
CodeWarrior
Development Studio for

S12(X) V5.x
MISRA-C:2004

Compliance Exceptions
for the S12(X) and
XGATE Libraries

 Revised: November 03, 2015

Freescale, the Freescale logo, CodeWarrior and ColdFire are trademarks of Freescale Semiconductor, Inc., Reg. U.S.
Pat. & Tm. Off. Flexis and Processor Expert are trademarks of Freescale Semiconductor, Inc. All other product or ser-
vice names are the property of their respective owners

© 2010-2015 Freescale Semiconductor, Inc. All rights reserved.

Information in this document is provided solely to enable system and software implementers to use Freescale Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental dam-
ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typ-
icals”, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.

6501 William Cannon Drive West

Austin, TX 78735

U.S.A.

World Wide Web http://www.freescale.com/codewarrior

Technical Support http://www.freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

5

Table of Contents

1 Introduction 3

2 HCS 12
Inline Assembly . 5

General Exceptions . 5

Per-project Exceptions . 6

3 XGATE 51
Inline Assembly . 51

General Exceptions . 51

Per-project Exceptions . 52

A References 87
1MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

Table of Contents
2 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

1
Introduction

The CodeWarrior Development Studio for S12(x) V5.x MISRA-C:2004 Compliance
Exceptions for the S12(X) and XGATE Libraries manual covers the MISRA-C:2004
compliance exceptions for the HCS12 and XGATE libraries.

This document contains following chapters:

Chapter 2 - HCS12 contains the list of MISRA-C:2004 exceptions for HCS12

Chapter 3 - XGATE contains the lists of MISRA-C:2004 exceptions for XGATE

Appendix A - References contains the list of targets for HCS12 and XGATE

For a particular target, either HCS12 or XGATE, the exceptions to MISRA rules are
grouped into general exceptions, which apply across all the library projects, and per-
project exceptions, which are the exceptions associated with a certain library project.
3MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

Introduction
4 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

2
HCS12

This chapter contains these topics for HCS12:

• Inline Assembly

• General Exceptions

• Per-project Exceptions

Inline Assembly
Inline assembly is altogether ignored when checking for MISRA-C:2004 compliancy.

General Exceptions
Table 1. lists the exceptions to MISRA-C:2004 rules that apply across all the library
projects.

Table 1. HCS12 general library exceptions to MISRA-C:2004 rules

MISRA-C:2004 Rule Exception

6.3 ADV inhibit the message on the use of
a modifier or a type outside of a
typedef

19.7 ADV allow function-like macros

19.15 REQ allow repeatedly included header
files - all the libray headers are
guarded using macros

14.7 REQ allow multiple exit points for
functions

14.5 REQ allow 'continue' statements
5MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
Per-project Exceptions
Per-project Exceptions
Elective Note #960, MISRA 19.6 REQ: #undef required to
support non-ANSI pointer qualifiers 'near' and 'far'

default2.sgm: 2 [1]

Warning #537: allow multiple use

default2.sgm: 27 [1]

Elective Note #961, MISRA 19.3 ADV: '#' is used in HLI as an
operator - see pragma NO_STRING_CONSTR above

hidef.h: 41 [1]

Elective Note #961, MISRA 19.3 ADV: '#' is used in HLI as an
operator - see pragma NO_STRING_CONSTR above

hidef.h: 117 [1]

Warning #683: inhibit warning on standard function being
#define'd

stdlib.h: 45 [2]

Elective Note #960, MISRA 16.3 REQ: message reported not
for a function, but for a function pointer

stdlib.h: 82 [2]

Elective Note #960, MISRA 16.3 REQ: message reported not
for a function, but for a function pointer

stdlib.h: 85 [2]

Informational #715: name not used

18.4 REQ allow unions

20.4 REQ, 20.5 REQ accept several deprecated
symbols

Table 1. HCS12 general library exceptions to MISRA-C:2004 rules

MISRA-C:2004 Rule Exception
6 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
 Per-project Exceptions
assert.c: 21 [2]

Informational #766: hidef.h contains conditionally compiled
code

assert.c: 24 [2]

Elective Note #960, MISRA 10.1 REQ: the conversion has no
impact on bit pattern intepretation

ctype.c: 11 [2]

Elective Note #960, MISRA 19.6 REQ: character classification
macros must be undefined prior to defining the
corresponding character classification functions

ctype.c: 276 [2]

Informational #766: hidef.h contains conditionally compiled
code

ctype.c: 368 [2]

Informational #773: va_end is never used as an expression
operand

stdarg.h: 120 [2]

Warning #683: inhibit warning on standard function being
#define'd

stdio.h: 76 [2]

Elective Note #960, MISRA 16.1 REQ: standard library function
implementation

stdio.h: 149 [2]

Elective Note #960, MISRA 16.1 REQ: standard library function
implementation

stdio.h: 150 [2]

Elective Note #960, MISRA 16.1 REQ: standard library function
implementation

stdio.h: 157 [2]
7MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
Per-project Exceptions
Elective Note #960, MISRA 16.1 REQ: standard library function
implementation

stdio.h: 158 [2]

Elective Note #960, MISRA 16.1 REQ: standard library function
implementation

stdio.h: 160 [2]

Elective Note #960, MISRA 16.3 REQ: message reported for a
function pointer parameter

stdio.h: 163 [2]

Elective Note #960, MISRA 16.1 REQ: standard library function
implementation

stdio.h: 204 [2]

Elective Note #960, MISRA 16.1 REQ: standard library function
implementation

embedded.c: 31 [2]

Warning #643: misleading warning ('&format' does not have a
far type)

embedded.c: 36 [2]

Elective Note #928, MISRA 11.4 ADV: safe conversion to 'char
*'

embedded.c: 37 [2]

Warning #438: 'va_end' must be invoked before return in a
variadic function

embedded.c: 41 [2]

Elective Note #960, MISRA 16.1 REQ: standard library function
implementation

embedded.c: 44 [2]

Warning #643: misleading warning ('&format' does not have a
far type)

embedded.c: 49 [2]
8 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
 Per-project Exceptions
Elective Note #928, MISRA 11.4 ADV: safe conversion to 'char
*'

embedded.c: 50 [2]

Warning #438: 'va_end' must be invoked before return in a
variadic function

embedded.c: 55 [2]

Warning #625: accept unusual type modifier

embedded.c: 64 [2]

Elective Note #923, MISRA 11.3 ADV: no support for multiple
file descriptors

embedded.c: 91 [2]

Informational #715: this is the implementation of a standard
library function, so its prototype is left unchanged

embedded.c: 92 [2]

Elective Note #926, MISRA 11.4 ADV: the conversion is safe

embedded.c: 95 [2]

Informational #715, MISRA 16.7 ADV: standard library
function implementation

embedded.c: 97 [2]

Informational #818: standard library function implementation

embedded.c: 97 [2]

Elective Note #960, MISRA 16.1 REQ: standard library function
implementation

embedded.c: 103 [2]

Warning #643: misleading warning ('&format' does not have a
far pointer)

embedded.c: 108 [2]

Elective Note #928, MISRA 11.4 ADV: safe conversion to 'char
*'
9MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
Per-project Exceptions
embedded.c: 109 [2]

Warning #438: 'va_end' must be invoked before return in a
variadic function

embedded.c: 113 [2]

Informational #715, MISRA 16.7 ADV: standard library
function implementation

embedded.c: 114 [2]

Informational #818: standard library function implementation

embedded.c: 114 [2]

Informational #715, MISRA 16.7 ADV: standard library
function implementation

embedded.c: 119 [2]

Informational #818: standard library function implementation

embedded.c: 119 [2]

Informational #715, MISRA 16.7 ADV: standard library
function implementation

embedded.c: 124 [2]

Informational #818: standard library function implementation

embedded.c: 124 [2]

Informational #715, MISRA 16.7 ADV: standard library
function implementation

embedded.c: 128 [2]

Informational #818: standard library function implementation

embedded.c: 128 [2]

Informational #715: this is the implementation of a standard
library function, so its prototype is left unchanged

embedded.c: 132 [2]

Warning #511: pointer size depends on both the target and the
memory model
10 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
 Per-project Exceptions
embedded.c: 152 [2]

Elective Note #923, MISRA 11.3 ADV: safe conversion

embedded.c: 153 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: the boolean
operation results from the expansion of macro
'CONVERT_TO_PAGED'

embedded.c: 154 [2]

Elective Note #960, MISRA 12.7 REQ: the signed quantity is
always positive

embedded.c: 155 [2]

Elective Note #960, MISRA 14.3 REQ: the macro expands to
HLI several statements

embedded.c: 165 [2]

Elective Note #960, MISRA 14.3 REQ: the macro expands to
HLI several statements

embedded.c: 169 [2]

Informational #715: this is the implementation of a standard
library function, so its prototype is left unchanged

embedded.c: 170 [2]

Informational #766: hidef.h contains conditionally compiled
code

embedded.c: 172 [2]

Elective Note #960, MISRA 10.1 REQ: the result of sizeof() has
type size_t

heap.c: 20 [2]

Warning #414: division by zero!

heap.c: 32 [2]

Warning #564: division by zero!

heap.c: 32 [2]
11MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
Per-project Exceptions
Elective Note #931: division by zero!

heap.c: 32 [2]

Informational #818, MISRA 16.7 ADV: symbol element not
referenced

heap.c: 33 [2]

Informational #715: symbol element not referenced

heap.c: 33 [2]

Warning #438: symbol element not referenced

heap.c: 33 [2]

Informational #715: inhibit message on 'a' and 'p' not being
referenced

locale.c: 17 [2]

Elective Note #960, MISRA 19.6 REQ: #undef required to
support non-ANSI pointer qualifiers 'near' and 'far'

non_bank.sgm: 1 [1]

Warning #537: allow multiple use

non_bank.sgm: 24 [1]

Elective Note #960, MISRA 19.6 REQ: #undef required to
support non-ANSI pointer qualifiers 'near' and 'far'

default.sgm: 1 [1]

Warning #537: allow multiple use

default.sgm: 24 [1]

Informational #708: initialization applied to the first named
member of the union

math.c: 75 [3]

Informational #708: initialization applied to the first named
member of the union

math.c: 77 [3]
12 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
 Per-project Exceptions
Informational #777: the purpose of the test is to compare the
bit patterns for an exact match

math.c: 185 [4]

Elective Note #934: no dynamic linking, an absolute address
is obtained

math.c: 494 [4]

Elective Note #960, MISRA 12.4 REQ: no impact if 'fabs' is not
called during expression evaluation

math.c: 495 [4]

Informational #750: suppress the messages on several local
macros not being referenced

math.c: 804 [4]

Informational #777: the purpose of the test is to compare the
bit patterns for an exact match

math.c: 1205 [4]

Informational #777: the purpose of the test is to compare the
bit patterns for an exact match

math.c: 1215 [4]

Informational #766: hidef.h contains conditionally compiled
code

math.c: 1234 [4]

Informational #766: hidef.h contains conditionally compiled
code

mathf.c: 1145 [4]

Elective Note #960, MISRA 16.3 REQ: this is a function pointer
declaration

printf.c: 83 [2]

Elective Note #960, MISRA 7.1 REQ: safe use of octal
constants

printf.c: 103 [2]
13MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
Per-project Exceptions
Warning #625: (accept unusual type modifier; no precision
loss)

printf.c: 123 [2]

Warning #619: (accept unusual type modifier; no precision
loss)

printf.c: 123 [2]

Warning #619: no precision loss

printf.c: 128 [2]

Informational #702, MISRA 12.7 REQ: allow signed right shift,
its positive anyway

printf.c: 137 [2]

Elective Note #960: allow signed right shift, its positive
anyway

printf.c: 137 [2]

Informational #702, MISRA 12.7 REQ: allow signed right shift,
its positive anyway

printf.c: 150 [2]

Elective Note #960: allow signed right shift, its positive
anyway

printf.c: 150 [2]

Informational #750: suppress the message on macros 'DIGITS'
and 'BOUND' not being referenced

printf.c: 167 [2]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

printf.c: 275 [2]

Elective Note #960, MISRA 10.5 REQ: '~' applied to an operand
of type 'unsigned int'

printf.c: 322 [2]
14 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
 Per-project Exceptions
Elective Note #960, MISRA 10.5 REQ: '~' applied to an operand
of type 'unsigned int'

printf.c: 325 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 330 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 346 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 400 [2]

Informational #826: safe conversion

printf.c: 401 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 405 [2]

Informational #826: safe conversion

printf.c: 406 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 410 [2]

Informational #826: safe conversion

printf.c: 411 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 419 [2]

Elective Note #926, MISRA 11.4 ADV: conversion is necessary
and safe
15MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
Per-project Exceptions
printf.c: 426 [2]

Informational #801: Use of goto is not deprecated

printf.c: 428 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 447 [5]

Warning #613: Possible use of null pointer 'str' in argument

printf.c: 478 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: the Boolean
value is target-dependent

printf.c: 493 [2]

Informational #774: the Boolean value is target-dependent

printf.c: 493 [2]

Informational #801: Use of goto is not deprecated

printf.c: 505 [2]

Elective Note #960, MISRA 10.5 REQ: '~' applied to an operand
of type 'unsigned int'

printf.c: 516 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 523 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 528 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: target-
dependent Boolean expressions

printf.c: 533 [2]

Informational #774: target-dependent Boolean expressions
16 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
 Per-project Exceptions
printf.c: 533 [2]

Informational #845: target-dependent Boolean expressions

printf.c: 533 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 535 [2]

Elective Note #923, MISRA 11.3 ADV: the cast is necessary,
see comment above

printf.c: 536 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 539 [2]

Informational #801: Use of goto is not deprecated

printf.c: 547 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 553 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 558 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 563 [2]

Elective Note #960: the result of sizeof() is size_t, which is
defined to 'unsigned int'

printf.c: 579 [2]

Elective Note #960: the result of sizeof() is size_t, which is
defined to 'unsigned int'

printf.c: 581 [2]
17MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
Per-project Exceptions
Elective Note #960: the result of sizeof() is size_t, which is
defined to 'unsigned int'

printf.c: 583 [2]

Warning #661: (no out-of-bounds access)

printf.c: 714 [2]

Warning #662: (no out-of-bounds access)

printf.c: 714 [2]

Warning #661: (no out-of-bounds access)

printf.c: 716 [2]

Informational #825: fallthrough is deliberate

printf.c: 764 [2]

Informational #801: Use of goto is not deprecated

printf.c: 766 [2]

Informational #801: Use of goto is not deprecated

printf.c: 770 [2]

Informational #825: fall through is deliberate

printf.c: 775 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 782 [2]

Elective Note #960: the type of the result of sizeof() is size_t,
which is defined to 'unsigned int'

printf.c: 815 [2]

Elective Note #960: the type of the result of sizeof() is size_t,
which is defined to 'unsigned int'

printf.c: 825 [2]

Elective Note #960: the type of the result of sizeof() is size_t,
which is defined to 'unsigned int'
18 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
 Per-project Exceptions
printf.c: 826 [2]

Elective Note #960, MISRA 10.5 REQ: '~' applied to an operand
of type 'unsigned int'

printf.c: 842 [2]

Elective Note #960: the type of the result of sizeof() is size_t,
which is defined to 'unsigned int'

printf.c: 874 [2]

Elective Note #960: the type of the result of sizeof() is size_t,
which is defined to 'unsigned int'

printf.c: 875 [2]

Elective Note #960, MISRA 10.5 REQ: '~' applied to operand of
type 'unsigned int')

printf.c: 885 [2]

Elective Note #960: the type of the result of sizeof() is size_t,
which is defined to 'unsigned int'

printf.c: 888 [2]

Elective Note #960: the type of the result of sizeof() is size_t,
which is defined to 'unsigned int'

printf.c: 898 [2]

Elective Note #960: the type of the result of sizeof() is size_t,
which is defined to 'unsigned int'

printf.c: 900 [2]

Elective Note #960: the type of the result of sizeof() is size_t,
which is defined to 'unsigned int'

printf.c: 919 [2]

Elective Note #960: the type of the result of sizeof() is size_t,
which is defined to 'unsigned int'

printf.c: 991 [2]

Elective Note #960: the type of the result of sizeof() is size_t,
which is defined to 'unsigned int'
19MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
Per-project Exceptions
printf.c: 992 [2]

Informational #825: fallthrough is deliberate

printf.c: 1066 [2]

Informational #818, MISRA 16.7 ADV: this is a standard library
function, cannot change its prototype

printf.c: 1073 [2]

Elective Note #960, MISRA 16.3 REQ: this is a function pointer
parameter

printf.c: 1149 [2]

Elective Note #960, MISRA 16.1 REQ: standard library function
implementation

printf.c: 1190 [2]

Warning #643: misleading warning ('&format' does not have a
far pointer type)

printf.c: 1196 [2]

Elective Note #928, MISRA 11.4 ADV: safe conversion to 'char
*'

printf.c: 1197 [2]

Warning #438: 'va_end' must be invoked before return in a
variadic function

printf.c: 1202 [2]

Informational #766: header file contains conditionally
compiled code

printf.c: 1215 [2]

Warning #625: accept unusual type modifier

scanf.c: 104 [2]

Warning #625: accept unusual type modifier

scanf.c: 154 [2]

Warning #625: accept unusual type modifier
20 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
 Per-project Exceptions
scanf.c: 157 [2]

Warning #625: accept unusual type modifier

scanf.c: 161 [2]

Informational #801: Use of goto is not deprecated

scanf.c: 184 [2]

Elective Note #931: the expression is safe

scanf.c: 191 [2]

Informational #801: Use of goto is not deprecated

scanf.c: 195 [2]

Informational #801: Use of goto is not deprecated

scanf.c: 199 [2]

Informational #801: Use of goto is not deprecated

scanf.c: 228 [2]

Informational #801: Use of goto is not deprecated

scanf.c: 237 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

scanf.c: 262 [2]

Informational #826: safe conversion

scanf.c: 263 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

scanf.c: 268 [2]

Informational #826: safe conversion

scanf.c: 269 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option
21MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
Per-project Exceptions
scanf.c: 273 [2]

Informational #826: safe conversion

scanf.c: 274 [2]

Informational #801: Use of goto is not deprecated

scanf.c: 286 [2]

Informational #801: Use of goto is not deprecated

scanf.c: 294 [2]

Informational #801: Use of goto is not deprecated

scanf.c: 305 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

scanf.c: 338 [2]

Informational #826: safe conversion

scanf.c: 339 [2]

Elective Note #961, MISRA 17.5 ADV: multiple indirection
levels necessary in order to implement support for '%p'

scanf.c: 343 [2]

Warning #511: pointer size depends on both the target and the
memory model (if truncation occurs, it is expected)

scanf.c: 344 [2]

Elective Note #923: pointer size depends on both the target
and the memory model (if truncation occurs, it is expected)

scanf.c: 344 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

scanf.c: 345 [2]

Informational #826: safe conversion

scanf.c: 346 [2]
22 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
 Per-project Exceptions
Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

scanf.c: 360 [2]

Informational #826: safe conversion

scanf.c: 361 [2]

Informational #801: Use of goto is not deprecated

scanf.c: 379 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

scanf.c: 398 [6]

Informational #826: safe conversion

scanf.c: 399 [6]

Warning #539: conditionally compiled 'if' clause

scanf.c: 413 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

scanf.c: 436 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

scanf.c: 481 [2]

Elective Note #946, MISRA 17.2 REQ, MISRA 17.3 REQ: the two
pointers point into the same array object

scanf.c: 521 [2]

Elective Note #947: the two pointers point into the same array
object

scanf.c: 521 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

scanf.c: 525 [2]
23MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
Per-project Exceptions
Informational #826: safe conversion

scanf.c: 526 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

scanf.c: 530 [2]

Informational #826: safe conversion

scanf.c: 531 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

scanf.c: 535 [2]

Informational #826: safe conversion

scanf.c: 536 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

scanf.c: 555 [2]

Elective Note #929, MISRA 11.4 ADV: conversion is safe

scanf.c: 569 [2]

Warning #539: conditionally compiled 'if' clause

scanf.c: 570 [2]

Informational #818, MISRA 16.7 ADV: standard library
function, cannot change its prototype

scanf.c: 592 [2]

Elective Note #960, MISRA 16.1 REQ: standard library function
implementation

scanf.c: 597 [2]

Warning #643: misleading warning ('&format' does not have a
far pointer type)

scanf.c: 601 [2]
24 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
 Per-project Exceptions
Elective Note #928, MISRA 11.4 ADV: safe conversion to 'char
*'

scanf.c: 602 [2]

Warning #438: 'va_end' must be invoked before return in a
variadic function

scanf.c: 606 [2]

Elective Note #961, MISRA 19.13 ADV: '#' is used in HLI as an
operator - see pragma NO_STRING_CONSTR above

signal.c: 17 [2]

Elective Note #960, MISRA 14.3 REQ: macro HALTX expands
to several HLI statements

signal.c: 28 [2]

Elective Note #923, MISRA 11.3 ADV: safe cast (no truncation)
because the maximum signal number is 23 (SIGALRM)

signal.c: 38 [2]

Elective Note #923, MISRA 11.3 ADV: safe casts

signal.c: 39 [2]

Elective Note #929, MISRA 11.4 ADV: safe casts

signal.c: 39 [2]

Elective Note #923, MISRA 11.3 ADV: safe casts

signal.c: 45 [2]

Elective Note #929, MISRA 11.4 ADV: safe casts

signal.c: 45 [2]

Elective Note #960, MISRA 14.3 REQ: macro HALTX expands
to several HLI statements

signal.c: 54 [2]

Informational #715: the function contains inline assembly
only

signal.c: 56 [2]
25MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
Per-project Exceptions
Informational #766: non_bank.sgm is not a regular header file,
it contains a conditionally CODE_SEG pragma

signal.c: 61 [2]

Elective Note #961, MISRA 19.13 ADV: '#' used not as the
stringification preprocessing operator, but as an inline
assembly

operator

stdlib.c: 25 [2]

Elective Note #960, MISRA 14.3 REQ: the macro expands to
several HLI statements

stdlib.c: 73 [2]

Informational #715: standard library function implementation

stdlib.c: 75 [2]

Elective Note #960, MISRA 14.3 REQ: the macro expands to
several HLI statements

stdlib.c: 79 [2]

Informational #715: standard library function implementation

stdlib.c: 81 [2]

Elective Note #960, MISRA 14.3 REQ: the macro expands to
several HLI statements

stdlib.c: 85 [2]

Informational #715: standard library function implementation

stdlib.c: 87 [2]

Elective Note #960, MISRA 14.3 REQ: the macro expands to
several HLI statements

stdlib.c: 91 [2]

Informational #715: standard library function implementation

stdlib.c: 93 [2]
26 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
 Per-project Exceptions
Elective Note #960, MISRA 14.3 REQ: the macro expands to
several HLI statements

stdlib.c: 97 [2]

Informational #715, MISRA 16.7 ADV: standard library
function implementation

stdlib.c: 99 [2]

Informational #818: standard library function implementation

stdlib.c: 99 [2]

Elective Note #960, MISRA 14.3 REQ: the macro expands to
several HLI statements

stdlib.c: 103 [2]

Informational #715, MISRA 16.7 ADV: standard library
function implementation

stdlib.c: 105 [2]

Informational #818: standard library function implementation

stdlib.c: 105 [2]

Elective Note #960, MISRA 14.3 REQ: the macro expands to
several HLI statements

stdlib.c: 109 [2]

Informational #715, MISRA 16.7 ADV: standard library
function implementation

stdlib.c: 111 [2]

Informational #818: standard library function implementation

stdlib.c: 111 [2]

Elective Note #960, MISRA 14.3 REQ: the macro expands to
several HLI statements

stdlib.c: 115 [2]

Informational #715, MISRA 16.7 ADV: standard library
function implementation
27MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
Per-project Exceptions
stdlib.c: 117 [2]

Informational #818: standard library function implementation

stdlib.c: 117 [2]

Warning #625: accept unusual type modifier

stdlib.c: 145 [2]

Informational #801: Use of goto is not deprecated

stdlib.c: 156 [2]

Informational #801: Use of goto is not deprecated

stdlib.c: 162 [2]

Informational #801: Use of goto is not deprecated

stdlib.c: 171 [2]

Informational #801: Use of goto is not deprecated

stdlib.c: 175 [2]

Informational #801: Use of goto is not deprecated

stdlib.c: 186 [2]

Informational #801: Use of goto is not deprecated

stdlib.c: 190 [2]

Informational #801: Use of goto is not deprecated

stdlib.c: 207 [2]

Informational #801: Use of goto is not deprecated

stdlib.c: 211 [2]

Elective Note #960, MISRA 14.3 REQ: the macro does not
always expand to a null statement

stdlib.c: 215 [2]

Informational #801: Use of goto is not deprecated

stdlib.c: 219 [2]
28 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
 Per-project Exceptions
Elective Note #926, MISRA 11.4 ADV: safe cast

stdlib.c: 225 [2]

Warning #625: accept unusual type modifier

stdlib.c: 246 [2]

Warning #610: pointer tested against NULL

stdlib.c: 252 [2]

Elective Note #926, MISRA 11.4 ADV: safe cast

stdlib.c: 253 [2]

Warning #610: pointer tested against NULL

stdlib.c: 263 [2]

Elective Note #926, MISRA 11.4 ADV: safe cast

stdlib.c: 264 [2]

Elective Note #946, MISRA 17.2 REQ, MISRA 17.3 REQ: the two
pointers point into the same array object

stdlib.c: 272 [2]

Elective Note #947: the two pointers point into the same array
object

stdlib.c: 272 [2]

Warning #610: pointer tested against NULL

stdlib.c: 278 [2]

Elective Note #926, MISRA 11.4 ADV: safe cast

stdlib.c: 279 [2]

Warning #625: accept unusual type modifier

stdlib.c: 302 [2]

Informational #801: Use of goto is not deprecated

stdlib.c: 319 [2]

Informational #801: Use of goto is not deprecated
29MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
Per-project Exceptions
stdlib.c: 326 [2]

Elective Note #960, MISRA 14.3 REQ: the macro does not
always expand to a null statement

stdlib.c: 330 [2]

Elective Note #960, MISRA 14.3 REQ: the macro does not
always expand to a null statement

stdlib.c: 332 [2]

Informational #801: Use of goto is not deprecated

stdlib.c: 338 [2]

Informational #801: Use of goto is not deprecated

stdlib.c: 341 [2]

Informational #801: Use of goto is not deprecated

stdlib.c: 345 [2]

Informational #801: Use of goto is not deprecated

stdlib.c: 347 [2]

Informational #801: Use of goto is not deprecated

stdlib.c: 350 [2]

Informational #801: Use of goto is not deprecated

stdlib.c: 365 [2]

Informational #801: Use of goto is not deprecated

stdlib.c: 389 [2]

Elective Note #960, MISRA 14.3 REQ: the macro does not
always expand to a null statement

stdlib.c: 395 [2]

Elective Note #960, MISRA 14.3 REQ: the macro does not
always expand to a null statement

stdlib.c: 403 [2]

Informational #801: Use of goto is not deprecated
30 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
 Per-project Exceptions
stdlib.c: 433 [2]

Elective Note #960, MISRA 14.3 REQ: the macro does not
always expand to a null statement

stdlib.c: 440 [2]

Elective Note #960, MISRA 14.3 REQ: the macro does not
always expand to a null statement

stdlib.c: 442 [2]

Elective Note #960, MISRA 14.3 REQ: the macro does not
always expand to a null statement

stdlib.c: 449 [2]

Elective Note #960, MISRA 14.3 REQ: the macro does not
always expand to a null statement

stdlib.c: 451 [2]

Elective Note #960, MISRA 14.3 REQ: the macro does not
always expand to a null statement

stdlib.c: 458 [2]

Elective Note #960, MISRA 14.3 REQ: the macro does not
always expand to a null statement

stdlib.c: 460 [2]

Elective Note #926, MISRA 11.4 ADV: safe cast

stdlib.c: 477 [2]

Warning #625: accept unusual type modifier

stdlib.c: 539 [2]

Elective Note #960, MISRA 16.3 REQ: function pointer
parameter

stdlib.c: 610 [2]

Warning #625: accept unusual type modifier

stdlib.c: 614 [2]
31MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
Per-project Exceptions
Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

stdlib.c: 645 [2]

Elective Note #927, MISRA 11.4 ADV: deliberate cast from
'char*' to a word pointer type

stdlib.c: 648 [2]

Informational #826: deliberate cast from 'char *' to a word
pointer type

stdlib.c: 649 [2]

Elective Note #960, MISRA 16.3 REQ: function pointer
parameter

stdlib.c: 667 [2]

Warning #625: accept unusual type modifier

stdlib.c: 670 [2]

Elective Note #931: safe expression

stdlib.c: 678 [2]

Elective Note #960, MISRA 12.4 REQ: safe expression

stdlib.c: 680 [2]

Informational #766: header files 'math.h' and 'float.h' contain
conditionally compiled code

stdlib.c: 778 [2]

Elective Note #926, MISRA 11.4 ADV: deliberate cast

string.c: 17 [2]

Informational #715: implementation of a standard library
function

string.c: 19 [2]
32 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
 Per-project Exceptions
Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 22 [2]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 34 [2]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 35 [2]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 58 [2]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 59 [2]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 76 [2]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 77 [2]

Elective Note #946, MISRA 17.2 REQ, MISRA 17.3 REQ:
memmove implementation : need to establish if the two
memory areas

overlap
33MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
Per-project Exceptions
string.c: 79 [2]

Elective Note #946, MISRA 17.2 REQ, MISRA 17.3 REQ:
memmove implementation : need to establish if the two
memory areas

overlap

string.c: 83 [2]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 95 [2]

Elective Note #926, MISRA 11.4 ADV: safe conversion to 'char
*'

string.c: 118 [2]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 119 [2]

Elective Note #946, MISRA 17.2 REQ, MISRA 17.3 REQ: the two
pointers point into the same string

string.c: 124 [2]

Elective Note #947, MISRA 17.2 REQ: the two pointers point
into the same string

string.c: 125 [2]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 131 [2]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 140 [2]
34 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
 Per-project Exceptions
Informational #720, MISRA 13.1 REQ, MISRA 13.2 ADV:
assignment deliberately used in a Boolean context

string.c: 143 [2]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 148 [2]

Informational #820, MISRA 13.1 REQ: assignment deliberately
used in a Boolean context

string.c: 153 [2]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: the Boolean
value depends on the memory model

string.c: 198 [2]

Informational #774: the Boolean value depends on the
memory model

string.c: 199 [2]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 225 [2]

Informational #720, MISRA 13.1 REQ, MISRA 13.2 ADV:
assignment deliberately used in a Boolean context

string.c: 227 [2]

Warning #533, MISRA 16.8 REQ: on this exit path, the function
contains HLI only

string.c: 230 [2]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 245 [2]
35MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
Per-project Exceptions
Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: the Boolean
value depends on the memory model

string.c: 308 [2]

Informational #774: the Boolean value depends on the
memory model

string.c: 309 [2]

Warning #533, MISRA 16.8 REQ: the absence of a return
statement on the HLI exit path is deliberate

string.c: 340 [2]

Elective Note #926, MISRA 11.4 ADV: safe conversion, from
'const char *' to 'char *'

string.c: 373 [2]

Elective Note #926, MISRA 11.4 ADV: safe conversion, from
'const char *' to 'char *'

string.c: 378 [2]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 384 [2]

Elective Note #926, MISRA 11.4 ADV: safe conversion, from
'const char *' to 'char *'

string.c: 393 [2]

Elective Note #926, MISRA 11.4 ADV: safe conversion, from
'const char *' to 'char *'

string.c: 395 [2]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 412 [2]
36 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
 Per-project Exceptions
Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 429 [2]

Elective Note #926, MISRA 11.4 ADV: safe conversion, from
'const char *' to 'char *'

string.c: 435 [2]

Elective Note #926, MISRA 11.4 ADV: safe conversion, from
'const char *' to 'char *'

string.c: 449 [2]

Elective Note #926, MISRA 11.4 ADV: safe conversion, from
'const char *' to 'char *'

string.c: 465 [2]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 475 [2]

Elective Note #926, MISRA 11.4 ADV: safe conversion, from
'const char *' to 'char *'

string.c: 494 [2]

Elective Note #926, MISRA 11.4 ADV: safe conversion, from
'const char *' to 'char *'

string.c: 503 [2]

Elective Note #960, MISRA 7.1 REQ: safe use of octal escape
sequences

terminal.c: 11 [2]

Elective Note #960, MISRA 4.1 REQ: safe use of octal escape
sequences

terminal.c: 12 [2]

Warning #685: the function may take an integer as argument
37MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
Per-project Exceptions
terminal.c: 68 [2]

Warning #641: use the integer model for enums

terminal.c: 73 [2]

Elective Note #946, MISRA 17.2 REQ, MISRA 17.3 REQ: this
file implements the memory management standard library
functions; the compiler compares/subtracts the addresses
pointed to by the two operands

alloc.c: 71 [2]

Elective Note #960, MISRA 10.1 REQ: the result of sizeof() has
type size_t

alloc.c: 87 [2]

Elective Note #960, MISRA 10.1 REQ: the result of sizeof() has
type size_t

alloc.c: 98 [2]

Elective Note #960, MISRA 10.1 REQ: the result of sizeof() has
type size_t

alloc.c: 282 [2]

Warning #586: accept 'free'

alloc.c: 305 [2]

Warning #424: deallocation is appropriate

alloc.c: 306 [2]

Informational #828: according to ANSI-C, setjmp must be a
macro

setjmp.h: 23 [2]

Informational #715, MISRA 16.7 ADV: this function contains
HLI only

setjmp.c: 57 [2]

Informational #818: this function contains HLI only

setjmp.c: 57 [2]
38 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
 Per-project Exceptions
Informational #715, MISRA 16.7 ADV: this function contains
HLI only

setjmp.c: 107 [2]

Informational #818: this function contains HLI only

setjmp.c: 107 [2]

Informational #766: hidef.h is used in HLI

setjmp.c: 108 [2]

Informational #766:

runtime.sgm: 10 [2]

Warning #537: allow multiple use

runtime.sgm: 11 [2]

Warning #451: push.sgm, non_bank.sgm and runtime.sgm are
not regular header files, they contain CODE_SEG/push/pop
pragmas

dregs.h: 21 [4]

Warning #451: default.sgm and pop.sgm are not regular
header files, they contain CODE_SEG/push/pop pragmas

dregs.h: 49 [4]

Warning #451: non_bank.sgm and runtime.sgm are not
regular header files, they contain CODE_SEG/push/pop
pragmas

dadd.c: 13 [4]

Elective Note #957, MISRA 8.1 REQ: these are runtime support
functions and, as such, are not meant to be called in user
code; they are only invoked via jumps, in compiler-generated
code

dadd.c: 18 [4]

Informational #766: header file 'dregs.h' is used, but in HLI
code

dadd.c: 448 [4]
39MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
Per-project Exceptions
Warning #451: non_bank.sgm and runtime.sgm are not
regular header files, they contain CODE_SEG/push/pop
pragmas

dansi.c: 15 [4]

Elective Note #957, MISRA 8.1 REQ: these are runtime support
functions and, as such, are not meant to be called in user
code; they are only invoked via jumps, in compiler-generated
code

dansi.c: 23 [4]

Informational #750: local macros referenced, but in HLI

dansi.c: 24 [4]

Informational #752: symbol 'modff' is used in HLI

dansi.c: 242 [7]

Informational #752: symbol 'modff' is referenced in HLI code

dansi.c: 243 [7]

Informational #752: symbol 'frexpf' is used in HLI

dansi.c: 249 [3]

Informational #752: symbol 'ldexpf' is used in HLI

dansi.c: 255 [3]

Informational #766: header file 'dregs.h' is used, but in HLI
code

dansi.c: 454 [4]

Elective Note #957, MISRA 8.1 REQ: these are runtime support
functions and, as such, are not meant to be called in user
code; they are only invoked via jumps, in compiler-generated
code

dcmp.c: 15 [4]

Informational #766: non_bank.sgm is not a regular header file,
it contains a conditionally compiled CODE_SEG pragma

dcmp.c: 84 [4]
40 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
 Per-project Exceptions
Warning #451: push.sgm, non_bank.sgm and runtime.sgm are
not regular header files, they contain CODE_SEG/push/pop
pragmas

dconv.h: 18 [4]

Warning #451: default.sgm and pop.sgm are not regular
header files, they contain CODE_SEG/push/pop pragmas

dconv.h: 35 [4]

Warning #451: non_bank.sgm and runtime.sgm are not
regular header files, they contain CODE_SEG/push/pop
pragmas

dconv.c: 14 [4]

Elective Note #957, MISRA 8.1 REQ: these are runtime support
functions and, as such, are not meant to be called in user
code;

they are only invoked via jumps, in compiler-generated code

dconv.c: 19 [4]

Informational #766: header file 'dregs.h' is used, but in HLI
code

dconv.c: 482 [4]

Warning #451: push.sgm, non_bank.sgm and runtime.sgm are
not regular header files, they contain CODE_SEG/push/pop
pragmas

fregs.h: 20 [4]

Warning #451: default.sgm and pop.sgm are not regular
header files, they contain CODE_SEG/push/pop pragmas

fregs.h: 51 [4]

Warning #451: non_bank.sgm and runtime.sgm are not
regular header files, they contain CODE_SEG/push/pop
pragmas

dfconv.c: 15 [4]
41MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
Per-project Exceptions
Elective Note #957, MISRA 8.1 REQ: these are runtime support
functions and, as such, are not meant to be called in user
code; they are only invoked via jumps, in compiler-generated
code

dfconv.c: 20 [4]

Elective Note #960, MISRA 19.6 REQ: macro names need to be
reused across the runtime support implementation

dfconv.c: 21 [4]

Informational #766: header files 'dregs.h' and 'fregs.h' are
used, but in HLI code

dfconv.c: 245 [4]

Warning #451: non_bank.sgm and runtime.sgm are not
regular header files, they contain CODE_SEG/push/pop
pragmas

dmul.c: 14 [4]

Elective Note #957, MISRA 8.1 REQ: these are runtime support
functions and, as such, are not meant to be called in user
code; they are only invoked via jumps, in compiler-generated
code

dmul.c: 19 [4]

Informational #766: header file 'dregs.h' is used, but in HLI
code

dmul.c: 475 [4]

Warning #451: non_bank.sgm and runtime.sgm are not
regular header files, they contain CODE_SEG/push/pop
pragmas

dregs.c: 14 [4]

Informational #766: non_bank.sgm is not a regular header file,
it contains a conditionally compiled CODE_SEG pragma

dregs.c: 575 [4]
42 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
 Per-project Exceptions
Warning #451: non_bank.sgm and runtime.sgm are not
regular header files, they contain CODE_SEG/push/pop
pragmas

fadd.c: 15 [4]

Elective Note #957, MISRA 8.1 REQ: these are runtime support
functions and, as such, are not meant to be called in user
code; they are only invoked via jumps, in compiler-generated
code

fadd.c: 20 [4]

Informational #766: header files 'dregs.h' and 'fregs.h' are
used, but in HLI code

fadd.c: 315 [4]

Warning #451: non_bank.sgm and runtime.sgm are not
regular header files, they contain CODE_SEG/push/pop
pragmas

fansi.c: 16 [4]

Elective Note #957, MISRA 8.1 REQ: these are runtime support
functions and, as such, are not meant to be called in user
code; they are only invoked via jumps, in compiler-generated
code

fansi.c: 24 [4]

Warning #528: function RetErrDom is referenced in HLI

fansi.c: 288 [4]

Informational #766: header file 'fregs.h' are used, but in HLI
code

fansi.c: 335 [4]

Elective Note #957, MISRA 8.1 REQ: these are runtime support
functions and, as such, are not meant to be called in user
code; they are only invoked via jumps, in compiler-generated
code

fcmp.c: 14 [4]
43MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
Per-project Exceptions
Informational #766: non_bank.sgm is not a regular header file,
it contains a conditionally compiled CODE_SEG pragma

fcmp.c: 80 [4]

Warning #451: non_bank.sgm and runtime.sgm are not
regular header files, they contain CODE_SEG/push/pop
pragmas

fconv.c: 13 [4]

Elective Note #957, MISRA 8.1 REQ: these are runtime support
functions and, as such, are not meant to be called in user
code; they are only invoked via jumps, in compiler-generated
code

fconv.c: 18 [4]

Informational #766: header file 'fregs.h' is used, but in HLI
code

fconv.c: 277 [4]

Warning #451: non_bank.sgm and runtime.sgm are not
regular header files, they contain CODE_SEG/push/pop
pragmas

fmul.c: 15 [4]

Elective Note #957, MISRA 8.1 REQ: these are runtime support
functions and, as such, are not meant to be called in user
code; they are only invoked via jumps, in compiler-generated
code

fmul.c: 20 [4]

Informational #766: header file 'fregs.h' are used, but in HLI
code

fmul.c: 392 [4]

Warning #451: non_bank.sgm and runtime.sgm are not
regular header files, they contain CODE_SEG/push/pop
pragmas

fregs.c: 16 [4]
44 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
 Per-project Exceptions
Informational #766: non_bank.sgm is not a regular header file,
it contains a conditionally compiled CODE_SEG pragma

fregs.c: 435 [4]

Warning #451: non_bank.sgm and runtime.sgm are not
regular header files, they contain CODE_SEG/push/pop
pragmas

lansi.c: 10 [4]

Informational #766: non_bank.sgm is not a regular header file,
it contains a conditionally compiled CODE_SEG pragma

lansi.c: 90 [4]

Elective Note #957, MISRA 8.1 REQ: these are runtime support
functions and, as such, are not meant to be called in user
code; they are only invoked via jumps, in compiler-generated
code

rtshc12.c: 15 [2]

Elective Note #960, MISRA 10.5 REQ: '<<' applied to an
operand of type 'unsigned int' - which is not a sub-integer
type

rtshc12.c: 19 [2]

Informational #750: the macro is referenced in HLI

rtshc12.c: 995 [2]

Informational #750: the macro is referenced in HLI

rtshc12.c: 1006 [2]

Informational #766: runtime.sgm is not a regular header file, it
contains a CODE_SEG pragma

rtshc12.c: 1907 [2]

Warning #451: non_bank.sgm and runtime.sgm are not
regular header files, they contain CODE_SEG/push/pop
pragmas

vregs.c: 15 [4]
45MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
Per-project Exceptions
Informational #752: symbol '_NEG_P' is used in HLI

vregs.c: 55 [4]

Informational #766: runtime.sgm is not a regular header file, it
contains a conditionally compiled CODE_SEG pragma

vregs.c: 171 [4]

Informational #708: initialization applied to the first named
member of the union

math.c: 83 [8]

Informational #708: initialization applied to the first named
member of the union

math.c: 84 [8]

Informational #708: initialization applied to the first named
member of the union

mathf.c: 177 [8]

Informational #708: initialization applied to the first named
member of the union

mathf.c: 178 [8]

Informational #777: the purpose of the test is to compare the
bit patterns for an exact match

mathf.c: 236 [8]

Informational #704: y is positive

mathf.c: 291 [8]

Elective Note #960: y is positive

mathf.c: 291 [8]

Informational #777: the purpose of the test is to compare the
bit patterns for an exact match

mathf.c: 791 [8]

Informational #777: the purpose of the test is to compare the
bit patterns for an exact match
46 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
 Per-project Exceptions
mathf.c: 804 [8]

Informational #777: the purpose of the test is to compare the
bit patterns for an exact match

mathf.c: 806 [8]

Informational #777: the purpose of the test is to compare the
bit patterns for an exact match

mathf.c: 825 [8]

Informational #777: the purpose of the test is to compare the
bit patterns for an exact match

mathf.c: 826 [8]

Informational #777: the purpose of the test is to compare the
bit patterns for an exact match

mathf.c: 832 [8]

Informational #777: the purpose of the test is to compare the
bit patterns for an exact match

mathf.c: 1113 [8]

Informational #777: the purpose of the test is to compare the
bit patterns for an exact match

mathf.c: 1125 [8]

Informational #826: safe conversion

scanf.c: 403 [8]

Informational #826: safe conversion

scanf.c: 405 [8]

Warning #528: symbol 'D_LDEXP' is referenced in HLI

dansi.c: 209 [8]

Warning #528: symbol 'RetErrDom' is referenced in HLI

dansi.c: 399 [8]
47MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
Per-project Exceptions
Elective Note #961, MISRA 19.1 ADV: non_bank.sgm and
default.sgm each contain a conditionally compiled
CODE_SEG

pragma

start12.c: 66 [9]

Warning #451: default.sgm contains a conditionally compiled
CODE_SEG pragma

start12.c: 92 [10]

Warning #505: asm code

start12.c: 191 [11]

Warning #522: asm code

start12.c: 191 [11]

Warning #505: asm code

start12.c: 263 [11]

Warning #522: asm code

start12.c: 263 [11]

Warning #451: non_bank.sgm contains a conditionally
compiled CODE_SEG pragma

start12.c: 376 [9]

Elective Note #960, MISRA 14.3 REQ: macro
INIT_SP_FROM_STARTUP_DESC() expands to HLI code

start12.c: 413 [9]

Warning #522, MISRA 14.2 REQ: macro
INIT_SP_FROM_STARTUP_DESC() expands to HLI code

start12.c: 414 [9]

Warning #522, MISRA 14.2 REQ: function Init() contains HLI
only

start12.c: 467 [9]
48 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
 Per-project Exceptions
Informational #766: non_bank.sgm is not a regular header file,
it contains a conditionally compiled CODE_SEG pragma

start12.c: 480 [9]

Warning #451: non_bank.sgm is not a regular header files, it
contains a CODE_SEG pragma

setjmp.c: 14 [12]

Informational #752: symbol '_SET_PAGE' is used in HLI

setjmp.c: 18 [12]

Informational #752: symbol '_modff' is used in HLI

dansi.c: 239 [13]

Warning #451: non_bank.sgm contains a conditionally
compiled CODE_SEG pragma

start12.c: 80 [14]

Informational #752: symbol '_SET_PAGE' is referenced in HLI

start12.c: 87 [14]

Warning #505: asm code

start12.c: 172 [15]

Warning #522: asm code

start12.c: 172 [15]

Warning #505: asm code

start12.c: 244 [15]

Warning #522: asm code

start12.c: 244 [15]
49MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

HCS12
Per-project Exceptions
50 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

3
XGATE

This chapter contains these topics for XGATE:

• Inline Assembly

• General Exceptions

• Per-project Exceptions

Inline Assembly
Inline assembly is altogether ignored when checking for MISRA-C:2004 compliancy.

General Exceptions
Table 1. lists the exceptions to MISRA-C:2004 rules that apply across all the library
projects.

Table 1. XGATE general library exceptions to MISRA-C:2004 rules

MISRA-C:2004 Rule Exception

6.3 ADV inhibit the message on the use of a
modifier or a type outside of a typedef

19.7 ADV allow function-like macros

19.15 REQ allow repeatedly included header files -
all the libray headers are guarded using
macros

14.7 REQ allow multiple exit points for functions

14.5 REQ allow 'continue' statements

18.4 REQ allow unions

20.4 REQ, 205. REQ accept several deprecated symbols
51MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
Per-project Exceptions
Elective Note #961, MISRA 19.3 ADV: '#' is used in HLI as an
operator - see pragma NO_STRING_CONSTR above

hidef.h: 51 [16]

Elective Note #960, MISRA 19.6 REQ: pointer qualifiers 'far'
and 'near' are not supported on XGATE

hidef.h: 59 [16]

Warning #683: inhibit warning on standard function being
#define'd

stdlib.h: 45 [16]

Elective Note #960, MISRA 16.3 REQ: message reported not
for a function, but for a function pointer

stdlib.h: 82 [16]

Elective Note #960, MISRA 16.3 REQ: message reported not
for a function, but for a function pointer

stdlib.h: 85 [16]

Informational #715: name not used

assert.c: 21 [16]

Informational #766: hidef.h contains conditionally compiled
code

assert.c: 24 [16]

Elective Note #960, MISRA 10.1 REQ: the conversion has no
impact on bit pattern intepretation

ctype.c: 11 [16]

Elective Note #960, MISRA 19.6 REQ: character classification
macros must be undefined prior to defining the
corresponding character classification functions

ctype.c: 276 [16]
52 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
Informational #766: hidef.h contains conditionally compiled
code

ctype.c: 368 [16]

Elective Note #960, MISRA 10.1 REQ: the result of sizeof() has
type size_t

heap.c: 20 [16]

Warning #414: division by zero!

heap.c: 32 [16]

Warning #564: division by zero!

heap.c: 32 [16]

Elective Note #931: division by zero!

heap.c: 32 [16]

Informational #818, MISRA 16.7 ADV: symbol element not
referenced

heap.c: 33 [16]

Informational #715: symbol element not referenced

heap.c: 33 [16]

Warning #438: symbol element not referenced

heap.c: 33 [16]

Informational #773: va_end is never used as an expression
operand

stdarg.h: 120 [16]

Warning #683: inhibit warning on standard function being
#define'd

stdio.h: 76 [16]

Elective Note #960, MISRA 16.1 REQ: standard library function
implementation

stdio.h: 149 [16]
53MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
Elective Note #960, MISRA 16.1 REQ: standard library function
implementation

stdio.h: 150 [16]

Elective Note #960, MISRA 16.1 REQ: standard library function
implementation

stdio.h: 157 [16]

Elective Note #960, MISRA 16.1 REQ: standard library function
implementation

stdio.h: 158 [16]

Elective Note #960, MISRA 16.1 REQ: standard library function
implementation

stdio.h: 160 [16]

Elective Note #960, MISRA 16.3 REQ: message reported for a
function pointer parameter

stdio.h: 163 [16]

Elective Note #960, MISRA 16.1 REQ: standard library function
implementation

stdio.h: 204 [16]

Elective Note #960, MISRA 16.1 REQ: standard library function
implementation

embedded.c: 31 [16]

Warning #643: misleading warning ('&format' does not have a
far type)

embedded.c: 36 [16]

Elective Note #928, MISRA 11.4 ADV: safe conversion to 'char
*'

embedded.c: 37 [16]

Warning #438: 'va_end' must be invoked before return in a
variadic function

embedded.c: 41 [16]
54 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
Elective Note #960, MISRA 16.1 REQ: standard library function
implementation

embedded.c: 44 [16]

Warning #643: misleading warning ('&format' does not have a
far type)

embedded.c: 49 [16]

Elective Note #928, MISRA 11.4 ADV: safe conversion to 'char
*'

embedded.c: 50 [16]

Warning #438: 'va_end' must be invoked before return in a
variadic function

embedded.c: 55 [16]

Warning #625: accept unusual type modifier

embedded.c: 64 [16]

Elective Note #923, MISRA 11.3 ADV: no support for multiple
file descriptors

embedded.c: 91 [16]

Informational #715: this is the implementation of a standard
library function, so its prototype is left unchanged

embedded.c: 92 [16]

Elective Note #926, MISRA 11.4 ADV: the conversion is safe

embedded.c: 95 [16]

Informational #715, MISRA 16.7 ADV: standard library
function implementation

embedded.c: 97 [16]

Informational #818: standard library function implementation

embedded.c: 97 [16]

Elective Note #960, MISRA 16.1 REQ: standard library function
implementation
55MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
embedded.c: 103 [16]

Warning #643: misleading warning ('&format' does not have a
far pointer)

embedded.c: 108 [16]

Elective Note #928, MISRA 11.4 ADV: safe conversion to 'char
*'

embedded.c: 109 [16]

Warning #438: 'va_end' must be invoked before return in a
variadic function

embedded.c: 113 [16]

Informational #715, MISRA 16.7 ADV: standard library
function implementation

embedded.c: 114 [16]

Informational #818: standard library function implementation

embedded.c: 114 [16]

Informational #715, MISRA 16.7 ADV: standard library
function implementation

embedded.c: 119 [16]

Informational #818: standard library function implementation

embedded.c: 119 [16]

Informational #715, MISRA 16.7 ADV: standard library
function implementation

embedded.c: 124 [16]

Informational #818: standard library function implementation

embedded.c: 124 [16]

Informational #715, MISRA 16.7 ADV: standard library
function implementation

embedded.c: 128 [16]

Informational #818: standard library function implementation
56 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
embedded.c: 128 [16]

Informational #715: this is the implementation of a standard
library function, so its prototype is left unchanged

embedded.c: 132 [16]

Warning #511: pointer size depends on both the target and the
memory model

embedded.c: 152 [16]

Elective Note #923, MISRA 11.3 ADV: safe conversion

embedded.c: 153 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: the boolean
operation results from the expansion of macro
'CONVERT_TO_PAGED'

embedded.c: 154 [16]

Elective Note #960, MISRA 12.7 REQ: the signed quantity is
always positive

embedded.c: 155 [16]

Elective Note #960, MISRA 14.3 REQ: the macro expands to
HLI several statements

embedded.c: 165 [16]

Elective Note #960, MISRA 14.3 REQ: the macro expands to
HLI several statements

embedded.c: 169 [16]

Informational #715: this is the implementation of a standard
library function, so its prototype is left unchanged

embedded.c: 170 [16]

Informational #766: hidef.h contains conditionally compiled
code

embedded.c: 172 [16]

Informational #715: inhibit message on 'a' and 'p' not being
referenced
57MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
locale.c: 17 [16]

Elective Note #960, MISRA 7.1 REQ: safe use of octal escape
sequences

terminal.c: 11 [16]

Elective Note #960, MISRA 4.1 REQ: safe use of octal escape
sequences

terminal.c: 12 [16]

Warning #685: the function may take an integer as argument

terminal.c: 68 [16]

Warning #641: use the integer model for enums

terminal.c: 73 [16]

Elective Note #960, MISRA 19.6 REQ: #undef required to
support non-ANSI pointer qualifiers 'near' and 'far'

non_bank.sgm: 1 [16]

Warning #537: allow multiple use

non_bank.sgm: 24 [16]

Elective Note #961, MISRA 19.13 ADV: '#' is used in HLI as an
operator - see pragma NO_STRING_CONSTR above

signal.c: 17 [16]

Elective Note #960, MISRA 14.3 REQ: macro HALTX expands
to several HLI statements

signal.c: 28 [16]

Elective Note #960, MISRA 19.6 REQ: #undef required to
support non-ANSI pointer qualifiers 'near' and 'far'

default.sgm: 1 [16]

Warning #537: allow multiple use

default.sgm: 24 [16]

Elective Note #923, MISRA 11.3 ADV: safe cast (no truncation)
because the maximum signal number is 23 (SIGALRM)
58 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
signal.c: 38 [16]

Elective Note #923, MISRA 11.3 ADV: safe casts

signal.c: 39 [16]

Elective Note #929, MISRA 11.4 ADV: safe casts

signal.c: 39 [16]

Elective Note #923, MISRA 11.3 ADV: safe casts

signal.c: 45 [16]

Elective Note #929, MISRA 11.4 ADV: safe casts

signal.c: 45 [16]

Elective Note #960, MISRA 14.3 REQ: macro HALTX expands
to several HLI statements

signal.c: 54 [16]

Informational #715: the function contains inline assembly
only

signal.c: 56 [16]

Informational #766: non_bank.sgm is not a regular header file,
it contains a conditionally CODE_SEG pragma

signal.c: 61 [16]

Elective Note #946, MISRA 17.2 REQ, MISRA 17.3 REQ: this
file implements the memory management standard library
functions; the compiler compares/subtracts the addresses
pointed to by the two operands

alloc.c: 71 [16]

Elective Note #960, MISRA 10.1 REQ: the result of sizeof() has
type size_t

alloc.c: 87 [16]

Elective Note #960, MISRA 10.1 REQ: the result of sizeof() has
type size_t

alloc.c: 98 [16]
59MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
Elective Note #960, MISRA 10.1 REQ: the result of sizeof() has
type size_t

alloc.c: 282 [16]

Warning #586: accept 'free'

alloc.c: 305 [16]

Warning #424: deallocation is appropriate

alloc.c: 306 [16]

Elective Note #960, MISRA 16.3 REQ: this is a function pointer
declaration

printf.c: 83 [16]

Elective Note #960, MISRA 7.1 REQ: safe use of octal
constants

printf.c: 103 [16]

Warning #625: (accept unusual type modifier; no precision
loss)

printf.c: 123 [17]

Warning #619: (accept unusual type modifier; no precision
loss)

printf.c: 123 [17]

Warning #619: no precision loss

printf.c: 128 [17]

Informational #702, MISRA 12.7 REQ: allow signed right shift,
its positive anyway

printf.c: 137 [17]

Elective Note #960: allow signed right shift, its positive
anyway

printf.c: 137 [17]

Informational #702, MISRA 12.7 REQ: allow signed right shift,
its positive anyway
60 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
printf.c: 150 [17]

Elective Note #960: allow signed right shift, its positive
anyway

printf.c: 150 [17]

Informational #750: suppress the message on macros 'DIGITS'
and 'BOUND' not being referenced

printf.c: 167 [16]

Elective Note #960, MISRA 10.5 REQ: '~' applied to an operand
of type 'unsigned int'

printf.c: 322 [16]

Elective Note #960, MISRA 10.5 REQ: '~' applied to an operand
of type 'unsigned int'

printf.c: 325 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 330 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 346 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 400 [16]

Informational #826: safe conversion

printf.c: 401 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 405 [16]

Informational #826: safe conversion

printf.c: 406 [16]
61MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 410 [16]

Informational #826: safe conversion

printf.c: 411 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 419 [16]

Elective Note #926, MISRA 11.4 ADV: conversion is necessary
and safe

printf.c: 426 [16]

Informational #801: Use of goto is not deprecated

printf.c: 428 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 447 [16]

Warning #613: Possible use of null pointer 'str' in argument

printf.c: 478 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: the Boolean
value is target-dependent

printf.c: 493 [16]

Informational #774: the Boolean value is target-dependent

printf.c: 493 [16]

Informational #801: Use of goto is not deprecated

printf.c: 505 [16]

Elective Note #960, MISRA 10.5 REQ: '~' applied to an operand
of type 'unsigned int'

printf.c: 516 [16]
62 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 523 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 528 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: target-
dependent Boolean expressions

printf.c: 533 [16]

Informational #774: target-dependent Boolean expressions

printf.c: 533 [16]

Informational #845: target-dependent Boolean expressions

printf.c: 533 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 535 [16]

Elective Note #923, MISRA 11.3 ADV: the cast is necessary,
see comment above

printf.c: 536 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 539 [16]

Informational #801: Use of goto is not deprecated

printf.c: 547 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 553 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option
63MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
printf.c: 558 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 563 [16]

Elective Note #960: the result of sizeof() is size_t, which is
defined to 'unsigned int'

printf.c: 579 [16]

Elective Note #960: the result of sizeof() is size_t, which is
defined to 'unsigned int'

printf.c: 581 [16]

Elective Note #960: the result of sizeof() is size_t, which is
defined to 'unsigned int'

printf.c: 583 [16]

Warning #661: (no out-of-bounds access)

printf.c: 714 [16]

Warning #662: (no out-of-bounds access)

printf.c: 714 [16]

Warning #661: (no out-of-bounds access)

printf.c: 716 [16]

Informational #825: fallthrough is deliberate

printf.c: 764 [17]

Informational #801: Use of goto is not deprecated

printf.c: 766 [17]

Informational #801: Use of goto is not deprecated

printf.c: 770 [17]

Informational #825: fall through is deliberate

printf.c: 775 [17]
64 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 782 [17]

Elective Note #960: the type of the result of sizeof() is size_t,
which is defined to 'unsigned int'

printf.c: 815 [17]

Elective Note #960: the type of the result of sizeof() is size_t,
which is defined to 'unsigned int'

printf.c: 825 [17]

Elective Note #960: the type of the result of sizeof() is size_t,
which is defined to 'unsigned int'

printf.c: 826 [17]

Elective Note #960, MISRA 10.5 REQ: '~' applied to an operand
of type 'unsigned int'

printf.c: 842 [17]

Elective Note #960: the type of the result of sizeof() is size_t,
which is defined to 'unsigned int'

printf.c: 874 [17]

Elective Note #960: the type of the result of sizeof() is size_t,
which is defined to 'unsigned int'

printf.c: 875 [17]

Elective Note #960, MISRA 10.5 REQ: '~' applied to operand of
type 'unsigned int')

printf.c: 885 [17]

Elective Note #960: the type of the result of sizeof() is size_t,
which is defined to 'unsigned int'

printf.c: 888 [17]

Elective Note #960: the type of the result of sizeof() is size_t,
which is defined to 'unsigned int'

printf.c: 898 [17]
65MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
Elective Note #960: the type of the result of sizeof() is size_t,
which is defined to 'unsigned int'

printf.c: 900 [17]

Elective Note #960: the type of the result of sizeof() is size_t,
which is defined to 'unsigned int'

printf.c: 919 [17]

Elective Note #960: the type of the result of sizeof() is size_t,
which is defined to 'unsigned int'

printf.c: 991 [17]

Elective Note #960: the type of the result of sizeof() is size_t,
which is defined to 'unsigned int'

printf.c: 992 [17]

Informational #825: fallthrough is deliberate

printf.c: 1066 [16]

Informational #818, MISRA 16.7 ADV: this is a standard library
function, cannot change its prototype

printf.c: 1073 [16]

Elective Note #960, MISRA 16.3 REQ: this is a function pointer
parameter

printf.c: 1149 [16]

Elective Note #960, MISRA 16.1 REQ: standard library function
implementation

printf.c: 1190 [16]

Warning #643: misleading warning ('&format' does not have a
far pointer type)

printf.c: 1196 [16]

Elective Note #928, MISRA 11.4 ADV: safe conversion to 'char
*'

printf.c: 1197 [16]
66 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
Warning #438: 'va_end' must be invoked before return in a
variadic function

printf.c: 1202 [16]

Informational #766: header file contains conditionally
compiled code

printf.c: 1215 [16]

Warning #625: accept unusual type modifier

scanf.c: 104 [16]

Warning #625: accept unusual type modifier

scanf.c: 154 [16]

Warning #625: accept unusual type modifier

scanf.c: 157 [16]

Warning #625: accept unusual type modifier

scanf.c: 161 [16]

Informational #801: Use of goto is not deprecated

scanf.c: 184 [16]

Elective Note #931: the expression is safe

scanf.c: 191 [16]

Informational #801: Use of goto is not deprecated

scanf.c: 195 [16]

Informational #801: Use of goto is not deprecated

scanf.c: 199 [16]

Informational #801: Use of goto is not deprecated

scanf.c: 228 [16]

Informational #801: Use of goto is not deprecated

scanf.c: 237 [16]
67MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

scanf.c: 262 [16]

Informational #826: safe conversion

scanf.c: 263 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

scanf.c: 268 [16]

Informational #826: safe conversion

scanf.c: 269 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

scanf.c: 273 [16]

Informational #826: safe conversion

scanf.c: 274 [16]

Informational #801: Use of goto is not deprecated

scanf.c: 286 [16]

Informational #801: Use of goto is not deprecated

scanf.c: 294 [16]

Informational #801: Use of goto is not deprecated

scanf.c: 305 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

scanf.c: 338 [16]

Informational #826: safe conversion

scanf.c: 339 [16]

Elective Note #961, MISRA 17.5 ADV: multiple indirection
levels necessary in order to implement support for '%p'
68 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
scanf.c: 343 [16]

Warning #511: pointer size depends on both the target and the
memory model (if truncation occurs, it is expected)

scanf.c: 344 [16]

Elective Note #923: pointer size depends on both the target
and the memory model (if truncation occurs, it is expected)

scanf.c: 344 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

scanf.c: 345 [16]

Informational #826: safe conversion

scanf.c: 346 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

scanf.c: 360 [16]

Informational #826: safe conversion

scanf.c: 361 [16]

Informational #801: Use of goto is not deprecated

scanf.c: 379 [17]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

scanf.c: 398 [17]

Informational #826: safe conversion

scanf.c: 399 [17]

Warning #539: conditionally compiled 'if' clause

scanf.c: 413 [17]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option
69MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
scanf.c: 436 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

scanf.c: 481 [16]

Elective Note #946, MISRA 17.2 REQ, MISRA 17.3 REQ: the two
pointers point into the same array object

scanf.c: 521 [16]

Elective Note #947: the two pointers point into the same array
object

scanf.c: 521 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

scanf.c: 525 [16]

Informational #826: safe conversion

scanf.c: 526 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

scanf.c: 530 [16]

Informational #826: safe conversion

scanf.c: 531 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

scanf.c: 535 [16]

Informational #826: safe conversion

scanf.c: 536 [16]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

scanf.c: 555 [16]

Elective Note #929, MISRA 11.4 ADV: conversion is safe
70 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
scanf.c: 569 [16]

Warning #539: conditionally compiled 'if' clause

scanf.c: 570 [16]

Informational #818, MISRA 16.7 ADV: standard library
function, cannot change its prototype

scanf.c: 592 [16]

Elective Note #960, MISRA 16.1 REQ: standard library function
implementation

scanf.c: 597 [16]

Warning #643: misleading warning ('&format' does not have a
far pointer type)

scanf.c: 601 [16]

Elective Note #928, MISRA 11.4 ADV: safe conversion to 'char
*'

scanf.c: 602 [16]

Warning #438: 'va_end' must be invoked before return in a
variadic function

scanf.c: 606 [16]

Elective Note #961, MISRA 19.13 ADV: '#' used not as the
stringification preprocessing operator, but as an inline
assembly operator

stdlib.c: 25 [16]

Elective Note #960, MISRA 14.3 REQ: the macro expands to
several HLI statements

stdlib.c: 73 [16]

Informational #715: standard library function implementation

stdlib.c: 75 [16]

Elective Note #960, MISRA 14.3 REQ: the macro expands to
several HLI statements
71MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
stdlib.c: 79 [16]

Informational #715: standard library function implementation

stdlib.c: 81 [16]

Elective Note #960, MISRA 14.3 REQ: the macro expands to
several HLI statements

stdlib.c: 85 [16]

Informational #715: standard library function implementation

stdlib.c: 87 [16]

Elective Note #960, MISRA 14.3 REQ: the macro expands to
several HLI statements

stdlib.c: 91 [16]

Informational #715: standard library function implementation

stdlib.c: 93 [16]

Elective Note #960, MISRA 14.3 REQ: the macro expands to
several HLI statements

stdlib.c: 97 [16]

Informational #715, MISRA 16.7 ADV: standard library
function implementation

stdlib.c: 99 [16]

Informational #818: standard library function implementation

stdlib.c: 99 [16]

Elective Note #960, MISRA 14.3 REQ: the macro expands to
several HLI statements

stdlib.c: 103 [16]

Informational #715, MISRA 16.7 ADV: standard library
function implementation

stdlib.c: 105 [16]

Informational #818: standard library function implementation
72 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
stdlib.c: 105 [16]

Elective Note #960, MISRA 14.3 REQ: the macro expands to
several HLI statements

stdlib.c: 109 [16]

Informational #715, MISRA 16.7 ADV: standard library
function implementation

stdlib.c: 111 [16]

Informational #818: standard library function implementation

stdlib.c: 111 [16]

Elective Note #960, MISRA 14.3 REQ: the macro expands to
several HLI statements

stdlib.c: 115 [16]

Informational #715, MISRA 16.7 ADV: standard library
function implementation

stdlib.c: 117 [16]

Informational #818: standard library function implementation

stdlib.c: 117 [16]

Warning #625: accept unusual type modifier

stdlib.c: 145 [16]

Informational #801: Use of goto is not deprecated

stdlib.c: 156 [16]

Informational #801: Use of goto is not deprecated

stdlib.c: 162 [16]

Informational #801: Use of goto is not deprecated

stdlib.c: 171 [16]

Informational #801: Use of goto is not deprecated

stdlib.c: 175 [16]

Informational #801: Use of goto is not deprecated
73MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
stdlib.c: 186 [16]

Informational #801: Use of goto is not deprecated

stdlib.c: 190 [16]

Informational #801: Use of goto is not deprecated

stdlib.c: 207 [16]

Informational #801: Use of goto is not deprecated

stdlib.c: 211 [16]

Elective Note #960, MISRA 14.3 REQ: the macro does not
always expand to a null statement

stdlib.c: 215 [16]

Informational #801: Use of goto is not deprecated

stdlib.c: 219 [16]

Elective Note #926, MISRA 11.4 ADV: safe cast

stdlib.c: 225 [16]

Warning #625: accept unusual type modifier

stdlib.c: 246 [16]

Warning #610: pointer tested against NULL

stdlib.c: 252 [16]

Elective Note #926, MISRA 11.4 ADV: safe cast

stdlib.c: 253 [16]

Warning #610: pointer tested against NULL

stdlib.c: 263 [16]

Elective Note #926, MISRA 11.4 ADV: safe cast

stdlib.c: 264 [16]

Elective Note #946, MISRA 17.2 REQ, MISRA 17.3 REQ: the two
pointers point into the same array object

stdlib.c: 272 [16]
74 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
Elective Note #947: the two pointers point into the same array
object

stdlib.c: 272 [16]

Warning #610: pointer tested against NULL

stdlib.c: 278 [16]

Elective Note #926, MISRA 11.4 ADV: safe cast

stdlib.c: 279 [16]

Warning #625: accept unusual type modifier

stdlib.c: 302 [17]

Informational #801: Use of goto is not deprecated

stdlib.c: 319 [17]

Informational #801: Use of goto is not deprecated

stdlib.c: 326 [17]

Elective Note #960, MISRA 14.3 REQ: the macro does not
always expand to a null statement

stdlib.c: 330 [17]

Elective Note #960, MISRA 14.3 REQ: the macro does not
always expand to a null statement

stdlib.c: 332 [17]

Informational #801: Use of goto is not deprecated

stdlib.c: 338 [17]

Informational #801: Use of goto is not deprecated

stdlib.c: 341 [17]

Informational #801: Use of goto is not deprecated

stdlib.c: 345 [17]

Informational #801: Use of goto is not deprecated

stdlib.c: 347 [17]
75MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
Informational #801: Use of goto is not deprecated

stdlib.c: 350 [17]

Informational #801: Use of goto is not deprecated

stdlib.c: 365 [17]

Informational #801: Use of goto is not deprecated

stdlib.c: 389 [17]

Elective Note #960, MISRA 14.3 REQ: the macro does not
always expand to a null statement

stdlib.c: 395 [17]

Elective Note #960, MISRA 14.3 REQ: the macro does not
always expand to a null statement

stdlib.c: 403 [17]

Informational #801: Use of goto is not deprecated

stdlib.c: 433 [17]

Elective Note #960, MISRA 14.3 REQ: the macro does not
always expand to a null statement

stdlib.c: 440 [17]

Elective Note #960, MISRA 14.3 REQ: the macro does not
always expand to a null statement

stdlib.c: 442 [17]

Elective Note #960, MISRA 14.3 REQ: the macro does not
always expand to a null statement

stdlib.c: 449 [17]

Elective Note #960, MISRA 14.3 REQ: the macro does not
always expand to a null statement

stdlib.c: 451 [17]

Elective Note #960, MISRA 14.3 REQ: the macro does not
always expand to a null statement

stdlib.c: 458 [17]
76 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
Elective Note #960, MISRA 14.3 REQ: the macro does not
always expand to a null statement

stdlib.c: 460 [17]

Elective Note #926, MISRA 11.4 ADV: safe cast

stdlib.c: 477 [17]

Warning #625: accept unusual type modifier

stdlib.c: 539 [16]

Elective Note #960, MISRA 16.3 REQ: function pointer
parameter

stdlib.c: 610 [16]

Warning #625: accept unusual type modifier

stdlib.c: 614 [16]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

stdlib.c: 645 [16]

Elective Note #927, MISRA 11.4 ADV: deliberate cast from
'char*' to a word pointer type

stdlib.c: 648 [16]

Informational #826: deliberate cast from 'char *' to a word
pointer type

stdlib.c: 649 [16]

Elective Note #960, MISRA 16.3 REQ: function pointer
parameter

stdlib.c: 667 [16]

Warning #625: accept unusual type modifier

stdlib.c: 670 [16]

Elective Note #931: safe expression

stdlib.c: 678 [16]
77MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
Elective Note #960, MISRA 12.4 REQ: safe expression

stdlib.c: 680 [16]

Informational #766: header files 'math.h' and 'float.h' contain
conditionally compiled code

stdlib.c: 778 [16]

Elective Note #926, MISRA 11.4 ADV: deliberate cast

string.c: 17 [16]

Informational #715: implementation of a standard library
function

string.c: 19 [16]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 22 [16]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 34 [16]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 35 [16]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 58 [16]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 59 [16]
78 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 76 [16]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 77 [16]

Elective Note #946, MISRA 17.2 REQ, MISRA 17.3 REQ:
memmove implementation : need to establish if the two
memory areas overlap

string.c: 79 [16]

Elective Note #946, MISRA 17.2 REQ, MISRA 17.3 REQ:
memmove implementation : need to establish if the two
memory areas overlap

string.c: 83 [16]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 95 [16]

Elective Note #926, MISRA 11.4 ADV: safe conversion to 'char
*'

string.c: 118 [16]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 119 [16]

Elective Note #946, MISRA 17.2 REQ, MISRA 17.3 REQ: the two
pointers point into the same string

string.c: 124 [16]

Elective Note #947, MISRA 17.2 REQ: the two pointers point
into the same string
79MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
string.c: 125 [16]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 131 [16]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 140 [16]

Informational #720, MISRA 13.1 REQ, MISRA 13.2 ADV:
assignment deliberately used in a Boolean context

string.c: 143 [16]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 148 [16]

Informational #820, MISRA 13.1 REQ: assignment deliberately
used in a Boolean context

string.c: 153 [16]

Informational #715: this function contains HLI only

string.c: 172 [16]

Informational #715: this function contains HLI only

string.c: 173 [16]

Informational #818, MISRA 16.7 ADV: this function contains
HLI only

string.c: 174 [16]

Warning #533, MISRA 16.8 REQ: this function contains HLI
only

string.c: 187 [16]
80 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 245 [16]

Informational #715: this function contains HLI only

string.c: 273 [16]

Informational #715: this function contains HLI only

string.c: 274 [16]

Warning #533, MISRA 16.8 REQ: this function contains HLI
only

string.c: 299 [16]

Elective Note #926, MISRA 11.4 ADV: safe conversion, from
'const char *' to 'char *'

string.c: 373 [16]

Elective Note #926, MISRA 11.4 ADV: safe conversion, from
'const char *' to 'char *'

string.c: 378 [16]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 384 [16]

Elective Note #926, MISRA 11.4 ADV: safe conversion, from
'const char *' to 'char *'

string.c: 393 [16]

Elective Note #926, MISRA 11.4 ADV: safe conversion, from
'const char *' to 'char *'

string.c: 395 [16]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types
81MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
string.c: 412 [16]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 429 [16]

Elective Note #926, MISRA 11.4 ADV: safe conversion, from
'const char *' to 'char *'

string.c: 435 [16]

Elective Note #926, MISRA 11.4 ADV: safe conversion, from
'const char *' to 'char *'

string.c: 449 [16]

Elective Note #926, MISRA 11.4 ADV: safe conversion, from
'const char *' to 'char *'

string.c: 465 [16]

Warning #625: options ConstQualiNear and -
NonConstQualiNear force qualifier 'far' on library pointer
types

string.c: 475 [16]

Elective Note #926, MISRA 11.4 ADV: safe conversion, from
'const char *' to 'char *'

string.c: 494 [16]

Elective Note #926, MISRA 11.4 ADV: safe conversion, from
'const char *' to 'char *'

string.c: 503 [16]

Informational #708: initialization applied to the first named
member of the union

math.c: 73 [17]

Informational #708: initialization applied to the first named
member of the union

math.c: 77 [17]
82 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
Informational #777: the purpose of the test is to compare the
bit patterns for an exact match

math.c: 185 [17]

Elective Note #934: no dynamic linking, an absolute address
is obtained

math.c: 494 [17]

Elective Note #960, MISRA 12.4 REQ: no impact if 'fabs' is not
called during expression evaluation

math.c: 495 [17]

Informational #750: suppress the messages on several local
macros not being referenced

math.c: 804 [17]

Informational #777: the purpose of the test is to compare the
bit patterns for an exact match

math.c: 1205 [17]

Informational #777: the purpose of the test is to compare the
bit patterns for an exact match

math.c: 1215 [17]

Informational #766: hidef.h contains conditionally compiled
code

math.c: 1234 [17]

Informational #766: hidef.h contains conditionally compiled
code

mathf.c: 1145 [17]

Elective Note #957, MISRA 8.1 REQ: these are runtime support
functions and, as such, are not meant to be called in user
code; they are only invoked via jumps, in compiler-generated
code

rtsxgate.cxgate: 12 [17]

Informational #753: local enums used in HLI
83MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
rtsxgate.cxgate: 13 [17]

Informational #749: local enumeration constants used in HLI

rtsxgate.cxgate: 14 [17]

Informational #715: this function contains HLI only

rtsxgate.cxgate: 1226 [17]

Informational #715: this function contains HLI only

rtsxgate.cxgate: 1227 [17]

Informational #818, MISRA 16.7 ADV: this function contains
HLI only

rtsxgate.cxgate: 1228 [17]

Warning #533, MISRA 16.8 REQ: this function contains HLI
only

rtsxgate.cxgate: 1274 [17]

Informational #715: this function contains HLI only

rtsxgate.cxgate: 1283 [17]

Informational #715: this function contains HLI only

rtsxgate.cxgate: 1284 [17]

Warning #533, MISRA 16.8 REQ: this function contains HLI
only

rtsxgate.cxgate: 1334 [17]

Informational #715: this function contains HLI only

rtsxgate.cxgate: 1342 [17]

Informational #715: this function contains HLI only

rtsxgate.cxgate: 1343 [17]

Informational #818, MISRA 16.7 ADV: this function contains
HLI only

rtsxgate.cxgate: 1344 [17]
84 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
Warning #533, MISRA 16.8 REQ: this function contains HLI
only

rtsxgate.cxgate: 1391 [17]

Informational #766: hidef.h contains CODE_SEG, CONST_SEG
and STRING_SEG pragmas for XGATE

rtsxgate.cxgate: 1397 [17]

Warning #506, MISRA 13.7 REQ, MISRA 14.1 REQ: default data
type formats can be changed with the -T option

printf.c: 1062 [18]

Warning #522, MISRA 14.2 REQ: the argument is dropped

printf.c: 1063 [18]
85MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

XGATE
Per-project Exceptions
86 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

A
References

This appendix contains the list of targets for HCS12 and XGATE:

1. Valid on all targets

2. Valid on all targets except: config-c_mb_startup.lnt, config-
c_ml_startup.lnt, config-c_ms_startup.lnt, config-
hcs12x_c_mb_startup.lnt,
confighcs12x_c_mb_startup_no_jsr2bsr.lnt, config-
hcs12x_c_ml_startup.lnt, config-
hcs12x_c_ml_startup_const_near.lnt, config-
hcs12x_c_ml_startup_no_jsr2bsr.lnt,
confighcs12x_c_ml_startup_non_const_near.lnt, config-
hcs12x_c_ms_startup.lnt, config-
hcs12x_c_ms_startup_no_jsr2bsr.lnt

3. Valid on the following targets: config-c_mb_ieee_3232.lnt, config-
c_ml_ieee_3232.lnt, config-c_ms_ieee_3232.lnt, config-
hcs12x_c_mb_ieee_3232.lnt,
confighcs12x_c_mb_ieee_3232_no_jsr2bsr.lnt, config-
hcs12x_c_ml_ieee_3232.lnt, config-
hcs12x_c_ml_ieee_3232_const_near.lnt, config-
hcs12x_c_ml_ieee_3232_no_jsr2bsr.lnt,config-
hcs12x_c_ml_ieee_3232_non_const_near.lnt, config-
hcs12x_c_ms_ieee_3232.lnt, config-
hcs12x_c_ms_ieee_3232_no_jsr2bsr.lnt

4. Valid on the following targets: config-c_mb_ieee_3232.lnt, config-
c_mb_ieee_3264.lnt, config-c_ml_ieee_3232.lnt, config-
c_ml_ieee_3264.lnt, configc_ms_ieee_3232.lnt, config-
c_ms_ieee_3264.lnt, config-hcs12x_c_mb_ieee_3232.lnt,
config-hcs12x_c_mb_ieee_3232_no_jsr2bsr.lnt, config-
hcs12x_c_mb_ieee_3264.lnt,config-
hcs12x_c_mb_ieee_3264_no_jsr2bsr.lnt, config-
hcs12x_c_ml_ieee_3232.lnt, config-
hcs12x_c_ml_ieee_3232_const_near.lnt,
confighcs12x_c_ml_ieee_3232_no_jsr2bsr.lnt, config-
hcs12x_c_ml_ieee_3232_non_const_near.lnt, config-
hcs12x_c_ml_ieee_3264.lnt,
confighcs12x_c_ml_ieee_3264_const_near.lnt, config-
hcs12x_c_ml_ieee_3264_no_jsr2bsr.lnt, config-
87MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

References
hcs12x_c_ml_ieee_3264_non_const_near.lnt,
confighcs12x_c_ms_ieee_3232.lnt, config-
hcs12x_c_ms_ieee_3232_no_jsr2bsr.lnt, config-
hcs12x_c_ms_ieee_3264.lnt, config-
hcs12x_c_ms_ieee_3264_no_jsr2bsr.lnt

5. Valid on all targets except: config-c_mb_startup.lnt, config-
c_ml_startup.lnt, config-c_ms_startup.lnt, config-
hcs12x_c_mb_startup.lnt,
confighcs12x_c_mb_startup_no_jsr2bsr.lnt, config-
hcs12x_c_ml_ieee_3232_const_near.lnt, config-
hcs12x_c_ml_ieee_3232_non_const_near.lnt,
confighcs12x_c_ml_ieee_3264_const_near.lnt, config-
hcs12x_c_ml_ieee_3264_non_const_near.lnt, config-
hcs12x_c_ml_no_float_const_near.lnt,
confighcs12x_c_ml_no_float_non_const_near.lnt, config-
hcs12x_c_ml_startup.lnt, config-
hcs12x_c_ml_startup_const_near.lnt, config-
hcs12x_c_ml_startup_no_jsr2bsr.lnt,config-
hcs12x_c_ml_startup_non_const_near.lnt, config-
hcs12x_c_ms_startup.lnt, config-
hcs12x_c_ms_startup_no_jsr2bsr.lnt

6. Valid on the following targets: config-c_mb_ieee_3232.lnt, config-
c_mb_no_float.lnt, config-c_ml_ieee_3232.lnt, config-
c_ml_no_float.lnt, config-c_ms_ieee_3232.lnt,config-
c_ms_no_float.lnt, config-hcs12x_c_mb_ieee_3232.lnt,
config-hcs12x_c_mb_ieee_3232_no_jsr2bsr.lnt, config-
hcs12x_c_mb_no_float.lnt,
confighcs12x_c_mb_no_float_no_jsr2bsr.lnt, config-
hcs12x_c_ml_ieee_3232.lnt, config-
hcs12x_c_ml_ieee_3232_const_near.lnt, config-
hcs12x_c_ml_ieee_3232_no_jsr2bsr.lnt, config-
hcs12x_c_ml_ieee_3232_non_const_near.lnt, config-
hcs12x_c_ml_no_float.lnt, config-
hcs12x_c_ml_no_float_const_near.lnt,
confighcs12x_c_ml_no_float_no_jsr2bsr.lnt, config-
hcs12x_c_ml_no_float_non_const_near.lnt, config-
hcs12x_c_ms_ieee_3232.lnt, config-
hcs12x_c_ms_ieee_3232_no_jsr2bsr.lnt,config-
hcs12x_c_ms_no_float.lnt, config-
hcs12x_c_ms_no_float_no_jsr2bsr.lnt

7. Valid on the following targets: config-c_mb_ieee_3232.lnt, config-
c_ms_ieee_3232.lnt, config-hcs12x_c_mb_ieee_3232.lnt,
confighcs12x_c_mb_ieee_3232_no_jsr2bsr.lnt, config-
88 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

References
hcs12x_c_ms_ieee_3232.lnt, config-
hcs12x_c_ms_ieee_3232_no_jsr2bsr.lnt

8. Valid on the following targets: config-c_mb_ieee_3264.lnt, config-
c_ml_ieee_3264.lnt, config-c_ms_ieee_3264.lnt, config-
hcs12x_c_mb_ieee_3264.lnt,
confighcs12x_c_mb_ieee_3264_no_jsr2bsr.lnt, config-
hcs12x_c_ml_ieee_3264.lnt, config-
hcs12x_c_ml_ieee_3264_const_near.lnt, config-
hcs12x_c_ml_ieee_3264_no_jsr2bsr.lnt, config-
hcs12x_c_ml_ieee_3264_non_const_near.lnt, config-
hcs12x_c_ms_ieee_3264.lnt, config-
hcs12x_c_ms_ieee_3264_no_jsr2bsr.lnt

9. Valid on the following targets: config-c_mb_startup.lnt, config-
c_ml_startup.lnt, config-c_ms_startup.lnt, config-
hcs12x_c_mb_startup.lnt,
confighcs12x_c_mb_startup_no_jsr2bsr.lnt, config-
hcs12x_c_ml_startup.lnt, config-
hcs12x_c_ml_startup_const_near.lnt, config-
hcs12x_c_ml_startup_no_jsr2bsr.lnt,
confighcs12x_c_ml_startup_non_const_near.lnt, config-
hcs12x_c_ms_startup.lnt, config-
hcs12x_c_ms_startup_no_jsr2bsr.lnt

10. Valid on the following targets: config-c_mb_startup.lnt, config-
c_ms_startup.lnt, config-hcs12x_c_mb_startup.lnt, config-
hcs12x_c_mb_startup_no_jsr2bsr.lnt, config-
hcs12x_c_ml_startup.lnt, config-
hcs12x_c_ml_startup_const_near.lnt, config-
hcs12x_c_ml_startup_no_jsr2bsr.lnt, config-
hcs12x_c_ml_startup_non_const_near.lnt,config-
hcs12x_c_ms_startup.lnt, config-
hcs12x_c_ms_startup_no_jsr2bsr.lnt

11. Valid on the following targets: config-c_mb_startup.lnt, config-
c_ml_startup.lnt, config-c_ms_startup.lnt, config-
hcs12x_c_mb_startup.lnt,
confighcs12x_c_mb_startup_no_jsr2bsr.lnt, config-
hcs12x_c_ms_startup.lnt, config-
hcs12x_c_ms_startup_no_jsr2bsr.lnt

12. Valid on the following targets: config-c_ml_ieee_3232.lnt, config-
c_ml_ieee_3264.lnt, config-c_ml_no_float.lnt, config-
hcs12x_c_ml_ieee_3232.lnt,
confighcs12x_c_ml_ieee_3232_const_near.lnt, config-
hcs12x_c_ml_ieee_3232_no_jsr2bsr.lnt, config-
89MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

References
hcs12x_c_ml_ieee_3232_non_const_near.lnt,
confighcs12x_c_ml_ieee_3264.lnt, config-
hcs12x_c_ml_ieee_3264_const_near.lnt, config-
hcs12x_c_ml_ieee_3264_no_jsr2bsr.lnt,
confighcs12x_c_ml_ieee_3264_non_const_near.lnt, config-
hcs12x_c_ml_no_float.lnt, config-
hcs12x_c_ml_no_float_const_near.lnt, config-
hcs12x_c_ml_no_float_no_jsr2bsr.lnt,config-
hcs12x_c_ml_no_float_non_const_near.lnt

13. Valid on the following targets: config-c_ml_ieee_3232.lnt, config-
hcs12x_c_ml_ieee_3232.lnt, config-
hcs12x_c_ml_ieee_3232_const_near.lnt,
confighcs12x_c_ml_ieee_3232_no_jsr2bsr.lnt, config-
hcs12x_c_ml_ieee_3232_non_const_near.lnt

14. Valid on the following targets: config-c_ml_startup.lnt

15. Valid on the following targets: config-hcs12x_c_ml_startup.lnt,
config-hcs12x_c_ml_startup_const_near.lnt, config-
hcs12x_c_ml_startup_no_jsr2bsr.lnt,
confighcs12x_c_ml_startup_non_const_near.lnt

16. Valid on all targets

17. Valid on the following targets: config-c_ieee_3232.lnt

18. Valid on the following targets: config-c_no_float.lnt
90 MISRA-C:2004 Compliance Exceptions for S12(X) and XGATE Libraries

	Introduction
	HCS12
	Inline Assembly
	General Exceptions
	Per-project Exceptions

	XGATE
	Inline Assembly
	General Exceptions
	Per-project Exceptions

	References

