable Timsestamps Enables time stamping when checked.

Stop on buffer full Suspends the target automatically and
stops trace collection when buffer is full.

Trace Mode Allows you to select any one of the
following trace modes:

• Normal - collects trace in normal
mode and stores change of flow
(COF) program counter (PC)
addresses.

• Loop1 - lets you collect trace
without any consecutive identical
addresses. If the next address to
be stored in FIFO is the same as
the one stored last time, it is
ignored. This mode is particularly
useful with short busy-wait type
loops, which are repeated a large
number of times or recursive calls,
and is recommended when you
want to view the coverage of that
code, but not necessarily the
number of times the code
executed.

• Detail - allows you to capture
specific values using triggers.
When selected, enables Trace
from: 0x and to: 0x where you
can specify the limit of the
addresses for which you want to
collect trace.

• Pure PC - collects trace in normal
mode without timestamps.

Trigger Mode Allows you to select any one of the
following triggers for the trigger set in the
source code:

• End Trigger - collects trace data
after the trigger is hit

• Start Trigger - collects trace data
until the trigger is hit.

• Middle Trigger - collects some
data until the trigger is hit and
some data after the trigger hits.

Table continues on the next page...

Configuring Launcher

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

70 NXP Semiconductors

Table 3-7. Trace and Profile Options for S12Z (continued)

Group Option Description

Trace from: 0x Specifies the address from which you
want to collect trace data.

to: 0x Specifies the address till which you want
to collect trace data.

State 1, 2, 3 Next State for Comp A/B/C/D Specify the logic for starting the trace
collection. The trace collection starts
when the target enters the Final State .
The drop-down lists for each state allows
you to select the next state when the
corresponding comparator is hit.

For example, in the State 1 tab, you
select Next State for Comp A as State
2 , that is when comparator A is hit you
want to enter State 2 . Then in the State
2 tab, when comparator B is hit, you
want to enter State 3 . Then in State 3
when comparator C is hit, you want to
enter the Final State and begin
collecting trace.

NOTE: The comparators are the triggers
A,B,C,D, which you can set in the source
code, on variables, or in memory. To set
triggers in the source code, select Trace
Triggers > Toggle Trace Trigger
A/B/C/D.

NOTE
On S12z platform, breakpoints and triggers are mutually
exclusive. You may use only breakpoints or only triggers but
never both during debugging a S12z application.

3.2.7 Configure ColdFire V2-V4 Targets

To configure the launch configuration for the ColdFire V2-V4 targets:

1. In the CodeWarrior Projects view, right-click the project and select Debug As >
Debug Configurations from the context menu.

The Debug Configurations dialog box appears.

2. In the Debug Configurations dialog box, expand the CodeWarrior Download
configuration in the tree structure on the left, and select the launch configuration
corresponding to the project you are using. For example, select proj-cfv2_RAM_PnE
U-MultiLink.

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 71

To configure the launch configuration for the measurement of data:

1. Click the Trace and Profile tab.
2. Check the Enable Trace and Profile checkbox.

Figure 3-23. Trace and Profile Tab Options of ColdFire V2-V4

The table below describes the various Trace and Profile options for ColdFire V2-V4
targets.

Table 3-8. Trace and Profile Options for ColdFire V2-V4

Group Option Description

Enable Trace and Profile Enables tracing and profiling for the
application.

User Options Keep all trace buffers Lets you keep all the data received from
the probe. On Coldfire V2-V4 targets,
you can collect trace with external buffer
only using Tracelink probes. The
Tracelink (or multilink trace) probes
cannot collect trace continuously, but
they have a very large buffer. So
suspending the application repeatedly
with this option enabled will append the
trace buffers, as if each buffer was
collected alone, resulting in a very large
trace collection.

Table continues on the next page...

Configuring Launcher

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

72 NXP Semiconductors

Table 3-8. Trace and Profile Options for ColdFire V2-V4 (continued)

Group Option Description

Enable Logging Creates a log file that keeps details of
the actions that took place in the
application. For example, when the
debug session terminated, when the
target execution resumed or stopped.

Target Configuration Target PC Address Specifies the number of bytes that the
trace hardware uses to store the
addresses in the raw trace. The value is
currently fixed at 4 bytes.

Trace data values Read Data Traces the values of data operands
being read from the memory.

Write Data Traces the values of data operands
being written to the memory.

3.2.8 Configure DSC Target

To configure the launch configuration for the DSC target:

1. In the CodeWarrior Projects view, right-click the project and select Debug As >
Debug Configurations from the context menu.

The Debug Configurations dialog box appears.

2. In the Debug Configurations dialog box, expand the CodeWarrior Download
configuration in the tree structure on the left, and select the launch configuration
corresponding to the project you are using. For example, select proj-
dsc_FLASH_SDM_PnE U-MultiLink.

To configure the launch configuration for the measurement of data:

1. Click the Trace and Profile tab.
2. Check the Enable Trace and Profile checkbox.

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 73

Figure 3-24. Trace and Profile Tab Options of DSC

The table below describes the various Trace and Profile options for DSC target.

Table 3-9. Trace and Profile Options for DSC

Group Option Description

Enable Trace and Profile Enables trace and profiling for the DSC
application.

Enable Data Visualization Enables data visualization. Data
Visualization and tracing cannot be used
simultaneously. For details, refer Data
Visualization.

User Options Enable Logging Creates a log file that keeps details of
the actions that took place in the
application. For example, when the
debug session terminated, when the
target execution resumed or stopped.

Select Trace Mode Continuous When selected, collects the trace data
continuously.

Automatic (One-buffer) When selected, captures only the last
instructions executed before the target
gets suspended.

Collect Trace Collects trace with any of the following
trigger conditions selected:

• Always — captures all executed
instructions in the application

Configuring Launcher

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

74 NXP Semiconductors

Table 3-9. Trace and Profile Options for DSC

Group Option Description

• From Trigger A Onward — starts
trace collection from where trigger
A is set in the application

• From Trigger B Onward — starts
trace collection from where trigger
B is set in the application

• Until Trigger A — collects trace till
Trigger A is set in the application

• Until Trigger B — collects trace till
Trigger B is set in the application

NOTE
On DSC platform, breakpoints and triggers are mutually
exclusive. You may use only breakpoints or only triggers but
never both during debugging a DSC application.

NOTE
The triggers set on the DSC target work on program prefetch
and not on the program execution. Therefore, triggering occurs
a bit earlier than the execution of the instruction on which the
trigger has been set. To prevent this, if you don’t have
sequential instructions (statements) before the line where you
want to set a trigger, you can set it in the Disassembly view on
the instructions following one or two sequential instructions so
that beginning of the trace is not affected.

NOTE
The DSC hardware traces destinations for only a subset of the
change of flow instructions (please see the EOnCE manual,
section "11.6.1 Trace Buffer Control Register"). Indirect change
of flow instructions, such as returns (rts), indirect calls (such as
JSR R0), and some direct branches (such as BRA) are not traced.
As a result, in some cases, the trace data collected for a DSC
project may contain <no debug info> when a return address
cannot be estimated, or entire functions may be missing when
they are called by a return or a indirect call. Also, collecting
data in the automatic mode or setting triggers in the middle of
the program may result into more returns than calls, which
makes processing break and display <no debug info> instead of
an address or "Break in trace!" messages in the collected trace
data. Because of the above limitations, the Call Tree and

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 75

Performance hyperlinks do not appear in the Software
Analysis view for DSC applications.

3.3 Collecting Data

After setting the debugger launch configuration, you need to run the application on the
target hardware to collect data.

To collect data on any target such as HCS08, ColdFire V1, Kinetis, MPC56xx, or DSC:

1. In the Debug Configurations dialog box, click Debug to launch the project.

The application halts at the beginning of main().

Figure 3-25. Debug Perspective Page
2. Click the Resume button to resume the execution and begin measurement. Let the

application run for several seconds before performing the next step. If you want to

Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

76 NXP Semiconductors

stop the execution of the application while it is running, click the Suspend button.
Click the Terminate button to stop the measurement.

If you are collecting trace on MPC5668G/E targets with both cores (e200z6 and e200z0),
click the Multicore Resume button to start trace collection and click Multicore Suspend
to suspend it.

NOTE
To switch to a different perspective, click the Show List button
on the upper right corner of the window.

NOTE
The e200z6 and e200z0 cores are not running the same code;
Core 0 (e200z6) runs code from Sources/main.c and Core 1
(e200z0) runs from PRC1_Sources/main_p1.c. Therefore, the
two cores do not stop at same entry point at first suspend after
starting the debug session.

3.4 Viewing Data

When an application runs on any target, such as HCS08, ColdFire V1, Kinetis,
MPC56xx, or DSC, the data files are generated and get displayed in the Software
Analysis view. The Software Analysis view appears automatically while the application
is running. To manually open it, select Window > Show View > Software Analysis
from the menu bar.

1. Expand the project name in the Software Analysis view.

The data source is listed under the project name along with the hyperlinks to the
Trace, Timeline, Critical Code, Performance, and Call Tree results.

Figure 3-26. software Analysis View - Kinetis Target

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 77

2. Click the Trace, Timeline, Critical Code, Performance, and Call Tree hyperlinks
and view trace, timeline, critical code, and performance data results in the
corresponding viewers.

You can perform the following actions in the Software Analysis view:

• Click the Log hyperlink in the Log column to view the log of actions that you
performed while executing the target to collect trace data. The Log view appears
displaying the performed actions along with the time when those actions were
performed.

Figure 3-27. Log View of Trace Collection

NOTE
The log entries appear if the Enabled Logging checkbox is
checked in the Trace and Profile tab. If you choose to
disable logging, no log appears in the Log view.

• Click the Refresh the displayed data button to refresh the displayed data. You no
need to press this button manually at every trace collection. The trace results are
refreshed automatically.

• Click the Expands all nodes button to expand all the nodes and the Collapses all
nodes button to collapse all the nodes in the Software Analysis view.

• Click the Import Data Trace from text file button to import an external format of
trace into your project. The Data Trace Import dialog box (Figure 3-28) appears.
For more information, refer Data Trace Import Dialog Box.

Alternatively, you can perform these actions by right-clicking the data source and
selecting the appropriate option from the context menu.

Viewing Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

78 NXP Semiconductors

To save trace, timeline, critical code, performance, and call tree results, select the Save
Results option from the context menu. A data source with an .0000 extension is added to
the Software Analysis view containing the saved results. To delete the results, select the
Delete Results option .

To copy the cell that is currently selected, select the Copy Cell option from the context
menu. The name of the data source is copied to the clipboard. To copy the complete line
of the data source, select the Copy Line option.

You can control generation of trace using the Software Analysis view. For more
information, refer Controlling Trace Generation.

3.4.1 Data Trace Import Dialog Box

The Data Trace Import dialog box allows you to import an external format of trace
which is different from the trace format of CodeWarrior Software Analysis. This trace
format is generated from an external trace collection tool and can be saved in an input file
in a text format. The trace data contained in this input file is converted into a format
compatible with CodeWarrior. A sample input file, dsc8257_Data_Visualization_1.txt, is
located at <CWInstallDirectory>\MCU\morpho_sa\sasdk\data\fsl.testdata.sa.trace\ and
<CWInstallDirectory>\eclipse\plugins\com.freescale.morpho.sa.arm_*\data

\fsl.testdata.sa.trace.

NOTE
The Data Trace Import dialog box is used to import only data
trace.

To import external trace format into your project:

1. Click the Import Data Trace from text file button in the Software Analysis view to
display the Data Trace Import dialog box.

2. Locate the Input File.
3. From the Output Project drop-down list, select the project where you want to

import the trace format.
4. Select the architecture for which the trace was collected from the Select Platform

drop-down list.

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 79

Figure 3-28. Data Trace Import Dialog Box
5. Click OK.

The results of the input file get displayed in the Software Analysis view. Two
hyperlinks appear, Trace and Data Visualization.

Figure 3-29. Software Analysis View After Importing Data Trace Format
6. Click the Trace hyperlink to view the imported trace results in CodeWarrior

Software Analysis format.
7. Click the Data Visualization hyperlink to view the graphical representation of the

imported trace results.

Viewing Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

80 NXP Semiconductors

Figure 3-30. Data Visualization

The Data Visualization graph allows you to monitor variables of your application. You
can identify and chart variables of the application against time. The chart displays tooltips
when you place mouse cursor over the circular data dots.

The symbols have different sizes, so that multiple series points which coincide (ox/oy
values) are visible. You can change the values displayed on the ox (time) axis between
time and any of the series.

Figure 3-31. Changing Values Displayed on Time Axis

You can zoom-in and zoom-out the information in the graph using mouse scroll up and
down. You can also select a particular area on the graph to zoom-in the information.
Right-click in the graph to open a context menu, which allows you to:

• adjust X and Y axis range,
• show/hide legend,

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 81

• zoom-in/zoom-out the graph,
• zoom-in/zoom-out information on X axis or Y axis,
• save graph as picture,
• set various properties of graph such as color, legend, and grid style, and
• change series appearance, for example, show/hide, line color, symbol color/shape/

size, show/hide labels
• logarithmic scale.

For more information, refer Data Visualization.

3.4.2 Controlling Trace Generation

Every project that has the Trace and Profile enabled will be listed in the Software
Analysis view. You can control the generation of trace from the Software Analysis view
using:

• Resume/Suspend Toggle Button
• Reset Button

3.4.2.1 Resume/Suspend Toggle Button

The Resume/Suspend toggle button is used to start or stop the trace. This toggle button
appears on launching the debug session of an application. The default status of trace
collection is ON. Therefore, when the application is debugged, the Suspend toggle
button appears next to the data source. When clicked, the button toggles to Resume.

Figure 3-32. Stop Toggle Button

To stop trace collection:

1. Debug the application.

Viewing Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

82 NXP Semiconductors

The Suspend toggle button appears next to the data source name in the Software
Analysis view.

2. When the application halts at the program entry point main(), click the Suspend
toggle button.

The button toggles to Resume.

3. Click Resume in the Debug view.
4. Click Suspend in the Debug view after some time.
5. Look at the trace data in the Software Analysis view.

The trace is not collected.

To start trace collection:

1. Click Resume toggle button.

The button toggles to Suspend.

2. Click Resume in the Debug view.
3. Click Suspend in the Debug view after some time.
4. Look at the trace data in the Software Analysis view.

The trace is collected.

The toggle button disappears when you click Resume in the Debug view or terminate the
debug session. After clicking Suspend in the Debug view, it is visible again with the last
selected status.

3.4.2.2 Reset Button

The Reset button lets you to reset trace during the debug session. The trace data can be
reset only when the debug session is suspended. The Reset button is enabled only when
debug session is suspended and there is trace available to be reset. The user interface
provides three options that you can use to perform the rest action:

• The Reset button in the Software Analysis view
• The Reset button in the Debug view
• The Reset option in the context menu on right-clicking in the Debug view

Chapter 3 Collecting Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 83

When the reset action is performed, the trace data collected so far gets deleted and trace
collection starts from the point where trace collection stopped. This feature is useful if
you are collecting continuous trace and want to view trace data after a particular point of
time. So you can perform the reset action which will erase the trace data collected so far
and will start collecting trace from that point onwards.

To reset trace:

1. Collect trace data in Continuous mode.
2. View trace data.
3. Click Reset in the Software Analysis view.

Figure 3-33. Reset Button in Software Analysis View
4. Click Resume in the Debug view.
5. Click Suspend in the Debug view.
6. View trace data.

The old trace data will be removed and trace data collected from where it stopped is
displayed.

NOTE
The Reset button is not available for Cfv2-v4 targets as trace on
these targets is collected via Tracelink, which cannot collect
trace continuously.

Viewing Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

84 NXP Semiconductors

Chapter 4
Viewing Data

You can view the collected data for various targets such as HCS08, ColdFire V1, Kinetis,
MPC56xx and DSC from the data file generated after running the application in the
following viewers.

• Trace Data
• Timeline
• Critical Code Data
• Performance Data
• Call Tree

You can also view trace data of the other project by importing the trace data file of
another project into your project using the Import wizard. For more information, refer
Importing Trace Data Offline.

NOTE
This chapter demonstrates how to view collected data on the
Kinetis target. The process of viewing data for all the targets is
same.

4.1 Trace Data

To view trace data:

1. In the Software Analysis view, expand the project name.

The data source is listed under the project name.

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 85

NOTE
If the Software Analysis view is not open already, select
Window > Show View > Software Analysis from the
menu bar.

2. Click the Trace hyperlink.

The Trace Data viewer appears.

Figure 4-1. Trace Data Viewer

The Trace Data viewer displays the trace data collected by the Kinetis target in a tabular
form. You can move the columns to the left or right of another column by dragging and
dropping.

NOTE
Depending on the application and runtime conditions, the last
few instructions are missed in the trace results.

The table below describes the fields of the Trace Data viewer.

Table 4-1. Trace Data - Description of Fields

Name Description

Index Displays the order number of the instructions.

Event Source Displays program trace messages from ETM (Merlin) or
special messages from ITM.

Description Displays detailed information about the trace line.

Source Displays the source function of the trace line if it is a call or a
branch.

Table continues on the next page...

Trace Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

86 NXP Semiconductors

Table 4-1. Trace Data - Description of Fields (continued)

Name Description

Target Displays the target function of the trace line if it is a call or a
branch.

Type Displays the type of the trace line, which can either be a linear
instruction, a branch, a call, or a custom message.

Timestamp Displays the absolute clock cycles that the instruction takes to
execute.

You can perform the following actions from the Trace Data viewer:

• Click the navigation buttons available to move between the trace data.
• Click the Go to Start of Trace button to go to the beginning of trace data
• Click the Go to Previous Trace Entry button to go to the previous trace entry
• Click the Go to Next Trace Entry button to go to the next trace entry
• Click the Go to End of Trace button to go to the end of trace data

• Click the Expand All button to display the source as well as assembly code of the
instructions in the trace viewer.

• Click the Collapse All button to display the assembly code only.
• Click the Search button to find and filter trace data.
• Click the Export to CSV button to export trace data to a CSV file.
• Click the Configure Table button to configure time unit and time format.

This topic contains the following sub-topics:
• Exporting Trace Data
• Configuring Time Unit and Time Format
• Customizing Trace Data Viewer

4.1.1 Exporting Trace Data

To export trace data to a CSV file:

1. Click the Export to CSV button in the Trace Data viewer to display the Exporting
Trace Data dialog box.

Chapter 4 Viewing Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 87

Figure 4-2. Exporting Trace Data Dialog Box
2. Select the Export Full Trace option to export complete trace data to a CSV file else

select Export Partial Trace.
3. Specify the begin and end index of the trace data if you have selected the Export

Partial Trace option.
4. Click OK.

The Export Trace Data to CSV dialog box appears.

5. Browse to the location where you want to save the trace data.

This is how you export trace data to a CSV file.

4.1.2 Configuring Time Unit and Time Format

The Configure Table button in the Trace Data viewer allows you to perform two
actions:

• Configure Time Unit - Lets you set CPU frequency and convert the clock cycles,
displayed in the Timestamp column, into real time in milliseconds, microseconds, or
nanoseconds. Click this button and select the Configure Time Unit option. To
convert the clock cycles into milliseconds, microseconds, or nanoseconds, select the
corresponding option.

Trace Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

88 NXP Semiconductors

Figure 4-3. Configuring Time Unit

The Set CPU Frequency option allows you to set the CPU frequency needed to
convert the clock cycles into real time. Select this option to display the Set CPU
Frequency dialog box. Set the new CPU frequency according to requirements.

NOTE
The Configure Time Unit option is available in all other
viewers also, that is Critical Code Data , Timeline ,
Performance , and Call Tree . All the viewers share the
same time and frequency that you set for a particular
viewer. For example, if you set time in microseconds for
Trace Data viewer, all other viewers will display time in
microseconds.

• Configure Time Format - Enables the Timestamp column of the Trace Data
viewer for time formatting, Radix : Hexadecimal or Decimal and Value : Absolute or
Delta. Time radix formatting is available only if time unit is set to Time in cycles .
The default format of time is displayed in Decimal and Absolute value. Delta is
calculated for same source event. The Delta value for a specific timestamp is the
difference between current timestamp and previous timestamp with same source
event as current one. If Delta value is negative, it will be displayed as zero.

Figure 4-4. Configuring Time Format

NOTE
For HCS08 and ColdFire targets, the current value is a
difference between current timestamp and the value from
the previous row trace. For Kinetis (ITM and ETM source

Chapter 4 Viewing Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 89

events), the difference is made with timestamp from the
previous row only if it has the same source event as current,
otherwise the difference is made with the previous
timestamp that has the same source event as current.

4.1.3 Customizing Trace Data Viewer

You can modify the appearance or display of the trace results on the Trace Data viewer.
Right-click a column to open a context menu that lets you perform the following actions:

• Hide column - Allows you to hide column(s). To hide a column on the Trace Data
viewer, select that column, right-click and select the Hide column option from the
context menu. To display it back, select the Show all columns option from the
context menu. To hide multiple columns, select the columns with Ctrl key pressed,
right-click and select the Hide column option from the context menu.

• Create column group - Allows you to group multiple columns into one. To group
columns, select the columns with Ctrl key pressed. Right-click and select the Create
column group option. The Create Column Group dialog box appears.

Figure 4-5. Create Column Group Dialog Box

Type a name for the group in the Group Name text box and click Group . The
figure below shows the Event Source and Description columns grouped together.

Trace Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

90 NXP Semiconductors

Figure 4-6. Columns Grouping
• Ungroup columns - To ungroup the columns, select the grouped columns, right-click

and select the Ungroup columns option from the context menu.
• Choose columns - You can set the columns that you want to display on the Trace

Data viewer. Right-click any column and select the Choose columns option. The
Column Chooser dialog box appears.

Figure 4-7. Column Chooser Dialog Box

Chapter 4 Viewing Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 91

Select the column in the Selected Columns section, and use the up and down arrow
buttons to position the column up or down according to your choice. Use the left and
right arrow buttons to move the columns from Available Columns to Selected
Columns and vice-versa. The columns moved to the Available Columns section are
not shown on the Trace Data viewer. Click Done to save the settings.

• Rename column - Select the column, right-click and select the Rename column
option. The Rename Column dialog box appears. Type a new name for the column
in the Rename text box and click OK.

Figure 4-8. Rename Column Dialog Box

4.2 Timeline

The timeline data displays the functions that are executed in the application and the
number of cycles each function takes when the application is run.

To view timeline data:

1. In the Software Analysis view, expand the project name.

The data source is listed under the project name.

2. Click the Timeline hyperlink.

The Timeline viewer appears.

Timeline

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

92 NXP Semiconductors

Figure 4-9. Timeline Viewer Displaying Timeline Data

The Timeline viewer shows a timeline graph in which the functions appear on y-axis and
the number of cycles appear on x-axis. The green-colored bars show the time and cycles
that the function takes. The gray-colored bar represents the Low Power WAIT Mode of
the application.

The TraceTimelineEditor viewer also displays the following buttons:

• Selection Mode
• Zoom Mode
• Full View
• Edit Groups
• Configure Table

4.2.1 Selection Mode

The Selection Mode allows you to mark points in the function bars to measure the
difference of cycles between those points. To mark a point in the bar:

1. Click Selection Mode.
2. Click on the bar where you want to mark the point.

Chapter 4 Viewing Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 93

A yellow vertical line appears displaying the number of cycles at that point.

3. Right-click another point in the bar.

A red vertical line appears displaying the number of cycles at that point along with
the difference of cycles between two marked points.

Figure 4-10. Selection Mode to Measure Difference of Cycles Between Functions

You might view a difference in the time cycles displayed in the Timeline and the
Critical Code viewer. The difference is caused by the events in the functions (in your
source code) that have no new timestamp. For timeline, any instruction that has no
timestamp information is considered to take one CPU cycle.

4.2.2 Zoom Mode

The Zoom Mode allows you to zoom-in and zoom-out in the timeline graph. Click Zoom
Mode and then click on the timeline graph to zoom-in. To zoom-out, right-click in the
timeline graph. You can also move the mouse wheel up and down to zoom-in and zoom-
out.

4.2.3 Full View

Timeline

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

94 NXP Semiconductors

The Full View allows you to get back to the original view if you selected the zoom mode.

NOTE
The Selection Mode is the default mode of the timeline view.

4.2.4 Edit Groups

The Edit Groups lets you customize the timeline according to your requirements. For
example, you can change the default color of the line bars representing the functions to
differentiate between them. You can add/remove a function to/from the timeline. To
perform these functions, select Edit Groups. The Edit Groups dialog box appears.

Figure 4-11. Edit Groups Dialog Box

You can perform the following operations in the Edit Groups dialog box:

• Add/Remove Function
• Edit Address Range of Function
• Change Color
• Add/Remove Group
• Merge Groups/Functions

4.2.4.1 Add/Remove Function

Chapter 4 Viewing Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 95

Right-click the function name in the Name column, and select Insert Function or press
Ctrl+F to add a function. Select Delete Selected from the context menu to delete the
function from the graph. You can disable a function from the graph by clearing the
corresponding checkbox in the Name column. Check it again to include it in the graph.

4.2.4.2 Edit Address Range of Function

1. Select the function of which you want to change the address range.
2. Double-click the cell of the Addresses column of the selected function.

The cell becomes editable.

3. Type an address range for the group/function in the cell.

You can specify multiple address ranges to a function. The multiple address ranges are
separated by a comma.

4.2.4.3 Change Color

You can change the color of a function displayed as a horizontal bar in the timeline
graph. Click the Color column of the corresponding function, and select the color of your
choice from the Color window that appears.

4.2.4.4 Add/Remove Group

A group is a range of addresses. In case, you want to view trace of a part of a function
only, for example, for loop, you can find the addresses of the loop and create a group for
those addresses.

To add a group:

1. Right-click the row, in the Edit Groups dialog box, where you want to insert a
group, and select Insert Group from the context menu. Alternatively, press the Ctrl
+G key.

A row is added to the table with new as function name.

Timeline

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

96 NXP Semiconductors

Figure 4-12. Adding Group
2. Double-click the new group cell.

The cell becomes editable.

3. Type a name for the group, for example, MyGroup.
4. Double-click the cell of the corresponding Addresses column, and edit the address

range according to requirements, for example, 0x1fff0330 - 0x1fff035f.
5. Change the color of the group.

Figure 4-13. Edit Groups Dialog Box After Editing Address Range and Color of Group
6. Click OK.

The MyGroup group is added to the timeline. The MyGroup group covers a bit of the
printf_console group and full address range of the strlen group. The uncovered
address range will become part of the <other> group, as shown in the figure below.

NOTE
In case the address range you entered overlaps with the
address range of any existing function, you get the

Chapter 4 Viewing Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 97

Overlapped Groups message after clicking OK. You can
disable the functions that are overlapped with the address
range of the added group.The printf_console and strlen
functions have been disabled, as shown in the figure above,
to prevent overlapping. Disabling a function does not delete
the function.

Figure 4-14. Timeline After Adding Group

To delete a group, select it, right-click the Edit Groups dialog box, and select the Delete
Selected option from the context menu. You can also remove a group from the graph by
clearing the corresponding checkbox in the Name column. Check it again to include it in
the graph.

4.2.4.5 Merge Groups/Functions

1. In the Edit Groups dialog box, select the function/group to be merged.
2. Drag and drop it in the function/group with which you want it to get merged with.

Both the functions/groups merge into a single function/group that covers both
address ranges, as shown in figure below, where the __ConsoleWrite function is merged
into another function _write_console.

Timeline

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

98 NXP Semiconductors

Figure 4-15. Merging Functions/Groups
3. Click OK.

Merging is useful in case there are many functions and you do not want to view trace of
each and every function. You cannot undo this operation, that is you cannot separate the
merged functions/groups. To view the original trace data, reopen the Trace Data viewer.

4.2.5 Configure Table

The Configure Table button lets you configure time unit in cycles, milliseconds,
microseconds, and nanoseconds. For example, to display time displayed in the timeline
graph in milliseconds, select Configure Table > Configure Time Unit > Milliseconds .
It also allows you to set CPU frequency. For more information, refer Configuring Time
Unit and Time Format.

4.3 Critical Code Data

To view critical code data:

1. In the Software Analysis view, expand the project name.

The data source is listed under the project name.

Chapter 4 Viewing Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 99

2. Click the Critical Code hyperlink.

The Critical Code viewer appears.

Figure 4-16. Critical Code Viewer

The critical code data displays the summarized data of a function in a tabular form. The
table below describes the fields of the critical code data. The columns are movable; you
can drag and drop the columns to move them according to your requirements.

Table 4-2. Critical Code Data - Description of Fields

Name Description

Address Displays the start address of the function.

Function Displays the name of the function that has executed.

Coverage % Displays the percentage of number of assembly instructions
executed from the total number of assembly instructions in a
function.

ASM Decision Coverage % Displays the percentage of decision coverage computed for
direct and indirect conditional branches.

ASM Count Displays the number of lines executed in the function.

Time (CPU Cycles) Displays the total number of clock cycles that the function
takes.

Size Displays the number of bytes required by each function.

Critical Code Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

100 NXP Semiconductors

The Critical Code viewer divides the critical code data in two tabs: Critical Code and
File Coverage.

4.3.1 Critical Code Tab

The Critical Code tab displays data into two views; the top view displays the summary
of the functions, and the bottom view displays the statistics for all the instructions
executed in a particular function. Click a hyperlinked function in the top view of the
Critical Code viewer to view the corresponding statistics for the instructions executed in
that function. For example, the statistics of the main() function are shown in the figure
below.

Figure 4-17. Statistics of Critical Code Data

The table below describes the fields of the statistics of the critical code data.

Chapter 4 Viewing Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 101

Table 4-3. Description of Statistics of Critical Code Data

Name Description

Line/Address Displays either the line number for each instruction in the
source code or the address for the assembly code.

Instruction Displays all the instructions executed in the selected function.

Coverage For C source lines, displays the percentage of number of
assembly instructions executed from the total number of
assembly instructions corresponding to the source line. For
assembly source lines, it shows if the instructions were
executed or not.

ASM Decision Coverage Displays the decision coverage computed for direct and
indirect conditional branches. It is the mean value of the
individual decision coverages. So if a function has two
conditional instructions, one with 100% and another with 50%
decision coverage, the decision coverage would be (100 +
50) / 2 = 75% . It is calculated only for assembly instructions
and not for C source code.

ASM Count Displays the number of times each instruction is executed.

Time (CPU Cycles) Displays the total number of clock cycles that each instruction
in the function takes.

Click the column header to sort the critical code data by that column. However, you can
only sort the critical code data available on the top view. The table below lists the buttons
available in the statistics view of the Critical Code tab.

Table 4-4. Buttons Available in Statistics View of Critical Code Tab

Name Button Description

Search Lets you search for a particular text in
the statistics view. In the Search text
box, type the data that you want to
search and click the Search button. The
first instance of the data is selected in
the statistics view. Click the button again
or press the Enter key to view the next
instances of the data.

Previous function Lets you view the details of the previous
function that was displayed in the bottom
view. Click it to view the details of the
previous function.

Next function Lets you view the details of the next
function that was displayed in the bottom
view. Click it to view the details of the
previous function.

Export Lets you export the critical code data of
both top and bottom views in a CSV file.
Click the button and select the Export
the statistics above option to export the
details of the top view or the Export the
statistics below option to export the
details of the bottom view respectively.

Table continues on the next page...

Critical Code Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

102 NXP Semiconductors

Table 4-4. Buttons Available in Statistics View of Critical Code Tab (continued)

Name Button Description

Configure table Lets you show and hide column(s) of the
critical code data. Click the button and
select the Configure the table above
option to show/hide columns of the top
view or the Configure the table below
option to show/hide columns of the
bottom view. The Drag and drop to
order columns dialog box appears in
which you can check/uncheck the
checkboxes corresponding to the
available columns to show/hide them in
the Critical Code viewer. The option
also allows you to set CPU frequency
and set time in cycles, milliseconds,
microseconds, and nanoseconds.

Graphics Lets you display the histograms in two
colors for the CPU Cycles and ASM
Count columns in the bottom view of the
critical code data. Click the button and
select the Assembly/Source > ASM
Count or Assembly/Source > CPU
Cycles option to display histograms in
the ASM Count or CPU Cycles column.
The colors in these columns differentiate
source code with the assembly code.

Show code Lets you display the assembly or mixed
code in the statistics of the critical code
data. Click the button and select the
Assembly option to display the
assembly code or the Mixed option to
display the mixed code in the statistical
details.

4.3.2 File Coverage Tab

The File Coverage tab displays information about the lines executed from each file or the
functions executed form each library in the application.

Click the File Coverage tab to display the file coverage data.

Chapter 4 Viewing Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 103

Figure 4-18. File Coverage Tab

The table below describes the fields of the file coverage data.

Table 4-5. Description of File Coverage Data

Name Description

Name Displays the name of the file.

Number of Lines Displays the size of the file in number of lines present in the
file.

Lines Executed Displays the number of lines executed in the file.

Coverage % Displays the percentage of number of lines executed
compared to the total number of lines, that is (lines executed /
number of lines) * 100.

You can perform the Export and Configure table actions on the file coverage data.

4.4 Performance Data

To view performance data:

1. In the Software Analysis view, expand the project name.

The data source is listed under the project name.

2. Click the Performance hyperlink.

The Performance viewer appears.

Performance Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

104 NXP Semiconductors

Figure 4-19. Performance Viewer

The Performance viewer is divided into two views:

• The top view presents function performance data in the Function Performance table.
It displays the count and invocation information for each function that executes
during the measurement, enabling you to compare the relative data for various
portions of your target program. The information in the Function Performance table
can be sorted by column in ascending or descending order. Click the column header
to sort the corresponding data. The table below describes the fields of the Function
Performance table.

• The bottom view or the Call Site Performance table presents call pair data for the
function selected in the Function Performance table. It displays call pair relationships
for the selected function, that is which function called which function. Each function
pair consists of a caller and a callee. The percent caller and percent callee data is also
displayed graphically. The functions are represented in different colors in the pie
chart, you can move the mouse cursor over the color to see the corresponding

Chapter 4 Viewing Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 105

function. The next following table describes the fields of the Call Site Performance
table. You cannot sort the columns of this table.

Table 4-6. Field Description of Function Performance
Table

Name Description

Function Name Name of the function that has executed.

Num Calls Number of times the function has executed.

Inclusive Cumulative metric count during execution time spent
from function entry to exit.

Min Inclusive Minimum metric count during execution time spent
from function entry to exit.

Max Inclusive Maximum metric count during execution time spent
from function entry to exit.

Avg Inclusive Average metric count during execution time spent
from function entry to exit.

Percent Inclusive Percentage of total metric count spent from function
entry to exit.

Exclusive Cumulative metric count during execution time spent
within function.

Min Exclusive Minimum metric count during execution time spent
within function.

Max Exclusive Maximum metric count during execution time spent
within function.

Avg Exclusive Average metric count during execution time spent
within function.

Percent Exclusive Percentage of total metric count spent within
function.

Percent Total Calls Percentage of the calls to the function compared to
the total calls.

Code Size Number of bytes required by each function.

Table 4-7. Field Description of Call Site Performance
Table

Name Description

Caller Name of the calling function.

Callee Name of the function that is called by the calling
function.

Num Calls Number of times the caller called the callee.

Inclusive Cumulative metric count during execution time spent
from function entry to exit.

Min Inclusive Minimum metric count during execution time spent
from function entry to exit.

Max Inclusive Maximum metric count during execution time spent
from function entry to exit.

Table continues on the next page...

Performance Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

106 NXP Semiconductors

Table 4-7. Field Description of Call Site Performance Table
(continued)

Name Description

Avg Inclusive Average metric count during execution time spent
from function entry to exit.

Percent Callee Percent of total metric count during the time the
selected function is the caller of a specific callee.
The data is also shown in the Caller pie chart.

Percent Caller Percent of total metric count during the time the
selected function is the callee of a specific caller.
The data is also shown in the Callee pie chart.

Call Site Address from where the function was called.

You can move the columns to the left or right of another column depending on your
requirements by dragging and dropping. You can perform the Export and Configure table
actions on the performance data similar to critical code data. You can also view the
previous and next functions of the performance data using the icons available in the lower
section of the Performance viewer.

4.5 Call Tree

To view call tree data:

1. In the Software Analysis view, expand the project name.

The data source is listed under the project name.

2. Click the Call Tree hyperlink.

The Call Tree viewer appears.

Chapter 4 Viewing Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 107

Figure 4-20. Call Tree Viewer

In the Call Tree viewer, START is the root of the tree. You can click "+" to expand the
tree and "-" to collapse the tree. It shows the biggest depth for stack utilization in Call
Tree and the functions on this call path are displayed in green color.

The Call Tree nodes are synchronized with the source code. You can double-click the
node to view the source code.

The table below describe the fields of Call Tree data. The columns are movable; you can
move the columns to the left or right of another column depending on your requirements
by dragging and dropping.

Table 4-8. Call Tree Viewer Fields

Name Description

Function Name Name of function that has executed.

Num Calls Number of times function has executed.

% Total calls of parent Percent of number of function calls from total number of calls
in the application.

% Total times it was called Percent of number of times a function was called.

Inclusive Time Cumulative count during execution time spent from function
entry to exit.

You can set CPU frequency and set Inclusive Time displayed in the Call Tree viewer in
cycles, milliseconds, microseconds, and nanoseconds. Click the Configure Table button
to configure time unit and set CPU frequency. For more information, refer Configuring
Time Unit and Time Format.

Call Tree

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

108 NXP Semiconductors

NOTE
While a debug session is running, if you relaunch the same
debug session by clicking the Debug icon or pressing the F11
key, the trace data is not collected anymore for the initial debug
session. An error message will appear, as shown in the figure
below. On clicking OK, the second debug session will
terminate and trace will not collect.To collect trace, terminate
the initial debug session and start it again.

Figure 4-21. Error Message

4.6 Importing Trace Data Offline

You can import a trace data file offline from one project to another. Trace data can be
imported into an existing project or a new project using the Import wizard. Importing a
trace data file or raw trace in an existing project and existing launch config needs to be
performed when you want to utilize that project's resources, that is the elf and the source
mappings.

Before importing a raw trace into an existing project, replace the executable file (elf) of
the existing project with the executable file of the project associated with the trace being
imported. Make sure that you keep the original name of the executable file (of the
existing project).

The executable is also required when you are importing raw trace data into a new project.

To import a trace data file offline to a new project:

1. Select File > Import to open the Import wizard.
2. Expand the Software Analysis node and select Trace.

Chapter 4 Viewing Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 109

Figure 4-22. Select Page - Import Wizard
3. Click Next to display the Import Trace page of the Import wizard.

Importing Trace Data Offline

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

110 NXP Semiconductors

Figure 4-23. Import Trace Page
4. Click Browse and locate the trace data file of the project that you want to import into

your project. The trace data file is located in the .Analysis Data folder of the project in
the workspace.

5. Select the New project option to import trace data into a new project, which is
created with a dedicated launch configuration. You can use this launch configuration
to update the source path mappings in case sources have changed from the time of
raw trace data collection.

NOTE
If you select the Existing project option in the Import To
group in Figure 4-23 and click Next, the Import Trace to
Existing Project page appears. In this page, type or select
the project in which you want to import the trace data. Type
a new file name for the trace data file in the Enter new file
name text box. This field is optional.

6. Click Next to display the Import Trace Configuration page. This page allows you
to specify the trace configuration details of the project to display imported trace data
based on the executable file or launch configuration used during trace collection.

Chapter 4 Viewing Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 111

Figure 4-24. Import Trace Configuration Page
7. Specify the target of your project in the System drop-down box.
8. In the Source Code Correlation group, you can select any of the following options:

• None if you do not want to correlate trace data with the source of your project,
that is when the trace being imported is not program trace. The trace data will
appear without displaying the source lines corresponding to the trace events.

• Application if you want to correlate trace data with the source. Click Browse to
locate the executable file (.abs/ .elf/ .afx) of the application used during trace
collection.

NOTE
In case you are importing trace into an existing project, you
can select the Application option if the trace data you are
importing was not collected with any of the project's
executable (or it has changed in the meantime). The
imported raw trace will be (re)decoded with the new
executable. Click Browse to locate the executable file.

NOTE
The Launch Configuration option is also displayed when
you choose to import trace data into an existing project.
Use this option when the raw trace was collected with one
of the project's launch configuration. You will reuse the
project's resources specified in the selected launch

Importing Trace Data Offline

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

112 NXP Semiconductors

configuration (elf, source path mappings). Make sure that
the elf did not change from the time when the imported raw
trace was collected.

9. Click Finish.

If you kept the View trace data on finish checkbox checked in the Figure 4-23, the
imported trace data will automatically open in the Trace Data viewer of your project. If
you uncheck this option, the imported data will be visible from the Software Analysis
view. The imported trace data is saved in the .Analysis Data folder of your project also.

After importing trace data, the Decoding Trace dialog box appears displaying the
progress of the trace to be decoded. If the trace data file to be imported is relatively small
in size, the Decoding Trace dialog box disappears after a few seconds. However, when
you import a heavy trace file (around 300 - 400 KB), the Decoding Trace dialog box
displays the percentage of trace to be decoded.

Figure 4-25. Decoding Trace

If you do not want to see the complete contents of the trace file, you can cancel the trace
in between by clicking Cancel . For example, if you cancel the trace decoding at 20%,
only that much amount of trace will be displayed in the Trace Data viewer. After
cancelling, you get a message box displaying that decoding is not finished and trace
displayed will be incomplete. Click OK in the message box.

Chapter 4 Viewing Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 113

Importing Trace Data Offline

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

114 NXP Semiconductors

Chapter 5
Setting Tracepoints (HCS08)
Tracepoint is a point in the target program where start or stop triggers are set at a line of
the source code or the assembly code or on the memory address. The start and stop
tracepoints are triggers for enabling and disabling the trace output. Tracepoints are used
for optimizing trace collection by tracing only on the code of interest and discarding the
rest of the code.

The advantage of setting start and stop tracepoints is that the trace data can be captured
from the specific part of the program. This solves the problem of tracing a large
application because a full trace is sometimes extremely difficult to follow. Tracepoints
reduce intrusiveness and help collecting the trace data closer to the point of interest.

The trace data displays the trace result based on the tracepoints. This chapter explains
how to set start and stop tracepoints and how to enable and disable a tracepoint.

The tracepoints for the HCS08 target can be set on:

• addresses and source files

The tracepoints on addresses and source files can be set in the editor area and the
Disassembly view. The source line tracepoint is set in the editor area, and the
address tracepoint is set in the Disassembly view.

• data and memory

The tracepoints on data and memory can be set from the Variables and Memory
views.

This chapter consists of the following topics:

• Conditions for Starting/Stopping Triggers
• Trace Modes
• Enabling and Disabling the Tracepoints

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 115

5.1 Conditions for Starting/Stopping Triggers

In the HCS08 target, A and B are two address comparators referred as triggers that make
one big trigger. The trace collection starts or ends depending on the From or Until trigger
selected along with a combination of actions involving A and B.

Both the triggers, A and B, perform the same action depending on the option selected
from the Trace Start/Stop Conditions group. If you select the Collect Trace From
Trigger option, both A and B are used for starting the trace collection. If you select the
Collect Trace Until Trigger option, both A and B are used for stopping the trace
collection.

If From trigger is selected, the application activates the trace when conditions A and B
are met and starts collecting the trace data.

• In the Automatically mode, if you set the Break on FIFO Full option, the
application runs until the trace buffer fills and then stops automatically. If you do not
set the Break on FIFO Full option, the application keeps running until you suspend
it manually, but does not collect trace anymore. So either way, the trace is collected
only till the trace buffer gets filled for the first time.

• In the Continuously mode, if you do not check the Keep Last Buffer Before
Trigger checkbox, the application runs until the trace buffer fills. While the
application is being debugged, it stops temporarily in background, resumes
execution, and then collects a new buffer of trace without using triggers anymore.
This new buffer of trace is collected till you manually suspend the application.

If you set the Keep Last Buffer Before Trigger option, the trace is collected and
trace buffer is overwritten until the trigger is hit, that is until trigger conditions are
met. The application stops temporarily, resumes, and collects more trace without
using triggers anymore till you manually suspend the application.

NOTE
In the Continuously mode, the application always stops at
the address where you have suspended the application
manually. The application does not stop on the trigger
address. The Keep Last Buffer Before Trigger option
only control the data that is traced around the trigger. After
the necessary trigger conditions are met, the trace data is
collected normally till you suspend the application
manually.

• In the Collect Data Trace mode, the data involved in a read and/or write access to
the addresses specified by triggers, A and B, such as the address of a particular
control register or program variable, is captured. If the Break on FIFO Full option is

Conditions for Starting/Stopping Triggers

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

116 NXP Semiconductors

set, the application stops automatically, else the application stops when you suspend
it manually.

If Until trigger is selected, the application starts collecting trace and stops when
conditions for A and B are met.

• In the Automatically mode, when you set the Break on Trigger Hit option, the
trace gets collected until the trigger is hit, that is until trigger conditions are met. The
trace buffer is overwritten during trace collection; therefore, when conditions for A
and B are met, only last part of the buffer can be read. Whether the application stops
automatically or manually, the trace data that is collected is only the last part of the
buffer before the trigger.

NOTE
In the Continuously and Automatically modes, if the
Instruction Execute option is selected, triggers are set on
the program instruction execution. If the Memory Access
option is selected, the triggers are set on memory locations
and variables.

For the following trigger modes, trace starts from the triggered address rather than from
the first address in the trace buffer.

• Instruction at Address A is Executed
• Instruction at Address A or at Address B is Executed
• Instruction at Address A, Then Instruction at Address B are Executed
• Instruction at Address A is Executed and Value on Data Bus Match
• Instruction at Address A is Executed and Value on Data Bus Mismatch

For the following trigger modes, the trigger address cannot be determined. Therefore,
trace starts from the first entry in the trace buffer.

• Instruction Inside Range from Address A to Address B is Executed
• Instruction Outside Range from Address A to Address B is Executed

NOTE
For more information on trigger modes, refer Table 3-1.

Warning
If you are setting breakpoints with triggers for trace control in
the HCS08 target, ensure that you do not to use more than one
breakpoint. This is because on HCS08, two hardware debug
modules, BDC (Background debug controller) and DBG (debug
module) are used. Both debug modules can be used for setting
hardware breakpoints, while only DBG can be used for setting

Chapter 5 Setting Tracepoints (HCS08)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 117

triggers. The first breakpoint is set using BDC, any other
breakpoints will use DBG and will conflict with the triggers.
Therefore, it is mandatory not to use more than one breakpoint
when setting triggers on the HCS08 platform.

5.2 Trace Modes

The triggers can be set in the following trace modes:

• Collect Program Trace
• Continuously

This topic covers the following trigger types: Instruction at Address A, then
Instruction at Address B are executed, Instruction at Address A or Address B is
executed, Instruction Inside Range from Address A to Address B is Executed,
Instruction at Address A is Executed and Data Match/Mismatch on Data Bus.

• Automatically

This topic covers the following trigger types, Instruction at Address A is
executed and Instruction Outside Range from Address A to Address B is
Executed.

• Collect Data Trace

This topic covers the following trigger types: Capture Read/Write Values at Address
B and Capture Read/Write Values at Address B, After Access at Address A.

• Profile-Only
• Expert

NOTE
The HCS08 target does not generate trace data on the default
stationery project. This is because the default source code does
not contain any branch required for an HCS08 application to
generate trace. To generate trace, you need to add a subroutine
to the default code and call it from the main() function.

This topic contains the following sub-topics:
• Setting Triggers in Continuously Mode
• Setting Triggers in Automatically Mode
• Setting Triggers in Collect Data Trace Mode

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

118 NXP Semiconductors

• Collecting Trace in Profile-Only Mode
• Collecting Trace in Expert Mode

5.2.1 Setting Triggers in Continuously Mode

The Continuously mode collects trace continuously till you suspend the target
application. This topic explains how to set From trigger in the Continuously mode in the
editor area for the following trigger types.

• Instruction at Address A, Then Instruction at Address B are Executed
• Instruction at Address A or Address B is Executed
• Instruction Inside Range from Address A to Address B is Executed
• Instruction at Address A is Executed and Value on Data Bus Match
• Instruction at Address A is Executed and Value on Data Bus Mismatch

This topic also explains how to set Memory Access Triggers in the Continuously mode.

Before setting the triggers, refer Collecting Data chapter for information about how to
collect the trace and profiling data.

5.2.1.1 Instruction at Address A, Then Instruction at Address B are
Executed

To set the tracepoints in the editor area for the HCS08 target:

1. In the CodeWarrior Projects view, expand the Sources folder of your project.
2. Double-click the source file, for example, main.c to display its contents in the editor

area. Replace the source code in the main.c file with the source code shown below.
Listing: Source Code 1

#include <hidef.h> /* for EnableInterrupts macro */

#include "derivative.h" /* include peripheral declarations */

volatile int a, b;

void f() {}

void f1()
{
 b=1;
 b=2;
 b=3;
}

void f2()

Chapter 5 Setting Tracepoints (HCS08)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 119

{
 a=1;
 a=2;
 a=3;
}

void main(void) {
 EnableInterrupts;
 /* include your code here */
f();

f();

f();

for(;;) {
 __RESET_WATCHDOG();/* feeds the dog */

 f1();
 f2();
 } /* loop forever */

 /* please make sure that you never leave main */

}

3. Save and build the project.
4. Open the Debug Configurations dialog box, and select your project in the tree

structure.
5. Click the Trace and Profile tab, and check the Enable Trace and Profile checkbox.
6. Click Apply and close the Debug Configurations dialog box.
7. In the editor area, right-click the marker bar corresponding to the statement, f1();.
8. Select Trace Triggers > Toggle Trace Trigger A from the context menu. The same

option is also used to remove trigger A from the marker bar.
9. Right-click the marker bar corresponding to the statement, f2();.

10. Select the Trace Triggers > Toggle Trace Trigger B option from the context menu.
The same option is also used to remove trigger B from the marker bar.

NOTE
It is recommended to set both triggers in the same function
so that the trace data that is collected is meaningful.

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

120 NXP Semiconductors

Figure 5-1. Trigger A and Trigger B Set in the Editor Area

NOTE
Do not set tracepoints on the statements containing only
comments, brackets, and variable declaration with no value.
If tracepoints are set on invalid lines, they are automatically
disabled when the application is debugged.

11. Open the Debug Configurations dialog box, and select your project in the tree
structure.

12. Click the Trace and Profile tab.
13. Select the Collect Program Trace option in the Trace Mode Options group.
14. Select the Continuously option.
15. Select the Collect Trace From Trigger option in the Trace Start/Stop Conditions

group.
16. Select the Instruction at Address A, Then Instruction at Address B are Executed

option from the Trigger Type drop-down list.

Chapter 5 Setting Tracepoints (HCS08)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 121

17. Clear the Keep Last Buffer Before Trigger checkbox.
18. Ensure that the Instruction Execute option is selected in the Trigger Selection

group.
19. Click Apply to save the settings.
20. Click Debug to debug the application.
21. Collect the trace data following the steps explained in the topic Collecting Data.
22. Open the Trace Data viewer following the steps explained in the topic Viewing Data

to view the collected data.

The figure below shows the data files that are generated by the application in which the
data has been collected after setting the tracepoints in the source code.

In the figure, the trace data shows that the main() function calls the f2() function. Because
you selected the Instruction at Address A, Then Instruction at Address B are
Executed mode, both A and B trigger trace. Also, trace starts collecting from trigger B
after trigger A has occurred.

Figure 5-2. Trace Data After Setting From Trigger in Continuously Mode

The figure below shows the data file generated by the application in which the data has
been collected before setting the tracepoints in the source code. In this data file, the main
() function is called and it further calls the f(), f1(), and f2() functions. The f1() and f2()
functions are called in a loop.

Note that the data file generated with tracepoints, as shown in the above figure, is
different from the data file generated without the tracepoints, as shown in the figure
below.

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

122 NXP Semiconductors

NOTE
The trace data only contains destinations that cannot be
obtained from disassembly. For example, return addresses,
which are kept on stack, or conditional destinations, such as
jump address and next address.

Figure 5-3. Trace Data Before Setting Tracepoints

NOTE
Hover mouse pointer over a tracepoint icon in the marker bar to
view the attributes of the tracepoint on the corresponding line
of code.

The graph in figure below shows the timeline of the trace data which is collected after
setting the tracepoints. In this graph, you can see that the main() function calls the f1() and
f2() functions and not the f() function. To have a clearer view of the graph, you can
zoom-in or zoom-out in the graph by scrolling the mouse wheel up or down.

Chapter 5 Setting Tracepoints (HCS08)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 123

Figure 5-4. Graph Displaying Timeline of Trace Data

Similarly, you can collect the trace data with the Keep Last Buffer Before Trigger
checkbox checked in the Continuously mode. The trace collection remains same except
that the trace buffer is overwritten until the triggers are hit and only the last part of the
buffer trace is visible in the Trace Data viewer.

5.2.1.2 Instruction at Address A or Address B is Executed

You can set triggers A and B and collect trace using the Instruction at Address A or
Address B is Executed trigger type by following the steps explained in the topic
Instruction at Address A, Then Instruction at Address B are Executed. The only
difference is that you need to select the Instruction at Address A or Address B is
Executed option from the Trigger Type drop-down list.

The figure below shows the trace data that is collected after setting this trigger condition.
The collection of the trace data starts from the address corresponding to trigger A, that is
the f1() function, which occurs first in execution.

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

124 NXP Semiconductors

Figure 5-5. Trace Data - Instruction at Address A or Address B is Executed

5.2.1.3 Instruction Inside Range from Address A to Address B is
Executed

The Instruction Inside Range from Address A to Address B is Executed trigger type
is used to trigger on a program instruction execution inside the range, Address A -
Address B, where Address A is the address at which trigger A is set and Address B is the
address at which trigger B is set.

NOTE
For the MC9S08PT60 target specifically, the Instruction
Inside Range from Address A to Address B is Executed
trigger will hit when any instruction inside the range between
trigger address A and trigger address B matches with the data
on the bus or program address inside the range.

Chapter 5 Setting Tracepoints (HCS08)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 125

To collect trace using the Instruction Inside Range from Address A to Address B is
Executed trigger type:

1. In the CodeWarrior Projects view, select the Sources folder of your project.
2. Double-click the source file, for example, main.c to display its contents in the editor

area. Replace the source code in the main.c file with the source code shown below.
Listing: Source code 2

#include <hidef.h> /* for EnableInterrupts macro */

#include "derivative.h" /* include peripheral declarations */

#define MAX_IT 2

#define SIMPLE 1

typedef int(*FUNC_TYPE)(int);

void entry();

void InterruptTest();

void ContextSwitch(FUNC_TYPE, int);

int PerformanceWork (int);

void Performance1(void);

int Recursive(int);

void Launch(FUNC_TYPE f, int arg)
{
 f(arg);
}

void InterruptTest()
{}

void entry()
{
 volatile int iteration =0;
 InterruptTest();
 for (iteration =0; iteration < MAX_IT; /*iteration^=1*/ iteration++)
 { Launch(PerformanceWork, iteration);}
}

int PerformanceWork (int iteration)
{
 int ret = 0;
 if (iteration & 1) {
 Performance1();
 ret = 1;
 }
 else {
 Recursive(3);
 ret = 2;
 }
 return ret;
}

void Performance1(void)
{
}

int Recursive(int n)
{

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

126 NXP Semiconductors

 /* Recursively calculates 0 + 1 + 2 + ... + n */
 if (n <= 0) /* breakpoint here */
 {
 return 0;
 }
 else
 {
 return (n + Recursive(n-1));
 }
}

void main(void) {

 EnableInterrupts; /* enable interrupts */
 /* include your code here */
 Performance1();
 Recursive(2);
 Performance1();
 for(;;) {
 entry();
 __RESET_WATCHDOG(); /* feeds the dog */

 } /* loop forever */

}

3. Save and build the project.
4. Open the Debug Configurations dialog box, and select your project in the tree

structure.
5. Click the Trace and Profile tab, and check the Enable Trace and Profile checkbox.
6. Click Apply and close the Debug Configurations dialog box.
7. Set trigger A at ret = 1; and trigger B at ret = 2; in the PerformanceWork() function.

Figure 5-6. Setting Trigger A and Trigger B in Source Code - Instruction Inside Range
8. Open the Debug Configurations dialog box, and select your project in the tree

structure.

Chapter 5 Setting Tracepoints (HCS08)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 127

9. Click the Trace and Profile tab.
10. Select the Collect Program Trace option in the Trace Mode Options group.
11. Select the Continuously option.
12. Select the Collect Trace From Trigger option in the Trace Start/Stop Conditions

group.
13. Clear the Keep Last Buffer Before Trigger checkbox.
14. Ensure that the Instruction Execute option is selected in the Trigger Selection

group.
15. Select the Instruction Inside Range from Address A to Address B is Executed

option from the Trigger Type drop-down list.
16. Click Apply to save the settings.
17. Click Debug to debug the application.
18. Collect the trace data following the steps explained in the topic Collecting Data.
19. Open the Trace Data viewer following the steps explained in the topic Viewing Data

to view the collected data.

The figure below shows the data files that are generated by the application in which
trace starts from Recursive(3) (in PerformanceWork()), which is the first address that the
application finds between trigger A (ret = 1;) and trigger B (ret = 2;) address range
after hitting trigger A.

Figure 5-7. Trace Data - Instruction Inside Range

NOTE
In the Instruction Inside Range from Address A to
Address B is Executed trigger type, a time delay of one to
four instructions, depending on the processor type, might
occur when tracing starts.

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

128 NXP Semiconductors

This is how you can collect trace using the Instruction Inside Range from Address A
to Address B is Executed trigger type.

5.2.1.4 Instruction at Address A is Executed and Value on Data Bus
Match

The Instruction at Address A is Executed and Value on Data Bus Match trigger type
is used to trigger on a program instruction execution at trigger A address when the
opcode of that instruction matches a specific byte value. This trigger type is useful in
detecting the self-modifying instructions or code in RAM so that you can trace what
exactly executes when the instructions are modified.

For example, if in a source code, a random pointer is changing the instruction executed at
an address to a specific value (opcode), you can set a trigger at this instruction. Also, you
need to specify that particular opcode value while configuring the debug launcher. Now,
when the application executes and reaches the instruction where trigger is set, the
specified opcode value matches with the opcode of the instruction and the trigger is fired.

To set the Instruction at Address A is Executed and Value on Data Bus Match trigger
type:

1. In the CodeWarrior Projects view, select the Sources folder of your project.
2. Double-click the source file, for example, main.c to display its contents in the editor

area. Replace the source code in the main.c file with the source code shown in Listing:
Source code 2.

3. Save and build the project.
4. Open the Debug Configurations dialog box, and select your project in the tree

structure.
5. Click the Trace and Profile tab, and check the Enable Trace and Profile checkbox.
6. Select the Collect Program Trace option in the Trace Mode Options group.
7. Select the Continuously option.
8. Ensure that the Instruction Execute option is selected in the Trigger Selection

group.
9. Select the Collect Trace From Trigger option in the Trace Start/Stop Conditions

group.
10. Check the Keep Last Buffer Before Trigger checkbox if not checked.
11. Select the Instruction at Address A is Executed and Value on Data Bus Match

option from the Trigger Type drop-down list.
12. Click Apply to save the settings.
13. Click Debug to debug the application and collect the trace data.

Chapter 5 Setting Tracepoints (HCS08)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 129

14. After the application is debugged, set trigger A at entry(); in the main() function as
shown in figure below.

15. In the Disassembly view, copy first two hexadecimal digits at call to entry() from
main() as shown below.

Figure 5-8. Copying Hexadecimal Letters in Disassembly View
16. Open the Debug Configurations dialog box, and click the Trace and Profile tab.
17. In the Value to Compare on Data Bus text box, keep 0x and paste the two

hexadecimal digits.

Figure 5-9. Value to Compare on Data Bus Text Box
18. Click Apply and close the Debug Configurations dialog box.
19. Click the Terminate button in the Debug perspective to terminate the application.
20. Debug the application again.
21. Click Resume to resume the application and after a while click Suspend to suspend

the application.
22. Open the Trace Data viewer following the steps explained in Viewing Data to view

the collected data.

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

130 NXP Semiconductors

The figure below shows the trace data collected after setting the Instruction at Address
A is Executed and Value on Data Bus Match trigger type. When the opcode specified
in the Value to Compare on Data Bus text box matches with the opcode of the
instruction where trigger A is set, trigger is fired, and the collection of the trace data starts
from there.

Figure 5-10. Trace Data - Instruction at Address A is Executed and Value on Data Bus
Match

5.2.1.5 Instruction at Address A is Executed and Value on Data Bus
Mismatch

Like Instruction at Address A is Executed and Value on Data Bus Match , the
Instruction at Address A is Executed and Value on Data Bus Mismatch trigger type
is used in detecting self-modifying code in the memory. For example, one of the
instruction in your source code writes a new opcode at its address, ADDR, and you want
to trace what executes after the original opcode at ADDR has been replaced. You can set
trigger A at ADDR, select the Instruction at Address A is Executed and Value on Data
Bus Mismatch option, and specify the original opcode value in the debug configuration.
When the application will execute the modified opcode starting with ADDR, a mismatch
will occur, and the trigger will be fired.

Chapter 5 Setting Tracepoints (HCS08)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 131

5.2.1.6 Memory Access Triggers

The memory access triggers allow memory access to both variables and instructions. A
memory access trigger if set on an instruction fires when the instruction is fetched from
the memory. A memory access trigger if set on a variable fires when the variable is
fetched from the memory or when the variable is written back to the memory. When a
memory access trigger is set on a variable, trace collection starts from the first access to
that variable address.

To collect trace using Memory at Address A is Accessed:

1. In the CodeWarrior Projects view, expand the Sources folder of your project.
2. Double-click the source file, for example, main.c to display its contents in the editor

area. Replace the source code in the main.c file with the source code shown in Listing:
Source code 2.

3. Press the Enter key after the statement, void ContextSwitch(FUNC_TYPE, int); in the
source code.

4. Type the statement, volatile int a; at the cursor position.
5. In the main () function of the source code, before for(;;), type the statement, a = 1;.
6. Save and build the project.
7. Open the Debug Configurations dialog box, and select your project in the tree

structure.
8. Click the Trace and Profile tab, and check the Enable Trace and Profile checkbox.
9. Select the Collect Program Trace option in the Trace Mode Options group.

10. Select the Continuously option.
11. Select the Collect Trace From Trigger option in the Trace Start/Stop Conditions

group.
12. Clear the Keep Last Buffer Before Trigger checkbox.
13. Select the Memory Access option in the Trigger Selection group.
14. Select the Memory at Address A is Accessed option from the Trigger Type drop-

down list.
15. Click Apply to save the settings.
16. Click Debug to debug the application.
17. After the application is debugged, right-click in the Variables view, and select the

Add Global Variables option from the context menu.

The Add Globals dialog box appears.

18. Scroll down and select the variable a.
19. Click OK.

The Add Globals dialog box closes and the variable a is added in the Variables
view.

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

132 NXP Semiconductors

20. Right-click the variable a and select Toggle Triggers > Toggle HCS08 Trace
Trigger A from the context menu.

The Toggle HCS08 Trace Trigger dialog box appears.

21. Click OK.
22. Click Resume.

The tracing starts when the variable a is accessed.

23. Click Suspend after a while.
24. Open the Trace Data viewer following the steps explained in the topic Viewing Data

to view the trace results. The figure below shows the data files generated by the
application after setting memory access trigger A. The trace data starts collecting
from trigger A, that is a=1; onwards.

Figure 5-11. Trace Data After Setting Memory Access Trigger

This is how you can collect trace using the Memory at Address A is Accessed trigger
type.

NOTE
Similarly, you can set memory access triggers in the
Automatically mode. Also, you can set other memory access
triggers on variables or instructions, such as Memory at
Address A or Address B is Accessed, Memory Inside Range
from Address A to Address B is Accessed , Memory Outside
Range from Address A to Address B is Accessed , Memory
at Address A, Then Memory at Address B are Accessed ,
Memory access at Address A and Value on Data Bus

Chapter 5 Setting Tracepoints (HCS08)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 133

Match , Memory access at Address A and Value on Data
Bus Mismatch , and obtain trace results accordingly.

5.2.2 Setting Triggers in Automatically Mode

The Automatically mode collects trace till the trace buffer gets full. This topic explains
how to collect trace using the Instruction at Address A is Executed trigger type in:

• Automatically mode From the Disassembly View - From trace condition
• Automatically mode On Data and Memory - Until trace condition
• LOOP1 Mode

The topic also explains how to collect trace using the Instruction Outside Range from
Address A to Address B is Executed trigger type with From trace condition selected.

5.2.2.1 From the Disassembly View

To set a trigger in the Disassembly view:

1. In the CodeWarrior Projects view, expand the Sources folder of your project.
2. Double-click the source file, for example, main.c to display its contents in the editor

area. Replace the source code in the main.c file with the source code shown below.
Listing: Source code 3

#include <hidef.h> /* for EnableInterrupts macro */
#include "derivative.h" /* include peripheral declarations */

volatile int a, b, i;

void f(){}

void f1()
{
 b=1;
 b=2;
 b=3;
}

void f2()
{
 a=1;
 a=2;
 a=3;
}

void main(void)
{
 EnableInterrupts;
 /* include your code here */

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

134 NXP Semiconductors

 for(i=1;i<10;i++)
 {
 f();
 }

 f2();

 for(;;)
 {
 __RESET_WATCHDOG(); /* feeds the dog */
 f1();
 f2();
 } /* loop forever */
}

3. Save and build the project.
4. Open the Debug Configurations dialog box, and select your project in the tree

structure.
5. Click the Trace and Profile tab, and check the Enable Trace and Profile checkbox.
6. Select the Collect Program Trace option in the Trace Mode Options group.
7. Select the Automatically option.
8. Select the Collect Trace From Trigger in the Trace Start/Stop Conditions group.
9. Check the Break on FIFO Full checkbox.

10. Select the Instruction at Address A is Executed option from the Trigger Type
drop-down list.

11. Click Apply to save the settings.
12. Click Debug to debug the application.
13. In the Disassembly view, right-click the marker bar corresponding to the address line

of the function, f2() before _RESET_WATCHDOG().

Figure 5-12. Disassembly View
14. Select Trace Triggers > Toggle Trace Trigger A from the context menu.

Chapter 5 Setting Tracepoints (HCS08)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 135

The trigger icon, A appears in green color on the marker bar, in the editor area and
the Disassembly view.

15. Click Resume to continue collecting trace.

NOTE
Because you selected the Break on FIFO Full check box
in the Trace and Profile tab, the application will stop
automatically after the trigger hit. You do not need to stop
it manually by clicking Suspend.

16. Open the Trace Data viewer following the steps explained in the topic Viewing Data
to view the collected data.

The figure below shows the data files and the timeline graph that is generated by the
application in which the data has been collected after setting trigger A. You can see
Figure 5-3 to view the data files that are generated before setting tracepoints. The Trace
Data viewer in the figure below shows that trace starts collecting from where you set the
trigger, and when the trace buffer gets full, the application stops collecting trace. That is,
application starts collecting trace from f2() as highlighted in the figure, and continues till
buffer trace gets full.

Figure 5-13. Trace Data After Setting From Trigger in Automatically Mode

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

136 NXP Semiconductors

5.2.2.2 On Data and Memory

To set triggers on data and memory:

1. In the CodeWarrior Projects view, expand the Sources folder of your project.
2. Double-click the source file, for example, main.c to display its contents in the editor

area. Replace the source code in the main.c file with the source code shown in Listing:
Source code 3.

3. Open the Debug Configurations dialog box, and select your project in the tree
structure.

4. Click the Trace and Profile tab, and check the Enable Trace and Profile checkbox.
5. Select the Automatically option in the Trace Mode Options group.
6. Select Collect Trace Until Trigger in the Trace Start/Stop Conditions group.
7. Check the Break on Trigger Hit checkbox.
8. Select the Instruction at Address A is Executed option in the Trigger Type drop-

down list.
9. Click Apply to save the settings.

10. Click Debug to debug the application.
11. In the Disassembly view, view the address corresponding to the call to f2() before

__RESET_WATCHDOG().

Figure 5-14. Disassembly View - Selecting Function Address
12. Select Window > Show View > Other > Debug > Memory to open the Memory

view.

Chapter 5 Setting Tracepoints (HCS08)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 137

13. Click the Add Memory Monitor button in the Memory view to open the Monitor
Memory dialog box.

14. Enter the memory address in hexadecimal form in the Enter address or expression
to monitor text box.

Figure 5-15. Monitor Memory Dialog Box
15. Click OK.

The memory address appears in the Memory view.

16. Right-click the cell containing the memory address and select Toggle Triggers >
Toggle HCS08 Trace Trigger A option from the context menu.

Figure 5-16. Memory View

The Toggle HCS08 Trace Trigger dialog box appears.

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

138 NXP Semiconductors

Figure 5-17. Toggle HCS08 Trace Trigger Dialog Box
17. Click OK.
18. Select Window > Show View > Other > Analysis > Analysispoints to open the

Analysispoints view.

The Analysispoints view displays the trigger that you set on the memory address.

Figure 5-18. Analysispoints View
19. Click Resume.

The application stops automatically and trace is collected.

20. Open the Trace Data viewer following the steps explained in the topic Viewing Data
to view the trace results.

The figure below shows the data files generated by the application after setting trigger A
in the Automatically mode on memory.

Chapter 5 Setting Tracepoints (HCS08)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 139

Figure 5-19. Trace Data After Setting Until Trigger in Automatically Mode

Because you set the Until trigger at the memory address of f2(), the trace data is collected
and the trace buffer is overwritten till the trigger is hit. Therefore, only the last part of the
trace buffer is collected before the trigger, and the application stops at the memory
address of f2().

5.2.2.3 LOOP1 Mode

The LOOP1 Mode feature when selected writes a register to allow the hardware to use
the C comparator and not store duplicate addresses in trace. In LOOP1 capture mode, the
addresses for instructions executed repeatedly, for example, loops with no change of flow
instructions and recursive calls, are stored and showed in trace only once.

The hardware uses comparator C available only on variants with DBGv3, which cannot
be used for trace, to store the last FIFO address. Only comparators A and B can be used
for trace on all variants. However, in LOOP1 capture mode, comparator C is not
available for use as a normal hardware breakpoint, and is managed by logic in the DBG
module to track the address of the most recent change-of-flow event that was captured
into the FIFO buffer.

NOTE
The LOOP1 Mode option is visible only for the debug version 3
(DbgVer 3) targets, that is HCS08 target with three
comparators. For any other targets with two comparators, this
option is not visible.

To set a trigger in LOOP1 Mode:

1. In the CodeWarrior Projects view, select the Sources folder of your project.

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

140 NXP Semiconductors

2. Double-click the source file, for example, main.c to display its contents in the editor
area. Replace the source code in the main.c file with the source code shown in Listing:
Source code 4

3. Save and build the project.
4. Open the Debug Configurations dialog box, and select your project in the tree

structure.
5. Click the Trace and Profile tab, and check the Enable Trace and Profile checkbox.
6. Click Apply to save the settings, and close the Debug Configurations dialog box.
7. In the editor area, right-click the marker bar corresponding to the statement,

Recursive(3); in the main() function.
8. Select Trace Triggers > Toggle Trace Trigger A from the context menu.
9. Open the Debug Configurations dialog box, and click the Trace and Profile tab.

10. Select the Collect Program Trace option in the Trace Mode Options group.
11. Select the Automatically option.
12. Select the LOOP1 Mode check box.
13. Select Collect Trace From Trigger in the Trace Start/Stop Conditions group.
14. Check the Break on FIFO Full checkbox.
15. Select Instruction at Address A is Executed from the Trigger Type drop-down

list.
16. Click Apply to save the settings.
17. Click Debug to debug the application.
18. Click Resume.

The application stops automatically and collects data in data file.

19. Open the Trace Data viewer following the steps explained in the Viewing Data topic
to see the trace results. The following figures show the data files generated by the
application after setting trigger A in the LOOP1 Mode.

Figure 5-20. Trace Data After Setting Trigger A in LOOP1 Mode - Automatically

Chapter 5 Setting Tracepoints (HCS08)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 141

Figure 5-21. Timeline Data After Setting Trigger A in LOOP1 Mode - Automatically

The trace data that is collected contains only two calls to Recursive(int n). This is because
the three identical PCs in trace for if (n <= 0) is ignored by the hardware and appears
only once in LOOP1 mode.

In the normal mode, the hardware would have stored the identical addresses one after
another. The figure below shows the trace and timeline data that is collected when
LOOP1 Mode option is disabled. Make sure that you clear the LOOP1 Mode checkbox
in the Trace and Profile tab, keep the remaining settings same and then collect trace.

In the normal mode, the trace data contains four calls to Recursive(int n) with arguments
3, 2, 1, 0, and three times branch for if (n <= 0), that is three identical PCs in trace.
Fourth address of the conditional assembly instruction for if (n <= 0) is not in the trace
because that branch is not taken anymore and the last recursive call exits with return 0.

With the LOOP1 Mode option enabled, the hardware skips the identical addresses and
keeps only one address instead of three; therefore, the trace data contains only two calls
to Recursive(int n).

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

142 NXP Semiconductors

Figure 5-22. Trace Data After Setting Trigger A in Normal Mode - Automatically

5.2.2.4 Instruction Outside Range from Address A to Address B is
Executed

The Instruction Outside Range from Address A to Address B is Executed trigger type
is used to trigger on a program instruction execution outside the range, Address A -
Address B, where Address A is the address at which trigger A is set and Address B is the
address at which trigger B is set.

If the triggers A and B set in this trigger type contain a function between them, the trace
data will start collecting from the code inside that function because that code is outside
the address range of trigger A and trigger B.

NOTE
For the MC9S08PT60 target specifically, the Instruction
Outside Range from Address A to Address B is Executed
trigger will hit when any instruction outside the range between

Chapter 5 Setting Tracepoints (HCS08)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 143

trigger address A and trigger address B matches with the data
on the bus or program address outside the range.

To collect trace using the Instruction Outside Range from Address A to Address B is
Executed trigger type:

1. In the CodeWarrior Projects view, select the Sources folder of your project.
2. Double-click the source file, for example, main.c to display its contents in the editor

area. Replace the source code in the main.c file with the source code shown in Listing:
Source code 2.

3. Remove the entries of Performance1(); from the main(); function. The main() function
now should look as shown below:
Listing: main() function of source code 2

void main(void)
{
 EnableInterrupts; /* enable interrupts */
 /* include your code here */
 Recursive(2);
 for(;;)
 {
 entry();
 __RESET_WATCHDOG(); /* feeds the dog */
 } /* loop forever */
}

4. Save and build the project.
5. Open the Debug Configurations dialog box, and select your project in the tree

structure.
6. Click the Trace and Profile tab, and check the Enable Trace and Profile checkbox.
7. Click Apply and close the Debug Configurations dialog box.
8. Set trigger A at EnableInterrupts; and trigger B at __RESET_WATCHDOG(); in the main()

function as shown in figure below.
9. Open the Debug Configurations dialog box, and select your project in the tree

structure.
10. Click the Trace and Profile tab.
11. Select the Collect Program Trace option in the Trace Mode Options group.
12. Select the Automatically option.
13. Select the Collect Trace From Trigger option in the Trace Start/Stop Conditions

group.
14. Check the Break on FIFO Full checkbox.
15. Ensure that the Instruction Execute option is selected in the Trigger Selection

group.
16. Select the Instruction Outside Range from Address A to Address B is Executed

option from the Trigger Type drop-down list.
17. Click Apply to save the settings.
18. Click Debug to debug the application.
19. Click Resume to collect the trace data.

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

144 NXP Semiconductors

The application stops automatically.

20. Open the Trace Data viewer following the steps explained in the Viewing Data topic
to view the collected data.

The following figures show the trace and timeline data generated by the application in
which trace starts at Recursive(2), which is called from main(). The tracing starts at
Recursive(2) because this function is placed between address range of trigger A and trigger
B, therefore the code of this function is outside the address range of the two triggers. The
application stops automatically when buffer gets full.

Figure 5-23. Trace Data - Instruction Outside Range

Figure 5-24. Timeline - Instruction Outside Range

Chapter 5 Setting Tracepoints (HCS08)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 145

5.2.3 Setting Triggers in Collect Data Trace Mode

In the Collect Data Trace mode, triggers are set to capture specific values. This mode
consists of the following two trigger types:

• Capture Read/Write Values at Address B
• Capture Read/Write Values at Address B, After Access at Address A

The trigger address is typically not a program code address (program counter), but rather
a data/memory address.

5.2.3.1 Capture Read/Write Values at Address B

This option captures the data involved in a read and/or write access to the address
specified by trigger B, such as the address of a particular control register or program
variable. To set trigger B in the Collect Data Trace mode:

1. In the CodeWarrior Projects view, expand the Sources folder of your project.
2. Double-click the source file, for example, main.c to display its contents in the editor

area. Replace the source code in the main.c file with the source code shown below.
Listing: Source code 4

#include <hidef.h> /* for EnableInterrupts macro */

#include "derivative.h" /* include peripheral declarations */

#define MAX_IT 2

typedef int(*FUNC_TYPE)(int);

void entry();

void InterruptTest();

void ContextSwitch(FUNC_TYPE, int);

int PerformanceWork (int);

void Performance1(void);

int Recursive(int);

volatile char iteration = 0;

void Launch(FUNC_TYPE f, int arg)
{
 f(arg);
}

void InterruptTest()

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

146 NXP Semiconductors

{}

void entry()
{
 InterruptTest();
 Launch(PerformanceWork, iteration++);
 Launch(PerformanceWork, iteration++);
 if (iteration >= 254) iteration = 0;
}

int PerformanceWork (int iteration)
{
 int ret = 0;
 if (iteration & 1)
 {
 Performance1();
 ret = 1;
 }
 else
 {
 Recursive(3);
 ret = 2;
 }
 return ret;
}

void Performance1(void)
{}

int Recursive(int n)
{
 /* Recursively calculates 0 + 1 + 2 + ... + n */
 if (n <= 0) /* breakpoint here */
 {
 return 0;
 }

 else
 {
 return (n + Recursive(n-1));
 }
}

void main(void)
{
 EnableInterrupts; /* enable interrupts */
 /* include your code here */
 Performance1();
 Recursive(3);
 Performance1();
 for(;;)
 {
 entry();
 __RESET_WATCHDOG(); /* feeds the dog */
 } /* loop forever */
 /* please make sure that you never leave main */
}

3. Save and build the project.
4. Open the Debug Configurations dialog box, and select your project in the tree

structure.
5. Click the Trace and Profile tab, and check the Enable Trace and Profile checkbox.
6. Select the Collect Data Trace option in the Trace Mode Options group.
7. Select Collect Trace From Trigger in the Trace Start/Stop Conditions group.
8. Check the Break on FIFO Full checkbox.

Chapter 5 Setting Tracepoints (HCS08)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 147

9. Select Capture Read/Write Values at Address B from the Trigger Type drop-
down list.

10. Click Apply to save the settings.
11. Click Debug to debug the application.
12. In the Debug window, right-click in the Name column of the Variables view.
13. Select the Add Global Variables option from the context menu.

The Add Globals dialog box appears.

14. Select iteration from the list of available variables.
15. Click OK.

The entry for the iteration variable gets added to the Variables view.

16. Right-click the variable iteration and select Toggle Triggers > Toggle HCS08
Trace Trigger B from the context menu.

The Toggle HCS08 Trace Trigger B dialog box appears.

17. Click OK.
18. Select Window > Show View > Other > Analysis > Analysispoints to open the

Analysispoints view.

The Analysispoints view displays trigger B that you set on the iteration variable.

Figure 5-25. Analysispoints View
19. Click Resume.

The application captures accesses to the variable (iteration) address on which you set
trigger B, and stops automatically when buffer gets full.

20. Open the Trace Data viewer following the steps explained in the Viewing Data topic
to view the trace results. The figure below shows the data files generated by the
application after setting trigger B in the Collect Data Trace mode. The trace data that
is collected contains values of iteration from 0 to 3.

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

148 NXP Semiconductors

Figure 5-26. Trace Collected at Address B
21. Click Resume again.

The application captures more data and stops automatically.

22. Open the Trace Data viewer and see new data being appended to the old data.

Figure 5-27. Trace Data Viewer - New Data Appended

This is how you set trigger B in the Collect Data Trace mode and collect trace using the
Capture Read/Write Values at Address B trigger type.

Chapter 5 Setting Tracepoints (HCS08)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 149

NOTE
In the Collect Data Trace mode, if you perform target stepping
instead of full-run, the collected trace will contain mixed data
and program trace. This happens because CodeWarrior changes
the trigger mode and FIFO shifts storage condition when target
stepping is performed. In target stepping, the processor
executes one step each time you press the F6 key (Step Over)
and then returns to the suspended (halt) state.

5.2.3.2 Capture Read/Write Values at Address B, After Access at
Address A

This option captures the data involved in a read and/or write access to the addresses
specified by trigger B after the instruction at trigger A address has been executed. To
capture read/write values at trigger B after trigger A in the Collect Data Trace mode:

1. In the CodeWarrior Projects view, expand the Sources folder of your project.
2. Double-click the source file, for example, main.c to display its contents in the editor

area. Replace the source code in the main.c file with the source code shown in Listing:
Source code 4.

3. Save and build the project.
4. Open the Debug Configurations dialog box, and select your project in the tree

structure.
5. Click the Trace and Profile tab, and check the Enable Trace and Profile checkbox.
6. Click Apply to save the settings, and close the Debug Configurations dialog box.
7. In the editor area, right-click the marker bar corresponding to the statement as

highlighted in the figure below.

Figure 5-28. Setting Trigger A in Collect Data Trace Mode
8. Select Trace Triggers > Toggle Trace Trigger A from the context menu.

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

150 NXP Semiconductors

9. Open the Debug Configurations dialog box, and click the Trace and Profile tab.
10. Select the Collect Data Trace option in the Trace Mode Options group.
11. Select Collect Trace From Trigger in the Trace Start/Stop Conditions group.
12. Check the Break on FIFO Full checkbox.
13. Select Capture Read/Write Values at Address B, After access at Address A from

the Trigger Type drop-down list.
14. Click Apply to save the settings.
15. Click Debug to debug the application.
16. Perform steps 12 - 17 of the Capture Read/Write Values at Address B topic. After

setting triggers, A and B, the Analysispoints view contains the following entries.

Figure 5-29. Analysispoints View with Trigger A and Trigger B
17. Click Resume.

The application waits for the instruction at trigger A address to execute, monitors the
address of iteration, collects the trace data till buffer gets full, and then stops
automatically.

18. Open the Trace Data viewer following the steps explained in the topic Viewing Data
to view the trace results. The figure below shows the data files generated by the
application after setting triggers A and B in the Collect Data Trace mode. The trace
data that is collected contains values of iteration starting from 2. This is because
iteration has been incremented twice by the time application reaches the address
where trigger A is set.

Figure 5-30. Trace Collected at Address B, After Access at Address A
19. Click Resume again.

Chapter 5 Setting Tracepoints (HCS08)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 151

The application captures more data and stops automatically.

20. Open the Trace Data viewer and see new data being appended to the old data.

Figure 5-31. Trace Collected at Address B, After Access at Address A - New Data
Appended

This is how you collect trace using the Capture Read/Write Values at Address B,
After Access at Address A trigger type.

NOTE
With a trigger condition selected, full trace is collected even
when no triggers are set. That is, if you specify a trigger
condition in the Trace and Profile tab of the Debug
Configurations dialog box, but do not set the trigger in the
application then full trace data will be collected from the
beginning of the application.

5.2.4 Collecting Trace in Profile-Only Mode

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

152 NXP Semiconductors

The Profile-Only mode does not collect the trace data; it only profiles the data. Trace is
empty in this mode; you can only see the critical code data in the Critical Code viewer.
To collect trace in Profile-Only mode:

1. In the CodeWarrior Projects view, expand the Sources folder of your project.
2. Double-click the source file, for example, main.c to display its contents in the editor

area. Replace the source code in the main.c file with the source code shown in Listing:
Source code 2.

3. Save and build the project.
4. Open the Debug Configurations dialog box, and select your project in the tree

structure.
5. Click the Trace and Profile tab, and check the Enable Trace and Profile checkbox.
6. Select the Profile-Only option from the Trace Mode Options group.
7. Click Apply to save the settings.
8. Click Debug to debug the application.
9. Click Resume and after a short while, click Suspend.

The application halts and data is collected.

10. Open the Critical Code viewer following the steps explained in the Viewing Data
topic to view the critical code data results.

Figure 5-32. HCS08 Critical Code Viewer - Profile-Only

This is how you collect trace data in the Profile-Only mode of the HCS08 target.

Chapter 5 Setting Tracepoints (HCS08)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 153

5.2.5 Collecting Trace in Expert Mode

The Expert mode gives you an access to most of the on-chip DBG module registers. This
mode contains the newest comparator C controls and lets you set trigger types directly.
To collect trace using the Expert mode:

1. Open the Debug Configurations dialog box.
2. Click the Trace and Profile tab, and check the Enable Trace and Profile checkbox.
3. Select the Expert option from the Trace Mode Options group.
4. Click the Configure Expert Settings button.

The Configure Expert Settings dialog box appears.

Figure 5-33. Configure Expert Settings Dialog Box
5. Specify the settings according to requirements.

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

154 NXP Semiconductors

NOTE
The register layout in the Configure Expert Settings
dialog box may vary depending on the debug version
target. For example, the register layout of the DbgVer 3
target might be different from the register layout of the
DbgVer 2 target.

6. Click OK to save the settings.
7. Click Apply in the Debug Configurations dialog box.
8. Click Debug and collect trace.

NOTE
In Expert mode, only Trace and Timeline data is collected.

This is how you collect trace data in the Expert mode of the HCS08 target.

NOTE
For HCS08 PT16 and PA4 families (PT/PL/PA16, PT/PL/PA8,
PA4, PA2), the trace triggers set on the Variables or Memory
views, with Memory Access set to “Write” or “Read/Write”,
will not work correctly due to a hardware issue of the DBG
module when writing to SRAM memory. When using these
type of triggers:

• Data Trace will not work as expected. Only the read
accesses will be traced or the hardware trace will be
triggered.

• Program trace start/stop conditions involving data bus
match/mismatch will not work. The hardware trace will not
be triggered.

• Advanced developers using the Configuration set in User
code option or the Expert trace option must avoid using
trigger conditions (writing trigger registers manually)
which involve tracing or triggering on write accesses, such
as “Event B only”, “A then Event only B”, “A and (not) B”
hardware trigger modes.

This is applicable for some early revisions of the PT60 family
(PT/PL/PA60 and PT/PL/PA32) also.

5.3 Enabling and Disabling the Tracepoints

Chapter 5 Setting Tracepoints (HCS08)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 155

If you want to enable the tracepoints, right-click the marker bar where trigger A and
trigger B are already set and in disabled state, select the Enable Tracepoint option from
the context menu.

If you want to disable the tracepoints, right-click the marker bar where triggers are
already set and enabled, select the Disable Tracepoint option from the context menu. A
disabled tracepoint will have no effect during the collection of trace data. You can also
disable/enable the tracepoint from Analysispoints view. Select Window > Show View >
Other > Software Analysis > Analysispoints to open the Analysispoints view.

Right-click the selected attribute and select Disable/Enable option. The unchecked
attribute indicates the disabled tracepoint.

You can also use the Ignore all Analysispoints button to disable all the tracepoints
without manually selecting them in the Analysispoints view. You can click Ignore All
again to enable the tracepoints.

Figure 5-34. Disabling/Enabling the Trigger from Analysispoints View

For detailed information on the Analysispoints view, refer Viewing Tracepoints.

Enabling and Disabling the Tracepoints

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

156 NXP Semiconductors

Chapter 6
Setting Tracepoints (ColdFire V1)
Tracepoint is a point in the target program where start or stop triggers are set at a line of
source code or assembly code and on the memory address. The start and stop tracepoints
are triggers for enabling and disabling the trace output. The advantage of setting start and
stop tracepoints is to capture the trace data from the specific part of the program. They
solve the problem of tracing a very large application. A full trace would be extremely
difficult to follow and would also require a large amount of target memory to store it. The
trace data displays the trace result based on the tracepoints. This chapter explains how to
set start and stop tracepoints and how to enable and disable a tracepoint.

The tracepoints for the ColdFire V1 target can be set on:

• addresses and source files

The tracepoints on addresses and source files can be set in the editor area and the
Disassembly view. The source line tracepoint is set in the editor area, and the
address tracepoint is set in the Disassembly view.

• data and memory

The tracepoints on data and memory can be set from the Variables and Memory
views.

This chapter consists of the following topics:

• Conditions for Starting/Stopping Triggers
• Trace Modes
• Tracepoints on Data and Memory
• Enable and Disable Tracepoints

6.1 Conditions for Starting/Stopping Triggers

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 157

In the ColdFire V1 target, the triggers, A, B, and C are used to start and stop the trace
collection. The triggers, A and B are set on a function address and trigger C is set on a
variable address. The trace collection starts or ends depending on the trace mode selected
along with a combination of the following actions involving A, B, and C.

• Trace is always enabled - Trace remains enabled all the time during the application
run. The trace data is collected from the beginning till end of the debug session.

• Trace from Trigger A Onward - Trace is disabled initially. Once the application
starts and the execution reaches the instruction where trigger A is set, trace is
automatically enabled by the hardware, without stopping the core. Trace remains
enabled for the rest of the debug session, that is until you suspend the application.

• Trace from Trigger A to Trigger B - The trace gets enabled at trigger A and starts
collecting from there. Once the execution reaches the instruction where trigger B is
set, the trace is automatically disabled by the hardware. After the trace is disabled, it
is not restarted. However, if the application is stopped either automatically or
manually, the CodeWarrior resets the trace module. Therefore, if you resume the
application later and the execution reaches trigger A again, trace automatically
restarts and repeats the same cycle.

• Trace from Trigger A to Trigger C - Same as Trace from Trigger A to Trigger B
except that trigger C is set on the variable addresses.

• Trace from Trigger B Onward - The application starts and enables trace at trigger
B, which remains enabled through out the debug session.

• Trace from Trigger B to Trigger A - Trace enables at trigger B and disables at
trigger A. The trace collection follows the same approach as Trace from Trigger A
to Trigger B.

• Trace from Trigger B to Trigger C - Trace enables at trigger B and disables at
trigger C. The trace collection follows the same approach as Trace from Trigger A
to Trigger B.

• Trace from Trigger C Onward - The application starts and enables trace at trigger
C, which remains enabled through out the debug session.

• Trace from Trigger C to Trigger A - Trace enables at trigger C and disables at
trigger A. The trace collection follows the same approach as Trace from Trigger A
to Trigger B.

• Trace from Trigger C to Trigger B - Trace enables at trigger C and disables at
trigger B. The trace collection follows the same approach as Trace from Trigger A
to Trigger B.

NOTE
In the Automatic (One-buffer) mode, if you check the Halt
the Target when Trace Buffer Gets Full checkbox, the trace
starts collecting from trigger A till the buffer gets full. If you do
not check the checkbox, the trace is collected till you suspend

Conditions for Starting/Stopping Triggers

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

158 NXP Semiconductors

the application manually. And you will only see the last portion
of trace in the Trace Data viewer because the internal trace
buffer is overwritten. It holds for all the above options.

Warning
Do not use breakpoints with triggers when collecting trace on
the ColdFire V1 target. This is because there is only one
hardware debug module on ColdFire V1 which is shared for
setting hardware breakpoints or trace triggers. So you can either
set breakpoint or trace trigger using this debug module.

6.2 Trace Modes

The triggers can be set in the following trace modes:

• Continuous - Setting Triggers in Continuous Mode
• Automatic (One-buffer) - Setting Triggers in Automatic (One-buffer) Mode
• Profile-Only - Setting Triggers in Profile-Only Mode
• Expert - Setting Triggers in Expert Mode

6.2.1 Setting Triggers in Continuous Mode

The Continuous mode collects trace continuously till you suspend the target application.
This topic explains how to set the following trace conditions in the editor area in the
Continuous mode:

• Trace From Trigger A Onward
• Trace From Trigger A to Trigger B

Before setting the tracepoints, see Collecting Data chapter for the procedure of how to
collect the trace and profiling data.

6.2.1.1 Trace From Trigger A Onward

To set trigger A in the editor area for the ColdFire V1 target:

1. In the CodeWarrior Projects view, select the Sources folder of your project.

Chapter 6 Setting Tracepoints (ColdFire V1)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 159

2. Double-click the source file, for example, main.c to display its contents in the editor
area. Replace the source code of the main.c file with the source code shown below.
Listing: Source code for trace collection

#include <hidef.h> /* for EnableInterrupts macro */

#include "derivative.h" /* include peripheral declarations */

volatile int a, b, c, i;

void f()
{
 c=1;
 c=2;
 c=3;
}

void f1()
{
 b=1;
 b=2;
 b=3;
}

void f2()
{
 a=1;
 a=2;
 a=3;
}

void main(void) {
 EnableInterrupts;
 /* include your code here */
 for(i=1;i<10;i++)
 {
 f();
 }

 f2();

 for(;;) {
 __RESET_WATCHDOG();/* feeds the dog */

 f1();
 f2();
 } /* loop forever */
}

3. Save and build the project.
4. Open the Debug Configurations dialog box, and select your project in the tree

structure.
5. Click the Trace and Profile tab, and check the Enable Trace and Profile checkbox.
6. Click Apply to save the settings, and close the Debug Configurations dialog box.
7. In the editor area, select the statement, f2(); (before the for (;;) statement).
8. Right-click the marker bar, select the Trace Triggers > Toggle Trace Trigger A

option from the context menu. The trigger A icon appears on the marker bar in green
color. The same option is also used to remove trigger A from the marker bar.

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

160 NXP Semiconductors

Figure 6-1. Trigger A Set in Editor Area

NOTE
Do not set tracepoints on the statements containing only
comments, brackets, and variable declaration with no value.
If tracepoints are set on invalid statements, they are
automatically disabled when the application is debugged.

9. Open the Debug Configurations dialog box, click the Trace and Profile tab.
10. Select the Continuous option from the Select Trace Mode group.
11. Select the Trace from Trigger A Onward option from the Trace Start/Stop

Conditions drop-down list.
12. Click Debug to debug the application.
13. Click Resume to resume the application and after a short while, click Suspend .

The trace data is collected in the data files.

14. Open the Trace Data viewer following the steps explained in the topic Viewing Data
to view the trace results.

The figure below shows the data file generated by the application in which the data
has been collected after setting trigger A in the source code. In this data file, the
Description column shows that trace starts collecting from f2(), where you set
trigger A. Because you selected the Trace from A Onward option, the trace data
starts collecting from f2() and stops when you suspend the application. The
following figure shows the timeline data.

Chapter 6 Setting Tracepoints (ColdFire V1)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 161

Figure 6-2. Trace Data After Setting Trace From Trigger A Onward in Continuous Mode

Figure 6-3. Timeline Data After Setting Trace From Trigger A Onward in Continuous
Mode

15. Click the Terminate button in the Debug perspective to terminate the application.

This is how you set the Trace From Trigger A Onward trace conditions in the
Continuous mode of the ColdFire V1 target and collect trace data.

6.2.1.2 Trace From Trigger A to Trigger B

To set trigger A and trigger B in the editor area in the Continuous mode:

1. In the CodeWarrior Projects view, select the Sources folder of your project.
2. Double-click the source file, for example, main.c to display its contents in the editor

area. Replace the source code of the main.c file with the source code shown in
Listing: Source code for trace collection.

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

162 NXP Semiconductors

3. Save and build the project.
4. Open the Debug Configurations dialog box, and select your project in the tree

structure.
5. Click the Trace and Profile tab, and check the Enable Trace and Profile checkbox.
6. Click Apply to save the settings, and close the Debug Configurations dialog box.
7. In the editor area, select the statement f();.
8. Right-click the marker bar, select the Trace Triggers > Toggle Trace Trigger A

option from the context menu.
9. Right-click the marker bar corresponding to the statement, f2();, and select Trace

Triggers > Toggle Trace Trigger B from the context menu.

The trigger B icon appears on the marker bar in red color as shown in figure below. .

NOTE
It is recommended to set both triggers in the same function
so that the trace that is collected is meaningful.

Figure 6-4. Setting Triggers A and B

NOTE
The mouse pointer over a trigger icon in the marker bar
displays the attributes of the trigger on that line. For source
lines, there can be multiple tracepoints mapping to the same
line.

10. Open the Debug Configurations dialog box, and click the Trace and Profile tab.
11. Select the Continuous option from the Select Trace Mode group.

Chapter 6 Setting Tracepoints (ColdFire V1)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 163

12. Select the Trace from Trigger A to Trigger B option from the Trace Start/Stop
Conditions drop-down list.

13. Click Apply to save the settings.
14. Click Debug to debug the application.
15. Click Resume to collect the trace data.
16. Click Suspend to stop the target application.
17. Open the Trace Data viewer following the steps explained in the topic Viewing Data

to view the trace results.

The figure below shows the data files and the timeline graph that is generated by the
application in which the data has been collected after setting triggers, A and B. The
Trace Data viewer in the figure shows that trace starts collecting from the f()
function where you set trigger A.

Figure 6-5. Trace Data View After Setting Trace From Trigger A to Trigger B in
Continuous Mode - Begin

The figure below shows that trace stops at the f2() function where you set trigger B.

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

164 NXP Semiconductors

Figure 6-6. Trace Data View After Setting Trace From Trigger A to Trigger B in
Continuous Mode - End

NOTE
If trigger A and trigger B have less than three executed
instructions between them, the stop point is not taken into
consideration by the hardware. That is, the hardware misses
trigger B if it is set close (less than three executed
instructions) to trigger A. This is because there is a three-
instruction delay in the hardware pipeline; therefore trigger
A is acknowledged at the third executed instruction from
where it is actually set. However, incase triggers are set in a
loop, hardware will acknowledge trigger B when the loop is
executed second time. A three-instruction delay during
trace collection also occurs when a breakpoint is set on a
jsr instruction in the Disassembly view. This stops the
trace abruptly; therefore a red line is displayed in the Trace
Data viewer to mark the points where the trace is broken.
For more information, refer Trace Collection with
Breakpoints.

The graph in figure below shows the timeline of the trace data. In this graph, you can
see that the trace data starts collecting from f(), that is trigger A, and stops at f2(),
that is trigger B. To have a clearer view of the graph, you can zoom-in or zoom-out
in the graph by scrolling the mouse up or down.

Chapter 6 Setting Tracepoints (ColdFire V1)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 165

Figure 6-7. Graph Displaying Timeline of Trace Data
18. Click the Terminate button in the Debug perspective to terminate the application.

This is how you set the Trace From Trigger A to Trigger B trace conditions in the
Continuous mode of the ColdFire V1 target and collect trace data.

6.2.2 Setting Triggers in Automatic (One-buffer) Mode

The Automatic (One-buffer) mode collects trace till the trace buffer gets full. This topic
explains how to set the following trace conditions in the editor area in the Automatic
(One-buffer) mode:

• Trace From Trigger A Onward
• Trace From Trigger A to Trigger B

6.2.2.1 Trace From Trigger A Onward

To set trigger A in the Automatic (One-buffer) mode in the Disassembly view:

1. In the CodeWarrior Projects view, select the Sources folder of your project.
2. Double-click the source file, for example, main.c to display its contents in the editor

area. Replace the source code of the main.c file with the source code shown in
Listing: Source code for trace collection.

3. Save and build the project.
4. Open the Debug Configurations dialog box, and select your project in the tree

structure.
5. Click the Trace and Profile tab, and check the Enable Trace and Profile checkbox.
6. Select the Automatic (One-buffer) option from the Select Trace Mode group.

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

166 NXP Semiconductors

7. Check the Halt the Target when Trace Buffer Gets Full checkbox.
8. Select Trace from Trigger A Onward from the Trace Start/Stop Conditions drop-

down list.
9. Click Apply to save the settings.

10. Click Debug to debug the application.
11. In the Disassembly view, right-click the marker bar corresponding to the statement,

f2(); before for(;;).

Figure 6-8. Setting Trigger A in Disassembly View
12. Select the Trace Triggers > Toggle Trace Trigger A option from the context menu.

The trigger A icon appears in green color on the marker bar, in the editor area and the
Disassembly view.

13. Click Resume. The application stops automatically after some time.

NOTE
Because you selected the Halt the Target when Trace
Buffer Gets Full check box in the Trace and Profile tab,
the application will stop automatically after the trigger hit.
You do not need to stop it manually by clicking Suspend.

14. Open the Trace Data viewer following the steps explained in the topic Viewing Data
to view the trace results.

Chapter 6 Setting Tracepoints (ColdFire V1)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 167

The figure below shows the data files that are generated by the application in which the
data has been collected after setting trigger A in Disassembly view, and selecting the
Automatic (One-buffer) mode. The figure shows that the trace data starts collecting
from trigger A. The application stops automatically when the trace buffer gets full and
the trace data is collected till that trace buffer.

The graph in the following figure shows the timeline of the trace data. In this graph, you
can see that the trace data starts collecting from the f2() function and stops when the trace
buffer gets full.

NOTE
If you choose to not check the Halt the Target when Trace
Buffer Gets Full checkbox, the trace buffer gets overwritten.
Therefore, only the last part of the trace data executed before
the application suspends is visible in the Trace Data viewer.

Figure 6-9. Trace Data After Setting Trace From Trigger A Onward in Automatic Mode

Figure 6-10. Timeline Data After Setting Trace From Trigger A Onward in Automatic
Mode

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

168 NXP Semiconductors

This is how you collect trace data in the Automatic (One-buffer) mode of the ColdFire
V1 target.

NOTE
Similarly, you can set the Trace from Trigger B Onward
trace condition in both Continuous and Automatic modes and
collect the trace data.

6.2.2.2 Trace From Trigger A to Trigger B

To set triggers, A and B in the Automatic (One-buffer) mode in the Disassembly view:

1. In the CodeWarrior Projects view, select the Sources folder of your project.
2. Double-click the source file, for example, main.c to display its contents in the editor

area. Replace the source code of the main.c file with the source code shown in
Listing: Source code for trace collection.

3. Save and build the project.
4. Open the Debug Configurations dialog box, and select your project in the tree

structure.
5. Click the Trace and Profile tab, and check the Enable Trace and Profiling

checkbox.
6. Select the Automatic (One-buffer) option from the Select Trace Mode group.
7. Check the Halt the Target when Trace Buffer Gets Full checkbox.
8. Select Trace from Trigger A to Trigger B from the Trace Start/Stop Conditions

drop-down list.
9. Click Apply to save the settings.

10. Click Debug to debug the application.
11. Open the Disassembly view.
12. Right-click the marker bar corresponding to the statement, f();.
13. Select Trace Triggers > Toggle Trace Trigger A from the context menu. The

trigger A icon appears in green color on the marker bar, in the editor area and the
Disassembly view.

14. Right-click the marker bar corresponding to the statement, f2();.
15. Select Trace Triggers > Toggle Trace Trigger B from the context menu. The

trigger B icon appears in red color on the marker bar, in the editor area and the
Disassembly view.

16. Click Resume. The application stops automatically after some time and trace data is
collected.

17. Open the Trace Data viewer following the steps explained in the topic Viewing Data
to view the trace results.

Chapter 6 Setting Tracepoints (ColdFire V1)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 169

The figure below shows the data files that are generated by the application in which the
data has been collected after setting triggers, A and B, in the Disassembly view and
selecting the Automatic (One-buffer) mode. The Trace Data viewer in the figure shows
that the trace data starts collecting from the f() function where you set trigger A. The
application stops automatically when the trace buffer gets full and the trace data is
collected till that trace buffer.

Figure 6-11. Trace Data View After Setting Trace From Trigger A to Trigger B in
Automatic Mode

In this example, the trace buffer got full before trigger B was executed, therefore, the
Trace Data viewer, as shown in the above figure, displays only the trace data collected
from trigger A till first buffer full. If you resume the application at this point, trace will
continue to collect till other part of the trace buffer gets full and so on till trigger B is hit.
Once trigger B is hit, trace stops collecting.

Similarly, you can set the trace conditions, Trace from Trigger B to Trigger A , Trace
from Trigger A to Trigger C , Trace from Trigger C to Trigger A , Trace from
Trigger B to Trigger C , Trace from Trigger C to trigger B in both Continuous and
Automatic modes and collect the trace data accordingly.

The Tracepoints on Data and Memory topic explains how to set trigger C.

6.2.3 Setting Triggers in Profile-Only Mode

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

170 NXP Semiconductors

The Profile-Only mode does not collect the trace data; it only profiles the data. Trace is
empty in this mode; you can only see the profiling information in the Critical Code Data
viewer. To set a trigger in Profile-Only mode:

1. Set trigger A in the source code following the steps 1- 8 described in the topic Trace
From Trigger A Onward.

2. Open the Debug Configurations dialog box, and click the Trace and Profile tab.
3. Select the Profile-Only. Sample PC every 512 cycles option from the Select Trace

Mode group.
4. Select the Trace from Trigger A Onward trace condition.
5. Click Apply to save the settings.
6. Click Debug to debug the application.
7. Click Resume and after a short while, click Suspend . The application halts and data

is collected.
8. Open the Critical Code Data viewer following the steps explained in the topic

Viewing Data to view the critical code data results.

Figure 6-12. Critical Code Data - Profile-Only Mode of ColdFire V1

This is how you collect trace data in the Profile-Only mode of the ColdFire V1 target.

6.2.4 Setting Triggers in Expert Mode

Chapter 6 Setting Tracepoints (ColdFire V1)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 171

The Expert mode lets you configure the ColdFire V1 trace and debug registers directly.
This mode provides you full control over the trace data to be collected. To collect trace in
the Expert mode:

1. Open the Debug Configurations dialog box.
2. Click the Trace and Profile tab, and check the Enable Trace and Profile checkbox.
3. Select the Expert option from the Select Trace Mode group.
4. Click the Configure Expert Settings button.

The Configure Expert Settings dialog box appears.

Figure 6-13. Configure Expert Settings Dialog Box
5. Specify the settings according to requirements.
6. Click OK to save the settings.
7. Click Apply in the Debug Configurations dialog box.
8. Click Debug to debug the application and collect the trace data.

Trace Modes

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

172 NXP Semiconductors

NOTE
In Expert mode, only Trace and Timeline data is collected.

This is how you collect trace data in the Expert mode of the ColdFire V1 target.

6.3 Tracepoints on Data and Memory

This topic explains how to collect trace data after setting tracepoints on data and memory
from both the Variables and the Memory views. You can set only trigger C on data and
memory on a variable address. When you set trigger C on a variable address, the trace
data collection starts when the first time that variable is accessed in the execution. This
topic uses the same source code as displayed in Listing: Source code for trace collection.

• From Variables View
• From Memory View

6.3.1 From Variables View

To set trigger C from the Variables view:

1. In the CodeWarrior Projects view, select the Sources folder of your project.
2. Double-click the source file, for example, main.c to display its contents in the editor

area. Replace the source code of the main.c file with the source code shown in
Listing: Source code for trace collection.

3. Save and build the project.
4. Open the Debug Configurations dialog box, and select your project in the tree

structure.
5. Click the Trace and Profile tab, and check the Enable Trace and Profile checkbox.
6. Select the Continuous option from Select Trace Mode .
7. Select the Trace from Trigger C Onward option from the Trace Start/Stop

Conditions group.
8. Click Apply to save the settings.
9. Click Debug to debug the application.

10. In the Variables view, right-click a cell in the Name column.
11. Select the Add Global Variables option from the context menu. The Add Globals

dialog box appears.

Chapter 6 Setting Tracepoints (ColdFire V1)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 173

12. Select all the variables with Shift key pressed and click OK . All the variables of the
program get added to the Variables view.

13. Right-click the variable a, in the Name column of the Variables view.
14. Select Toggle Triggers > Set CFv1 Trace Trigger C option from the context menu.

The Set Trigger Properties dialog box appears.

15. Select the Read/Write option from the Access drop-down list.

Figure 6-14. Set Trigger Properties Dialog Box
16. Click OK.
17. Select Window > Show View > Other > Analysis > Analysispoints to open the

Analysispoints view. The Analysis points view displays the trigger C set on the
variable address.

Figure 6-15. Analysispoints View
18. Click Resume to collect trace.
19. After a short while, click Suspend to stop the target application.
20. Open the Trace Data viewer following the steps explained in the topic Viewing Data

to view the trace results.

The figure below shows the data files generated by the application after setting trigger C
in the Continuous mode on the variable address.

Tracepoints on Data and Memory

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

174 NXP Semiconductors

Figure 6-16. Trace Data After Setting Trace from Trigger C in Continuous Mode

The variable a is accessed first time in the f2() function. Therefore, after setting trigger C
on the address of a, the trace data starts collecting from f2(). The trace data continues till
you suspend the application.

NOTE
When trigger C is hit, trace starts from the instruction where the
variable on which trigger C has been set is first accessed.
However, trace misses the first few instructions due to a delay
from the hardware. Therefore, the Trace Data viewer does not
display the first instruction of the variable. Instead, it displays
the trace data starting from the instructions that are executed
after the first instruction of the variable.

6.3.2 From Memory View

To set trigger C from the Memory view:

1. Perform steps 1 - 12 as explained in From Variables View
2. Right-click the variable a, in the Name column of the Variables view.
3. Select the View Memory option from the context menu.

The Memory view appears.

4. Click the Add Memory Monitor button in the Memory view to open the Monitor
Memory dialog box.

Chapter 6 Setting Tracepoints (ColdFire V1)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 175

Figure 6-17. Monitor Memory Dialog Box
5. Enter the address of the variable a in the Enter address or expression to monitor

text box and click OK.
6. In the Memory view, right-click any cell and select Toggle Triggers > Set CFV1

Trace Trigger C.

Figure 6-18. Setting Trigger C From Memory View

The Set Trigger Properties dialog box appears displaying the address of the
variable a in the Address text box.

7. Select the Read/Write option from the Access drop-down list and click OK.
8. Click Resume to collect trace.
9. After a short while, click Suspend to stop the target application.

Tracepoints on Data and Memory

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

176 NXP Semiconductors

The data files are generated by the application as shown in Figure 6-16, after setting
trigger C in the Continuous mode on the variable address.

6.4 Enable and Disable Tracepoints

If you want to enable the tracepoints, right-click the Marker bar where triggers are
already set and in disabled state, select the Enable Tracepoint option from the context
menu.

If you want to disable the tracepoints, right-click the marker bar where triggers are
already set and enabled, select the Disable Tracepoint option from the context menu. A
disabled tracepoint will have no effect during the collection of trace data. You can also
disable/enable the tracepoint from Analysispoints view. Select Window > Show View >
Other > Software Analysis > Analysispoints to open the Analysispoints view.

Right-click the selected attribute and select Disable/Enable option. The unchecked
attribute indicates the disabled tracepoint.

You can also use the Ignore all Analysispoints button to disable all the tracepoints
without manually selecting them in the Analysispoints view. You can click Ignore All
again to enable the tracepoints.

Chapter 6 Setting Tracepoints (ColdFire V1)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 177

Figure 6-19. Disabling/Enabling the Trigger from Analysispoints View

For detailed information on the Analysispoints view, refer Viewing Tracepoints.

Enable and Disable Tracepoints

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

178 NXP Semiconductors

Chapter 7
Setting Tracepoints (Kinetis)
The Kinetis target supports hardware and software tracepoints for trace collection.
Hardware tracepoints use hardware resources to start and stop trace. Hardware
tracepoints allow only a limited number of comparators to be set for trace collection
because they use DWT comparators to start or stop the trace collection. There are four
comparators for Kinetis Cortex M4 core and two comparators for Kinetis Cortex M0+
core.

Software tracepoints on the other hand do not use hardware resources and generate
interrupts from software to start and stop trace. They allow you to install infinite number
of comparators for trace collection, limited only by the memory available for storing
tracepoint data. Software tracepoints are more intrusive than hardware tracepoints
because of the overhead added by the interrupts being used. Kinetis Cortex M0+ core
does not support software tracepoints.

This chapter consists of the following topics:

• Setting Hardware Tracepoints
• Setting Software Tracepoints
• Viewing Tracepoints

7.1 Setting Hardware Tracepoints

You can set hardware tracepoints from the source code as well as from the Disassembly
view. A hardware tracepoint is set from the source code on an instruction; while it is set
from the Disassembly view on an address. You can also set hardware tracepoints from
the Trace and Profile tab of the Debug Configurations window by configuring the
DWT settings. Configuring DWT settings includes setting comparators as triggers along
with their reference value and selecting the event that generates the comparators match.
When this event occurs, triggers are fired and trace is collected.

• From Source Code - Kinetis Cortex M4 Core

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 179

• From Source Code - Kinetis Cortex M0+ Core
• From Trace and Profile Tab - Kinetis Cortex M4 Core
• From Trace and Profile Tab - Kinetis Cortex M0+ Core

NOTE
The e200 hardware does not provide support for hardware
tracepoints.

NOTE
Do not use hardware tracepoints and software tracepoints
together as they do not work simultaneously. This is because
hardware tracepoints require ETM enabled, which only happens
when a start software tracepoint is hit. And ETM logic has to be
disabled by default when using a software tracepoint since
ETM is enabled from the software interrupt code.

7.1.1 From Source Code - Kinetis Cortex M4 Core

To set hardware tracepoints in the source code and collect trace data on the Kinetis
Cortex M4 project:

1. In the CodeWarrior Projects view, select the Sources folder of your project.
2. Double-click the source file, for example, main.c to display its contents in the editor

area. Replace the source code of the main.c file with the source code shown below.
Listing: Source code for trace collection

#include <stdio.h>

volatile int a;

void func() {

 a=0;

}

int main()

{

 int i;

 func();

 a=0;

 a=1;

Setting Hardware Tracepoints

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

180 NXP Semiconductors

 a=2;

 a=3;

 a=4;

 if (a==4) a=3;

 if (a==3) a=1;

 if (a==1) a=4;

 if (a==4) a=5;

 func();

 return 0;

}

3. Save and build the project.
4. Open the Debug Configurations dialog box, and select your project in the tree

structure.
5. Click the Trace and Profile tab, and check the Enable Trace and Profile checkbox.
6. Click Apply to save the settings, and close the Debug Configurations dialog box.
7. In the editor area, select the statement: if (a==4) a=3;.
8. Right-click the marker bar, select the Toggle Trace Start Point > Hardware Trace

Point option from the context menu. The same option is also used to remove the start
trigger from the marker bar.

Chapter 7 Setting Tracepoints (Kinetis)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 181

Figure 7-1. Setting Hardware Start Tracepoint From Source Code

The start trigger icon appears on the marker bar in green color.

9. In the editor area, select the statement: if (a==4) a=5;.
10. Right-click the marker bar, and select the Toggle Trace Stop Point > Hardware

Trace Point option from the context menu.

The stop trigger icon appears on the marker bar in red color. The same option is also
used to remove the stop trigger from the marker bar.

Figure 7-2. Hardware Start and Stop Tracepoints set in Source Code

Setting Hardware Tracepoints

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

182 NXP Semiconductors

11. Debug your application.

The application halts at the beginning of the main() function.

12. Click Resume to resume the program execution.
13. Wait for some time to let the application terminate.

The Software Analysis view appears.

14. Expand the project name and click the Trace hyperlink.

The Trace Data viewer appears as shown in the following two figures.

Figure 7-3. Trace Results After Setting Hardware Tracepoints in Source Code - Start
Address

These figures display the data file generated by the application in which the data has been
collected after setting start and stop hardware tracepoints in the source code. In this data
file, the Description field shows that trace starts collecting from the address, where you
set start tracepoint, and trace collection stops before the address where you set stop
tracepoint.

Chapter 7 Setting Tracepoints (Kinetis)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 183

Figure 7-4. Trace Results After Setting Hardware Tracepoints in Source Code - Stop
Address

NOTE
Similarly, you can set hardware tracepoints from the
Disassembly view. The only difference is that tracepoints are
set when the program is in debug mode. After setting the
tracepoints, you click Resume and collect trace data.

7.1.2 From Source Code - Kinetis Cortex M0+ Core

To set hardware tracepoints in the source code and collect trace data on the Kinetis
Cortex M0+ project:

1. In the CodeWarrior Projects view, select the Sources folder of your project.
2. Double-click the source file, for example, main.c to display its contents in the editor

area. Replace the source code of the main.c file with the source code shown below.
Listing: Source code for trace collection

#include "derivative.h" /* include peripheral declarations */

#define MAX_IT 5

#define SIMPLE

typedef int(*FUNC_TYPE)(int);

void Launch(FUNC_TYPE, int);

void entry();

Setting Hardware Tracepoints

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

184 NXP Semiconductors

void InterruptTest();

int PerformanceWork(int);

void Performance1(void);

int Recursive(int);

volatile char iteration = 0;

void InterruptTest()

{

}

void Launch(FUNC_TYPE f, int arg)

{

 f(arg);

}

void entry()

{

 Performance1();

 Recursive(1);

 Performance1();

 for (;iteration < MAX_IT;) {

 InterruptTest();

 Recursive(1);

 Performance1();

 Launch(PerformanceWork, iteration++);

 }

 for (;;) {

 if (iteration >= 255) iteration = 0;

 } /* loop forever */

}

int PerformanceWork (int iteration)

Chapter 7 Setting Tracepoints (Kinetis)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 185

{

 int ret = 0;

 if (iteration & 1) {

 Performance1();

 ret = 1;

 }

 else {

 Recursive(1);

 ret = 2;

 }

 return ret;

}

void Performance1(void)

{

#ifndef SIMPLE

 int vecSize = 10;

 int vec[]={10,9,8,7,6,5,4,3,2,1};

 int i,aux;

 for (i=0; i<(vecSize/2) ;i++)

 {

 aux = vec[i];

 vec[i] = vec[vecSize-i-1];

 vec[vecSize-i-1] = aux;

 }

#endif

}

int Recursive(int n)

{

 /* Recursively calculates 0 + 1 + 2 + ... + n */

 if (n <= 0)

 {

Setting Hardware Tracepoints

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

186 NXP Semiconductors

 return 0;

 }

 else

 {

 return (n + Recursive(n-1));

 }

}

int main(void) {

 entry();

/* please make sure that you never leave main */

}

3. Save the project.
4. Open the Debug Configurations dialog box.
5. Enable tracing and profiling using steps 3 - 11 of Configuring Kinetis Cortex M0+

Core.
6. Select the Continuous option, click Apply, and close the dialog box..
7. Set start and stop hardware tracepoints in main.c as shown below:

Chapter 7 Setting Tracepoints (Kinetis)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 187

Figure 7-5. Hardware Start and Stop Tracepoints
8. Debug your project.
9. Click Resume. After a few seconds, click Suspend.

The Software Analysis view appears.

10. Expand the project name and click the Timeline hyperlink to see the results.

Figure 7-6. Timeline Results After Setting HW Tracepoints on Kinetis Cortex M0+ Project

Setting Hardware Tracepoints

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

188 NXP Semiconductors

7.1.3 From Trace and Profile Tab - Kinetis Cortex M4 Core

This topic explains how to set comparator 1 and comparator 2 as hardware tracepoints for
trace collection. You can take any combination of comparators to be used as hardware
tracepoints. You simply need to specify the correct corresponding reference value against
them.

This topic uses the addresses of the instructions, of Listing: Source code for trace
collection, at which you set start and stop hardware tracepoint. These addresses will be
set against comparator 1 and comparator 2 to collect the same trace results that appear on
setting hardware tracepoints from the source code.

To set hardware tracepoints using the Trace and Profile tab and collect trace on a
Kinetis Cortex M4 project:

1. Build your project.
2. Open the Debug Configurations dialog box, and select your project in the tree

structure.
3. Click the Trace and Profile tab, and check the Enable Trace and Profile checkbox.
4. Click the Advanced Settings button.

The Preferences dialog box appears.

Chapter 7 Setting Tracepoints (Kinetis)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 189

Figure 7-7. Preferences Dialog Box
5. In the Trace Start/Stop Control group, check the DWT comparator 1 checkbox in

the Start Resource group and the DWT comparator 2 checkbox in the Stop
Resource group.

Setting Hardware Tracepoints

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

190 NXP Semiconductors

Figure 7-8. Trace Start/Stop Control Settings
6. In the Comparator 1 tab, specify the following settings: Select the Instruction

address match option in the Generate Comparator Match Event on drop-down
list. In the Value text box, specify the address of the instruction on which you want
to set comparator 1. For example, set the address of the instruction where you set the
start hardware tracepoint in Listing: Source code for trace collection.

Figure 7-9. Setting Comparator 1

NOTE
You can view the address of an instruction in the
Disassembly view. Open the Disassembly view while the
application is running, navigate to the instruction, and take
the first address.

7. In the Comparator 2 tab, specify the following settings: Select the Instruction
address match option in the Generate Comparator Match Event on drop-down
list. In the Value text box, specify the address of the instruction on which you want
to set comparator 2. For example, set the address of the instruction where you set the
stop hardware tracepoint in Listing: Source code for trace collection.

Chapter 7 Setting Tracepoints (Kinetis)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 191

Figure 7-10. Setting Comparator 2
8. Click OK to close the Preferences dialog box.
9. Click Apply to save the settings.

10. Click Debug to debug the application.
11. Click Resume to resume the program execution.
12. Wait for some time to let the application terminate.
13. In the Software Analysis view, expand the project name and click the Trace

hyperlink.

The Trace Data viewer appears displaying the same results as shown in Figure 7-3 and
Figure 7-4.

7.1.4 From Trace and Profile Tab - Kinetis Cortex M0+ Core

This topic explains how to set comparator 1 and comparator 2 as hardware tracepoints for
collecting trace on a Kinetis Cortex M0+ project.

This topic uses the addresses of the instructions, of Listing: Source code for trace
collection, at which you set start and stop hardware tracepoint. These addresses will be
set against comparator 1 and comparator 2 to collect the same trace results that appear on
setting hardware tracepoints from the source code.

To set hardware tracepoints using the Trace and Profile tab and collect trace on a
Kinetis Cortex M0+ project:

1. Select your project and open the Debug Configurations dialog box.
2. Enable tracing and profiling using steps 3 - 11 of Configuring Kinetis Cortex M0+

Core.
3. Close the Debug Configurations dialog box.
4. In the CodeWarrior Projects view, right-click the .elf file of your project, and select

the Disassemble option.

The disassembly file of the project opens automatically.

Setting Hardware Tracepoints

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

192 NXP Semiconductors

5. Search for the string entry().
6. Look for the address of the second call to Performance1(). For example, 0x8ce.
7. Look for the address of the first assembly instruction of the line if (iteration >= 255)

iteration = 0;. For example, 0x90a.
8. Open the Debug Configurations dialog box, and select the Trace and Profile tab.
9. Click Advanced Settings to open the Preferences dialog box displaying the MTB

settings.
10. Select DWT comparator 1 as Start Resource and DWT comparator 2 as Stop

Resource.
11. In the Comparator 1 tab, select Instruction Fetch from the Generate Comparator

Match Event On drop-down box.
12. In the Value text box, specify the address of the instruction on which you want to set

comparator 1. For example, 0x000008CE, which is the address of the second call to
Performance1().

Figure 7-11. Setting Comparator 1 — MTB Settings
13. In the Comparator 2 tab, select Instruction Fetch from the Generate Comparator

Match Event On drop-down box.

Chapter 7 Setting Tracepoints (Kinetis)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 193

14. In the Value text box, specify the address of the instruction on which you want to set
comparator 2. For example, 0x0000090A, which is the address of the first assembly
instruction of the line if (iteration >= 255) iteration = 0;.

15. Click OK and close the Preferences dialog box.
16. Debug the application.
17. Click Resume and after a few seconds, click Suspend.
18. In the Software Analysis view, expand the project name and click the Timeline

hyperlink.

The Timeline viewer appears displaying the results shown below.

Figure 7-12. Timeline Results After Setting DWT Triggers on Kinetis Cortex M0+ Project

7.2 Setting Software Tracepoints

Software tracepoints use an interrupt to start and stop trace. You can update your project
either manually or automatically to add support of software tracepoints for collecting
trace data on the Kinetis target.

• Setting Software Tracepoints Manually
• Setting Software Tracepoints Automatically

NOTE
Do not use hardware tracepoints and software tracepoints
together as they do not work simultaneously. This is because
hardware tracepoints require ETM enabled, which only happens
when a start software tracepoint is hit. And ETM logic has to be
disabled by default when using a software tracepoint since
ETM is enabled from the software interrupt code.

Setting Software Tracepoints

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

194 NXP Semiconductors

7.2.1 Setting Software Tracepoints Manually

To enable software tracepoints manually, you need to add the sa handler files to your
project and modify the kinetis_sysinit.c file. The sa handler file contains the handler for
the interrupt inside the code which enables/disables trace collection. The kinetis_sysinit.c
file contains the code that instructs the hardware to use a specific handler for each type of
interrupt of the application.

You also need to edit the linker control file of your project in which you add the .swtp
section. These sections are used by the software tracepoints mechanism to reserve a
memory zone to save a table with tracepoints records which are parsed inside the
sa_handler to determine whether the interrupt occurred for a start or stop tracepoint.

Two toolchains, Freescale and GCC, are available for enabling and installing software
tracepoints manually. You need to select the required option in the Language and Build
Tools Options page while creating a Kinetis project.

• Using Freescale Toolchain
• Using GCC Toolchain

7.2.1.1 Using Freescale Toolchain

To enable software tracepoints manually and collect trace data on the Kinetis target using
the Freescale toolchain:

1. Create a stationary Kinetis project with Freescale option selected in the Language
and Build Tools Options page.

2. Add the sa_handle.c file to your project using the following steps:
a. In the CodeWarrior Projects view, select the Sources folder of your project.
b. Right-click and select the Add Files option form the context menu.
c. Browse to the <MCU CW Installation Folder>\MCU\morpho_sa\sasdk\support\swtp

location.
d. Select the sa_handle.c file and click Open.
e. In the File Operation dialog box, select the Copy Files option.

3. Expand Project_Settings > Startup_Code in the CodeWarrior Projects view, and
open the kinetis_sysinit.c file in the editor area.

4. Edit the kinetis_sysinit.c file. Include this header file in the source code: #include
"sa_handler.h". And add this line in the interrupt vector section:
(tIsrFunc)sa_interrupt_handler,.

Chapter 7 Setting Tracepoints (Kinetis)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 195

Figure 7-13. Interrupt Vector Section
5. Save the kinetis_sysinit.c file.
6. Edit the linker control file of your project.

a. Expand Project_Settings > Linker_Files in the CodeWarrior Projects view.
b. Open the <project>_ram.lcf file in the editor area.
c. Add this statement in the memory section: .swtp (RX) : ORIGIN = AFTER(m_data),

LENGTH = 0x400

Figure 7-14. Memory Section of Linker File
d. Add the .swtp section containing the following statements:

.swtp_handler: {

 _swtp_addr = .;

 * (.swtp_table)

 _swtp_end =_swtp_addr + 0x200;

 . = ALIGN (0x4);

Setting Software Tracepoints

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

196 NXP Semiconductors

} > .swtp

NOTE
Make sure that you do not change the section name
because the Software Analysis tool looks for this exact
name when software tracepoints are installed.

e. Add this statement at the end of the file: __swtp_table = ADDR(.swtp_handler);. This
will store the address of the software tracepoint handler.

Figure 7-15. .swtp Section of Linker File When Freescale is Selected
f. Save <project>_ram.lcf.

7. Save and build the project.
8. Enable Trace and Profile.

a. Open the Debug Configurations dialog box, and select your project in the tree
structure.

b. Click the Trace and Profile tab, and check the Enable Trace and Profile
checkbox.

c. Keep Enable ETM Tracing checked.
d. Check Enable Continuous Trace collection and uncheck all other checkboxes.
e. Click Apply to save the settings, and close the Debug Configurations dialog

box.
9. Set start and stop software tracepoints.

a. In the editor area, select this statement: int counter = 0;
b. Right-click the marker bar, select the Toggle Trace Start Point > Software

Trace Point option from the context menu. The same option is also used to
remove the start tracepoint from the marker bar.

Chapter 7 Setting Tracepoints (Kinetis)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 197

The Software Tracepoints Support dialog appears. For more information on
this dialog box, refer Setting Software Tracepoints Automatically.

c. Click Cancel.
d. In the editor area, select this statement: for(;;)
e. Right-click the marker bar, select the Toggle Trace Stop Point > Software

Trace Point option from the context menu.

NOTE
It is recommended to set Inlining as Off before you
debug the project. To set Inlining as Off , right-click
your project and select the Properties option. The
Properties page of you project appears. Expand C/C+
+ Build and select Settings . In the Tool Settings tab,
expand ARM Compiler and select Optimization .
Select Off from the Inlining drop-down list on the
right-side of the tab.

10. Debug the application.
11. Collect trace and profile results.

a. Click Resume.
b. Click Suspend after a few seconds.

12. In the Software Analysis view, expand the project name and click the Trace
hyperlink.

The Trace Data viewer appears. The following two figures display the data file
generated by the application in which the data has been collected after setting start
and stop software tracepoints in the source code.

Setting Software Tracepoints

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

198 NXP Semiconductors

Figure 7-16. Trace Results After Setting Software Tracepoints - Beginning of Trace

Figure 7-17. Trace Results After Setting Software Tracepoints - End of Trace

This is how you set software tracepoints manually on the Kinetis architecture using the
Freescale toolchain.

7.2.1.2 Using GCC Toolchain

To enable software tracepoints manually and collect trace data on the Kinetis target using
the GCC toolchain:

Chapter 7 Setting Tracepoints (Kinetis)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 199

1. Create a stationary Kinetis project with the GCC option selected in the Language
and Build Tools Options page..

2. Add the sa_handler_gcc.c and sa_asm_handler_gcc.s files to your project as explained in
Step 2 of Using Freescale Toolchain.

3. Expand Project_Settings > Startup_Code in the CodeWarrior Projects view, and
open the kinetis_sysinit.c file in the editor area.

4. Edit the kinetis_sysinit.c file. Include this header file in the source code: #include
"sa_handler.h". Include the definition of sa interrupt handler: extern void
sa_interrupt_handler();. And add this line in the interrupt vector table:
sa_interrupt_handler,.

Figure 7-18. Interrupt Vector Table
5. Save the kinetis_sysinit.c file.

Setting Software Tracepoints

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

200 NXP Semiconductors

6. Edit the linker control file of your project.
a. Expand Project_Settings > Linker_Files in the CodeWarrior Projects view.
b. Open the <project>_ram.ld file in the editor area.
c. Add this statement in the memory section: .swtp (RX) : ORIGIN = 0x20000000+32K,

LENGTH = 0x400

Figure 7-19. Memory Section of Linker File

NOTE
Make sure that you do not change the section name
because the Software Analysis tool looks for this exact
name when software tracepoints are installed.

d. Add the .swtp section containing the following statements:

.swtp_handler: {

 . = ALIGN (0x4);

 PROVIDE (_swtp_addr = .);

 KEEP(*(.swtp_table))

 . = . + 0x200; /* reserve space for swtp_table */

 PROVIDE (_swtp_end = .);

 . = ALIGN (0x4);

} > .swtp

Chapter 7 Setting Tracepoints (Kinetis)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 201

Figure 7-20. .swtp Section of Linker File When GCC is Selected
e. Save <project>_ram.ld.
f. Save and build the project.
g. Follow steps 9 -13 of Using Freescale Toolchain to collect trace.

This is how you set software tracepoints manually on the Kinetis architecture using the
GCC toolchain.

7.2.2 Setting Software Tracepoints Automatically

To enable software tracepoints automatically, you can use the Software Tracepoints
Support dialog box, which appears when you add first start software tracepoint on a
project in the source code. You can also invoke the dialog box by selecting the project in
CodeWarrior Projects view, right-click it, and select the Profiler > Add software
tracepoint support option.

This dialog box:

• creates a memory zone for the software tracepoints table marked with .swtp_table
symbol

• updates the interrupt vector to add sa handler for svc interrupt, and
• adds the source file with sa handler which makes the trace settings
• creates the sa_backup folder which contains the original LCF file along with the log

files displaying the details of the operation performed. The sa_backup folder is created
inside the project at the same level as the Source folder.

Setting Software Tracepoints

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

202 NXP Semiconductors

NOTE
If you remove the sa_backup folder, the LCF file will not be
restored to the initial form before adding software
tracepoint support.

Perform the following steps to enable software tracepoints automatically and collect trace
data. The steps are same for Freescale as well as GCC toolchain.

1. Open the Debug Configurations dialog box, and select your project in the tree
structure.

2. Click the Trace and Profile tab, and check the Enable Trace and Profile checkbox.
3. Check Continuous Trace collection and uncheck all other checkboxes.
4. Click Apply to save the settings, and close the Debug Configurations dialog box.
5. In the editor area, select this statement: int counter = 0;
6. Right-click the marker bar, select the Toggle Trace Start Point > Software Trace

Point option from the context menu. The same option is also used to remove the start
tracepoint from the marker bar.

The Software Tracepoints Support dialog box appears.

NOTE
If you click Cancel in the Software Tracepoints Support
dialog box, the start tracepoint is set in the source code, but
you are required to enable the software tracepoints
functionality manually as discussed in Setting Software
Tracepoints Manually.

Chapter 7 Setting Tracepoints (Kinetis)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 203

Figure 7-21. Software Tracepoints Support Dialog Box
7. Click Locate to search for the source file where the interrupt vector is declared.
8. Select kinetis_sysinit.c file in the dialog box that appears.
9. Click OK in the Software Tracepoints Support dialog box.

10. In the editor area, select this statement: for(;;)
11. Right-click the marker bar, select the Toggle Trace Stop Point > Software Trace

Point option from the context menu.

Setting Software Tracepoints

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

204 NXP Semiconductors

12. Debug the application.
13. Collect trace and profile results.

a. Click Resume.
b. Click Suspend after a few seconds.

14. In the Software Analysis view, expand the project name and click the Trace
hyperlink.

The Trace Data viewer appears.

This is how you set software tracepoints automatically on the Kinetis architecture.

7.3 Viewing Tracepoints

You can view tracepoints in the Analysispoints view that displays the attributes of the
tracepoints set in source code or/and assembly code. To view the attributes of the
tracepoints, select Window > Show View > Other > Software Analysis >
Analysispoints . The Analysispoints view is displayed.

Figure 7-22. Analysispoints View

The Analysispoints view displays the following attributes of the tracepoints set from the
source code:

• Name and path of the file where tracepoint is set
• Type of the tracepoint, that is software or hardware
• Line number where tracepoint is set
• Action of the tracepoint, that is start or stop

The Analysispoints view displays the following attributes of the tracepoints set from the
Disassembly view:

• Name and path of the file where tracepoint is set
• Type of the tracepoint, that is software or hardware
• Address where tracepoint is set

Chapter 7 Setting Tracepoints (Kinetis)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 205

• Line number where tracepoint is set
• Action of the tracepoint, that is start or stop

You can use the Analysispoints view to perform the following actions:

• View Full Path of Tracepoint Attribute
• Group Tracepoints
• Define Working Sets
• Add New Analysispoint
• Enable/Disable Tracepoints
• Navigate to Tracepoint Line
• Remove Tracepoints
• Context Menu

7.3.1 View Full Path of Tracepoint Attribute

To view the complete path of the files of the tracepoint attribute, click View Menu in the
Analysispoints view and select the Show Full Paths option. Select the option again to
hide the complete path.

7.3.2 Group Tracepoints
You can group the attributes of the tracepoints by tracepoint type, files, projects, or
working sets. To group the attributes, click View Menu > Group By and select the
necessary option. The following figure shows the tracepoint attributes in the
Analysispoints view which are grouped by projects. You can ungroup the attributes by
selecting the same option again.

Figure 7-23. Analysispoints View - Group by Projects

Viewing Tracepoints

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

206 NXP Semiconductors

7.3.3 Define Working Sets

Working sets allow you to create named groups for the tracepoints. You can define
working sets for the selected tracepoints and then group the tracepoints by working sets.
To create a working set:

1. Click the drop-down in the Analysispoints view and select the Working Sets option.

The Select Working Set dialog box appears.

2. Click New to create a new working set.

The New Working Set dialog box appears.

3. Type a name for the working set in the Working Set Name textbox.
4. Select the tracepoints in the Working Sets list that you want to add to the new

working set. For example, you can select hardware tracepoints for one working set
and software tracepoints for another working set.

5. Click Finish.
The new working set appears in the Select Working Set dialog box.

Figure 7-24. Select Working Set Dialog Box
6. Click OK to close the dialog box.

To group tracepoints by working sets, click the drop-down in the Analysispoints view,
and select Group By > AnalysispointWorking Sets. The tracepoints grouped by the
working sets appear in the Analysispoints view.

Chapter 7 Setting Tracepoints (Kinetis)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 207

Figure 7-25. Analysispoints Grouped by Working Sets

You can also set a working set as the default one so that whenever you add any stop or
start tracepoint to your application, it gets automatically added to the default working set.
In this way, working sets help you work on a particular set of tracepoints at a particular
time. Click the drop-down in the Analysispoints view and select the Select Default
Working Set option. It opens the Select Default Working Set dialog box where you can
set one of the available tracepoints working sets as the default one. Alternatively, right-
click the working set, and select the ToggleDefault.label option from the context menu
to set the working set as default.

You can deselect the working set which you set as default, using the Deselect Default
Working Set option from the drop-down or selecting the ToggleDefault.label option
from the context menu.

7.3.4 Add New Analysispoint

You can use the Analysispoints view to add a tracepoint on the address of an instruction.
To add an address tracepoint:

1. Click the Add new Analysispoint icon to display the Add New Analysispoint
dialog box.

Viewing Tracepoints

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

208 NXP Semiconductors

Figure 7-26. Add New Analysispoint Dialog Box
2. Select the required project from the Projects text box.
3. Select the type of the tracepoint from the Type text box..
4. Select the action of the tracepoint, that is whether start or stop, from the Action text

box.
5. Enter the address where you want to set the tracepoint in the Address text box
6. Click OK.

The tracepoint is set and appears in the Analysispoints view.

Figure 7-27. Address Tracepoint Set in Analysispoints View

NOTE
The address tracepoint set from Analysispoints view does not
have a source file associated with it, therefore, the tracepoint
when set is not displayed in the source code. You can view it
only in the Analysispoints view.

7.3.5 Enable/Disable Tracepoints

Chapter 7 Setting Tracepoints (Kinetis)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 209

You can enable/disable a tracepoint from Analysispoints view by checking/clearing it.
The unchecked attribute indicates the disabled tracepoint. A disabled tracepoint will have
no effect during the collection of trace data.

You can also use the Ignore all Analysispoints icon to disable all the tracepoints without
manually selecting them. Click Ignore All Analysispoints again to enable the
tracepoints.

Figure 7-28. Disabling Tracepoints from Analysispoints View

7.3.6 Navigate to Tracepoint Line

The Analysispoints view shows where start and stop tracepoints are set in the editor area
or the Disassembly view. It helps you navigate to the source code or assembly code
where the tracepoint is set. If you want to go to the specific line of the source code where
the tracepoint is set, select the tracepoint attribute in the Analysispoints view and click
the Go To File for Analysispoints icon. This option will navigate you to that line.

7.3.7 Remove Tracepoints

To remove a tracepoint, select the tracepoint attribute and click the Remove Selected
Analysispoint icon. To remove all the tracepoints, click the Remove All Analysispoints
icon.

7.3.8 Context Menu
Right-click in the Analysispoints view or on the tracepoint to display a context menu,
which allows you to perform the following actions:

• Go to File — Navigates you to the specific line of the source file where you have set
the selected tracepoint.

Viewing Tracepoints

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

210 NXP Semiconductors

• Enable/Disable — Allows you to enable/disable tracepoints. A disabled tracepoint
will have no effect during the collection of trace data.

• Remove — Removes the selected tracepoint.
• Remove All — Removes all tracepoints that are displayed in the Analysispoints

view.
• Select All — Selects all tracepoints in the Analysispoints view.
• Copy — Copies the selected tracepoint on the clipboard.
• Set Cores — Lets you select the cores for which you want to set tracepoints. This

feature is applicable for multicore tracing, which is not yet supported in CodeWarrior
Microcontrollers.

• Export Analysispoints — Lets you save the tracepoints in a .apt file at a desired
location. Select this option to display the Export Analysis Points dialog box. Select
the tracepoint(s) that you want to save, and click Browse to navigate to a location
where you want to save the tracepoint(s), in the Save Analysis Points As dialog box.
Specify a filename in which the tracepoints will be exported. The full path will
appear in the Destination text box. Click Finish.

Chapter 7 Setting Tracepoints (Kinetis)

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 211

Figure 7-29. Export Analysis Points Dialog Box
• Import Analysispoints — Lets you import analysispoints from another location in the

Analysispoints view. Select this option to display the Import Analysis Points
dialog box. Click Browse to locate the .apt file where you saved the analysispoints.
Click Finish. The analysispoints will be imported in the Analysispoints view.

Viewing Tracepoints

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

212 NXP Semiconductors

Chapter 8
Data Visualization
Data visualization allows you to visualize during runtime the evolution of certain
application data, such as variables, registers, memory, which represent parameters
defining the functionality of certain equipment, for example, a motor.

Data Visualization is available for DSC architectures only. Data visualization helps DSC
users identify and chart variables against time and other variables. Data Visualization:

• samples the values of registers, variables and/or raw memory data as the application
is running

• displays the collected data in a chart as the application is running
• samples the required data without stopping the core if the target allows or allows you

to set visualization points (special type of breakpoints) which would automatically
stop the target, read the required data and resume the target immediately.

NOTE
The JTAG interface on the DSC is powerful enough to
extract the value of variables. To do this, a special
Visualization Breakpoint is set. When this breakpoint is
reached, the JTAG interface relays the information about
the variables being monitored so that they can be graphed.

This chapter consists of the following topics:

• Creating DSC Project
• Configuring for Data Visualization
• Setting Analysispoints for Data Visualization
• Collecting and Viewing Data

8.1 Creating DSC Project
To create a DSC project:

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 213

1. Select File > New > Bareboard Project.

The Create an MCU Bareboard Project page appears.

2. Enter the name of your project in the Project Name text box and click Next.

The Devices page appears.

3. Select the target device or board for your project from the DSC family. For example,
select 56800/E (DSC) > MC56F825X > MC56F8257.

4. Click Next.

The Connections page appears.

5. Select the available connection.
6. Click Next two times and then click Finish.

The project is created and appears in the CodeWarrior Projects view. You can now
build your project.

8.2 Configuring for Data Visualization
To configure your DSC project for data visualization:

1. Open the Debug Configurations dialog box.
2. Click the Trace and Profile tab.
3. Check the Enable Data Visualization checkbox.

The options corresponding to Trace and Profile get disabled. This is because Data
Visualization and tracing cannot be used simultaneously. Trace collection and Data
Visualization sampling may be used together on the platforms which support reading
target memory and registers while running. In this case, both checkboxes will be enabled
and may be selected at the same time.

Configuring for Data Visualization

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

214 NXP Semiconductors

Figure 8-1. Trace and Profile Tab - DSC Architecture

8.3 Setting Analysispoints for Data Visualization
To select the data to be visualized, you need to set the analysispoints. Two types of
analysispoints are set, Data analysispoints and Register analysispoints, which appear in
the Analysispoints view. You can set data analysispoints on Memory or Variables view,
while the register analysispoints are set on the Registers view.

Figure 8-2. Analysispoints View with Data and Register Analysispoints

This topic contains the following sub-topics:

• Setting Data Analysispoints on Memory View

Chapter 8 Data Visualization

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 215

• Setting Data Analysispoints on Variables View
• Setting Register Analysispoints on Registers View

8.3.1 Setting Data Analysispoints on Memory View

To set data analysispoints for visualization on the Memory view:

1. Debug your application.
2. Open the Variables view and select the required variable on which you want to set

the data analysispoint.
3. Right-click and select the View Memory option from the context menu.

The Memory view appears with memory renderings opened.

4. Look for the required address among the cells displayed in the Memory view. The
required address is the address of the selected variable in the Variables view.

NOTE
It is recommended to change the memory rendering cell
formatting to a smaller value, for example, 2 bytes, if the
required address cannot be found among the cells being
displayed by default. To change the format value, right-
click the selected cell, select Format and specify Column
Size as 2. For details, see Figure 8-4.

Figure 8-3. Memory View
5. Right-click the cell which has the required address, and select Add Visualization >

Add Data Visualization from the context menu.

The Add Data Visualization dialog box appears.

6. Select the size of the memory cell to be visualized from the Size drop-down list.

Setting Analysispoints for Data Visualization

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

216 NXP Semiconductors

7. Click OK to add a memory data analysispoint to the Analysispoints view.

This sets data analysispoints for visualization on the Memory view.

8.3.2 Setting Data Analysispoints on Variables View

To set data analysispoints for visualization on the Variables view:

1. Debug your application.
2. Open the Variables view.
3. Select the required variable on which you want to set the data analysispoint.

NOTE
By default, the global variables are not displayed in the
Variables view. To view global variables, right-click and
select Add Global Variables from the context menu. In the
Add Globals dialog box that appears, select the variables
that you want to add and click OK.

4. Right-click and select Add Visualization > Add Data Visualization from the
context menu.

The Add Data Visualization dialog box appears.

5. Select the size of the memory cell to be visualized from the Size drop-down list.
6. Click OK to add a variable data analysispoint to the Analysispoints view.

This sets data analysispoints for visualization on the Variables view.

8.3.3 Setting Register Analysispoints on Registers View

To set register analysispoints for visualization on the Variables view:

1. Debug your application.
2. Open the Registers view.
3. Select the required register on which you want to set the register analysispoint.
4. Right-click and select Add Visualization > Add Data Visualization from the

context menu.

The Add Data Visualization dialog box appears.

Chapter 8 Data Visualization

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 217

5. Select the size of the memory cell to be visualized from the Size drop-down list.
6. Click OK to add a register analysispoint to the Analysispoints view.

This sets data analysispoints for visualization on the Registers view.

8.4 Collecting and Viewing Data
This section demonstrates data visualization by using an example.

To collect and view data for data visualization:

1. Create a DSC project with the source code shown below.
Listing: Sample source code used for data visualization

#include <stdio.h>

#include <stdlib.h>

#define SIZE 10

#define NO_PRINT

// prototypes

void swap(int *a, int *b);

void print_array(int arr[], int length);

int i = 0;

long j = 0;

int arr[SIZE] = { 4, 6, 7, 1, 2, 3, 4, 12, 4, 5 };

int main(void) {

 #ifndef NO_PRINT

 printf("\n\n\n======================================\n");

Collecting and Viewing Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

218 NXP Semiconductors

 printf("======================================\n\n");

 print_array(arr, SIZE);

 #endif

for (i = 0; i < SIZE - 1; i++)

 for (j = i; j < SIZE; j++)

 if (arr[i] > arr[j])

 swap(&arr[i], &arr[j]);

#ifndef NO_PRINT

 print_array(arr, SIZE);

 printf("\n\n... program done.\n");

#endif

 return (0);

}

void print_array(int arr[], int length) {

 int i;

 printf("Array = ");

 for (i = 0; i < length; i++) {

 printf("%d ", arr[i]);

 }

 printf("\n");

}

Chapter 8 Data Visualization

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 219

void swap(int *a, int *b) {

 int c = *a;

 *a = *b;

 *b = c;

}

2. Save and build your project.
3. Debug the project.
4. Set data analysispoints.

a. Open the Variables view. Right-click and select the Add Global Variables
option from the context menu.

The Add Globals dialog box appears.

b. Select all variables Farr, Fi, Fj and click OK.
c. Select Fi and select Add Visualization > Add Data Visualization.

The Add Data Visualization dialog box appears.

d. Accept the default settings and click OK.
e. Select Fj, right-click and select View Memory from the context menu.

The Memory view appears with memory renderings opened.

f. Right-click the selected cell in the Memory view, and select the Format option
from the context menu.

The Format dialog box appears.

Collecting and Viewing Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

220 NXP Semiconductors

Figure 8-4. Format Dialog Box
g. Select Column Size as 2 and click OK.
h. Right-click again in the Memory view on the cell that displays the required

address (that is the address of the Fj variable in the Variables view) and select
Add Visualization > Add Data Visualization from the context menu.

The Add Data Visualization dialog box appears.

i. Select the size of the memory cell as 4 bytes in the Size drop-down list.
j. Click OK to add the memory data analysispoint to the Analysispoints view.

5. Set the register analysispoint.
a. Open the Registers view.
b. Expand Core Registers > A1 , right-click, and select Add Visualization > Add

Data Visualization.

Chapter 8 Data Visualization

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 221

Figure 8-5. Registers View

The Add Data Visualization dialog box appears.

c. Accept the default settings and click OK.
6. Open the Analysispoints view and see data and register analysis points that you have

set.
7. Set data visualization breakpoints.

a. Set a breakpoint on the line swap(&arr[i], &arr[j]);.
b. Right-click the breakpoint and select Breakpoint Properties from the context

menu.

The Properties dialog box appears.

c. Click New under Available Actions group to add a new resume action.

The New Breakpoint Action dialog box appears.

Collecting and Viewing Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

222 NXP Semiconductors

Figure 8-6. New Breakpoint Action Dialog Box
d. Type a name for the new resume action, and select Action type as Resume

Action.
e. Keep 0 seconds in the Resume after textbox and click OK.

The resume action appears in the Available actions table in the Properties
dialog box.

f. Click Attach to attach the resume action with the breakpoint.
g. Set another breakpoint on the line return 0; with no action attached to the

breakpoint.
8. Resume the application.

As the application runs and reaches the second breakpoint, the Data Visualization
page opens automatically. It displays the last values in a SWT chart read for each
visualization analysispoint.

Chapter 8 Data Visualization

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 223

9. Terminate the application.

The Software Analysis view opens and populates with a new result set. Only Trace ,
Data Visualization and Log are visible. The Data Visualization chart populates
with the full set of collected values.

NOTE
The sampled data can also be seen as a data trace, with
Data Read events for memory data and Profile Counters
events for variable and register values.

10. Open the Trace Data viewer.

The Trace Data viewer contains the same data.

11. Select another metric for the x-axis, for example, Fj and view results related to it.

NOTE
The metric versus time is displayed as lines with symbols,
while metric versus metric is displayed as symbols only.

For more information, refer Data Trace Import Dialog Box.

Collecting and Viewing Data

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

224 NXP Semiconductors

Chapter 9
Launching Scripts

The Profiling and Analysis tools help you launch scripts written in Python language.
These scripts allow you to collect and export trace data automatically using remote
launch. This feature is integrated with CodeWarrior IDE scripting. The scripts are
launched in remote launch using the Jython console. The remote launch feature of
CodeWarrior allows launch configurations to be executed remotely.

NOTE
The Profiling and Analysis tools specific scripting APIs are
available in the SA_Scripting.doc document, which is located at
<CW Installation Directory>\MCU\morpho_sa\sasdk\support.

You can export the data in a CSV file or set the tracepoints in the source code by
launching a Python script. You can write the script to contain all details required to
configure tracing and profiling. For example, enabling trace and profile, setting
breakpoints, launching the application, resuming, suspending, and terminating. You can
also set the trace mode, for example, automatic or continuous for trace collection in the
script itself. You can also modify the sample Python scripts according to your needs to
extend the functionality to other platforms by changing the configuration attributes. After
writing these scripts, you run them in the Jython console and collect trace.

This chapter consists of the following topics:

• Run Sample Python Script
• Collect Trace Using Jython
• Export Trace to CSV File
• Modify Sample Python Script

9.1 Run Sample Python Script

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 225

The steps in this topic demonstrate the procedure of running a sample Python script from
Jython console, that is running the script that you might have written for exporting trace
data or collecting trace data.

1. Copy the Python scripts, which you want to execute, at <CW installation directory>
\eclipse\plugins\com.freescale.sa.mcu.scripting_*\remote\scripting_sa_mcu.

2. Select Window > Show View > Other > Debug > Remote Launch to open the
Remote Launch view.

3. Click the Enable Remote Launch button displayed on the top right of the view to
enable remote launching.

The color of the button changes to red.

4. Select Window > Show View > Other > Debug > Jython Consoles to open the
Jython Consoles view.

5. Open the View menu in the Jython Consoles view, and select the New Interpreter
option.

Figure 9-1. Select New Interpreter Option in Jython Consoles View

The Input Name dialog box appears.

6. Specify a name for the new interpreter and click OK.
7. In the Jython console command prompt (">>>"), input code in Python syntax. You

may access any classes in your test scripts, foe example, test_file.py, by inputting the
following commands in the Jython command prompt:

>>> from scripting_sa_mcu import test_file

>>> test = test_file.test_class()

>>> test.a_function(args)

Run Sample Python Script

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

226 NXP Semiconductors

NOTE
The advantage of using Jython is that besides Python
modules, it can also access Java modules in the similar
manner.

This is how you run a sample Python script from Jython console.

9.2 Collect Trace Using Jython

To collect trace using remote launch through Jython console, perform the following steps.
These steps demonstrate the procedure of launching configuration and collecting both
continuous and automatic trace on the HCS08 MC9SO8QE128 target using the sample
scripts, TestCollectContinuousHcs08.py and TestCollectAutomaticHcs08.py.

These scripts are available at <CW Installation Directory>\eclipse\plugins
\com.freescale.sa.mcu.scripting_*\remote\scripting_sa_mcu.

1. Create a new HCS08 project with the name hcs08.
2. Replace the source code of main.c with the code shown below.

Listing: HCS08 Source Code

#include <hidef.h> /* for EnableInterrupts macro */

#include "derivative.h" /* include peripheral declarations */

volatile i = 0;

void f() {

 if (i < 100) {

 i++;

 return;

 }

 i = 0;

}

void main(void) {

Chapter 9 Launching Scripts

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 227

 EnableInterrupts;

 /* include your code here */

 for(;;) {

 f();

 __RESET_WATCHDOG();/* feeds the dog */

 } /* loop forever */

 /* please make sure that you never leave main */

}

3. Save and build your project.
4. Open the Remote Launch and Jython Consoles views.
5. Activate remote launch by clicking the Enable Remote Launch button.
6. Execute the TestCollectContinuousHcs08.py script by running the following commands

at the Jython command prompt:

>>> from scripting_sa_mcu import TestCollectContinuousHcs08

>>> TestCollectContinuousHcs08.runTraceDemo()

Figure 9-2. Running Commands at Jython Command Prompt for Collecting Trace

The trace collection starts and the Software Analysis view appears with the trace
results.

Collect Trace Using Jython

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

228 NXP Semiconductors

Figure 9-3. Software Analysis View Containing Trace Results Collected Using Remote
Launch

7. Start a new Jython interpreter by selecting the New Interpreter option from the
View menu of the Jython Consoles view.

8. Execute the TestCollectAutomaticHcs08.py script by running the following commands at
the Jython command prompt:

>>> from scripting_sa_mcu import TestCollectAutomaticHcs08

>>> TestCollectAutomaticHcs08.runTraceDemo()

9. Open the Software Analysis view and check the collected results.

NOTE
The sample scripts used for collecting continuous and
automatic trace on the ColdFire V1 and Kinetis targets are
also located at <CW Installation Directory>\eclipse\plugins
\com.freescale.sa.mcu.scripting_*\remote\scripting_sa_mcu.

This is how you collect trace using the Jython console.

9.3 Export Trace to CSV File

You can export trace data collected on a project to a CSV file using Jython console.

NOTE
Another way of exporting trace data to a CSV file is through
buttons available on the Trace Data , Critical Code , and
Performance viewers.

To export trace data using Jython console, perform the following steps. Make sure that
you have some trace data collected that you want to export to CSV files.

1. Open the Remote Launch and Jython Consoles views.
2. Activate remote launch by clicking the Enable Remote Launch button.

Chapter 9 Launching Scripts

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 229

3. Open the View menu in the Jython Consoles view, and select the New Interpreter
option. This step is not required if you have opened Jython Consoles for the first
time.

4. Type a name and click OK in the Input Name dialog box.
5. Type the following commands one by one in the Jython command prompt:

>>> from scripting_sa import TestExportTrace

>>> test = TestExportTrace.TestExportTrace()

>>> test.testExportTrace(config_path)

where config_path is a string containing the full path (in double quotes) of the .config
file present in the .Analysis Data directory (in your project workspace) with path
separators '/' or '\\'. The .config file contains the configuration details of the project
the trace data of which you are exporting to CSV.

NOTE
The from scripting_sa import TestExportTrace command
imports the Python script TestExportTrace.py written for
exporting trace results in CSV files. This script is located at
<CW Installation Directory>\eclipse\plugins

\com.freescale.sa.scripting_*\remote\scripting_sa.

Figure 9-4. Running Commands in Jython Console

The following output is shown in the Jython console and four .csv files are created in
the .Analysis Data directory of your workspace.

Export Trace to CSV File

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

230 NXP Semiconductors

Figure 9-5. Output in Jython Console After Running Export Commands
6. Browse to the .Analysis Data directory and view the .csv files containing the exported

data.

This is how you export trace data to a CSV file using the Jython console.

9.4 Modify Sample Python Script

You can modify the sample Python scripts TestCollectContinuousHcs08.py and
TestCollectAutomaticHcs08.py according to your needs to extend the functionality to other
platforms. You can use these scripts as base for creating test scripts.

To create your scripts, you can modify the sample script as follows:

1. Rename the script according to platform name.
2. Rename the two classes inside the scripts.
3. Update the references to these classes in the onBeforeLaunchStart(self) and

runTraceDemo() functions. For example, in the onBeforeLaunchStart(self) function,
replace TestConfigHcs08() with TestConfigABC() as follows, where ABC is the platform
you are working on.

if (self.__enableTrace):

 self.__traceSession = TestConfigABC()

4. Similarly, in the runTraceDemo() function, replace TestCollectContinuousHcs08() with
TestCollectContinuousABC(), where ABC is the platform you are working on.

5. Modify the configuration details in the Config data for the script section (lines 20 to
23) as follows:

a. Update platform name in test_platform. The platform type string is case-sensitive
and can take any one of the following values: "HCS08", "Kinetis", "CFv1",
"CFv2", "CFv3", "CFv4", "56xx", "DSC", "S12Z".

b. Update project name in test_project.

Chapter 9 Launching Scripts

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 231

c. Update launch configuration name in test_launchconfig.
d. Update the breakpoint line in test_bp_line, that is the line where you want to set a

breakpoint. For example, for the Kinetis stationery project, you may use line 21
for the breakpoint.

6. Update other configuration details after line 57 according to your needs.

NOTE
Besides checking that trace is collected and a new result set
named 0-{launch_config_name} is created in the Software
Analysis view, you may edit the file 0-
{launch_config_name}.traceConfig available in the project root.
You can see that the attributes corresponding to the
self.__analysisConfig.setXXX functions called in the sample
scripts are changed in the .traceConfig file. For example, if
self.__analysisConfig.setContinuousTrace(True) is called from
the scripts (see line 59 in the sample scripts) then in
the .traceConfig file, you should notice that the
"Continuous" attribute is changed to true. The remote
launch creates a copy of the launch configuration created
by the New Project Wizard and deletes it after the debug
session terminates successfully, so checking the trace and
profile tab controls for changes is not possible.

This is how you can modify a sample Python script.

Modify Sample Python Script

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

232 NXP Semiconductors

Chapter 10
Simple Instrumentation Profiling on ColdFire V2 -
V4e Targets
The ColdFire V2 - V4 targets collect the profiling information by using the profiling
system. These targets do not have the hardware capability to collect trace. The profiling
system consists of three main components:

• The statically-linked code library of compiled code containing the profiler. This
library is created and distributed within the CodeWarrior product.

• An Application Programming Interface (API) to control the profiler
• The Simple Profiler Viewer to view and analyze the profile results

The profiling system collects information using a profiler, which analyzes the amount of
time a program spends performing various tasks and detects bottlenecks between the
functions/routines. This type of information-tracking can be useful for determining the
cost of calling a routine. The cost of a routine call is not only the time spent in the
routine, it is also the time spent in its children, that is the subsidiary routines it calls, the
routines they call, and so on.

To use the profiler for profiling an application, perform the following actions:

• Include the profiler library and files in the CodeWarrior project
• Configure your project to turn on profiling
• Modify the application source code to make use of the profiler API
• Debug the application and collect profiling information
• Open the Simple Profiler Viewer to view the results

This process of profiling gets you all the data you need to perform a professional-level
analysis of the runtime behavior of your application.

NOTE
This chapter explains profiling on ColdFire V4e target, the
process of profiling is same for ColdFire V2 - V4 targets.

This chapter contains the following topics:
• Include Profiler Library and Files

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 233

• Configure Project for Profiling
• Modify Source Code
• Debug Application and Collect Profiling Information
• View Profiling Results

10.1 Include Profiler Library and Files

The profiling code that keeps track of the time spent in a routine exists in a series of
libraries. You need to add a profiler library and four profiler files to your project to use
the profiler.

To add the profiler files:

1. Select the Sources folder of your project in the CodeWarrior Projects view.
2. Right-click and select the Add Files option.

The Open dialog box appears.

3. Browse to the <CodeWarrior_Installation_Folder>\MCU\ColdFire_Support\Profiler\Support\
location.

4. Select timer.c and timer_5485.c with Ctrl key pressed and click Open.

The File and Folder Import dialog box appears.

5. Select the Copy the files and directories option and click OK.

The files are added to the Sources folder.

Figure 10-1. Profiler Files Added to Sources Folder
6. Select the Project_Headers folder of your project in the CodeWarrior Projects view.
7. Right-click and select the Add Files option.

The Open dialog box appears.

Include Profiler Library and Files

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

234 NXP Semiconductors

8. Browse to the <CodeWarrior_Installation_Folder>\MCU\ColdFire_Support\Profiler\include\
location.

9. Select Profiler.h and ProfilerTimer.h file with Ctrl key pressed and click Open.

The File and Folder Import dialog box appears.

10. Select the Copy the files and directories option and click OK.

The files are added to the Project_Headers folder.

To add the profiler library, ProfileLibrary_CF_Runtime.a:

1. Select your project in the CodeWarrior Projects view.
2. Right-click and select the Properties option from the context menu.

The Properties for <project name> dialog box appears.

3. Expand the C/C++ Build node in the tree structure on the left, and select the
Settings option.

4. In the Tool Settings tab page, expand the ColdFire Linker node in the left tree
structure.

5. Select the Input option.
6. In the Library Files section on the right side of the tab page, click the Add.. button

to open the Add file path dialog box.
7. Click the File system button.

The Open dialog box appears.

8. Browse to the <CodeWarrior_Installation_Folder>\MCU\ColdFire_Support\Profiler\Lib
location.

9. Select the ProfileLibrary_CF_Runtime.a file and click Open.

The complete path of the file appears in the Add file path dialog box.

Figure 10-2. Add File Path Dialog Box
10. Click OK in the Add file path dialog box.

The profiler library gets added to the Library Files section.

Chapter 10 Simple Instrumentation Profiling on ColdFire V2 - V4e Targets

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 235

Figure 10-3. Tool Settings Page of Properties Dialog Box

10.2 Configure Project for Profiling

You need to configure the compiler and linker settings of your project. The compiler and
linker using the profiler library generate a new version of your program ready for
profiling. While it runs, the profiler generates data.

To configure the project for profiling:

1. In the Tool Settings tab page, modify the Entry Point value as __start.
2. In the Force Active Symbols section, remove the entry for __vect by clicking the

Delete button.

Configure Project for Profiling

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

236 NXP Semiconductors

Figure 10-4. Configuration of ColdFire Linker Properties
3. Select the ColdFire Compiler node in the left tree structure.
4. Select the Processor option.
5. Check the Generate Code for Profiling (-profile) checkbox.

Figure 10-5. Configuration of ColdFire Compiler Properties
6. Select the Language Settings option in the left tree structure.

Chapter 10 Simple Instrumentation Profiling on ColdFire V2 - V4e Targets

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 237

7. Ensure that the Other flags text box on the right side has the entry: -define
CONSOLE_IO_SUPPORT=1

Figure 10-6. Configuring Language Settings
8. Click Apply to apply the settings.
9. Click OK to close the Properties of <project name> dialog box.

10. Expand the Project_Settings > Linker_Files node of your project in the
CodeWarrior Projects view.

11. Double-click the M5485EVB_Console_External_RAM.lcf file to open its contents in the
editor area.

12. Add the following statements at the end of the file before the last closing parenthesis:

gCWProfileLibraryBuffer = _gCWProfileLibraryBuffer;

CWProfileDataReady = _CWProfileDataReady;

Figure 10-7. Modification in M5485EVB_Console_External_RAM.lcf File
13. Save and close the file.

This configures the project for profiling.

Configure Project for Profiling

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

238 NXP Semiconductors

10.3 Modify Source Code
Replace the source code of the main.cpp file of your project with the source code shown in
the listing below. To open the main.cpp file:

1. Expand the Sources node of your project in the CodeWarrior Projects view.
2. Double-click main.cpp to open its contents in the editor area.

You need to modify the source code such that it uses the profiler API to do profiling. This
source code uses:

• The ProfilerInit() function to initialize the profiler - With profiling on, the compiler
generates all the necessary code so that every routine calls the profiler.

• The ProfilerDump() function to write the profiling data into the profiledump.mwp file
• The ProfilerTerm() function to terminate the profiler - If you initialize the profiler and

then exit the program without terminating the profiler, timers may be left running
that could crash the machine.

The source files that make calls to the profiler API must include the appropriate header
file for your target. The header file that the ColdFire V4e target uses for profiling is:

 #include <Profiler.h>

Listing: Sample source code used for profiling

#include <stdio.h>

#include <Profiler.h>

/*---------------Loop constant definition--------------------*/

define LOOP_1 0x0001FFFF

define LOOP_2 0x0002FFFF

define LOOP_3 0x0003FFFF

define LOOP_4 0x0001FFFF

define LOOP_5 0x0002FFFF

Chapter 10 Simple Instrumentation Profiling on ColdFire V2 - V4e Targets

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 239

define LOOP_6 0x0003FFFF

define LOOP_7 0x0001FFFF

define LOOP_8 0x0002FFFF

define LOOP_9 0x0003FFFF

define LOOP_10 0x0001FFFF

/*----------------------Global function Declaration-------------*/

void fn1(int loop);

void fn2(int loop);

void fn3(int loop);

void fn4(int loop);

void fn5(int loop);

void fn6(int loop);

volatile int fn7(int a);

/*-----------------Class One Definition-----------------------*/

class One

{

public:

Modify Source Code

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

240 NXP Semiconductors

 void one_fn1(int loop);

};

/*---------------Class One's function Definition--------------*/

void One::one_fn1(int loop)

{

 unsigned int i,j;

 printf("In function : One::one_fn1 \n\r");

 for(i = 0 ; i < loop ; i++)

 {

 for(j = 0; j < 0x12 ; j++)

 {}

 }

}

/*----------------Class Two Defination-------------------------*/

class Two

{

private:

 One test;

Chapter 10 Simple Instrumentation Profiling on ColdFire V2 - V4e Targets

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 241

public:

 void two_fn1(int loop);

 void two_fn2(int loop);

};

/*---------------Class Two's function Defination----------------*/

void Two::two_fn1(int loop)

{

 unsigned int i,j;

 printf("In function : Two::two_fn1 \n\r");

 for(i = 0 ; i < loop ; i++)

 {

 for(j = 0; j < 0x12 ; j++)

 {}

 }

 two_fn2(LOOP_9);

}

void Two::two_fn2(int loop)

Modify Source Code

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

242 NXP Semiconductors

{

 unsigned int i,j;

 printf("In function : Two::two_fn2 \n\r");

 for(i = 0 ; i < loop ; i++)

 {

 for(j = 0; j < 0x12 ; j++)

 {}

 }

 test.one_fn1(LOOP_10);

}

/*----------------Global function Defination--------------------*/

volatile int fn7(int a)

{

 int i;

 printf("In function : fn7 \n\r");

 if(a == 1)

 {

 for(i = 0; i < 240000; i ++);

Chapter 10 Simple Instrumentation Profiling on ColdFire V2 - V4e Targets

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 243

 return 1;

 }

 else

 return a * fn7(a - 1);

}

void fn6(int loop)

{

 unsigned int i,j;

 printf("In function : fn6 \n\r");

 for(i = 0 ; i < loop ; i++)

 {

 for(j = 0; j < 0x12 ; j++)

 {}

 }

}

void fn5(int loop)

{

Modify Source Code

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

244 NXP Semiconductors

 unsigned int i,j;

 printf("In function : fn5 \n\r");

 for(i = 0 ; i < loop ; i++)

 {

 for(j = 0; j < 0x12 ; j++)

 {}

 }

}

void fn4(int loop)

{

 unsigned int i,j;

 printf("In function : fn4 \n\r");

 for(i = 0 ; i < loop ; i++)

 {

 for(j = 0; j < 0x12 ; j++)

 {}

 }

}

Chapter 10 Simple Instrumentation Profiling on ColdFire V2 - V4e Targets

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 245

void fn3(int loop)

{

 unsigned int i,j;

 printf("In function : fn3 \n\r");

 for(i = 0 ; i < loop ; i++)

 {

 for(j = 0; j < 0x12 ; j++)

 {}

 }

}

void fn2(int loop)

{

 unsigned int i,j;

 printf("In function : fn2 \n\r");

 for(i = 0 ; i < loop ; i++)

 {

 for(j = 0; j < 0x12 ; j++)

Modify Source Code

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

246 NXP Semiconductors

 {}

 }

 fn3(LOOP_3);

}

void fn1(int loop)

{

 unsigned int i,j;

 printf("In function : fn1 \n\r");

 for(i = 0 ; i < loop ; i++)

 {

 for(j = 0; j < 0x12 ; j++)

 {}

 }

 fn2(LOOP_2);

}

/*---------------main function Definition----------------------*/

int main()

{

Chapter 10 Simple Instrumentation Profiling on ColdFire V2 - V4e Targets

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 247

 One a;

 Two b;

 printf("Profiler yet to start C\n\r");

// Following section of code initialises the profiler

 ProfilerInit(collectDetailed, bestTimeBase, 5,20);

 ProfilerClear();

 ProfilerSetStatus(1);

 printf("Profiler has just started \n\r");

// Code to be profiled

 fn1(LOOP_1);

 fn4(LOOP_4);

 fn5(LOOP_5);

 fn6(LOOP_6);

 fn7(4);

 a.one_fn1(LOOP_7);

 b.two_fn1(LOOP_8);

 printf("Profiling is just to end \n\r");

Modify Source Code

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

248 NXP Semiconductors

// Following section of code terminates the profiler

 ProfilerSetStatus(0);

 ProfilerDump("profiledump");

 ProfilerTerm();

 printf("I have all the Profile Data \n\r");

 return 0;

}

10.4 Debug Application and Collect Profiling Information

After configuring the project and modifying the source code to use the profiler API, build
and debug your project.

The project halts at the main() function.

NOTE
If you are using the Debug Configurations dialog box to
debug the project, select the Console External RAM
configuration in the tree structure. For example,
<project_name>_M5485EVB_Console_External_RAM_PnE
USB BDM.

To collect profiling information:

1. Select the Console view and click the Pin Console button.
2. Click Resume to resume the program execution.
3. Notice the program output messages in the Console view and wait until the I have all

the Profile Data message is displayed.
4. Click Terminate to stop the program execution.

Chapter 10 Simple Instrumentation Profiling on ColdFire V2 - V4e Targets

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 249

Figure 10-8. Console View

This is how you collect profiling data.

10.5 View Profiling Results

You use the Simple Profiler Data Viewer to view the profiler results. This viewer helps
analyze the data of the executed program and determine what changes are appropriate to
improve the performance of the application. Using the data display, you can:

• open multiple profiles simultaneously to compare different versions of the profiled
source code

• identify trouble spots in the source code
• view flat, tree (detailed), or class-based data

To view the profiling results:

1. Select your project in the CodeWarrior Projects view and press the F5 key to
refresh it.

2. Expand M5485EVB_Console_External_RAM and double-click the profiledump.mwp
file.

The Simple Profiler Data Viewer appears.

View Profiling Results

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

250 NXP Semiconductors

Figure 10-9. Simple Profiler Data Viewer

The Simple Profiler Data Viewer displays profiling information in the form of a table.
The table below describes the fields of the profiling information.

Table 10-1. Description of Profiler Results

Name Description

Function Name of the function or routine.

Count Number of times the function was called.

Time Time spent in the function itself without counting any time in
functions called by this function.

% Percentage of the total time spent in the function.

+Children Time spent in the function and all the functions it calls.

% Percentage of the total time spent in the function and all the
functions it calls.

Average Average time for each function invocation, that is Time
divided by the number of times the function was called.

Maximum Longest time for an invocation of the function.

Minimum Shortest time for an invocation of the function.

Stack Space Largest size (in bytes) of the stack when the function is called.

The Simple Profiler Data Viewer displays profiling information in three different ways:

• Flat View
• Tree View
• Class View (relevant only for C++ projects)

To switch to these views, right-click any column of the Simple Profiler Data Viewer
table and select the necessary option from the View context menu.

Chapter 10 Simple Instrumentation Profiling on ColdFire V2 - V4e Targets

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 251

Figure 10-10. Different Views of Profile Results

The three views for displaying profiling information are:
• Flat View
• Tree View
• Class View

10.5.1 Flat View

The Flat view is the default view which displays the summary of a complete and non-
hierarchical list of each function profiled. No matter what calling path was used to reach
a function, the profiler combines all the data for the same function and displays it on a
single line. Figure 10-9 shows the Flat view of the profiler results.

The Flat view is particularly useful for comparing functions to check which function
takes the longest time to execute. The Flat view is also useful for finding a performance
problem with a small function that is called from many different places in the program.
This view helps you look for the functions that make heavy demands in time or raw
number of calls.

10.5.2 Tree View

The Tree view displays the detailed profile data as shown in Figure 10-10. For example,
details of the functions called by a particular function, or the details of the instructions
executed in a function. This means that a function may appear more than once in the
profile if it called from different functions.

View Profiling Results

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

252 NXP Semiconductors

The Tree view is useful for detecting design problems in code. It lets you see the
functions that are called from other functions and also how often those functions are
called. Armed with knowledge of your code's underlying design, you may discover flow-
control problems.

You can use the Expand All or Collapse All options in the View context menu to open
or close the entire hierarchy at once. These options are available only when you select the
Tree View or Class View options.

Figure 10-11. Simple Profiler Data Viewer - Tree View

10.5.3 Class View

The Class view displays the summary information sorted by class. Beneath each class,
the methods are listed in a hierarchy. You can open and close a class to show or hide its
methods.

The Class view lets you study the performance impact of substituting one
implementation of a class for another. You can run profiles on the two implementations,
and view the behavior of the different objects side by side. You can do the same with the
Flat view on a function-by-function basis, but the Class view offers a more natural way
of accessing object-based data. It also lets you gather all the object methods together and
view them simultaneously, revealing the effect of interactions between the methods of the
object. The figure below shows the Class view of the profiler results.

Chapter 10 Simple Instrumentation Profiling on ColdFire V2 - V4e Targets

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 253

Figure 10-12. Simple Profiler Data Viewer - Class View

View Profiling Results

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

254 NXP Semiconductors

Chapter 11

11.1 Trace Collection with Breakpoints

A breakpoint suspends the debug session automatically when the instruction on which it
is set is executed. When a breakpoint is set in trace collection, it halts the application at a
particular source line and stops collecting the trace data. You can start collecting trace
again from that source line by resuming the debug session.

You can set breakpoints either in the editor area or in the Disassembly view. The
following steps demonstrate how to set a breakpoint in the editor area and collect trace
data on the ColdFire V1 target:

1. Open the Debug Configurations dialog box, and select your project in the tree
structure.

2. Click the Trace and Profile tab, and check the Enable Trace and Profile checkbox.
3. Select the Continuous option from the Select Trace Mode group.
4. Ensure that the Trace is Always Enabled option is selected in the Trace Start/Stop

Conditions drop-down list.
5. Click Apply to save the settings.
6. Click Debug to start the debug session.
7. In the editor area, double-click the marker bar corresponding to the instruction on

which you want to set the breakpoint.

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 255

Figure 11-1. Setting Breakpoint in Disassembly View
8. Click Resume . The debug session stops when the breakpoint instruction is executed.
9. Open the Trace Data viewer following the steps explained in Viewing Data to view

the trace data.
10. Press Resume to resume trace collection.

The figure below shows that trace collection stops at the address where the breakpoint
was set.

Figure 11-2. Trace Results After Setting Breakpoint

NOTE
Similarly, you can set breakpoints in the Disassembly view and
collect the trace data.

Warning
Do not use breakpoints with triggers when collecting trace on
the ColdFire V1 target. This is because there is only one

Trace Collection with Breakpoints

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

256 NXP Semiconductors

hardware debug module on ColdFire V1 which is shared for
setting hardware breakpoints or trace triggers. So you can either
set breakpoint or trace trigger using this debug module.

On HCS08, if you are setting breakpoints with triggers for trace
control, ensure that you do not to use more than one breakpoint.
This is because on HCS08, two hardware debug modules, BDC
(Background debug controller) and DBG (debug module) are
used. Both debug modules can be used for setting hardware
breakpoints, while only DBG can be used for setting triggers.
The first breakpoint is set using BDC, any other breakpoints
will use DBG and will conflict with the triggers.

On DSC and S12z platforms, breakpoints and triggers are
mutually exclusive.

On the Kinetis platform, there are four DWT comparators
which can be used for maximum four events. The Software
Analysis tool checks which DWT comparators are already used
for breakpoints and only uses the remaining ones for triggers.

Chapter 11

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 257

Trace Collection with Breakpoints

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

258 NXP Semiconductors

Chapter 12
Configuring Trace Registers in Source Code

You can the configure trace registers in the source code without using the CodeWarrior
Integrated Development Environment for both HCS08 and ColdFire V1 targets.

12.1 HCS08
To setup the trace mode for HCS08, you must configure the DBGT and DBGC registers
in the source code, preferably within the main() function and before any processing and/or
functions calls. This is not mandatory but recommended as the main() function is called
immediately after processor is reset. Therefore, to collect trace from this point forward,
you must configure these registers in the beginning of the main() function.

You can configure only the Automatically mode for the HCS08 target. The
Continuously and Profile-Only modes are implemented in the host software and there
are no registers on the target associated with these modes.

For HCS08, the trace registers are mapped in the memory, so they have addresses
associated. Therefore, you need to simply write desired values to these registers in the
source code. An example to configure the trace registers in the source code of the HCS08
target is discussed below.

1. Create a stationary project.
2. Open the source code editor area.
3. Replace the source code written in the main() function with the source code shown

below:
Listing: Configuration of DBGC and DBGT registers in main() function for
HCS08 target

void main(void)
{
 EnableInterrupts;
 DBGT = 0x80; // write debug trigger register
 DBGC = 0xC0; // write debug control register

 for(;;) {

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 259

 __RESET_WATCHDOG();
 foo();
 }
}

4. Save and build the project.
5. Open the Debug Configurations dialog box, and select your project in the tree

structure.
6. Click the Trace and Profile tab, and check the Enable Trace and Profile checkbox.
7. Check the Configuration Set in User Code checkbox in the User Options group.

The rest of the controls on the page turn disabled.
8. Click Apply to save the settings.
9. Click Debug to debug the application.

10. Click Resume to resume the execution and begin measurement. Let the application
run for several seconds.

11. Click Suspend .
12. Open the Trace Data viewer following the steps explained in the topic Viewing Data

to view the collected data.

You can also set triggers at the required addresses by writing the following statements in
the main() function of your source code:

 DBGCA = 0xE1CD; //write comparator A; sets trigger A at
 0xE1CD

 DBGCB = 0xE1DB; //write comparator B; sets trigger B at
 0xE1DB

12.2 ColdFire V1
For ColdFire V1, the trace registers are not mapped in the memory space. Therefore, the
only way to access these registers is by using the wdebug instruction, while the processor is
running in the supervisor mode.

To configure the trace registers in the source code in the Automatic mode on the ColdFire
V1 target:

1. Create a stationary project.
2. Open the source code editor area.
3. Replace the source code of main.c with the source code shown below:

Listing: Configuration of trace registers for ColdFire V1

#include <hidef.h> /* for EnableInterrupts macro */

#include "derivative.h" /* include peripheral declarations */

#include <stdio.h>

#include <ctype.h>

ColdFire V1

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

260 NXP Semiconductors

/* Define the used DRc */

#define MCFDEBUG_CSR 0x0 /* Configuration status*/

#define MCFDEBUG_XCSR 0x1 /* Extended configuration status register*/

#define MCFDEBUG_CSR2 0x2 /* Configuration status register 2 */

#define TRACE_AUTOMATIC 0

#define TRACE_CONTINUOUS 1

#define TRACE_PCSYNC 2

#define TRACE_NONE 3

#define TRACE_MODE TRACE_AUTOMATIC

volatile unsigned short dbg_spc[6];

volatile unsigned short *dbg;

inline void wdebug(int reg, unsigned long data) {

 // Force alignment to long word boundary

 dbg = (unsigned short *)((((unsigned long)dbg_spc) + 3) & 0xfffffffc);

 // Build up the debug instruction

 dbg[0] = 0x2c80 | (reg & 0xf);

 dbg[1] = (data >> 16) & 0xffff;

 dbg[2] = data & 0xffff;

 dbg[3] = 0;

 asm(" MOVE.L dbg ,A1");

 asm(" WDEBUG (A1) ");

}

inline void setSupervisorModel(void)

{

 asm (" MOVE.W #0x2000,D0");

 asm (" MOVE.W D0,SR");

}

Chapter 12 Configuring Trace Registers in Source Code

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 261

void main(void) {

 EnableInterrupts;

 /* include your code here */

 setSupervisorModel(); /* set CPU supervisor programming model */

#if TRACE_MODE == TRACE_AUTOMATIC /* set automatic trace mode */

 wdebug(MCFDEBUG_CSR, 0x200);

 wdebug(MCFDEBUG_XCSR, 0x1);

 wdebug(MCFDEBUG_CSR2, 0xC1);

#elif TRACE_MODE == TRACE_CONTINUOUS /* set continuous trace mode */

 wdebug(MCFDEBUG_CSR, 0x200);

 wdebug(MCFDEBUG_XCSR, 0x0);

 wdebug(MCFDEBUG_CSR2, 0x89);

#elif TRACE_MODE == TRACE_PCSYNC /* set PCSync trace mode */

 wdebug(MCFDEBUG_CSR, 0x200);

 wdebug(MCFDEBUG_XCSR, 0x3);

 wdebug(MCFDEBUG_CSR2, 0x99);

#endif

 for(;;) {

 __RESET_WATCHDOG(); /* feeds the dog */

 }

}

4. Save and build the project.
5. Open the Debug Configurations dialog box, and select your project in the tree

structure.
6. Click the Trace and Profile tab, and check the Enable Trace and Profile checkbox.
7. Check the Configuration Set in User Code checkbox. The rest of the controls on

the page turn disabled.
8. Click Apply to save the settings.

ColdFire V1

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

262 NXP Semiconductors

9. Click Debug to debug the application.
10. Click Resume to resume the execution and begin measurement. Let the application

run for several seconds.
11. Click Suspend.
12. Open the Trace Data viewer following the steps explained in the topic Viewing Data

to view the collected data.

You can also set triggers at the required addresses using the source code. To set triggers,
enable the triggers by including the following definition in your source code.

 #define ENABLE_TRIGGERS True /* Enabling triggers */

Also, include the statements shown in the listing below in the main() function.

Listing: Setting triggers using source code in ColdFire V1

#if TRACE_MODE == TRACE_AUTOMATIC /* set automatic trace mode */

 #if ENABLE_TRIGGERS == True // with trigger points

 wdebug(MCFDEBUG_PBR0, 0x5F2); //set PBR0 register;trigger A at 0x5F2

 wdebug(MCFDEBUG_PBR1, 0x6C8); //set PBR1 register;trigger B at 0x6C8

 wdebug(MCFDEBUG_PBMR, 0x0);

 wdebug(MCFDEBUG_AATR, 0xE401);

 wdebug(MCFDEBUG_DBR, 0x0);

 wdebug(MCFDEBUG_DBMR, 0x0);

 wdebug(MCFDEBUG_TDR, 0x40006002);

 #endif

 // without trigger points

 wdebug(MCFDEBUG_CSR, 0x200);

 wdebug(MCFDEBUG_XCSR, 0x1);

 wdebug(MCFDEBUG_CSR2, 0xC1);

#elif TRACE_MODE == TRACE_CONTINUOUS /* set continuous trace mode */

 #if ENABLE_TRIGGERS == True // with trigger points

Chapter 12 Configuring Trace Registers in Source Code

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 263

 wdebug(MCFDEBUG_PBR0, 0x5F2); //set PBR0 register;trigger A at 0x5F2

 wdebug(MCFDEBUG_PBR1, 0x6C8); //set PBR1 register;trigger B at 0x6C8

 wdebug(MCFDEBUG_PBMR, 0x0);

 wdebug(MCFDEBUG_AATR, 0xE401);

 wdebug(MCFDEBUG_DBR, 0x0);

 wdebug(MCFDEBUG_DBMR, 0x0);

 wdebug(MCFDEBUG_TDR, 0x40006002);

 #endif

 // without trigger points

 wdebug(MCFDEBUG_CSR, 0x200);

 wdebug(MCFDEBUG_XCSR, 0x0);

 wdebug(MCFDEBUG_CSR2, 0x89);

#elif TRACE_MODE == TRACE_PCSYNC /* set PCSync trace mode */

 wdebug(MCFDEBUG_CSR, 0x200);

 wdebug(MCFDEBUG_XCSR, 0x3);

 wdebug(MCFDEBUG_CSR2, 0x99);

#else

 /* None */

 wdebug(MCFDEBUG_CSR, 0x0);

 wdebug(MCFDEBUG_XCSR, 0x0);

 wdebug(MCFDEBUG_CSR2, 0x0);

#endif

NOTE
The default setting of the TRACE_MODE compiler switch is
TRACE_AUTOMATIC. To configure trace in the Continuous mode, set
the compiler switch to TRACE_CONTINUOUS in the source code shown
in Listing: Configuration of trace registers for ColdFire V1. To
configure trace in the Profile-Only mode, set the compiler
switch to TRACE_PCSYNC in the source code shown in Listing:
Configuration of trace registers for ColdFire V1.

ColdFire V1

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

264 NXP Semiconductors

Chapter 13
Low Power WAIT Mode

Currently, CodeWarrior supports two low power modes: normal WAIT and normal
STOP. The Microcontrollers Software Analysis Tools component provides support for
the normal WAIT state. This state allows peripherals to function, while allowing CPU to
go to sleep reducing power.

The Wait For Interrupt (WFI) instruction is used to enter the low power WAIT state.
When an interrupt request occurs, the CPU exits the WAIT mode and resumes
processing, beginning with the stacking operations leading to the interrupt service
routine.

NOTE
When a processor issues a WFI instruction, it can suspend
execution and enter a low power state. The processor can
remain in that state until it detects a reset or one of the
following WFI wake-up events:

• an asynchronous exception at a priority that preempts any
currently active exceptions.

• a debug event with debug enabled.

When the hardware detects a WFI wake-up event, or earlier if
the implementation chooses, the WFI instruction completes.

To activate low power mode monitoring and view results, you need to:

1. Configure Low Power WAIT State
2. Debug the project and collect trace data.
3. View Low Power WAIT Results

These steps are described in the following topics.

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 265

13.1 Configure Low Power WAIT State
The low power WAIT state requires continuous trace to be enabled and ITM and DWT
tracing to be disabled.

To configure the low power WAIT state:

1. Open the Debug Configurations dialog box.
2. Select the Trace and Profile tab.
3. Check the Low Power Profiling checkbox.

The ETM and ITM options will get disabled automatically. Also, the Continuous
Trace Collection checkbox will get checked and disabled.

Figure 13-1. Configuration of Low Power WAIT Mode
4. Click Apply to save the settings.

This configures the low power WAIT state of your project.

Configure Low Power WAIT State

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

266 NXP Semiconductors

13.2 View Low Power WAIT Results
After the project is debugged and trace is collected, you can view the low power WAIT
results in the timeline viewer of the Software Analysis view. To view the low power
WAIT results:

1. Open the Software Analysis view.
2. Expand the project name.

The data source is listed under the project name.

Figure 13-2. Software Analysis View
3. Click the Timeline hyperlink.

The Timeline viewer appears displaying the low power WAIT results.

Figure 13-3. Timeline Viewer

Chapter 13 Low Power WAIT Mode

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

NXP Semiconductors 267

The list of functions in the left panel of the Timeline viewer displays LOW POWER
WAIT at the first position. The corresponding gray-colored bars in the right panel shows
for how long the application was in WAIT mode. The bars appear twice, which indicates
that the application entered the WAIT state twice.

View Low Power WAIT Results

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide, Rev. 11.x, 07/2017

268 NXP Semiconductors

Index

A

Add/Remove Function 95
Add/Remove Group 96
Add New Analysispoint 208
Advanced Settings on Kinetis 55
Almost Full Level (no. of words) 66
Analysispoints View 205
ASM Count 100
ASM Decision Coverage 102
ASM Decision Coverage% 100

B

Break on FIFO Full 35, 116
Break on Trigger Hit 35, 117
Breakpoint in Trace 255

C

Call Tree 15
Call Tree Viewer 108
Capture Read/Write Values at Address B 37, 146
Capture Read/Write Values at Address B, After
Access at Address A 37, 150
Change Function Color 96
Choose columns 91
Class View 253
CodeWarrior Projects 13
ColdFire V1 Target 21
Collecting Data 76
Collecting Trace Data Using JTrace Connection 54
Collect Instrumentation trace 46
Collect Profiling Counters 46
Collect Profiling Information 249
Collect Trace From Trigger 35, 116
Collect Trace Until Trigger 35, 116
Comparator Settings

Value 61
Configuration Set in User Code 33, 40, 259
Configure Advanced Settings on Kinetis 55
Configure Kinetis Cortex M0+ Core 47
Configure Project for Profiling 236
Configure table 103
Configure Time Format 89
Configure Time Unit 88
Configuring Launcher

Configure ColdFire V1 Target 38
Configure ColdFire V2-V4 Targets 71
Configure DSC Target 73
Configure HCS08 Target 31
Configure Kinetis Target 42
Configure MPC56xx Target 68

Configuring Launcher (index-continued-string)
Configure S12Z Target 68

Console 13
Continuous Trace Collection 46
Copy Cell 79
Copy Line 79
Cortex M0+ 49
Cortex M4 49
Coverage% 100
Create column group 90
Creating new project

Using ColdFire V1 Target 21
Using ColdFire V4e Target 27
Using HCS08 Target 18
Using Kinetis Target 23
Using MPC56xx Target 29

Critical Code Data 14
Critical Code Tab 101
Customizing Trace Data Viewer 90
Cycle Counter 63
Cycle Counter Tap 64

D

Data Analysispoints 215
Data Trace Import 79
Data Visualization 81, 213
Decoding Trace 113
Delete Results 79

E

Edit Address Range of Function 96
Embedded Trace Buffer (ETB) 54
Embedded Trace Macrocell (ETM) 46, 50
Enable Logging 33, 40
Enable Stimulus Registers 63
Enable Timestamps 58
Enabling and Disabling Tracepoints 155, 177, 209
ETM - Counter Reload Value 61
Event Generation 64
Export 102
Export Analysis Points 211
Export Trace Data 87
Extension Counter Reload Value (hex) 63

F

FIFOFULL Level (no. of bytes) 58
File Coverage Tab 103
Flat View 252
Flush Control Settings 67
Freescale Toolchain 195

Index

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide

NXP Semiconductors 269

From trigger 116
From trigger in Automatically mode 134

G

GCC Toolchain 195, 199
Generate Comparator Match Event On 61
Global Timestamps 63
Go To File for Analysispoints 210
Graphics 103
Group By 206

H

Halt the Target when Trace Buffer Gets Full 41,
158
Hardware Tracepoints 179
HCS08 Target 18
Hide column 90

I

Ignore all Analysispoints 210
Import Analysis Points 212
Importing Trace Data Offline 109
Import wizard 109
Include Profiler Library and Files 234
Instruction at Address A, Then Instruction at
Address B are Executed 36, 119
Instruction at Address A is Executed 35, 134
Instruction at Address A is Executed and Value on
Data Bus Match 36, 129
Instruction at Address A is Executed and Value on
Data Bus Mismatch 37, 131
Instruction at Address A or Address B is Executed
35, 124
Instruction Execute 37, 117
Instruction Inside Range from Address A to
Address B is Executed 36, 125
Instruction Outside Range from Address A to
Address B is Executed 36, 143
Instrumentation Trace Macrocell (ITM) 46, 52

J

JTrace 44
J-Trace 54
Jython 225

K

K10/K20 50 Mhz and 72 MHz derivatives 46
Keep all trace buffers 44, 72
Keep Last Buffer Before Trigger 116
Kinetis Cortex M0+ Core 184, 192
Kinetis Cortex M4 Core 180, 189

L

Launching Scripts 225
Local Timestamps 63
Log 78
LOOP1 Mode 140
Low Power Profiling 45
Low Power WAIT Mode 265

M

Match Data Size 61
Memory Access 37, 117
Memory Access Triggers 132
Memory at Address A is Accessed 132
Merge Groups/Functions 98
Micro Trace Buffer (MTB) 50
MPC5668G/E 31

N

Next function 102
No. of bits to ignore 61
No Trigger 35

P

Performance Data 15
Performance Viewer 105
Previous function 102
Profile-Only 34
Profiling an application 233
Profiling and Analysis tools 11
Profiling Data 15
Profiling System 233

R

Register Analysispoints 215
Remote Launch 225
Remote Launching

Collect Trace Using Jython 227
Export Trace to CSV File 229
Modify Sample Python Script 231
Run Sample Python Script 225

Remove All Analysispoints 210
Remove Selected Analysispoint 210
Rename column 92
Reset Button 83
Resume/Suspend Toggle Button 82

S

S12Z Target 68
Save Results 79
Search 102

Index

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide

270 NXP Semiconductors

Select Default Working Set dialog box 208
Select Trace Mode - ColdFire V1 41
Set CPU Frequency 89
Setting Data Analysispoints on Memory View 216
Setting Data Analysispoints on Variables View 217
Setting Hardware Tracepoints

From Source Code
Kinetis Cortex M0+ Core 184
Kinetis Cortex M4 Core 180

From Trace and Profile Tab
Kinetis Cortex M0+ Core 192
Kinetis Cortex M4 Core 189

Setting Register Analysispoints on Registers View
217
Setting Software Tracepoints 194
Setting Trigger from Disassembly View 134
Setting Trigger on Data and Memory 137
Setting Triggers from Memory View 175
Setting Triggers from Variables View 173
Setting Triggers on Data and Memory 173
Show code 103
Show Full Paths 206
Simple Profiler Data Viewer 13, 250, 251
Software Analysis 13
Software Analysis view 77
Software Tracepoints 179
Software Tracepoints Support dialog box 198, 203
Stall Processor 58
SWD 45
SWO 45
Synchronization 53
Synchronization Packet Rate 64

T

Target 87
Target PC Address

2 Bytes 41
3 Bytes 41

Time (CPU Cycles) 100
Timeline 15, 92
Timeline viewer

Edit Groups 95
Full View 94
Selection Mode 93
Zoom Mode 94

Timeline Viewer
Configure Table 99

Timestamp 87
Timestamp Event

A 60
B 61
Function 60
Index 61

TPIU 45, 54
Trace All Branches 58
Trace and Profile tab

Trace and Profile tab (index-continued-string)
ColdFire V1 40
ColdFire V2-V4 72
DSC 74
HCS08 33
Kinetis Cortex M4 core 44
S12Z 70

Trace Buffer Size 47
Trace Capture Device (TCD) 51
Trace Data 14
Trace data values

Read Data 42
Write Data 42

Trace Data Viewer 86
Trace Enable Event

A 60
B 60
Function 60
Index 60

Trace Formatting Settings
Continuous Formatting 66
Enable Formatting 66
Stop on Flush Completion 66
Stop on Trigger Event 66

Trace from Trigger A Onward 158, 159, 166
Trace from Trigger A to Trigger B 158, 162, 169
Trace from Trigger A to Trigger C 158
Trace from Trigger B Onward 158
Trace from Trigger B to Trigger A 158
Trace from Trigger B to Trigger C 158
Trace from Trigger C Onward 158, 173
Trace from Trigger C to Trigger A 158
Trace from Trigger C to Trigger B 158
Trace is always enabled 158
Tracelink 45
Trace Mode Options - HCS08 34
Trace Modes for ColdFire V1

Automatic (One-buffer) 41
Automatic (One-Buffer) 166
Continuous 41, 159
Expert 41, 171
Profile-Only 170
Profile-Only Mode 41

Trace Modes for HCS08
Collect Data Trace 34, 146
Collect Program Trace

Automatically 34, 134
Continuously 34, 119
LOOP1 Mode 34

Expert 35, 154
Profile-Only 152

Tracepoint 115
Trace Port Interface Unit (TPIU) 54
Trace Start/Stop Conditions

ColdFire V1 157
HCS08 116

Trace Start/Stop Conditions - ColdFire V1 41
Trace Start/Stop Conditions - HCS08 35

Index

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide

NXP Semiconductors 271

Trace Start/Stop Control
Start Resource 58
Stop Resource 59

Tree View 252
Trigger Control

A 59
B 59
Collect Trace about Trigger 59
Collect Trace after Trigger 59
Collect Trace before Trigger 59
Function 59
Index 59

Trigger Counter (no. of words) 67
Trigger Settings 67
Trigger Type 35

U

Ungroup columns 91
Until trigger 117
Until trigger in Automatically mode 134

V

Value to Compare on Data Bus 37
Viewing Data

Call Tree 107
Critical Code Data 99
Performance Data 104
Timeline 92
Trace Data 85

Viewing Tracepoints 205
View Profiling Results 250

W

Working Sets 207

Index

CodeWarrior Development Studio for Microcontrollers Version 11.x Profiling and Analysis Tools Users
Guide

272 NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based

on the information in this document. NXP reserves the right to make changes

without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of

its products for any particular purpose, nor does NXP assume any liability arising

out of the application or use of any product or circuit, and specifically disclaims

any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in NXP data sheets and/or

specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be

validated for each customer application by customerʼs technical experts. NXP

does not convey any license under its patent rights nor the rights of others. NXP

sells products pursuant to standard terms and conditions of sale, which can be

found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER

WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE,

JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE

PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE,

MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest,

CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo,

Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,

QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo,

StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,

Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service

names are the property of their respective owners. ARM, AMBA, ARM Powered,

Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are

registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or

elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight,

DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and

Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or

elsewhere. All rights reserved. Oracle and Java are registered trademarks of

Oracle and/or its affiliates. The Power Architecture and Power.org word marks

and the Power and Power.org logos and related marks are trademarks and

service marks licensed by Power.org.

© 2014 - 2017 NXP B.V.

Document Number CWMCUSWAUG
Revision 11.x, 07/2017

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Chapter 1: Introduction
	Release Notes
	Accompanying Documentation

	Chapter 2: Getting Started
	Profiling and Analysis Tools
	CodeWarrior Interface
	Data Collection
	Trace Data
	Critical Code Data
	Timeline Data
	Performance Data
	Call Tree
	Profiling Data

	Chapter 3: Collecting Data
	Creating New Project
	Using HCS08 Target
	Using ColdFire V1 Target
	Using Kinetis Target
	Using ColdFire V4e
	Using MPC56xx Target

	Configuring Launcher
	Configure HCS08 Target
	Configure ColdFire V1 Target
	Configure Kinetis Target
	Configuring Kinetis Cortex M0+ Core
	Difference Between Kinetis Cores Cortex M4 and Cortex M0+
	Trace Collection on Kinetis
	Embedded Trace Macrocell (ETM)
	Triggering Trace

	Instrumentation Trace Macrocell (ITM)
	Timestamps
	Synchronization

	Embedded Trace Buffer (ETB)
	J-Trace

	Configuring Advanced Settings on Kinetis
	Configure MPC56xx Target
	Configure S12Z Target
	Configure ColdFire V2-V4 Targets
	Configure DSC Target

	Collecting Data
	Viewing Data
	Data Trace Import Dialog Box
	Controlling Trace Generation
	Resume/Suspend Toggle Button
	Reset Button

	Chapter 4: Viewing Data
	Trace Data
	Exporting Trace Data
	Configuring Time Unit and Time Format
	Customizing Trace Data Viewer

	Timeline
	Selection Mode
	Zoom Mode
	Full View
	Edit Groups
	Add/Remove Function
	Edit Address Range of Function
	Change Color
	Add/Remove Group
	Merge Groups/Functions

	Configure Table

	Critical Code Data
	Critical Code Tab
	File Coverage Tab

	Performance Data
	Call Tree
	Importing Trace Data Offline

	Chapter 5: Setting Tracepoints (HCS08)
	Conditions for Starting/Stopping Triggers
	Trace Modes
	Setting Triggers in Continuously Mode
	Instruction at Address A, Then Instruction at Address B are Executed
	Instruction at Address A or Address B is Executed
	Instruction Inside Range from Address A to Address B is Executed
	Instruction at Address A is Executed and Value on Data Bus Match
	Instruction at Address A is Executed and Value on Data Bus Mismatch
	Memory Access Triggers

	Setting Triggers in Automatically Mode
	From the Disassembly View
	On Data and Memory
	LOOP1 Mode
	Instruction Outside Range from Address A to Address B is Executed

	Setting Triggers in Collect Data Trace Mode
	Capture Read/Write Values at Address B
	Capture Read/Write Values at Address B, After Access at Address A

	Collecting Trace in Profile-Only Mode
	Collecting Trace in Expert Mode

	Enabling and Disabling the Tracepoints

	Chapter 6: Setting Tracepoints (ColdFire V1)
	Conditions for Starting/Stopping Triggers
	Trace Modes
	Setting Triggers in Continuous Mode
	Trace From Trigger A Onward
	Trace From Trigger A to Trigger B

	Setting Triggers in Automatic (One-buffer) Mode
	Trace From Trigger A Onward
	Trace From Trigger A to Trigger B

	Setting Triggers in Profile-Only Mode
	Setting Triggers in Expert Mode

	Tracepoints on Data and Memory
	From Variables View
	From Memory View

	Enable and Disable Tracepoints

	Chapter 7: Setting Tracepoints (Kinetis)
	Setting Hardware Tracepoints
	From Source Code - Kinetis Cortex M4 Core
	From Source Code - Kinetis Cortex M0+ Core
	From Trace and Profile Tab - Kinetis Cortex M4 Core
	From Trace and Profile Tab - Kinetis Cortex M0+ Core

	Setting Software Tracepoints
	Setting Software Tracepoints Manually
	Using Freescale Toolchain
	Using GCC Toolchain

	Setting Software Tracepoints Automatically

	Viewing Tracepoints
	View Full Path of Tracepoint Attribute
	Group Tracepoints
	Define Working Sets
	Add New Analysispoint
	Enable/Disable Tracepoints
	Navigate to Tracepoint Line
	Remove Tracepoints
	Context Menu

	Chapter 8: Data Visualization
	Creating DSC Project
	Configuring for Data Visualization
	Setting Analysispoints for Data Visualization
	Setting Data Analysispoints on Memory View
	Setting Data Analysispoints on Variables View
	Setting Register Analysispoints on Registers View

	Collecting and Viewing Data

	Chapter 9: Launching Scripts
	Run Sample Python Script
	Collect Trace Using Jython
	Export Trace to CSV File
	Modify Sample Python Script

	Chapter 10: Simple Instrumentation Profiling on ColdFire V2 - V4e Targets
	Include Profiler Library and Files
	Configure Project for Profiling
	Modify Source Code
	Debug Application and Collect Profiling Information
	View Profiling Results
	Flat View
	Tree View
	Class View

	Chapter 11:
	Trace Collection with Breakpoints

	Chapter 12: Configuring Trace Registers in Source Code
	HCS08
	ColdFire V1

	Chapter 13: Low Power WAIT Mode
	Configure Low Power WAIT State
	View Low Power WAIT Results

	Index

