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1. Introduction 

CodeWarrior™ e200 build tools (b250+) released in 

CodeWarrior for MCU v 10.5 have a new fill pattern 

feature implemented. It allows filling of the unused 

memory and padding gaps with a defined byte pattern. 

 

The application note describes how to use this feature. 

Additionally it includes some other tips related to filling 

the gaps of unused memory. 

 

 The PowerPC™ Embedded Application Binary 

Interface (EABI) requires data and code alignments. 

The alignment improves the overall performance but it 

causes the presence of the "gaps" of unused memory. 

There is now a way to control the content of padding 

patterns other then default 0x00. It is also possible to fill 

unused memory sections with a defined value. 

  

The padding bytes within C structures/unions can be 

now changed from the default 0x00 to 0xFF using the 

new pragma: fill_alignment_data_with_FF. 
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2. Structure/union alignment padding  

Each structure member has its own native alignment based on the data types used. This is described in 

“PowerPC™ e500 Application Binary Interface User’s Guide”. 

A structure as a whole is aligned based on the alignment requirements of the structure’s largest member. 

Let’s use the structure defined in Listing 1 as the example to illustrate the alignment gaps. 

Listing 1. Example structure 

typedef struct 

{ 

  char      A;     // 1B byte 

  long long B;     // 8B double word  

  char      C;     // 1B byte 

  int       D;     // 4B word  

  char      E;     // 1B byte 

  short     F;     // 2B half word          

}tTestStruct; 

 

The memory view Figure 1 shows the presence of padding alignment bytes due to the native alignment. 

The size of this aligned structure is 32 bytes. 

Figure 1. Default alignment example structure memory allocation 
 

0         7 

A 00 00 00 00 00 00 00 

B B B B B B B B 

C 00 00 00 D D D D 

E 00 F F 00 00 00 00 

 

The padding bytes are zeros by default. It can be changed to 0xFF by adding the pragma below into the 

source files or the prefix header file: 

#pragma fill_alignment_data_with_FF on 
  

or pass it via the command line option: 

-pragma "fill_alignment_data_with_FF on" 

  

The Figure 2 shows the memory view of the example structure that includes the 0xFF padding pattern. 

Figure 2. Structure memory allocation with 0xFF padding pattern 
 

0         7 

A FF FF FF FF FF FF FF 

B B B B B B B B 

C FF FF FF D D D D 
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E FF F F FF FF FF FF 

 

In order to completely avoid padding between struct members #pragma pack (1) can be used. This 

pragma can align data to use less storage even if the alignment might affect program performance or 

does not conform to the target platform’s application binary interface. The size of this structure is 17 in 

contrast to the default aligned structure (see the Figure 3). 

Figure 3. Structure memory allocation with #pragma pack (1) enabled 
 

0         7 

A B B B B B B B 

B C D D D D E F 

F        

3. Alignment padding within a linker section or across 
multiple sections 

Similar to C structs other data objects have their own native alignment requirements. C-function code is 

aligned with alignment that can be either configured globally (directly in IDE – see Figure 4 -func_align 

compiler command line option) or locally for specific functions only using #pragma function_align. 

 

Object alignment also causes gaps of unused memory between objects. 

The new linker feature can fill such gaps with a defined short word pattern. The short word pattern is a 

two-byte decimal or hexadecimal pattern. E.g. to fill the memory area with 0xFF the pattern is 0xFFFF. 

 

The linker syntax for filling alignment pattern within a single linker section is described in the Listing 2 

below. 

Listing 2. Single linker section alignment pattern fill (syntax + example) 

section-spec = 

output-section-name ":"["(" input-type ")"] [address-modifiers]  

"{" 

[( input-section-spec )*]  

"}" [= fill-shortnumber] [(">") memory-area-symbol ]  

  

 

The example: 

 

.rodata (CONST) : { 

  *(.rdata) 

  *(.rodata) 

 }  = 0xBEEF > internal_flash 
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Figure 4. The function alignment global IDE settings in CW for MCUs v10.x (Eclipse) 
 

 
 

The linker syntax for filling alignment pattern within the objects of the same section as well as across 

multiple linker sections is described below in Listing 3. 

Listing 3. Multiple linker section alignment pattern fill (syntax + example) 

"GROUP" address-modifiers ":"  

"{"  

  (section-spec )*  

"}" [= fill-shortnumber ] [ ">" memory-area-symbol ] 

  

The example: 

  

GROUP  : { 

  .intc_sw_isr_vector_table_p0 ALIGN (2048) : {} 

  .text : {}  

  .text_vle (VLECODE) : { 

     *(.text) 

     *(.text_vle) 

  }      

  .rodata (CONST) : { 

     *(.rdata) 

     *(.rodata) 
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  }   

  .ctors : {} 

  .dtors : {} 

   extab : {} 

   extabindex : {}        

}  = 0xBEEF > internal_flash 

4. Filling the unused memory space of a linker section 

The linker feature above can also be used to fill the unused memory with a predefined short word 

pattern. It requires some additional linker command file (.lcf) modifications. The linker command file 

should create a gap the size of the remaining unused memory space. See the fragment of .lcf file 

example in Listing 4. 

Listing 4. Example .lcf file that fills the unused memory of with the pattern 0xABCD 

MEMORY 

{ 

...  

   my_memory:       org = 0x00001000,   len = 0x00001000   // custom memory space 

   internal_flash:  org = 0x00002000,   len = 0x0007E000 

 ... 

} 

...  

SECTIONS 

{ 

...   

   // LOAD directive to avoid ROM Image to be generated 

  .my_memory LOAD (ADDR(my_memory)) :   

  { 

... 

     // create a memory gap of remaining unused memory area  

      . =  SIZEOF(my_memory) + ADDR(my_memory); 

   } = 0xABCD >  my_memory  

 

The unused space is calculated from the memory area start address “ADDR(my_memory)” and its size 

“SIZEOF(my_memory)”. The end memory address is calculated and assigned to the current position 

pointer (“.” character). This causes the gap to be created. 

 

NOTE:    This approach does not work for a main flash section – the section where the ROM 

image is placed. The main flash section (usually Internal_Flash) requires different 

calculation of unused memory (see Listing 6) 

 

The unused memory byte pattern should appear in the generated binary .bin and .mot (s-record) files. 

See the fragment of generated s-record which matches with the example above in Listing 5. 

Listing 5. Example .lcf file that fills the unused memory of with the pattern 0xABCD 

... 

  S31900001000 ABCD ABCDABCDABCDABCDABCDABCDABCDABCDABCD 73 
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  S31900001014 ABCD ABCDABCDABCDABCDABCDABCDABCDABCDABCD 5F 

... 

5. Filling of unused Flash memory space with a pattern 

If the entire unused Flash space needs to be filled by a predefined pattern then: 

• Make sure there is no gap in MEMORY Flash areas in the .lcf file. Such a gap cannot be filled. 

• Define a separate unused memory section within each memory SECTION definition in the .lcf 

file except main memory block (usually named “Internal_Flash”). 

• There should be one extra SECTION that includes all the remaining unused flash space created 

for the main memory block. 

• Add the linker switch “-gap_fill” which is used to fill the alignment gaps and the gaps created by 

LOAD address modifiers (see Figure 5). 

Figure 5. CodeWarrior for MCU v10.x adding “-gap_fill” linker switch 

 
 

The extra section requires the address correction calculation in order to reflect ROM image size and the 

alignments. 

 

The calculation of ROM image size requires two addresses: 

• ROM image start address (ROM_IMG_START symbol in example below) 

• ROM image end address (ROM_IMG_END) 

 

ROM image data size is calculated as: 
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    ROM_DATASIZE = ROM_IMG_END - ROM_IMG_START;   

    

NOTE:    The fill pattern feature does not impact the .elf file. If a default debug session starts the 

fill pattern areas are not programmed. In order to program the image including the 

fill pattern blocks into Flash the .mot (S-record) file or .bin needs to be programmed 

into flash e.g. using the Flash Programmer/Target Task tool. 

 

Listing 6. Example of .lcf file that fills the entire unused Flash memory with the predefined patterns  

 

MEMORY 

{ 

    /*FLASH: 0x00000000 - 0x00003FFFF*/ 

 

    /* Fixed location required for RCHW and program entry point. */ 

    resetvector:           org = 0x00000000,   len = 0x00000008 

 

    /* Contains initializations from __ppc_eabi_init.c, 

     * MPC56xx_HWInit.c, MPC56xx_init_*.c and the entry point (__startup). 

     */ 

    init:                  org = 0x00000008,   len = 0x00000FF8 

 

    /* Contains interrupt branch tables for both core and INTC module 

     * and the ISR handlers code. Note, since the vector base address field 

     * of IVPR is defined within the range [0:19] the table must be loaded 

     * at an address aligned to 4K boundary. 

     */ 

    exception_handlers:    org = 0x00001000,   len = 0x00001000 

 

    /* Space allocated for user code and device initialization. 

     * ROM Image address should be set with the start address of this 

     * segment in order to instruct the runtime to initialize the 

     * static variables. All the section above are ignored for this action.  

     * Please see -romaddr linker option. 

     */ 

    internal_flash:        org = 0x00002000,   len = 0x0003E000 

 

    /* Space allocated for both code and variables in order to use the memory 

     * more efficiently.*/ 

     * SRAM: 0x40000000 - 0x40004FFF  

     */ 

    internal_ram:       org = 0x40000000,   len = 0x00003000 /* 12K */ 

    heap:               org = 0x40003000,   len = 0x00001000 /* 4K Heap */ 

    stack:              org = 0x40004000,   len = 0x00001000 /* 4K Stack */  

} 

 

/* This will ensure the rchw and reset vector are not stripped by the linker */ 

FORCEACTIVE { "bam_rchw" "bam_resetvector" } 

 

SECTIONS 
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{ 

    .__bam_bootarea LOAD (ADDR(resetvector)): {} > resetvector 

     

    GROUP : { 

      /* Section used for initialization code: __ppc_eabi_init.c, 

       * MPC56xx_HWInit.c, MPC56xx_init_*.c and the entry point (__startup). 

       */ 

      .init LOAD(ADDR(init)) : {} 

      .init_vle (VLECODE) LOAD(_e_init) : { 

        *(.init) 

        *(.init_vle) 

      } 

      /* create a gap of unused memory area "init" which is filled by the pattern */ 

      .unused_init LOAD(_e_init_vle): {          

        . = ADDR(init) + SIZEOF(init);       

      } 

    } = 0xAAAA > init 

      

    GROUP : { 

      /* Fixed length of 0x800 is required for core interrupt branch table. 

       * Core IVOR branch table entries must be aligned to 16 bytes. 

       */ 

      .ivor_branch_table (VLECODE) LOAD(ADDR(exception_handlers)) ALIGN (0x10) : {} 

     

      /* Note if intc_hw_branch_table is used it MUST be loaded at the IVPR + 2KB (0x800). 

       * For this device the intc_hw_branch_table should contain entries aligned to 4  

       * bytes. 

       */ 

      .intc_hw_branch_table (VLECODE) LOAD(_e_ivor_branch_table) ALIGN(0x800) : {} 

     

      /* ISR handlers code.*/ 

      .__exception_handlers  (VLECODE) LOAD(_e_intc_hw_branch_table) : {} 

     

      /* create a gap of unused memory area "exception_handlers" which is filled by the 

       * pattern  

       */     

      .unused_exception LOAD(_e___exception_handlers) : { 

        . = ADDR(exception_handlers) + SIZEOF(exception_handlers);       

      }     

    }  = 0xBBBB> exception_handlers 

 

    /* User application code and data. */ 

    GROUP : { 

      .text : {}  

      .text_vle (VLECODE) ALIGN(0x08): { 

         *(.text) 

         *(.text_vle) 

       } 

       .rodata (CONST) : { 

         *(.rdata) 

         *(.rodata) 

       } 
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       .ctors : {} 

       .dtors : {} 

       extab : {} 

       extabindex : {} 

       /* save the start address of ROM data image */ 

       ROM_IMG_START=.;  

    } = 0xCCCC > internal_flash 

 

    GROUP : { 

       /* This section is used in INTC SW mode to store the interrupt handlers array. 

        * It should be aligned to 2K since VTBA = INTC_IACKR[0:20]. 

        */ 

       .__uninitialized_intc_handlertable ALIGN(0x800) : {} 

       .data   : {} 

       .sdata  : {} 

       .sbss   : {} 

       .sdata2 : {} 

       .sbss2  : {} 

       .bss    : {} 

       /* save the last ROM data image address */ 

       ROM_IMG_END = ROMADDR(.bss);       

     } = 0xCCCC > internal_ram   //This fills the ROM image gaps 

 

 

    /* calculation of ROM data image size */ 

    ROM_DATASIZE = ROM_IMG_END - ROM_IMG_START ;   

     

    .unused_int_flash : 

      { 

       /* gap size needs to be adjusted to reflect ROM data image size */ 

       . = ADDR(internal_flash) + SIZEOF(internal_flash) - ROM_DATASIZE; 

     }= 0xEEEE > internal_flash 

} 
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