
CodeWarrior Development Studio for
Microcontrollers V10.x Targeting

Manual

Document Number: CWMCUDBGUG
Rev 10.6, 03/2014



CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

2 Freescale Semiconductor, Inc.



Contents

Section number Title Page

Chapter 1
Introduction

1.1 Release Notes..................................................................................................................................................................35

1.2 About this Manual...........................................................................................................................................................35

1.3 Accompanying Documentation......................................................................................................................................37

Chapter 2
Working with Projects

2.1 Types of Projects.............................................................................................................................................................39

2.1.1 Bareboard Projects...........................................................................................................................................40

2.1.2 Linux Projects..................................................................................................................................................40

2.2 New Bareboard Project Wizard......................................................................................................................................40

2.2.1 Create an MCU Bareboard Project Page..........................................................................................................41

2.2.2 Devices Page....................................................................................................................................................42

2.2.3 Connections Page ............................................................................................................................................43

2.2.3.1 56800/E DSC derivatives...............................................................................................................44

2.2.3.2 S08/ RS08 derivatives....................................................................................................................46

2.2.3.3 ColdFire derivatives.......................................................................................................................48

2.2.3.4 Kinetis derivatives..........................................................................................................................49

2.2.3.5 Qorivva derivatives........................................................................................................................50

2.2.3.6 S12Z derivatives............................................................................................................................51

2.2.4 LSM/DPM Configuration Page.......................................................................................................................52

2.2.5 Power Architecture Core Configuration Page.................................................................................................54

2.2.6 Languages Page................................................................................................................................................55

2.2.6.1 S08/RS08 derivatives.....................................................................................................................55

2.2.7 Languages and Build Tools Options Page ......................................................................................................56

2.2.7.1 56800/E (DSC) derivatives............................................................................................................56

2.2.7.2 Kinetis derivatives..........................................................................................................................58

2.2.7.3 Qorivva derivatives........................................................................................................................59

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 3



Section number Title Page

2.2.7.4 S12Z derivatives............................................................................................................................61

2.2.8 ColdFire Build Options Page ..........................................................................................................................63

2.2.8.1 ColdFire V1/ColdFire+ V1/Sensors Derivatives...........................................................................64

2.2.8.2 ColdFire V2-4e/Vx Derivatives.....................................................................................................66

2.2.9 Rapid Application Development Page.............................................................................................................67

2.2.10 C/C++ Options Page .......................................................................................................................................69

2.3 New Linux/uClinux Application Project Wizard...........................................................................................................71

2.3.1 Create a Linux/uClinux Application Project Page...........................................................................................72

2.3.2 Device used for Linux Application Debug page..............................................................................................73

2.3.3 Project Language and Output Page..................................................................................................................74

2.3.4 Connections Page.............................................................................................................................................75

2.3.5 Application Debug Options Page.....................................................................................................................76

2.4 Creating Projects.............................................................................................................................................................77

2.4.1 Launching Workbench.....................................................................................................................................78

2.4.2 Creating Bareboard Projects............................................................................................................................79

2.4.2.1 Creating Target Board Projects for S08/RS08...............................................................................79

2.4.2.2 Creating Target Board Projects for ColdFire V1/ColdFire+ V1/Sensors......................................86

2.4.2.3 Creating Target Board Projects for ColdFire V2/V3/V4/V4e/Vx.................................................92

2.4.2.4 Creating Target Board Project for Kinetis.....................................................................................97

2.4.2.5 Creating Target Board Project for Qorivva....................................................................................103

2.4.2.6 Creating Target Board Projects for 56800/E (DSC)......................................................................108

2.4.2.7 Creating Target Board Projects for S12Z......................................................................................114

2.4.3 Creating Linux/uClinux Application Project...................................................................................................120

2.5 Building Projects.............................................................................................................................................................126

2.6 Debugging Projects.........................................................................................................................................................127

2.7 Deleting Projects.............................................................................................................................................................129

2.8 Porting Classic DSC Project to Eclipse Project..............................................................................................................130

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

4 Freescale Semiconductor, Inc.



Section number Title Page

Chapter 3
Build Properties for Bareboard Projects

3.1 Changing Build Properties..............................................................................................................................................140

3.2 Restoring Build Properties..............................................................................................................................................141

3.3 Defining C/C++ Build Settings and Behavior................................................................................................................141

3.3.1 Define Build Settings.......................................................................................................................................141

3.3.2 Define Build Behavior.....................................................................................................................................144

3.4 Build Properties for S08..................................................................................................................................................147

3.4.1 General.............................................................................................................................................................149

3.4.2 S08 Disassembler.............................................................................................................................................149

3.4.2.1 S08 Disassembler > Output............................................................................................................150

3.4.2.2 S08 Disassembler > Input..............................................................................................................151

3.4.2.3 S08 Disassembler > Messages.......................................................................................................151

3.4.2.3.1 S08 Disassembler > Messages > Disable user messages..........................................153

3.4.3 S08 Linker........................................................................................................................................................154

3.4.3.1 S08 Linker > Optimization............................................................................................................154

3.4.3.2 S08 Linker > Output......................................................................................................................157

3.4.3.3 S08 Linker > Input.........................................................................................................................158

3.4.3.4 S08 Linker > Link Order................................................................................................................162

3.4.3.5 S08 Linker > Host..........................................................................................................................162

3.4.3.6 S08 Linker > Messages..................................................................................................................163

3.4.3.6.1 S08 Linker > Messages > Disable user messages.....................................................164

3.4.3.7 S08 Linker > General.....................................................................................................................165

3.4.4 S08 Burner.......................................................................................................................................................165

3.4.4.1 S08 Burner > Output > Configure S-Record.................................................................................166

3.4.4.2 S08 Burner > Input.........................................................................................................................166

3.4.4.3 S08 Burner > Host..........................................................................................................................167

3.4.4.4 S08 Burner > Messages..................................................................................................................167

3.4.4.4.1 S08 Burner > Messages > Disable user messages....................................................169

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 5



Section number Title Page

3.4.4.5 S08 Burner > General....................................................................................................................170

3.4.5 HCS08 Compiler..............................................................................................................................................170

3.4.5.1 HCS08 Compiler > Output............................................................................................................170

3.4.5.1.1 HCS08 Compiler > Output > Configure Listing File...............................................172

3.4.5.1.2 HCS08 Compiler > Output > Configuration for list of included files in make

format........................................................................................................................173

3.4.5.2 HCS08 Compiler > Input...............................................................................................................174

3.4.5.3 HCS08 Compiler > Language........................................................................................................176

3.4.5.3.1 HCS08 Compiler > Language > CompactC++ features...........................................178

3.4.5.4 HCS08 Compiler > Host................................................................................................................179

3.4.5.5 HCS08 Compiler > Code Generation............................................................................................180

3.4.5.6 HCS08 Compiler > Messages........................................................................................................182

3.4.5.6.1 HCS08 Compiler > Messages > Disable user messages...........................................183

3.4.5.7 HCS08 Compiler > Preprocessor...................................................................................................183

3.4.5.8 HCS08 Compiler > Type Sizes......................................................................................................185

3.4.5.9 HCS08 Compiler > General...........................................................................................................186

3.4.5.10 HCS08 Compiler > Optimization..................................................................................................186

3.4.5.10.1 HCS08 Compiler > Optimization > Tree optimizer.................................................190

3.4.5.10.2 HCS08 Compiler > Optimization > Optimize Library Function..............................192

3.4.5.10.3 HCS08 Compiler > Optimization > Branch Optimizer............................................192

3.4.5.10.4 HCS08 Compiler > Optimization > Peephole Optimization....................................193

3.4.6 HCS08 Assembler............................................................................................................................................194

3.4.6.1 HCS08 Assembler > Output..........................................................................................................194

3.4.6.1.1 HCS08 Assembler > Output > Configure listing file...............................................195

3.4.6.2 HCS08 Assembler > Input.............................................................................................................196

3.4.6.3 HCS08 Assembler > Language......................................................................................................197

3.4.6.3.1 HCS08 Assembler > Language > Compatibility modes...........................................197

3.4.6.4 HCS08 Assembler > Host..............................................................................................................199

3.4.6.5 HCS08 Assembler > Code Generation..........................................................................................199

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

6 Freescale Semiconductor, Inc.



Section number Title Page

3.4.6.6 HCS08 Assembler > Messages......................................................................................................200

3.4.6.6.1 HCS08 Assembler > Messages > Disable user messages.........................................201

3.4.6.7 HCS08 Assembler > General.........................................................................................................202

3.4.7 HCS08 Preprocessor........................................................................................................................................202

3.4.7.1 HCS08 Preprocessor > Preprocessor Settings...............................................................................203

3.5 Build Properties for RS08...............................................................................................................................................203

3.5.1 General.............................................................................................................................................................206

3.5.2 S08 Disassembler.............................................................................................................................................206

3.5.2.1 S08 Disassembler > Output............................................................................................................207

3.5.2.2 S08 Disassembler > Input..............................................................................................................208

3.5.2.3 S08 Disassembler > Host...............................................................................................................208

3.5.2.4 S08 Disassembler > Messages.......................................................................................................209

3.5.2.4.1 S08 Disassembler > Messages > Disable user messages..........................................211

3.5.3 S08 Linker........................................................................................................................................................211

3.5.3.1 S08 Linker > Optimization............................................................................................................212

3.5.3.2 S08 Linker > Output......................................................................................................................214

3.5.3.3 S08 Linker > Input.........................................................................................................................216

3.5.3.4 S08 Linker > Link Order................................................................................................................219

3.5.3.5 S08 Linker > Host..........................................................................................................................220

3.5.3.6 S08 Linker > Messages..................................................................................................................220

3.5.3.6.1 S08 Linker > Messages > Disable user messages.....................................................222

3.5.3.7 S08 Linker > General.....................................................................................................................223

3.5.4 S08 Burner.......................................................................................................................................................223

3.5.4.1 S08 Burner > Output > Configure S-Record.................................................................................224

3.5.4.2 S08 Burner > Input.........................................................................................................................224

3.5.4.3 S08 Burner > Host..........................................................................................................................224

3.5.4.4 S08 Burner > Messages..................................................................................................................225

3.5.4.4.1 S08 Burner > Messages > Disable user messages....................................................227

3.5.4.5 S08 Burner > General....................................................................................................................227

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 7



Section number Title Page

3.5.5 RS08 Compiler.................................................................................................................................................228

3.5.5.1 RS08 Compiler > Output...............................................................................................................228

3.5.5.1.1 RS08 Compiler > Output > Configure Listing File..................................................230

3.5.5.1.2 RS08 Compiler > Output > Configuration for list of included files in make

format........................................................................................................................231

3.5.5.2 RS08 Compiler > Input..................................................................................................................232

3.5.5.3 RS08 Compiler > Language...........................................................................................................234

3.5.5.3.1 RS08 Compiler > Language > CompactC++ features..............................................236

3.5.5.4 RS08 Compiler > Host...................................................................................................................237

3.5.5.5 RS08 Compiler > Code Generation...............................................................................................238

3.5.5.6 RS08 Compiler > Messages...........................................................................................................239

3.5.5.6.1 RS08 Compiler > Messages > Disable user messages.............................................241

3.5.5.7 RS08 Compiler > Preprocessor......................................................................................................242

3.5.5.8 RS08 Compiler > Type Sizes.........................................................................................................243

3.5.5.9 RS08 Compiler > General..............................................................................................................244

3.5.5.10 RS08 Compiler > Optimization.....................................................................................................245

3.5.5.10.1 RS08 Compiler > Optimization > Mid level optimizations......................................248

3.5.5.10.2 RS08 Compiler > Optimization > Mid level branch optimizations..........................248

3.5.5.10.3 RS08 Compiler > Optimization > Tree optimizer....................................................249

3.5.5.10.4 RS08 Compiler > Optimization > Optimize Library Function.................................250

3.5.6 RS08 Assembler...............................................................................................................................................251

3.5.6.1 RS08 Assembler > Output.............................................................................................................251

3.5.6.1.1 RS08 Assembler > Output > Configure Listing File................................................252

3.5.6.2 RS08 Assembler > Input................................................................................................................253

3.5.6.3 RS08 Assembler > Language.........................................................................................................254

3.5.6.3.1 RS08 Assembler > Language > Compatibility modes..............................................254

3.5.6.4 RS08 Assembler > Host.................................................................................................................256

3.5.6.5 RS08 Assembler > Code Generation.............................................................................................256

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

8 Freescale Semiconductor, Inc.



Section number Title Page

3.5.6.6 RS08 Assembler > Messages.........................................................................................................257

3.5.6.6.1 RS08 Assembler > Messages > Disable user messages...........................................258

3.5.6.7 RS08 Assembler > General............................................................................................................259

3.5.7 RS08 Preprocessor...........................................................................................................................................259

3.5.7.1 RS08 Preprocessor > Preprocessor Settings..................................................................................260

3.6 Build Properties for ColdFire..........................................................................................................................................260

3.6.1 ColdFire CPU...................................................................................................................................................262

3.6.2 Debugging........................................................................................................................................................262

3.6.3 Messages..........................................................................................................................................................263

3.6.4 Librarian...........................................................................................................................................................263

3.6.5 Burner...............................................................................................................................................................264

3.6.5.1 Burner > General............................................................................................................................264

3.6.6 ColdFire Linker................................................................................................................................................265

3.6.6.1 ColdFire Linker > Input.................................................................................................................265

3.6.6.2 ColdFire Linker > Link Order........................................................................................................266

3.6.6.3 ColdFire Linker > General.............................................................................................................267

3.6.6.4 ColdFire Linker > Output..............................................................................................................267

3.6.7 ColdFire Compiler...........................................................................................................................................268

3.6.7.1 ColdFire Compiler > Input.............................................................................................................268

3.6.7.2 ColdFire Compiler > Preprocessor................................................................................................270

3.6.7.3 ColdFire Compiler > Warnings......................................................................................................271

3.6.7.4 ColdFire Compiler > Optimization................................................................................................272

3.6.7.5 ColdFire Compiler > Processor......................................................................................................274

3.6.7.6 ColdFire Compiler > Language Settings.......................................................................................275

3.6.8 ColdFire Assembler.........................................................................................................................................277

3.6.8.1 ColdFire Assembler > Input...........................................................................................................278

3.6.8.2 ColdFire Assembler > General......................................................................................................280

3.6.9 ColdFire Preprocessor......................................................................................................................................280

3.6.9.1 ColdFire Preprocessor > Preprocessor Settings.............................................................................281

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 9



Section number Title Page

3.6.10 ColdFire Disassembler.....................................................................................................................................281

3.6.10.1 ColdFire Disassembler > Disassembler Settings...........................................................................282

3.7 Build Properties for Qorivva...........................................................................................................................................283

3.7.1 PowerPC CPU..................................................................................................................................................284

3.7.2 Debugging........................................................................................................................................................286

3.7.3 Messages..........................................................................................................................................................287

3.7.4 PowerPC Linker...............................................................................................................................................287

3.7.4.1 PowerPC Linker > Input................................................................................................................288

3.7.4.2 PowerPC Linker > Link Order.......................................................................................................292

3.7.4.3 PowerPC Linker > General............................................................................................................292

3.7.4.4 PowerPC Linker > Output..............................................................................................................293

3.7.5 PowerPC Compiler..........................................................................................................................................295

3.7.5.1 PowerPC Compiler > Preprocessor................................................................................................296

3.7.5.2 PowerPC Compiler > Input............................................................................................................296

3.7.5.3 PowerPC Compiler > Warnings.....................................................................................................298

3.7.5.4 PowerPC Compiler > Optimization...............................................................................................300

3.7.5.5 PowerPC Compiler > Processor.....................................................................................................301

3.7.5.6 PowerPC Compiler > C/C++ Language........................................................................................304

3.7.6 PowerPC Assembler........................................................................................................................................307

3.7.6.1 PowerPC Assembler > Input..........................................................................................................308

3.7.6.2 PowerPC Assembler > General......................................................................................................310

3.7.7 PowerPC Disassembler....................................................................................................................................311

3.7.7.1 PowerPC Disassembler > Disassembler Settings..........................................................................311

3.7.8 PowerPC Preprocessor.....................................................................................................................................312

3.7.8.1 PowerPC Preprocessor > Preprocessor Settings............................................................................312

3.8 Build Properties for ARM (Kinetis)...............................................................................................................................313

3.8.1 ARM CPU........................................................................................................................................................315

3.8.2 Debugging........................................................................................................................................................316

3.8.3 Messages..........................................................................................................................................................316

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

10 Freescale Semiconductor, Inc.



Section number Title Page

3.8.4 Librarian...........................................................................................................................................................317

3.8.5 ARM Linker.....................................................................................................................................................317

3.8.5.1 ARM Linker > Input......................................................................................................................318

3.8.5.2 ARM Linker > General..................................................................................................................318

3.8.5.3 ARM Linker > Output....................................................................................................................319

3.8.6 ARM Compiler................................................................................................................................................319

3.8.6.1 ARM Compiler > Input..................................................................................................................320

3.8.6.2 ARM Compiler > Warnings...........................................................................................................321

3.8.6.3 ARM Compiler > Optimization.....................................................................................................323

3.8.6.4 ARM Compiler > Processor...........................................................................................................324

3.8.6.5 ARM Compiler > Language..........................................................................................................325

3.8.7 ARM Assembler..............................................................................................................................................327

3.8.7.1 ARM Assembler > Input................................................................................................................328

3.8.7.2 ARM Assembler > General............................................................................................................330

3.8.7.3 ARM Assembler > Output.............................................................................................................330

3.8.8 ARM Preprocessor...........................................................................................................................................330

3.8.8.1 ARM Preprocessor > Preprocessor Settings..................................................................................331

3.8.9 ARM Disassembler..........................................................................................................................................331

3.8.9.1 ARM Disassembler > Disassembler Settings................................................................................332

3.9 Build Properties for ARM Ltd Windows GCC...............................................................................................................333

3.9.1 Target Processor ..............................................................................................................................................334

3.9.2 Debugging .......................................................................................................................................................335

3.9.3 Additional Tools .............................................................................................................................................335

3.9.4 Librarian...........................................................................................................................................................336

3.9.5 ARM Ltd. Windows GCC Assembler.............................................................................................................336

3.9.5.1 ARM Ltd. Windows GCC Assembler > Preprocessor..................................................................337

3.9.5.2 ARM Ltd. Windows GCC Assembler > Directories.....................................................................338

3.9.5.3 ARM Ltd. Windows GCC Assembler > Warnings........................................................................338

3.9.5.4 ARM Ltd. Windows GCC Assembler > Miscellaneous................................................................339

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 11



Section number Title Page

3.9.6 ARM Ltd. Windows GCC Compiler...............................................................................................................340

3.9.6.1 ARM Ltd. Windows GCC Compiler > Preprocessor....................................................................340

3.9.6.2 ARM Ltd. Windows GCC Compiler > Directories.......................................................................341

3.9.6.3 ARM Ltd. Windows GCC Compiler > Optimization....................................................................342

3.9.6.4 ARM Ltd. Windows GCC Compiler > Warnings..........................................................................343

3.9.6.5 ARM Ltd. Windows GCC Compiler > Miscellaneous..................................................................344

3.9.7 ARM Ltd. Windows GCC Linker ...................................................................................................................345

3.9.7.1 ARM Ltd. Windows GCC Linker > General.................................................................................345

3.9.7.2 ARM Ltd. Windows GCC Linker > Libraries...............................................................................346

3.9.7.3 ARM Ltd. Windows GCC Linker > Link Order............................................................................346

3.9.7.4 ARM Ltd. Windows GCC Linker > Miscellaneous......................................................................347

3.9.8 ARM Ltd. Windows GCC Disassembler ........................................................................................................347

3.9.8.1 ARM Ltd. Windows GCC Disassembler > Disassembler Settings...............................................348

3.9.9 ARM Ltd. Windows GCC C Preprocessor .....................................................................................................349

3.9.9.1 ARM Ltd. Windows GCC C Preprocessor > Preprocessor Settings.............................................350

3.9.9.2 ARM Ltd. Windows GCC C Preprocessor > Directories..............................................................350

3.10 Build Properties for DSC................................................................................................................................................350

3.10.1 Global Settings.................................................................................................................................................352

3.10.2 DSC Linker......................................................................................................................................................352

3.10.2.1 DSC Linker > Input........................................................................................................................353

3.10.2.2 DSC Linker > Link Order..............................................................................................................354

3.10.2.3 DSC Linker > General...................................................................................................................354

3.10.2.4 DSC Linker > Output.....................................................................................................................355

3.10.3 DSC Compiler..................................................................................................................................................356

3.10.3.1 DSC Compiler > Input...................................................................................................................356

3.10.3.2 DSC Compiler > Access Paths.......................................................................................................357

3.10.3.3 DSC Compiler > Warnings............................................................................................................357

3.10.3.4 DSC Compiler > Optimization......................................................................................................359

3.10.3.5 DSC Compiler > Processor............................................................................................................360

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

12 Freescale Semiconductor, Inc.



Section number Title Page

3.10.3.6 DSC Compiler > Language............................................................................................................362

3.10.4 DSC Assembler................................................................................................................................................363

3.10.4.1 DSC Assembler > Input.................................................................................................................364

3.10.4.2 DSC Assembler > General.............................................................................................................364

3.10.4.3 DSC Assembler > Output..............................................................................................................365

3.10.5 DSC Preprocessor............................................................................................................................................366

3.10.5.1 DSC Preprocessor > Settings.........................................................................................................366

3.10.6 DSC Disassembler...........................................................................................................................................367

3.10.6.1 DSC Disassembler > Settings........................................................................................................367

3.11 Build Properties for S12Z...............................................................................................................................................368

3.11.1 S12Z Burner.....................................................................................................................................................370

3.11.1.1 S12Z Burner > Output > Configure S-Record...............................................................................371

3.11.1.2 S12Z Burner > Input......................................................................................................................371

3.11.1.3 S12Z Burner > Host.......................................................................................................................372

3.11.1.4 S12Z Burner > Messages...............................................................................................................374

3.11.1.4.1 S12Z Burner > Messages > Disable User Messages................................................379

3.11.1.5 S12Z Burner > General..................................................................................................................380

3.11.2 S12Z Linker.....................................................................................................................................................380

3.11.2.1 S12Z Linker > Optimization..........................................................................................................381

3.11.2.2 S12Z Linker > Output....................................................................................................................383

3.11.2.3 S12Z Linker > Input.......................................................................................................................384

3.11.2.4 S12Z Linker > Link Order.............................................................................................................387

3.11.2.5 S12Z Linker > Host........................................................................................................................388

3.11.2.6 S12Z Linker > Messages................................................................................................................390

3.11.2.6.1 S12Z Linker > Messages > Disable User Messages.................................................395

3.11.2.7 S12Z Linker > General..................................................................................................................396

3.11.3 S12Z Compiler.................................................................................................................................................396

3.11.3.1 S12Z Compiler > Input..................................................................................................................397

3.11.3.2 S12Z Compiler > Access Paths......................................................................................................400

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 13



Section number Title Page

3.11.3.3 S12Z Compiler > Warnings...........................................................................................................402

3.11.3.4 S12Z Compiler > Code Generation...............................................................................................403

3.11.3.5 S12Z Compiler > Optimization......................................................................................................404

3.11.3.6 S12Z Compiler > Language...........................................................................................................405

3.11.3.7 S12Z Compiler > Messages...........................................................................................................406

3.11.3.8 S12Z Compiler > General..............................................................................................................407

3.11.4 S12Z Assembler...............................................................................................................................................407

3.11.4.1 S12Z Assembler > Output..............................................................................................................408

3.11.4.1.1 S12Z Assembler > Output > Configure Listing File................................................409

3.11.4.2 S12Z Assembler > Input................................................................................................................410

3.11.4.3 S12Z Assembler > Language.........................................................................................................411

3.11.4.3.1 S12Z Assembler > Language > Compatibility modes..............................................412

3.11.4.4 S12Z Assembler > Host.................................................................................................................413

3.11.4.5 S12Z Assembler > Code Generation.............................................................................................415

3.11.4.6 S12Z Assembler > Messages.........................................................................................................415

3.11.4.6.1 S12Z Assembler > Messages > Disable User Messages..........................................420

3.11.4.7 S12Z Assembler > General............................................................................................................421

3.11.5 S12Z Preprocessor...........................................................................................................................................421

3.11.5.1 S12Z Preprocessor > Settings........................................................................................................422

3.11.6 S12Z Disassembler..........................................................................................................................................423

3.11.6.1 S12Z Disassembler > Output.........................................................................................................423

3.11.6.2 S12Z Disassembler > Input............................................................................................................424

3.11.6.3 S12Z Disassembler > Host.............................................................................................................424

3.11.6.4 S12Z Disassembler > Messages.....................................................................................................426

3.11.6.4.1 S12Z Disassembler > Messages > Disable User Messages......................................432

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

14 Freescale Semiconductor, Inc.



Section number Title Page

Chapter 4
Working with Debugger

4.1 Customizing Launch Configuration................................................................................................................................435

4.1.1 Main.................................................................................................................................................................436

4.1.1.1 Editing Connection........................................................................................................................438

4.1.1.2 Connection Tab Settings................................................................................................................440

4.1.1.3 Initialization Tab Settings..............................................................................................................440

4.1.1.4 System Tab Settings.......................................................................................................................442

4.1.1.5 Advanced Tab Settings..................................................................................................................443

4.1.2 Arguments........................................................................................................................................................444

4.1.3 Debugger..........................................................................................................................................................445

4.1.3.1 Debug.............................................................................................................................................446

4.1.3.2 Download.......................................................................................................................................447

4.1.3.3 PIC.................................................................................................................................................449

4.1.3.4 Other Executables..........................................................................................................................450

4.1.3.5 Symbolics.......................................................................................................................................451

4.1.3.6 OS Awareness................................................................................................................................452

4.1.3.6.1 Tasks.........................................................................................................................453

4.1.3.6.2 Implementation ........................................................................................................453

4.1.3.6.3 Kernel Objects Tree Panel .......................................................................................454

4.1.3.6.4 Kernel Type Viewer Panel........................................................................................454

4.1.3.6.5 Trace.........................................................................................................................455

4.1.3.7 Exceptions......................................................................................................................................456

4.1.3.8 Reset...............................................................................................................................................460

4.1.3.9 Interrupts........................................................................................................................................461

4.1.3.10 Remote...........................................................................................................................................462

4.1.3.11 EPPC Exceptions...........................................................................................................................463

4.1.3.12 System Call Services......................................................................................................................463

4.1.4 Source...............................................................................................................................................................465

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 15



Section number Title Page

4.1.5 Environment.....................................................................................................................................................466

4.1.6 Common...........................................................................................................................................................467

4.1.7 Trace and Profile..............................................................................................................................................468

4.2 Debugging Bareboard Software......................................................................................................................................475

4.2.1 Displaying Register Contents...........................................................................................................................475

4.2.1.1 Adding Register Group..................................................................................................................476

4.2.1.2 Editing Register Group..................................................................................................................477

4.2.1.3 Removing Register Group.............................................................................................................478

4.2.1.3.1 Changing Register's Bit Value..................................................................................478

4.2.2 Exporting Registers..........................................................................................................................................479

4.2.3 Importing Registers..........................................................................................................................................480

4.2.4 Changing Register Data Display Format.........................................................................................................481

4.2.5 Offline Registers View.....................................................................................................................................482

4.2.6 Using Register Details Window.......................................................................................................................483

4.2.6.1 Bit Fields........................................................................................................................................484

4.2.6.1.1 Changing Bit Field....................................................................................................485

4.2.6.2 Description.....................................................................................................................................487

4.2.6.3 Actions...........................................................................................................................................487

4.2.6.4 Register Details Context Menu......................................................................................................488

4.2.6.5 Viewing Register Details...............................................................................................................489

4.2.7 Viewing and Modifying Cache Contents.........................................................................................................491

4.2.7.1 Cache Viewer.................................................................................................................................491

4.2.7.1.1 Opening the Cache Viewer.......................................................................................491

4.2.7.2 Cache Viewer Toolbar Menu.........................................................................................................493

4.2.7.3 Components of Cache Viewer.......................................................................................................494

4.2.7.4 Using the Debugger Shell to View Caches....................................................................................495

4.2.7.4.1 Debugger Shell Global Cache Commands...............................................................496

4.2.7.4.2 Debugger Shell Cache Line Commands...................................................................497

4.2.7.5 Supported Processor Cache Features.............................................................................................498

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

16 Freescale Semiconductor, Inc.



Section number Title Page

4.2.8 Setting Stack Crawl Depth...............................................................................................................................498

4.2.9 Changing Program Counter Value...................................................................................................................499

4.2.10 Viewing Memory.............................................................................................................................................499

4.2.10.1 Adding Memory Monitor...............................................................................................................500

4.2.10.2 Adding Memory Rendering...........................................................................................................501

4.2.10.3 Removing Memory Rendering.......................................................................................................502

4.2.10.4 Resetting to Base Address..............................................................................................................503

4.2.10.5 Go to Address.................................................................................................................................503

4.2.11 Hard Resetting..................................................................................................................................................504

4.3 Debugging Externally Built Executable Files.................................................................................................................504

4.3.1 Microcontrollers ELF Executable....................................................................................................................504

4.3.1.1 Import a MCU Executable File Page.............................................................................................505

4.3.1.2 Select MCU executable file to be imported Page..........................................................................505

4.3.1.3 Device and Board Page..................................................................................................................507

4.3.1.4 Connections Page...........................................................................................................................507

4.3.2 Importing Projects from Command Line.........................................................................................................508

4.3.3 Debug an Externally Built Microcontrollers Executable File..........................................................................509

4.3.3.1 Import a MCU Executable File......................................................................................................509

4.3.3.2 Specify Executable File to Import.................................................................................................511

4.3.3.3 Select Derivative or Board.............................................................................................................511

4.3.3.4 Select Connection..........................................................................................................................511

4.3.3.5 Edit Launch Configuration.............................................................................................................512

4.3.3.6 Source Lookup Path ......................................................................................................................514

4.3.3.7 Debug Executable File...................................................................................................................517

Chapter 5
Kinetis Cache Viewer

5.1 Kinetis Cache..................................................................................................................................................................519

5.1.1 Write-through...................................................................................................................................................521

5.1.2 Write-back .......................................................................................................................................................522

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 17



Section number Title Page

5.1.3 Non-cacheable .................................................................................................................................................522

5.2 CodeWarrior Cache View for Kinetis.............................................................................................................................523

5.3 Performance Considerations and Kinetis Particularities.................................................................................................525

Chapter 6
Multicore Debugging

6.1 Creating DPM/LSM Projects..........................................................................................................................................527

6.1.1 Creating LSM Project......................................................................................................................................528

6.1.2 Creating DPM Project......................................................................................................................................530

6.2 Debugging DPM/LSM Projects......................................................................................................................................532

6.3 Debugging Multicore Project..........................................................................................................................................536

6.3.1 Targeting Core.................................................................................................................................................537

6.3.2 Starting Debugging Session for Core...............................................................................................................538

6.3.2.1 From Debug Configurations Dialog Box.......................................................................................538

6.3.2.2 From Run Menu.............................................................................................................................539

6.3.2.3 From Toolbar's Debug Icon...........................................................................................................539

6.3.3 Debugging Specific Core ................................................................................................................................539

6.3.4 Multicore Operations.......................................................................................................................................539

6.3.4.1 Multicore Commands in CodeWarrior IDE...................................................................................540

6.3.4.2 Multicore Commands in Debugger Shell.......................................................................................541

6.4 Editing Multicore Groups...............................................................................................................................................543

6.5 Editing Target Types.......................................................................................................................................................547

Chapter 7
CodeWarrior Command Line Debugging

7.1 Tcl Support......................................................................................................................................................................551

7.1.1 Resolution of Conflicting Command Names...................................................................................................551

7.1.2 Execution of Script Files..................................................................................................................................551

7.1.3 Tcl Startup Script.............................................................................................................................................552

7.1.4 Command-Line Syntax....................................................................................................................................553

7.2 Command-Line Debugging Tasks..................................................................................................................................553

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

18 Freescale Semiconductor, Inc.



Section number Title Page

7.3 Debugger Shell Command List.......................................................................................................................................554

7.3.1 cmdwin::eppc::getcoreid..................................................................................................................................554

7.3.2 cmdwin::eppc::setMMRBaseAddr...................................................................................................................555

7.3.3 cmdwin::eppc::setcoreid..................................................................................................................................555

7.3.4 gdi.....................................................................................................................................................................555

7.4 Microcontrollers-Specific HIWARE Commands...........................................................................................................556

7.4.1 Command List..................................................................................................................................................556

Chapter 8
Build Properties for Linux Project

8.1 Changing Build Properties..............................................................................................................................................568

8.2 Restoring Build Properties..............................................................................................................................................570

8.3 Build Properties for Linux/uClinux Project....................................................................................................................570

8.3.1 Architecture......................................................................................................................................................572

8.3.2 ColdFire uClinux Linker..................................................................................................................................572

8.3.2.1 ColdFire uClinux Linker > General...............................................................................................573

8.3.2.2 ColdFire uClinux Linker > Libraries.............................................................................................573

8.3.2.3 ColdFire uClinux Linker > Miscellaneous.....................................................................................574

8.3.2.4 ColdFire uClinux Linker > Shared Library Settings......................................................................575

8.3.2.5 ColdFire uClinux Linker > ColdFire Environment........................................................................575

8.3.3 ColdFire uClinux Compiler.............................................................................................................................576

8.3.3.1 ColdFire uClinux Compiler > Preprocessor...................................................................................576

8.3.3.2 ColdFire uClinux Compiler > Symbols.........................................................................................577

8.3.3.3 ColdFire uClinux Compiler > Directories.....................................................................................577

8.3.3.4 ColdFire uClinux Compiler > Optimization..................................................................................577

8.3.3.5 ColdFire uClinux Compiler > Debugging.....................................................................................578

8.3.3.6 ColdFire uClinux Compiler > Warnings........................................................................................579

8.3.3.7 ColdFire uClinux Compiler > Miscellaneous................................................................................580

8.3.4 ColdFire uClinux Assembler...........................................................................................................................580

8.3.4.1 ColdFire uClinux Assembler > General.........................................................................................581

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 19



Section number Title Page

8.3.4.2 ColdFire uClinux Assembler > Miscellaneous..............................................................................581

8.3.5 ColdFire uClinux Preprocessor........................................................................................................................582

8.3.5.1 ColdFire uClinux Preprocessor > Settings.....................................................................................582

8.3.6 ColdFire uClinux Disassembler.......................................................................................................................583

8.3.6.1 ColdFire uClinux Disassembler > Settings....................................................................................583

Chapter 9
Connections - HCS08 Architecture

9.1 P&E Full Chip Simulation..............................................................................................................................................585

9.1.1 Create New Connection for Full Chip Simulation...........................................................................................585

9.1.2 Module Options................................................................................................................................................586

9.1.2.1 Analog-to-Digital Converter Module.............................................................................................588

9.1.2.1.1 ADC Module Commands.........................................................................................589

9.1.2.1.2 ADDI Command.......................................................................................................589

9.1.2.1.3 ADCLR Command...................................................................................................590

9.1.2.2 16-Bit Analog-to-Digital Converter Module.................................................................................590

9.1.2.2.1 ADDI Command.......................................................................................................590

9.1.2.2.2 ADCLR Command...................................................................................................591

9.1.2.2.3 ADDID Command....................................................................................................591

9.1.2.3 Clock Generation Module..............................................................................................................592

9.1.2.3.1 Clock Generation Module Commands......................................................................595

9.1.2.3.1.1 XTAL Command................................................................................595

9.1.2.3.1.2 Syntax.................................................................................................595

9.1.2.4 Digital-to-Analog Converter Module.............................................................................................596

9.1.2.4.1 Digital-to-Analog User Commands..........................................................................596

9.1.2.4.2 SHOWDACO1 Command........................................................................................596

9.1.2.5 EEPROM Module..........................................................................................................................596

9.1.2.5.1 EEPROM User Commands......................................................................................597

9.1.2.5.2 EEPROM<x> Command..........................................................................................597

9.1.2.6 Fault Detection and Shutdown Module.........................................................................................598

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

20 Freescale Semiconductor, Inc.



Section number Title Page

9.1.2.7 Flash Module..................................................................................................................................599

9.1.2.7.1 Flash User Commands..............................................................................................599

9.1.2.7.2 PPAGE <x> Command.............................................................................................599

9.1.2.8 Flextimer Module...........................................................................................................................600

9.1.2.9 High-Speed Analog Comparator Module......................................................................................601

9.1.2.9.1 High-Speed Analog Comparator User Commands...................................................601

9.1.2.9.2 HSC<x>INPUT<y> Command................................................................................601

9.1.2.9.3 HSC<x>INPUTS Command.....................................................................................602

9.1.2.10 Inter-Integrated Circuit Module.....................................................................................................603

9.1.2.10.1 Inter-Integrated Circuit Module Commands.............................................................605

9.1.2.10.2 IICDI Command.......................................................................................................605

9.1.2.10.3 IICDO Command......................................................................................................607

9.1.2.11 Interrupt Priority Controller Module..............................................................................................607

9.1.2.12 External Interrupt (IRQ) Module...................................................................................................608

9.1.2.12.1 IRQ Commands........................................................................................................609

9.1.2.12.2 INPUTS Command...................................................................................................609

9.1.2.13 Keyboard Interrupt Module...........................................................................................................610

9.1.2.13.1 Keyboard Interrupt Commands.................................................................................611

9.1.2.13.2 INPUT<x> Command...............................................................................................612

9.1.2.13.3 INPUTS Command...................................................................................................612

9.1.2.14 Liquid Crystal Display Driver Module..........................................................................................613

9.1.2.15 Modulo Timer Interrupt Module....................................................................................................613

9.1.2.15.1 Modulo Timer Interrupt Module User Commands...................................................614

9.1.2.15.2 TclK Command.........................................................................................................614

9.1.2.15.3 TclK <n> Command.................................................................................................614

9.1.2.16 MSCAN Controller Module...........................................................................................................615

9.1.2.17 Programmable Delay Block Module..............................................................................................615

9.1.2.18 Programmable Gain Amplifier Module.........................................................................................616

9.1.2.18.1 Programmable Gain Amplifier User Commands......................................................616

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 21



Section number Title Page

9.1.2.18.2 PGAINPUTS Command...........................................................................................616

9.1.2.18.3 PGAINPLUS <x> Command...................................................................................617

9.1.2.18.4 PGAINMINUS <x> Command................................................................................617

9.1.2.18.5 PGAINVDDA <x> Command..................................................................................617

9.1.2.19 Programmable Reference Analog Comparator Module.................................................................618

9.1.2.19.1 Programmable Reference Analog Comparator User Commands.............................618

9.1.2.19.2 PR<x>INPUT<y> Command...................................................................................618

9.1.2.19.3 PR<x>INPUTS Command.......................................................................................619

9.1.2.20 Input/Output (I/O) Ports Module...................................................................................................619

9.1.2.20.1 Input/Output Ports User Commands.........................................................................621

9.1.2.20.2 INPUT<x> Command...............................................................................................621

9.1.2.20.3 INPUTS Command...................................................................................................621

9.1.2.20.4 DDR<x>OUT Command..........................................................................................622

9.1.2.20.5 DDR<x>IN Command..............................................................................................623

9.1.2.21 Serial Communications Interface Module.....................................................................................623

9.1.2.21.1 SCI Commands.........................................................................................................625

9.1.2.21.2 SCCLR Command....................................................................................................625

9.1.2.21.3 SCDI Command........................................................................................................626

9.1.2.21.4 SCDO Command......................................................................................................626

9.1.2.22 Slave LIN Interface Controller (SLIC) Module.............................................................................627

9.1.2.23 Serial Peripheral Interface Module................................................................................................628

9.1.2.23.1 SPI Commands.........................................................................................................630

9.1.2.23.2 SPCLR Command.....................................................................................................630

9.1.2.23.3 SPDI Command........................................................................................................630

9.1.2.23.4 SPDO Command.......................................................................................................631

9.1.2.23.5 SPFREQ Command..................................................................................................631

9.1.2.24 Timer Interface Module.................................................................................................................632

9.1.2.24.1 Timer Module Commands........................................................................................634

9.1.2.24.2 CYCLES Command.................................................................................................634

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

22 Freescale Semiconductor, Inc.



Section number Title Page

9.1.2.24.3 GOTOCYCLE Command.........................................................................................635

9.1.2.24.4 INPUT<x> Command...............................................................................................635

9.1.2.24.5 INPUTS Command...................................................................................................635

9.1.2.25 Time Of Day Module Option.........................................................................................................636

9.1.2.26 Universal Serial Bus (USB) Module..............................................................................................637

9.1.2.27 Voltage Reference Module............................................................................................................637

9.2 P&E Hardware Interface Connection for HCS08...........................................................................................................637

9.2.1 New Project Wizard.........................................................................................................................................638

9.2.2 Launch Configuration Settings........................................................................................................................638

9.2.3 Connection Options..........................................................................................................................................639

9.2.3.1 Changing P&E Connections Settings............................................................................................640

9.2.3.1.1 P&E Hardware Interface Connection-Specific Options...........................................643

9.2.3.1.1.1 P&E USB Multilink Universal [FX]/ USB Multilink........................643

9.2.3.1.1.2 P&E Cyclone Serial............................................................................644

9.2.3.1.1.3 P&E Cyclone USB.............................................................................646

9.2.3.1.1.4 P&E Cyclone Ethernet.......................................................................647

9.2.3.1.1.5 Open Source BDM.............................................................................649

9.2.3.1.2 Advanced Programming/Debug Options..................................................................652

9.2.3.1.2.1 Enable Flash Programming Dialog....................................................652

9.2.3.1.3 Socket Programming Options Button.......................................................................655

9.2.3.2 Connection Assistant......................................................................................................................657

9.2.4 Active Mode Menu Options.............................................................................................................................657

Chapter 10
Connections - RS08

10.1 P&E Full Chip Simulation..............................................................................................................................................659

10.1.1 Create New Connection for Full Chip Simulation...........................................................................................659

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 23



Section number Title Page

10.1.2 Module Options................................................................................................................................................660

10.1.2.1 ADC Module..................................................................................................................................661

10.1.2.1.1 ADC Module Commands.........................................................................................662

10.1.2.1.1.1 ADDI Command................................................................................663

10.1.2.1.1.2 ADCLR Command.............................................................................663

10.1.2.2 Internal Clock Source Module.......................................................................................................663

10.1.2.2.1 Internal Clock Source Commands............................................................................666

10.1.2.2.2 XTAL Command......................................................................................................666

10.1.2.3 Inter-Integrated Circuit Module Option.........................................................................................666

10.1.2.3.1 Inter-Integrated Circuit Module Commands.............................................................668

10.1.2.3.2 IICDI Command.......................................................................................................669

10.1.2.3.3 IICDO Command......................................................................................................671

10.1.2.3.4 IICCLR Command....................................................................................................671

10.1.2.4 Keyboard Interrupt Module...........................................................................................................671

10.1.2.4.1 Keyboard Interrupt Commands.................................................................................672

10.1.2.4.2 INPUT<x> Command...............................................................................................673

10.1.2.4.3 INPUTS Command...................................................................................................673

10.1.2.5 Liquid Crystal Display Driver Module Option..............................................................................674

10.1.2.6 Modulo Timer Interrupt Module....................................................................................................674

10.1.2.6.1 Modify MTIM TclK.................................................................................................675

10.1.2.6.2 Modulo Timer Interrupt Module User Commands...................................................675

10.1.2.6.3 TclK Command.........................................................................................................675

10.1.2.6.4 TclK <n> Command.................................................................................................676

10.1.2.7 Input/Output (I/O) Ports Module...................................................................................................676

10.1.2.7.1 Input/Output Ports User Commands.........................................................................677

10.1.2.7.2 INPUT<x> Command...............................................................................................677

10.1.2.7.3 INPUTS Command...................................................................................................677

10.1.2.8 Serial Communications Interface Module.....................................................................................678

10.1.2.8.1 SCI Commands.........................................................................................................680

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

24 Freescale Semiconductor, Inc.



Section number Title Page

10.1.2.8.2 SCCLR Command....................................................................................................680

10.1.2.8.3 SCDI Command........................................................................................................680

10.1.2.8.4 SCDO Command......................................................................................................681

10.1.2.9 Serial Peripheral Interface Module................................................................................................682

10.1.2.9.1 SPI Commands.........................................................................................................684

10.1.2.9.2 SPCLR Command.....................................................................................................684

10.1.2.9.3 SPDI Command........................................................................................................684

10.1.2.9.4 SPDO Command.......................................................................................................685

10.1.2.9.5 SPFREQ Command..................................................................................................686

10.1.2.10 Timer Interface Module.................................................................................................................686

10.1.2.10.1 Timer Module Commands........................................................................................688

10.1.2.10.2 CYCLES Command.................................................................................................688

10.1.2.10.3 GOTOCYCLE Command.........................................................................................689

10.1.2.10.4 INPUT<x> Command...............................................................................................689

10.1.2.10.5 INPUTS Command...................................................................................................689

10.2 P&E Hardware Interface Connection for RS08..............................................................................................................690

10.2.1 New Project Wizard.........................................................................................................................................690

10.2.2 Launch Configuration Settings........................................................................................................................691

10.2.3 Connection Options..........................................................................................................................................693

10.2.3.1 Changing P&E Connection Settings..............................................................................................694

10.2.3.1.1 P&E Hardware Interface Connection-Specific Options...........................................697

10.2.3.1.1.1 P&E USB Multilink Universal [FX]/USB Multilink ........................697

10.2.3.1.1.2 P&E Cyclone Serial............................................................................699

10.2.3.1.1.3 P&E Cyclone USB.............................................................................701

10.2.3.1.1.4 P&E Cyclone Ethernet.......................................................................702

10.2.3.1.1.5 Open Source BDM.............................................................................703

10.2.3.1.2 Advanced Programming/Debug Options..................................................................707

10.2.3.1.2.1 Enable Flash Programming Dialog Box.............................................707

10.2.3.1.3 Socket Programming Options Button.......................................................................710

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 25



Section number Title Page

10.2.3.2 Connection Assistant......................................................................................................................711

10.2.4 Active Mode Menu Options.............................................................................................................................712

Chapter 11
Connections - ColdFire V1/ColdFire+ V1

11.1 P&E Hardware Interface Connections for ColdFire V1.................................................................................................713

11.1.1 New Project Wizard.........................................................................................................................................714

11.1.2 Launch Configurations Settings.......................................................................................................................714

11.1.3 Changing P&E Connection Settings................................................................................................................715

11.1.3.1 P&E Hardware Interface Connection-Specific Options................................................................719

11.1.3.1.1 P&E USB Multilink Universal [FX]/USB Multilink...............................................719

11.1.3.1.1.1 Debug configurations.........................................................................720

11.1.3.1.2 P&E Cyclone Serial..................................................................................................721

11.1.3.1.2.1 Debug configurations.........................................................................721

11.1.3.1.3 P&E Cyclone USB....................................................................................................722

11.1.3.1.3.1 Debug configurations.........................................................................722

11.1.3.1.4 P&E Cyclone Ethernet..............................................................................................723

11.1.3.1.4.1 Debug configurations.........................................................................724

11.1.3.1.5 Open Source BDM....................................................................................................725

11.1.3.1.5.1 Debug configurations.........................................................................726

11.1.3.1.5.2 OSBDM Firmware Update.................................................................727

11.1.3.2 Advanced Programming/Debug Options.......................................................................................729

11.1.3.2.1 Enable Flash Programming Dialog...........................................................................729

11.1.3.2.2 Trim Options.............................................................................................................730

11.1.3.2.3 Non-Volatile Memory Preservation..........................................................................730

11.1.3.2.4 Sync to PLL Change Checkbox................................................................................730

11.1.3.2.5 Calculate and Program Non-Volatile Trim...............................................................730

11.1.3.2.6 Custom Trim.............................................................................................................730

11.1.3.2.7 Alternative Algorithm Functionality.........................................................................731

11.1.3.3 Connection Assistant......................................................................................................................732

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

26 Freescale Semiconductor, Inc.



Section number Title Page

11.1.4 Active Mode Menu Options.............................................................................................................................733

Chapter 12
Connections - ColdFire V2/3/4

12.1 P&E Hardware Interface Connection for ColdFire V234...............................................................................................735

12.1.1 New Project Wizard.........................................................................................................................................736

12.1.2 Launch Configuration Settings........................................................................................................................737

12.1.3 Changing P&E Connection Settings................................................................................................................738

12.1.3.1 P&E Hardware Interface Connection- Specific Options...............................................................743

12.1.3.1.1 P&E USB Multilink Universal [FX]/ USB Multilink..............................................743

12.1.3.1.1.1 Debug configurations.........................................................................744

12.1.3.1.2 P&E Cyclone Serial..................................................................................................745

12.1.3.1.2.1 Debug configurations.........................................................................745

12.1.3.1.3 P&E Cyclone USB....................................................................................................746

12.1.3.1.3.1 Debug configurations.........................................................................747

12.1.3.1.4 P&E Cyclone Ethernet..............................................................................................748

12.1.3.1.4.1 Debug configurations.........................................................................749

12.1.3.1.5 P&E TraceLink USB................................................................................................750

12.1.3.1.5.1 Debug configurations.........................................................................751

12.1.3.1.6 P&E TraceLink Ethernet...........................................................................................752

12.1.3.1.6.1 Debug configurations.........................................................................753

12.1.3.1.7 Open Source BDM....................................................................................................754

12.1.3.1.7.1 Debug configurations.........................................................................755

12.1.3.1.7.2 OSBDM Firmware Update.................................................................756

12.1.3.1.8 Trace and Profile.......................................................................................................758

12.1.3.2 Advanced Programming/Debug Options.......................................................................................760

12.1.3.2.1 Enable Flash Programming Dialog...........................................................................761

12.1.3.2.2 Non-Volatile Memory Preservation..........................................................................761

12.1.3.2.3 Alternative Algorithm Functionality.........................................................................761

12.1.3.3 Connection Assistant......................................................................................................................763

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 27



Section number Title Page

12.1.4 Active Mode Menu Options.............................................................................................................................763

Chapter 13
Connections - Qorivva MPC55xx/56xx

13.1 P&E Hardware Interface Connection for Qorivva..........................................................................................................765

13.1.1 New Project Wizard.........................................................................................................................................765

13.1.2 Launch Configurations Settings.......................................................................................................................766

13.1.3 Connection Options..........................................................................................................................................768

13.1.3.1 Changing P&E Connections Settings............................................................................................768

13.1.3.1.1 P&E Hardware Interface Connection- Specific Options..........................................772

13.1.3.1.1.1 P&E USB Multilink Universal [FX]/USB Multilink.........................772

13.1.3.1.1.2 P&E Cyclone Serial............................................................................774

13.1.3.1.1.3 P&E Cyclone USB.............................................................................776

13.1.3.1.1.4 P&E Cyclone Ethernet.......................................................................777

13.1.3.1.1.5 Open Source JTAG.............................................................................779

13.1.3.1.2 Advanced Programming/Debug Options..................................................................783

13.1.3.1.2.1 Enable Flash Programming Dialog....................................................783

13.1.3.1.2.2 Non-Volatile Memory Preservation...................................................783

13.1.3.1.2.3 Alternative Algorithm Functionality..................................................784

13.1.3.2 Connection Assistant......................................................................................................................785

13.1.4 Active Mode Menu Options.............................................................................................................................786

Chapter 14
Connections — Kinetis Architecture

14.1 P&E Hardware Interface Connection for Kinetis...........................................................................................................787

14.1.1 New Project Wizard.........................................................................................................................................787

14.1.2 Launch Configurations Settings.......................................................................................................................788

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

28 Freescale Semiconductor, Inc.



Section number Title Page

14.1.3 Connection Options..........................................................................................................................................790

14.1.3.1 Changing P&E Connections Settings............................................................................................791

14.1.3.1.1 P&E Hardware Interface Connection-Specific Options...........................................795

14.1.3.1.1.1 P&E USB MultiLink Universal [FX].................................................795

14.1.3.1.1.2 P&E Cyclone Serial............................................................................797

14.1.3.1.1.3 P&E Cyclone USB.............................................................................799

14.1.3.1.1.4 P&E Cyclone Ethernet.......................................................................801

14.1.3.1.1.5 P&E TraceLink USB..........................................................................803

14.1.3.1.1.6 P&E TraceLink Ethernet....................................................................805

14.1.3.1.1.7 Open Source JTAG.............................................................................807

14.1.3.1.1.8 OpenSDA...........................................................................................811

14.1.3.1.1.9 Trace and Profile................................................................................813

14.1.3.1.2 Advanced Programming/Debug Options..................................................................815

14.1.3.1.2.1 Enable Flash Programming Dialog....................................................816

14.1.3.1.2.2 Non-Volatile Memory Preservation...................................................816

14.1.3.1.2.3 Calculate and Program Non-Volatile Trim........................................817

14.1.3.1.2.4 Custom Trim.......................................................................................817

14.1.3.1.2.5 Alternative Algorithm Functionality..................................................817

14.1.3.1.2.6 Enable Partitioning.............................................................................818

14.1.3.2 Connection Assistant......................................................................................................................819

14.1.4 Active Mode Menu Options.............................................................................................................................820

Chapter 15
Connections - DSC Architecture

15.1 P&E Hardware Interface for DSC..................................................................................................................................821

15.1.1 New Project Wizard.........................................................................................................................................821

15.1.2 Launch Configurations Settings.......................................................................................................................822

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 29



Section number Title Page

15.1.3 Connection Options..........................................................................................................................................824

15.1.3.1 Changing P&E Connections Settings............................................................................................824

15.1.3.1.1 P&E Hardware Interface Connection- Specific Options..........................................828

15.1.3.1.1.1 P&E USB Multilink Universal [FX]..................................................828

15.1.3.1.1.2 P&E Cyclone Serial............................................................................829

15.1.3.1.1.3 P&E Cyclone USB.............................................................................831

15.1.3.1.1.4 P&E Cyclone Ethernet.......................................................................832

15.1.3.1.1.5 P&E Cable DSC.................................................................................834

15.1.3.1.1.6 Open Source JTAG.............................................................................834

15.1.3.1.2 Advanced Programming/Debug Options..................................................................837

15.1.3.1.2.1 Alternative Algorithm Functionality..................................................838

15.1.3.1.2.2 Non-Volatile Memory Preservation...................................................839

15.1.3.1.2.3 Enable Flash Programming Dialog....................................................839

15.1.3.2 Connection Assistant......................................................................................................................839

15.1.4 Active Mode Menu Options.............................................................................................................................840

Chapter 16
Connections - S12Z Architecture

16.1 P&E Hardware Interface for S12Z.................................................................................................................................841

16.1.1 New Project Wizard.........................................................................................................................................841

16.1.2 Launch Configurations Settings.......................................................................................................................843

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

30 Freescale Semiconductor, Inc.



Section number Title Page

16.1.3 Connection Options..........................................................................................................................................844

16.1.3.1 Changing P&E Connection Settings..............................................................................................844

16.1.3.1.1 P&E Hardware Interface Connection-Specific Options...........................................848

16.1.3.1.1.1 P&E USB Multilink Universal [FX]/USB Multilink.........................848

16.1.3.1.1.2 P&E Cyclone Serial............................................................................850

16.1.3.1.1.3 P&E Cyclone USB.............................................................................852

16.1.3.1.1.4 P&E Cyclone Ethernet.......................................................................853

16.1.3.1.1.5 P&E TraceLink USB..........................................................................855

16.1.3.1.1.6 P&E TraceLink Ethernet....................................................................856

16.1.3.1.1.7 Open Source BDM.............................................................................858

16.1.3.1.2 Advanced Programming/Debug Options..................................................................862

16.1.3.1.2.1 Enable Flash Programming Dialog....................................................862

16.1.3.1.2.2 Non-Volatile Memory Preservation...................................................862

16.1.3.1.2.3 Alternative Algorithm Functionality..................................................863

16.1.3.2 Connection Assistant......................................................................................................................863

16.1.4 Active Mode Menu Options.............................................................................................................................864

Chapter 17
Common Connection Features

17.1 Working with Flash Programmer....................................................................................................................................865

17.1.1 Use Pre-Defined Programming Task...............................................................................................................866

17.1.2 Importing Pre-defined Task.............................................................................................................................866

17.1.3 Creating Flash Programmer Target Task.........................................................................................................869

17.1.4 Configure the Flash Programmer Target Task.................................................................................................870

17.1.4.1 Adding Flash Device......................................................................................................................871

17.1.4.2 Specify Target RAM Settings........................................................................................................873

17.1.4.3 Add Flash Programmer Actions.....................................................................................................874

17.1.4.3.1 Add Erase/Blank Check Actions..............................................................................875

17.1.4.3.2 Add Program/Verify Actions....................................................................................877

17.1.4.3.3 Add Checksum Actions............................................................................................879

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 31



Section number Title Page

17.1.4.3.4 Add Diagnostics Actions..........................................................................................881

17.1.4.3.5 Add Dump Flash Actions..........................................................................................882

17.1.4.3.6 Add Protect/Unprotect Actions.................................................................................883

17.1.4.3.7 Add Secure/Unsecure Actions..................................................................................884

17.1.4.3.8 Remove an Action.....................................................................................................884

17.1.5 Run Flash Programmer Target Task................................................................................................................885

17.1.6 Create Flash Programmer Task........................................................................................................................885

17.1.7 Flash Programmer for MCF5441X..................................................................................................................886

17.2 Flash Programmer Tutorials...........................................................................................................................................887

17.2.1 Tutorial A: Import and Execute HCS08 Flash Task........................................................................................888

17.2.1.1 Import HCS08 Program Flash Task...............................................................................................888

17.2.1.2 Execute MC9S08QG8 Task...........................................................................................................889

17.2.2 Tutorial B: Import and Execute ColdFire Flash Task......................................................................................890

17.2.2.1 Import MCF5213 Program Flash Task..........................................................................................890

17.2.2.2 Execute MCF5213_INTFLASH Task...........................................................................................891

17.2.3 Tutorial C: Create Erase Memory Task for HCS08.........................................................................................892

17.2.3.1 Set Up HCS08 Erase Task.............................................................................................................892

17.2.3.2 Execute HCS08 Erase Task...........................................................................................................896

17.2.4 Tutorial D: Create Erase Flash Memory Task for ColdFire............................................................................897

17.2.4.1 Set Up ColdFire Erase Task...........................................................................................................897

17.2.4.2 Execute ColdFire Erase Task.........................................................................................................902

17.2.5 Tutorial E: Create Download Program Task for ColdFire...............................................................................903

17.2.5.1 Set Up Download Task..................................................................................................................903

17.2.5.2 Execute ColdFire Program Task....................................................................................................906

17.2.6 Tutorial F: Import and Execute Power Architecture Flash Task.....................................................................907

17.2.6.1 Import Power Architecture Program Flash Task...........................................................................907

17.2.6.2 Execute Predefined Task................................................................................................................908

17.2.7 Tutorial G: Switching Between Lock-Step and Decoupled Parallel Modes....................................................908

17.2.7.1 Import DPM Target Task...............................................................................................................909

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

32 Freescale Semiconductor, Inc.



Section number Title Page

17.2.7.2 Execute Predefined DPM Task......................................................................................................910

17.2.7.3 Hardware Reset..............................................................................................................................910

17.2.7.4 Import LSM Target Task...............................................................................................................911

17.2.7.5 Execute Predefined LSM Task......................................................................................................912

17.2.8 Tutorial H: Create and Execute Diagnostics Action Task...............................................................................912

17.2.8.1 Set Up Diagnostics Action Task....................................................................................................913

17.2.8.2 Execute Diagnostics Action Task..................................................................................................916

17.2.9 Tutorial I: Dump Entire Flash..........................................................................................................................916

17.2.10 Tutorial J: Change Protection of Sector...........................................................................................................917

17.2.11 Tutorial K: Fast Access to Target Tasks Editors.............................................................................................919

17.2.11.1 Editing Tasks in Project.................................................................................................................919

17.2.11.2 Editing Tasks Imported in Previous Session..................................................................................919

17.2.11.3 Storing Task to File........................................................................................................................920

17.2.12 Tutorial L: Programming with Simple Flash...................................................................................................921

17.2.12.1 Erasing Flash Device.....................................................................................................................923

17.2.12.2 Programming File..........................................................................................................................924

17.2.13 Tutorial M: Exporting Target Tasks................................................................................................................924

17.3 Working with Hardware Diagnostics Window...............................................................................................................925

17.4 Manipulating Target Memory.........................................................................................................................................927

17.4.1 Creating Target Task to Import Memory.........................................................................................................927

17.4.2 Creating Target Task to Export Memory.........................................................................................................930

17.4.3 Fill Memory with Data Pattern .......................................................................................................................934

Chapter 18
CRC Utility for All Architectures

18.1 Using CRCgen on Microcontrollers...............................................................................................................................939

18.2 Examples.........................................................................................................................................................................941

18.2.1 ColdFire...........................................................................................................................................................941

18.2.2 PowerPC...........................................................................................................................................................942

18.2.3 Freescale ARM................................................................................................................................................944

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 33



Section number Title Page

18.2.4 GCC ARM.......................................................................................................................................................945

18.2.5 DSC..................................................................................................................................................................946

18.2.6 8/16 bit.............................................................................................................................................................947

18.2.7 S12Z.................................................................................................................................................................949

18.3 Application Example......................................................................................................................................................951

Chapter 19
How to...

19.1 Switch Between Decoupled Parallel and Lock-Step Modes...........................................................................................953

19.1.1 Things to Remember........................................................................................................................................953

19.1.2 Switching from DPM to LSM using VLE.......................................................................................................954

19.1.2.1 Import Target Task.........................................................................................................................954

19.1.2.2 Execute Target Task.......................................................................................................................955

19.1.2.3 Hardware Reset..............................................................................................................................956

19.1.2.4 Unprotect Action............................................................................................................................956

19.1.2.5 Configure the Build Toolbar..........................................................................................................957

Chapter 20
S12Z IEEE-754 Floating Point Library

20.1 Usage...............................................................................................................................................................................962

20.2 Supported IEEE-754 Features Description.....................................................................................................................963

20.2.1 Format..............................................................................................................................................................963

20.2.2 Non-numerical Values.....................................................................................................................................963

20.2.3 Sub-normal Values...........................................................................................................................................963

20.2.4 Unordered Comparisons..................................................................................................................................963

20.2.5 Rounding..........................................................................................................................................................964

20.2.6 Exception Flags................................................................................................................................................964

20.3 Performance....................................................................................................................................................................965

20.3.1 Code Size.........................................................................................................................................................965

20.3.2 Stack Consumption..........................................................................................................................................966

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

34 Freescale Semiconductor, Inc.



Chapter 1
Introduction
Introduces you to the information layout of the manual.

This manual explains how to use the CodeWarrior Development Studio for
Microcontrollers V10.x product. This chapter presents an overview of the manual.

The topics in this chapter are:

• Release Notes - Lists new features, bug fixes, and incompatibilities
• About this Manual - Describes the contents of this manual
• Accompanying Documentation - Describes supplementary CodeWarrior

documentation, third-party documentation, and references.

1.1 Release Notes
Before using the CodeWarrior IDE, read the developer notes. These notes contain
important information about last-minute changes, bug fixes, incompatible elements, or
other topics that may not be included in this manual.

NOTE
The release notes for specific components of the CodeWarrior
IDE are located in the Release_Notes folder in the CodeWarrior
installation directory.

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 35



1.2 About this Manual
Each chapter of this manual describes a different area of software development. The
following table lists the contents of this manual.

Table 1-1. Manual Contents

Chapter / Appendix Description

Introduction This chapter.

Working with Projects Explains how to use the CodeWarrior tools to create and work
with projects.

Build Properties for Bareboard Projects Explains build properties for Microcontrollers bareboard
project.

Working with Debugger Explains how to use the CodeWarrior development tools to
debug a program executing on the simulator or
microcontroller.

Kinetis Cache Viewer Describes the Kinetis Cache Viewer available in CodeWarrior
for Microcontrollers Version 10.x.

Multicore Debugging Explains how to define multiple, arbitrary groupings of cores
and perform multicore operations.

CodeWarrior Command Line Debugging Explains how CodeWarrior supports the command-line
interface.

Build Properties for Linux Project Explains build properties for Microcontrollers Linux project.

Connections - HCS08 Architecture Describes the features and settings of the connections that
interface the CodeWarrior debugger with the HCS08-based
bareboard target and allows it to debug program code on the
target.

Connections - RS08 Describes the features and settings of the connections that
interface the CodeWarrior debugger with the RS08-based
bareboard target, and allow it to debug program code on the
target.

Connections - ColdFire V1/ColdFire+ V1 Describes the features and settings of the connections that
interface the CodeWarrior debugger with the ColdFire V1-
based 10.x target, and allow it to debug program code on the
target.

Connections - ColdFire V2/3/4 Describes the features and settings of the connections that
interface the CodeWarrior debugger with the ColdFire V2/3/4-
based bareboard target, and allow it to debug program code
on the target.

Connections - Qorivva MPC55xx/56xx Describes the features and settings of the connections that
interface the CodeWarrior debugger with the Power
Architecture bareboard target.

Connections — Kinetis Architecture Describes the features and settings of the connections that
interface the CodeWarrior debugger with the Kinetis-based
bareboard target.

Connections - DSC Architecture Describes the features and settings of the connections that
interface the CodeWarrior debugger with the Digital Signal
Controller (DSC) target board.

Connections - S12Z Architecture Describes the features and settings of the connections that
interface the CodeWarrior debugger with the S12Z target
board.

Table continues on the next page...

About this Manual

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

36 Freescale Semiconductor, Inc.



Table 1-1. Manual Contents (continued)

Chapter / Appendix Description

Common Connection Features Explains how to use the CodeWarrior hardware tools for
board bring-up, test, and analysis. Also, explains how to
manipulate target memory.

CRC Utility for All Architectures Describes the CRC utility for all architectures.

How to... Describes additional how to tasks.

S12Z IEEE-754 Floating Point Library Describes the implementation of the floating point arithmetic
as described in the IEEE-754 standard. The following floating
point routines for the S12Z device family are implemented

1.3 Accompanying Documentation

• To view the online help for the CodeWarrior tools, select Help > Help Contents
from the IDE's menu bar. Next, select Microcontrollers V10.x > Targeting
Microcontrollers > Microcontrollers V10.x Targeting Manual from the Contents
list.

• For late-breaking information about new features, bug fixes, known problems, and
incompatibilities, read the release notes in this folder:

<CWInstallDir>\MCU\Release_Notes

where CWInstallDir is the directory that CodeWarrior was installed into.

• For general information about the CodeWarrior IDE and debugger, refer to the
CodeWarrior Common Features Guidein this folder:

<CWInstallDir>\MCU\Help\PDF

Chapter 1 Introduction

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 37



Accompanying Documentation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

38 Freescale Semiconductor, Inc.



Chapter 2
Working with Projects

This chapter explains how to use the CodeWarrior to create and work with projects.

NOTE
The example projects can be accessed from the Help >
Welcome page and are located in [install_dir]/MCU/
CodeWarrior_Examples, where [install_dir] is the location of
the CodeWarrior layout . You can use the Eclipse Import
Wizard to import example projects into your workspace.

The topics in this chapter are:

• Types of Projects
• New Bareboard Project Wizard
• New Linux/uClinux Application Project Wizard
• Creating Projects
• Building Projects
• Debugging Projects
• Deleting Projects
• Porting Classic DSC Project to Eclipse Project

2.1 Types of Projects

CodeWarrior projects organize files and various compiler, linker, and debugger settings
associated with the applications or libraries you develop. You use Microcontrollers New
Project Wizard to create new projects that group these files and settings into build and
launch configurations. This section describes the different types of projects you can
create:

• Bareboard Projects
• Linux Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 39



2.1.1 Bareboard Projects

With CodeWarrior Development Studio for Microcontrollers, you can create a variety of
projects that create ELF executable binary files that run directly on a given target
simulator or board, without a Linux operating system. The type of project you create is
based on selections you make in the New Bareboard Project wizard.

2.1.2 Linux Projects

You can create projects that generate Linux ELF executable binary files for applications.
The project's type is determined by the options you select in the New Linux/ uClinux
Application Project wizard.

2.2 New Bareboard Project Wizard

The Microcontrollers New Bareboard Project wizard presents a series of pages that
prompt you for the features and settings to be used when making your program. For
example, the devices options lets you select the derivative or board you would like to use.
This wizard also helps you specify other settings, such as whether the program executes
on an emulator or simulator rather than actual hardware, and the characteristics of the
connection that communicates with a hardware target.

This topic describes the various pages that the wizard displays as it assists you in creating
a bareboard project. The pages of the wizard can differ based on the project type or
execution target.

The pages of the New Bareboard Project wizard are:

• Create an MCU Bareboard Project Page
• Devices Page
• Connections Page

• 56800/E DSC derivatives
• S08/ RS08 derivatives
• ColdFire derivatives
• Kinetis derivatives

New Bareboard Project Wizard

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

40 Freescale Semiconductor, Inc.



• Qorivva derivatives
• S12Z derivatives

• LSM/DPM Configuration Page
• Power Architecture Core Configuration Page
• Languages Page

• S08/RS08 derivatives
• Languages and Build Tools Options Page

• 56800/E (DSC) derivatives
• Kinetis derivatives
• Qorivva derivatives
• S12Z derivatives

• ColdFire Build Options Page
• ColdFire V1/ColdFire+ V1/Sensors Derivatives
• ColdFire V2-4e/Vx Derivatives

• Rapid Application Development Page
• C/C++ Options Page

2.2.1 Create an MCU Bareboard Project Page

Use this page to specify the project name and the directory where the project files are
located.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 41



Figure 2-1. Create an MCU Bareboard Project Page

The table below describes the purpose of the various options.

Table 2-1. Create an MCU Bareboard Project Page Settings

Option Description

Project Name Enter the name for the new project in this text box.

Note: Do not use the reserved/special characters/symbols
such as < (less than), > (greater than), : (colon), " (double
quote), / (forward slash), \ (backslash), | (vertical bar or
pipe), ? (question mark), @ (at), * (asterisk) in the project
name. sing special characters/symbols in the project name
may result in an unexpected behavior.

Use default location Stores the files required to build the program in the
Workbench's current workspace directory. The project files
are stored in the default location. Clear the Use default
location checkbox and click Browse to select a new location.

Location Specifies the directory that contains the project files. Click
Browse to navigate to the desired directory. This option is
available only when Use default location checkbox is clear.

2.2.2 Devices Page

New Bareboard Project Wizard

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

42 Freescale Semiconductor, Inc.



Use this page to select the derivative or board you would like to use.

Figure 2-2. Devices Page

NOTE
The pages of the wizard change depending on the selected
derivative or board.

2.2.3 Connections Page

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 43



Use this page to select a connection to use for the project. This section explains the
connections available for the S08, RS08, ColdFire, Kinetis, DSC, Qorivva and S12Z
derivatives.

In this topic the connections page for the following derivatives are listed:

• 56800/E DSC Derivatives
• S08/ RS08 Derivatives
• ColdFire Derivatives
• Kinetis Derivatives
• Qorivva Derivatives
• S12Z Derivatives

2.2.3.1 56800/E DSC derivatives

If you select an 56800/E derivative or board in the Devices page, the Connections page
appears.

New Bareboard Project Wizard

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

44 Freescale Semiconductor, Inc.



Figure 2-3. Connections Page - 56800/ E DSC Derivatives

NOTE
The options appear enabled or grayed out, depending on the
derivative or board you selected. For example, the DSC
Simulator connection will appear grayed out if you select any
of the MC56F844xx, MC56F827xx, MC56F845xx, or
MC56F847xx devices.

The table below lists and describes the connections available on the Connections page
for DSC derivatives.

Table 2-2. Connections Page Settings for 56800/E DSC Derivatives

Option Description

DSC Full Chip Simulation Connects to the DSC Full Chip Simulation for simulation of all
on-chip peripherals.

Table continues on the next page...

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 45



Table 2-2. Connections Page Settings for 56800/E DSC Derivatives (continued)

Option Description

P&E USB MultiLink Universal [FX] / USB MultiLink Connects to the P&E USB MultiLink Universal [FX] / USB
MultiLink.

P&E Cable DSC (Windows XP 32 bit Parallel Port only) Connects to the P&E Cable DSC. This option is supported on
Windows XP 32-bit only.

P&E Cyclone Connects to the Cyclone

Open Source JTAG Connects to the Open Source JTAG

Freescale USB TAP Connects to the Freescale USB TAP.

2.2.3.2 S08/ RS08 derivatives

If you select an S08/RS08 derivative or board in the Devices page, the Connections page
appears.

New Bareboard Project Wizard

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

46 Freescale Semiconductor, Inc.



Figure 2-4. Connections Page - S08/RS08 Derivatives

NOTE
The options appear enabled or grayed out, depending on the
derivative or board you selected.

The table below lists and describes the connections available on the Connections page
for S08/RS08 derivatives.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 47



Table 2-3. Connections Page Settings for HCS08/RS08 Derivatives

Option Description

P&E Full Chip Simulation Connects to the P&E Full Chip Simulation for simulation of all
on-chip peripherals.

P&E USB MultiLink Universal [FX] / USB MultiLink Connects to the P&E USB MultiLink Universal [FX] / USB
MultiLink.

P&E Cyclone Connects to the P&E Cyclone (USB).

Open Source BDM Connects to the Open Source BDM.

2.2.3.3 ColdFire derivatives

If you select a ColdFire derivative or board in the Devices page, the Connections page
appears.

Figure 2-5. Connections Page - ColdFire Derivatives

New Bareboard Project Wizard

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

48 Freescale Semiconductor, Inc.



NOTE
The options appear enabled or grayed out, depending on the
derivative or board you selected.

The table below explains the connections available on the Connections page for ColdFire
derivatives.

Table 2-4. Connections Page Settings for ColdFire Derivatives

Option Description

P&E USB MultiLink Universal [FX] / USB MultiLink Connects to the P&E USB MultiLink Universal [FX] / USB
MultiLink.

P&E Cyclone Connects to the P&E Cyclone (USB).

P&E Cyclone Connects to the P&E Cyclone through the host USB port.

P&E TraceLink Connects to the P&E TraceLink through the host USB port.

Open Source BDM Connects to the Open Source BDM.

Freescale USB TAP Connects to the Freescale USB TAP.

Freescale Ethernet TAP Connects to the Freescale Ethernet TAP.

2.2.3.4 Kinetis derivatives

If you select a Kinetis board or derivative in the Devices page, the Connections page
appears.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 49



Figure 2-6. Connections Page - Kinetis Derivatives

The table below explains the connections available on the Connections page.

Table 2-5. Connections Page Settings for Kinetis Derivatives

Option Description

P&E USB MultiLink Universal [FX] / USB MultiLink Connects to the P&E USB MultiLink Universal [FX] / USB
MultiLink.

P&E Cyclone Connects to the P&E Cyclone (USB default).

P&E TraceLink Connects to the P&E TraceLink (USB default).

Open Source JTAG Connects to the Open Source JTAG.

OpenSDA Connects to the OpenSDA.

Segger J-Link / J-Trace / SWO (SWD based) Connects to the Segger J-Link / J-Trace / SWO (SWD
based)..

2.2.3.5 Qorivva derivatives

If you select a Qorivva board or derivative in the Devices page, the Connections page
appears.

New Bareboard Project Wizard

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

50 Freescale Semiconductor, Inc.



Figure 2-7. Connections Page - Qorivva Derivatives

The table below explains the connections available on the Connections page.

Table 2-6. Connections Page Settings for Qorivva Derivatives

Option Description

P&E USB MultiLink PPCNEXUS Connects to the P&E USB MultiLink PPCNEXUS.

P&E USB MultiLink Universal [FX] / USB MultiLink Connects to the P&E USB MultiLink Universal [FX] / USB
MultiLink.

P&E Cyclone Connects to the P&E Cyclone (USB default).

Open Source JTAG Connects to the Open Source JTAG.

NOTE
The CodeWarrior debugger supports NEXUS ISTO IEEE
5001-2003 and NEXUS ISTO IEEE 5001-2010 for Qorivva
families.

2.2.3.6 S12Z derivatives

If you select an S12Z board or derivative in the Devices page, the Connections page
appears.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 51



Figure 2-8. Connections Page - S12Z Derivative

The table below explains the connections available on the Connections page.

Table 2-7. Connections Page Settings for S12Z Derivative

Option Description

P&E USB MultiLink Universal [FX] / USB MultiLink Connects to the P&E USB MultiLink Universal [FX] / USB
MultiLink.

P&E Cyclone Connects to the P&E Cyclone(USB default).

P&E TraceLink Connect to P&E TraceLink (USB default).

Open Source BDM Connects to the Open Source BDM.

2.2.4 LSM/DPM Configuration Page

New Bareboard Project Wizard

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

52 Freescale Semiconductor, Inc.



Use this page to select the Lock-Step Mode (LSM) and Decoupled Parallel Mode
(DPM) configuration. This is predetermined by a bit in the shadow flash and cannot be
changed at runtime.

Figure 2-9. DPM/LSM Configuration Page

NOTE
This page appears only for Qorivva's MPC56xxK and
MPC56xxL families.

The table below explains the connections available on the DPM/LSM Configuration
page.

Table 2-8. DPM/LSM Configuration Page Settings

Option Description

Lock-Step Mode (LSM) Intended for safety critical systems that require redundancy.

Decoupled Parallel Mode (DPM) Intended to increase performances that can be estimated in
first approximation as about 1.6x the performance of the LS
mode.

NOTE
Many devices in the 55xx/56xx family are multicore devices
(multiple e200 and eTPU cores). The debugger shall provide
multicore debugging for the 55xx/56xx devices having
multicore built in. This extends to both lock-step mode (LS

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 53



mode or LSM) as well to Decoupled Parallel Mode (DP mode
or DPM).

2.2.5 Power Architecture Core Configuration Page

Use this page to provide Power Architecture configuration when creating your project.

Figure 2-10. Power Architecture Core Configuration Page

NOTE
This page appears only for Qorivva’s MPC5668E/G Family
derivatives.

The following table describes the options available for the Power Architecture Core
Configuration page.

Table 2-9. Add Files Page Settings

Option Description

e200z6 Select to generate core for e200z6 core.

e200z6 + e200z0h Select to generate core for e200z6 and e200z0h core.

New Bareboard Project Wizard

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

54 Freescale Semiconductor, Inc.



2.2.6 Languages Page

Use this page to select the programming language that you want to use for writing the
program's source code. In this topic:

• S08/RS08 derivatives

2.2.6.1 S08/RS08 derivatives

If you select an S08/RS08 derivative, the languages page appears. You can make multiple
selections, creating the code in multiple formats.

Figure 2-11. Languages page - S08/RS08 derivative

NOTE
The options appear enabled or grayed out, depending on the
derivative or board you selected.

The table below explains the options available on this page.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 55



Table 2-10. Languages page settings - S08/RS08 derivatives

Group / Option Description

C Checking the C checkbox sets up your application with ANSI
C-compliant startup code, and initializes global variables.

C++ Checking the C++ checkbox sets up your application with
ANSI C++ startup code, and performs global class object
initialization.

Relocatable Assembly Checking the Relocatable checkbox enables you to split up
the application into multiple assembly source files. The source
files are linked together using the linker.

Absolute Assembly Checking the Absolute Assembly checkbox enables you to
use only one single assembly source file with absolute
assembly. There is no support for relocatable assembly or
linker.

NOTE
The option you select also sets up default compiler/linker
options for the toolchain. For example, if you plan to use the C
language in your source code files, check the C checkbox. If
you plan to write the program using C++, check the C++
checkbox.

2.2.7 Languages and Build Tools Options Page

Use this page to select the programming language, build tools options, and float point
format support that you want to use when writing the program's source code.

• 56800/E (DSC) derivatives
• Kinetis Derivatives
• Qorivva derivatives
• Languages Page

2.2.7.1 56800/E (DSC) derivatives

Use this page to select the programming language that you want to use when writing the
program's source code for 56800/E (DSC) or S12Z derivative. You can make only single
selection, creating the code in single formats.

New Bareboard Project Wizard

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

56 Freescale Semiconductor, Inc.



Figure 2-12. Languages page - DSC/S12Z derivatives

The table below explains the options available on this page.

Table 2-11. Languages page settings - DSC/S12Z derivatives

Option Description

C Select this option to include C language support in your
project.

C++ Select this option to include C++ language support in your
project.

Mixed C and ASM Select this option to include mixed C/assembly language
support in your project.

Simple Assembly Select this option to include assembly language support in
your project.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 57



2.2.7.2 Kinetis derivatives

Use this page to select the programming language that you want to use when writing the
program's source code for Kinetis derivative. You can make only single selection,
creating the code in single formats.

Figure 2-13. Language and Build Tools Options page - Kinetis derivatives

NOTE
Availability of the options appearing on the page, depends on
the board or derivative selected.

New Bareboard Project Wizard

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

58 Freescale Semiconductor, Inc.



The following table explains the options available on this page.

Table 2-12. Language and Build Tools Options Page settings - Kinetis derivatives

Option Description

Language

C Select this option to set up your application with ANSI C-
compliant startup code, and initializes global variables.

C++ Select this option to set up your application with ANSI C++
startup code, and performs global class object initialization.

ASM Select this option to include assembly language support in
your project.

Floating Point

Software Select this option to include Software floating point support in
the project.

Hardware ( -mfloat-abi=hard) vs. (-fp vfpv4) Select to support hardware floating point. Using this option
GCC build tools generates the code using hardware floating-
point instructions and uses FPU-specific calling convention -
mfloat-abi=hard. For Freescale Build tools, this option
allows performing single precision float operations through
SPFPU hardware instructions support: ( -fp vfpv4).

Hardware ( -mfloat-abi=softfp) Select to support hardware floating point. This option allows
GCC build tools to generate code using hardware floating-
point instructions, but still uses the soft-float calling
conventions.

Hardware ( -mfloat-abi=softfp -fshort-double) Select to support hardware floating point. Using this option
GCC build tools generates code using hardware floating-point
instructions, but still uses the soft-float calling conventions.
Also, use same size for double as for float. WARNING :
The -fshort-double switch causes GCC to generate code
that is not binary compatible with code generated without that
switch. Use it to conform to a non-default application binary
interface.

I/O Support

UART (default) Configures how the library deals with the console (e.g. printf()
or puts()). With `UART' it uses the physical serial device and
connection.

Debugger Console Configures how the library deals with the console (e.g. printf()
or puts()). With `Debugger Console' the library uses a virtual
connection with the debugger (also known as `semi hosting').

No I/O No Console Support.

ARM Build Tools

GCC Select this option to use GCC build tools for the project.

Freescale Select this option to use Freescale build tools for the project.

2.2.7.3 Qorivva derivatives

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 59



Use this page to select the programming language that you want to use when writing the
program's source code for Qorivva derivatives. The following figure shows the
Language and Build Tools Options Page for the Qorivva derivatives.

Figure 2-14. Language and Build Tools Options page - Qorivva derivatives

NOTE
Availability of the options appearing on the page, depends on
the board or derivative selected.

The following table explains the options available on this page.

Table 2-13. Language and Build Tools Options page settings - Qorivva derivatives

Option Description

Language

C Checking the C checkbox sets up your application with ANSI
C-compliant startup code, and initializes global variables.

Table continues on the next page...

New Bareboard Project Wizard

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

60 Freescale Semiconductor, Inc.



Table 2-13. Language and Build Tools Options page settings - Qorivva derivatives
(continued)

Option Description

C++ Checking the C++ checkbox sets up your application with
ANSI C++ startup code, and performs global class object
initialization.

Instruction Set Options

Use the VLE instruction set Check to enable the compiler VLE options and select the V
libraries. This checkbox is ignored, if the selected processor
does not support VLE.

Use the BookE instruction set Check to enable the compiler BookE options.

Floating Point

None Select if you do not want to include floating point support;
gives best code density.

Software Select if you want to include software floating point support.

SPFP Select if you want single precision floating point support for
the project. It performs single precision float operations
through SPE-EFPU hardware instruction support and
performs double precision float operations by utilizing the
software emulation library.

SPFP_Only Select if you want single precision floating point only support
for the project. The compiler considers 'double' and 'long
double' data types as single precision 'float' data type.

2.2.7.4 S12Z derivatives

Use this page to select the programming language that you want to use when writing the
program's source code for S12Z derivative.

The following figure shows the Language and Build Tools Options page for S12Z
derivatives.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 61



Figure 2-15. Language and Build Tools Options page - S12Z derivatives

The following table lists the description of the options available in the Language and
Build Tools Options page for S12Z derivatives.

Table 2-14. Language and Build Tools Options page settings - S12Z derivatives

Option Description

Language

Table continues on the next page...

New Bareboard Project Wizard

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

62 Freescale Semiconductor, Inc.



Table 2-14. Language and Build Tools Options page settings - S12Z derivatives (continued)

Option Description

C Check this checkbox to include C language support in the
project.

C++ Check this checkbox to include C++ language support in the
project.

Mixed C and ASM Check this checkbox to include Mixed C/Asm language
support in the project.

ASM Check this checkbox to include assembly language support in
the project.

Select the floating point format supported. Select "None"
for best code density.

None Select this option if you do not want to include floating point
support; gives best code density.

Float is IEEE32, Double is IEEE32 optimized Select this option to use all float and double variables as 32-
bit/IEEE32. Library is optimized, but lose some of the
IEEE754 standard compliance.

Float is IEEE32, Double is IEEE32 compliant Select this option to use all float and double variables as 32-
bit/IEEE32. Library is IEEE754 compliant but loses some of
the performance.

Float is IEEE32, Double is IEEE64 optimized Select this option to use float variables as 32-bit/IEEE32 and
double variables as 64-bit/IEEE64. Library is optimized, but
loses some of the IEEE754 standard compliance.

Float is IEEE32, Double is IEEE64 compliant Select this option to use all float variables as 32-bit/IEEE32
and double variables are 64-bit/IEEE64. Library is IEEE754
compliant, but loses some of the performance.

Which memory model shall be used?

Small Select this option to enable the Small Memory Model. In this
model data fits in the 14-bit addresses (< 16 KB).

Medium Select this option to enable the Medium Memory Model. In
this model data fits in 18-bit addresses (< 256 KB).

Large Select this option to enable the Large Memory Model. In this
model data fits in 24-bit addresses.

NOTE
The IEEE formats recognize several special bit patterns for
special values. The number 0 (zero) is encoded by the bit
pattern consisting of zero bits only. Other special values such as
"Not a number", "infinity", -0 (minus zero) and denormalized
numbers do exist. Refer to the IEEE standard documentation
for details. Except for the 0 (zero) and -0 (minus zero) special
formats, not all special formats may be supported for specific
backends.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 63



2.2.8 ColdFire Build Options Page

Use this page to select the build tool options for your ColdFire projects. In this topic:

• ColdFire V1/ColdFire+ V1/Sensors Derivatives
• ColdFire V2-4e/Vx Derivatives

2.2.8.1 ColdFire V1/ColdFire+ V1/Sensors Derivatives

You can use this page to enable C++, porting processor macro, console, floating point
support, and optimization level for ColdFire V1/ColdFire+ V1/Sensors derivatives.

New Bareboard Project Wizard

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

64 Freescale Semiconductor, Inc.



Figure 2-16. ColdFire Build Options Page - ColdFire V1/ColdFire+ V1/ Sensors

The table below explains the options available on this page.

Table 2-15. Build Options Page Settings - ColdFire V1/ColdFire+ V1/ Sensors

Option Description

Enable C++ Support Check to enable C++ support

No Porting Support Select to disable the porting processor macro that helps
porting code from HCS08 to V1

Enable Porting Support Select to enable the porting processor macro that helps
porting code from HCS08 to V1

No Console Support Select to disable the console support

Enable Console Support Select to enable the console support

None Select to disable the floating point support

Float is IEEE64, double is IEEE64 Select to enable the floating point support

Table continues on the next page...

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 65



Table 2-15. Build Options Page Settings - ColdFire V1/ColdFire+ V1/ Sensors (continued)

Option Description

No Optimizations Select to disable the optimization level

Easy Debug Select to enable the Level 1 code size optimizations plus
register coloring and peephole

Full Optimizations Select to enable the full optimizations

2.2.8.2 ColdFire V2-4e/Vx Derivatives

Use this page to enable C++, porting processor macro, hardware startup, and optimization
level for ColdFire V2/V3/V4/V4e/Vx Evaluation Boards/Vx Tower Boards derivatives.

Figure 2-17. ColdFire Build Options Page - ColdFire V2-4e/Vx Derivatives

The table below explains the options available on this page.

Table 2-16. Build Options Page Settings - ColdFire V2-4e/Vx

Option Description

Enable C++ Support Check to enable C++ support

Table continues on the next page...

New Bareboard Project Wizard

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

66 Freescale Semiconductor, Inc.



Table 2-16. Build Options Page Settings - ColdFire V2-4e/Vx (continued)

Option Description

Full Board Support Select to provide full support for the selected board. The
created project provides standard input output support
through console and terminal window.

Minimal Hardware Support Select if you do not want to provide board initialization
support. The project can be customized or used with the
Instruction Set Simulator. The standard input output support is
enabled for the Console build target. However, you need to
enable UART support for standard input output support
through UART, by providing the correct system clock.

No Optimizations Select to disable optimization level

Easy Debug Select to enable Level 1 code size optimizations plus register
coloring and peephole

Full Optimizations Select to enable full optimizations

2.2.9 Rapid Application Development Page

Use this page to provide Rapid Application Development (RAD) support when writing
your program.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 67



Figure 2-18. Rapid Application Development Page

Select one of the available RAD options to set up special views in the IDE where you can
rapidly configure peripheral devices on the MCU, or pick from a library of field-tested
code modules that can implement various device services such as timer interrupts, or a
high speed serial interface.

NOTE
This page is not available for Qorivva, and some ColdFire
derivatives.

NOTE
For more information on how to use the features of Processor
Expert, refer to the Processor Expert User Guide.

New Bareboard Project Wizard

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

68 Freescale Semiconductor, Inc.



The table below shows the various RAD options available and their purpose.

Table 2-17. Rapid Application Development Page Settings

Option Description

Rapid Application Development

None No RAD support provided. The wizard's default startxx.c file
sets up the MCU's stack, its memory management unit (if
any) and the C/C++ language's runtime.

Processor Expert The wizard provides views in the C/C++ Perspective that lets
you set up the MCU's interrupts, vector table and device
initialization. It also provides you with a choice of configurable
support modules that implement software services on various
MCU peripherals.

Start with perspective designed for

Hardware configuration (pin muxing and device initialization) Select this option to enable hardware perspective for pin
muxing and peripheral configuration.

Use current perspective Select this option to use current perspective and show the
Processor Expert views.

Initialize all peripherals Select this option to initialize all peripherals.

2.2.10 C/C++ Options Page

Use this page to select the level of startup code you want to produce, the memory model,
and the appropriate floating point format support.

NOTE
This page is available only for S08/RS08 derivatives.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 69



Figure 2-19. C/C++ Options Page

NOTE
The availability of the options appearing on the page, depends
on the derivative or board selected.

The table below explains the options available on this page.

Table 2-18. C/C++ Options Page Settings

Option Description

Tiny Assumes that data pointers have 8-bit addresses unless
explicitly specified with the keyword __far.

Table continues on the next page...

New Bareboard Project Wizard

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

70 Freescale Semiconductor, Inc.



Table 2-18. C/C++ Options Page Settings (continued)

Option Description

Small Use the Small memory model if both the code and the data fit
into the 64-kilobyte address space. By default, all variables
and functions are accessed with 16-bit addresses. The
compiler supports banked functions or paged variables in this
memory model, but all accesses must be explicitly handled.

Banked Banked memory model uses banked function calls by default,
but the default data access is still 16-bit. Because the
overhead of the far function call is not very large, this memory
model suits all applications with more than 64-kilobytes of
code. Data paging can be used, however all far objects and
pointers to them must be specially declared.

None Select for the best code intensity.

Float is IEEE32, Double is IEEE32 optimized All float and double variables are 32-bit IEEE32. Library is
optimized, but loses some of the IEEE754 standard
compliance.

Float is IEEE32, Double is IEEE64 optimized All float variables are 32-bit/IEEE32 and Double variables are
64-bit/IEEE64. Library is optimized, but loses some of the
IEEE754 standard compliance.

Minimal startup code Produces the best code density. The startup code initializes
the stack pointer and calls the main function. No initialization
of global variables is done, giving you the best speed/code
density and a fast startup time. The application code must
address variable initialization. ANSI requires variable
initialization and therefore this option is not ANSI compliant.

ANSI startup code Initializes global variables/objects and calls the application
main routine.

2.3 New Linux/uClinux Application Project Wizard

When you start the Microcontrollers New Linux/uClinux Application Project wizard, it
presents you with a sequence of pages that prompt you for the features and settings to be
used when making your program. For example, the devices options lets you select the
ColdFire derivative or board you would like to use. Other options let you to specify other
settings, such as whether the program executes on an emulator or simulator rather than
actual hardware, and the characteristics of the connection that communicates with a
hardware target.

This topic describes the various pages that the wizard displays as it assists you in creating
a bareboard project. The pages that the wizard presents can differ based upon the option
of project type or execution target.

The pages of the New Linux/uClinux Application Project wizard are:

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 71



• Create a Linux/uClinux Application Project Page
• Device used for Linux Application Debug page
• Project Language and Output Page
• Connections Page
• Application Debug Options Page

2.3.1 Create a Linux/uClinux Application Project Page

Use this page to specify the project name and the directory where the project files are
located.

Figure 2-20. Create a Linux/uClinux Application Project page

The table below describes the purpose of the various options.

Table 2-19. Create a Linux/uClinux Application Project Page Settings

Option Description

Project Name Enter the name for the new project in this text box.

Use default location Stores the files required to build the program in the
Workbench's current workspace directory. The project files

Table continues on the next page...

New Linux/uClinux Application Project Wizard

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

72 Freescale Semiconductor, Inc.



Table 2-19. Create a Linux/uClinux Application Project Page Settings (continued)

Option Description

are stored in the default location. Clear the Use default
location checkbox and click Browse to select a new location.

Location Specifies the directory that contains the project files. Click
Browse to navigate to the desired directory. This option is
only available when Use default location checkbox is clear.

2.3.2 Device used for Linux Application Debug page

Use this page to select the derivative or board you would like to debug.

Figure 2-21. Devices used for Linux Application Debug Page

The table below describes the purpose of the various options.

Table 2-20. Devices used for Linux Application Debug Page

Option Description

ColdFire V2 > ColdFire V2 uClinux Select to create ColdFire V2 Core uClinux applications,
libraries, and kernel modules.

Table continues on the next page...

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 73



Table 2-20. Devices used for Linux Application Debug Page (continued)

Option Description

ColdFire V3 > ColdFire V3 uClinux Select to create ColdFire V3 Core uClinux applications,
libraries, and kernel modules.

ColdFire V4 > ColdFire V4 GNU Linux Select to create ColdFire V2 Core GNU Linux applications,
libraries, and kernel modules.

ColdFire V4e > ColdFire V4e GNU Linux Select to create ColdFire V4e Core GNU Linux applications,
libraries, and kernel modules.

2.3.3 Project Language and Output Page

Use this page to select the programming language that you want to use when writing the
program's source code. You can make multiple selections, creating the code in multiple
formats.

Figure 2-22. Project Language and Output Page

The table below describes the purpose of the various options.

New Linux/uClinux Application Project Wizard

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

74 Freescale Semiconductor, Inc.



NOTE
Based on your selection, the IDE may show or hide some
options.

Table 2-21. Project Language and Output Page Settings

Option Description

Application Select if you want the output to be an application. By default,
the extension of a loadable module is .elf.

Static Library Select if you want the output to be a static library. By default,
the extension of a static library is .a.

Shared Library Select if you want the output to be a shared library. By
default, the extension of a shared library is .so.

Kernel Loadable Module Select if you want the output to be a kernel loadable module.
By default, the extension of a loadable module is .o.

C Select to add C language support.

C and C++ Select to add C and C++ language support. Available for
Application and Static options only.

C++ Select to add C++ language support. Available for Application
and Static options only.

2.3.4 Connections Page

Use this page to select a connection to use for the project. Depending on the selected
derivative or board, the connections will appear enabled or grayed out.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 75



Figure 2-23. Connections Page

The table below describes the purpose of the various options.

Table 2-22. Connections Page Settings

Option Description

CodeWarrior Linux AppTRK Ethernet Available only if the Application option is selected on the
Project Language and Output page.

CodeWarrior Linux AppTRK Serial Available only if the Application option is selected on the
Project Language and Output page.

2.3.5 Application Debug Options Page

Use this page to specify the application debug options for a project.

New Linux/uClinux Application Project Wizard

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

76 Freescale Semiconductor, Inc.



Figure 2-24. Application Debug Options Page

The table below describes the purpose of the various options.

Table 2-23. Application Debug Options Settings

Option Description

Kernel source tree path for module projects Click Browse to specify or enter the kernel source tree path
for module projects.

Ignore kernel source tree path Select to ignore the kernel source tree path.

Remote download path Specify the remote download path.

CodeWarrior Linux AppTRK IP Address Specify the CodeWarrior Linux AppTRK IP Address.

CodeWarrior Linux AppTRK IP Port Specify the CodeWarrior Linux AppTRK IP port number.

2.4 Creating Projects

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 77



The New Bareboard Project and New Linux/uClinux Application Project wizards
help you to quickly create new projects. The wizard generates a project with placeholder
files and default settings (build and launch configurations) specific targets. After the
project has been created, you can easily change any default setting to suit your needs.

The following topics explain the steps to create Bareboard and Linux/uClinux
Application projects for HCS08, RS08, ColdFire V1, ColdFire V2-4e, Kinetis, Qorivva
and S12Z derivatives.

• Launching Workbench
• Creating Bareboard Projects
• Creating Linux/uClinux Application Project

2.4.1 Launching Workbench

To launch the CodeWarrior IDE for creating, building and debugging projects:

1. Select Start > Programs > Freescale CodeWarrior > CW for MCU v10.x >
CodeWarrior.

The WorkSpace Launcher dialog box appears and prompts you to select a
workspace to use.

Figure 2-25. WorkSpace Launcher Dialog Box
2. Click OK to accept the default workspace. To use a workspace different from the

default, click Browse and specify the desired workspace.

The IDE starts and displays the Welcome page.

Creating Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

78 Freescale Semiconductor, Inc.



NOTE
You can also select the Use this as the default and do not
ask again checkbox to set default/selected path as a default
location for storing all your projects.

3. Click the Go to Workbench link.

The Workbench window appears.

2.4.2 Creating Bareboard Projects

The following topics explain the steps to create bareboard projects for S08/RS08,
ColdFire, Kinetis, Qorivva, 56800/E(DSC), and S12Z architectures.

• Creating Target Board Projects for S08/RS08
• Creating Target Board Projects for ColdFire V1/ColdFire+ V1/Sensors
• Creating Target Board Projects for ColdFire V2/V3/V4/V4e/Vx
• Creating Target Board Project for Kinetis
• Creating Target Board Project for Qorivva
• Creating Target Board Projects for 56800/E (DSC)
• Creating Target Board Projects for S12Z

NOTE
The Full Chip Simulation is supported only by the S08, RS08
and 56800/E (DSC) derivatives.

2.4.2.1 Creating Target Board Projects for S08/RS08

To create a new simulator project for an S08/RS08 derivative using the New Bareboard
Project wizard:

1. Launch the Workbench.

NOTE
For information about launching the Workbench, refer to
the topic Launching Workbench.

2. Select File > New > Bareboard Project , from the IDE menu bar.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 79



The Create an MCU bareboard Project page of the New Bareboard Project
wizard appears.

3. Specify a name for the new project. For example, enter the project name as Project_1.

NOTE
If you do not want to use the default location, clear the Use
default location checkbox. In the Location text box, enter
the full path of the directory in which you want to create
your project including the project name. Alternatively,
click Browse and select the desired location from the
Browse For Folder dialog box and click OK. Ensure that
you append the path with the name of the project to create a
new location for your project.

Figure 2-26. New Bareboard Project wizard - Create an MCU Bareboard Project page
4. Click Next.

The Devices page appears.

5. Expand the desired tree control and select the derivative or board you would like to
use. For example, select S08 > HCS08A Family > MC9S08AC128 for an S08
derivative.

NOTE
If you want create a library project, select Library from the
Project Type / Output group. For this example keep the
default setting to create an application project.

Creating Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

80 Freescale Semiconductor, Inc.



Figure 2-27. New Bareboard Project wizard - Devices page
6. Click Next.

The Connections page appears.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 81



Figure 2-28. New Bareboard Project wizard - Connections Page
7. Check the appropriate connection.

NOTE
You can select multiple connections by checking
appropriate checkboxes in the Connections page. By
default, the P&E USB MultiLink Universal [FX] / USB
MultiLink checkbox is checked.

8. Click Next.

The Languages page appears.

Creating Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

82 Freescale Semiconductor, Inc.



Figure 2-29. New Bareboard Project wizard - Languages page
9. Select the programming language you want to use. For example, check the C

checkbox.

NOTE
Availability of the options depends on the derivative or
board you selected. For example, C++ option appears grey
and is not accessible for RS08 derivatives.

10. Click Next.

The Rapid Application Development page appears.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 83



Figure 2-30. New Bareboard Project wizard - Rapid Application Development page

NOTE
The Processor Expert option is disabled, if you select only
the Relocatable Assembly or Absolute Assembly in the
Connections page.

11. Select the appropriate option to support rapid application development.
• None - Select to generate only startup code.
• Processor Expert - Select to generate the device initialization code, including

low-level drivers.
12. Click Next.

The C/C++ Options page appears.

Creating Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

84 Freescale Semiconductor, Inc.



Figure 2-31. New Bareboard Project wizard - C/C++ Options page

NOTE
Some options may appear grey and are not accessible. The
availability of the options depends on the derivative or
board you selected.

13. Select the appropriate level of startup code, memory model, and floating point
format.

14. Click Finish.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 85



The wizard creates a new simulator project for the HCS08 architecture according to
your specifications. You can access the project from the CodeWarrior Projects
view in the Workbench window.

Figure 2-32. CodeWarrior Projects View

The new project is ready for use. You can now customize it by adding your own source
code files, changing debugger settings, or adding libraries.

NOTE
You can click Finish at any step in the Project Wizard to save
the project with the default settings.

2.4.2.2 Creating Target Board Projects for ColdFire V1/ColdFire+ V1/
Sensors

To create a new target board project for a ColdFire V1/ColdFire+ V1/Sensors derivative
using the New Bareboard Project wizard:

1. Launch the Workbench.

NOTE
For information about launching the Workbench, refer to
the topic Launching Workbench.

2. Select File > New > Bareboard Project , from the IDE menu bar.

The Create an MCU bareboard Project page of the New Bareboard Project
wizard appears.

Creating Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

86 Freescale Semiconductor, Inc.



3. Specify a name for the new project. For example, enter the project name as
TargetProject_1.

NOTE
If you do not want to use the default location, clear the Use
default location checkbox. In the Location text box, enter
the full path of the directory in which you want to create
your project including the project name. Alternatively,
click Browse and select the desired location from the
Browse For Folder dialog box and click OK. Ensure that
you append the path with the name of the project to create a
new location for your project.

Figure 2-33. New Bareboard Project wizard - Create an MCU Bareboard Project Page
4. Click Next.

The Devices page appears.

5. Expand the tree control and select the derivative or board you would like to use. For
example, select ColdFire V1 > MCF51JM Family > MCF51JM128.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 87



Figure 2-34. New Bareboard Project Wizard - Devices Page
6. Click Next.

The Connections page appears.

Creating Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

88 Freescale Semiconductor, Inc.



Figure 2-35. New Bareboard Project Wizard - Connections Page
7. Check the appropriate connection.

NOTE
You can select multiple connections by checking
appropriate checkboxes in the Connections page. By
default, the P&E USB MultiLink Universal [FX] / USB
MultiLink checkbox is checked.

8. Click Next.

The ColdFire Build Options page appears.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 89



Figure 2-36. New Bareboard Project Wizard - ColdFire Build Options Page
9. Select the appropriate options to enable C++, porting processor macro, console,

floating point supports and optimization level.
10. Click Next.

The Rapid Application Development page appears.

Creating Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

90 Freescale Semiconductor, Inc.



Figure 2-37. New Bareboard Project Wizard - Rapid Application Development Page

NOTE
The Processor Expert options is disabled, if you enables
the C++ support in the ColdFire Build Options page.

11. Select the appropriate option to support rapid application development.
12. Click Finish.

The wizard creates a new target board project for the ColdFire V1 architecture. You
can access the project from the CodeWarrior Projects view in the Workbench
window.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 91



Figure 2-38. CodeWarrior Projects View

The new project is ready for use. You can now customize it by adding your own source
code files, changing debugger settings, or adding libraries.

NOTE
You can click Finish at any step in the Project Wizard to save
the project with the default settings.

2.4.2.3 Creating Target Board Projects for ColdFire V2/V3/V4/V4e/Vx

To create a new target board project for a ColdFire V2/V3/V4/V4e/Vx derivative using
the New Bareboard Project wizard:

1. Launch the Workbench.

NOTE
For information about launching the Workbench, refer to
the topic Launching Workbench.

2. Select File > New > Bareboard Project , from the IDE menu bar.

The Create an MCU bareboard Project page of the New Bareboard Project
wizard appears.

3. Specify a name for the new project. For example, enter the project name as
TargetProject_2.

NOTE
If you do not want to use the default location, clear the Use
default location checkbox. In the Location text box, enter

Creating Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

92 Freescale Semiconductor, Inc.



the full path of the directory in which you want to create
your project including the project name. Alternatively,
click Browse and select the desired location from the
Browse For Folder dialog box and click OK. Ensure that
you append the path with the name of the project to create a
new location for your project.

Figure 2-39. New Bareboard Project Wizard - Create an MCU Bareboard Project Page
4. Click Next.

The Devices page appears.

5. Expand the desired tree control and select the derivative or board you would like to
use. For example, select ColdFire V4e > MCF547X > MCF5475.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 93



Figure 2-40. New Bareboard Project Wizard - Devices Page
6. Click Next.

The Connections page appears.

Creating Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

94 Freescale Semiconductor, Inc.



Figure 2-41. New Bareboard Project Wizard - Connections Page
7. Check the appropriate connection.

NOTE
You can select multiple connections by checking
appropriate checkboxes in the Connections page. By
default, the P&E USB MultiLink Universal [FX] / USB
MultiLink checkbox is checked.

8. Click Next.

The ColdFire Build Options page appears.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 95



Figure 2-42. New Bareboard Project Wizard - ColdFire Build Options Page
9. Select the appropriate options to enable C++ support, hardware startup level, and the

optimization level for your project.
10. Click Finish.

The wizard creates a new target board project for the ColdFire V4e architecture. You
can access the project from the CodeWarrior Projects view in the Workbench
window.

Creating Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

96 Freescale Semiconductor, Inc.



Figure 2-43. CodeWarrior Projects View

The new project is ready for use. You can now customize it by adding your own source
code files, changing debugger settings, or adding libraries.

NOTE
You can click Finish at any step in the Project Wizard to save
the project with the default settings.

2.4.2.4 Creating Target Board Project for Kinetis

To create a new target board project for a Kinetis derivative using the New Bareboard
Project wizard:

1. Launch the Workbench.

NOTE
For information about launching the Workbench, refer to
the topic Launching Workbench.

2. Select File > New > Bareboard Project, from the IDE menu bar.

The Create an MCU bareboard Project page of the New Bareboard Project
wizard appears.

3. Specify a name for the new project. For example, enter the project name as
TargetProject_1.

NOTE
If you do not want to use the default location, clear the Use
default location checkbox. In the Location text box, enter

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 97



the full path of the directory in which you want to create
your project including the project name. Alternatively,
click Browse and select the desired location from the
Browse For Folder dialog box and click OK. Ensure that
you append the path with the name of the project to create a
new location for your project.

Figure 2-44. New Bareboard Project Wizard - Create an MCU Bareboard Project Page
4. Click Next.

The Devices page appears.

5. Expand the desired tree control and select the derivative or board you would like to
use. For example, select Kinetis K Series > K1x Family > K10D (100 MHz)
Family > MK10DN512Z.

Creating Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

98 Freescale Semiconductor, Inc.



Figure 2-45. New Bareboard Project Wizard - Devices Page

NOTE
A new Kinetis family, named L-Family (or L-Series) is
introduced. All the processors within this family have a
Cortex-M0+ core, also referred as Flycatcher (an ARM P0
(48 Mhz device), having M0+ core).

6. Click Next .

The Connections page appears.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 99



Figure 2-46. New Bareboard Project Wizard - Connections Page
7. Check the appropriate connection.

NOTE
You can select multiple connections by checking
appropriate checkboxes in the Connections page. By
default, the P&E USB MultiLink Universal [FX] / USB
MultiLink checkbox is checked.

8. Click Next.

The Language and Build Tools Options page appears.

Creating Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

100 Freescale Semiconductor, Inc.



Figure 2-47. New Bareboard Project Wizard - Languages Page
9. Select the appropriate options to enable C++, porting processor macro, console, and

floating point supports.
10. Click Next.

The Rapid Application Development page appears.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 101



Figure 2-48. New Bareboard Project Wizard - Rapid Application Development Page
11. Select the appropriate option to support rapid application development.

• None - Select to generate only startup code.
• Processor Expert - Select to generate the device initialization code, including

low-level drivers.

NOTE
If you select the Processor Expert option, clicking the
Next button will display the Processor Expert MCU
Pin Variants and Configuration page. Here you can
select the required microcontroller variant and its
configuration.

12. By default the project created will appear and start in the current perspective.
13. Click Finish.

The wizard creates the target board project for the Kinetis architecture. You can
access the project from the CodeWarrior Projects view in the Workbench window.

Creating Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

102 Freescale Semiconductor, Inc.



Figure 2-49. CodeWarrior Projects View

2.4.2.5 Creating Target Board Project for Qorivva

To create a new target board project for a Qorivva derivative using the New Bareboard
Project wizard:

1. Launch the Workbench.

NOTE
For information about launching the Workbench, refer to
the topic Launching Workbench.

2. Select File > New > Bareboard Project, from the IDE menu bar.

The Create an MCU bareboard Project page of the New Bareboard Project
wizard appears.

3. Specify a name for the new project. For example, enter the project name as
TargetProject_1.

NOTE
If you do not want to use the default location, clear the Use
default location checkbox. In the Location text box, enter
the full path of the directory in which you want to create
your project including the project name. Alternatively,
click Browse and select the desired location from the
Browse For Folder dialog box and click OK. Ensure that
you append the path with the name of the project to create a
new location for your project.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 103



Figure 2-50. New Bareboard Project Wizard - Create an MCU Bareboard Project Page
4. Click Next.

The Devices page appears.

5. Expand the tree control and select the derivative or board you would like to use. For
example, select Qorivva > MPC56xxK Family > MPC5673K for Qorivva
derivatives.

6. Click Next.

The Connections page appears.

Creating Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

104 Freescale Semiconductor, Inc.



Figure 2-51. New Bareboard Project Wizard - Connections Page
7. Check the appropriate connection.

NOTE
You can select multiple connections by checking
appropriate checkboxes in the Connections page. By
default, the P&E USB MultiLink QORIVVA checkbox is
checked.

NOTE
The CodeWarrior debugger supports NEXUS ISTO IEEE
5001-2003 and NEXUS ISTO IEEE 5001-2010 for
Qorivva families.

8. Click Next.

The DPM/LSM Configuration page appears.

NOTE
In case you select MPC5668E/G Family derivatives, the
Power Architecture Core Configuration page appears
instead of DPM/LSM configuration page.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 105



Figure 2-52. New Bareboard Project Wizard - LSM/ DPM Configuration Page

NOTE
This page is available only for Qorivva's MPC56xxK and
MPC56xxL derivatives.

9. Click Next.

The Language and Build Tools Options appears.

Creating Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

106 Freescale Semiconductor, Inc.



Figure 2-53. New Bareboard Project Wizard - Languages and Build Tools Options Page
10. Select the appropriate options to enable programming language, build tools options,

and floating point supports.
11. Click Finish.

The wizard creates a new target board project for the Qorivva architecture. You can
access the project from the CodeWarrior Projects view in the Workbench window.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 107



Figure 2-54. CodeWarrior Projects View

NOTE
You can click Finish at any step in the Project Wizard to
save the project with the default settings.

2.4.2.6 Creating Target Board Projects for 56800/E (DSC)

To create a new target board project for a DSC derivative using the New Bareboard
Project wizard:

1. Launch the Workbench.

NOTE
For information about launching the Workbench, refer to
the topic Launching Workbench.

2. Select File > New > Bareboard Project, from the IDE menu bar.

The Create an MCU bareboard Project page of the New Bareboard Project
wizard appears.

3. Specify a name for the new project. For example, enter the project name as Project_3.

NOTE
If you do not want to use the default location, clear the Use
default location checkbox. In the Location text box, enter
the full path of the directory in which you want to create
your project including the project name. Alternatively,
click Browse and select the desired location from the

Creating Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

108 Freescale Semiconductor, Inc.



Browse For Folder dialog box and click OK. Ensure that
you append the path with the name of the project to create a
new location for your project.

Figure 2-55. New Bareboard Project Wizard - Create an MCU Bareboard Project Page
4. Click Next.

The Devices page appears.

5. Expand the desired tree control and select the derivative or board you would like to
use. For example, select 56800/E (DSC) > MC56F824x > MC56F8245.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 109



Figure 2-56. New Bareboard Project Wizard - Devices Page
6. Click Next.

The Connections page appears.

Creating Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

110 Freescale Semiconductor, Inc.



Figure 2-57. New Bareboard Project Wizard - Connections Page
7. Select the desired connection.

NOTE
You can select multiple connections by checking
appropriate checkboxes in the Connections page. By
default, the P&E USB MultiLink Universal [FX] / USB
MultiLink connection checkbox is checked.

NOTE
The DSC Simulator connection will appear grayed out if
any of the MC56F844xx, MC56F827xx, MC56F845xx, or
MC56F847xx devices is selected.

8. Click Next.

The Languages and Build Tools page appears.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 111



Figure 2-58. New Bareboard Project Wizard - Languages Page
9. Select the programming language you want to use. By default, the Simple C option

is selected.
10. Click Next.

The Rapid Application Development page appears.

Creating Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

112 Freescale Semiconductor, Inc.



Figure 2-59. New Bareboard Project Wizard - Rapid Application Development Page

NOTE
The Processor Expert option is disabled, if you select the
Simple Assembly option in the Connections page.

11. Select the appropriate option to support rapid application development.
• None - Select to generate only startup code.
• Processor Expert - Select to generate the device initialization code, including

low-level drivers.
12. Click Finish.

The wizard creates a new target board project for the DSC architecture according to
your specifications. You can access the project from the CodeWarrior Projects
view in the Workbench window.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 113



Figure 2-60. CodeWarrior Projects View

The new project is ready for use. You can now customize it by adding your own source
code files, changing debugger settings, or adding libraries.

NOTE
You can click Finish at any step in the Project Wizard to save
the project with the default settings.

2.4.2.7 Creating Target Board Projects for S12Z

To create a new target board project for an S12Z derivative using the New Bareboard
Project wizard:

1. Launch the Workbench.

NOTE
For information about launching the Workbench, refer to
the topic Launching Workbench.

2. Select File > New > Bareboard Project, from the IDE menu bar.

The Create an MCU bareboard Project page of the New Bareboard Project
wizard appears.

3. Specify a name for the new project. For example, enter the project name as
Project_S12Z.

NOTE
If you do not want to use the default location, clear the Use
default location checkbox. In the Location text box, enter

Creating Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

114 Freescale Semiconductor, Inc.



the full path of the directory in which you want to create
your project including the project name. Alternatively,
click Browse and select the desired location from the
Browse For Folder dialog box and click OK. Ensure that
you append the path with the name of the project to create a
new location for your project.

Figure 2-61. New Bareboard Project Wizard - Create an MCU Bareboard Project Page
4. Click Next.

The Devices page appears.

5. Expand the desired tree control and select the derivative or board you would like to
use. For example, select S12Z > S12ZVM Family > MC9S12ZVMC64.

NOTE
The product integrates support for MC9S12VM devices
(project name Carcassonne). MC9S12ZVML128 - LIN
support, MC9S12ZVMC128 - CAN support,
MC9S12ZVML64 - LIN support, MC9S12ZVMC64 -
CAN support, MC9S12ZVM32 - none.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 115



Figure 2-62. New Bareboard Project Wizard - Devices Page
6. Click Next.

The Connections page appears.

Creating Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

116 Freescale Semiconductor, Inc.



Figure 2-63. New Bareboard Project Wizard - Connections Page
7. Select the desired connection.

NOTE
You can select multiple connections by checking
appropriate checkboxes in the Connections page. By
default, the P&E USB MultiLink Universal [FX] / USB
MultiLink connection checkbox is checked.

8. Click Next.

The Languages and Build Tools Options page appears.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 117



Figure 2-64. New Bareboard Project Wizard - Languages and Build Tools page
9. Select the programming language you want to use. By default, the Simple C option

is selected.
10. Select the floating point format you want to use. Selecting None provides the best

code density.
11. Select the memory model to use.
12. Click Next.

Creating Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

118 Freescale Semiconductor, Inc.



The Rapid Application Development page appears.

Figure 2-65. New Bareboard Project Wizard - Rapid Application Development Page

NOTE
The Processor Expert option is disabled, if you select the
C++, or ASM language option in the Language and Build
Tools Options page.

13. Select the appropriate option to support rapid application development.
• None - Select to generate only startup code.
• Processor Expert - Select to generate the device initialization code, including

low-level drivers.
14. Click Finish.

The wizard creates a new target board project for the S12Z architecture according to
your specifications. You can access the project from the CodeWarrior Projects
view in the Workbench window.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 119



Figure 2-66. CodeWarrior Projects View

The new project is ready for use. You can now customize it by adding your own source
code files, changing debugger settings, or adding libraries.

NOTE
You can click Finish at any step in the Project Wizard to save
the project with the default settings.

2.4.3 Creating Linux/uClinux Application Project

To create a new Linux/uClinux Application Project using the New Linux/uClinux
Application Project wizard:

1. Launch the Workbench.

NOTE
For information about launching the Workbench, refer to
the topic Launching Workbench.

2. Select File > New > Linux/uClinux Application Project, from the IDE menu bar.

The Create a Linux/uClinux Application Project page of the New Linux/uClinux
Application Project wizard appears.

Creating Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

120 Freescale Semiconductor, Inc.



Figure 2-67. Create a Linux/uClinux Application Project Page
3. Specify a name for the new project. For example, enter the project name as

LinuxProject_1.

NOTE
If you do not want to use the default location, clear the Use
default location checkbox. In the Location text box, enter
the full path of the directory in which you want to create
your project including the project name. Alternatively,
click Browse and select the desired location from the
Browse For Folder dialog box and click OK. Ensure that
you append the path with the name of the project to create a
new location for your project.

4. Click Next.

The Device used for Linux Application Debug page appears.

5. Expand the tree control and select the derivative or board you would like to use. For
example, select ColdFire V2 > ColdFire V2 uClinux.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 121



Figure 2-68. Device used for Linux Application Debug Page
6. Click Next.

The Project Language and Output page appears.

Creating Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

122 Freescale Semiconductor, Inc.



Figure 2-69. Project Language and Output Page
7. Select the output type and the programming language you want to use for this

project. For example, select Application and C and C++.
8. Click Next.

The Connections page appears.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 123



Figure 2-70. Connections Page
9. Check the appropriate connection.

10. Click Next.

The Application debug options page appears.

Creating Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

124 Freescale Semiconductor, Inc.



Figure 2-71. Application Debug Options Page
11. From the list, select the method with which you want the IDE to connect to the target

system.
12. In the Remote download path text box, specify the path. By default, it is /tmp.
13. In the CodeWarrior Linux AppTRK IP Address and CodeWarrior Linux

AppTRK IP Port text boxes, enter the IP address and listening port of the target
system. By default, the value of the AppTRK IP address is 127.0.0.1 and the
AppTRK IP port number is 2000.

14. Click Finish.

The wizard closes. The IDE generates a new project according to your specifications.
You can access the project from the CodeWarrior Projects view in the Workbench
window.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 125



Figure 2-72. CodeWarrior Projects View

2.5 Building Projects

In large workspaces, building the entire workspace can take a long time if you make
changes with a significant impact on dependent projects. Often there are only a few
projects that really matter to you at a given time.

To build only the selected projects, and any prerequisite projects that need to be built in
order to correctly build the selected projects, select Project > Build Project from the
CodeWarrior IDE menu bar.

Figure 2-73. Project Menu - Build Project

Alternatively, select Project > Build All. .

Building Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

126 Freescale Semiconductor, Inc.



Figure 2-74. Project Menu - Build All

Alternatively, you can use the options in the Commander view.

Figure 2-75. Commander View

2.6 Debugging Projects

When you use the New Bareboard Project wizard to create a new project, the wizard
sets the debugger settings of the project's launch configurations to default values. You
can change these default values based on your requirements.

To debug a project, perform these steps.

1. Launch the IDE.
2. From the main menu bar of the IDE, select Run > Debug Configurations . The IDE

uses the settings in the launch configuration to generate debugging information and
initiate communications with the target board.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 127



The DebugConfigurations dialog box appears. The left side of this dialog box has a
list of debug configurations that apply to the current application.

NOTE
For more information on how to use the debugger, refer to
the CodeWarrior Common Features Guide and the
Working with Debugger chapter of this manual.

3. Expand the CodeWarrior Download configuration.
4. From the expanded list, select the debug configuration that you want to modify.

The figure below displays the Debug Configurations dialog box with the settings
for the debug configuration you selected.

Figure 2-76. Debug Configurations Dialog Box
5. Click the Debugger tab.

The Debugger page appears in the area beneath the tabs.

Debugging Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

128 Freescale Semiconductor, Inc.



Figure 2-77. Debug Configurations Dialog Box - Debugger Page
6. Change the settings on this page as per your requirements.

NOTE
For more information on debugger, refer to the chapter
Working with Debugger.

7. Click Apply to save the new settings.
8. Click Debug to start the debugging session.

You just finished starting a debugging session and attaching the debugger to a
process.

NOTE
You can click Revert to undo any of the unsaved changes.
The IDE restores the last set of saved settings to all pages
of the Debug Configurations dialog box. Also, the IDE
disables Revert until you make new pending changes.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 129



2.7 Deleting Projects

To delete a project, follow these steps.

1. Select the project you want to delete in the CodeWarrior Projects view.
2. Select Edit > Delete.

The Delete Resources dialog box appears.

NOTE
Alternatively, you can also select Delete from the context
menu when you right-click on the project.

3. Check the Delete project contents on disk (cannot be undone ) checkbox if you
want to delete the contents of the selected project. Else, clear the Delete project
contents on disk (cannot be undone) checkbox.

NOTE
You will not be able to restore your project using Undo, if
you select the Delete project contents on disk (cannot be
undone) option.

4. Click OK.

The project is removed from the CodeWarrior Projects view.

2.8 Porting Classic DSC Project to Eclipse Project

The CodeWarrior Classic Project Importer feature in Eclipse helps automate the
conversion of a legacy DSC project to an Eclipse CDT project.

This feature lets you:
• select the classic CodeWarrior project,
• set targets to import,
• configure source trees and shielded folders,
• edit access paths for each target,
• list files that are not found in the previous settings,
• specify the new Eclipse project name and location,
• list warning or errors in the conversion process, and
• open the newly created Eclipse project.

Porting Classic DSC Project to Eclipse Project

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

130 Freescale Semiconductor, Inc.



NOTE
Before starting the process ensure that the CodeWarrior DSC
project you want to import has all of its files, such as the
source, linker command, and settings file.

To port a classic DSC project, perform these steps.
1. Select File > Import from the Workbench menu bar.

The Import dialog box appears.

2. Expand the CodeWarrior tree control and select CodeWarrior Classic Project.

Figure 2-78. Import Dialog Box
3. Click Next.

The first page of the CodeWarrior Classic Project importer wizard appears.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 131



4. Enter the path and name of the classic CodeWarrior project file to import in the
Project file text box. Alternatively, click Browse and use the Select The
CodeWarrior Project File to Import dialog box to select the project file to import.

Tip
The project file has an extension of .mcp. Select the .mcp file.

Figure 2-79. Select The CodeWarrior Project File to Import Dialog Box

The path of the project file to import appears in the Project file text box.

Porting Classic DSC Project to Eclipse Project

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

132 Freescale Semiconductor, Inc.



Figure 2-80. Path of CodeWarrior Project File to Import
5. Click Next.

The Options page of the CodeWarrior Classic Project Importer wizard appears.

6. Select the build target that uses the DSC toolchain you want the generated Eclipse
project to use, from the Toolchain Target list box.

NOTE
The toolchain target linker in the classic project defines the
project type of the generated Eclipse project, including the
toolchain and build settings.

The build targets table displays all the targets discovered in the project file and is
used to generate equivalent Eclipse build configurations.

7. You can import each build target in the classic CodeWarrior project based upon
predefined configurations of the toolchain.

8. If you want to import sub-projects included in the classic CodeWarrior project, check
the Recursively Import Sub-Projects checkbox.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 133



The CodeWarrior Classic Project wizard imports the sub-projects with the main
project.

NOTE
The CodeWarrior Classic Project wizard will copy only
those files that are displayed in the CodeWarrior Projects
view. The wizard will not import a file if it is not displayed
or does not include project information.

9. Click Advanced.

The Advanced Options dialog box appears.

WARNING
Checking the Copy files into the new project checkbox
may cause build errors.

10. Check the Copy files into the new project checkbox.
11. Click OK to close the dialog box.
12. Click Next.

The Globals page of the CodeWarrior Classic Project wizard appears. This page
lets you edit global settings that can effect how the project's build options are
imported.

The table below lists the options on the CodeWarrior Classic Project Importer -
Globals page.

Table 2-24. CodeWarrior Project Importer - Globals Page
Options

Options Description

Shielded Folder List Lists the concealed contents of folders from the
IDE's search operations during a build. This was
done by placing special characters in the directory
name. For example, sample code was concealed in
a (CodeWarrior Examples) folder.

The Shielded Folder List table lists these options:

• \(.*\)
• CVS
• .*[ _]Data

You use the Add, Delete, and Clear buttons to
modify the information in this list. The table below
lists these buttons with their descriptions.

Sources Specifies the location of the source trees. If an
access path is defined relative to a source tree, the
source tree should be listed in this table. The
{Project} source tree is defined automatically. The
Sources Trees table lists these options:

Porting Classic DSC Project to Eclipse Project

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

134 Freescale Semiconductor, Inc.



Table 2-24. CodeWarrior Project Importer - Globals Page
Options

Options Description

• Name - Lists the source name. For example:
Compiler.

• Compiler - Lists the path source name. For
example: <CW Install>/MCU.

You use the Add, Delete, and Clear buttons to
modify the information in this list. The table below
lists these buttons with their descriptions.

Table 2-25. CodeWarrior Project Importer - Globals Page
Buttons

Button Description

Add Add a new entry to the list.

Delete Deletes the selected item.

Clear Clears the entire list.

13. To add a new expression to the Shielded Folder List table, perform these steps.
a. Click Add.

(regular_expression) appears in the shielded folder list.

b. Double-click (regular_expression) and type the required expression.

The new expression appears in shielded folder list.

14. To delete an existing expression from the Shielded Folder List table, select the
expression and click Delete.

The selected expression is deleted from the shielded folder list.

15. To remove all the existing expressions from the Shielded Folder List table, click
Clear.

All the expressions are deleted from the shielded folder list.

16. To add a new source to the Source Trees table, perform these steps.
a. Click Add.

SourceName appears in the source trees list.

b. Double-click SourceName.

The Edit Table Values dialog box appears.

c. In the Name text box, enter the source name.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 135



d. In the Path text box, enter the path of the new source. Alternatively, click
Browse and use the Browse For Folder dialog box and navigate to the required
source.

e. Click OK.

The new source appears in Source Trees list.

17. Click Next.

The CodeWarrior Project Importer - Access Paths page appears.

NOTE
Access paths are directory paths the CodeWarrior tools use
to search for libraries, runtime support files, and other
object files.

The table below lists the options on the CodeWarrior Project Importer - Access
Paths page.

Table 2-26. CodeWarrior Project Importer - Access Paths
Page

Option Description

Target Lets you select the build target whose access paths
you want to modify.

Access Path Table Lists the access paths used by the build target
selected in the Build Target list box. Each row lists:

• Path - Directory path.
• Recursive - Whether the path is searched

recursively. For example: false or true.
• Type - Specify path to be searched. For

example: user or system.
• Error - Unresolved access paths, marked as

"X", if any.

You use the Add, Delete, and Clear buttons to
modify the information in this list. The table below
lists these buttons with their descriptions.

Table 2-27. CodeWarrior Project Importer - Access Paths Page
Buttons

Button Description

Add Add a new directory path to the list.

Delete Deletes the selected directory path from the list.

Clear Clears the entire list.

18. To add a new directory path to list, perform these steps.
a. Click Add.

Porting Classic DSC Project to Eclipse Project

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

136 Freescale Semiconductor, Inc.



(C:\SourcePath) appears in the Path list.

b. Double-click (C:\SourcePath).

The Edit Table Values dialog box appears.

c. In the Path text box, enter the directory path. Alternatively, click Browse and
use the Browse For Folder dialog box and navigate to the required source.

d. From the Recursive list box, select false or true.
e. From the Type list box, select user or system.
f. Click OK.

The new access path appears in table.

19. Click Next.

The CodeWarrior Project Importer - Problems page appears. This page displays
the project files that the wizard could not locate. You can use the Build Target list
box to select another build target and view the missing files.

20. To locate the missing files, perform these steps.
a. Click Back to adjust the settings in the Globals and Access Paths pages so that

the wizard can locate the missing files.
b. Repeat till you narrow down the number of missing files.

NOTE
Some old files do not work with the <target>
implementation, there will be some files missing.

21. Click Next .

The CodeWarrior Project Importer - Project Name page appears. This page lets
you specify the name and select a location for the newly imported project.

22. To specify a name and location to the imported project, perform these steps.
a. Enter a name for the converted Eclipse project, in the New Project Name text

box. By default, the old project name is specified.
b. Check Use default location to save the project to the default Eclipse workspace.

By default, the location of the project is the directory of the classic project and
not the default Eclipse workspace.

Tip
If you want to save the converted project to a location
other than the default Eclipse workspace, click Browse
and select the desired location from the Browse For
Folder dialog box and click OK. Ensure that you
append the path with the name of the project to create a

Chapter 2 Working with Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 137



new location for your project. Alternatively, In the
Location text box, enter the full path of the directory
in which you want to save your project including the
project name.

23. Click Finish .

The CodeWarrior Classic Project wizard translates the classic CodeWarrior project
and the new Eclipse project appears in the CodeWarrior Project view of the
Workbench window.

Porting Classic DSC Project to Eclipse Project

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

138 Freescale Semiconductor, Inc.



Chapter 3
Build Properties for Bareboard Projects

This chapter explains build properties for a Microcontrollers project. The
Microcontrollers New Bareboard Project wizard uses the information it gathers from you
to set up the project's build and launch configurations.

A project's build configuration contains information on the tool settings used to make the
program. For example, it describes the compiler and linker settings, and the files
involved, such as source and libraries.

A project's launch configuration describes how the IDE starts the program, such as
whether it executes by itself on a target, or under debugger control. Launch
configurations also specify the core the program executes on (if the target processor has
multiple cores). They also specify the connection interface and communications protocol
that the debugger uses to control the environment that the program executes in.

NOTE
The settings of the CodeWarrior IDE's build and launch
configuration correspond to an object called a target made by
the classic CodeWarrior IDE.

When the New Bareboard Project wizard completes its process, it generates launch
configurations with names that follow the pattern projectname - configtype - targettype,
where:

• projectname represents the name of the project
• configtype represents the project's name, which usually describes the build

configuration
• targettype represents the type of target software or hardware on which the launch

configuration acts

For each launch configuration, you can specify build properties, such as:

• additional libraries to use for building code
• behavior of the compilers, linkers, assemblers, and other build-related tools
• specific build properties, such as the byte ordering of the generated code

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 139



The topics in this chapter are:

• Changing Build Properties
• Restoring Build Properties
• Defining C/C++ Build Settings and Behavior
• Build Properties for S08
• Build Properties for RS08
• Build Properties for ColdFire
• Build Properties for Qorivva
• Build Properties for ARM (Kinetis)
• Build Properties for ARM Ltd Windows GCC
• Build Properties for DSC
• Build Properties for S12Z

3.1 Changing Build Properties

The New Bareboard Project wizard creates a set of build properties for the project. You
can modify these build properties to better suit your needs.

Perform these steps to change build properties:

1. Start the IDE.
2. In the CodeWarrior Projects view, select the project for which you want to modify

the build properties.
3. Select Project > Properties.

The Properties window appears. The left side of this window has a properties list.
This list shows the build properties that apply to the current project.

4. Expand the C/C++ Build property.
5. Select Settings .

The Properties window shows the corresponding build properties..

6. Use the Configuration drop-down list to specify the launch configuration for which
you want to modify the build properties.

7. Click the Tool Settings tab.

The corresponding page appears.

8. From the list of tools on the Tool Settings page, select the tool for which you want to
modify properties.

9. Change the settings that appear in the page.

Changing Build Properties

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

140 Freescale Semiconductor, Inc.



10. Click Apply .

The IDE saves your new settings.

You can select other tool pages and modify their settings. When you finish, click OK to
save your changes and close the Properties window.

3.2 Restoring Build Properties

If you modify a build configuration that the new project wizard generates, you can restore
that configuration to its default state. You might want to restore the build properties in
order to have a factory-default configuration, or to revert to a last-known working build
configuration. To undo your modifications to build properties, click the Restore Defaults
button at the bottom of the Properties window.

This changes the values of the options to the absolute default of the toolchain. By default,
the toolchain options are blank.

For example, when a HCS08 project is created the Linker > Input panel has some values
set for the Parameter File and Libraries options, which are specific to the project.
Clicking the Restore Defaults button defaults the values of the Parameter File and
Libraries options to the blank state of the toolchain.

3.3 Defining C/C++ Build Settings and Behavior

The C/C++ Build page includes all builder-specific property pages.

• Define Build Settings
• Define Build Behavior

NOTE
Modifying settings such as the Generate makefiles
automatically option, might enable or disable some parameters
in some situations and change the availability of other property
pages.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 141



3.3.1 Define Build Settings

To define build settings, perform these steps.

1. Start the IDE.
2. In the CodeWarrior Projects view, select the project for which you want to modify

the build settings.
3. Select Project > Properties.

The Properties for <project> window appears. The left side of this window has a
properties list. This list shows the build properties that apply to the current project.

4. Select C/C++ Build.

The C/C++ Build page appears.

Figure 3-1. C/C++ Build Page - Builder Settings
5. Click the Builder Settings tab.

Defining C/C++ Build Settings and Behavior

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

142 Freescale Semiconductor, Inc.



The builder settings for the selected build configuration appears. The table below
describes the builder settings options.

Table 3-1. Builder Settings
Options

Group Option Description

Build Configuration Configuration Specifies the type of
configurations for the selected
project.

Build Configuration Manage configurations Click to open the Manage
Configurations dialog box that
lets you set configurations based
on the specified toolchains of the
selected project.

You can also create new
configurations, rename an
existing configuration, or remove
the ones that are no longer
required.

Builder Builder type Specifies the type of builder to
use:

• Internal builder - Builds C/
C++ programs using a
compiler that implements
the C/C++ Language
Specifications.

• External builder - External
tools let you configure and
run programs and Ant
buildfiles using the
Workbench, which can be
saved and run at a later
time to perform a build.

Builder Use default build command Check to indicate that you want
to use the default make
command.

Clear when you want to use a
new make command. This
option is only available when the
Builder type option is set to
External.

Builder Build command Specifies the default command
used to start the build utility for
your specific toolchain. Use this
field if you want to use a build
utility other than the default
make command.

Builder Variables Click to open the Select build
variable dialog box and add the
desired environment variables
and custom variables to the
build command.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 143



Table 3-1. Builder Settings Options
(continued)

Group Option Description

Makefile generation Generate Makefiles
automatically

Check to enable Eclipse change
between two different CDT
modes: it either uses the
customer's makefile for the build,
if one exists, or it generates
makefiles for the user.

Makefile generation Expand Env. Variable Refs in
Makefiles

Check to define whether
environment variables should be
expanded in makefile.

Build location Build directory Specifies the location where the
build operation takes place. This
location will contain the
generated artifacts from the
build process. This option
appears disabled when the
Generate Makefiles
automatically option is enabled.

Build location Workspace Click to open the Folder
Selectiondialog box and select
a workspace location for the
project. This is the directory that
will contain the plug-ins and
features to build, including any
generated artifacts.

Build location File system Click to open the Browse For
Folder dialog box and select a
folder.

Build location Variables Click to open the Select build
variable dialog box and select a
variable to specify as an
argument for the build directory,
or create and configure simple
build variables which you can
reference in build configurations
that support variables.

6. Make the desired changes and click OK.

The Properties for <project> window will close.

3.3.2 Define Build Behavior

To define build behavior, perform these steps.

1. Start the IDE.

Defining C/C++ Build Settings and Behavior

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

144 Freescale Semiconductor, Inc.



2. In the CodeWarrior Projects view, select the project for which you want to modify
the build settings.

3. Select Project > Properties.

The Properties window appears. The left side of this window has a properties list.
This list shows the build properties that apply to the current project.

4. Select C/C++ Build.

The C/C++ Build page appears.

5. Click the Behaviour tab.

The behavior settings for the selected build configuration appears.

Figure 3-2. C/C++ Build Page - Behaviour

The table below describes the builder settings options.

Table 3-2. Behavior
Options

Group Option Description

Build settings Enable project specific settings Check if you want to enable
project specific settings.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 145



Table 3-2. Behavior Options
(continued)

Group Option Description

Build settings Stop on first build error Check to stop building when
Eclipse encounters an error.

Clearing this option is helpful for
building large projects as it
enables make to continue
making other independent rules
even when one rule fails.

Configure Workspace Settings Enable parallel build Check to activate the generation
of parallel builds. However, you
need to determine the number of
parallel jobs to perform:

• Use optimal jobs number -
Lets the system determine
the optimal number of
parallel jobs to perform.

• Use parallel jobs - Lets
you specify the maximum
number of parallel jobs to
perform.

• Use unlimited jobs - Lets
the system perform
unlimited jobs.

Workbench Build Behavior Workbench build type Specifies the builder settings
when instructed to build, rebuild,
and clean.

Workbench Build Behavior Build on resource save (Auto
build)

Check to build your project
whenever resources are saved.
By default, this option is selected
and builds occur automatically
each time resources are
modified.

Clear if you do want that the
build occurs only manually using
a menu item.

Workbench Build Behavior Build (Incremental Build) Defines what the standard
builder will call when an
incremental build is performed.

Workbench Build Behavior Variables Click to open the Select build
variable dialog box and add
variables to the make build
target command.

Workbench Build Behavior Clean Defines what the standard
builder calls when a clean is
performed. The make clean is
defined in the makefile.

Workbench Build Behavior Variables Click to open the Select build
variable dialog box and add
variables to the make build
target command.

Defining C/C++ Build Settings and Behavior

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

146 Freescale Semiconductor, Inc.



6. Make the desired changes and click OK.

The Properties for <project> window will close.

3.4 Build Properties for S08

The Properties for <project> window shows the corresponding build properties for an
HCS08 project.

Figure 3-3. Build Properties - S08

The following table lists the build properties specific to developing software for HCS08.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 147



The properties that you specify in the Tool Settings panels apply to the selected build
tool on the Tool Settings page of the Properties for <project> dialog box.

Table 3-3. Build Properties for S08

Build Tool Build Properties Panels

General General

S08 Disassembler S08 Disassembler > Output

S08 Disassembler > Input

S08 Disassembler > Host

S08 Disassembler > Messages

S08 Disassembler > Messages > Disable user messages

S08 Linker S08 Linker > Optimization

S08 Linker > Output

S08 Linker > Input

S08 Linker > Host

S08 Linker > Messages

S08 Linker > Messages > Disable user messages

S08 Linker > General

S08 Burner S08 Burner > Output > Configure S-Record

S08 Burner > Input

S08 Burner > Host

S08 Burner > Messages

S08 Burner > Messages > Disable user messages

S08 Burner > General

HCS08 Compiler HCS08 Compiler > Output

HCS08 Compiler > Output > Configure Listing File

HCS08 Compiler > Output > Configuration for list of included
files in make format

HCS08 Compiler > Input

HCS08 Compiler HCS08 Compiler > Language

HCS08 Compiler > Language > CompactC++ features

HCS08 Compiler > Host

HCS08 Compiler > Code Generation

HCS08 Compiler > Messages

HCS08 Compiler > Messages > Disable user messages

HCS08 Compiler > Preprocessor

HCS08 Compiler > Type Sizes

HCS08 Compiler > General

HCS08 Compiler > Optimization

HCS08 Compiler > Optimization > Tree optimizer

HCS08 Compiler > Optimization > Optimize Library Function

HCS08 Compiler > Optimization > Branch Optimizer

Table continues on the next page...

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

148 Freescale Semiconductor, Inc.



Table 3-3. Build Properties for S08 (continued)

Build Tool Build Properties Panels

HCS08 Compiler > Optimization > Peephole Optimization

HCS08 Assembler HCS08 Assembler > Output

HCS08 Assembler > Output > Configure listing file

HCS08 Assembler > Input

HCS08 Assembler > Language

HCS08 Assembler > Language > Compatibility modes

HCS08 Assembler > Host

HCS08 Assembler > Code Generation

HCS08 Assembler > Messages

HCS08 Compiler > Messages > Disable user messages

HCS08 Assembler > General

HCS08 Preprocessor HCS08 Preprocessor > Preprocessor Settings

3.4.1 General

Use this panel to specify the memory model that the architecture uses. The build tools
(compiler, linker, and assembler) use the properties that you specify.

The following table lists and describes the memory model options for HCS08.

Table 3-4. Tool Settings - General

Option Description

Memory Model (-M) Specify the memory model for the build tools:
• Tiny - Assumes that data pointers have 8-bit addresses

unless explicitly specified with the keyword __far
• Small - Default memory model; assumes that all

functions and pointers have 16 bit addresses and
requires code and data to be located in 64 kilobytes
address space

• Banked - Lets you place program code into atmost 256
pages of 16 kilobytes each, but does not affect data
allocation

Enable Memory Management Unit (MMU) Support (-MMU) Check to inform the compiler that CALL and RTC instructions
are available, enabling code banking, and that the current
architecture has extended data access capabilities, enabling
support for __linear data types. This option can be used
only when -Cs08 is enabled.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 149



3.4.2 S08 Disassembler

Use this panel to specify the command, options, and expert settings for S08
Disassembler.

The following table lists and describes the Disassembler options.

Table 3-5. Tool Settings - Disassembler Options

Option Description

Command Shows the location of the disassembler executable file;
default is ${HC08Tools}/decoder. You can specify
additional command line options for the disassembler; type in
custom flags that are not otherwise available in the UI.

All options Shows the actual command line the linker will be called with.

Expert Settings

Command line pattern Shows the command line pattern; default is ${COMMAND} $
{FLAGS} -O${OUTPUT_PREFIX}${OUTPUT} ${INPUTS}

3.4.2.1 S08 Disassembler > Output

Use this panel to control how the disassembler generates the output file.

The following table lists and describes the output options for S08 disassembler.

Table 3-6. Tool Settings - Disassembler > Output Options

Option Description

Print full listing Prints a listing with the header information of the object file.

Write disassembly listing with source code Check to enable the decoder decoding Freescale object files
write the source code within the disassembly listing. This
option setting is default for the Freescale object files as input.

Decode DWARF section Check to write the DWARF section information in the listing
file. Decoding from the DWARF section inserts this
information in the listing file.

Configure which parts of DWARF information to decode Check to configure parts of DWARF information to decode.

Decode ELF sections Check to ensure that the ELF section information is also
written to the listing file. Decoding from the ELF section
inserts the following information in the listing file.

Dump ELF sections in LST file Check to generate a HEX dump of all ELF sections in a LST
file.

Produce inline assembly file Check to ensure that the output listing is an inline assembly
file without additional information, but in C comments.

Table continues on the next page...

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

150 Freescale Semiconductor, Inc.



Table 3-6. Tool Settings - Disassembler > Output Options (continued)

Option Description

No symbols in disassembled listing Check to prevent symbols from printing in the disassembled
listing.

Shows the cycle count for each instruction Check to ensure that each instruction line contains the count
of cycles in '[',']' braces. The cycle count is written before the
mnemonics of the instruction. Note that the cycle count
display is not supported for all architectures.

Write disassembly listing only Check to ensure that the Decoder decoding Freescale object
files writes the source code within the disassembly listing
only.

Write disassembly listing with source and all comments Check to write the origin source and its comments within the
disassembly listing.

3.4.2.2 S08 Disassembler > Input

Use this panel to control how the disassembler generates the input file.

The following table lists and describes the input options for HCS08 disassembler.

Table 3-7. Tool Settings - Disassembler > Input Options

Option Description

Object File Format Defines the object file format.

Set processor Specifies which processor should be decoded. For object
files, libraries and applications, the processor is usually
detected automatically. For S-Record and Intel Hex files,
however, the decoder cannot determine which CPU the code
is for, and therefore the processor must be specified with this
option to get a disassembly output. Without this option, only
the structure of a S-Record file is decoded.

The following values are supported:

HC08, HC08:HCS08, HC11, HC12, HC12:CPU12,
HC12:HCS12, HC12:HCS12X, HC16, M68k, MCORE, PPC,
RS08, 8500, 8300, 8051 and XA.

3.4.2.3 S08 Disassembler > Messages

Use this panel to specify whether to generate symbolic information for debugging.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 151



The following table lists and describes the message options.

Table 3-8. Tool Settings - Messages Options

Option Description

Don't print INFORMATION messages (-W1) Inhibits information message reporting. Only warning and
error messages are generated.

Don't print INFORMATION or WARNING messages (-W2) Suppresses all messages of type INFORMATION and
WARNING. Only ERROR messages are generated.

Create err.log Error file Using this option, the disassembler uses a return code to
report errors back to the tools. When errors occur, 16-bit
window environments use err.log files, containing a list of
error numbers, to report the errors. If no errors occur, the 16-
bit window environments delete the err.log file.

Cut file names to Microsoft format to 8.3 (-Wmsg8x3) Some editors (early versions of WinEdit) expect the filename
in Microsoft message format (8.3 format). That means the
filename can have up to eight characters and no more than a
three-character extension. Longer filenames are possible
when you use Win95 or WinNT. This option truncates the
filename to the 8.3 format.

Set message file format for batch mode Use this option to start the disassembler with additional
arguments (for example, files and disassembler options). If
you start the disassembler with arguments (for example, from
the Make Tool or with the `%f' argument from the CodeWright
IDE), the disassembler compiles the files in a batch mode. No
disassembler window is visible and the disassembler
terminates after job completion.

Message Format for batch mode (e.g. %"%f%e%"(%l): %K
%d: %m) (-WmsgFob)

This option modifies the default message format in batch
mode. The -WmsgFob command sets the message format for
batch mode. The supported formats are (assuming that the
source file is X:\Freescale\mysourcefile.cpph):

• %s: Source Extract
• %p: Path (example, X:\Freescale\)
• %f: Path and name (example, X:\Freescale
\mysourcefile)

• %n: filename (example, mysourcefile)
• %e: Extension (example, .cpph)
• %N: File (8 chars) (example, mysource )
• %E: Extension (3 chars) (example, .cpp)
• %l: Line (example, 3)
• %c: Column (example, 47)
• %o: Pos (example, 1234)
• %K: Uppercase kind (example, ERROR)
• %k: Lowercase kind (example, error)
• %d: Number (example, C1815)
• %m: Message (example, text)
• %%: Percent (example, %)
• \n: New line
• %": A " if the filename, the path, or the extension

contains a space
• %': A ' if the filename, the path, or the extension

contains a space

Message Format for no file information (e.g. %K %d: %m)(-
WmsgFonf)

If there is no file information available for a message, then
<string> defines the message format string to use.

Table continues on the next page...

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

152 Freescale Semiconductor, Inc.



Table 3-8. Tool Settings - Messages Options (continued)

Option Description

Message Format for no positioning information (%"%f%e%":
%K %d: %m)(-WmsgFonp)

If there is no position information available for a message,
then <string> defines the message format string to use.

Create Error Listing File This option controls whether the disassembler creates an
error listing file. The error listing file contains a list of all
messages and errors that occur during processing.

Maximum number of error messages (-WmsgNe) Specify the number of errors allowed until the application
stops processing.

Maximum number of information messages (-WmsgNi) Specify the maximum number of information messages
allowed.

Maximum number of warning messages (-WmsgNw) Specify the maximum number of warnings allowed.

Set messages to Disable Check to disable user messages and allow only the normal
message categories (WARNING, INFORMATION, ERROR,
or FATAL); reduces the number of messages, and simplifies
the error parsing of other tools.

Set messages to Error Check to enable messages of the ERROR category.

Set messages to Information Check to enable messages of the INFORMATION category.

Set messages to Warning Check to enable messages of the WARNING category.

3.4.2.3.1 S08 Disassembler > Messages > Disable user messages

Use this panel to specify whether to generate symbolic information for debugging. The
following table lists and describes the message options.

Table 3-9. Tool Settings - Disable user messages Options

Option Description

Disable all messages Check to disable all the user messages and allow only the
normal message categories (WARNING, INFORMATION,
ERROR, or FATAL); reduces the number of messages, and
simplifies the error parsing of other tools.

Display type of messages (-WmsgNu=t) Check to display the type of user messages.

Display informal messages (-WmsgNu=e) Check to display the informal messages (e.g., memory model,
floating point format).

Disable messages about processing statistics (-WmsgNu=d) Check to disable the information about statistics, e.g., code
size, RAM/ROM usage, and so on provided at the end of the
assembly.

Disable messages about generated files (-WmsgNu=c) Check to disable messages informing about generated files.

Disable messages about reading files (-WmsgNu=b) Check to disable the messages about reading files e.g., the
files used as input.

Disable messages about include files (-WmsgNu=a) Check to disable messages or information provided by the
application included files.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 153



3.4.3 S08 Linker

Use this panel to specify the command, options, and expert settings for the build tool
linker. Additionally, the Linker tree control includes the general, libraries, and search
path settings.

The following table lists and describes the linker options for HCS08.

Table 3-10. Tool Settings - Linker Options

Option Description

Command Shows the location of the linker executable file. Default value
is "${HC08Tools}/linker.exe". You can specify
additional command line options for the linker; type in custom
flags that are not otherwise available in the UI.

All options Shows the actual command line the linker will be called with.

Expert Settings

Command line pattern Shows the command line pattern; default is ${COMMAND} $
{FLAGS} ${OUTPUT_FLAG}${OUTPUT_PREFIX}$
{OUTPUT} -add( ${INPUTS} )

3.4.3.1 S08 Linker > Optimization

Use this panel to control linker optimizations. The linker's optimizer can apply any of its
optimizations in either global or non-global optimization mode. You can apply global
optimization at the end of the development cycle, after compiling and optimizing all
source files individually or in groups.

The following table lists and describes the linker optimization options for HCS08 .

Table 3-11. Tool Settings - Linker > Optimization Options

Option Description

Allocation over segment boundaries (-Alloc) The linker supports to allocate objects from one ELF section
into different segments. The allocation strategy controls
where space for the next object is allocated as soon as the
first segment is full.

In the AllocNext strategy, the linker always takes the next
segment as soon as the current segment is full. Holes
generated during this process are not used later. With this
strategy, the allocation order corresponds to the definition
order in the object files. Objects defined first in a source file
are allocated before later defined objects.

Table continues on the next page...

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

154 Freescale Semiconductor, Inc.



Table 3-11. Tool Settings - Linker > Optimization Options (continued)

Option Description

In the AllocFirst strategy, the linker checks for every object, if
there is a previously only partially used segment, into which
the current object does fit. This strategy does not maintain the
definition order.

In the AllocChange strategy, the linker checks as soon as a
object does no longer fit into the current segment, if there is a
previously only partially used segment, into which the current
object does fit. This strategy does not maintain the definition
order, but it does however use fewer different ranges than the
AllocFirst case.

Allocate non referenced overlap variables (-
CAllocUnusedOverlap)

When Smart Linking is switched off, defined but unreferenced
overlapped variables are not allocated by default. Such
variables do not belong to a specific function, therefore they
cannot be allocated overlapped with other variables.

This option only changes the behavior of variables in the
special _OVERLAP segment. This segment is used only to
allocate parameters and local variables for processors which
do not have a stack. Not allocating an unreferenced overlap
variable is similar to not allocating a variable on the stack for
other processors. If you use this stack analogy, then
allocating such variables this way corresponds to allocating
unreferenced stack variables in global memory.

This option allows allocation of all defined objects. Using this
option is not recommended.

Enable automatic const placement (-ConstDist) With this option the linker constant optimizer is enabled.
Instead of performing usual linking actions, the linker
generates a data distribution file which contains optimized
distribution for constant objects.

Specify constant distribution segment name (-ConstDistSeg) When this option is enabled, it's possible to specify the name
of the constant distribution segment.

Allocate non specified const segments in RAM (-CRam) This option allocates constant data segments not explicitly
allocated in a READ_ONLY segment in the default
READ_WRITE segment. This was the default for old versions
of the linker, so this option provides a compatible behavior
with old linker versions.

Enable automatic data placement (-DataDist) With this option the linker data optimizer is enabled. Instead
of performing usual linking actions, the linker generates a
data distribution file which contains optimized distribution.

Specify data distribution file name (-DataDistFile) When this option is enabled, it's possible to specify the name
of the data distribution file. There, all distributed data and how
the compiler has to reallocate them are listed.

Generate data optimizer information file (-DataDistInfo) When this option is enabled, the data optimizer generates a
data distribution information file giving information on object to
segment mapping

Specify data distribution segment name (-DataDistSeg) When this option is enabled, it's possible to specify the name
of the data distribution segment.

Enable distribution optimization (-Dist) This option enables the linker optimizer. Instead of a link, the
linker generates a distribution file which contains an optimized
distribution.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 155



Table 3-11. Tool Settings - Linker > Optimization Options (continued)

Option Description

Specify distribution file name (-DistFile) Enable this option to specify the name of the distribution file.
The distribution file lists all distributed functions and specifies
how the compiler reallocates them.

Generate optimizer information file (-DistInfo) Using this option, the optimizer generates a distribution
information file containing a list of all sections and their
functions. Available function information includes the old size,
optimized size, and new calling convention.

Choose optimizing method (-DistOpti) Enable this option to choose the optimizing method. With the
FillBanks argument the linker minimizes the free space in
every bank. FillBanks is most effective for functions using the
near calling convention. Use the CodeSize argument to
minimize code when free space within the banks is no
concern.

Specify distribution segment name (-DistSeg) Use this option to specify the name of the distribution
segment.

Specify library file name (-LibFile) When this option is enabled,linker generates file<filename>
which has information about the current libraries and also
about the files with which they should be replaced with.

Enable library option file generation (_LibOptions) Enables library information generation. When this option is
enabled,linker generates file (default libFile.txt) which has
information about the current library and the startup file and
also about the files with which they should be replaced with.

Specify data optimizer options file name (-OptioneFile) Specifies the name of the file that contains the set of linker-
generated compiler options. When this option is enabled,
linker places the second step compiler options in the specified
file<filename>.

Enable option file generation (-Options) Enables compiler option generation. The generated options
will be used for second step compilation. Linker generates a
text file containing a compiler option for the second step (one
of the following: -ConstQualiNear, -NonConstQualiNear, -Mb).
The content of the file is appended to the compiler options for
the second compilation step.

Specify library file name (-P2LibFileName) Specifies the name of the library information file. When this
option is enabled in second link step,linker reads
file<filename> which has information about the libraries.

Enable option to read libFile.txt in P2 (-ReadLibFile) Instructs the linker to read in the library information file that it
generated in step one. This option is passed in second link
step. It tells the linker to read library information file(default
libFile.txt).

Emit StartUp information to library info file (-StartUpInfo) The information about the current startup file and the
replacement startup file will be added to the library file(default
libFile.txt) and used during the second compile-link step.

Overlap constants in ROM (-COCC) Defines the default if constants and code should be
optimized; commands DO_OVERLAP_CONSTS and
DO_NOT_OVERLAP_CONSTS take precedence over the
option.

Optimize copy down (-OCopy) Changes the copy down structure to use few spaces. The
optimization does assume that the application does perform
both the zero out and the copy down step of the global
initialization. If a value is set to zero by the zero out, then zero

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

156 Freescale Semiconductor, Inc.



Table 3-11. Tool Settings - Linker > Optimization Options

Option Description

values are removed from the copy down information. The
resulting initialization is not changed by this optimization if the
default startup code is used.

3.4.3.2 S08 Linker > Output

Use this panel to control how the linker formats the listing file, as well as error and
warning messages.

The following table lists and describes the linker output options for HCS08.

Table 3-12. Tool Settings - Linker > Output Options

Option Description

Link as ROM library (-AsROMlib) Check to link the application as a ROM library. This option
has the same effect as specifying AS ROM_LIB in the linker
parameter file.

Generate S_record file (-B) Check to specify that in addition to an absolute file, also an S-
record file should be generated. The name of the srecord file
is the same as the name of the abs file, except that the
extension "SX" is used. The default.env variable "SRECORD"
may specify an alternative extension.

Check if objects overlap in the absolute file (even if different
address spaces) (-CheckAcrossAddrSpace)

Check to instruct the linker to check if objects overlap, taking
into account their address space.

Define the default value of the EPAGE register (-
DefaultEpage)

Defines the reset value for the EEPROM Page Index Register
(EPAGE). The value is specific to the actual S12(X)
derivative.

Define the default value of the PPAGE register (-
DefaultPpage)

Defines the reset value for the Program Page Index Register
(PPAGE). The value is specific to the actual S12(X)
derivative.

Define the default value of the RPAGE register (-
DefaultRpage)

Defines the reset value for the RAM Page Index Register
(RPAGE). The value is specific to the actual S12(X)
derivative.

Generate map file (-M) Check to scan source files for dependencies and emit a
mapfile, without generating object code.

Mapping for memory space 0x4000-0x7FFF This option sets the memory mapping for addresses between
0x4000 and 0x7FFF. This mapping is determined by the MMC
control register (the ROMHM and RAMHM bits) and the
compiler must be aware of the current setting to correctly
perform address translations.

Never check section qualifier compatibility (-NoSectCompat) For some target CPU's, when placing a section in a segment
the linker checks if the qualifiers of the section are compatible
with the ones of the segment (for instance when placing .text
into RAM may result in a linker error).This option disables the
check.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 157



Table 3-12. Tool Settings - Linker > Output Options (continued)

Option Description

Strip symbolic information (-S) Check to disable the generation of DWARF sections in the
absolute file to save memory space.

Generate fixups in abs file (-SFixups) Check to ensure compatibility with previous linker versions.
Usually, absolute files do not contain any fixups because all
fixups are evaluated at link time. But with fixups, the decoder
might symbolically decode the content in absolute files. Some
debuggers do not load absolute files which contain fixups
because they assume that these fixups are not yet evaluated.
But the fixups inserted with this option are actually already
handled by this linker.

Enable Stack Consumption Computation (-
StackConsumption)

The linker computes maximum stack effect for given
application when the option is enabled and places the result
in the output .map file.

Specify statistic file (e.g. statistic.txt) (-StatF) Specify the name of the linker statistic file. The statistic file
reports each allocated object and its attributes. Every attribute
is separated by a tab character, so it can be easily imported
into a spreadsheet/database program for further processing.

3.4.3.3 S08 Linker > Input

Use this panel to specify the parameter file path, startup function, object file search paths,
and any additional libraries that the C/C++ Linker should use. You can specify multiple
additional libraries and library search paths. Also, you can change the order in which the
IDE uses or searches the libraries.

The IDE first looks for an include file in the current directory, or the directory that you
specify in the INCLUDE directive. If the IDE does not find the file, it continues searching the
paths shown in this panel. The IDE keeps searching paths until it finds the #include file or
finishes searching the last path at the bottom of the Include File Search Paths list. The
IDE appends to each path the string that you specify in the INCLUDE directive.

NOTE
The IDE displays an error message if a header file is in a
different directory from the referencing source file. Sometimes,
the IDE also displays an error message if a header file is in the
same directory as the referencing source file.

For example, if you see the message Could not open source file myfile.h, you must add the
path for myfile.h to this panel.

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

158 Freescale Semiconductor, Inc.



The following table lists and describes the linker input options for HCS08.

Table 3-13. Tool Settings - Linker > Input Options

Option Description

Parameter File Shows the path of the parameter file. Default value is $
{ProjDirPath}/Project_Settings/Linker_Files/
Project.prm.

Specify startup function (-E) Defines the application entry point.

Search paths (-L) Shows the list of all search paths; the ELF part of the linker
searches object files first in all paths and then the usual
environment variables are considered.

Libraries Lists paths to additional libraries that the C/C++ linker uses.
Default value is "${MCUToolsBaseDir}/lib/hc08c/
lib/ansiis.lib"

Link case insensitive With this option, the linker ignores object name capitalization.
This option supports case-insensitive linking of assembly
modules. Since all identifiers are linked case insensitive, this
also affects C or C++ modules. This option only affects the
comparison of names of linked objects. Section names or the
parsing of the link parameter file are unaffected. They remain
case sensitive.

Object File Format Defines the object file format.

The following table lists and describes the toolbar buttons that help work with the
libraries and the additional object file search paths.

Table 3-14. Search Paths Toolbar Buttons

Button Description

Add - Click to open the Add directory path dialog box and
specify the object file search path.

Delete - Click to delete the selected object file search path. To
confirm deletion, click Yes in the Confirm Delete dialog box.

Edit - Click to open the Edit directory path dialog box and
update the selected object file search path.

Move up - Click to move the selected object file search path
one position higher in the list.

Move down - Click to move the selected object file search
path one position lower in the list.

The following figure shows the Add directory path dialog box.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 159



Figure 3-4. Add directory path Dialog Box

The following figure shows the Edit directory path dialog box.

Figure 3-5. Edit directory path Dialog Box

The buttons in the Add directory path and Edit directory path dialog boxes help work
with the object file search paths.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.
• Workspace - Click to display the Folder Selection dialog box and specify the object

file search path. The resulting path, relative to the workspace, appears in the
appropriate list.

• File system - Click to display the Browse for Folder dialog box and specify the
object file search path. The resulting path appears in the appropriate list.

The following table lists and describes the toolbar buttons that help work with the
libraries and the additional object files.

Table 3-15. Libraries Toolbar Buttons

Button Description

Add - Click to open the Add file path dialog box and specify
location of the library you want to add.

Table continues on the next page...

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

160 Freescale Semiconductor, Inc.



Table 3-15. Libraries Toolbar Buttons (continued)

Button Description

Delete - Click to delete the selected library path. To confirm
deletion, click Yes in the Confirm Delete dialog box.

Edit - Click to open the Edit file path dialog box and update
the selected path.

Move up - Click to move the selected path one position higher
in the list.

Move down - Click to move the selected path one position
lower in the list.

The following figure shows the Add file path dialog box.

Figure 3-6. Tool Settings - Linker > Libraries - Add file path Dialog Box

The following figure shows the Edit file path dialog box.

Figure 3-7. Tool Settings - Linker > Libraries - Edit file path Dialog Box

The buttons in the Add file path and Edit file path dialog boxes help work with the file
paths.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 161



• Workspace - Click to display the File Selection dialog box and specify the file path.
The resulting path, relative to the workspace, appears in the appropriate list.

• File system - Click to display the Open dialog box and specify the file path. The
resulting absolute path appears in the appropriate list.

3.4.3.4 S08 Linker > Link Order

Use this panel to control the order in which the linker receives the object files.

The following table lists and describes the link order options.

Table 3-16. Tool Settings - Link Order Options

Option Description

Customize linker input order Select if you want the linker to receive the object files in the
specified order.

Link Order Lists the object files corresponding to the source files
specified in the "link order" list. This option is enables only if
Customize linker input order is selected.

3.4.3.5 S08 Linker > Host

Use this panel to specify the host settings of the HCS08.

The following table lists and describes the memory model options for HCS08.

Table 3-17. Tool Settings - Host

Option Description

Set environment variable (-Env) This option sets an environment variable. Use this
environment variable in the maker, or use to overwrite system
environment variables.

Borrow license feature (-LicBorrow) This option allows you to borrow a license feature until a
given date or time. Borrowing allows you to use a floating
license even if disconnected from the floating license server.

Wait until a license is available from floating license server (-
LicWait)

By default, if a license is not available from the floating license
server, then the application will immediately return. With -
LicWait set, the application will wait (blocking) until a license
is available from the floating license server.

Application Standard Occurrence Select the way you want the application window to start.
Normally, the application starts with a normal window if no
arguments are given. If you start the application with
arguments (e.g., from the Maker to assemble, compile, or link

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

162 Freescale Semiconductor, Inc.



Table 3-17. Tool Settings - Host

Option Description

a file), then the application runs minimized to allow for batch
processing. However, you may specify the application's
window behavior with the View option.

• -ViewWindow, the application appears with its normal
window.

• -ViewMin the application appears as an icon in the task
bar.

• -ViewMax, the application appears maximized (filling
the whole screen).

• -ViewHidden, the application processes arguments
(e.g., files to be compiled or linked) in the background
(no window or icon visible in the task bar).

3.4.3.6 S08 Linker > Messages

Use this panel to specify whether to generate symbolic information for debugging.

The following table lists and describes the message options.

Table 3-18. Tool Settings - Messages Options

Option Description

Don't print INFORMATION messages (-W1) Inhibits information message reporting. Only warning and
error messages are generated.

Don't print INFORMATION or WARNING messages (-W2) Suppresses all messages of type INFORMATION and
WARNING. Only ERROR messages are generated.

Create err.log Error file Using this option, the Linker uses a return code to report
errors back to the tools. When errors occur, 16-bit window
environments use err.log files, containing a list of error
numbers, to report the errors. If no errors occur, the 16-bit
window environments delete the err.log file.

Cut file names to Microsoft format to 8.3 (-Wmsg8x3) Some editors (early versions of WinEdit) expect the filename
in Microsoft message format (8.3 format). That means the
filename can have up to eight characters and no more than a
three-character extension. Longer filenames are possible
when you use Win95 or WinNT. This option truncates the
filename to the 8.3 format.

Set message file format for batch mode Use this option to start the Linker with additional arguments
(for example, files and Linker). If you start the Linker
arguments (for example, from the Make Tool or with the `%f'
argument from the CodeWright IDE), the Linker the files in a
batch mode. No Linker is visible and the Linker after job
completion.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 163



Table 3-18. Tool Settings - Messages Options (continued)

Option Description

Message Format for batch mode (e.g. %"%f%e%"(%l): %K
%d: %m)(-WmsgFob)

This option modifies the default message format in batch
mode. The -WmsgFob command sets the message format for
batch mode. The supported formats are (assuming that the
source file is X:\Freescale\mysourcefile.cpph):

• %s: Source Extract
• %p: Path (example, X:\Freescale\)
• %f: Path and name (example, X:\Freescale
\mysourcefile)

• %n: filename (example, mysourcefile)
• %e: Extension (example, .cpph)
• %N: File (8 chars) (example, mysource )
• %E: Extension (3 chars) (example, .cpp)
• %l: Line (example, 3)
• %c: Column (example, 47)
• %o: Pos (example, 1234)
• %K: Uppercase kind (example, ERROR)
• %k: Lowercase kind (example, error)
• %d: Number (example, C1815)
• %m: Message (example, text)
• %%: Percent (example, %)
• \n: New line
• %": A " if the filename, the path, or the extension

contains a space
• %': A ' if the filename, the path, or the extension

contains a space

Message Format for no file information (e.g. %K %d: %m)(-
WmsgFonf)

If there is no file information available for a message, then
<string> defines the message format string to use.

Message Format for no positioning information (%"%f%e%":
%K %d: %m)(-WmsgFonp)

If there is no position information available for a message,
then <string> defines the message format string to use.

Create Error Listing File This option controls whether the Linker creates an error listing
file. The error listing file contains a list of all messages and
errors that occur during processing.

Maximum number of error messages (-WmsgNe) Specify the number of errors allowed until the application
stops processing.

Maximum number of information messages (-WmsgNi) Specify the maximum number of information messages
allowed.

Maximum number of warning messages (-WmsgNw) Specify the maximum number of warnings allowed.

Set messages to Disable Check to disable user messages and allow only the normal
message categories (WARNING, INFORMATION, ERROR,
or FATAL); reduces the number of messages, and simplifies
the error parsing of other tools.

Set messages to Error Check to enable messages of the ERROR category.

Set messages to Information Check to enable messages of the INFORMATION category.

Set messages to Warning Check to enable messages of the WARNING category.

3.4.3.6.1 S08 Linker > Messages > Disable user messages

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

164 Freescale Semiconductor, Inc.



Use this panel to specify whether to generate symbolic information for debugging. The
following table lists and describes the message options.

Table 3-19. Tool Settings - Disable user messages Options

Option Description

Disable all messages Check to disable all the user messages and allow only the
normal message categories (WARNING, INFORMATION,
ERROR, or FATAL); reduces the number of messages, and
simplifies the error parsing of other tools.

Display type of messages (-WmsgNu=t) Check to display the type of user messages.

Display informal messages (-WmsgNu=e) Check to display the informal messages (e.g., memory model,
floating point format).

Disable messages about processing statistics (-WmsgNu=d) Check to disable the information about statistics, e.g., code
size, RAM/ROM usage, and so on provided at the end of the
assembly.

Disable messages about generated files (-WmsgNu=c) Check to disable messages informing about generated files.

Disable messages about reading files (-WmsgNu=b) Check to disable the messages about reading files e.g., the
files used as input.

Disable messages about include files (-WmsgNu=a) Check to disable messages or information provided by the
application included files.

3.4.3.7 S08 Linker > General

Use this panel to specify the general linker behavior.

The following table lists and describes the general linker options for HCS08.

Table 3-20. Tool Settings - Linker > General Options

Option Description

Other flags Specify additional command line options for the linker; type in
custom flags that are not otherwise available in the UI. Default
value is: -WmsgSd1100 -WmsgSd1912

3.4.4 S08 Burner

Use the Burner for HCS08 Preference Panel to map *.bbl (batch burner language) files to
the Burner Plug-In. When the project folder contains a *.bbl file, *.bbl file processing
during the post-link phase uses the settings in the Burner preference panel.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 165



The following table lists and describes the burner options for HCS08.

Table 3-21. Tool Settings - Burner Options

Option Description

Command Shows the location of the burner executable file. Default value
is: "${HC08Tools}/burner". You can specify additional
command line options for the burner; type in custom flags that
are not otherwise available in the UI.

All options Shows the actual command line the burner will be called with.

Expert Settings

Command line pattern Shows the command line pattern; default is ${COMMAND} $
{FLAGS} ${INPUTS}.

3.4.4.1 S08 Burner > Output > Configure S-Record

Use this panel to control how the burner generates the output file, as well as error and
warning messages. You can specify whether to allocate constant objects in ROM,
generate debugging information, and strip file path information.

The following table lists and describes the general options for HCS08 configure S-
Record.

Table 3-22. Tool Settings - Burner > Output > Configure S-Record Options

Option Description

Disable all (-Ns) Disables generation of all start (S0) and end records (S7, S8,
or S9)

No path in S0-record Removes the path (if present) from the file name in the S0
record

No S9-record Disables generation of S9-record

No S8-record Disables generation of S8-record

No S7-record Disables generation of S7-record

No S0-record Disables generation of S0-record

3.4.4.2 S08 Burner > Input

Use this panel to specify the execute command file of the Burner input.

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

166 Freescale Semiconductor, Inc.



The following table lists and describes the inputs options for burner.

Table 3-23. Tool Settings - Burner > Input Options

Option Description

Execute command file This option causes the Burner to execute a Batch Burner
command file (usual extension is .bbl).

3.4.4.3 S08 Burner > Host

Use this panel to specify the host settings of the HCS08.

The following table lists and describes the memory model options for HCS08.

Table 3-24. Tool Settings - Host

Option Description

Set environment variable (-Env) This option sets an environment variable. Use this
environment variable in the maker, or use to overwrite system
environment variables.

Borrow license feature (-LicBorrow) This option allows you to borrow a license feature until a
given date or time. Borrowing allows you to use a floating
license even if disconnected from the floating license server.

Wait until a license is available from floating license server (-
LicWait)

By default, if a license is not available from the floating license
server, then the application will immediately return. With -
LicWait set, the application will wait (blocking) until a license
is available from the floating license server.

Application Standard Occurrence Select the way you want the application window to start.
Normally, the application starts with a normal window if no
arguments are given. If you start the application with
arguments (e.g., from the Maker to assemble, compile, or link
a file), then the application runs minimized to allow for batch
processing. However, you may specify the application's
window behavior with the View option.

• -ViewWindow, the application appears with its normal
window.

• -ViewMin the application appears as an icon in the task
bar.

• -ViewMax, the application appears maximized (filling
the whole screen).

• -ViewHidden, the application processes arguments
(e.g., files to be compiled or linked) in the background
(no window or icon visible in the task bar).

3.4.4.4 S08 Burner > Messages

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 167



Use this panel to specify whether to generate symbolic information for debugging.

The following table lists and describes the message options.

Table 3-25. Tool Settings - Messages Options

Option Description

Don't print INFORMATION messages (-W1) Inhibits information message reporting. Only warning and
error messages are generated.

Don't print INFORMATION or WARNING messages (-W2) Suppresses all messages of type INFORMATION and
WARNING. Only ERROR messages are generated.

Create err.log Error file Using this option, the Burner uses a return code to report
errors back to the tools. When errors occur, 16-bit window
environments use err.log files, containing a list of error
numbers, to report the errors. If no errors occur, the 16-bit
window environments delete the err.log file.

Cut file names to Microsoft format to 8.3 (-Wmsg8x3) Some editors (early versions of WinEdit) expect the filename
in Microsoft message format (8.3 format). That means the
filename can have up to eight characters and no more than a
three-character extension. Longer filenames are possible
when you use Win95 or WinNT. This option truncates the
filename to the 8.3 format.

Set message file format for batch mode Use this option to start the Burner with additional arguments
(for example, files and Burner options). If you start the Burner
with arguments (for example, from the Make Tool or with the `
%f' argument from the CodeWright IDE), the Burner compiles
the files in a batch mode. No Burner window is visible and the
Burner terminates after job completion.

Message Format for batch mode (e.g. %"%f%e%"(%l): %K
%d: %m\n) (-WmsgFob)

This option modifies the default message format in batch
mode. The -WmsgFob command sets the message format for
batch mode. The supported formats are (assuming that the
source file is X:\Freescale\mysourcefile.cpph):

• %s: Source Extract
• %p: Path (example, X:\Freescale\)
• %f: Path and name (example, X:\Freescale
\mysourcefile)

• %n: filename (example, mysourcefile)
• %e: Extension (example, .cpph)
• %N: File (8 chars) (example, mysource )
• %E: Extension (3 chars) (example, .cpp)
• %l: Line (example, 3)
• %c: Column (example, 47)
• %o: Pos (example, 1234)
• %K: Uppercase kind (example, ERROR)
• %k: Lowercase kind (example, error)
• %d: Number (example, C1815)
• %m: Message (example, text)
• %%: Percent (example, %)
• \n: New line
• %": A " if the filename, the path, or the extension

contains a space
• %': A ' if the filename, the path, or the extension

contains a space

Message Format for no file information (e.g. %K %d: %m)(-
WmsgFonf)

If there is no file information available for a message, then
<string> defines the message format string to use.

Table continues on the next page...

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

168 Freescale Semiconductor, Inc.



Table 3-25. Tool Settings - Messages Options (continued)

Option Description

Message Format for no positioning information (%"%f%e%":
%K %d: %m)(-WmsgFonp)

If there is no position information available for a message,
then <string> defines the message format string to use.

Create Error Listing File This option controls whether the Burner creates an error
listing file. The error listing file contains a list of all messages
and errors that occur during processing.

Maximum number of error messages (-WmsgNe) Specify the number of errors allowed until the application
stops processing.

Maximum number of information messages (-WmsgNi) Specify the maximum number of information messages
allowed.

Maximum number of warning messages (-WmsgNw) Specify the maximum number of warnings allowed.

Set messages to Disable Check to disable user messages and allow only the normal
message categories (WARNING, INFORMATION, ERROR,
or FATAL); reduces the number of messages, and simplifies
the error parsing of other tools.

Set messages to Error Check to enable messages of the ERROR category.

Set messages to Information Check to enable messages of the INFORMATION category.

Set messages to Warning Check to enable messages of the WARNING category.

3.4.4.4.1 S08 Burner > Messages > Disable user messages

Use this panel to specify whether to generate symbolic information for debugging. The
following table lists and describes the message options.

Table 3-26. Tool Settings - Disable user messages Options

Option Description

Disable all messages Check to disable all the user messages and allow only the
normal message categories (WARNING, INFORMATION,
ERROR, or FATAL); reduces the number of messages, and
simplifies the error parsing of other tools.

Display type of messages (-WmsgNu=t) Check to display the type of user messages.

Display informal messages (-WmsgNu=e) Check to display the informal messages (e.g., memory model,
floating point format).

Disable messages about processing statistics (-WmsgNu=d) Check to disable the information about statistics, e.g., code
size, RAM/ROM usage, and so on provided at the end of the
assembly.

Disable messages about generated files (-WmsgNu=c) Check to disable messages informing about generated files.

Disable messages about reading files (-WmsgNu=b) Check to disable the messages about reading files e.g., the
files used as input.

Disable messages about include files (-WmsgNu=a) Check to disable messages or information provided by the
application included files.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 169



3.4.4.5 S08 Burner > General

Use this panel to specify the general linker behavior.

The following table lists and describes the general burner options for HCS08.

Table 3-27. Tool Settings - Burner > General Options

Option Description

Other flags Specify additional command line options for the burner; type
in custom flags that are not otherwise available in the UI.

3.4.5 HCS08 Compiler

Use this panel to specify the command, options, and expert settings for the build tool
compiler. Additionally, the HCS08 Compiler tree control includes the general and the file
search path settings.

The following table lists and describes the compiler options for HCS08.

Table 3-28. Tool Settings - Compiler Options

Option Description

Command Shows the location of the compiler executable file. Default
value is: "${HC08Tools}/chc08.exe". You can specify
additional command line options for the compiler; type in
custom flags that are not otherwise available in the UI.

All options Shows the actual command line the compiler will be called
with.

Expert Settings

Command line pattern Shows the command line pattern; default is ${COMMAND} $
{FLAGS}${OUTPUT_FLAG}${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}.

3.4.5.1 HCS08 Compiler > Output

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

170 Freescale Semiconductor, Inc.



Use this panel to control how the compiler generates the output file, as well as error and
warning messages. You can specify whether to allocate constant objects in ROM,
generate debugging information, and strip file path information.

The following table lists and describes the output options for HCS08 compiler.

Table 3-29. Tool Settings - HCS08 Compiler > Output Options

Option Description

Allocate CONST objects in ROM (-Cc) Check to enables the Compiler assign const objects into the
ROM_VAR segment, which the parameter file assigns to a
ROM section.

Encrypt Files (e.g. %f.e%e)(-Eencrypt) Encrypts using the given key with the -Ekey: Encryption Key
option.

Encryption key (-Ekey) Encrypt files with the given key number (-Eencrypt
option).The default encryption key is 0. Using this default is
not recommended.

Object File Format Defines the object file format.

Generate Assembler Include File (e.g. %f.inc)(-La) Enables the Compiler to generate an assembler include file
when the CREATE_ASM_LISTING pragma occurs. The
name of the created file is specified by this option. If no name
is specified, a default of %f.inc is taken. To put the file into the
directory specified by the TEXTPATH: Text File Path
environment variable, use the option -la=%n.inc. The %f
option already contains the path of the source file. When %f is
used, the generated file is in the same directory as the source
file. The content of all modifiers refers to the main input file
and not to the actual header file. The main input file is the one
specified on the command line.

Generate Listing File (e.g. %n.lst)(-Lasm) Enables the Compiler to generate an assembler listing file
directly. The Compiler also prints all assembler-generated
instructions to this file. The option specifies the name of the
file. If no name is specified, the Compiler takes a default of
%n.lst. If the resulting filename contains no path information
the Compiler uses the TEXTPATH: Text File Path
environment variable. The syntax does not always conform
with the inline assembler or the assembler syntax. Therefore,
use this option only to review the generated code. It cannot
currently be used to generate a file for assembly.

Log predefined defines to file (e.g. predef.h)(-Ldf) Enables the Compiler to generate a text file that contains a list
of the compiler-defined #define. The default filename is
predef.h, but may be changed (e.g., -Ldf="myfile.h"). The file
is generated in the directory specified by the TEXTPATH:
Text File Path environment variable. The defines written to
this file depend on the actual Compiler option settings (e.g.,
type size settings or ANSI compliance).

Note: The defines specified by the command line (-D: Macro
Definition option) are not included.

This option may be very useful for SQA. With this option it is
possible to document every #define which was used to
compile all sources. Note: This option only has an effect if a
file is compiled. This option is unusable if you are not
compiling a file.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 171



Table 3-29. Tool Settings - HCS08 Compiler > Output Options (continued)

Option Description

List of included files to `.inc' file (-Li) Enables the Compiler to generate a text file which contains a
list of the #include files specified in the source. This text file
shares the same name as the source file but with the
extension, *.inc. The files are stored in the path specified by
the TEXTPATH: Text File Path environment variable. The
generated file may be used in make files.

Write static output to file (e.g. logfile.txt)(-Ll) Enables the Compiler append statistical information about the
compilation session to the specified file. The information
includes Compiler options, code size (in bytes), stack usage
(in bytes) and compilation time (in seconds) for each
procedure of the compiled file. The Compiler appends the
information to the specified filename (or the file make.txt, if no
argument given). Set the TEXTPATH: Text File Path
environment variable to store the file into the path specified by
the environment variable. Otherwise the Compiler stores the
file in the current directory.

List of included files in make format (e.g. make.txt)(-Lm) This option causes the Compiler to generate a text file which
contains a list of the #include files specified in the source. The
generated list is in a make format. The -Lm option is useful
when creating make files. The output from several source files
may be copied and grouped into one make file. The
generated list is in the make format. The filename does not
include the path. After each entry, an empty line is added.
The information is appended to the specified filename (or the
make.txt file, if no argument is given).

Append object file name to list (e.g.obklist.txt)(-Lo) This option causes the Compiler to append the object
filename to the list in the specified file.The information is
appended to the specified filename (or the file make.txt file, if
no argument given).

Processor output (e.g. %n.pre)(-Lp) This option causes the Compiler to generate a text file which
contains the preprocessor's output. If no filename is specified,
the text file shares the same name as the source file but with
the extension, *.PRE (%n.pre). The TEXTPATH environment
variable is used to store the preprocessor file.

Strip path information (-NoPath) Check to enable the compiler remove both unreferenced path
reference from your program. This reduces your program's
memory footprint.

3.4.5.1.1 HCS08 Compiler > Output > Configure Listing File

Use this panel to configure the listing file options of the HCS08 compiler.

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

172 Freescale Semiconductor, Inc.



The following table lists and describes the Configure Listing File options for the
HC(S)08 Compiler.

Table 3-30. Tool Settings - HCS08 Compiler > Output > Configure Listing File Options

Option Description

Disable all (-Lasmc) This option configures the output format of the listing file
generated with the Generate Listing File option. The
addresses, the hex bytes, and the instructions are selectively
switched off.

Do not write cycle information (-Lasmc=y) This option switches off the cycle information from the output
format of the listing file.

Do not write the compiler version (-Lasmc=v) This option switches off the compiler version from the output
format of the listing file.

Do not write the source code (-Lasmc=s) This option switches off the source code from the output
format of the listing file.

Do not write the source prolog (-Lasmc=p) This option switches off the source prolog from the output
format of the listing file.

Do not write the instruction (-Lasmc=i) This option switches off the instruction from the output format
of the listing file.

Do not write the function header (-Lasmc=h) This option switches off the function header from the output
format of the listing file.

Do not write the source epilog (-Lasmc=e) This option switches off the source epilog from the output
format of the listing file.

Do not write the code (-Lasmc=c) This option switches off the code from the output format of the
listing file.

Do not write the address (-Lasmc=a) This option switches off the address from the output format of
the listing file.

3.4.5.1.2 HCS08 Compiler > Output > Configuration for list of included
files in make format

Use this panel to configure the list of included files in make format of the HCS08
compiler.

The following table lists and describes the Configuration for list of included files in
make format options for HC(S)08 compiler.

Table 3-31. Tool Settings - HCS08 Compiler > Output > Configuration for List of Included
Files in Make Format Options

Option Description

Disale all (-LmCfg) This option is used when configuring the List of Included Files
in Make Format (-Lm) option. The -LmCfg option is operative
only if the -Lm option is also used. The -Lm option produces
the `dependency' information for a make file.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 173



Table 3-31. Tool Settings - HCS08 Compiler > Output > Configuration for List of Included
Files in Make Format Options (continued)

Option Description

Unix style paths (-LmCfg=x) Use this option to writes the path names in Unix style.

Update information (-LmCfg=u) This option updates the information in the output file. If the file
does not exist, the Compiler creates the file. If the file exists
and the current information is not yet in the file, the Compiler
appends the information to the file. If the information is
already present, the Compiler updates the information. This
allows you to specify this suboption for each compilation
ensuring that the make dependency file is always up to date.

Write path of object file (-LmCfg=o) This option writes the full name of the target object file.

Write path of main file (-LmCfg=m) This option writes the full path of the compiled file. This is
necessary when there are files with the same name in
different directories.

Use line continuation (-LmCfg=l) This option uses line continuation for each single entry in the
dependency list. This improves readability.

Write path of included files (-LmCfg=i) This option writes the full path of all included files in the
dependency list.

3.4.5.2 HCS08 Compiler > Input

Use this panel to specify file search paths and any additional include files the HCS08
Compiler should use. You can specify multiple search paths and the order in which you
want to perform the search.

The IDE first looks for an include file in the current directory, or the directory that you
specify in the INCLUDE directive. If the IDE does not find the file, it continues searching the
paths shown in this panel. The IDE keeps searching paths until it finds the #include file or
finishes searching the last path at the bottom of the Include File Search Paths list. The
IDE appends to each path the string that you specify in the INCLUDE directive.

NOTE
The IDE displays an error message if a header file is in a
different directory from the referencing source file. Sometimes,
the IDE also displays an error message if a header file is in the
same directory as the referencing source file.

For example, if you see the message Could not open source file myfile.h, you must add the
path for myfile.h to this panel.

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

174 Freescale Semiconductor, Inc.



The following table lists and describes the input options for HCS08 Compiler.

Table 3-32. Tool Settings - HCS08 Compiler > Input Options

Option Description

Filenames are clipped to DOS length (-!) The filenames are clipped to DOS length (eight characters),
when compiling files from MS-DOS file system.

Include File Path (-I) Specify, delete, or rearrange file search paths.

Recursive Include File Path (-Ir) Appends a recursive access path to the current #include list.
This command is global. Syntax-ir pathpath The
recursive access path to append.

Additional Include Files (-AddInd) Specify, delete, or rearrange paths to search any additional
#include files.

Include files only once (-Pio) Check to include every header file only once; duplicates are
ignored.

The following table lists and describes the toolbar buttons that help work with the file
paths.

Table 3-33. Include File Path (-I) Toolbar Buttons

Button Description

Add - Click to open the Add directory path dialog box and
specify location of the library you want to add.

Delete - Click to delete the selected library path. To confirm
deletion, click Yes in the Confirm Delete dialog box.

Edit - Click to open the Edit directory path dialog box and
update the selected path.

Move up - Click to move the selected path one position higher
in the list.

Move down - Click to move the selected path one position
lower in the list.

The following table lists and describes the toolbar buttons that help work with the search
paths.

Table 3-34. Additional Include Files (-AddIncl) Toolbar Buttons

Button Description

Add - Click to open the Add directory path dialog box and
specify location of the library you want to add.

Delete - Click to delete the selected library path. To confirm
deletion, click Yes in the Confirm Delete dialog box.

Edit - Click to open the Edit directory path dialog box and
update the selected path.

Move up - Click to move the selected path one position higher
in the list.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 175



Table 3-34. Additional Include Files (-AddIncl) Toolbar Buttons (continued)

Button Description

Move down - Click to move the selected path one position
lower in the list.

Figure 3-8. Tool Settings - HCS08 Compiler > Input - Add file path Dialog Box

Figure 3-9. Tool Settings - HCS08 Compiler > Input - Edit file path Dialog Box

The buttons in the Add file path and Edit file path dialog boxes help work with the
paths.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.
• Workspace - Click to display the File Selection dialog box and specify the path. The

resulting path, relative to the workspace, appears in the appropriate list.
• File system - Click to display the Open dialog box and specify the path. The

resulting path appears in the appropriate list.

3.4.5.3 HCS08 Compiler > Language

Use this panel to specify code- and symbol-generation options for the HCS08 Compiler.

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

176 Freescale Semiconductor, Inc.



The following table lists and describes the language options for HCS08.

Table 3-35. Tool Settings - HCS08 Compiler > Language Options

Option Description

Strict ANSI (-Ansi) Check if you want the C compiler to operate in strict ANSI
mode. In this mode, the compiler strictly applies the rules of
the ANSI/ISO specification to all input files. This setting is
equivalent to specifying the - ansi command-line option.
The compiler issues a warning for each ANSI/ISO extension it
finds.

C++ With this option enabled, the Compiler behaves as a C++
Compiler. You can select between three different types of C+
+:

• Full C++ (-C++f) - Supports the whole C++ language.
• Embedded C++ (-C++e) - Supports a constant subset

of the C++ language. EC++ does not support inefficient
things like templates, multiple inheritance, virtual base
classes and exception handling.

• CompactC++ (-C++c) - Supports a configurable subset
of the C++ language. You can configure this subset with
the option -Cn.

• No C++ - If the option is not set, the Compiler behaves
as an ANSI-C Compiler.

If the option is enabled and the source file name extension is
*.c, the Compiler behaves as a C++ Compiler. If the option is
not set, but the source filename extension is .cpp or .cxx, the
Compiler behaves as if the -C++f option were set.

Cosmic compatibility mode for space modifiers @near, @far,
and @tiny (-Ccx)

Check to allow Cosmic style @near, @far and @tiny space
modifiers as well as @interrupt in your C code. The -ANSI
option must be switched off. It is not necessary to remove the
Cosmic space modifiers from your application code. There is
no need to place the objects to sections addressable by the
Cosmic space modifiers. The following is done when a
Cosmic modifier is parsed: The objects declared with the
space modifier are always allocated in a special Cosmic
compatibility (_CX) section (regardless of which section
pragma is set) depending on the space modifier, on the const
qualifier or if it is a function or a variable. Space modifiers on
the left hand side of a pointer declaration specify the pointer
type and pointer size, depending on the target.

Bigraph and trigraph support (-Ci) Check to replace certain unavailable tokens with the
equivalent keywords.

C++ comments in ANSI-C (-Cppc) Check to allow C++ comments.

Propagate const and volatile qualifiers for structs (-Cq) Check to propagate const and volatile qualifiers for structures.
If all members of a structure are constant or volatile, the
structure itself is constant or volatile. If the structure is
declared as constant or volatile, all its members are constant
or volatile, respectively.

Conversion from `const T*' to `T*' (-Ec) Check to enable this non-ANSI compliant extension allows
the compiler to treat a pointer to a constant type like a pointer
to the non-constant equivalent of the type. Earlier Compilers
did not check a store to a constant object through a pointer.
This option is useful when compiling older source code.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 177



Table 3-35. Tool Settings - HCS08 Compiler > Language Options (continued)

Option Description

Do not pre-process escape sequences in strings with
absolute DOS path (-Pe)

When the -Pe option is enabled, the Compiler handles strings
in include directives differently from other strings. Escape
sequences in include directive strings are not evaluated. The
following example: #include "C:\names.h" results in
exactly the same include filename as in the source file (" C:
\names.h"). If the filename appears in a macro, the Compiler
does not distinguish between filename usage and normal
string usage with escape sequence.

NOTE
For more information about the -Pe option, refer
Microcontrollers V10.x HC08 Build Tools Reference
Manual.

3.4.5.3.1 HCS08 Compiler > Language > CompactC++ features

Use this panel to select compact C++ features of HCS08 compiler.

The following table lists and describes the compactC++ options for HCS08.

Table 3-36. Tool Settings - HCS08 Compiler > Language > CompactC++ Features Options

Option Description

Disable all compactC++ features (-Cn) If the -C++ option is enabled, you can disable the compactC+
+ features.

• Vf : Virtual functions are not allowed.

Avoid having virtual tables that consume a lot of
memory.

• Tpl : Templates are not allowed.

Avoid having many generated functions perform similar
operations.

• Ptm : Pointer to member not allowed.

Avoid having pointer-to-member objects that consume a
lot of memory.

• Mih : Multiple inheritance is not allowed.

Avoid having complex class hierarchies. Because
virtual base classes are logical only when used with
multiple inheritance, they are also not allowed.

• Ctr : The C++ Compiler can generate several kinds of
functions, if necessary:

- Default Constructor

- Copy Constructor

- Destructor

Table continues on the next page...

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

178 Freescale Semiconductor, Inc.



Table 3-36. Tool Settings - HCS08 Compiler > Language > CompactC++ Features Options
(continued)

Option Description

- Assignment operator

With this option enabled, the Compiler does not create
those functions. This is useful when compiling C
sources with the C++ Compiler, assuming you do not
want C structures to acquire member functions.

• Cpr : Class parameters and class returns are not
allowed.

Avoid overhead with Copy Constructor and Destructor calls
when passing parameters, and passing return values of class
type.

Do not allow virtual functions (-Cn=Vf) Virtual functions are not allowed. Avoid having virtual tables
that consume a lot of memory

Do not allow templates (-Cn=Tpl) Templates are not allowed. Avoid having many generated
functions perform similar operations.

Do not allow pointer to member (-Cn=Ptm) Pointer to member not allowed. Avoid having pointer-to-
member objects that consume a lot of memory.

Do not allow multiple inheritance and virtual base classes (-
Cn=Mih)

Multiple inheritance is not allowed. Avoid having complex
class hierarchies. Because virtual base classes are logical
only when used with multiple inheritance, they are also not
allowed.

Do not create compiler defined functions (-Cn=Ctr) The C++ Compiler can generate several kinds of functions, if
necessary:

• Default Constructor
• Copy Constructor
• Destructor
• Assignment operator

With this option enabled, the Compiler does not create those
functions. This is useful when compiling C sources with the C
++ Compiler, assuming you do not want C structures to
acquire member functions.

Do not allow class parameters and class returns (-Cn=Ctr) Class parameters and class returns are not allowed. Avoid
overhead with Copy Constructor and Destructor calls when
passing parameters, and passing return values of class type.

3.4.5.4 HCS08 Compiler > Host

Use this panel to specify the host settings of the HCS08.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 179



The following table lists and describes the memory model options for HCS08.

Table 3-37. Tool Settings - Host

Option Description

Set environment variable (-Env) This option sets an environment variable. Use this
environment variable in the maker, or use to overwrite system
environment variables.

Borrow license feature (-LicBorrow) This option allows you to borrow a license feature until a
given date or time. Borrowing allows you to use a floating
license even if disconnected from the floating license server.

Wait until a license is available from floating license server (-
LicWait)

By default, if a license is not available from the floating license
server, then the application will immediately return. With -
LicWait set, the application will wait (blocking) until a license
is available from the floating license server.

Application Standard Occurrence Select the way you want the application window to start.
Normally, the application starts with a normal window if no
arguments are given. If you start the application with
arguments (e.g., from the Maker to assemble, compile, or link
a file), then the application runs minimized to allow for batch
processing. However, you may specify the application's
window behavior with the View option.

• -ViewWindow, the application appears with its normal
window.

• -ViewMin the application appears as an icon in the task
bar.

• -ViewMax, the application appears maximized (filling
the whole screen).

• -ViewHidden, the application processes arguments
(e.g., files to be compiled or linked) in the background
(no window or icon visible in the task bar).

3.4.5.5 HCS08 Compiler > Code Generation

Use this panel to specify code- and symbol-generation options for the HCS08 Compiler

The following table lists and describes the code generation options for HCS08 compiler.

Table 3-38. Tool Settings - HCS08 Compiler > Code Generation Options

Option Description

Bit field Byte allocation (-BfaB[MS|LS]) By default, bit allocation in byte bitfields proceeds from the
least significant bit to the most significant bit. This produces
less code overhead in the case of partially- allocated byte
bitfields. Options are:

• MS: Most significant bit in byte first (left to right)
• LS: Least significant bit in byte first (right to left)

Table continues on the next page...

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

180 Freescale Semiconductor, Inc.



Table 3-38. Tool Settings - HCS08 Compiler > Code Generation Options (continued)

Option Description

Bit field gap limit (-BfaGapLimitBits) Check to affect the maximum allowable number of gap bits.
The bitfield allocation tries to avoid crossing a byte boundary
whenever possible. To optimize accesses, the compiler may
insert some padding or gap bits.

Bit field type size reduction This option is configurable whether or not the compiler uses
type-size reduction for bitfields. Type-size reduction means
that the compiler can reduce the type of an int bitfield to a
char bitfield if it fits into a character. This allows the compiler
to allocate memory only for one byte instead of for an integer.
Options are:

• Enabled (-BfaTSRON)
• Disabled (-BfaTSROFF)

Maximum load factor for switch tables (-100) (-CswMaxLF) Allows changing the default strategy of the Compiler to use
tables for switch statements; is only available if the compiler
supports switch tables.

Minimum number of labels for switch tables (-CswMinLB) Allows changing the default strategy of the Compiler using
tables for switch statements; is only available if the compiler
supports switch tables.

Minimum load factor for switch tables (100) (-CswMinLF) Allows the Compiler to use tables for switch statements; is
only available if the compiler supports switch tables.

Minimum number of labels for switch search tables (-
CswMinSLB)

Allows the Compiler to use tables for switch statements.
Using a search table improves code density, but the
execution time increases. Every time an entry in a search
table must be found, all previous entries must be checked
first. For a dense table, the right offset is computed and
accessed. In addition, note that all backends implement
search tables (if at all) by using a complex runtime routine.
This may make debugging more complex.

Switch off code generation (-Cx) Disables the code generation process of the Compiler. No
object code is generated, though the Compiler performs a
syntactical check of the source code. This allows a quick test
if the Compiler accepts the source without errors.

Do not use CLR for volatile variables in the direct page (-
NoClrVol)

Inhibits the use of CLR for volatile variables in the direct page.
The CLR instruction on HC08 has a read cycle. This may lead
to unwanted lateral effects (e.g. if the variable is mapped over
a hardware register).

Qualifier for virtual table pointers (-Qvtp) Using a virtual function in C++ requires an additional pointer
to virtual function tables. The Compiler cannot access the
pointer and generates the pointer in every class object when
virtual function tables are associated. Options are:

• None
• Near
• Far

Use IEEE32 for double (default is IEEE64) Check to use doubles that are in IEEE32 instead of IEEE64
(default).

Assume HLI code saves modified registers With this option set, the compiler assumes that registers
touched in HLI are saved or restored in the HLI code as well.
If this option is not set, the compiler saves or restores the H,
X, and A registers.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 181



3.4.5.6 HCS08 Compiler > Messages

Use this panel to specify whether to generate symbolic information for debugging. The
following table lists and describes the message options.

Table 3-39. Tool Settings - Messages Options

Option Description

Don't print INFORMATION messages (-W1) Inhibits information message reporting. Only warning and
error messages are generated.

Don't print INFORMATION or WARNING messages (-W2) Suppresses all messages of type INFORMATION and
WARNING. Only ERROR messages are generated.

Create err.log Error file Using this option, the Compiler uses a return code to report
errors back to the tools. When errors occur, 16-bit window
environments use err.log files, containing a list of error
numbers, to report the errors. If no errors occur, the 16-bit
window environments delete the err.log file.

Cut file names to Microsoft format to 8.3 (-Wmsg8x3) Some editors (early versions of WinEdit) expect the filename
in Microsoft message format (8.3 format). That means the
filename can have up to eight characters and no more than a
three-character extension. Longer filenames are possible
when you use Win95 or WinNT. This option truncates the
filename to the 8.3 format.

Set message file format for batch mode Use this option to start the Compiler with additional
arguments (for example, files and Compiler options). If you
start the Compiler with arguments (for example, from the
Make Tool or with the `%f' argument from the CodeWright
IDE), the Compiler compiles the files in a batch mode. No
Compiler window is visible and the Compiler terminates after
job completion.

Message Format for no file information (e.g. %K %d: %m)(-
WmsgFonf)

If there is no file information available for a message, then
<string> defines the message format string to use.

Message Format for no positioning information (%"%f%e%":
%K %d: %m)(-WmsgFonp)

If there is no position information available for a message,
then <string> defines the message format string to use.

Create Error Listing File This option controls whether the Compiler creates an error
listing file. The error listing file contains a list of all messages
and errors that occur during processing.

Maximum number of error messages (-WmsgNe) Specify the number of errors allowed until the application
stops processing.

Maximum number of information messages (-WmsgNi) Specify the maximum number of information messages
allowed.

Maximum number of warning messages (-WmsgNw) Specify the maximum number of warnings allowed.

Error for Implicit parameter declaration (-Wpd) This option prompts the Compiler to issue an ERROR
message instead of a WARNING message when the
Compiler encounters an implicit declaration. This occurs if the
Compiler does not have a prototype for the called function.
This option helps prevent parameter-passing errors, which
can only be detected at runtime. It requires prototyping each

Table continues on the next page...

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

182 Freescale Semiconductor, Inc.



Table 3-39. Tool Settings - Messages Options (continued)

Option Description

called function before use. Correct ANSI behavior assumes
that parameters are correct for the stated call. This option is
the same as using - WmsgSe1801.

Set messages to Disable Check to disable user messages and allow only the normal
message categories (WARNING, INFORMATION, ERROR,
or FATAL); reduces the number of messages, and simplifies
the error parsing of other tools.

Set messages to Error Check to enable messages of the ERROR category.

Set messages to Information Check to enable messages of the INFORMATION category.

Set messages to Warning Check to enable messages of the WARNING category.

3.4.5.6.1 HCS08 Compiler > Messages > Disable user messages

Use this panel to specify whether to generate symbolic information for debugging. The
following table lists and describes the message options.

Table 3-40. Tool Settings - Disable user messages Options

Option Description

Disable all messages Check to disable all the user messages and allow only the
normal message categories (WARNING, INFORMATION,
ERROR, or FATAL); reduces the number of messages, and
simplifies the error parsing of other tools.

Display type of messages (-WmsgNu=t) Check to display the type of user messages.

Display informal messages (-WmsgNu=e) Check to display the informal messages (e.g., memory model,
floating point format).

Disable messages about processing statistics (-WmsgNu=d) Check to disable the information about statistics, e.g., code
size, RAM/ROM usage, and so on provided at the end of the
assembly.

Disable messages about generated files (-WmsgNu=c) Check to disable messages informing about generated files.

Disable messages about reading files (-WmsgNu=b) Check to disable the messages about reading files e.g., the
files used as input.

Disable messages about include files (-WmsgNu=a) Check to disable messages or information provided by the
application included files.

3.4.5.7 HCS08 Compiler > Preprocessor

Use this panel to specify preprocessor behavior. You can specify the file paths and define
macros.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 183



The following table lists and describes the preprocessor options for HCS08 Compiler.

Table 3-41. Tool Settings - HCS08 Compiler > Preprocessor Option

Option Description

Define preprocessor macros (-D) Define, delete, or rearrange preprocessor macros. You can
specify multiple macros and change the order in which the
IDE uses the macros. Define preprocessor macros and
optionally assign their values. This setting is equivalent to
specifying the -D name[=value] command-line option. To
assign a value, use the equal sign (=) with no white space.
For example, this syntax defines a preprocessor value named
EXTENDED_FEATURE and assigns ON as its value:
EXTENDED_FEATURE=ON Note: If you do not assign a value
to the macro, the shell assigns a default value of 1.

The following table lists and describes the toolbar buttons that help work with
preprocessor macro definitions.

Table 3-42. Define Preprocessor Macros Toolbar Buttons

Button Description

Add - Click to open the Enter Value dialog box and specify
the path/macro.

Delete - Click to delete the selected path/macro. To confirm
deletion, click Yes in the Confirm Delete dialog box.

Edit - Click to open the Edit Dialog dialog box and update the
selected path/macro.

Move up - Click to move the selected path/macro one position
higher in the list.

Move down - Click to move the selected path/macro one
position lower in the list.

The following figure shows the Enter Value dialog box.

Figure 3-10. Tool Settings - HCS08 Compiler > Preprocessor - Enter Value Dialog Box

The following figure shows the Edit Dialog dialog box.

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

184 Freescale Semiconductor, Inc.



Figure 3-11. Tool Settings - HCS08 Compiler > Preprocessor - Edit Dialog Box

The buttons in the Enter Value and Edit dialog boxes help work with the preprocessor
macros.

• OK - Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.

3.4.5.8 HCS08 Compiler > Type Sizes

Use this panel to specify the available data type size options for the HCS08 Compiler.

The following table lists and describes the possible type size options for HCS08
Compiler using the -T option.

Table 3-43. Tool Settings - HCS08 Compiler > Type Sizes

Option Description

char Selects the size of the char type. Options are:
• Default (unsigned 8bit)
• unsigned 8bit (-TuCC1)
• signed 8bit (-TsCC1)
• signed 16bit (-TsCC2)
• signed 32bit (-TsCC4)

short Selects the size of the short type. Options are:
• Default (16bit)
• signed 8bit (-TS1)
• signed 16bit (-TS2)
• signed 32bit (-TS4)

int Selects the size of the int type. Options are:
• Default (16bit)
• signed 8bit (-TI1)
• signed 16bit (-TI2)
• signed 32bit (-TI4)

long Selects the size of the long type. Options are:
• Default (32bit)
• signed 8bit (-TL1)
• signed 16bit (-TL2)
• signed 32bit (-TL4)

long long Selects the size of the long long type. Options are:

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 185



Table 3-43. Tool Settings - HCS08 Compiler > Type Sizes (continued)

Option Description

• Default (32bit)
• signed 8bit (-TLL1)
• signed 16bit (-TLL2)
• signed 32bit (-TLL4)

enum Selects the size of the enum type. Options are:
• Default (signed 16bit)
• signed 8bit (-TE1sE)
• signed 16bit (-TE2sE)
• signed 32bit (-TE4sE)
• unsigned 8bit (-TE1uE)

float Selects the size of the float type. Options are:
• Default (IEEE32)
• IEEE32
• IEEE64

double Selects the size of the double type. Options are:
• Default (IEEE64)
• IEEE32
• IEEE64

long double Selects the size of the long double type. Options are:
• Default (IEEE64)
• IEEE32
• IEEE64

long long double Selects the size of the long long double type. Options are:
• Default (IEEE64)
• IEEE32
• IEEE64

3.4.5.9 HCS08 Compiler > General

Use this panel to specify other flags for the HC(S)08 Compiler to use.

The following table lists and describes the General options for HC(S)08 compiler.

Table 3-44. Tool Settings - HC08 Compiler > General Options

Option Description

Other flags Specify additional command line options for the compiler; type
in custom flags that are not otherwise available in the UI.

3.4.5.10 HCS08 Compiler > Optimization

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

186 Freescale Semiconductor, Inc.



Use this panel to control compiler optimizations. The compiler's optimizer can apply any
of its optimizations in either global or non-global optimization mode. You can apply
global optimization at the end of the development cycle, after compiling and optimizing
all source files individually or in groups.

The table below lists and describes the Optimization options for HC(S)08 compiler.

Table 3-45. Tool Settings - HCS08 Compiler > Optimization Options

Option Description

Disable optimization (-O0) Disables all optimizations.

No integral promotion on characters (-Cni) Enhances character operation code density by omitting
integral promotion. This option enables behavior that is not
ANSI-C compliant. Code generated with this option set does
not conform to ANSI standards.

Code compiled with this option is not portable. Using this
option is not recommended in most cases.

Loop unrolling (i[number]) (-Cu) Enables loop unrolling with the following restrictions:
• Only simple for statements are unrolled, for example,

for (i=0; i<10; i++)
• Initialization and test of the loop counter must be done

with a constant.
• Only <, >, <=, >= are permitted in a condition.
• Only ++ or -- are allowed for the loop variable increment

or decrement.
• The loop counter must be integral.
• No change of the loop counter is allowed within the

loop.
• The loop counter must not be used on the left side of an

assignment.
• No address operator (&) is allowed on the loop counter

within the loop.
• Only small loops are unrolled:

Loops with few statements within the loop.

Loops with fewer than 16 increments or decrements of
the loop counter.

The bound may be changed with the optional argument
= i<number>.

The -Cu=i20 option unrolls loops with a maximum of 20
iterations.

Main Optimize Target: Optimize for There are various points where the Compiler has to select
between two possibilities: it can either generate fast, but large
code, or small but slower code.

The Compiler generally optimizes on code size. It often has to
decide between a runtime routine or an expanded code. The
programmer can decide whether to select between the slower
and shorter or the faster and longer code sequence by setting
a command line switch.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 187



Table 3-45. Tool Settings - HCS08 Compiler > Optimization Options (continued)

Option Description

• The Code Size (-Os) option directs the Compiler to
optimize the code for smaller code size. The Compiler
trades faster-larger code for slower-smaller code.

• The Execution Time (-Ot) option directs the Compiler
to optimize the code for faster execution time. The
Compiler replaces slower/smaller code with faster/
larger code. This option only affects some special code
sequences. This option has to be set together with
other optimization options (e.g., register optimization) to
get best results.

Optimize dead assignments Optimizes dead assignments. The Compiler removes
assignments to unused local variables.

There are three possible settings for this option:

• always (even if HLI present in function): Always
optimize dead assignments (even if HLI is present in
current function). The Compiler does not consider inline
assembler accesses.

Note: This option is unsafe when inline assembler code
contains accesses to local variables.

• yes, but never if HLI present in function : No
optimization occurs. This generates the best possible
debug information, and produces larger and slower
code.

• never : Optimize dead assignments if HLI is not present
in the current function.

Create sub-functions with common code Performs the reverse of inlining. It detects common code
parts in the generated code. The Compiler moves the
common code to a different place and replaces all
occurrences with a JSR to the moved code. At the end of the
common code, the Compiler inserts an RTS instruction. The
Compiler increases all SP uses by an address size. This
optimization takes care of stack allocation, control flow, and of
functions having arguments on the stack.

Inline assembler code is never treated as common code.
Options are:

• Default
• Disable (-Onf)
• Off (-Of)

Dynamic options configuration for functions (-OdocF) Allows the Compiler to select from a set of options to reach
the smallest code size for every function. Without this feature,
you must set fixed Compiler switches over the whole
compilation unit. With this feature, the Compiler finds the best
option combination from a user-defined set for every function.

Inlining (C[n] or OFF) (-Oi) Enables inline expansion. If there is a #pragma INLINE before
a function definition, all calls of this function are replaced by
the code of this function, if possible.

Using the -Oi=c0 option switches off inlining. Functions
marked with the #pragma INLINE are still inlined. To disable
inlining, use the -Oi=OFF option.

Table continues on the next page...

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

188 Freescale Semiconductor, Inc.



Table 3-45. Tool Settings - HCS08 Compiler > Optimization Options (continued)

Option Description

Disable alias checking (-Ona) Prevents the Compiler from redefining these variables, which
allows you to reuse already-loaded variables or equivalent
constants. Use this option only when you are sure no real
writes of aliases to a variable memory location will occur.

Do generate copy down information for zero values (-
OnCopyDown)

Using this option, the compiler does not generate a copy
down for i.

The initialization with zero optimization shown for the arr array
only works in the HIWARE format. The ELF format requires
initializing the whole array to zero.

Disable CONST variable by constant replacement (-
OnCstVar)

Allows you to switch OFF the replacement of CONST variable
by the constant value.

Disable code generation for NULL Pointer to Member check (-
OnPMNC)

Before assigning a pointer to a member in C++, you must
ensure that the pointer to the member is not NULL in order to
generate correct and safe code. In embedded systems
development, the difficulty becomes generating the denser
code while avoiding overhead whenever possible (this NULL
check code is a good example). This option enables you to
switch off the code generation for the NULL check.

Large return value type Compiler supports this option even though returning a 'large'
return value may be not as efficient as using an additional
pointer. The Compiler introduces an additional parameter for
the return value if the return value cannot be passed in
registers. Options are:

• Default
• Large return value pointer, always with temporary (-Rpt)
• Large return value pointer and temporary elimination (-

Rpe)

Optimize bitfields and volatile bitfields Use this option to optimize bitfields and volatile bitfields. The
compiler changes the access order or combines many
accesses into one, even if the bitfields are declared as
volatile.

Keep loop induction variables in registers Limits the number of loop induction variables the Compiler
keeps in registers. Specify any number down to zero (no loop
induction variables). The compiler reads and writes loop
induction variables within the loop (for example, loop counter),
and attempts to keep the variables in registers to reduce
execution time and code size. The Compiler takes the optimal
number (code density) when this option is not specified.
Specifying a high number of loop induction variables may
increase code size, particularly for spill and merge code.

Disable optimize bitfields Prevents the Compiler from combining sequences of bitfield
assignments containing constants. This simplifies debugging
and makes the code more readable.

Disable ICG level branch tail merging Switches the ICG level branch tail merging off. This simplifies
debugging and produces more readable code.

Disable any constant folding Prevents the Compiler from folding constants over statement
boundaries. All arithmetical operations are coded. This option
must be set when using the library functions setjmp() and
longjmp(), or the Compiler makes wrong assumptions.

Disable constant folding in the case of a new constant This option prevents the Compiler from folding constants
when the resulting constant is new. The option affects only

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 189



Table 3-45. Tool Settings - HCS08 Compiler > Optimization Options (continued)

Option Description

those processors where constants are difficult to load (e.g.,
RISC processors). On other processors this option makes no
change.

Disable any low level common subexpression elimination Prevents the Compiler from reusing common subexpressions,
such as array indexes and array base addresses. The code
size may increase. The low-level CSE does not have the alias
problems of the frontend CSE and is therefore switched on by
default.

The two CSE optimizations do not cover the same cases. The
low-level CSE has a finer granularity but does not handle all
cases of the frontend CSE.

Use this option only to generate more readable code for
debugging.

Allocate local variables into registers Allocates local variables (char or int) in registers. The number
of local variables allocated in registers depends on the
number of available registers. Use this option when using
variables as loop counters or switch selectors or when the
processor requires register operands for multiple operations
(for example, RISC processors). Compiling with this option
may increase your code size (spill and merge code).

This optimization may increase code complexity when using
High-Level Languages, making debugging more difficult.

Disable frame pointer optimization (-OnX) Prevents the Compiler from converting stack pointer-relative
accesses into X-relative accesses. The frame optimizer tries
to convert all SP-relative accesses (local variables, spills) into
shorter and faster X-relative accesses. In addition, the
Compiler traces the value of H:X and removes useless TSX
and AIX instructions. Using -OnX to switch the frame
optimizer off facilitates debugging.

3.4.5.10.1 HCS08 Compiler > Optimization > Tree optimizer

The Compiler contains a special optimizer which optimizes the internal tree data
structure. This tree data structure holds the semantic of the program and represents the
parsed statements and expressions.

This option disables the tree optimizer. This may be useful for debugging and for forcing
the Compiler to produce `straightforward' code.

Use this panel to configure the tree optimizer options for the HCS08 compiler.

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

190 Freescale Semiconductor, Inc.



The following table lists and describes the Tree optimizer options for HC(S)08
compiler.

Table 3-46. Tool Settings - HCS08 Compiler > Optimization > Tree optimizer

Option Description

Disable all optimizations (-Ont) Disable all the optimizations.

Disable bit neg optimization (-Ont=~) Disable optimization of `~~i' into `i'.

Disable bit or optimization (-Ont=|) Disable optimization of `i|0xffff' into `0xffff'.

Disable exor optimization (-Ont=^) Disable optimization of `i^0' into `i'.

Disable if optimization (-Ont=w) Disable optimization of `if (1) i = 0;' into `i = 0;'.

Disable do optimization (-Ont=v) Disable optimization of `do ... while(0) into `...'.

Disable while optimization (-Ont=u) Disable optimization of `while(1) ...;' into `...;'.

Disable for optimization (-Ont=t) Disable optimization of `for(;;) ...' into `while(1) ...'.

Disable indirect optimization (-Ont=s) Disable optimization of `*&i' into `i'.

Disable 16-32 relative optimization (-Ont=r) Disable optimization of `L<=4' into 16-bit compares if 16-bit
compares are better.

Disable 16-32 compare optimization (-Ont=q) Reduction of long compares into int compares if int compares
are better: (-Ont=q to disable it).

Disable cut optimization (-Ont=p) Disable optimization of `(char)(long)i' into `(char)i'.

Disable cast optimization (-Ont=o) Disable optimization of `(short)(int)L' into `(short)L' if short and
int have the same size.

Disable right shift optimization (-Ont=n) Optimization of shift optimizations (<<, -Ont=n to disable it)

Disable left shift optimization (-Ont=m) Optimization of shift optimizations (>>, -Ont=m to disable it)

Disable label optimization (-Ont=l) Disable optimization removal of labels if not used.

Disable transformations for inlining optimization (-Ont=j) This optimization transforms the syntax tree into an equivalent
form in which more inlining cases can be done. This option
only has an effect when inlining is enabled.

Disable address optimization (-Ont=i) Disable optimization of `&*p' into `p'.

Disable unary minus optimization (-Ont=h) Disable optimization of `-(-i)' into `i'.

Disable compare size optimization (-Ont=g) Disable optimization of compare size.

Disable condition optimization (-Ont=f) Disable optimization of `(a==0)' into `(!a)'.

Disable const swap optimization (-Ont=e) Disable optimization of `2*i' into `i*2'.

Disable binary operation optimization (-Ont=d) Disable optimization of `us & ui' into `us & (unsigned short) ui'.

Disable compare optimization (-Ont=c) Disable optimization of `if ((long)i)' into `if (i)'.

Disable constant folding optimization (-Ont=b) Disable optimization of `3+7' into `10'.

Disable statement optimization (-Ont=a) Disable optimization of last statement in function if result is
not used.

Disable test optimization (-Ont=?) Disable optimization of `i = (int)(cond ? L1:L2);' into `i =
cond ? (int)L1:(int)L2;'.

Disable assign optimization (-Ont=9) Disable optimization of `i=i;'.

Disable switch optimization (-Ont=8) Disable optimization of empty switch statement.

Disable extend optimization (-Ont=7) Disable optimization of `(long)(char)L' into `L'.

Disable or optimization (-Ont=1) Disable optimization of `a || 0' into `a'.

Disable and optimization (-Ont=0) Disable optimization of `a && 1' into `a'.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 191



Table 3-46. Tool Settings - HCS08 Compiler > Optimization > Tree optimizer (continued)

Option Description

Disable div optimization (-Ont=/) Disable optimization of `a/1' into `a'.

Disable minus optimization (-Ont=-) Disable optimization of `a-0' into `a'.

Disable plus optimization (-Ont=+) Disable optimization of `a+0' into `a'.

Disable mul optimization (-Ont=*) Disable optimization of `a*1' into `a'.

Disable bit and optimization (-Ont=) Disable optimization of `a&0' into `0'.

Disable mod optimization (-Ont=%) Disable optimization of `a%1' into `0'.

3.4.5.10.2 HCS08 Compiler > Optimization > Optimize Library Function

This option enables the compiler to optimize specific known library functions to reduce
execution time. The Compiler frequently uses small functions such as strcpy(), strcmp(),
and so forth. Use this panel to configure the optimize library function options for the
HCS08 compiler.

The following table lists and describes Optimize Library Function options for HC(S)08
compiler.

Table 3-47. Tool Settings - HCS08 Compiler > Optimization > Optimize Library Function

Option Description

Apply all optimizations (-OiLib) This option applies all the optimizations.

shifts left of 1 (-OiLib=g) This option replace shifts left of 1 by array lookup.

memcpy (-OiLib=f) This option inline calls to the memcpy() function.

memset (-OiLib=e) This option inline calls to the memset() function.

fabs/fabsf (-OiLib=d) This option inline calls to the fabs() or fabsf() functions.

strlen (-OiLib=b) This option inline calls to the strlen() function.

3.4.5.10.3 HCS08 Compiler > Optimization > Branch Optimizer

Use this panel to specify the branch optimizer options of the HCS08 compiler.

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

192 Freescale Semiconductor, Inc.



The following table lists and describes the Branch Optimizer options for HC(S)08
compiler.

Table 3-48. Tool Settings - HCS08 Compiler > Optimization > Branch Optimizer

Option Description

Disable all optimizations (-OnB) With this option, all low-level branch optimizations are
disabled.

Disable tail branch optimization (-OnB=t) Disable Branch tail optimization

Disable branch to RTS optimization (-OnB=r) Disable Branch to RTS optimization

Disable long branch optimization (-OnB=l) Disable long branch optimization

Disable dead code optimization (-OnB=d) Disable dead code optimization

Disable Branch JSR to BSR optimization (-OnB=b) Disable Branch JSR to BSR optimization

Disable short BRA optimization (-OnB=a) Disable short BRA optimization

3.4.5.10.4 HCS08 Compiler > Optimization > Peephole Optimization

Use this panel to configure peephole optimization for the HC(S)08 Compiler.

The following table lists and describes the Peephole Otimization options for HC(S)08
compiler.

Table 3-49. Tool Settings - HCS08 Compiler > Optimization > Peephole Optimization

Option Description

Disable all optimizations (-OnP) If -OnP is specified, the Compiler disables the whole
peephole optimizer.

Disable peephole load immediate to HX (HCS08 only) (-
OnP=x)

Disable peephole load immediate to HX (HCS08 only).

Disable peephole simple inline assembler optimizations (-
OnP=o)

Disable peephole simple inline assembler optimizations.

Disable peephole CMP #1 optimization (-OnP=n) Disable peephole CMP #1 optimization.

Disable peephole JSR to JMP optimization (-OnP=m) Disable peephole JSR to JMP optimization.

Disable peephole unnescessary transfers optimization (-
OnP=l)

Disable peephole unnescessary transfers optimization.

Disable peephole unnescessary tests optimization (-OnP=k) Disable peephole unnescessary tests optimization.

Disable peephole unused compares optimization (-OnP=j) Disable peephole unused compares optimization.

Disable peephole unused stores optimization (-OnP=i) Disable peephole unused stores optimization.

Disable peephole unused loads optimization (-OnP=h) Disable peephole unused loads optimization.

Disable peephole RTS RTS optimization (-OnP=g) Disable peephole RTS RTS optimization.

Disable peephole PSH PUL optimization (-OnP=f) Disable peephole PSH PUL optimization.

Disable peephole combine bit set/clr optimization (-OnP=e) Disable peephole combine bit set/clr optimization.

Disable peephole combine bit operations optimization (-
OnP=d)

Disable peephole combine bit operations optimization.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 193



Table 3-49. Tool Settings - HCS08 Compiler > Optimization > Peephole Optimization
(continued)

Option Description

Disable peephole PSH/PUL instead AIS optimization (-
OnP=c)

Disable peephole PSH/PUL instead AIS optimization.

Disable peephole handle constant argument optimization (-
OnP=b)

Disable peephole handle constant argument optimization.

Disable peephole combine AI(S|X) optimization (-OnP=a) Disable peephole combine AI(S|X) optimization.

3.4.6 HCS08 Assembler

Use this panel to specify the command, options, and expert settings for the build tool
assembler.

The following table lists and describes the assembler options for HCS08.

Table 3-50. Tool Settings - Assembler Options

Option Description

Command Shows the location of the assembler executable file. You can
specify additional command line options for the assembler;
type in custom flags that are not otherwise available in the UI.

All options Shows the actual command line the assembler will be called
with.

Expert Settings

Command line pattern Shows the command line pattern; default is ${COMMAND} $
{FLAGS}- Objn${OUTPUT_PREFIX}${OUTPUT} $
{INPUTS}.

3.4.6.1 HCS08 Assembler > Output

Use this panel to control how the assembler generates the output file, as well as error and
warning messages. You can specify whether to allocate constant objects in ROM,
generate debugging information, and strip file path information.

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

194 Freescale Semiconductor, Inc.



The following table lists and describes the output options for HCS08 Assembler.

Table 3-51. Tool Settings - HCS08 Assembler > Output Options

Option Description

Object File Format (-F) Defines the object file format.

Show label statistics (-Ll) Enables the Compiler to append statistical information about
the compilation session to the specified file. The information
includes Compiler options, code size (in bytes), stack usage
(in bytes) and compilation time (in seconds) for each
procedure of the compiled file. The Compiler appends the
information to the specified filename (or the file make.txt, if no
argument given). Set the TEXTPATH: Text File Path
environment variable to store the file into the path specified by
the environment variable. Otherwise the Compiler stores the
file in the current directory.

Generate listing file (for example, %(TEXTPATH)/%n.lst) (-L) Specifies the name, %n, of the assembly listing file. The file is
placed in the directory specified by %TEXTPATH. If this
option is left blank, no listing file is output.

Address size in the listing file (integer) (-Lasms) Specifies the size of the addresses displayed in the listing.
Options are:

• 1 to display addresses as xx
• 2 to display addresses as xxxx
• 3 to display addresses as xxxxxx
• 4 to display addresses asf xxxxxxxx

Do not print macro call in listing file (-Lc) Specifies whether macro calls encountered in the source
code are expanded and appear in the listing file.

Do not print macro definition in listing file (-Ld) Instructs the Assembler to generate a listing file but not
including any macro definitions. The listing file contains macro
invocation and expansion lines as well as expanded include
files.

Do not print macro expansion in listing file (-Le) Switches on the generation of the listing file, but macro
expansions are not present in the listing file. The listing file
contains macro definition and invocation lines as well as
expanded include files.

Do not print included files in listing file (-Li) Switches on the generation of the listing file, but include files
are not expanded in the listing file. The listing file contains
macro definition, invocation, and expansion lines.

3.4.6.1.1 HCS08 Assembler > Output > Configure listing file

Use this panel to specify the general assembler behavior.

The following table lists and describes the configure listing file options for HCS08.

Table 3-52. Tool Settings - Assembler > Output > Configure listing file Options

Option Description

Disable all (-Lasmc) Disables printing of all the columns in the listing file

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 195



Table 3-52. Tool Settings - Assembler > Output > Configure listing file Options (continued)

Option Description

Do not write the source line (-Lasmc=s) Do not print source column in the listing file

Do not write the relative line (-Lasmc=r) Do not print relative column (Rel.) in the listing file

Do not write the macro mark (-Lasmc=m) Do not print macro mark column in the listing file

Do not write the address (-Lasmc=l) Do not print address column (Loc) in the listing file

Do not write the location kind (-Lasmc=k) Do not print the location type column in the listing file

Do not write the include mark column (-Lasmc=i) Do not print the include mark column in the listing file

Do not write the object code (-Lasmc=c) Do not print the object code in the listing file

Do not write the absolute line (-Lasmc=a) Do not print the absolute column (Abs.) in the listing file

3.4.6.2 HCS08 Assembler > Input

Use this panel to specify file search paths and any additional include files the HCS08
Assembler should use. You can specify multiple search paths and the order in which you
want to perform the search.

The following table lists and describes the input options for HCS08 Assembler.

Table 3-53. Tool Settings - HCS08 Assembler > Input Options

Option Description

Include File Search Paths (-I) Lists the included file search paths.

Case sensitivity or label name (-Ci) Check to make the label names case sensitive.

Define label (Use spaces to separate labels) (-D) Define labels that have to be included in the RS08 assembler
input.

Support for structured types (-Struct) Check to include the support for structured types.

The following table lists and describes the toolbar buttons that help work with the file
search paths.

Table 3-54. Search Paths Toolbar Buttons

Button Description

Add - Click to open the Add directory path dialog box and
specify the file search path.

Delete - Click to delete the selected file search path. To
confirm deletion, click Yes in the Confirm Delete dialog box.

Edit - Click to open the Edit directory path dialog box and
update the selected object file search path.

Table continues on the next page...

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

196 Freescale Semiconductor, Inc.



Table 3-54. Search Paths Toolbar Buttons (continued)

Button Description

Move up - Click to move the selected file search path one
position higher in the list.

Move down - Click to move the selected file search path one
position lower in the list.

3.4.6.3 HCS08 Assembler > Language

Use this panel to specify code- and symbol-generation options for the HCS08 Assembler.

The following table lists and describes the language options for HCS08 Assembler.

Table 3-55. Tool Settings - HCS08 Assembler > Language Options

Option Description

Angle brackets for macro arguments grouping (-
CMacAngBrack)

Controls whether the < > syntax for macro invocation
argument grouping is available. When it is disabled, the
Assembler does not recognize the special meaning for < in
the macro invocation context. There are cases where the
angle brackets are ambiguous. In new code, use the [? ?]
syntax instead. Options are:

• Allow
• Disallow

Square braces for macro arguments grouping (-
CMacBrackets)

Controls the availability of the [? ?] syntax for macro
invocation argument grouping. When it is disabled, the
Assembler does not recognize the special meaning for [? in
the macro invocation context. Options are:

• Allow
• Disallow

Maximum MacroNest nesting (-MacroNest) Controls how deep macros calls can be nested. Its main
purpose is to avoid endless recursive macro invocations.

3.4.6.3.1 HCS08 Assembler > Language > Compatibility modes

Use this panel to specify language compatibility modes for the HCS08 Assembler.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 197



The following table lists and describes the compatibility mode options for HCS08
Assembler.

Table 3-56. Tool Settings - HCS08 Assembler > Language > Compatibility mode Options

Option Description

Select all (-Compat) Check to enable all compatibility mode options.

Symbol prefixes (-Compat=s) With this suboption, the Assembler accepts "pgz:" and "byte:"
prefixed for symbols in XDEFs and XREFs. They correspond
to XREF.B or XDEF.B with the same symbols without the
prefix.

Ignore FF character at line start Symbol prefixes (-Compat=f) With this suboption, an otherwise improper character
recognized from feed character is ignored.

Alternate comment rules (-Compat=c) With this suboption, comments implicitly start when a space is
present after the argument list. A special character is not
necessary. Be careful with spaces when this option is given
because part of the intended arguments may be taken as a
comment. However, to avoid accidental comments, the
Assembler does issue a warning if such a comment does not
start with a "*" or a ";".

Support FOR directive (-Compat=b) With this suboption, the Assembler supports a FOR - Repeat
assembly block assembly directive to generate repeated
patterns more easily without having to use recursive macros.

Add some additional directives (-Compat=a) With this suboption, some additional directives are added for
enhanced compatibility. The Assembler actually supports a
SECT directive as an alias of the usual SECTION - Declare
Relocatable Section assembly directive. The SECT directive
takes the section name as its first argument.

Operator != means equal (-Compat==) The Assembler takes the default value of the != operator as
not equal, as it is in the C language. For compatibility, this
behavior can be changed to equal with this option. Because
of the risks involved with this option for existing code, a
message is issued for every != which is treated as equal.

Support $ character in symbol (-Compat=) With this suboption, the Assembler supports to start identifiers
with a $ sign.

Support additional ! symbols (-Compat=!) The following additional operators are defined when this
option is used:

• !^: exponentiation
• !m: modulo
• !@: signed greater or equal
• !g: signed greater
• !%: signed less or equal
• !t: signed less than
• !$: unsigned greater or equal
• !S: unsigned greater
• !&: unsigned less or equal
• !l: unsigned less
• !n: one complement
• !w: low operator
• !h: high operator

Note: The default values for the following ! operators are
defined:

• !.: binary AND

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

198 Freescale Semiconductor, Inc.



Table 3-56. Tool Settings - HCS08 Assembler > Language > Compatibility mode Options

Option Description

• !x: exclusive OR
• !+: binary OR

3.4.6.4 HCS08 Assembler > Host

Use this panel to specify the host settings of the HCS08.

The following table lists and describes the memory model options for HCS08.

Table 3-57. Tool Settings - Host

Option Description

Set environment variable (-Env) This option sets an environment variable. Use this
environment variable in the maker, or use to overwrite system
environment variables.

Borrow license feature (-LicBorrow) This option allows you to borrow a license feature until a
given date or time. Borrowing allows you to use a floating
license even if disconnected from the floating license server.

Wait until a license is available from floating license server (-
LicWait)

By default, if a license is not available from the floating license
server, then the application will immediately return. With -
LicWait set, the application will wait (blocking) until a license
is available from the floating license server.

Application Standard Occurrence Select the way you want the application window to start.
Normally, the application starts with a normal window if no
arguments are given. If you start the application with
arguments (e.g., from the Maker to assemble, compile, or link
a file), then the application runs minimized to allow for batch
processing. However, you may specify the application's
window behavior with the View option.

• -ViewWindow, the application appears with its normal
window.

• -ViewMin the application appears as an icon in the task
bar.

• -ViewMax, the application appears maximized (filling
the whole screen).

• -ViewHidden, the application processes arguments
(e.g., files to be compiled or linked) in the background
(no window or icon visible in the task bar).

3.4.6.5 HCS08 Assembler > Code Generation

Use this panel to specify the code generation assembler behavior.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 199



The following table lists and describes the code generation assembler options for HCS08.

Table 3-58. Tool Settings - Assembler > Code Generation Options

Option Description

Associate debug information to assembly source file (-
AsmDbg)

Passes the assembly source file name information to DWARF
sections. When the output .abs file is debugged, the actual
assembly source file is displayed instead of intermediary
<filename>.dbg file.

3.4.6.6 HCS08 Assembler > Messages

Use this panel to specify whether to generate symbolic information for debugging.

The following table lists and describes the message options.

Table 3-59. Tool Settings - Messages Options

Option Description

Don't print INFORMATION messages (-W1) Inhibits information message reporting. Only warning and
error messages are generated.

Don't print INFORMATION or WARNING messages (-W2) Suppresses all messages of type INFORMATION and
WARNING. Only ERROR messages are generated.

Create err.log Error file Using this option, the Assembler uses a return code to report
errors back to the tools. When errors occur, 16-bit window
environments use err.log files, containing a list of error
numbers, to report the errors. If no errors occur, the 16-bit
window environments delete the err.log file.

Cut file names to Microsoft format to 8.3 (-Wmsg8x3) Some editors (early versions of WinEdit) expect the filename
in Microsoft message format (8.3 format). That means the
filename can have up to eight characters and no more than a
three-character extension. Longer filenames are possible
when you use Win95 or WinNT. This option truncates the
filename to the 8.3 format.

Set message file format for batch mode Use this option to start the Assembler with additional
arguments (for example, files and Assembler options). If you
start the Assembler with arguments (for example, from the
Make Tool or with the `%f' argument from the CodeWright
IDE), the Assembler compiles the files in a batch mode. No
Assembler window is visible and the Assembler terminates
after job completion.

Message Format for batch Mode (e.g. %"%f%e%"(%l): %K
%d: %m\n)(-WmsgFob)

This option modifies the default message format in batch
mode. The -WmsgFob command sets the message format for
batch mode. The supported formats are (assuming that the
source file is X:\Freescale\mysourcefile.cpph):

• %s: Source Extract
• %p: Path (example, X:\Freescale\)
• %f: Path and name (example, X:\Freescale
\mysourcefile)

Table continues on the next page...

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

200 Freescale Semiconductor, Inc.



Table 3-59. Tool Settings - Messages Options (continued)

Option Description

• %n: filename (example, mysourcefile)
• %e: Extension (example, .cpph)
• %N: File (8 chars) (example, mysource )
• %E: Extension (3 chars) (example, .cpp)
• %l: Line (example, 3)
• %c: Column (example, 47)
• %o: Pos (example, 1234)
• %K: Uppercase kind (example, ERROR)
• %k: Lowercase kind (example, error)
• %d: Number (example, C1815)
• %m: Message (example, text)
• %%: Percent (example, %)
• \n: New line
• %": A " if the filename, the path, or the extension

contains a space
• %': A ' if the filename, the path, or the extension

contains a space

Message Format for no file information (e.g. %K %d: %m)(-
WmsgFonf)

If there is no file information available for a message, then
<string> defines the message format string to use.

Message Format for no positioning information (%"%f%e%":
%K %d: %m)(-WmsgFonp)

If there is no position information available for a message,
then <string> defines the message format string to use.

Create Error Listing File This option controls whether the Assembler creates an error
listing file. The error listing file contains a list of all messages
and errors that occur during processing.

Maximum number of error messages (-WmsgNe) Specify the number of errors allowed until the application
stops processing.

Maximum number of information messages (-WmsgNi) Specify the maximum number of information messages
allowed.

Maximum number of warning messages (-WmsgNw) Specify the maximum number of warnings allowed.

Set messages to Disable Check to disable user messages and allow only the normal
message categories (WARNING, INFORMATION, ERROR,
or FATAL); reduces the number of messages, and simplifies
the error parsing of other tools.

Set messages to Error Check to enable messages of the ERROR category.

Set messages to Information Check to enable messages of the INFORMATION category.

Set messages to Warning Check to enable messages of the WARNING category.

3.4.6.6.1 HCS08 Assembler > Messages > Disable user messages

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 201



Use this panel to specify whether to generate symbolic information for debugging. The
following table lists and describes the message options.

Table 3-60. Tool Settings - Disable user messages Options

Option Description

Disable all messages Check to disable all the user messages and allow only the
normal message categories (WARNING, INFORMATION,
ERROR, or FATAL); reduces the number of messages, and
simplifies the error parsing of other tools.

Display type of messages (-WmsgNu=t) Check to display the type of user messages.

Display informal messages (-WmsgNu=e) Check to display the informal messages (e.g., memory model,
floating point format).

Disable messages about processing statistics (-WmsgNu=d) Check to disable the information about statistics, e.g., code
size, RAM/ROM usage, and so on provided at the end of the
assembly.

Disable messages about generated files (-WmsgNu=c) Check to disable messages informing about generated files.

Disable messages about reading files (-WmsgNu=b) Check to disable the messages about reading files e.g., the
files used as input.

Disable messages about include files (-WmsgNu=a) Check to disable messages or information provided by the
application included files.

3.4.6.7 HCS08 Assembler > General

Use this panel to specify the general assembler behavior.

The following table lists and describes the general assembler options for HCS08.

Table 3-61. Tool Settings - Assembler > General Options

Option Description

MMU Support (-MMU) Check to inform the compiler that CALL and RTC instructions
are available, enabling code banking, and that the current
architecture has extended data access capabilities, enabling
support for __linear data types. This option can be used
only when -Cs08 is enabled.

MCUasm compatibility (-MCUasm) Check to activate the compatibility mode with the MCUasm
Assembler.

Other Flags Specify additional command line options for the assembler;
type in custom flags that are not otherwise available in the UI.

3.4.7 HCS08 Preprocessor

Build Properties for S08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

202 Freescale Semiconductor, Inc.



Use this panel to specify the preprocessor settings of the HCS08.

The following table lists and describes the preprocessor options for HCS08.

Table 3-62. Tool Settings - Preprocessor Options

Option Description

Command Shows the location of the preprocessor executable file. You
can specify additional command line options for the
preprocessor; type in custom flags that are not otherwise
available in the UI.

All options Shows the actual command line the assembler will be called
with.

Expert Settings

Command line pattern Shows the command line pattern; default is ${COMMAND} -
Lp ${FLAGS} ${INPUTS}.

3.4.7.1 HCS08 Preprocessor > Preprocessor Settings

Use this panel to specify the preprocessor settings of HCS08.

The following table lists and describes the preprocessor settings options for HCS08.

Table 3-63. Tool Settings - Preprocessor > Preprocessor Settings Options

Option Description

Turn on all preprocessor configuration Use this option to enable the default preprocessor
configuration.

Emit whitespaces (-LpCfg=s) Use this option to reconstruct spaces.

Handle single quote (`) as normal token (-LpCfg=q) Use this option to handle single quote (`) as normal token.

Do not concatenate strings (-LpCfg=n) Use this option to avoid string concatenation.

Emit #line directive (-LpCfg=l) Use this option to emit #line directives in preprocessor output.

Do not emit file names (-LpCfg=m) Do not emit file names.

Emit file names with path (-LpCfg=f) Use this option to emit file names with path.

Emit empty lines (-LpCfg=e) Use this option to emit empty lines.

Do not emit line comments (-LpCfg=c) Do not emit line comments

Stop after preprocessor (-LpX) Without this option, the compiler always translates the
preprocessor output as C code. To do only preprocessing,
use this option together with the -Lp option. No object file is
generated.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 203



3.5 Build Properties for RS08

The Properties for <project> window shows the corresponding build properties for an
RS08 project.

Figure 3-12. Build Properties - RS08

The following table lists the build properties specific to developing software for HCS08.

The properties that you specify in these panels apply to the selected build tool on the
Tool Settings page of the Properties for <project> window.

Table 3-64. Build Properties for RS08

Build Tool Build Properties Panels

General General

S08 Disassembler S08 Disassembler > Output

S08 Disassembler > Input

S08 Disassembler > Host

Table continues on the next page...

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

204 Freescale Semiconductor, Inc.



Table 3-64. Build Properties for RS08 (continued)

Build Tool Build Properties Panels

S08 Disassembler > Messages

S08 Disassembler > Messages > Disable user messages

S08 Linker S08 Linker > Optimization

S08 Linker > Output

S08 Linker > Input

S08 Linker > Host

S08 Linker > Messages

S08 Linker > Messages > Disable user messages

S08 Linker > General

S08 Burner S08 Burner > Output > Configure S-Record

S08 Burner > Input

S08 Burner > Host

S08 Burner > Messages

S08 Linker > Messages > Disable user messages

S08 Burner > General

RS08 Compiler RS08 Compiler > Output

RS08 Compiler > Output > Configure Listing File

RS08 Compiler > Output > Configuration for list of included
files in make format

RS08 Compiler > Input

RS08 Compiler > Language

RS08 Compiler > Language > CompactC++ features

RS08 Compiler > Host

RS08 Compiler > Code Generation

RS08 Compiler > Messages

RS08 Compiler > Messages > Disable user messages

RS08 Compiler > Preprocessor

RS08 Compiler > Type Sizes

RS08 Compiler > General

RS08 Compiler > Optimization

RS08 Compiler > Optimization > Mid level optimizations

RS08 Compiler > Optimization > Mid level branch
optimizations

RS08 Compiler > Optimization > Tree optimizer

RS08 Compiler > Optimization > Optimize Library Function

RS08 Assembler RS08 Assembler > Output

RS08 Assembler > Output > Configure Listing File

RS08 Assembler > Input

RS08 Assembler > Language

RS08 Assembler > Language > Compatibility modes

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 205



Table 3-64. Build Properties for RS08 (continued)

Build Tool Build Properties Panels

RS08 Assembler > Host

RS08 Assembler > Code Generation

RS08 Assembler > Messages

RS08 Assembler > Messages > Disable user messages

RS08 Assembler > General

RS08 Preprocessor RS08 Preprocessor > Preprocessor Settings

3.5.1 General

Use this panel to specify the memory model that the architecture uses. The build tools
(compiler, linker, and assembler) use the properties that you specify.

The following table lists and describes the memory model options for RS08.

Table 3-65. Tool Settings - General

Option Description

Memory Model (-M) Specify the memory model for the build tools:
• Tiny - Assumes that data pointers have 8-bit addresses

unless explicitly specified with the keyword __far
• Small - Default memory model; assumes that all

functions and pointers have 16 bit addresses and
requires code and data to be located in 64 kilobytes
address space

• Banked - Lets you place program code into atmost 256
pages of 16 kilobytes each, but does not affect data
allocation

Enable Memory Management Unit (MMU) Support (-MMU) Check to inform the compiler that CALL and RTC instructions
are available, enabling code banking, and that the current
architecture has extended data access capabilities, enabling
support for __linear data types. This option can be used
only when -Cs08 is enabled.

3.5.2 S08 Disassembler

Use this panel to specify the command, options, and expert settings for RS08
Disassembler.

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

206 Freescale Semiconductor, Inc.



The following table lists and describes the Disassembler options.

Table 3-66. Tool Settings - Disassembler Options

Option Description

Command Shows the location of the disassembler executable file;
default is ${HC08Tools}/decoder. You can specify
additional command line options for the disassembler; type in
custom flags that are not otherwise available in the UI.

All options Shows the actual command line the disassembler will be
called with.

Expert Settings

Command line pattern Shows the command line patterns; default is ${COMMAND} $
{FLAGS} -O${OUTPUT_PREFIX}${OUTPUT} ${INPUTS}

3.5.2.1 S08 Disassembler > Output

Use this panel to control how the disassembler generates the output file.

The following table lists and describes the output options for RS08 disassembler.

Table 3-67. Tool Settings - Disassembler > Output Options

Option Description

Print full listing Prints a listing with the header information of the object file.

Write disassembly listing with source code Check to enable the decoder write the source code within the
disassembly listing, when decoding Freescale object files.
ELF object files are not affected by this option. This option
setting is default for the Freescale object files as input.

Decode DWARF section Check to write the DWARF section information in the listing
file. Decoding from the DWARF section inserts this
information in the listing file.

Configure which parts of DWARF in formation to decode Check to configure which parts of DWARF information to
decode.

Decode ELF sections Check to ensure that the ELF section information is also
written to the listing file. Decoding from the ELF section
inserts information in the listing file.

Dump ELF sections Check to generate a HEX dump of all ELF sections. Decode
ELF sections and Dump ELF sections both refer to the same
decoder option (-E).

Dump ELF sections in LST file Check to generate a HEX dump of all ELF sections in a LST
file. The related command -E produces the same information,
but in a more readable form.

Produce inline assembly file Check to ensure that the output listing is an inline assembly
file without additional information, but in C comments. Only for
Freescale object files.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 207



Table 3-67. Tool Settings - Disassembler > Output Options (continued)

Option Description

No symbols in disassembled listing Check to prevent symbols from printing in the disassembled
listing.

Shows the cycle count for each instruction Check to ensure that each instruction line contains the cycle
count in '[',']' braces. The cycle count is written before the
mnemonics of the instruction. Note that the cycle count
display is not supported for all architectures.

Write disassembly listing only Check to ensure that the Decoder writes the pure
dissasembly only within the listing, without any source or
comments. For Freescale object files only.

Write disassembly listing with source and all comments Check to ensure the Decoder also includes the original
source and comments in the disassembly listing. For
Freescale objects only..

3.5.2.2 S08 Disassembler > Input

Use this panel to control how the disassembler generates the input file.

The following table lists and describes the input options for RS08 disassembler.

Table 3-68. Tool Settings - Disassembler > Input Options

Option Description

Object File Format Defines the format of the input object files.

Set processor Specifies which processor of the input object file generated
for. For object files, libraries and applications, the processor is
usually detected automatically. For S-Record and Intel Hex
files, however, the decoder cannot determine which CPU the
code is for, and therefore the processor must be specified
with this option to get a disassembly output. Without this
option, only the structure of a S-Record file is decoded. The
following values are supported: HC08, HC08:HCS08, HC11,
HC12, HC12:CPU12, HC12:HCS12, HC12:HCS12X, HC16,
M68k, MCORE, PPC, RS08, 8500, 8300, 8051 and XA.

3.5.2.3 S08 Disassembler > Host

Use this panel to specify the host settings of the RS08.

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

208 Freescale Semiconductor, Inc.



The following table lists and describes the memory model options for RS08.

Table 3-69. Tool Settings - Host

Option Description

Set environment variable (-Env) This option sets an environment variable. Use this
environment variable in the maker, or use to overwrite system
environment variables.

Borrow license feature (-LicBorrow) This option allows you to borrow a license feature until a
given date or time. Borrowing allows you to use a floating
license even if disconnected from the floating license server.

Wait until a license is available from floating license server (-
LicWait)

By default, if a license is not available from the floating license
server, then the application will immediately return. With -
LicWait set, the application will wait (blocking) until a license
is available from the floating license server.

Application Standard Occurrence Select the way you want the application window to start.
Normally, the application starts with a normal window if no
arguments are given. If you start the application with
arguments (e.g., from the Maker to assemble, compile, or link
a file), then the application runs minimized to allow for batch
processing. However, you may specify the application's
window behavior with the View option.

• -ViewWindow, the application appears with its normal
window.

• -ViewMin the application appears as an icon in the task
bar.

• -ViewMax, the application appears maximized (filling
the whole screen).

• -ViewHidden, the application processes arguments
(e.g., files to be compiled or linked) in the background
(no window or icon visible in the task bar).

3.5.2.4 S08 Disassembler > Messages

Use this panel to specify whether to generate symbolic information for debugging.

The following table lists and describes the message options.

Table 3-70. Tool Settings - Messages Options

Option Description

Don't print INFORMATION messages (-W1) Inhibits information message reporting. Only warning and
error messages are generated.

Don't print INFORMATION or WARNING messages (-W2) Suppresses all messages of type INFORMATION and
WARNING. Only ERROR messages are generated.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 209



Table 3-70. Tool Settings - Messages Options (continued)

Option Description

Create err.log Error file Using this option, the disassembler uses a return code to
report errors back to the tools. When errors occur, 16-bit
window environments use err.log files, containing a list of
error numbers, to report the errors. If no errors occur, the 16-
bit window environments delete the err.log file.

Cut file names to Microsoft format to 8.3 (-Wmsg8x3) Some editors (early versions of WinEdit) expect the filename
in Microsoft message format (8.3 format). That means the
filename can have up to eight characters and no more than a
three-character extension. Longer filenames are possible
when you use Win95 or WinNT. This option truncates the
filename to the 8.3 format.

Set message file format for batch mode Use this option to start the disassembler with additional
arguments (for example, files and disassembler options). If
you start the disassembler with arguments (for example, from
the Make Tool or with the `%f' argument from the CodeWright
IDE), the disassembler compiles the files in a batch mode. No
disassembler window is visible and the disassembler
terminates after job completion.

Message Format for batch mode (e.g. %"%f%e%"(%l): %K
%d: %m\n) (-WmsgFob)

This option modifies the default message format in batch
mode. The -WmsgFob command sets the message format for
batch mode. The supported formats are (assuming that the
source file is X:\Freescale\mysourcefile.cpph):

• %s: Source Extract
• %p: Path (example, X:\Freescale\)
• %f: Path and name (example, X:\Freescale
\mysourcefile)

• %n: filename (example, mysourcefile)
• %e: Extension (example, .cpph)
• %N: File (8 chars) (example, mysource )
• %E: Extension (3 chars) (example, .cpp)
• %l: Line (example, 3)
• %c: Column (example, 47)
• %o: Pos (example, 1234)
• %K: Uppercase kind (example, ERROR)
• %k: Lowercase kind (example, error)
• %d: Number (example, C1815)
• %m: Message (example, text)
• %%: Percent (example, %)
• \n: New line
• %": A " if the filename, the path, or the extension

contains a space
• %': A ' if the filename, the path, or the extension

contains a space

Message Format for no file information (e.g. %K %d: %m)(-
WmsgFonf)

If there is no file information available for a message, then
<string> defines the message format string to use.

Message Format for no positioning information (%"%f%e%":
%K %d: %m)(-WmsgFonp)

If there is no position information available for a message,
then <string> defines the message format string to use.

Create Error Listing File This option controls whether the disassembler creates an
error listing file. The error listing file contains a list of all
messages and errors that occur during processing.

Maximum number of error messages (-WmsgNe) Specify the number of errors allowed until the application
stops processing.

Table continues on the next page...

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

210 Freescale Semiconductor, Inc.



Table 3-70. Tool Settings - Messages Options (continued)

Option Description

Maximum number of information messages (-WmsgNi) Specify the maximum number of information messages
allowed.

Maximum number of warning messages (-WmsgNw) Specify the maximum number of warnings allowed.

Set messages to Disable Check to disable user messages and allow only the normal
message categories (WARNING, INFORMATION, ERROR,
or FATAL); reduces the number of messages, and simplifies
the error parsing of other tools.

Set messages to Error Check to enable messages of the ERROR category.

Set messages to Information Check to enable messages of the INFORMATION category.

Set messages to Warning Check to enable messages of the WARNING category.

3.5.2.4.1 S08 Disassembler > Messages > Disable user messages

Use this panel to specify whether to generate symbolic information for debugging. The
following table table lists and describes the message options.

Table 3-71. Tool Settings - Disable user messages Options

Option Description

Disable all messages Check to disable all the user messages and allow only the
normal message categories (WARNING, INFORMATION,
ERROR, or FATAL); reduces the number of messages, and
simplifies the error parsing of other tools.

Display type of messages (-WmsgNu=t) Check to display the type of user messages.

Display informal messages (-WmsgNu=e) Check to display the informal messages (e.g., memory model,
floating point format).

Disable messages about processing statistics (-WmsgNu=d) Check to disable the information about statistics, e.g., code
size, RAM/ROM usage, and so on provided at the end of the
assembly.

Disable messages about generated files (-WmsgNu=c) Check to disable messages informing about generated files.

Disable messages about reading files (-WmsgNu=b) Check to disable the messages about reading files e.g., the
files used as input.

Disable messages about include files (-WmsgNu=a) Check to disable messages or information provided by the
application included files.

3.5.3 S08 Linker

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 211



Use this panel to specify the command, options, and expert settings for the build tool
linker. Additionally, the Linker tree control includes the general, libraries, and search
path settings.

The following table lists and describes the linker options for RS08.

Table 3-72. Tool Settings - Linker Options

Option Description

Command Shows the location of the linker executable file. Default value
is "${HC08Tools}/linker.exe". You can specify
additional command line options for the linker; type in custom
flags that are not otherwise available in the UI.

All options Shows the actual command line the linker will be called with.

Expert Settings

Command line pattern Shows the command line pattern; default is ${COMMAND} $
{FLAGS} ${OUTPUT_FLAG}${OUTPUT_PREFIX}$
{OUTPUT} -add( ${INPUTS} )

3.5.3.1 S08 Linker > Optimization

Use this panel to control linker optimizations. The linker's optimizer can apply any of its
optimizations in either global or non-global optimization mode. You can apply global
optimization at the end of the development cycle, after compiling and optimizing all
source files individually or in groups.

The following table lists and describes the linker optimization options for HCS08 .

Table 3-73. Tool Settings - Linker > Optimization Options

Option Description

Allocation over segment boundaries (-Alloc) The linker supports to allocate objects from one ELF section
into different segments. The allocation strategy controls
where space for the next object is allocated as soon as the
first segment is full. In the AllocNext strategy, the linker
always takes the next segment as soon as the current
segment is full. Holes generated during this process are not
used later. With this strategy, the allocation order corresponds
to the definition order in the object files. Objects defined first
in a source file are allocated before later defined objects. In
the AllocFirst strategy, the linker checks for every object, if
there is a previously only partially used segment, into which
the current object does fit. This strategy does not maintain the
definition order. In the AllocChange strategy, the linker checks
as soon as a object does no longer fit into the current
segment, if there is a previously only partially used segment,

Table continues on the next page...

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

212 Freescale Semiconductor, Inc.



Table 3-73. Tool Settings - Linker > Optimization Options (continued)

Option Description

into which the current object does fit. This strategy does not
maintain the definition order, but it does however use fewer
different ranges than the AllocFirst case.

Allocate non referenced overlap variables (-
CAllocUnusedOverlap)

When Smart Linking is switched off, defined but unreferenced
overlapped variables are not allocated by default. Such
variables do not belong to a specific function, therefore they
cannot be allocated overlapped with other variables. This
option only changes the behavior of variables in the special
_OVERLAP segment. This segment is used only to allocate
parameters and local variables for processors which do not
have a stack. Not allocating an unreferenced overlap variable
is similar to not allocating a variable on the stack for other
processors. If you use this stack analogy, then allocating such
variables this way corresponds to allocating unreferenced
stack variables in global memory. This option allows
allocation of all defined objects. Using this option is not
recommended.

Enable automatic const placement (-ConstDist) With this option the linker constant optimizer is enabled.
Instead of performing usual linking actions, the linker
generates a data distribution file which contains optimized
distribution for constant objects.

Specify constant distribution segment name (-ConstDistSeg) When this option is enabled, it's possible to specify the name
of the constant distribution segment.

Allcoate non specified const segments in RAM (-CRam) This option allocates constant data segments not explicitly
allocated in a READ_ONLY segment in the default
READ_WRITE segment. This was the default for old versions
of the linker, so this option provides a compatible behavior
with old linker versions.

Enable automatic data placement (-DataDist) With this option the linker data optimizer is enabled. Instead
of performing usual linking actions, the linker generates a
data distribution file which contains optimized distribution.

Specify data distribution file name (-DataDistFile) When this option is enabled, it's possible to specify the name
of the data distribution file. There, all distributed data and how
the compiler has to reallocate them are listed.

Generate data optimizer information file (-DataDistInfo) When this option is enabled, the data optimizer generates a
data distribution information file giving information on object to
segment mapping

Specify data distribution segment name (-DataDistSeg) When this option is enabled, it's possible to specify the name
of the data distribution segment.

Enable distribution optimization (-Dist) This option enables the linker optimizer. Instead of a link, the
linker generates a distribution file which contains an optimized
distribution.

Specify distribution file name (-DistFile) Enable this option to specify the name of the distribution file.
The distribution file lists all distributed functions and specifies
how the compiler reallocates them.

Generate optimizer information file (-DistInfo) Using this option, the optimizer generates a distribution
information file containing a list of all sections and their
functions. Available function information includes the old size,
optimized size, and new calling convention.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 213



Table 3-73. Tool Settings - Linker > Optimization Options (continued)

Option Description

Choose optimizing method (-DistOpti) Enable this option to choose the optimizing method. With the
FillBanks argument the linker minimizes the free space in
every bank. FillBanks is most effective for functions using the
near calling convention. Use the CodeSize argument to
minimize code when free space within the banks is no
concern.

Specify distribution segment name (-DistSeg) Use this option to specify the name of the distribution
segment.

Specify library file name (-LibFile) When this option is enabled,linker generates file<filename>
which has information about the current libraries and also
about the files with which they should be replaced with.

Enable library option file generation (_LibOptions) Enables library information generation. When this option is
enabled,linker generates file (default libFile.txt) which has
information about the current library and the startup file and
also about the files with which they should be replaced with.

Specify data optimizer options file name (-OptioneFile) Specifies the name of the file that contains the set of linker-
generated compiler options. When this option is enabled,
linker places the second step compiler options in the specified
file<filename>.

Enable option file generation (-Options) Enables compiler option generation. The generated options
will be used for second step compilation. Linker generates a
text file containing a compiler option for the second step (one
of the following: -ConstQualiNear, -NonConstQualiNear, -Mb).
The content of the file is appended to the compiler options for
the second compilation step.

Specify library file name (-P2LibFileName) Specifies the name of the library information file. When this
option is enabled in second link step,linker reads
file<filename> which has information about the libraries.

Enable option to read libFile.txt in P2 (-ReadLibFile) Instructs the linker to read in the library information file that it
generated in step one. This option is passed in second link
step. It tells the linker to read library information file(default
libFile.txt).

Emit StartUp information to library info file (-StartUpInfo) The information about the current startup file and the
replacement startup file will be added to the library file(default
libFile.txt) and used during the second compile-link step.

Overlap constants in ROM (-COCC) Defines the default if constants and code should be
optimized; commands DO_OVERLAP_CONSTS and
DO_NOT_OVERLAP_CONSTS take precedence over the
option.

Optimize copy down (-OCopy) Changes the copy down structure to use few spaces. The
optimization does assume that the application does perform
both the zero out and the copy down step of the global
initialization. If a value is set to zero by the zero out, then zero
values are removed from the copy down information. The
resulting initialization is not changed by this optimization if the
default startup code is used.

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

214 Freescale Semiconductor, Inc.



3.5.3.2 S08 Linker > Output

Use this panel to control how the linker formats the listing file, as well as error and
warning messages.

The following table lists and describes the linker output options for HCS08.

Table 3-74. Tool Settings - Linker > Output Options

Option Description

Link as ROM library (-AsROMlib) Check to link the application as a ROM library. This option
has the same effect as specifying AS ROM_LIB in the linker
parameter file.

Generate S_record file (-B) Check to specify that in addition to an absolute file, also an
srecord file should be generated. The name of the srecord file
is the same as the name of the abs file, except that the
extension "SX" is used. The default.env variable "SRECORD"
may specify an alternative extension.

Check if objects overlap in the absolute file (even if different
address spaces) (-CheckAcrossAddrSpace)

Check to instruct the linker to check if objects overlap, taking
into account their address space.

Define the default value of the EPAGE register (-
DefaultEpage)

Defines the reset value for the EEPROM Page Index Register
(EPAGE). The value is specific to the actual S12(X)
derivative.

Define the default value of the PPAGE register (-
DefaultPpage)

Defines the reset value for the Program Page Index Register
(PPAGE). The value is specific to the actual S12(X)
derivative.

Define the default value of the RPAGE register (-
DefaultRpage)

Defines the reset value for the RAM Page Index Register
(RPAGE). The value is specific to the actual S12(X)
derivative.

Generate map file (-M) Check to scan source files for dependencies and emit a
Makefile, without generating object code.

Never check section qualifier compatibility (-NoSectCompat) For some target CPU's, when placing a section in a segment
the linker checks if the qualifiers of the section are compatible
with the ones of the segment (for instance when placing .text
into RAM may result in a linker error).This option disables the
check.

Strip symbolic information (-S) Check to disable the generation of DWARF sections in the
absolute file to save memory space.

Generate fixups in abs file (-SFixups) Check to ensure compatibility with previous linker versions.
Usually, absolute files do not contain any fixups because all
fixups are evaluated at link time. But with fixups, the decoder
might symbolically decode the content in absolute files. Some
debuggers do not load absolute files which contain fixups
because they assume that these fixups are not yet evaluated.
But the fixups inserted with this option are actually already
handled by this linker.

Enable Stack Consumption Computation (-
StackConsumption)

The linker computes maximum stack effect for given
application when the option is enabled and places the result
in the output .map file.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 215



Table 3-74. Tool Settings - Linker > Output Options (continued)

Option Description

Specify statistic file (e.g. statistic.txt) (-StatF) Specify the name of the linker statistic file. The statistic file
reports each allocated object and its attributes. Every attribute
is separated by a tab character, so it can be easily imported
into a spreadsheet/database program for further processing.

3.5.3.3 S08 Linker > Input

Use this panel to specify the parameter file path, startup function, object file search paths,
and any additional libraries that the C/C++ Linker should use. You can specify multiple
additional libraries and library search paths. Also, you can change the order in which the
IDE uses or searches the libraries.

The IDE first looks for an include file in the current directory, or the directory that you
specify in the INCLUDE directive. If the IDE does not find the file, it continues searching the
paths shown in this panel. The IDE keeps searching paths until it finds the #include file or
finishes searching the last path at the bottom of the Include File Search Paths list. The
IDE appends to each path the string that you specify in the INCLUDE directive.

NOTE
The IDE displays an error message if a header file is in a
different directory from the referencing source file. Sometimes,
the IDE also displays an error message if a header file is in the
same directory as the referencing source file.

For example, if you see the message Could not open source file myfile.h, you must add the
path for myfile.h to this panel.

The following table lists and describes the linker input options for HCS08.

Table 3-75. Tool Settings - Linker > Input Options

Option Description

Parameter File Shows the path of the parameter file. Default value is $
{ProjDirPath}/Project_Settings/Linker_Files/
Project.prm.

Specify startup function (-E) Defines the application entry point.

Search paths (-L) Shows the list of all search paths; the ELF part of the linker
searches object files first in all paths and then the usual
environment variables are considered.

Table continues on the next page...

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

216 Freescale Semiconductor, Inc.



Table 3-75. Tool Settings - Linker > Input Options (continued)

Option Description

Libraries Lists paths to additional libraries that the C/C++ linker uses.
Default value is "${MCUToolsBaseDir}/lib/hc08c/
lib/ansiis.lib"

Link case insensitive With this option, the linker ignores object name capitalization.
This option supports case-insensitive linking of assembly
modules. Since all identifiers are linked case insensitive, this
also affects C or C++ modules. This option only affects the
comparison of names of linked objects. Section names or the
parsing of the link parameter file are unaffected. They remain
case sensitive.

Object File Format Defines the object file format.

The following table lists and describes the toolbar buttons that help work with the
libraries and the additional object file search paths.

Table 3-76. Search Paths Toolbar Buttons

Button Description

Add - Click to open the Add directory path dialog box and
specify the object file search path.

Delete - Click to delete the selected object file search path. To
confirm deletion, click Yes in the Confirm Delete dialog box.

Edit - Click to open the Edit directory path dialog box and
update the selected object file search path.

Move up - Click to move the selected object file search path
one position higher in the list.

Move down - Click to move the selected object file search
path one position lower in the list.

The following figure shows the Add directory path dialog box.

Figure 3-13. Add directory path Dialog Box

The following figure shows the Edit directory path dialog box.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 217



Figure 3-14. Edit directory path Dialog Box

The buttons in the Add directory path and Edit directory path dialog boxes help work
with the object file search paths.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.
• Workspace - Click to display the Folder Selection dialog box and specify the object

file search path. The resulting path, relative to the workspace, appears in the
appropriate list.

• File system - Click to display the Browse for Folder dialog box and specify the
object file search path. The resulting path appears in the appropriate list.

The following table lists and describes the toolbar buttons that help work with the
libraries and the additional object files.

Table 3-77. Libraries Toolbar Buttons

Button Description

Add - Click to open the Add file path dialog box and specify
location of the library you want to add.

Delete - Click to delete the selected library path. To confirm
deletion, click Yes in the Confirm Delete dialog box.

Edit - Click to open the Edit file path dialog box and update
the selected path.

Move up - Click to move the selected path one position higher
in the list.

Move down - Click to move the selected path one position
lower in the list.

The following figure shows the Add file path dialog box.

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

218 Freescale Semiconductor, Inc.



Figure 3-15. Tool Settings - Linker > Libraries - Add file path Dialog Box

The following figure shows the Edit file path dialog box.

Figure 3-16. Tool Settings - Linker > Libraries - Edit file path Dialog Box

The buttons in the Add file path and Edit file path dialog boxes help work with the file
paths.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.
• Workspace - Click to display the File Selection dialog box and specify the file path.

The resulting path, relative to the workspace, appears in the appropriate list.
• File system - Click to display the Open dialog box and specify the file path. The

resulting absolute path appears in the appropriate list.

3.5.3.4 S08 Linker > Link Order

Use this panel to control the order in which the linker receives the object files.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 219



The following table lists and describes the link order options.

Table 3-78. Tool Settings - Link Order Options

Option Description

Customize linker input order Select if you want the linker to receive the object files in the
specified order.

Link Order Lists the object files corresponding to the source files
specified in the "link order" list. This option is enables only if
Customize linker input order is selected.

3.5.3.5 S08 Linker > Host

Use this panel to specify the host settings of the RS08.

The following table lists and describes the memory model options for RS08.

Table 3-79. Tool Settings - Host

Option Description

Set environment variable (-Env) This option sets an environment variable. Use this
environment variable in the maker, or use to overwrite system
environment variables.

Borrow license feature (-LicBorrow) This option allows you to borrow a license feature until a
given date or time. Borrowing allows you to use a floating
license even if disconnected from the floating license server.

Wait until a license is available from floating license server (-
LicWait)

By default, if a license is not available from the floating license
server, then the application will immediately return. With -
LicWait set, the application will wait (blocking) until a license
is available from the floating license server.

Application Standard Occurrence Select the way you want the application window to start.
Normally, the application starts with a normal window if no
arguments are given. If you start the application with
arguments (e.g., from the Maker to assemble, compile, or link
a file), then the application runs minimized to allow for batch
processing. However, you may specify the application's
window behavior with the View option.

• -ViewWindow, the application appears with its normal
window.

• -ViewMin the application appears as an icon in the task
bar.

• -ViewMax, the application appears maximized (filling
the whole screen).

• -ViewHidden, the application processes arguments
(e.g., files to be compiled or linked) in the background
(no window or icon visible in the task bar).

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

220 Freescale Semiconductor, Inc.



3.5.3.6 S08 Linker > Messages

Use this panel to specify whether to generate symbolic information for debugging.

The following table lists and describes the message options.

Table 3-80. Tool Settings - Messages Options

Option Description

Don't print INFORMATION messages (-W1) Inhibits information message reporting. Only warning and
error messages are generated.

Don't print INFORMATION or WARNING messages (-W2) Suppresses all messages of type INFORMATION and
WARNING. Only ERROR messages are generated.

Create err.log Error file Using this option, the Linker uses a return code to report
errors back to the tools. When errors occur, 16-bit window
environments use err.log files, containing a list of error
numbers, to report the errors. If no errors occur, the 16-bit
window environments delete the err.log file.

Cut file names to Microsoft format to 8.3 (-Wmsg8x3) Some editors (early versions of WinEdit) expect the filename
in Microsoft message format (8.3 format). That means the
filename can have up to eight characters and no more than a
three-character extension. Longer filenames are possible
when you use Win95 or WinNT. This option truncates the
filename to the 8.3 format.

Set message file format for batch mode Use this option to start the Linker with additional arguments
(for example, files and Linker). If you start the Linker
arguments (for example, from the Make Tool or with the `%f'
argument from the CodeWright IDE), the Linker the files in a
batch mode. No Linker is visible and the Linker after job
completion.

Message Format for batch mode (e.g. %"%f%e%"(%l): %K
%d: %m\n) (-WmsgFob)

This option modifies the default message format in batch
mode. The -WmsgFob command sets the message format for
batch mode. The supported formats are (assuming that the
source file is X:\Freescale\mysourcefile.cpph):

• %s: Source Extract
• %p: Path (example, X:\Freescale\)
• %f: Path and name (example, X:\Freescale
\mysourcefile)

• %n: filename (example, mysourcefile)
• %e: Extension (example, .cpph)
• %N: File (8 chars) (example, mysource )
• %E: Extension (3 chars) (example, .cpp)
• %l: Line (example, 3)
• %c: Column (example, 47)
• %o: Pos (example, 1234)
• %K: Uppercase kind (example, ERROR)
• %k: Lowercase kind (example, error)
• %d: Number (example, C1815)
• %m: Message (example, text)
• %%: Percent (example, %)
• \n: New line

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 221



Table 3-80. Tool Settings - Messages Options (continued)

Option Description

• %": A " if the filename, the path, or the extension
contains a space

• %': A ' if the filename, the path, or the extension
contains a space

Message Format for no file information (e.g. %K %d: %m)(-
WmsgFonf)

If there is no file information available for a message, then
<string> defines the message format string to use.

Message Format for no positioning information (%"%f%e%":
%K %d: %m)(-WmsgFonp)

If there is no position information available for a message,
then <string> defines the message format string to use.

Create Error Listing File This option controls whether the Linker creates an error listing
file. The error listing file contains a list of all messages and
errors that occur during processing.

Maximum number of error messages (-WmsgNe) Specify the number of errors allowed until the application
stops processing.

Maximum number of information messages (-WmsgNi) Specify the maximum number of information messages
allowed.

Maximum number of warning messages (-WmsgNw) Specify the maximum number of warnings allowed.

Set messages to Disable Check to disable user messages and allow only the normal
message categories (WARNING, INFORMATION, ERROR,
or FATAL); reduces the number of messages, and simplifies
the error parsing of other tools.

Set messages to Error Check to enable messages of the ERROR category.

Set messages to Information Check to enable messages of the INFORMATION category.

Set messages to Warning Check to enable messages of the WARNING category.

3.5.3.6.1 S08 Linker > Messages > Disable user messages

Use this panel to specify whether to generate symbolic information for debugging. The
following table lists and describes the message options.

Table 3-81. Tool Settings - Disable user messages Options

Option Description

Disable all messages Check to disable all the user messages and allow only the
normal message categories (WARNING, INFORMATION,
ERROR, or FATAL); reduces the number of messages, and
simplifies the error parsing of other tools.

Display type of messages (-WmsgNu=t) Check to display the type of user messages.

Display informal messages (-WmsgNu=e) Check to display the informal messages (e.g., memory model,
floating point format).

Disable messages about processing statistics (-WmsgNu=d) Check to disable the information about statistics, e.g., code
size, RAM/ROM usage, and so on provided at the end of the
assembly.

Disable messages about generated files (-WmsgNu=c) Check to disable messages informing about generated files.

Table continues on the next page...

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

222 Freescale Semiconductor, Inc.



Table 3-81. Tool Settings - Disable user messages Options (continued)

Option Description

Disable messages about reading files (-WmsgNu=b) Check to disable the messages about reading files e.g., the
files used as input.

Disable messages about include files (-WmsgNu=a) Check to disable messages or information provided by the
application included files.

3.5.3.7 S08 Linker > General

Use this panel to specify the general linker behavior.

The following table lists and describes the general linker options for HCS08.

Table 3-82. Tool Settings - Linker > General Options

Option Description

Other flags Specify additional command line options for the linker; type in
custom flags that are not otherwise available in the UI. Default
value is: -WmsgSd1100 -WmsgSd1912

3.5.4 S08 Burner

Use the Burner for HCS08 Preference Panel to map *.bbl (batch burner language) files to
the Burner Plug-In. When the project folder contains a *.bbl file, *.bbl file processing
during the post-link phase uses the settings in the Burner preference panel.

The following table lists and describes the burner options for RS08.

Table 3-83. Tool Settings - Burner Options

Option Description

Command Shows the location of the burner executable file. Default value
is: "${HC08Tools}/burner". You can specify additional
command line options for the burner; type in custom flags that
are not otherwise available in the UI.

All options Shows the actual command line the burner will be called with.

Expert Settings Shows the command line pattern; default is ${COMMAND} $
{FLAGS} ${INPUTS}.

Command line pattern

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 223



3.5.4.1 S08 Burner > Output > Configure S-Record

Use this panel to control how the burner generates the output file, as well as error and
warning messages. You can specify whether to allocate constant objects in ROM,
generate debugging information, and strip file path information.

The following table lists and describes the general options for HCS08 configure S-
Record.

Table 3-84. Tool Settings - Burner > Output > Configure S-Record Options

Option Description

DIsable all (-Ns) Disables generation of all start (S0) and end records (S7, S8,
or S9)

No path in S0-record Removes the path (if present) from the file name in the S0
record

No S9-record Disables generation of S9-record

No S8-record Disables generation of S8-record

No S7-record Disables generation of S7-record

No S0-record Disables generation of S0-record

3.5.4.2 S08 Burner > Input

Use this panel to specify the execute command file of the Burner input.

The following table lists and describes the inputs options for burner.

Table 3-85. Tool Settings - Burner > Input Options

Option Description

Execute command file This option causes the Burner to execute a Batch Burner
command file (usual extension is .bbl).

3.5.4.3 S08 Burner > Host

Use this panel to specify the host settings of the RS08.

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

224 Freescale Semiconductor, Inc.



The following table lists and describes the memory model options for RS08.

Table 3-86. Tool Settings - Host

Option Description

Set environment variable (-Env) This option sets an environment variable. Use this
environment variable in the maker, or use to overwrite system
environment variables.

Borrow license feature (-LicBorrow) This option allows you to borrow a license feature until a
given date or time. Borrowing allows you to use a floating
license even if disconnected from the floating license server.

Wait until a license is available from floating license server (-
LicWait)

By default, if a license is not available from the floating license
server, then the application will immediately return. With -
LicWait set, the application will wait (blocking) until a license
is available from the floating license server.

Application Standard Occurrence Select the way you want the application window to start.
Normally, the application starts with a normal window if no
arguments are given. If you start the application with
arguments (e.g., from the Maker to assemble, compile, or link
a file), then the application runs minimized to allow for batch
processing. However, you may specify the application's
window behavior with the View option.

• -ViewWindow, the application appears with its normal
window.

• -ViewMin the application appears as an icon in the task
bar.

• -ViewMax, the application appears maximized (filling
the whole screen).

• -ViewHidden, the application processes arguments
(e.g., files to be compiled or linked) in the background
(no window or icon visible in the task bar).

3.5.4.4 S08 Burner > Messages

Use this panel to specify whether to generate symbolic information for debugging.

The following table lists and describes the message options.

Table 3-87. Tool Settings - Messages Options

Option Description

Don't print INFORMATION messages (-W1) Inhibits information message reporting. Only warning and
error messages are generated.

Don't print INFORMATION or WARNING messages (-W2) Suppresses all messages of type INFORMATION and
WARNING. Only ERROR messages are generated.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 225



Table 3-87. Tool Settings - Messages Options (continued)

Option Description

Create err.log Error file Using this option, the Burner uses a return code to report
errors back to the tools. When errors occur, 16-bit window
environments use err.log files, containing a list of error
numbers, to report the errors. If no errors occur, the 16-bit
window environments delete the err.log file.

Cut file names to Microsoft format to 8.3 (-Wmsg8x3) Some editors (early versions of WinEdit) expect the filename
in Microsoft message format (8.3 format). That means the
filename can have up to eight characters and no more than a
three-character extension. Longer filenames are possible
when you use Win95 or WinNT. This option truncates the
filename to the 8.3 format.

Set message file format for batch mode Use this option to start the Burner with additional arguments
(for example, files and Burner options). If you start the Burner
with arguments (for example, from the Make Tool or with the `
%f' argument from the CodeWright IDE), the Burner compiles
the files in a batch mode. No Burner window is visible and the
Burner terminates after job completion.

Message Format for batch mode (e.g. %"%f%e%"(%l): %K
%d: %m\n) (-WmsgFob)

This option modifies the default message format in batch
mode. The -WmsgFob command sets the message format for
batch mode. The supported formats are (assuming that the
source file is X:\Freescale\mysourcefile.cpph):

• %s: Source Extract
• %p: Path (example, X:\Freescale\)
• %f: Path and name (example, X:\Freescale
\mysourcefile)

• %n: filename (example, mysourcefile)
• %e: Extension (example, .cpph)
• %N: File (8 chars) (example, mysource )
• %E: Extension (3 chars) (example, .cpp)
• %l: Line (example, 3)
• %c: Column (example, 47)
• %o: Pos (example, 1234)
• %K: Uppercase kind (example, ERROR)
• %k: Lowercase kind (example, error)
• %d: Number (example, C1815)
• %m: Message (example, text)
• %%: Percent (example, %)
• \n: New line
• %": A " if the filename, the path, or the extension

contains a space
• %': A ' if the filename, the path, or the extension

contains a space

Message Format for no file information (e.g. %K %d: %m)(-
WmsgFonf)

If there is no file information available for a message, then
<string> defines the message format string to use.

Message Format for no positioning information (%"%f%e%":
%K %d: %m)(-WmsgFonp)

If there is no position information available for a message,
then <string> defines the message format string to use.

Create Error Listing File This option controls whether the Burner creates an error
listing file. The error listing file contains a list of all messages
and errors that occur during processing.

Maximum number of error messages (-WmsgNe) Specify the number of errors allowed until the application
stops processing.

Table continues on the next page...

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

226 Freescale Semiconductor, Inc.



Table 3-87. Tool Settings - Messages Options (continued)

Option Description

Maximum number of information messages (-WmsgNi) Specify the maximum number of information messages
allowed.

Maximum number of warning messages (-WmsgNw) Specify the maximum number of warnings allowed.

Set messages to Disable Check to disable user messages and allow only the normal
message categories (WARNING, INFORMATION, ERROR,
or FATAL); reduces the number of messages, and simplifies
the error parsing of other tools.

Set messages to Error Check to enable messages of the ERROR category.

Set messages to Information Check to enable messages of the INFORMATION category.

Set messages to Warning Check to enable messages of the WARNING category.

3.5.4.4.1 S08 Burner > Messages > Disable user messages

Use this panel to specify whether to generate symbolic information for debugging. The
following table lists and describes the message options.

Table 3-88. Tool Settings - Disable user messages Options

Option Description

Disable all messages Check to disable all the user messages and allow only the
normal message categories (WARNING, INFORMATION,
ERROR, or FATAL); reduces the number of messages, and
simplifies the error parsing of other tools.

Display type of messages (-WmsgNu=t) Check to display the type of user messages.

Display informal messages (-WmsgNu=e) Check to display the informal messages (e.g., memory model,
floating point format).

Disable messages about processing statistics (-WmsgNu=d) Check to disable the information about statistics, e.g., code
size, RAM/ROM usage, and so on provided at the end of the
assembly.

Disable messages about generated files (-WmsgNu=c) Check to disable messages informing about generated files.

Disable messages about reading files (-WmsgNu=b) Check to disable the messages about reading files e.g., the
files used as input.

Disable messages about include files (-WmsgNu=a) Check to disable messages or information provided by the
application included files.

3.5.4.5 S08 Burner > General

Use this panel to specify the general linker behavior.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 227



The following table lists and describes the general burner options for HCS08.

Table 3-89. Tool Settings - Burner > General Options

Option Description

Other flags Specify additional command line options for the burner; type
in custom flags that are not otherwise available in the UI.
Default value is: -WmsgSd1100 -WmsgSd1912

3.5.5 RS08 Compiler

Use this panel to specify the command, options, and expert settings for the build tool
compiler. Additionally, the RS08 Compiler tree control includes the general and the file
search path settings.

The following table lists and describes the compiler options for RS08..

Table 3-90. Tool Settings - Compiler Options

Option Description

Command Shows the location of the compiler executable file. Default
value is : " ${HC08Tools}/crs08.exe". You can specify
additional command line options for the compiler; type in
custom flags that are not otherwise available in the UI.

All options Shows the actual command line the compiler will be called
with.

Expert Settings

Command line pattern Shows the command line pattern; default is {COMMAND} $
{FLAGS}${OUTPUT_FLAG}${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}.

3.5.5.1 RS08 Compiler > Output

Use this panel to control how the compiler generates the output file, as well as error and
warning messages. You can specify whether to allocate constant objects in ROM,
generate debugging information, and strip file path information.

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

228 Freescale Semiconductor, Inc.



The following table lists and describes the output options for RS08 compiler.

Table 3-91. Tool Settings - RS08 Compiler > Output Options

Option Description

Allocate CONST objects in ROM (-Cc) Check to enables the Compiler assign const objects into the
ROM_VAR segment, which the parameter file assigns to a
ROM section.

Encrypt File (e.g. %f.e%e) (-Eencrypt) Encrypts using the given key with the -Ekey: Encryption Key
option.

Encryption key (-EKey) Encrypt files with the given key number (-Eencrypt
option).The default encryption key is 0. Using this default is
not recommended.

Object File Format Defines the object file format.

Generate Assembler Include File (e.g. %f.inc) (-La) Enables the Compiler to generate an assembler include file
when the CREATE_ASM_LISTING pragma occurs. The
name of the created file is specified by this option. If no name
is specified, a default of %f.inc is taken. To put the file into the
directory specified by the TEXTPATH: Text File Path
environment variable, use the option -la=%n.inc. The %f
option already contains the path of the source file. When %f is
used, the generated file is in the same directory as the source
file. The content of all modifiers refers to the main input file
and not to the actual header file. The main input file is the one
specified on the command line.

Generate Listing File (e.g. %n.lst) (-Lasm) Enables the Compiler to generate an assembler listing file
directly. The Compiler also prints all assembler-generated
instructions to this file. The option specifies the name of the
file. If no name is specified, the Compiler takes a default of
%n.lst. If the resulting filename contains no path information
the Compiler uses the TEXTPATH: Text File Path
environment variable. The syntax does not always conform
with the inline assembler or the assembler syntax. Therefore,
use this option only to review the generated code. It cannot
currently be used to generate a file for assembly.

Log predefined defines to file (e.g. predef.h) (-Ldf) Enables the Compiler to generate a text file that contains a list
of the compiler-defined #define. The default filename is
predef.h, but may be changed (e.g., -Ldf="myfile.h"). The file
is generated in the directory specified by the TEXTPATH:
Text File Path environment variable. The defines written to
this file depend on the actual Compiler option settings (e.g.,
type size settings or ANSI compliance). Note: The defines
specified by the command line (-D: Macro Definition option)
are not included. This option may be very useful for SQA.
With this option it is possible to document every #define which
was used to compile all sources. Note: This option only has
an effect if a file is compiled. This option is unusable if you are
not compiling a file.

List of included files to `.inc' file (-Li) Enables the Compiler to generate a text file which contains a
list of the #include files specified in the source. This text file
shares the same name as the source file but with the
extension, *.inc. The files are stored in the path specified by
the TEXTPATH: Text File Path environment variable. The
generated file may be used in make files.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 229



Table 3-91. Tool Settings - RS08 Compiler > Output Options (continued)

Option Description

Write statistic output to file (e.g. logfile.txt) (-Ll) Enables the Compiler append statistical information about the
compilation session to the specified file. The information
includes Compiler options, code size (in bytes), stack usage
(in bytes) and compilation time (in seconds) for each
procedure of the compiled file. The Compiler appends the
information to the specified filename (or the file make.txt, if no
argument given). Set the TEXTPATH: Text File Path
environment variable to store the file into the path specified by
the environment variable. Otherwise the Compiler stores the
file in the current directory.

List of included files in make format (e.g. logfile.txt)(-Lm) This option causes the Compiler to generate a text file which
contains a list of the #include files specified in the source. The
generated list is in a make format. The -Lm option is useful
when creating make files. The output from several source files
may be copied and grouped into one make file. The
generated list is in the make format. The filename does not
include the path. After each entry, an empty line is added.
The information is appended to the specified filename (or the
make.txt file, if no argument is given).

Append object file name to list (e.g. obklist.txt)(-Lo) This option causes the Compiler to append the object
filename to the list in the specified file.The information is
appended to the specified filename (or the file make.txt file, if
no argument given).

Preprocessor output (e.g. %n.pre)(-Lp) This option causes the Compiler to generate a text file which
contains the preprocessor's output. If no filename is specified,
the text file shares the same name as the source file but with
the extension, *.PRE (%n.pre). The TEXTPATH environment
variable is used to store the preprocessor file.

Strip path information Check to enable the compiler remove both unreferenced path
reference from your program. This reduces your program's
memory footprint.

3.5.5.1.1 RS08 Compiler > Output > Configure Listing File

Use this panel to configure the listing files for the RS08 Compiler to generate output.

The following table lists and describes the Configure Listing FIle options for RS08
compiler.

Table 3-92. Tool Settings - RS08 Compiler > Output > Configure Listing File Options

Option Description

Disable all (-Lasmc) This option configures the output format of the listing file
generated with the Generate Listing File option. The
addresses, the hex bytes, and the instructions are selectively
switched off.

Table continues on the next page...

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

230 Freescale Semiconductor, Inc.



Table 3-92. Tool Settings - RS08 Compiler > Output > Configure Listing File Options
(continued)

Option Description

Do not write cycle information (-Lasmc=y) This option switches off the cycle information from the output
format of the listing file.

Do not write compiler version (-Lasmc=v) This option switches off the compiler version from the output
format of the listing file.

Do not write the source code (-Lasmc=s) This option switches off the source code from the output
format of the listing file.

Do not write source prolog (-Lasmc=p) This option switches off the source prolog from the output
format of the listing file.

Do not write the instruction (-Lasmc=i) This option switches off the instruction from the output format
of the listing file.

Do not write the function header (-Lasmc=h) This option switches off the function header from the output
format of the listing file.

Do not write source epilog (-Lasmc=e) This option switches off the source epilog from the output
format of the listing file.

Do not write the code (-Lasmc=c) This option switches off the code from the output format of the
listing file.

Do not write the address (-Lasmc=a) This option switches off the address from the output format of
the listing file.

3.5.5.1.2 RS08 Compiler > Output > Configuration for list of included files
in make format

Use this panel to configure the list of included files in make format for the RS08
Compiler to generate the output.

The following table lists and describes the configuration for list of included files in make
format options for RS08 compiler.

Table 3-93. Tool Settings - RS08 Compiler > Output > Configure Listing File Options

Option Description

Disable all (-LmCfg) This option is used when configuring the List of Included Files
in Make Format (-Lm) option. The -LmCfg option is operative
only if the -Lm option is also used. The -Lm option produces
the `dependency' information for a make file.

Unix style paths (-LmCfg=x) Use this option to writes the path names in Unix style.

Update information (-LmCfg=u) This option updates the information in the output file. If the file
does not exist, the Compiler creates the file. If the file exists
and the current information is not yet in the file, the Compiler
appends the information to the file. If the information is
already present, the Compiler updates the information. This
allows you to specify this suboption for each compilation
ensuring that the make dependency file is always up to date.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 231



Table 3-93. Tool Settings - RS08 Compiler > Output > Configure Listing File Options
(continued)

Option Description

Write path of object file (-LmCfg=o) This option writes the full name of the target object file.

Write path of main file (-LmCfg=m) This option writes the full path of the compiled file. This is
necessary when there are files with the same name in
different directories.

Use line continuation (-LmCfg=l) This option uses line continuation for each single entry in the
dependency list. This improves readability.

Write path of included file (-LmCfg=i) This option writes the full path of all included files in the
dependency list.

3.5.5.2 RS08 Compiler > Input

Use this panel to specify file search paths and any additional include files the RS08
Compiler should use. You can specify multiple search paths and the order in which you
want to perform the search.

The IDE first looks for an include file in the current directory, or the directory that you
specify in the INCLUDE directive. If the IDE does not find the file, it continues searching the
paths shown in this panel. The IDE keeps searching paths until it finds the #include file or
finishes searching the last path at the bottom of the Include File Search Paths list. The
IDE appends to each path the string that you specify in the INCLUDE directive.

NOTE
The IDE displays an error message if a header file is in a
different directory from the referencing source file. Sometimes,
the IDE also displays an error message if a header file is in the
same directory as the referencing source file.

For example, if you see the message Could not open source file myfile.h, you must add the
path for myfile.h to this panel.

The following table lists and describes the input options for RS08 Compiler.

Table 3-94. Tool Settings - RS08 Compiler > Input Options

Option Description

Filenames are clipped to DOS length (-!) The filenames are clipped to DOS length (eight characters),
when compiling files from MS-DOS file system.

Include File Path (-I) Specify, delete, or rearrange file search paths.

Table continues on the next page...

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

232 Freescale Semiconductor, Inc.



Table 3-94. Tool Settings - RS08 Compiler > Input Options (continued)

Option Description

Recursive Include File Path (-Ir) Appends a recursive access path to the current #include list.
This command is global. Syntax-ir pathpath The
recursive access path to append.

Additional Include Files (-AddInd) Specify, delete, or rearrange paths to search any additional
#include files.

Include files only once Check to include every header file only once; duplicates are
ignored.

The following table lists and describes the toolbar buttons that help work with the file
paths.

Table 3-95. Include File Path (-I) Toolbar Buttons

Button Description

Add - Click to open the Add directory path dialog box and
specify location of the library you want to add.

Delete - Click to delete the selected library path. To confirm
deletion, click Yes in the Confirm Delete dialog box.

Edit - Click to open the Edit directory path dialog box and
update the selected path.

Move up - Click to move the selected path one position higher
in the list.

Move down - Click to move the selected path one position
lower in the list.

The following figure lists and describes the toolbar buttons that help work with the search
paths.

Table 3-96. Additional Include Files (-AddIncl) Toolbar Buttons

Button Description

Add - Click to open the Add directory path dialog box and
specify location of the library you want to add.

Delete - Click to delete the selected library path. To confirm
deletion, click Yes in the Confirm Delete dialog box.

Edit - Click to open the Edit directory path dialog box and
update the selected path.

Move up - Click to move the selected path one position higher
in the list.

Move down - Click to move the selected path one position
lower in the list.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 233



Figure 3-17. Tool Settings - RS08 Compiler > Input - Add file path Dialog Box

Figure 3-18. Tool Settings - RS08 Compiler > Input - Edit file path Dialog Box

The buttons in the Add file path and Edit file path dialog boxes help work with the
paths.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.
• Workspace - Click to display the File Selection dialog box and specify the path. The

resulting path, relative to the workspace, appears in the appropriate list.
• File system - Click to display the Open dialog box and specify the path. The

resulting path appears in the appropriate list.

3.5.5.3 RS08 Compiler > Language

Use this panel to specify code- and symbol-generation options for the RS08 Compiler.

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

234 Freescale Semiconductor, Inc.



The following table lists and describes the language options for RS08.

Table 3-97. Tool Settings - RS08 Compiler > Language Options

Option Description

Strict ANSI Check if you want the C compiler to operate in strict ANSI
mode. In this mode, the compiler strictly applies the rules of
the ANSI/ISO specification to all input files. This setting is
equivalent to specifying the - ansi command-line option.
The compiler issues a warning for each ANSI/ISO extension it
finds.

C++ With this option enabled, the Compiler behaves as a C++
Compiler. You can select between three different types of C+
+:

• Full C++ (-C++f) - Supports the whole C++ language.
• Embedded C++ (-C++e) - Supports a constant subset

of the C++ language. EC++ does not support inefficient
things like templates, multiple inheritance, virtual base
classes and exception handling.

• CompactC++ (-C++c) - Supports a configurable subset
of the C++ language. You can configure this subset with
the option -Cn.

• No C++ - If the option is not set, the Compiler behaves
as an ANSI-C Compiler.

If the option is enabled and the source file name extension is
*.c, the Compiler behaves as a C++ Compiler. If the option is
not set, but the source filename extension is .cpp or .cxx, the
Compiler behaves as if the -C++f option were set.

Cosmic compatibility mode for space modifiers @near, @far,
and @tiny (-Ccx)

Check to allow Cosmic style @near, @far and @tiny space
modifiers as well as @interrupt in your C code. The -ANSI
option must be switched off. It is not necessary to remove the
Cosmic space modifiers from your application code. There is
no need to place the objects to sections addressable by the
Cosmic space modifiers. The following is done when a
Cosmic modifier is parsed: The objects declared with the
space modifier are always allocated in a special Cosmic
compatibility (_CX) section (regardless of which section
pragma is set) depending on the space modifier, on the const
qualifier or if it is a function or a variable. Space modifiers on
the left hand side of a pointer declaration specify the pointer
type and pointer size, depending on the target.

Bigraph and trigraph support (-Ci) Check to replace certain unavailable tokens with the
equivalent keywords.

C++ comments in ANSI-C (-Cppc) Check to allow C++ comments.

Propagate const and volatile qualifiers for structs (-Cq) Check to propagate const and volatile qualifiers for structures.
If all members of a structure are constant or volatile, the
structure itself is constant or volatile. If the structure is
declared as constant or volatile, all its members are constant
or volatile, respectively.

Conversion from `const T*' to `T*' (-Ec) Check to enable this non-ANSI compliant extension allows
the compiler to treat a pointer to a constant type like a pointer
to the non-constant equivalent of the type. Earlier Compilers
did not check a store to a constant object through a pointer.
This option is useful when compiling older source code.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 235



Table 3-97. Tool Settings - RS08 Compiler > Language Options (continued)

Option Description

Do not pre-process escape sequences in strings with
absoluted DOS paths (-Pe)

If escape sequences are used in macros, they are handled in
an include directive similar to the way they are handled in a
printf() instruction. If the -Pe option is used, escape
sequences are ignored in strings that contain a DOS drive
letter ('a - 'z', 'A' - 'Z') followed by a colon ':' and a backslash
'\'. When the -Pe option is enabled, the Compiler handles
strings in include directives differently from other strings.
Escape sequences in include directive strings are not
evaluated.

3.5.5.3.1 RS08 Compiler > Language > CompactC++ features

Use this panel to select compact C++ features of RS08 compiler.

The following table lists and describes the compactC++ options for HCS08.

Table 3-98. Tool Settings - RS08 Compiler > Language > CompactC++ Features Options

Option Description

Disable all compactC++ features (-Cn) If the -C++ option is enabled, you can disable the compactC+
+ features.

• Vf : Virtual functions are not allowed.

Avoid having virtual tables that consume a lot of
memory.

• Tpl : Templates are not allowed.

Avoid having many generated functions perform similar
operations.

• Ptm : Pointer to member not allowed.

Avoid having pointer-to-member objects that consume a
lot of memory.

• Mih : Multiple inheritance is not allowed.

Avoid having complex class hierarchies. Because
virtual base classes are logical only when used with
multiple inheritance, they are also not allowed.

• Ctr : The C++ Compiler can generate several kinds of
functions, if necessary:

- Default Constructor

- Copy Constructor

- Destructor

- Assignment operator

Table continues on the next page...

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

236 Freescale Semiconductor, Inc.



Table 3-98. Tool Settings - RS08 Compiler > Language > CompactC++ Features Options
(continued)

Option Description

With this option enabled, the Compiler does not create
those functions. This is useful when compiling C
sources with the C++ Compiler, assuming you do not
want C structures to acquire member functions.

• Cpr : Class parameters and class returns are not
allowed.

Avoid overhead with Copy Constructor and Destructor
calls when passing parameters, and passing return
values of class type.

Do not allow virtual functions (-Cn=Vf) Virtual functions are not allowed. Avoid having virtual tables
that consume a lot of memory

Do not allow templates (-Cn=Tpl) Templates are not allowed. Avoid having many generated
functions perform similar operations.

Do not allow pointer to member (-Cn=Ptm) Pointer to member not allowed. Avoid having pointer-to-
member objects that consume a lot of memory.

Do not allow multiple inheritance and virtual base classes (-
Cn=Mih)

Multiple inheritance is not allowed. Avoid having complex
class hierarchies. Because virtual base classes are logical
only when used with multiple inheritance, they are also not
allowed.

Do not create compiler defined functions (-Cn=Ctr) The C++ Compiler can generate several kinds of functions, if
necessary:

• Default Constructor
• Copy Constructor
• Destructor
• Assignment operator

With this option enabled, the Compiler does not create those
functions. This is useful when compiling C sources with the C
++ Compiler, assuming you do not want C structures to
acquire member functions.

Do not allow class parameters and class returns (-Cn=Ctr) Class parameters and class returns are not allowed. Avoid
overhead with Copy Constructor and Destructor calls when
passing parameters, and passing return values of class type.

3.5.5.4 RS08 Compiler > Host

Use this panel to specify the host settings of the RS08.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 237



The following table lists and describes the memory model options for RS08.

Table 3-99. Tool Settings - Host

Option Description

Set environment variable (-Env) This option sets an environment variable. Use this
environment variable in the maker, or use to overwrite system
environment variables.

Borrow license feature (-LicBorrow) This option allows you to borrow a license feature until a
given date or time. Borrowing allows you to use a floating
license even if disconnected from the floating license server.

Wait until a license is available from floating license server (-
LicWait)

By default, if a license is not available from the floating license
server, then the application will immediately return. With -
LicWait set, the application will wait (blocking) until a license
is available from the floating license server.

Application Standard Occurrence Select the way you want the application window to start.
Normally, the application starts with a normal window if no
arguments are given. If you start the application with
arguments (e.g., from the Maker to assemble, compile, or link
a file), then the application runs minimized to allow for batch
processing. However, you may specify the application's
window behavior with the View option.

• -ViewWindow, the application appears with its normal
window.

• -ViewMin the application appears as an icon in the task
bar.

• -ViewMax, the application appears maximized (filling
the whole screen).

• -ViewHidden, the application processes arguments
(e.g., files to be compiled or linked) in the background
(no window or icon visible in the task bar).

3.5.5.5 RS08 Compiler > Code Generation

Use this panel to specify code- and symbol-generation options for the RS08 Compiler

The following table lists and describes the code generation options for RS08 compiler.

Table 3-100. Tool Settings - RS08 Compiler > Code Generation Options

Option Description

Bit field byte allocation (-BfaB[MS|LS]) Normally, bits in byte bitfields are allocated from the least
significant bit to the most significant bit. This produces less
code overhead if a byte bitfield is allocated only partially.

Bit field gap limit (-BfaGapLimitBits) Check to affect the maximum allowable number of gap bits.
The bitfield allocation tries to avoid crossing a byte boundary
whenever possible. To optimize accesses, the compiler may
insert some padding or gap bits.

Table continues on the next page...

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

238 Freescale Semiconductor, Inc.



Table 3-100. Tool Settings - RS08 Compiler > Code Generation Options (continued)

Option Description

Bit field type size reduction This option is configurable whether or not the compiler uses
type-size reduction for bitfields. Type-size reduction means
that the compiler can reduce the type of an int bitfield to a
char bitfield if it fits into a character. This allows the compiler
to allocate memory only for one byte instead of for an integer.
Options are:

• Enabled (-BfsTSRON)
• Disabled (-BfsTSOFF)

Maximum load factor for switch tables (0-100) (-CswMaxLF) Allows changing the default strategy of the Compiler to use
tables for switch statements; is only available if the compiler
supports switch tables.

Minimum number of labels for switch tables (-CswMinLB) Allows changing the default strategy of the Compiler using
tables for switch statements; is only available if the compiler
supports switch tables.

Minimum load factor for switch tables (0-100) (-CswMinLF) Allows the Compiler to use tables for switch statements; is
only available if the compiler supports switch tables.

Minimum number of labels for switch search tables (-
CswMinSLB)

Allows the Compiler to use tables for switch statements.
Using a search table improves code density, but the
execution time increases. Every time an entry in a search
table must be found, all previous entries must be checked
first. For a dense table, the right offset is computed and
accessed. In addition, note that all backends implement
search tables (if at all) by using a complex runtime routine.
This may make debugging more complex.

Switch off code generation (-Cx) Disables the code generation process of the Compiler. No
object code is generated, though the Compiler performs a
syntactical check of the source code. This allows a quick test
if the Compiler accepts the source without errors.

Do not use CLR for volatile variables in the direct page (-
NoClrVol)

Inhibits the use of CLR for volatile variables in the direct page.
The CLR instruction on HC08 has a read cycle. This may lead
to unwanted lateral effects (e.g. if the variable is mapped over
a hardware register).

Qualifier for virtual table pointers (-Qvtp) Using a virtual function in C++ requires an additional pointer
to virtual function tables. The Compiler cannot access the
pointer and generates the pointer in every class object when
virtual function tables are associated.

Use IEEE32 for double Check to use IEEE32 for doubles instead of IEEE64 (default).

Specify the address of the Interrupt Exit address register (-
IEA)

Specifies the address of the interrupt exit address register. By
default, it is 0x200.

Specify the address of the System Interrupt Pending 2
register (-SIP2)

Specifies the address of the System Interrupt Pending 2
register. By default, it is set to 0x1D.

3.5.5.6 RS08 Compiler > Messages

Use this panel to specify whether to generate symbolic information for debugging.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 239



The following table lists and describes the message options.

Table 3-101. Tool Settings - Messages Options

Option Description

Don't print INFORMATION messages (-W1) Inhibits information message reporting. Only warning and
error messages are generated.

Don't print INFORMATION or WARNING messages (-W2) Suppresses all messages of type INFORMATION and
WARNING. Only ERROR messages are generated.

Create err.log Error file Using this option, the Compiler uses a return code to report
errors back to the tools. When errors occur, 16-bit window
environments use err.log files, containing a list of error
numbers, to report the errors. If no errors occur, the 16-bit
window environments delete the err.log file.

Cut file names to Microsoft format to 8.3 (-Wmsg8x3) Some editors (early versions of WinEdit) expect the filename
in Microsoft message format (8.3 format). That means the
filename can have up to eight characters and no more than a
three-character extension. Longer filenames are possible
when you use Win95 or WinNT. This option truncates the
filename to the 8.3 format.

Set message file format for batch mode Use this option to start the Compiler with additional
arguments (for example, files and Compiler options). If you
start the Compiler with arguments (for example, from the
Make Tool or with the `%f' argument from the CodeWright
IDE), the Compiler compiles the files in a batch mode. No
Compiler window is visible and the Compiler terminates after
job completion.

Message Format for batch mode (e.g. %"%f%e%"(%l): %K
%d: %m\n) (-WmsgFob)

This option modifies the default message format in batch
mode. The -WmsgFob command sets the message format for
batch mode. The supported formats are (assuming that the
source file is X:\Freescale\mysourcefile.cpph):

• %s: Source Extract
• %p: Path (example, X:\Freescale\)
• %f: Path and name (example, X:\Freescale
\mysourcefile)

• %n: filename (example, mysourcefile)
• %e: Extension (example, .cpph)
• %N: File (8 chars) (example, mysource )
• %E: Extension (3 chars) (example, .cpp)
• %l: Line (example, 3)
• %c: Column (example, 47)
• %o: Pos (example, 1234)
• %K: Uppercase kind (example, ERROR)
• %k: Lowercase kind (example, error)
• %d: Number (example, C1815)
• %m: Message (example, text)
• %%: Percent (example, %)
• \n: New line
• %": A " if the filename, the path, or the extension

contains a space
• %': A ' if the filename, the path, or the extension

contains a space

Message Format for no file information (e.g. %K %d: %m)(-
WmsgFonf)

If there is no file information available for a message, then
<string> defines the message format string to use.

Table continues on the next page...

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

240 Freescale Semiconductor, Inc.



Table 3-101. Tool Settings - Messages Options (continued)

Option Description

Message Format for no positioning information (%"%f%e%":
%K %d: %m)(-WmsgFonp)

If there is no position information available for a message,
then <string> defines the message format string to use.

Create Error Listing File This option controls whether the Compiler creates an error
listing file. The error listing file contains a list of all messages
and errors that occur during processing.

Maximum number of error messages (-WmsgNe) Specify the number of errors allowed until the application
stops processing.

Maximum number of information messages (-WmsgNi) Specify the maximum number of information messages
allowed.

Maximum number of warning messages (-WmsgNw) Specify the maximum number of warnings allowed.

Set messages to Disable Check to disable user messages and allow only the normal
message categories (WARNING, INFORMATION, ERROR,
or FATAL); reduces the number of messages, and simplifies
the error parsing of other tools.

Set messages to Error Check to enable messages of the ERROR category.

Set messages to Information Check to enable messages of the INFORMATION category.

Set messages to Warning Check to enable messages of the WARNING category.

3.5.5.6.1 RS08 Compiler > Messages > Disable user messages

Use this panel to specify whether to generate symbolic information for debugging. The
following table lists and describes the message options.

Table 3-102. Tool Settings - Disable user messages Options

Option Description

Disable all messages Check to disable all the user messages and allow only the
normal message categories (WARNING, INFORMATION,
ERROR, or FATAL); reduces the number of messages, and
simplifies the error parsing of other tools.

Display type of messages (-WmsgNu=t) Check to display the type of user messages.

Display informal messages (-WmsgNu=e) Check to display the informal messages (e.g., memory model,
floating point format).

Disable messages about processing statistics (-WmsgNu=d) Check to disable the information about statistics, e.g., code
size, RAM/ROM usage, and so on provided at the end of the
assembly.

Disable messages about generated files (-WmsgNu=c) Check to disable messages informing about generated files.

Disable messages about reading files (-WmsgNu=b) Check to disable the messages about reading files e.g., the
files used as input.

Disable messages about include files (-WmsgNu=a) Check to disable messages or information provided by the
application included files.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 241



3.5.5.7 RS08 Compiler > Preprocessor

Use this panel to specify preprocessor behavior and define macros.

The following table lists and describes the preprocessor options for RS08 Compiler.

Table 3-103. Tool Settings - RS08 Compiler > Preprocessor Options

Option Description

Define preprocessor macros (-D) Define, delete, or rearrange preprocessor macros. You can
specify multiple macros and change the order in which the
IDE uses the macros. Define preprocessor macros and
optionally assign their values. This setting is equivalent to
specifying the -D name[=value] command-line option. To
assign a value, use the equal sign (=) with no white space.
For example, this syntax defines a preprocessor value named
EXTENDED_FEATURE and assigns ON as its value:
EXTENDED_FEATURE=ON Note that if you do not assign a
value to the macro, the shell assigns a default value of 1.

The following table lists and describes the toolbar buttons that help work with
preprocessor macro definitions.

Table 3-104. Define Preprocessor Macros Toolbar Buttons

Button Description

Add - Click to open the Enter Value dialog box and specify
the path/macro.

Delete - Click to delete the selected path/macro. To confirm
deletion, click Yes in the Confirm Delete dialog box.

Edit - Click to open the Edit Dialog dialog box and update the
selected path/macro.

Move up - Click to move the selected path/macro one position
higher in the list.

Move down - Click to move the selected path/macro one
position lower in the list

The following figure shows the Enter Value dialog box.

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

242 Freescale Semiconductor, Inc.



Figure 3-19. Tool Settings - RS08 Compiler > Preprocessor - Enter Value Dialog Box

The following figure shows the Edit Dialog dialog box.

Figure 3-20. Tool Settings - RS08 Compiler > Preprocessor - Edit Dialog Box

The buttons in the Enter Value and Edit dialog boxes help work with the preprocessor
macros.

• OK - Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.

3.5.5.8 RS08 Compiler > Type Sizes

Use this panel to specify the available data type size options for the RS08 Compiler.

The following table lists and describes the type size options for RS08 Compiler.

Table 3-105. Tool Settings - RS08 Compiler > Type Sizes

Option Description

char Selects the size of the char type. Options are:
• Default (unsigned 8bit)
• unsigned 8bit (-TuCC1)
• signed 8bit (-TsCC1)
• signed 16bit (-TsCC2)
• signed 32bit (-TsCC4)

short Selects the size of the short type. Options are:
• Default (16bit)
• signed 8bit (-TS1)

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 243



Table 3-105. Tool Settings - RS08 Compiler > Type Sizes (continued)

Option Description

• signed 16bit (-TS2)
• signed 32bit (-TS4)

int Selects the size of the int type. Options are:
• Default (16bit)
• signed 8bit (-TI1)
• signed 16bit (-TI2)
• signed 32bit (-TI4)

long Selects the size of the long type. Options are:
• Default (32bit)
• signed 8bit (-TL1)
• signed 16bit (-TL2)
• signed 32bit (-TL4)

long long Selects the size of the long long type. Options are:
• Default (32bit)
• signed 8bit (-TLL1)
• signed 16bit (-TLL2)
• signed 32bit (-TLL4)

enum Selects the size of the enum type. Options are:
• Default (signed 16bit)
• signed 8bit (-TE1sE)
• signed 16bit (-TE2sE)
• signed 32bit (-TE4sE)
• unsigned 8bit (-TE1uE)

float Selects the size of the float type. Options are:
• Default (IEEE32)
• IEEE32

double Selects the size of the double type. Options are:
• Default (IEEE32)
• IEEE32

long double Selects the size of the long double type. Options are:
• Default (IEEE32)
• IEEE32

long long double Selects the size of the long long double type. Options are:
• Default (IEEE32)
• IEEE32

3.5.5.9 RS08 Compiler > General

Use this panel to specify other flags for the RS08 Compiler to use.

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

244 Freescale Semiconductor, Inc.



The following table lists and describes the general options for RS08 compiler.

Table 3-106. Tool Settings - RS08 Compiler > General Options

Option Description

Other flags Specify additional command line options for the compiler; type
in custom flags that are not otherwise available in the UI.

3.5.5.10 RS08 Compiler > Optimization

Use this panel to control compiler optimizations. The compiler's optimizer can apply any
of its optimizations in either global or non-global optimization mode. You can apply
global optimization at the end of the development cycle, after compiling and optimizing
all source files individually or in groups.

The following table lists and describes the optimization options for RS08 compiler.

Table 3-107. Tool Settings - RS08 Compiler > Optimization Options

Option Description

No integral promotion on characters (-Cni) Enhances character operation code density by omitting
integral promotion. This option enables behavior that is not
ANSI-C compliant. Code generated with this option set does
not conform to ANSI standards. Code compiled with this
option is not portable. Using this option is not recommended
in most cases.

Loop unrolling (i[number]) (-Cu) Enables loop unrolling with the following restrictions:
• Only simple for statements are unrolled, e.g., for (i=0;

i<10; i++)
• Initialization and test of the loop counter must be done

with a constant.
• Only <, >, <=, >= are permitted in a condition.
• Only ++ or -- are allowed for the loop variable increment

or decrement.
• The loop counter must be integral.
• No change of the loop counter is allowed within the

loop.
• The loop counter must not be used on the left side of an

assignment.
• No address operator (&) is allowed on the loop counter

within the loop.
• Only small loops are unrolled:

Loops with few statements within the loop.

Loops with fewer than 16 increments or decrements of
the loop counter.

The bound may be changed with the optional argument
= i<number>.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 245



Table 3-107. Tool Settings - RS08 Compiler > Optimization Options (continued)

Option Description

The -Cu=i20 option unrolls loops with a maximum of 20
iterations.

Main Optimize Target: Optimize for There are various points where the Compiler has to select
between two possibilities: it can either generate fast, but large
code, or small but slower code. The Compiler generally
optimizes on code size. It often has to decide between a
runtime routine or an expanded code. The programmer can
decide whether to select between the slower and shorter or
the faster and longer code sequence by setting a command
line switch.

• The Code Size (-Os) option directs the Compiler to
optimize the code for smaller code size. The Compiler
trades faster-larger code for slower-smaller code.

• The Execution Time (-Ot) option directs the Compiler
to optimize the code for faster execution time. The
Compiler replaces slower/smaller code with faster/
larger code. This option only affects some special code
sequences. This option has to be set together with
other optimization options (e.g., register optimization) to
get best results.

Create sub-functions with common code Performs the reverse of inlining. It detects common code
parts in the generated code. The Compiler moves the
common code to a different place and replaces all
occurrences with a JSR to the moved code. At the end of the
common code, the Compiler inserts an RTS instruction. The
Compiler increases all SP uses by an address size. This
optimization takes care of stack allocation, control flow, and of
functions having arguments on the stack. Inline assembler
code is never treated as common code. Options are:

• Default
• Disable (-Onf)
• Enable (-Of)

Alias analysis options These four different options allow the programmer to control
the alias behavior of the compiler. The option -oaaddr is the
default because it is safe for all C programs. Use option -
oaansi if the source code follows the ANSI C99 alias rules. If
objects with different types never overlap in your program,
use option -oatype. If your program doesn't have aliases at
all, use option -oanone (or the ICG option -ona, which is
supported for compatibility reasons).

Generate always near calls (-Obsr) This option forces the compiler to always generate near calls,
i.e. use BSR instruction instead of a JSR in order to reduce
code size. Without this option the compiler checks the range
of the call to determine if a BSR can be generated instead of
a JSR.

Dynamic options configuration for functions (-OdocF) Allows the Compiler to select from a set of options to reach
the smallest code size for every function. Without this feature,
you must set fixed Compiler switches over the whole
compilation unit. With this feature, the Compiler finds the best
option combination from a user-defined set for every function.

Table continues on the next page...

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

246 Freescale Semiconductor, Inc.



Table 3-107. Tool Settings - RS08 Compiler > Optimization Options (continued)

Option Description

Inlining (C[n] or OFF) (-Oi) Enables inline expansion. If there is a #pragma INLINE before
a function definition, all calls of this function are replaced by
the code of this function, if possible. Using the -Oi=c0 option
switches off inlining. Functions marked with the #pragma
INLINE are still inlined. To disable inlining, use the -Oi=OFF
option.

Disable alias checking (-Ona) Prevents the Compiler from redefining these variables, which
lets you reuse already-loaded variables or equivalent
constants. Use this option only when you are sure no real
writes of aliases to a variable memory location will occur.

Disable branch optimizer (-OnB) Disables all branch optimizations.

Do generate copy down information for zero values (-
OnCopyDown)

Restricts the compiler from generating a copy down for i. The
initialization with zero optimization shown for the arr array
only works in the HIWARE format. The ELF format requires
initializing the whole array to zero.

Disable CONST variable by constant replacement (-
OnCsfVar)

Lets you switch OFF the replacement of CONST variable by
the constant value.

Disable peephole optimization (-OnP) Disables the whole peephole optimizer. To disable only a
single peephole optimization, use the optional syntax -
OnP=<char>.

Disable code generation for NULL Pointer to Member check (-
OnPMNC)

Before assigning a pointer to a member in C++, you must
ensure that the pointer to the member is not NULL in order to
generate correct and safe code. In embedded systems
development, the difficulty becomes generating the denser
code while avoiding overhead whenever possible (this NULL
check code is a good example). This option enables you to
switch off the code generation for the NULL check.

Large return value type Compiler supports this option even though returning a 'large'
return value may be not as efficient as using an additional
pointer. The Compiler introduces an additional parameter for
the return value if the return value cannot be passed in
registers. Options are:

• Default
• Large return value pointer, always with temporary (-

Rpt)
• Large return value pointer and temporary

elimination (-Rpe)

Disable far to near optimization Disables the JSR to BSR optimization. The compiler checks
the range of the call to determine if a BSR can be generated
instead of a JSR. If -Onbsr is used this optimization will be
disabled.

Disable reload from register optimization Disables the low level register trace optimizations. If you use
the option the code becomes more readable, but less optimal.

Disable tail call optimizations Allows the compiler to remove all the entry and exit code from
the current function.By default, the compiler replaces trailing
calls (JSR/BSR) with JMP instructions if the function does not
contain any other function calls.

Reuse locals of stack frame Instructs the compiler to reuse the location of local variables/
temporaries whenever possible. When used, the compiler
analyzes which local variables are alive simultaneously.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 247



Table 3-107. Tool Settings - RS08 Compiler > Optimization Options

Option Description

Based on that analysis the compiler selects the best memory
layout for for variables. Two or more variables may end up
sharing the same memory location.

3.5.5.10.1 RS08 Compiler > Optimization > Mid level optimizations

Use this panel to configure the Mid level optimization options for the RS08 compiler.

The following table lists and describes the Mid level optimizations options for RS08
compiler.

Table 3-108. Tool Settings - RS08 Compiler > Optimization > Mid level optimizations

Option Description

Disable all optimizations (-Od) The backend of this compiler is based on the second
generation intermediate code generator (SICG). All
intermediate language and processor independent
optimizations (cf. NULLSTONE) are performed by the SICG
optimizer using the powerful static single assignment form
(SSA form). The optimizations are switched off using -od.
Currently four optimizations are implemented. This option
disables all the optimizations.

Disable mid level loop induction variable elimination (-Od=g) This option disables all the mid level loop induction variable
elimination.

Disable mid level code motion (-Od=f) This option disables all the mid level code motion.

Disable mid level instruction combination (-Od=e) This option disables all the mid level instruction combination.

Disable mid level removing dead assignments (-Od=d) This option disables removing dead assignments only.

Disable mid level common subexpression elimination (-Od=c) This option disables removing dead assignments and CSE.

Disable mid level constant propagation (-Od=b) This option disables mid level constant propagation.

Disable mid level copy propagation (-Od=a) This option disables mid level copy propagation

3.5.5.10.2 RS08 Compiler > Optimization > Mid level branch optimizations

Use this option to specify the mid level branch optimization options.

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

248 Freescale Semiconductor, Inc.



The following table lists and describes the Mid level branch optimizations options for
RS08 compiler.

Table 3-109. Tool Settings - RS08 Compiler > Optimization > Mid level branch optimizations

Option Description

Disable all optimizations (-Odb) This option disables branch optimizations on the SSA form
based on control flows. Label rearranging sorts all labels of
the control flow to generate a minimum amount of branches.

Disable mid level loop hoisting (-Odb=c) This option disables mid level loop hoisting.

Disable mid level branch tail merging (-Odb=b) This option disables only branch tail merging.

Disable mid level label rearranging (-Odb=a) This option disables mid level label rearranging.

3.5.5.10.3 RS08 Compiler > Optimization > Tree optimizer

The Compiler contains a special optimizer which optimizes the internal tree data
structure. This tree data structure holds the semantic of the program and represents the
parsed statements and expressions.

This option disables the tree optimizer. This may be useful for debugging and for forcing
the Compiler to produce `straightforward' code.

Use this panel to configure the tree optimizer options for the RS08 compiler.

The following table lists and describes the Tree optimizer options for RS08 compiler.

Table 3-110. Tool Settings - RS08 Compiler > Optimization > Tree optimizer

Option Description

Disable all optimizations (-Ont) Disable all the optimizations.

Disable bit neg optimization (-Ont=~) Disable optimization of `~~i' into `i'.

Disable bit or optimization (-Ont=I) Disable optimization of `i|0xffff' into `0xffff'.

Disable exor optimization (-Ont=^) Disable optimization of `i^0' into `i'.

Disable if optimization (-Ont=w) Disable optimization of `if (1) i = 0;' into `i = 0;'.

Disable do optimization (-Ont=v) Disable optimization of `do ... while(0) into `...'.

Disable while optimization (-Ont=u) Disable optimization of `while(1) ...;' into `...;'.

Disable for optimization (-Ont=t) Disable optimization of `for(;;) ...' into `while(1) ...'.

Disable indirect optimization (-Ont=s) Disable optimization of `*&i' into `i'.

Disable 16-32 relative optimization (-Ont=r) Disable optimization of `L<=4' into 16-bit compares if 16-bit
compares are better.

Disable 16-32 compare optimization (-Ont=q) Reduction of long compares into int compares if int compares
are better: (-Ont=q to disable it).

Disable cut optimization (-Ont=p) Disable optimization of `(char)(long)i' into `(char)i'.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 249



Table 3-110. Tool Settings - RS08 Compiler > Optimization > Tree optimizer (continued)

Option Description

Disable cast optimization (-Ont=o) Disable optimization of `(short)(int)L' into `(short)L' if short and
int have the same size.

Disable right shift optimization (-Ont=n) Optimization of shift optimizations (<<, -Ont=n to disable it)

Disable left shift optimization (-Ont=m) Optimization of shift optimizations (>>, -Ont=m to disable it)

Disable label optimization (-Ont=l) Disable optimization removal of labels if not used.

Disable transformations for inlining optimization (-Ont=j) This optimization transforms the syntax tree into an equivalent
form in which more inlining cases can be done. This option
only has an effect when inlining is enabled.

Disable address optimization (-Ont=i) Disable optimization of `&*p' into `p'.

Disable unary minus optimization (-Ont=h) Disable optimization of `-(-i)' into `i'.

Disable compare size optimization (-Ont=g) Disable optimization of compare size.

Disable condition optimization (-Ont=f) Disable optimization of `(a==0)' into `(!a)'.

Disable const swap optimization (-Ont=e) Disable optimization of `2*i' into `i*2'.

Disable binary operation optimization (-Ont=d) Disable optimization of `us & ui' into `us & (unsigned short) ui'.

Disable compare optimization (-Ont=c) Disable optimization of `if ((long)i)' into `if (i)'.

Disable constant folding optimization (-Ont=b) Disable optimization of `3+7' into `10'.

Disable statement optimization (-Ont=a) Disable optimization of last statement in function if result is
not used.

Disable test optimization (-Ont=?) Disable optimization of `i = (int)(cond ? L1:L2);' into `i =
cond ? (int)L1:(int)L2;'.

Disable assign optimization (-Ont=9) Disable optimization of `i=i;'.

Disable switch optimization (-Ont=8) Disable optimization of empty switch statement.

Disable extend optimization (-Ont=7) Disable optimization of `(long)(char)L' into `L'.

Disable or optimization (-Ont=1) Disable optimization of `a || 0' into `a'.

Disable and optimization (-Ont=0) Disable optimization of `a && 1' into `a'.

Disable div optimization (-Ont=/) Disable optimization of `a/1' into `a'.

Disable minus optimization (-Ont=-) Disable optimization of `a-0' into `a'.

Disable plus optimization (-Ont=+) Disable optimization of `a+0' into `a'.

Disable mul optimization (-Ont=*) Disable optimization of `a*1' into `a'.

Disable bit and optimization (-Ont=) Disable optimization of `a&0' into `0'.

Disable mod optimization (-Ont=%) Disable optimization of `a%1' into `0'.

3.5.5.10.4 RS08 Compiler > Optimization > Optimize Library Function

This option enables the compiler to optimize specific known library functions to reduce
execution time. The Compiler frequently uses small functions such as strcpy(), strcmp(),
and so forth. Use this panel to configure the optimize library function options for the
RS08 compiler.

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

250 Freescale Semiconductor, Inc.



The following table lists and describes the Mid level branch optimizations options for
RS08 compiler.

Table 3-111. Tool Settings - RS08 Compiler > Optimization > Mid level branch optimizations

Option Description

Apply all optimizations (-OiLib) This option applies all the optimizations.

shifts left of 1 (-OiLib=g) This option replace shifts left of 1 by array lookup.

memcpy (-OiLib=f) This option inline calls to the memcpy() function.

memset (-OiLib=e) This option inline calls to the memset() function.

fabs/fabsf (-OiLib=d) This option inline calls to the fabs() or fabsf() functions.

strlen (-OiLib=b) This option inline calls to the strlen() function.

3.5.6 RS08 Assembler

Use this panel to specify the command, options, and expert settings for the build tool
assembler.

The following table lists and describes the assembler options for RS08.

Table 3-112. Tool Settings - Assembler Options

Option Description

Command Shows the location of the assembler executable file. Default
value is: "${HC08Tools}/ahc08.exe". You can specify
additional command line options for the assembler; type in
custom flags that are not otherwise available in the UI.

All options Shows the actual command line the assembler will be called
with.

Expert Settings

Command line pattern Shows the command line pattern; default is ${COMMAND} $
{COMMAND} ${FLAGS}-Objn${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}.

3.5.6.1 RS08 Assembler > Output

Use this panel to control how the assembler generates the output file, as well as error and
warning messages. You can specify whether to allocate constant objects in ROM,
generate debugging information, and strip file path information.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 251



The following table lists and describes the output options for RS08 Assembler.

Table 3-113. Tool Settings - RS08 Assembler > Output Options

Option Description

Object File Format (-F) Defines the object file format.

Show label statistics (-Li) Using the -Ll option, the Compiler appends statistical
information about the compilation session to the specified file.
The information includes Compiler options, code size (in
bytes), stack usage (in bytes) and compilation time (in
seconds) for each procedure of the compiled file. The
Compiler appends the information to the specified filename
(or the file make.txt, if no argument given). Set the
TEXTPATH: Text File Path environment variable to store the
file into the path specified by the environment variable.
Otherwise the Compiler stores the file in the current directory.

Generate listing file ( e.g. %(TEXTPATH)/%n.lst ) (-L) The -Lasm option causes the Compiler to generate an
assembler listing file directly. The Compiler also prints all
assembler-generated instructions to this file. The option
specifies the name of the file. If no name is specified, the
Compiler takes a default of %n.lst. If the resulting filename
contains no path information the Compiler uses the
TEXTPATH: Text File Path environment variable. The syntax
does not always conform with the inline assembler or the
assembler syntax. Therefore, use this option only to review
the generated code. It cannot currently be used to generate a
file for assembly.

Address size in the listing file (-Lasms) Specifies the size of the addresses displayed in the listing.
Options are:

• 1 to display addresses as xx
• 2 to display addresses as xxxx
• 3 to display addresses as xxxxxx
• 4 to display addresses asf xxxxxxxx

Do not print macro call in listing file (-Lc) Specifies whether macro calls encountered in the source
code are expanded and appear in the listing file.

Do not print macro definition in listing file (-Ld) Instructs the Assembler to generate a listing file but not
including any macro definitions. The listing file contains macro
invocation and expansion lines as well as expanded include
files.

Do not print macro expansion in listing file (-Le) Switches on the generation of the listing file, but macro
expansions are not present in the listing file. The listing file
contains macro definition and invocation lines as well as
expanded include files.

Do not print included files in listing file (-Li) Switches on the generation of the listing file, but include files
are not expanded in the listing file. The listing file contains
macro definition, invocation, and expansion lines.

3.5.6.1.1 RS08 Assembler > Output > Configure Listing File

Use this panel to configure the listing file options of RS08 assembler.

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

252 Freescale Semiconductor, Inc.



The following table lists and describes the Configure Listing File options for RS08
Assembler.

Table 3-114. Tool Settings - RS08 Assembler > Configure Listing File Options

Option Description

Disable all (-Lasmc) Print all the columns in the listing file

Do not write the source line (-Lasmc=s) Do not print source column in the listing file

Do not write the relative line (-Lasmc=r) Do not print relative column (Rel.) in the listing file

Do not write the macro mark (-Lasmc=m) Do not print macro mark column in the listing file

Do not write the address (-Lasmc=l) Do not print address column (Loc) in the listing file

Do not write the location kind (-Lasmc=k) Do not print the location type column in the listing file

Do not write the include mark column (-Lasmc=i) Do not print the include mark column in the listing file

Do not write the object code (-Lasmc=c) Do not print the object code in the listing file

Do not write the absolute line (-Lasmc=a) Do not print the absolute column (Abs.) in the listing file

3.5.6.2 RS08 Assembler > Input

Use this panel to specify file search paths and any additional include files the RS08
Assembler should use. You can specify multiple search paths and the order in which you
want to perform the search.

The following table lists and describes the input options of RS08 assembler.

Table 3-115. Tool Settings - Assembler > Input options

Button Description

Include file search paths (-l) Lists the included file search paths.

Case sensitivity on label names (-Ci) Check to make the label names case sensitive.

Define label (use spaces to separate labels) (-D) Define labels that have to be included in the RS08 assembler
input.

Support for structured types (-Struct) Check to include the support for structured types.

The following table lists and describes the toolbar buttons that help work with the file
search paths.

Table 3-116. Search Paths Toolbar Buttons

Button Description

Add - Click to open the Add directory path dialog box and
specify the file search path.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 253



Table 3-116. Search Paths Toolbar Buttons (continued)

Button Description

Delete - Click to delete the selected file search path. To
confirm deletion, click Yes in the Confirm Delete dialog box.

Edit - Click to open the Edit directory path dialog box and
update the selected object file search path.

Move up - Click to move the selected file search path one
position higher in the list.

Move down - Click to move the selected file search path one
position lower in the list.

3.5.6.3 RS08 Assembler > Language

Use this panel to specify code- and symbol-generation options for the RS08 Assembler.

The following table lists and describes the language options for RS08 Assembler.

Table 3-117. Tool Settings - RS08 Assembler > Language Options

Option Description

Angle brackets for macro arguments grouping (-
CMacAngBrack)

Controls whether the < > syntax for macro invocation
argument grouping is available. When it is disabled, the
Assembler does not recognize the special meaning for < in
the macro invocation context. There are cases where the
angle brackets are ambiguous. In new code, use the [? ?]
syntax instead. Options are:

• Allow
• Disallow

Square braces for macro arguments grouping (-
CMacBrackets)

Controls the availability of the [? ?] syntax for macro
invocation argument grouping. When it is disabled, the
Assembler does not recognize the special meaning for [?] in
the macro invocation context. Options are:

• Allow
• Disallow

Maximum MacroNest nesting (-MacroNest) Controls how deep macros calls can be nested. Its main
purpose is to avoid endless recursive macro invocations.

3.5.6.3.1 RS08 Assembler > Language > Compatibility modes

Use this panel to specify the compatibility modes options of the RS08 assembler.

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

254 Freescale Semiconductor, Inc.



The following table lists and describes the compatibility mode options for RS08
Assembler.

Table 3-118. Tool Settings - RS08 Assembler > Compatibility modes Options

Option Description

Select all (-Compat) Check to enable all compatibility mode options.

Symbol prefixes (-Compat=s) With this suboption, the Assembler accepts "pgz:" and "byte:"
prefixed for symbols in XDEFs and XREFs. They correspond
to XREF.B or XDEF.B with the same symbols without the
prefix.

Ignore FF character at line start Symbol prefixes (-Compat=f) With this suboption, an otherwise improper character
recognized from feed character is ignored.

Alternate comment rules (-Compat=c) With this suboption, comments implicitly start when a space is
present after the argument list. A special character is not
necessary. Be careful with spaces when this option is given
because part of the intended arguments may be taken as a
comment. However, to avoid accidental comments, the
Assembler does issue a warning if such a comment does not
start with a "*" or a ";".

Support FOR directive (-Compat=b) With this suboption, the Assembler supports a FOR - Repeat
assembly block assembly directive to generate repeated
patterns more easily without having to use recursive macros.

Add some additional directives (-Compat=a) With this suboption, some additional directives are added for
enhanced compatibility. The Assembler actually supports a
SECT directive as an alias of the usual SECTION - Declare
Relocatable Section assembly directive. The SECT directive
takes the section name as its first argument.

Operator != means equal (-Compat==) The Assembler takes the default value of the != operator as
not equal, as it is in the C language. For compatibility, this
behavior can be changed to equal with this option. Because
of the risks involved with this option for existing code, a
message is issued for every != which is treated as equal.

Support $ character in symbols (-Compat=) With this suboption, the Assembler supports to start identifiers
with a $ sign.

Support additional ! symbols (-Compat=!) The following additional operators are defined when this
option is used:

• !^: exponentiation
• !m: modulo
• !@: signed greater or equal
• !g: signed greater
• !%: signed less or equal
• !t: signed less than
• !$: unsigned greater or equal
• !S: unsigned greater
• !&: unsigned less or equal
• !l: unsigned less
• !n: one complement
• !w: low operator
• !h: high operator

Note: The default values for the following ! operators are
defined:

• !.: binary AND

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 255



Table 3-118. Tool Settings - RS08 Assembler > Compatibility modes Options

Option Description

• !x: exclusive OR
• !+: binary OR

3.5.6.4 RS08 Assembler > Host

Use this panel to specify the host settings of the RS08.

The following table lists and describes the memory model options for RS08.

Table 3-119. Tool Settings - Host

Option Description

Set environment variable (-Env) This option sets an environment variable. Use this
environment variable in the maker, or use to overwrite system
environment variables.

Borrow license feature (-LicBorrow) This option allows you to borrow a license feature until a
given date or time. Borrowing allows you to use a floating
license even if disconnected from the floating license server.

Wait until a license is available from floating license server (-
LicWait)

By default, if a license is not available from the floating license
server, then the application will immediately return. With -
LicWait set, the application will wait (blocking) until a license
is available from the floating license server.

Application Standard Occurrence Select the way you want the application window to start.
Normally, the application starts with a normal window if no
arguments are given. If you start the application with
arguments (e.g., from the Maker to assemble, compile, or link
a file), then the application runs minimized to allow for batch
processing. However, you may specify the application's
window behavior with the View option.

• -ViewWindow, the application appears with its normal
window.

• -ViewMin the application appears as an icon in the task
bar.

• -ViewMax, the application appears maximized (filling
the whole screen).

• -ViewHidden, the application processes arguments
(e.g., files to be compiled or linked) in the background
(no window or icon visible in the task bar).

3.5.6.5 RS08 Assembler > Code Generation

Use this panel to specify the code generation options of the RS08 assembler.

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

256 Freescale Semiconductor, Inc.



The following table lists and describes the Code Generation options for RS08 assembler.

Table 3-120. Tool Settings - RS08 Assembler > Code Generation Options

Option Description

Associate debug information to assembly source file (-
Asmdbg)

Passes the assembly source file name information to DWARF
sections. When the output .abs file is debugged, the actual
assembly source file is displayed instead of intermediary
<filename>.dbg file.

3.5.6.6 RS08 Assembler > Messages

Use this panel to specify whether to generate symbolic information for debugging.

The following table lists and describes the message options.

Table 3-121. Tool Settings - Messages Options

Option Description

Don't print INFORMATION messages (-W1) Inhibits information message reporting. Only warning and
error messages are generated.

Don't print INFORMATION or WARNING messages (-W2) Suppresses all messages of type INFORMATION and
WARNING. Only ERROR messages are generated.

Create err.log Error file Using this option, the Assembler uses a return code to report
errors back to the tools. When errors occur, 16-bit window
environments use err.log files, containing a list of error
numbers, to report the errors. If no errors occur, the 16-bit
window environments delete the err.log file.

Cut file names to Microsoft format to 8.3 (-Wmsg8x3) Some editors (early versions of WinEdit) expect the filename
in Microsoft message format (8.3 format). That means the
filename can have up to eight characters and no more than a
three-character extension. Longer filenames are possible
when you use Win95 or WinNT. This option truncates the
filename to the 8.3 format.

Set message file format for batch mode Use this option to start the Assembler with additional
arguments (for example, files and Assembler options). If you
start the Assembler with arguments (for example, from the
Make Tool or with the `%f' argument from the CodeWright
IDE), the Assembler compiles the files in a batch mode. No
Assembler window is visible and the Assembler terminates
after job completion.

Message Format for batch mode (e.g. %"%f%e%"(%l): %K
%d: %m\n) (-WmsgFob)

This option modifies the default message format in batch
mode. The -WmsgFob command sets the message format for
batch mode. The supported formats are (assuming that the
source file is X:\Freescale\mysourcefile.cpph):

• %s: Source Extract
• %p: Path (example, X:\Freescale\)
• %f: Path and name (example, X:\Freescale
\mysourcefile)

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 257



Table 3-121. Tool Settings - Messages Options (continued)

Option Description

• %n: filename (example, mysourcefile)
• %e: Extension (example, .cpph)
• %N: File (8 chars) (example, mysource )
• %E: Extension (3 chars) (example, .cpp)
• %l: Line (example, 3)
• %c: Column (example, 47)
• %o: Pos (example, 1234)
• %K: Uppercase kind (example, ERROR)
• %k: Lowercase kind (example, error)
• %d: Number (example, C1815)
• %m: Message (example, text)
• %%: Percent (example, %)
• \n: New line
• %": A " if the filename, the path, or the extension

contains a space
• %': A ' if the filename, the path, or the extension

contains a space

Message Format for no file information (e.g. %K %d: %m)(-
WmsgFonf)

If there is no file information available for a message, then
<string> defines the message format string to use.

Message Format for no positioning information (%"%f%e%":
%K %d: %m)(-WmsgFonp)

If there is no position information available for a message,
then <string> defines the message format string to use.

Create Error Listing File This option controls whether the Assembler creates an error
listing file. The error listing file contains a list of all messages
and errors that occur during processing.

Maximum number of error messages (-WmsgNe) Specify the number of errors allowed until the application
stops processing.

Maximum number of information messages (-WmsgNi) Specify the maximum number of information messages
allowed.

Maximum number of warning messages (-WmsgNw) Specify the maximum number of warnings allowed.

Set messages to Disable Check to disable user messages and allow only the normal
message categories (WARNING, INFORMATION, ERROR,
or FATAL); reduces the number of messages, and simplifies
the error parsing of other tools.

Set messages to Error Check to enable messages of the ERROR category.

Set messages to Information Check to enable messages of the INFORMATION category.

Set messages to Warning Check to enable messages of the WARNING category.

3.5.6.6.1 RS08 Assembler > Messages > Disable user messages

Build Properties for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

258 Freescale Semiconductor, Inc.



Use this panel to specify whether to generate symbolic information for debugging the
The following table lists and describes the message options.

Table 3-122. Tool Settings - Disable user messages Options

Option Description

Disable all messages Check to disable all the user messages and allow only the
normal message categories (WARNING, INFORMATION,
ERROR, or FATAL); reduces the number of messages, and
simplifies the error parsing of other tools.

Display type of messages (-WmsgNu=t) Check to display the type of user messages.

Display informal messages (-WmsgNu=e) Check to display the informal messages (e.g., memory model,
floating point format).

Disable messages about processing statistics (-WmsgNu=d) Check to disable the information about statistics, e.g., code
size, RAM/ROM usage, and so on provided at the end of the
assembly.

Disable messages about generated files (-WmsgNu=c) Check to disable messages informing about generated files.

Disable messages about reading files (-WmsgNu=b) Check to disable the messages about reading files e.g., the
files used as input.

Disable messages about include files (-WmsgNu=a) Check to disable messages or information provided by the
application included files.

3.5.6.7 RS08 Assembler > General

Use this panel to specify the general assembler behavior.

The following table lists and describes the general assembler options for RS08.

Table 3-123. Tool Settings - Assembler > General Options

Option Description

MMU Support (-MMU) Check to inform the compiler that CALL and RTC instructions
are available, enabling code banking, and that the current
architecture has extended data access capabilities, enabling
support for __linear data types. This option can be used
only when -Cs08 is enabled.

MCUasm compatibility (-MCUasm) Check to activate the compatibility mode with the MCUasm
Assembler.

Other Flags Specify additional command line options for the assembler;
type in custom flags that are not otherwise available in the UI.

3.5.7 RS08 Preprocessor

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 259



Use this panel to configure the preprocessor settings.

The following table lists and describes the Preprocessor options for RS08.

Table 3-124. Tool Settings - Preprocessor Options

Option Description

Command Shows the location of the preprocessor executable file.
Default value is: "${HC08Tools}/crs08". You can specify
additional command line options for the preprocessor; type in
custom flags that are not otherwise available in the UI.

All options Shows the actual command line the assembler will be called
with.

Expert Settings

Command line pattern Shows the command line pattern; default is ${COMMAND} -
Lp ${FLAGS} ${INPUTS}.

3.5.7.1 RS08 Preprocessor > Preprocessor Settings

Use this panel to configure the preprocessor settings of the preprocessor.

The following table lists and describes the Preprocessor Settings options for RS08.

Table 3-125. Tool Settings - Preprocessor Options

Option Description

Turn on all preprocessor configuration Use this option to enable the default preprocessor
configuration.

Emit whitespaces (-LpCfg=s) Use this option to reconstruct spaces.

Handle single quote (`) as normal token (-LpCfg=q) Use this option to handle single quote (`) as normal token.

Do not concatenate strings (-LpCfg=n) Use this option to avoid string concatenation.

Emit #line directive (-LpCfg=l) Use this option to emit #line directives in preprocessor output.

Do not emit file names (-LpCfg=m) Do not emit file names.

Emit file names with path (-LpCfg=f) Use this option to emit file names with path.

Emit empty lines (-LpCfg=e) Use this option to emit empty lines.

Do not emit line comments (-LpCfg=c) Do not emit line comments

Stop after preprocessor (-LpX) Without this option, the compiler always translates the
preprocessor output as C code. To do only preprocessing,
use this option together with the -Lp option. No object file is
generated.

Build Properties for ColdFire

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

260 Freescale Semiconductor, Inc.



3.6 Build Properties for ColdFire

The Properties for <project> window shows the corresponding build properties for a
ColdFire project.

Figure 3-21. Build Properties - ColdFire Debug

The following table lists the build properties specific to developing software for ColdFire
Debug. The properties that you specify in these panels apply to the selected build tool on
the Tool Settings page of the Properties for <project> window.

Table 3-126. Build Properties for ColdFire Debug

Build Tool Build Properties Panels

ColdFire CPU ColdFire CPU

Debugging Debugging

Messages Messages

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 261



Table 3-126. Build Properties for ColdFire Debug (continued)

Build Tool Build Properties Panels

Librarian Librarian

Burner Burner > General

ColdFire Linker ColdFire Linker > Input

ColdFire Linker > General

ColdFire Linker > Output

ColdFire Compiler ColdFire Compiler > Input

ColdFire Compiler > Preprocessor

ColdFire Compiler > Warnings

ColdFire Compiler > Optimization

ColdFire Compiler > Processor

ColdFire Compiler > Language Settings

ColdFire Assembler ColdFire Assembler > Input

ColdFire Assembler > General

ColdFire Preprocessor ColdFire Preprocessor > Preprocessor Settings

ColdFire Disassembler ColdFire Disassembler > Disassembler Settings

3.6.1 ColdFire CPU

Use this panel to specify the CPU type, and the memory model that the architecture uses.
The build tools (compiler, linker, and assembler) then use the properties set in this panel
to generate CPU-specific code.

The following table lists and describes the ColdFire CPU options.

Table 3-127. Tool Settings - ColdFire CPU Options

Option Description

Processor Family (-proc) Lists the processor families supported by the ColdFire
compiler. When you select a processor from this list, the
compiler generates code that makes use of any of its
hardware features or special instructions. For more detailed
information on the features of each processor, refer to its
reference manual document.

3.6.2 Debugging

Build Properties for ColdFire

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

262 Freescale Semiconductor, Inc.



Use this panel to specify the whether to generate symbolic information for debugging the
build target .

The following table lists and describes the debugging options.

Table 3-128. Tool Settings - Debugging Options

Option Description

Generate Symbolic Info Specify whether to generate symbolic information for
debugging:

• Off - Select if you do not want to generate symbolic
information for debugging the build target.

• On - Select to generate symbolic information for
debugging the build target.

• Store Full Path Names - Select to generate symbolic
information and store full path names for debugging the
build target.

3.6.3 Messages

Use this panel to specify the whether to generate symbolic information for debugging the
build target.

The following table lists and describes the message options.

Table 3-129. Tool Settings - Messages Options

Option Description

Message Style List options to select message style.
• GCC(default) - Uses the message style of the Gnu

Compiler Collection tools
• MPW - Uses the Macintosh Programmer's Workshop

(MPWï¿½) message style
• Standard - Uses the standard message style
• IDE - Uses context-free machine parseable message

style
• Enterprise-IDE - Uses CodeWarrior's Integrated

Development Environment (IDE) message style.
• Parseable - Uses parseable message style.

Maximum Number of Errors Specify the number of errors allowed until the application
stops processing.

Maximum Number of Warnings Specify the maximum number of warnings.

3.6.4 Librarian

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 263



Use this panel to select whether the linker will identify standard libraries.

The following table lists and describes the librarian options.

Table 3-130. Tool Settings - Librarian Options

Option Description

Enable automatic library configurations Select to let the compiler identify standard libraries.

Model Select a standard complying or EWL model from the drop-
down list. EWL lets you precisely define the I/O operations.
EWL drastically reduces the size of executables as you
explicitly select the appropriate I/O behavior. Options are: e
wl, c9x, ewl_c++, and c9x_c++.

Print formats Select the print formats from the drop-down list. The available
options are: int, int_FP, int_LL, and int_LL_FP.

Scan formats Select the scan formats from the drop-down list. The available
options are: int, int_FP, int_LL, and int_LL_FP.

IO Mode Select the input-output mode from the drop-down list. The
available options are: raw and buffered.

3.6.5 Burner

Use the Burner for ColdFire Preference Panel to map *.bbl (batch burner language) files
to the Burner Plug-In. When the project folder contains a *.bbl file, *.bbl file processing
during the post-link phase uses the settings in the Burner preference panel.

The following table lists and describes the burner options for ColdFire.

Table 3-131. Tool Settings - Burner Options

Option Description

Command Shows the location of the burner executable file. Default value
is: "${HC08Tools}/burner.exe". You can specify
additional command line options for the burner; type in
custom flags that are not otherwise available in the UI.

All options Shows the actual command line the burner will be called with.

Expert Settings

Command line pattern Shows the command line pattern; default is ${COMMAND} $
{FLAGS} ${INPUTS}.

3.6.5.1 Burner > General

Build Properties for ColdFire

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

264 Freescale Semiconductor, Inc.



Use this panel to specify other flags for the ColdFire Burner to use.

The following table lists and describes the general options for ColdFire burner.

Table 3-132. Tool Settings - Burner > General Options

Option Description

Other flags Specify additional command line options for the burner; type
in custom flags that are not otherwise available in the UI.

3.6.6 ColdFire Linker

Use this panel to specify ColdFire linker behavior. You can specify the command,
options, and expert settings for the build tool linker. Additionally, the Linker tree control
includes the input, general, and output settings.

The following table lists and describes the linker options for ColdFire.

Table 3-133. Tool Settings - ColdFire Linker Options

Option Description

Command Shows the location of the linker executable file. Default value
is: "${CF_ToolsDir}/mwldmcf". You can specify
additional command line options for the linker; type in custom
flags that are not otherwise available in the UI.

All options Shows the actual command line the ColdFire linker will be
called with.

Expert Settings

Command line pattern Shows the command line pattern; default is ${COMMAND} $
{FLAGS} ${OUTPUT_FLAG} ${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}.

3.6.6.1 ColdFire Linker > Input

Use this panel to specify files the ColdFire Linker should use. You can specify multiple
additional libraries and library search paths. Also, you can change the order in which the
IDE uses or searches the libraries.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 265



The following table lists and describes the input options for ColdFire.

Table 3-134. Tool Settings - ColdFire Linker > Input Options

Option Description

No Standard Library (-nostdlib) Select if there is no standard library attached.

Link Command File (.lcf) Consists of three kinds of segments, which must be in this
order:

• A memory segment, which begins with the MEMORY{}
directive

• Optional closure segments, which begin with the
FORCE_ACTIVE{}, KEEP_SECTION{}, or
REF_INCLUDE{} directives

• A sections segment, which begins with the
SECTIONS{} directive

Entry Point Specifies the program starting point: the first function the
debugger uses upon program start; default: __start. This
default function is in file ColdFire__startup.c. It sets up the
ColdFire EABI environment before code execution. Its final
task is calling main().

Library Search Paths (-L +path) Specifies the search pathname of libraries or other resources
related to the project. Type the pathname into this text box.
Alternatively, click Workspace or File system, then use the
subsequent dialog box to browse to the correct location.

Library Files ?(-l +file) Specifies the pathname of libraries or other resources related
to the project. Type the pathname into this text box.
Alternatively, click Workspace or File system, then use the
subsequent dialog box to browse to the correct location.

Force Active Symbols Disables deadstripping for particular symbols, enter the
symbol names in the Force Active Symbols text box of the
ColdFire Linker Panel.

3.6.6.2 ColdFire Linker > Link Order

Use this panel to control the order in which the linker receives the object files.

The following table lists and describes the link order options.

Table 3-135. Tool Settings - Link Order Options

Option Description

Customize linker input order Select if you want the linker to receive the object files in the
specified order.

Link Order Lists the object files corresponding to the source files
specified in the "link order" list. This option is enables only if
Customize linker input order is selected.

Build Properties for ColdFire

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

266 Freescale Semiconductor, Inc.



3.6.6.3 ColdFire Linker > General

Use this panel to specify the general linker behavior.

The following table lists and describes the general linker options for ColdFire.

Table 3-136. Tool Settings - ColdFire Linker > General Options

Option Description

O ther Flags Specify additional command line options for the linker; type in
custom flags that are not otherwise available in the UI.

3.6.6.4 ColdFire Linker > Output

Use this panel to specify the output settings for the ColdFire linker.

The following table lists and describes the output settings for ColdFire linker.

Table 3-137. Tool Settings - ColdFire Linker > Output Options

Option Description

Output Type Select application as Application (default), Static Library, or
Shared Library.

Generate Link Map Check to generate link map.

Generate Link Map - List Unused Objects Check to generate link map and list unused objects; appears
grayed out if the Generate Link Map checkbox is not
checked.

Generate Link Map -Show Transitive Closure Check to generate link map and show transitive closure;
appears grayed out if the Generate Link Map checkbox is not
checked.

Generate Link Map -Always Keep Map Check to generate link map and always keep the map;
appears grayed out if the Generate Link Map checkbox is not
checked.

Generate Link Map - Generate S-Record File Check to generate link map and generate a S-record file.

Max S-Record Length Specify the maximum length for S-record; appears grayed out
if the Generate S-Record File checkbox is not checked. The
default value is 252.

EOL Character Specify the end-of-line character; appears grayed out if the
Generate S-Record File checkbox is not checked. The
default value is DOS.

Generate Listing File Check to generate a listing file named lstfil.lst.

Generate Elf Symbol Table Check to generate an ELF symbol table.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 267



Table 3-137. Tool Settings - ColdFire Linker > Output Options (continued)

Option Description

Generate Binary Image Check to generate a binary image.

Max Bin Record Specify the maximum value for bin record; appears grayed
out if the Generate Binary Image checkbox is not checked.
The default value is 252.

Generate Raw-Binary Image Check to generate a raw-binary image.

Max Raw-Binary Gap Specify the maximum value for raw binary gap; appears
grayed out if the Generate Raw-Binary Image checkbox is
not checked. The default value is 0x10000.

Generate Warning Messages Select whether you want to generate warning messages,
warn superseded definitions, or treat warnings as errors.

3.6.7 ColdFire Compiler

Use this panel to specify the command, options, and expert settings for the build tool
compiler. Additionally, the ColdFire Compiler tree control includes the general and the
file search path settings.

The following table lists and describes the compiler options for ColdFire.

Table 3-138. Tool Settings - Compiler Options

Option Description

Command Shows the location of the compiler executable file. Default
value is: "${CF_ToolsDir}/mwccmcf". You can specify
additional command line options for the compiler; type in
custom flags that are not otherwise available in the UI.

All options Shows the actual command line the ColdFire compiler will be
called with.

Expert Settings

Command line pattern Shows the command line pattern; default is ${COMMAND} $
{FLAGS} ${OUTPUT_FLAG} ${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}.

3.6.7.1 ColdFire Compiler > Input

Use this panel to specify additional files the ColdFire Compiler should use. You can
specify multiple additional libraries and library search paths. Also, you can change the
order in which the IDE uses or searches the libraries.

Build Properties for ColdFire

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

268 Freescale Semiconductor, Inc.



The following table lists and describes the input options for ColdFire compiler.

Table 3-139. Tool Settings - ColdFire Compiler > Input Options

Option Description

Compile only, Do Not Link (-c) Check if you want to compile only and do not want to link the
file.

Do not use MWCIncludes variable (-nostdinc) Check if you do not want to use MWCIncludes variable.

Always Search User Paths (-nosyspath) Check if you want to always search user paths.

Source encoding Lets you specify the default encoding of source files. The
compiler recognizes Multibyte and Unicode source text. To
replicate the obsolete option Multi-Byte Aware, set this option
to System or Autodetect. Additionally, options that affect the
preprocess request appear in this panel. The options
available are as follows:

• ASCII
• Autodetect
• UTF-8
• System
• Shift-JIS
• EUC-JP
• ISO-2022-JP

User Path (-i) Lists the available user paths.

User Recursive Path (-ir) Appends a recursive access path to the current #include list.
This command is global.

Syntax-ir pathpath

The recursive access path to append.

System Path (-I- -I) Lists the available system paths.

System Recursive Path (-I- -ir) Lists the available system paths recursively.

The following table lists and describes the toolbar buttons that help work with the user
and system search paths.

Table 3-140. Search Paths Toolbar Buttons

Button Description

Add - Click to open the Add directory path dialog box and
specify the search path.

Delete - Click to delete the selected search path. To confirm
deletion, click Yes in the Confirm Delete dialog box.

Edit - Click to open the Edit directory path dialog box and
update the selected search path.

Move up - Click to move the selected search path one
position higher in the list

Move down - Click to move the selected search path one
position lower in the list

The following table shows the Add directory path dialog box.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 269



Figure 3-22. Add directory path Dialog Box

The following table shows the Edit directory path dialog box.

Figure 3-23. Edit directory path Dialog Box

The buttons in the Add directory path and Edit directory path dialog boxes help work
with the object file search paths.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.
• Workspace - Click to display the Folder Selection dialog box and specify the object

file search path. The resulting path, relative to the workspace, appears in the
appropriate list.

• File system - Click to display the Browse for Folder dialog box and specify the
object file search path. The resulting path appears in the appropriate list.

3.6.7.2 ColdFire Compiler > Preprocessor

Use this panel to specify ColdFire preprocessor behavior.

The following table lists and describes the preprocessor options for ColdFire Compiler.

Table 3-141. Tool Settings - ColdFire Compiler > Preprocessor

Option Description

Prefix File (-prefix) Specifies a file automatically included in all project assembly
files.

Table continues on the next page...

Build Properties for ColdFire

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

270 Freescale Semiconductor, Inc.



Table 3-141. Tool Settings - ColdFire Compiler > Preprocessor (continued)

Option Description

Defined Macros (-D) Lists the defined command-line macros.

Undefined Macros (-U) Lists the undefined command-line macros.

3.6.7.3 ColdFire Compiler > Warnings

Use this panel to control how the ColdFire compiler formats the listing file, as well as
error and warning messages.

The following table lists and describes the warnings options for ColdFire compiler.

Table 3-142. Tool Settings - ColdFire Compiler > Warnings Options

Option Description

Treat All Warnings As Errors Check to treat all warnings as errors. The compiler will stop if
it generates a warning message.

Illegal Pragmas Check to notify the presence of illegal pragmas.

Possible Errors Check to suggest possible errors.

Extended Error Checking Check if you want to do an extended error checking.

Hidden virtual functions Check to generate a warning message if you declare a non-
virtual member function that prevents a virtual function, that
was defined in a superclass, from being called and is
equivalent to pragma warn_hidevirtual and the command-
line option -warnings hidevirtual.

Implicit Arithmentic Conversions Check to warn of implicit arithmetic conversions.

Implicit Integer to Float Conversions Check to warn of implicit conversion of an integer variable to
floating-point type.

Implicit Float to Integer Conversions Check to warn of implicit conversions of a floating-point
variable to integer type.

Implicit Signed/Unsigned Conversion Check to enable warning of implicit conversions between
signed and unsigned variables.

Pointer/Integral Conversions Check to enable warnings of conversions between pointer
and integers.

Unused Arguments Check to warn of unused arguments in a function.

Unused Variables Check to warn of unused variables in the code.

Unused Result From Non-Void-Returning Function Check to warn of unused result from non-void-returning
functions.

Missing `return' Statement Check to warn of when a function lacks a return statement.

Expression Has No Side Effect Check to issue a warning message if a source statement
does not change the program's state. This is equivalent to the
pragma warn_no_side_effect, and the command-line
option -warnings unusedexpr.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 271



Table 3-142. Tool Settings - ColdFire Compiler > Warnings Options (continued)

Option Description

Extra Commas Check to issue a warning message if a list in an enumeration
terminates with a comma. The compiler ignores terminating
commas in enumerations when compiling source code that
conforms to the ISO/IEC 9899-1999 ("C99") standard and is
equivalent to pragma warn_extracomma and the command-
line option -warnings extracomma.

Empty Declarations Check to warn of empty declarations.

Inconsistent `class' / `struct' Usage Check to warn of inconsistent usage of class or struct.

Include File Capitalization Check to issue a warning message if the name of the file
specified in a #include "file" directive uses different letter case
from a file on disk and is equivalent to pragma
warn_filenamecaps and the command-line option -
warnings filecaps.

Check System Includes Check to issue a warning message if the name of the file
specified in a #include <file> directive uses different letter
case from a file on disk and is equivalent to pragma
warn_filenamecaps_system and the command-line
option -warnings sysfilecaps.

Pad Bytes Added Check to issue a warning message when the compiler adjusts
the alignment of components in a data structure and is
equivalent to pragma warn_padding and the command-line
option -warnings padding.

Undefined Macro in #if Check to issues a warning message if an undefined macro
appears in #if and #elif directives and is equivalent to pragma
warn_undefmacro and the command-line option -
warnings undefmacro.

Non-Inlined Functions Check to issue a warning message if a call to a function
defined with the inline, __inline__, or __inline keywords could
not be replaced with the function body and is equivalent to
pragma warn_notinlined and the command-line option -
warnings notinlined.

Token not formed by ## operator Check to enable warnings for the illegal uses of the
preprocessor's token concatenation operator (##). It is
equivalent to the pragma warn_illtokenpasting on.

3.6.7.4 ColdFire Compiler > Optimization

Use this panel to control compiler optimizations. The compiler's optimizer can apply any
of its optimizations in either global or non-global optimization mode. You can apply
global optimization at the end of the development cycle, after compiling and optimizing
all source files individually or in groups.

Build Properties for ColdFire

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

272 Freescale Semiconductor, Inc.



The following table lists and defines each option of the Optimization panel.

Table 3-143. Tool Settings - ColdFire Compiler > Optimization Options

Option Description

Optimization Level (-opt) Specify the optimizations that you want the compiler to apply
to the generated object code:

• 0-Disable optimizations. This setting is equivalent to
specifying the -O0 command-line option. The compiler
generates unoptimized, linear assembly-language code.

• 1-The compiler performs all target-independent (that is,
non-parallelized) optimizations, such as function
inlining. This setting is equivalent to specifying the -O1
command-line option.

The compiler omits all target-specific optimizations and
generates linear assembly-language code.

• 2-The compiler performs all optimizations (both target-
independent and target-specific). This setting is
equivalent to specifying the -O2 command-line option.
The compiler outputs optimized, non-linear, parallelized
assembly-language code.

• 3-The compiler performs all the level 2 optimizations,
then the low-level optimizer performs global-algorithm
register allocation. This setting is equivalent to
specifying the -O3 command-line option. At this
optimization level, the compiler generates code that is
usually faster than the code generated from level 2
optimizations.

Speed Vs Size Use to specify an Optimization Level greater than 0.

• Speed-The compiler optimizes object code at the
specified Optimization Level such that the resulting
binary file has a faster execution speed, as opposed to
a smaller executable code size.

• Size-The compiler optimizes object code at the
specified Optimization Level such that the resulting
binary file has a smaller executable code size, as
opposed to a faster execution speed. This setting is
equivalent to specifying the -Os command-line option.

IPA Specifies the Interprocedural Analysis (IPA) policy.
• Off - No interprocedural analysis, but still performs

function-level optimization. Equivalent to the "no
deferred inlining" compilation policy of older compilers.

• File - Completely parse each translation unit before
generating any code or data. Equivalent to the "deferred
inlining" option of older compilers. Also performs an
early dead code and dead data analysis in this mode.
Objects with unreferenced internal linkages will be
dead-stripped in the compiler rather than in the linker.

Inlining Enables inline expansion. If there is a #pragma INLINE before
a function definition, all calls of this function are replaced by
the code of this function, if possible. Using the -Oi=c0 option
switches off inlining. Functions marked with the #pragma
INLINE are still inlined. To disable inlining, use the -Oi=OFF
option.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 273



Table 3-143. Tool Settings - ColdFire Compiler > Optimization Options (continued)

Option Description

Bottom-up Inlining Check to control the bottom-up function inlining method.
When active, the compiler inlines function code starting with
the last function in the chain of functions calls, to the first one.

3.6.7.5 ColdFire Compiler > Processor

Use this panel to specify processor behavior. You can specify the file paths and define
macros.

The following table lists and defines each option of the Processor panel.

Table 3-144. Tool Settings - ColdFire Compiler > Processor Options

Option Description

Struct Align (-align) Specifies record and structure alignment in memory:
• Byte - Aligns all fields on 1 byte boundaries
• 68k (word) - Aligns all fields on word boundaries
• coldfire (long) - Aligns all fields on long word

boundaries
• Default - Coldfire (long).

This panel element corresponds to the options align pragma.
Note : When you compile and link, ensure that alignment is
the same for all files and libraries.

Code Model Specifies access addressing for data and instructions in the
object code:

• Smart - Relative (16-bit) for function calls in the same
segment; otherwise absolute (32-bit)

• Far (32 bit) - Absolute for all function calls
• Near (16 bit) - Relative for all function calls
• Near Relative (pc16) - Generates a 16-bits relative

references to code.

Data Model Specifies global-data storage and reference:
• Far (32 bit) - Storage in far data space; available

memory is the only size limit.
• Near (16 bit) - Storage in near data space; size limit is

64K.
• Default - Far (32 bit).

This panel element corresponds the far_data pragma

Floating Point Specifies handling method for floating point operations:
• Software - C runtime library code emulates floating-

point operations.
• Hardware - Processor hardware performs floating point

operations; only appropriate for processors that have
floating-point units.

• None

Table continues on the next page...

Build Properties for ColdFire

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

274 Freescale Semiconductor, Inc.



Table 3-144. Tool Settings - ColdFire Compiler > Processor Options (continued)

Option Description

Default: Software For software selection, your project must
include the appropriate FP_ColdFire C runtime library file.
Grayed out if your target processor lacks an FPU.

A6 Stack Frame (-a6) Clear to disable call-stack tracing; generates faster and
smaller code. By default, the option is checked.

Pool Sections (-pool) Check to collect all string constants into a single data object
so your program needs one data section for all of them.

Generate Code for Profiling (-profile) Check to enable the processor generate code for use with a
profiling tool. Checking this box corresponds to using the
command-line option -profile. Clearing this checkbox is
equivalent to using the command-line option -noprofile

Position-Independent Code (-pic) Check to generate position independent code (PIC) that is
non relocatable.

Position-Independent Data (-pid) Check to generate non-relocatable position-independent data
(PID). PID is available with 16- and 32-bit addressing.

Register Coloring (-coloring) Clear to enable the Compiler force all local variables to be
stack-based except for compiler generated temporaries.

Instruction Scheduling (-scheduling) Clear to prevent from scheduling instructions.

Peephole (-peephole) Clear to prevent the compiler from compiling long instruction
sequences into compact ones. By default, the option is
checked. When on (default setting) it does not affect
debugging unless the resulting instruction is a memory-to-
memory operation which might make a variable used as
temporary disappear.

Use .sdata.sbiss for (byte in integer between -1.32K) The options are:
• All data - Select this option button to store all data items

in the small data address space
• All data smaller than - Select this option button to

specify the maximum size for items stored in the small
data address space; enter the maximum size in the text
box. Using the small data area speeds data access, but
has ramifications for the hardware memory map. The
default settings specify not using the small data area.

By default, all data smaller than is checked.

3.6.7.6 ColdFire Compiler > Language Settings

Use this panel direct the ColdFire compiler to apply specific processing modes to the
language source code. You can compile source files with just one collection at a time. To
compile source files with multiple collections, you must compile the source code
sequentially. After each compile iteration change the collection of settings that the
ColdFire compiler uses.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 275



The following table lists and defines each option of the Language Settings panel.

Table 3-145. Tool Settings - ColdFire Compiler > Language Settings Options

Option Description

Require Prototypes (-requireprotos) Check to enforce the requirement of function prototypes. the
compiler generates an error message if you define a
previously referenced function that does not have a prototype.
If you define the function before it is referenced but do not
give it a prototype, this setting causes the compiler to issue a
warning message.

Enable C++ `bool' type, `true' and `false' Constants (-bool) Check to enable the C++ compiler recognize the bool type
and its true and false values specified in the ISO/IEC
14882-1998 C++ standard; is equivalent to pragma bool and
the command-line option -bool.

ISO C++ Template Parser (-iso_templates) Check to follow the ISO/IEC 14882-1998 standard for C++ to
translate templates, enforcing more careful use of the
typename and template keywords. The compiler also follows
stricter rules for resolving names during declaration and
instantiation and is equivalent to pragma
parse_func_templ and the command-line option -
iso_templates.

Use Instance Manager (-inst) Check to reduce compile time by generating any instance of a
C++ template (or non-inlined inline) function only once.

Force C++ Compilation (-lang c99) Check to translates all C source files as C++ source code and
is equivalent to pragma cplusplus and the command-line
option -lang c++.

Enable GCC extensions (-gcc) Check to recognize language features of the GNU Compiler
Collection (GCC) C compiler that are supported by
CodeWarrior compilers; is equivalent to pragma
gcc_extensions and the command-line option -
gcc_extensions.

Enable C99 Extensions (-lang c99) Check to recognize ISO/IEC 9899-1999 ("C99") language
features; is equivalent to pragma c99 and the command-line
option - dialect c99.

Enable C++ Exceptions (-Cpp_Exceptions) Check to generate executable code for C++ exceptions; is
equivalent to pragma exceptions and the command-line
option - cpp_exceptions.

Enable RTTI (-RTTI) Check to allow the use of the C++ runtime type information
(RTTI) capabilities, including the dynamic_cast and
typeid operators; is equivalent to pragma RTTI and the
command-line option -RTTI.

Enable wchar_tSupport Check to enable C++ compiler recognize the wchar_t data
type specified in the ISO/IEC 14882-1998 C++ standard; is
equivalent to pragma wchar_type and the command-line
option -wchar_t.

ANSI Strict Check to enable C compiler operate in strict ANSI mode. In
this mode, the compiler strictly applies the rules of the ANSI/
ISO specification to all input files. This setting is equivalent to
specifying the - ansi command-line option. The compiler
issues a warning for each ANSI/ISO extension it finds.

Table continues on the next page...

Build Properties for ColdFire

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

276 Freescale Semiconductor, Inc.



Table 3-145. Tool Settings - ColdFire Compiler > Language Settings Options (continued)

Option Description

ANSI Keywords Only Check to generate an error message for all non-standard
keywords (ISO/IEC 9899-1990 C, ï¿½6.4.1). If you must write
source code that strictly adheres to the ISO standard, enable
this setting; is equivalent to pragma only_std_keywords
and the command-line option -stdkeywords.

Expand Trigraphs Check to recognize trigraph sequences (ISO/IEC 9899-1990
C, ï¿½5.2.1.1); is equivalent to pragma trigraphs and the
command-line option -trigraphs.

Legacy for-scoping Check to generate an error message when the compiler
encounters a variable scope usage that the ISO/IEC
14882-1998 C++ standard disallows, but is allowed in the C+
+ language specified in The Annotated C++ Reference
Manual; is equivalent to pragma ARM_scoping and the
command-line option -for_scoping.

Enum Always Int Check to use signed integers to represent enumerated
constants and is equivalent to pragma enumsalwaysint
and the command-line option -enum.

Use Unsigned Chars Check to treat char declarations as unsigned char
declarations and is equivalent to pragma unsigned_char
and the command-line option -char unsigned.

Pool Strings Check to collect all string constants into a single data section
in the object code it generates and is equivalent to pragma
pool_strings and the command-line option -strings
pool.

Reuse Strings Check to store only one copy of identical string literals and is
equivalent to opposite of the pragma dont_reuse_strings
and the command-line option -string reuse.

Other flags Specify additional command line options for the compiler; type
in custom flags that are not otherwise available in the UI.
Note : To enable CodeWarrior MCU V10.x to generate .lst file
for each source file in ColdFire, you need to specify -S in the
Other Flags option.

3.6.8 ColdFire Assembler

Use this panel to specify the command, options, and expert settings for the build tool
assembler. Additionally, the Assembler tree control includes the general and include file
search path settings.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 277



The following table lists and defines each option of the ColdFire Assembler panel.

Table 3-146. Tool Settings - ColdFire Assembler Options

Option Description

Command Shows the location of the assembler executable file. You can
specify additional command line options for the assembler;
type in custom flags that are not otherwise available in the UI.

All options Shows the actual command line the assembler will be called
with.

Expert Settings Shows the command line pattern; default is ${COMMAND} $
{FLAGS} ${OUTPUT_FLAG} ${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}.

Command line pattern

3.6.8.1 ColdFire Assembler > Input

Use this panel to specify additional files the ColdFire Assembler should use. You can
specify multiple additional libraries and library search paths. Also, you can change the
order in which the IDE uses or searches the libraries.

The following table lists and describes the input options for ColdFire assembler.

Table 3-147. Tool Settings - ColdFire Assembler > Input Options

Option Description

Prefix File Specifies a file automatically included in all project assembly
files.

Always Search User Paths (-nosyspath) CodeWarrior searches only the system path when looking for
a file included with #include <...>. To have it searches user
path as well, check this box. Note: #include "..." will always
search both sets of paths.

User Path (-i) Lists the available user paths.

User Recursive Path (-ir) Appends a recursive access path to the current #include list.
This command is global. Syntax-ir pathpath The
recursive access path to append.

System Path (-I- -I) Lists the available system paths.

System Recursive Path (-I- -ir) Appends a system recursive access path to the current
#include list. This command is global.

Build Properties for ColdFire

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

278 Freescale Semiconductor, Inc.



The following table lists and describes the toolbar buttons that help work with the user
and system search paths.

Table 3-148. Search Paths Toolbar Buttons

Button Description

Add - Click to open the Add directory path dialog box and
specify the search path.

Delete - Click to delete the selected search path. To confirm
deletion, click Yes in the Confirm Delete dialog box.

Edit - Click to open the Edit directory path dialog box and
update the selected search path.

Move up - Click to move the selected search path one
position higher in the list

Move down - Click to move the selected search path one
position lower in the list

The following figure shows the Add directory path dialog box.

Figure 3-24. Add directory path Dialog Box

The following table shows the Edit directory path dialog box.

Figure 3-25. Edit directory path Dialog Box

The buttons in the Add directory path and Edit directory path dialog boxes help work
with the object file search paths.

• OK - Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 279



• Workspace - Click to display the Folder Selection dialog box and specify the object
file search path. The resulting path, relative to the workspace, appears in the
appropriate list.

• File system - Click to display the Browse for Folder dialog box and specify the
object file search path. The resulting path appears in the appropriate list.

3.6.8.2 ColdFire Assembler > General

Use this panel to specify the general assembler behavior.

The following table lists and describes the general assembler options for ColdFire.

Table 3-149. Tool Settings - Assembler > General Options

Option Description

Label Must End With `:' Clear if system does not require labels to end with colons. By
default, the option is checked.

Directives Begin With `.' Clear if the system does not require directives to start with
periods. By default, the option is checked.

Case Sensitive Identifier Clear to instruct the assembler to ignore case in identifiers. By
default, the option is checked.

Allow Space In Operand Field Clear to restrict the assembler from adding spaces in operand
fields. By default, the option is checked.

Other Flags Specify additional command line options for the assembler;
type in custom flags that are not otherwise available in the UI.

3.6.9 ColdFire Preprocessor

Use this panel to specify preprocessor behavior and define macros.

The following table lists and describes the preprocessor options for ColdFire.

Table 3-150. Tool Settings - ColdFire Preprocessor Options

Option Description

Command Shows the location of the preprocessor executable file. You
can specify additional command line options for the
preprocessor; type in custom flags that are not otherwise
available in the UI.

All options Shows the actual command line the preprocessor will be
called with

Table continues on the next page...

Build Properties for ColdFire

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

280 Freescale Semiconductor, Inc.



Table 3-150. Tool Settings - ColdFire Preprocessor Options (continued)

Option Description

Expert Settings Shows the command line pattern; default ${COMMAND} $
{FLAGS} ${INPUTS}Command line pattern

3.6.9.1 ColdFire Preprocessor > Preprocessor Settings

Use this panel to specify preprocessor behavior.

The following table lists and describes the preprocessor options for ColdFire.

Table 3-151. Tool Settings - ColdFire Compiler > Preprocessor Options

Option Description

Emit file change (-ppopt break) Check to notify file changes (or #line changes) appear in the
output.

Emit #pragmas (-ppopt pragma) Check to show pragma directives in the preprocessor output.
Essential for producing reproducible test cases for bug
reports.

Show full path (-ppopt full) Check to display file changes in comments (as before) or in
#line directives.

Keep comment (-ppopt comment) Check to display comments in the preprocessor output.

Use #include line (-ppopt line) Check to display file changes in comments (as before) or in
#line directives.

Keep whitespace (-ppopt nospace) Check to copy whitespaces in preprocessor output. This is
useful for keeping the starting column aligned with the original
source, though the compiler attempts to preserve space
within the line. This does not apply when macros are
expanded.

3.6.10 ColdFire Disassembler

Use this panel to specify the command, options, and expert settings for ColdFire
Disassembler.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 281



The following table lists and describes the ColdFire disassembler options.

Table 3-152. Tool Settings - Linker Options

Option Description

Command Shows the location of the linker executable file. You can
specify additional command line options for the linker; type in
custom flags that are not otherwise available in the UI.

All options Shows the actual command line the linker will be called with

Expert Settings Shows the command line pattern; default is ${COMMAND} -
dis ${FLAGS} ${INPUTS}Command line pattern

3.6.10.1 ColdFire Disassembler > Disassembler Settings

Use this panel to control how the disassembler formats the listing file, as well as error
and warning messages. You can specify verbosity of messages, whether to show headers,
core modules, extended mnemonics, addresses, object or source code, ldata modules,
exception tables, and debug information.

The following table lists and describes the ColdFire disassembler settings.

Table 3-153. Tool Settings - ColdFire Disassembler Options

Option Description

Show Headers Check to display headers in the listing file; disassembler
writes listing headers, titles, and subtitles to the listing file

Show Symbol and String Tables Check to display symbol and string tables directives to the
listing file

Verbose Info Check to shows each command line that it passes to the
shell, along with all progress, error, warning, and
informational messages that the tools emit

Show Relocations Check to have the disassembler show information about
relocated symbols. Clear to prevent the disassembler from
showing information about relocated symbols.

Show Core Modules Check to show core modules in the listing file

Show Extended Mnemonics Check to show the extended mnemonics in the listing file

Show Addresses and Object Code Check to show the addresses and object code in the listing
file

Show Source Code Check to show the source code in the listing file

Show Comments Check to show the comments in the listing file

Show Data Modules Check to show the data modules in the listing file

Disassemble Exception Tables Check to disassemble exception tables in the listing file

Show Debug Info Check to generate symbolic information for debugging the
build target

Build Properties for ColdFire

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

282 Freescale Semiconductor, Inc.



3.7 Build Properties for Qorivva
The Properties for <project> dialog box shows the corresponding build properties for a
Qorivva project.

Figure 3-26. Build Properties - Qorivva

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 283



The following table lists the build properties specific to developing software for Qorivva.
The properties that you specify in these panels apply to the selected build tool on the
Tool Settings page of the Properties for <project> dialog box.

Table 3-154. Build Properties for Qorivva

Build Tool Build Properties Panels

PowerPC CPU PowerPC CPU

Debugging Debugging

Messages Messages

PowerPC Linker PowerPC Linker > Input

PowerPC Linker > General

PowerPC Linker > Output

PowerPC Compiler PowerPC Compiler > Preprocessor

PowerPC Compiler > Input

PowerPC Compiler > Warnings

PowerPC Compiler > Optimization

PowerPC Compiler > Processor

PowerPC Compiler > C/C++ Language

PowerPC Assembler PowerPC Assembler > Input

PowerPC Assembler > General

PowerPC Disassembler PowerPC Disassembler > Disassembler Settings

PowerPC Preprocessor PowerPC Preprocessor > Preprocessor Settings

3.7.1 PowerPC CPU

Use this panel to specify the CPU type, and the memory model that the architecture uses.
The build tools (compiler, linker, and assembler) then use the properties set in this panel
to generate CPU-specific code.

The following table lists and describes the PowerPC CPU options.

Table 3-155. Tool Settings - PowerPC CPU

Option Description

Processor Lists the processor families supported by the Power
Architecture compiler. When you select a processor from this
list, the compiler generates code that makes use of any of its
hardware features or special instructions. For more detailed
information on the features of each processor, refer to its
reference manual document.

Table continues on the next page...

Build Properties for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

284 Freescale Semiconductor, Inc.



Table 3-155. Tool Settings - PowerPC CPU (continued)

Option Description

Floating Point Define how the compiler handles floating-point operations it
encounters in the source code.

• Software - Select to have the compiler emulate
floating-point operations by calling functions that
perform floating-point math. The C runtime library
contains the functions the compiler invokes.

If you use software floating-point emulation, you must
include the appropriate C runtime library in your project.
Enabling this option without including the appropriate C
runtime library causes link errors.

• Hardware - Select to have the compiler handle floating-
point operations by generating instructions for the
hardware floating-point unit.

Do not select this option if your target processor does
not have a hardware floating-point unit.

• None - Select to disable floating-point support.
• SPFP - Select to have the compiler handle single-

precision floating-point operations by generating
instructions for the e500-EFPU floating point unit, and
perform double-precision floating-point operations by
calling functions that perform double-precision floating-
point math.

Do not select this option if your target processor does
not have a e500-EFPU floating-point unit.

• SPFP_Only - Select to have the compiler handle
single-precision floating-point operations by generating
instructions for the e500-EFPU floating point unit.

• DPFP - Select to have the compiler handle both single-
and double-precision floating-point operations by
generating instructions for the e500 DPFP APU
(Double-Precision Floating-Point Auxiliary Processing
Unit).

Do not select this option if your target processor does
not have a DPFPunit.

Default : Software If the selected processor does not handle
a floating-point exception, you should select None or
Software floating-point support.

Byte Ordering Enables you to select big-endian or little-endian byte ordering.
• Big Endian - Select to generate object code and links

an executable image that uses big-endian byte
ordering. This is the default setting for the compiler and
linker. If you choose big-endian byte ordering, within a
given multi-byte numeric representation, the most
significant byte has the lowest address; the word is
stored big-end-first.

• Small Endian - Select to generates object code and
links an executable image that uses little-endian byte
ordering. If you choose little endian byte ordering, within

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 285



Table 3-155. Tool Settings - PowerPC CPU (continued)

Option Description

a given multi-byte numeric representation, bytes at
lower addresses have lower significance; the word is
stored little-end-first.

Code Model Enables you to select the addressing mode for the binary
generated by the current build target.

• Absolute Addressing - Select to instruct the build tools
to generate a non-relocatable binary.

• SDA Based PIC/PID Addressing - Select to instruct
the build tools to generate a relocatable binary that
uses position independent-code (PIC)/position-
independent-data (PID) addressing. The resulting
binary can be loaded at any address.

ABI Enables you to select the Application Binary Interface (ABI)
the compiler and assembler use for function calls and
structure layout.

• EABI - Converts a 14-bit branch relocation to a 24-bit
branch relocation only if the 14-bit relocation cannot
reach the calling site from the original relocation.

• System V ABI - Changes the absolute addressed
references of data from code to use a small data
register (such as r13) instead of r0; absolute code is
changed to code references to use the PC relative
relocations.

• SuSE - Use the SuSEï¿½ Linux ABI with GNU
extensions.

• YellowDog - Use the YellowDog™ Linux ABI with GNU
extensions.

• SDA PIC/PID - Use position-independent addressing
executable code and data.

Tune Relocations Pertains to object relocation and is available for just the above
mentioned application binary interfaces.

Compress for PowerPC VLE (Zen) Generate VLE instructions. This option sets the processor to
Zen.

Small Data Specify the threshold size (in bytes) for an item to be
considered small data by the linker. The linker stores small
data items in the Small Data address space. Data in the Small
Data address space can be accessed more quickly than data
in the normal address space.

Small Data2 Specify the threshold size (in bytes) for an item to be
considered small data by the linker. The linker stores read-
only small data items in the Small Data2 address space.
Constant data in the Small Data2 address space can be
accessed more quickly than data in the normal address
space.

3.7.2 Debugging

Build Properties for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

286 Freescale Semiconductor, Inc.



Use this panel to specify the whether to generate symbolic information for debugging the
build target.

The following table lists and describes the debugging options.

Table 3-156. Tool Settings - Debugging

Option Description

Generate DWARF Information Select the version of the Debug With Arbitrary Record Format
(DWARF) debugging information format the compiler and
assembler generates. If in doubt about the DWARF version to
use, you can use the default setting of DWARF 2.x. The linker
ignores debugging information that is not in the selected
format.

Store Full Paths to Source Files Store absolute paths of source files instead of relative paths.

3.7.3 Messages

Use this panel to specify the whether to generate symbolic information for debugging the
build target.

The following table lists and describes the message options.

Table 3-157. Tool Settings - Messages Options

Option Description

Message Style List options to select message style.
• GCC - Uses the message style of the Gnu Compiler

Collection tools
• MPW - Uses the Macintosh Programmer's Workshop

(MPWï¿½) message style
• standard - Uses the standard message style
• IDE - Uses context-free machine parseable message

style
• parseable - Uses parseable message style. This is

default.
• Enterprise-IDE - Uses CodeWarrior's Integrated

Development Environment (IDE) message style.

Maximum Number of Errors Specify the number of errors allowed until the application
stops processing.

Maximum Number of Warnings Specify the maximum number of warnings.

3.7.4 PowerPC Linker

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 287



Use this panel to specify PowerPC linker behavior. You can specify the command,
options, and expert settings for the build tool linker. Additionally, the Linker tree control
includes the input, general, and output settings.

The following table lists and describes the linker options for PowerPC.

Table 3-158. Tool Settings - PowerPC Linker

Option Description

Command Shows the location of the linker executable file. Default: $
{PAToolsDir}/mwldeppc. You can specify additional
command line options for the linker; type in custom flags that
are not otherwise available in the UI.

All options Shows the actual command line the linker will be called with.

Expert settings Shows the command line pattern. Default: ${COMMAND} $
{FLAGS} ${OUTPUT_FLAG} ${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}

Command line pattern

3.7.4.1 PowerPC Linker > Input

Use this panel to specify files the PowerPC Linker should use. You can specify multiple
additional libraries and library search paths. Also, you can change the order in which the
IDE uses or searches the libraries.

The following table lists and describes the input options for PowerPC.

Table 3-159. Tool Settings - PowerPC Linker > Input

Option Description

No Standard Library Select if there is no standard library attached.

Link Command File (.lcf) Consists of three kinds of segments, which must be in this
order:

• A memory segment, which begins with the MEMORY{}
directive

• Optional closure segments, which begin with the
FORCE_ACTIVE{}, KEEP_SECTION{}, or
REF_INCLUDE{} directives

• A sections segment, which begins with the
SECTIONS{} directive

Code Address Specifies the location in memory where the executable code
resides. The possible addresses depend on your target
hardware platform and how the memory is mapped.

Data Address Enables you to specify the address for global data.

Small Data Address Enables you to specify the RAM address for the first small
data section. This address must not conflict with the target-
hardware memory map; target hardware must support this
address.

Table continues on the next page...

Build Properties for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

288 Freescale Semiconductor, Inc.



Table 3-159. Tool Settings - PowerPC Linker > Input (continued)

Option Description

Small Data 2 Address Enables you to specify the RAM address for the second small
data section. This address must not conflict with the target-
hardware memory map; target hardware must support this
address.

Entry Point Enables you to specify the program starting point - the
function that the linker uses first when you launch the
program. This default function (in file __start.c) is bootstrap/
glue code that sets up the EABI environment, then calls
function main().

Library Search Paths Enables you to specify the search pathname of libraries or
other resources related to the project. Type the pathname into
this text box. Alternatively, click Workspace or File system,
then use the subsequent dialog box to browse to the correct
location.

Library Files Enables you to specify the pathname of libraries or other
resources related to the project. Type the pathname into this
text box. Alternatively, click Workspace or File system, then
use the subsequent dialog box to browse to the correct
location.

The following table lists and describes the toolbar buttons that help work with the
libraries and the additional object file search paths.

Table 3-160. Search Paths Toolbar Buttons

Button Description

Add - Click to open the Add directory path dialog box and
specify the object file search path.

Delete - Click to delete the selected object file search path.

Edit - Click to open the Edit directory path dialog box and
update the selected object file search path.

Move up - Click to move the selected object file search path
one position higher in the list.

Move down - Click to move the selected object file search
path one position lower in the list.

The following figure shows the Add directory path dialog box.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 289



Figure 3-27. Add directory path Dialog Box

The following figure shows the Edit directory path dialog box.

Figure 3-28. Edit directory path Dialog Box

The buttons in the Add directory path and Edit directory path dialog boxes help work
with the object file search paths.

• Variables - Click to display the Select build variable dialog box and specify the
object file search path variable. The resulting path variable, relative to the
workspace, appears in the appropriate list.

• Workspace - Click to display the Folder Selection dialog box and specify the
variable for object file search path. The resulting variable, relative to the workspace,
appears in the appropriate list.

• File system - Click to display the Browse for Folder dialog box and specify the
object file search path. The resulting path appears in the appropriate list.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.

Build Properties for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

290 Freescale Semiconductor, Inc.



The following table lists and describes the toolbar buttons that help work with the
libraries and the additional object files.

Table 3-161. Libraries Toolbar Buttons

Button Description

Add - Click to open the Add file path dialog box and specify
location of the library you want to add.

Delete - Click to delete the selected library path. To confirm
deletion, click Yes in the Confirm Delete dialog box.

Edit - Click to open the Edit file path dialog box and update
the selected path.

Move up - Click to move the selected path one position higher
in the list.

Move down - Click to move the selected path one position
lower in the list.

The following figure shows the Add file path dialog box.

Figure 3-29. Tool Settings - Linker > Libraries - Add file path Dialog Box

The following figure shows the Edit file path dialog box.

Figure 3-30. Tool Settings - Linker > Libraries - Edit file path Dialog Box

The buttons in the Add file path and Edit file path dialog boxes help work with the file
paths.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 291



• Variables - Click to display the Select build variable dialog box and specify the file
path variable. The resulting path variable, relative to the workspace, appears in the
appropriate list.

• Workspace - Click to display the File Selection dialog box and specify the file path.
The resulting path, relative to the workspace, appears in the appropriate list.

• File system - Click to display the Open dialog box and specify the file path. The
resulting absolute path appears in the appropriate list.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.

3.7.4.2 PowerPC Linker > Link Order

Use this panel to control the order in which the linker receives the object files.

The following table lists and describes the link order options.

Table 3-162. Tool Settings - Link Order Options

Option Description

Customize linker input order Select if you want the linker to receive the object files in the
specified order.

Link Order Lists the object files corresponding to the source files
specified in the "link order" list. This option is enables only if
Customize linker input order is selected.

3.7.4.3 PowerPC Linker > General

Use this panel to specify the memory model that the architecture uses. The build tools
(compiler, linker, and assembler) use the properties that you specify.

The following table lists and describes the memory model options for PowerPC.

Table 3-163. Tool Settings - PowerPC Linker > General

Option Description

Link Mode Specifies how much memory the linker uses to write output to
the hard disk.

• Normal - Writes to a 512-byte buffer, then writes the
buffer to disk.

Table continues on the next page...

Build Properties for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

292 Freescale Semiconductor, Inc.



Table 3-163. Tool Settings - PowerPC Linker > General (continued)

Option Description

• Use Less RAM - Writes output file directly to disk,
without using a buffer.

• Use More RAM - Writes each segment to its own
buffer, then flushes all buffers to the disk.

Linking requires enough RAM space for all input files and
numerous housekeeping structures. Normal is the best choice
for most projects; Use More RAM is appropriate for small
projects.

Code Merging Controls merging optimization.
• Off
• Safe Functions
• All Functions

Checking Off deactivates the Aggressive Merging
checkbox.

Aggressive Merging Check to implement aggressive merging. This checkbox is
active only if Safe Functions or All Functions is selected in
the Code Merging drop-down list. Clear if you do not want to
implement aggressive merging.

Merges FP Constants Check to let the linker automatically merge floating-point
constants. Clear if you do not want to enable floating-point
constants for automatic merging.

Other Flags Specify additional command line options for the linker; type in
custom flags that are not otherwise available in the UI.

3.7.4.4 PowerPC Linker > Output

Use this panel to specify the output settings for the PowerPC linker.

The following table lists and describes the output settings for PowerPC linker.

Table 3-164. Tool Settings - PowerPC Linker > Output

Option Description

Output Type User choose to build an application, a library, or a partial link
project.

Optimize Partial Link Check to specify direct downloading of the partial link output.
Clear if you want the output file to remain as if you passed the
-r argument in the command line. This checkbox appears only
if the Output Type drop-down list specifies Partial Link .

Deadstrip Unused Symbols Check to let the linker deadstrip all unused symbols. This
reduces program size, by removing symbols that neither the
main entry point or force-active entry points reference. Clear if

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 293



Table 3-164. Tool Settings - PowerPC Linker > Output (continued)

Option Description

you do not want the linker to deadstrip unused symbols. This
checkbox appears only if the Optimize Partial Link is
checked.

Require Resolved Symbols Check if the linker must resolve all symbols in the partial link
and if your RTOS does not allow unresolved symbols. Clear if
the linker does not have to resolve all symbols of the partial
link. This checkbox appears only if the Optimize Partial Link
is checked.

Heap Size (k) Specify kilobytes of RAM allocated for the heap, which your
program uses if it calls malloc or new. Combined heap/stack
allocation must not exceed available RAM. This checkbox
appears only if the Output Type drop-down list specifies
Application .

Stack Size (k) Specify kilobytes of RAM allocated for the stack. Combined
heap/stack allocation must not exceed available RAM. This
checkbox appears only if the Output Type drop-down list
specifies Application .

Interpreter The linker to use an interpreter file.

Generate Link Map Check to let the linker generate a link map - showing every
object/function definition and address, memory map of
sections, and values of linker-generated symbols. Activates
subordinate checkboxes. Clear if you do not want the linker to
generate a map file. If you used a non-CodeWarrior compiler
to build the relocatable file, the map file also lists unused but
unstripped symbols. Map files have the extension .MAP

List Closure Check if you want the map file list all functions that the
program starting point calls. Clear if you do not want the map
file list functions that the program starting point calls. This
checkbox is active only if the Generate Link Map checkbox is
checked.

List Unused Objects Check if you want the map file to list unused objects; useful
for revealing that objects you expected to be used are not.
Clear if you do not want the map to list unused objects. This
checkbox is active only if the Generate Link Map checkbox is
checked.

List DWARF Objects Check if you want the list map lists all DWARF debugging
objects in section area. Clear if you do not want the map file
to list DWARF debugging objects. This checkbox is active
only if the Generate Link Map checkbox is checked.

Generate Binary File Enbales you to generate one or more raw binary files. By
default, no binary file is generated.

Generate S-Record File Check to generate an S3 S-record file, based on the
application object image and activates the subordinate
elements. Clear if you do not want to generate an S-record
file. The name extension of the S-record file is .mot

Sort S-Record Check to sort generated S-record files in ascending address
order. Clear if you do not want to sort the S-record files. This
checkbox is active only if the Generate S-Record File
checkbox is checked.

Table continues on the next page...

Build Properties for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

294 Freescale Semiconductor, Inc.



Table 3-164. Tool Settings - PowerPC Linker > Output (continued)

Option Description

Max S-Record Length Specifies maximum S-record length (256 bytes or fewer) for
the system. (For a non-CodeWarrior tool, you may need to
reduce this value.) This checkbox is active only if the
Generate S-Record File checkbox is checked.

EOL Character Specifies the end-of-line character for the S-record file:.
• Mac - <cr>
• DOS - <cr> <lf>
• Unix - <lf>

This drop-down list is active only if the Generate S-Record
File checkbox is checked.

Generate Warning Messages Check if you want the linker to generate warning messages.

Heap Address Specifies the memory location for program heap where you
can enter the RAM address of the bottom of the heap.

Stack Address Specifies memory location for program stack where you can
enter the RAM address for the top of the stack.

Generate ROM Image Check to enable the ROM Image Address and the RAM
Buffer Address of ROM Image options.

ROM Image Address Specifies the flash ROM destination address for your binary.

RAM Buffer Address of ROM Image Specifies the RAM buffer address for the ROM image. This
option is active only if a value is specified in the ROM Image
Address textbox. For the CodeWarrior flash programmer, the
ROM image address and the RAM buffer address must be the
same.

3.7.5 PowerPC Compiler

Use this panel to specify the command, options, and expert settings for the build tool
compiler. Additionally, the PowerPC Compiler tree control includes the general and the
file search path settings.

The following table lists and describes the compiler options for PowerPC.

Table 3-165. Tool Settings - PowerPC Compiler

Option Description

Command Shows the location of the compiler executable file. Default
value is " ${PAToolsDir}/mwcceppc". You can specify
additional command line options for the compiler; type in
custom flags that are not otherwise available in the UI.

All options Shows the actual command line the compiler will be called
with.

Expert settings

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 295



Table 3-165. Tool Settings - PowerPC Compiler (continued)

Option Description

Command line pattern Shows the command line pattern; default is ${COMMAND} $
{FLAGS} ${OUTPUT_FLAG} ${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}

3.7.5.1 PowerPC Compiler > Preprocessor

Use this panel to specify preprocessor behavior.

The following table lists and describes the preprocessor options for PowerPC.

Table 3-166. Tool Settings - PowerPC Compiler > Preprocessor

Option Description

Prefix File Specifies a file automatically included in all project assembly
files.

Source encoding Lets you specify the default encoding of source files. The
compiler recognizes Multibyte and Unicode source text. To
replicate the obsolete option Multi-Byte Aware, set this option
to System or Autodetect. Additionally, options that affect the
preprocess request appear in this panel. The options
available are as follows:

• ASCII
• Autodetect
• UTF-8
• System
• Shift-JIS
• EUC-JP
• ISO-2022-JP

Defined Macros (-D) Lists the defined command-line macros.

Undefined Macros (-U) Lists the undefined command-line macros.

3.7.5.2 PowerPC Compiler > Input

Use this panel to specify additional files the PowerPC Compiler should use. You can
specify multiple additional libraries and library search paths. Also, you can change the
order in which the IDE uses or searches the libraries.

Build Properties for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

296 Freescale Semiconductor, Inc.



The following table lists and describes the input options for PowerPC compiler.

Table 3-167. Tool Settings - PowerPC Compiler > Input Options

Option Description

Compile only, Do Not Link Check if you want to compile only and do not want to link the
file.

Do not use MWCIncludes variable Check if you do not want to use MWCIncludes variable.

Always Search User Paths Check if you want to always search user paths.

User Path (-i) Lists the available user paths.

User Recursive Path (-ir) Appends a recursive access path to the current #include list.
This command is global.

Syntax-ir pathpath

The recursive access path to append.

System Path (-I- -I) Lists the available system paths.

System Recursive Path (-I- -ir) Lists the available system paths recursively.

Disable CW Extensions Disable the CW features that may be incompatible if user is
exporting code libraries form CW to other compiler and/or
linkers.

The following table lists and describes the toolbar buttons that help work with the user
and system search paths.

Table 3-168. Search Paths Toolbar Buttons

Button Description

Add - Click to open the Add directory path dialog box and
specify the search path.

Delete - Click to delete the selected search path.

Edit - Click to open the Edit directory path dialog box and
update the selected search path.

Move up - Click to move the selected search path one
position higher in the list

Move down - Click to move the selected search path one
position lower in the list

The following figure shows the Add directory path dialog box.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 297



Figure 3-31. Add directory path Dialog Box

The following figure shows the Edit directory path dialog box.

Figure 3-32. Edit directory path Dialog Box

The buttons in the Add directory path and Edit directory path dialog boxes help work
with the object file search paths.

• Variables - Click to display the Select build variable dialog box and specify the
object file search path variable. The resulting path variable, relative to the
workspace, appears in the appropriate list.

• Workspace - Click to display the Folder selection dialog box and specify the
variable for object file search path. The resulting variable, relative to the workspace,
appears in the appropriate list.

• File system - Click to display the Browse For Folder dialog box and specify the
object file search path. The resulting path appears in the appropriate list.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.

3.7.5.3 PowerPC Compiler > Warnings

Build Properties for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

298 Freescale Semiconductor, Inc.



Use this panel to control how the PowerPC compiler formats the listing file, as well as
error and warning messages.

The following table lists and describes the warnings options for PowerPC compiler.

Table 3-169. Tool Settings - PowerPC Compiler > Warnings

Option Description

Treat All Warnings As Errors Check to treat all warnings as errors. The compiler will stop if
it generates a warning message.

Illegal Pragmas Check to notify the presence of illegal pragmas.

Possible Errors Check to suggest possible errors.

Extended Error Checking Check if you want to do an extended error checking.

Hidden virtual functions Check to generate a warning message if you declare a non-
virtual member function that prevents a virtual function, that
was defined in a superclass, from being called and is
equivalent to pragma warn_hidevirtual and the command-
line option -warnings hidevirtual.

Implicit Arithmentic Conversions Check to warn of implict arithmetic conversions.

Implicit Integer to Float Conversions Check to warn of implict conversion of an integer variable to
floating-point type.

Implicit Float to Integer Conversions Check to warn of implict conversions of a floating-point
variable to integer type.

Implicit Signed/Unsigned Conversion Check to enable warning of implict conversions between
signed and unsigned variables.

Pointer/Integral Conversions Check to enable warnings of conversions between pointer
and integers.

Unused Arguments Check to warn of unused arguments in a function.

Unused Variables Check to warn of unused variables in the code.

Missing `return' Statement Check to warn of when a function lacks a return statement.

Expression Has No Side Effect Check to issue a warning message if a source statement
does not change the program's state. This is equivalent to the
pragma warn_no_side_effect, and the command-line
option -warnings unusedexpr.

Extra Commas Check to issue a warning message if a list in an enumeration
terminates with a comma. The compiler ignores terminating
commas in enumerations when compiling source code that
conforms to the ISO/IEC 9899-1999 ("C99") standard and is
equivalent to pragma warn_extracomma and the command-
line option -warnings extracomma.

Empty Declarations Check to warn of empty declarations.

Inconsistent `class' / `struct' Usage Check to warn of inconsistent usage of class or struct.

Include File Capitalization Check to issue a warning message if the name of the file
specified in a #include "file" directive uses different letter case
from a file on disk and is equivalent to pragma
warn_filenamecaps and the command-line option -
warnings filecaps.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 299



Table 3-169. Tool Settings - PowerPC Compiler > Warnings (continued)

Option Description

Check System Includes Check to issue a warning message if the name of the file
specified in a #include <file> directive uses different letter
case from a file on disk and is equivalent to pragma
warn_filenamecaps_system and the command-line
option -warnings sysfilecaps.

Pad Bytes Added Check to issue a warning message when the compiler adjusts
the alignment of components in a data structure and is
equivalent to pragma warn_padding and the command-line
option -warnings padding.

Undefined Macro in #if Check to issues a warning message if an undefined macro
appears in #if and #elif directives and is equivalent to pragma
warn_undefmacro and the command-line option -
warnings undefmacro.

Non-Inlined Functions Check to issue a warning message if a call to a function
defined with the inline, __inline__, or __inline keywords could
not be replaced with the function body and is equivalent to
pragma warn_notinlined and the command-line option -
warnings notinlined.

3.7.5.4 PowerPC Compiler > Optimization

Use this panel to control compiler optimizations. The compiler's optimizer can apply any
of its optimizations in either global or non-global optimization mode. You can apply
global optimization at the end of the development cycle, after compiling and optimizing
all source files individually or in groups.

The following table lists and defines each option of the Optimization panel.

Table 3-170. Tool Settings - PowerPC Compiler > Optimization Options

Option Description

Optimization Level Specify the optimizations that you want the compiler to apply
to the generated object code:

• 0 - Disable optimizations. This setting is equivalent to
specifying the -O0 command-line option. The compiler
generates unoptimized, linear assembly-language code.

• 1 - The compiler performs all target-independent (that
is, non-parallelized) optimizations, such as function
inlining. This setting is equivalent to specifying the -O1
command-line option.

The compiler omits all target-specific optimizations and
generates linear assembly-language code.

Table continues on the next page...

Build Properties for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

300 Freescale Semiconductor, Inc.



Table 3-170. Tool Settings - PowerPC Compiler > Optimization Options (continued)

Option Description

• 2 - The compiler performs all optimizations (both target-
independent and target-specific). This setting is
equivalent to specifying the -O2 command-line option.
The compiler outputs optimized, non-linear, parallelized
assembly-language code.

• 3 - The compiler performs all the level 2 optimizations,
then the low-level optimizer performs global-algorithm
register allocation. This setting is equivalent to
specifying the -O3 command-line option. At this
optimization level, the compiler generates code that is
usually faster than the code generated from level 2
optimizations.

• 4 - The compiler performs all the level 3 optimizations,
then the low-level optimizer performs global-algorithm
register allocation. This setting is equivalent to
specifying the -O4 command-line option. At this
optimization level, the compiler generates code that is
usually faster than the code generated from level 3
optimizations.

Speed vs Size Use to specify an Optimization Level greater than 0.

• Speed-The compiler optimizes object code at the
specified Optimization Level such that the resulting
binary file has a faster execution speed, as opposed to
a smaller executable code size.

• Size-The compiler optimizes object code at the
specified Optimization Level such that the resulting
binary file has a smaller executable code size, as
opposed to a faster execution speed. This setting is
equivalent to specifying the -Os command-line option.

Inlining Enables inline expansion. If there is a #pragma INLINE before
a function definition, all calls of this function are replaced by
the code of this function, if possible. Using the -Oi=c0 option
switches off inlining. Functions marked with the #pragma
INLINE are still inlined. To disable inlining, use the -Oi=OFF
option. The options available are:

• Smart
• Auto Inline
• Off

Bottom-up Inlining Check to control the bottom-up function inlining method.
When active, the compiler inlines function code starting with
the last function in the chain of functions calls, to the first one.

3.7.5.5 PowerPC Compiler > Processor

Use this panel to specify processor behavior. You can specify the file paths and define
macros.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 301



The following table lists and defines each option of the Processor panel.

Table 3-171. Tool Settings - PowerPC Compiler > Processor

Option Description

Struct Alignment The Struct Alignment drop-down list has the default
selection PowerPC. To conform with the PowerPC EABI and
interoperate with third-party object code, this setting should
remain PowerPC. Other settings may lead to reduced
performance or alignment violation exceptions. If you choose
another setting for Struct Alignment, your code may not work
correctly. The options available are as follows:

• PowerPC
• 68K
• 68K 4-byte

Function Alignment If your board has hardware capable of fetching multiple
instructions at a time, you may achieve slightly better
performance by aligning functions to the width of the fetch.
Use the Function Alignment drop-down list to select
alignments from 4 bytes (the default) to 128 bytes. These
selections corresponds to #pragma function_align.

Relax HW IEEE The Relax HW IEEE checkbox is available only if you select
Hardware from the Floating Point drop-down list. Check the
The Relax HW IEEE checkbox to have the compiler generate
faster code by ignoring certain strict requirements of the IEEE
floating-point standard. These requirements are controlled by
the options:

• Use Fused Multi-Add/Sub
• Generate FSEL Instruction
• Assume Ordered Compares

Use Fused Mult-Add/Sub Check to generate PowerPC Fused Multi-Add/Sub
instructions, which result in smaller and faster floating-point
code. This may generate unexpected results because of the
greater precision of the intermediate values. The generated
results are slightly more accurate than those specified by
IEEE because of an extra rounding bit between the multiply
and the add/subtract.

Generate FSEL Instructions Check to generate the faster executing FSEL instruction. The
FSEL option allows the compiler to optimize the pattern x =
(condition ? y : z), where x and y are floating-point
values. FSEL is not accurate for denormalized numbers and
may have issues related to unordered compares.

Assume Ordered Compares Check to allow the compiler to ignore issues with unordered
numbers, such as NAN, while comparing floating-point
values. In strict IEEE mode, any comparison against NAN,
except not-equal-to, returns false. This optimization ignores
this provision, thus allowing the following conversion: if (a
<= b)to if (b > a)

Vector Support Several processors support vector instructions. If you want to
allow vector instructions for your processor, select a vector
type that your processor supports from the Vector Support
drop-down list. If you select the Altivec option from the
Vector Support drop-down list, additional options appear.
The options available are as follows:

• None

Table continues on the next page...

Build Properties for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

302 Freescale Semiconductor, Inc.



Table 3-171. Tool Settings - PowerPC Compiler > Processor (continued)

Option Description

• Altivec
• SPE

Generate VRSAVE Instructions Check the Generate VRSAVE Instructions checkbox only
when developing for a real-time operating system that
supports AltiVec. Checking the Generate VRSAVE
Instructions checkbox tells the CodeWarrior software to
generate instructions to save and restore these vector-
register-related values. The VRSAVE register indicates to the
operating system which vector registers to save and reload
when a context switch happens. The bits of the VRSAVE
register that correspond to the number of each affected vector
register are set to 1. When a function call happens, the value
of the VRSAVE register is saved as a part of the stack frame
called the vrsave word. In addition, the function saves the
values of any non-volatile vector registers in the stack frame
as well, in an area called the vector register save area, before
changing the values in any of those registers.

AltiVec Structure Moves Check if you want the CodeWarrior software to use Altivec
instructions when the compiler copies a structure.

Make Strings ReadOnly Check to store string constants in the read-only .rodata
section. Clear to store string constants in the ELF-file data
section. The Make Strings Read Only checkbox corresponds
to #pragma readonly_strings.

Merges String Constants Check to have the compiler pool strings together from a given
file. Clear to let the compiler treat each string as an individual
string. The linker can deadstrip unused individual.

Pool Data Check to instruct the compiler to organize some of the data in
the large data sections of .data, .bss, and .rodata so that the
program can access it more quickly. This option only affects
data that is actually defined in the current source file; it does
not affect external declarations or any small data. The linker is
normally aggressive in stripping unused data and functions
from the C and C++ files in your project. However, the linker
cannot strip any large data that has been pooled. If your
program uses tentative data, you get a warning that you need
to force the tentative data into the common section.

Use Common Section Check to have the compiler place global uninitialized data in
the common section. This section is similar to a FORTRAN
Common Block. If the linker finds two or more variables with
the same name and at least one of them is in a common
section, those variables share the same storage address. If
this checkbox is cleared, two variables with the same name
generate a link error. The compiler never places small data,
pooled data, or variables declared static in the common
section.

Use LMW _STMW Check to have the compiler to use LMW/STMW instructions in
the prologue and epilogue of a function when appropriate to
store and restore volatile registers.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 303



Table 3-171. Tool Settings - PowerPC Compiler > Processor (continued)

Option Description

Inlined Assembler is Volatile Check to have the compiler treat all asm blocks (including
inline asm blocks) as if the volatile keyword was present. This
prevents the asm block from being optimized. You can use
the .nonvolatile directive to selectively enable optimization on
asm blocks, as required.

Instruction Scheduling Check to optimize the scheduling of instructions for the
specific processor you are targeting (determined by which
processor is selected in the Processor drop-down list.)
Enabling the Instruction Scheduling checkbox can make
source-level debugging more difficult because the source
code may not correspond to the execution order of the
underlying instructions. It is sometimes helpful to clear this
checkbox when debugging, and then check it again once you
have finished the bulk of your debugging.

Peephole Optimization Check to have the compiler perform peephole optimizations.
Peephole optimizations are small local optimizations that can
reduce several instructions into one target instruction,
eliminate some compare instructions, and improve branch
sequences. This checkbox corresponds to #pragma
peephole.

Profiler Information Check to generate special object code during runtime to
collect information for a code profiler. This checkbox
corresponds to #pragma profile.

Generate ISEL Instructions (e500/Zen) Check to have the compiler to emit ISEL instructions. This
instruction can improve performance by reducing conditional
branching.

Translate PPC Asm to VLE Asm (Zen) Check to have the compiler to translate the classic PPC inline
assembly instructions to the VLE inline assembler for the Zen
processor.

3.7.5.6 PowerPC Compiler > C/C++ Language

Use this panel direct the PowerPC compiler to apply specific processing modes to the
language source code. You can compile source files with just one collection at a time. To
compile source files with multiple collections, you must compile the source code
sequentially. After each compile iteration change the collection of settings that the
PowerPC compiler uses.

Build Properties for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

304 Freescale Semiconductor, Inc.



The following table lists and defines each option of the C/C++ Language panel.

Table 3-172. Tool Settings - PowerPC Compiler > C/C++ Language

Option Description

Force C++ Compilation Check to translate all C source files as C++ source code.
Clear to use the filename's extension to determine whether to
use the C or C++ compiler. The entries in the IDE's File
Mappings settings panel specify the suffixes that the compiler
assigns to each compiler. This checkbox corresponds to the
pragma cplusplus and the command-line option -lang c+
+.

ISO C++ Template Parser Check to follow the ISO/IEC 14882-1998 standard for C++ to
translate templates, enforcing more careful use of the
typename and template keywords. The compiler also follows
stricter rules for resolving names during declaration and
instantiation. Clear if you do not want the C+++ compiler
expect template source code to follow the ISO C++ standard
as closely. This checkbox corresponds to the pragma
parse_func_templ and the command-line option -
iso_templates

Use Instance Manager Check to reduce compile time by generating any instance of a
C++ template (or non-inlined inline) function only once. Clear
to generate a new instance of a template or non-inlined
function each time it appears in source code. This checkbox
corresponds to control where the instance database is stored
using #pragma instmgr_file and command-line option -
instmgr.

Enable C++ Exceptions Check to generate executable code for C++ exceptions
specially when you use the try, throw, and catch statements
specified in the ISO/IEC 14882-1998 C++ standard. Clear to
generate smaller, faster executable code. The checkbox
corresponds to the pragma exceptions and the command-
line option - cpp_exceptions.

Enable RTTI Check to use of the C++ runtime type information (RTTI)
capabilities, including the dynamic_cast and typeid operators.
Clear to let the compiler generate smaller, faster object code
but do not allow runtime type information operations. The
checkbox corresponds to the pragma RTTI and the
command-line option -RTTI.

Enable C++ `bool' type, `true' and `false' Contants Check to let the C++ compiler recognize the bool type and its
true and false values specified in the ISO/IEC 14882-1998 C+
+ standard. Clear if you do not want the compiler dto
recognize this type or its values. The checkbox corresponds
to the pragma bool and the command-line option -bool.

Enable wchar_t Support Check to let the C++ compiler recognize the wchar_t data
type specified in the ISO/IEC 14882-1998 C++ standard.
Clear if you do not want the compiler to recognize this type or
when compiling source code that defines its own wchar_t
type. The checkbox corresponds to the pragma wchar_type
and the command-line option - wchar_t.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 305



Table 3-172. Tool Settings - PowerPC Compiler > C/C++ Language (continued)

Option Description

EC++ Compatibility Mode Check if you expect C++ source code files to contain
Embedded C++ source code. Clear if the compiler expects
regular C++ source code in C++ source files. The checkbox
corresponds to the pragma ecplusplus and the command-
line option - dialect ec++.

ANSI Strict Check if you want the compiler to only recognize source code
that conforms to the ISO/IEC 9899-1990 standard for C. Clear
if you want the compiler recognize several CodeWarrior
extensions to the C language. The checkbox corresponds to
the pragma ANSI_strict and the command-line option -
ansi strict.

ANSI Keywords Only Check to generate an error message for all non-standard
keywords. If you must write source code that strictly adheres
to the ISO standard, enable this setting. Clear if you want the
compiler to recognize only these non-standard keywords:
far, inline, __inline__, __inline, and pascal. The
checkbox corresponds to the pragma only_std_keywords
and the command-line option -stdkeywords.

Expand Trigraphs Check to let the compiler recognize trigraph sequences (ISO/
IEC 9899-1990 C, ï¿½5.2.1.1). Clear to ignore trigraph
characters. Many common character constants look like
trigraph sequences, and this extension lets you use them
without including escape characters. The checkbox
corresponds to the pragma trigraphs and the command-
line option -trigraphs.

Legacy for-scoping Check to generate an error message when the compiler
encounters a variable scope usage that the ISO/IEC
14882-1998 C++ standard disallows. Clear to let the scope
rules specified in ARM. The checkbox corresponds to the
pragma require_prototypes and the command-line
option -requireprotos.

Require Prototypes Check to enforce the requirement of function prototypes. The
compiler generates an error message if you define a
previously referenced function that does not have a prototype.
If you define the function before it is referenced but do not
give it a prototype, this setting causes the compiler to issue a
warning message. Clear if you do not require prototypes. The
checkbox corresponds to the pragma
require_prototypes and the command-line option -
requireprotos.

Enable C99 Extensions Check to let the compiler recognize ISO/IEC 9899-1999
("C99") language features. Clear if you want the compiler to
recognize only ISO/IEC 9899-1990 ("C90") language
features. The checkbox corresponds to the pragma
gcc_extensions and the command-line option -
gcc_extensions.

Enable GCC Extensions Check to recognize language features of the GNU Compiler
Collection (GCC) C compiler that are supported by
CodeWarrior compilers. Clear if you do not want the compiler
to recognize GCC extensions. The checkbox corresponds to
the pragma gcc_extensions and the command-line option
-gcc_extensions.

Table continues on the next page...

Build Properties for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

306 Freescale Semiconductor, Inc.



Table 3-172. Tool Settings - PowerPC Compiler > C/C++ Language (continued)

Option Description

Enum Always Int Check to use signed integers to represent enumerated
constants. Clear to use smallest possible integer type to
represent enumerated constants. The checkbox corresponds
to the pragma enumsalwaysint and the command-line
option -enum.

Use Unsigned Chars Check to treat char declarations as unsigned char
declarations. Clear to treat char declarations as signed char
declarations. The checkbox corresponds to the pragma
unsigned_char and the command-line option -char
unsigned.

Pool Strings Check to collect all string constants into a single data section
in the object code it generates. Clear to create a unique
section for each string constant. The checkbox corresponds
to the pragma pool_strings and the command-line option
-strings pool.

Reuse Check to store only one copy of identical string literals. Clear
to store each string literal separately. The checkbox
corresponds to the opposite of the pragma
dont_reuse_strings and the command-line option -
string reuse.

IPA Specifies the Interprocedural Analysis (IPA) policy.
• Off - No interprocedural analysis, but still performs

function-level optimization. Equivalent to the "no
deferred inlining" compilation policy of older compilers.

• File - Completely parse each translation unit before
generating any code or data. Equivalent to the "deferred
inlining" option of older compilers. Also performs an
early dead code and dead data analysis in this mode.
Objects with unreferenced internal linkages will be
dead-stripped in the compiler rather than in the linker.

The checkbox corresponds to the command line option -ipa.

Other flags Specify additional command line options for the linker; type in
custom flags that are not otherwise available in the UI.

3.7.6 PowerPC Assembler

Use this panel to specify the command, options, and expert settings for the build tool
assembler. Additionally, the Assembler tree control includes the general and include file
search path settings.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 307



The following table lists and defines each option of the PowerPC Assembler panel.

Table 3-173. Tool Settings - PowerPC Assembler

Option Description

Command Shows the location of the assembler executable file. Default
value is "${PAToolsDir}/mwasmeppc". You can specify
additional command line options for the assembler; type in
custom flags that are not otherwise available in the UI.

All options Shows the actual command line the assembler will be called
with.

Expert settings

Command line pattern Shows the command line pattern; default is ${COMMAND} $
{FLAGS} ${OUTPUT_FLAG} ${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}

3.7.6.1 PowerPC Assembler > Input

Use this panel to specify additional files the PowerPC Assembler should use. You can
specify multiple additional libraries and library search paths. Also, you can change the
order in which the IDE uses or searches the libraries.

The following table lists and describes the input options for PowerPC assembler.

Table 3-174. Tool Settings - PowerPC Assembler > Input

Option Description

Always Search User Paths CodeWarrior searches only the system path when looking for
a file included with #include <...>. To have it searches user
path as well, check this box. Note: #include "..." will always
search both sets of paths.

User Path (-i) Lists the available user paths.

User Recursive Path (-ir) Lists the available user paths recursively.

System Path (-I- -I) Lists the available system paths.

System Recursive Path (-I- -ir) Lists the available system paths recursively.

The following table lists and describes the toolbar buttons that help work with the user
and system search paths.

Table 3-175. Search Paths Toolbar Buttons

Button Description

Add - Click to open the Add directory path dialog box and
specify the search path.

Table continues on the next page...

Build Properties for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

308 Freescale Semiconductor, Inc.



Table 3-175. Search Paths Toolbar Buttons (continued)

Button Description

Delete - Click to delete the selected search path.

Edit - Click to open the Edit directory path dialog box and
update the selected search path.

Move up - Click to move the selected search path one
position higher in the list

Move down - Click to move the selected search path one
position lower in the list

The following figure shows the Add directory path dialog box.

Figure 3-33. Add directory path Dialog Box

The following figure shows the Edit directory path dialog box.

Figure 3-34. Edit directory path Dialog Box

The buttons in the Add directory path and Edit directory path dialog boxes help work
with the object file search paths.

• Variables - Click to display the Select build variable dialog box and specify the
object file search path variable. The resulting path variable, relative to the
workspace, appears in the appropriate list.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 309



• Workspace - Click to display the Folder Selection dialog box and specify the
variable for object file search path. The resulting variable, relative to the workspace,
appears in the appropriate list.

• File system - Click to display the Browse for Folder dialog box and specify the
object file search path. The resulting path appears in the appropriate list.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.

3.7.6.2 PowerPC Assembler > General

Use this panel to specify the general assembler behavior.

The following table lists and describes the general assembler options for PowerPC.

Table 3-176. Tool Settings - PowerPC Assembler > General

Option Description

Labels Must End With `:' Check if the source-file labels must end with colon characters.
Clear if the source-file labels need not end with colon
characters.

Directives Begin With `.' Check if the assembly directives must begin with period
characters. Clear if the assembly directives need not begin
with period characters.

Case Sensitive Identifier Check if casing matters in identifiers. Clear if the assembler
ignores case in identifiers.

Allow Space in Operand Field Check if spaces are allowed in fields. Clear is spaces are not
allowed in fields.

GNU Compatible Syntax Check if your application does use GNU-compatible syntax.
This compatibility allows:

• Redefining all equates, regardless if from the .equ
or .set directives.

• Ignoring the .type directive.
• Treating undefined symbols as imported.
• Using GNU-compatible arithmetic operators - symbols <

and > mean left-shift and right-shift instead of less than
and greater than; the symbol ! means bitwise-or-not
rather than logical not

• Using GNU-compatible precedence rules for operators
• Implementing GNU-compatible numeric local labels,

from 0 to 9
• Treating numeric constants beginning with 0 as octal
• Using semicolons as statement separators
• Using a single unbalanced quote for character

constants - for example, .byte 'a.

Clear to indicate that your application does not use GNU-
compatible syntax.

Table continues on the next page...

Build Properties for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

310 Freescale Semiconductor, Inc.



Table 3-176. Tool Settings - PowerPC Assembler > General (continued)

Option Description

Generate Listing File Check to let assembler generate a listing file that includes
files source, line numbers, relocation information, and macro
expansions. Clear if no listing file is specified.

Other Flags Specify additional command line options for the assembler;
type in custom flags that are not otherwise available in the UI.

3.7.7 PowerPC Disassembler

Use this panel to specify the command, options, and expert settings for PowerPC
Disassembler.

The following table lists and describes the PowerPC disassembler options.

Table 3-177. Tool Settings - PowerPC Disassembler

Option Description

Command Shows the location of the disassembler executable file.
Default value is powerpc-linux-gnu-as. You can specify
additional command line options for the disassembler; type in
custom flags that are not otherwise available in the UI.

All options Shows the actual command line the linker will be called with.

Expert settings

Command line pattern Shows the command line pattern; default is "$
{PAGCCINSTALLDIR}/${COMMAND}" ${FLAGS} $
{OUTPUT_FLAG}${OUTPUT_PREFIX}${OUTPUT}$
{INPUTS}

3.7.7.1 PowerPC Disassembler > Disassembler Settings

Use this panel to control how the disassembler formats the listing file, as well as error
and warning messages. You can specify verbosity of messages, whether to show headers,
core modules, extended mnemonics, addresses, object or source code, ldata modules,
exception tables, and debug information.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 311



The following table lists and describes the PowerPC disassembler settings.

Table 3-178. Tool Settings - PowerPC Disassembler > Disassembler Settings

Option Description

Show Headers Check to display headers in the listing file; disassembler
writes listing headers, titles, and subtitles to the listing file

Show Symbol and String Tables Check to display symbol and string tables directives to the
listing file

Show Core Modules Check to show core modules in the listing file

Show Extended Mnemonics Check to show the extended mnemonics in the listing file

Show Source Code Check to show the source code in the listing file

Only Show Operand and Mnemonics Check this checkbox to have the disassembler list the offset
for any functions in the disassembled module.

Show Data Modules Check to show the data modules in the listing file

Disassemble Exception Tables Check to disassemble exception tables in the listing file

Show DWARF Info Check to have the disassembler include DWARF symbol
information in the disassembled output. Checking this
checkbox makes the Relocate DWARF Info checkbox
available.

Relocate DWARF Info Check to relocate object and function addresses in the
DWARF information.

Verbose Check to shows each command line that it passes to the
shell, along with all progress, error, warning, and
informational messages that the tools emit

3.7.8 PowerPC Preprocessor

Use this panel to specify preprocessor behavior and define macros.

The following table lists and describes the preprocessor options for PowerPC.

Table 3-179. Tool Settings - PowerPC Preprocessor

Option Description

Command Shows the location of the preprocessor executable file.
Default value is "${PAToolsDir}/mwcceppc". You can
specify additional command line options for the preprocessor;
type in custom flags that are not otherwise available in the UI.

All options Shows the actual command line the linker will be called with.

Expert settings Command line pattern Shows the command line pattern; default is ${COMMAND} $
{FLAGS} ${OUTPUT_FLAG} ${INPUTS}

Build Properties for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

312 Freescale Semiconductor, Inc.



3.7.8.1 PowerPC Preprocessor > Preprocessor Settings

Use this panel to specify preprocessor behavior.

The following table lists and describes the preprocessor settings options for PowerPC.

Table 3-180. Tool Settings - Preprocessor Settings > Preprocessor Options

Option Description

Mode Select the mode from the drop-down list.

Emit file change Check to notify file changes (or #line changes) appear in the
output.

Emit #pragmas Check to show pragma directives in the preprocessor output.
Essential for producing reproducible test cases for bug
reports.

Show full path Check to display file changes in comments (as before) or in
#line directives.

Keep comment Check to display comments in the preprocessor output.

Use #line Check to display file changes in comments (as before) or in
#line directives.

Keep whitespace Check to copy whitespaces in preprocessor output. This is
useful for keeping the starting column aligned with the original
source, though the compiler attempts to preserve space
within the line. This does not apply when macros are
expanded.

3.8 Build Properties for ARM (Kinetis)

The Properties for <project> window shows the corresponding build properties for
ARM CPU project ( Figure 3-35).

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 313



Figure 3-35. Build Properties - Kinetis

The following table lists the build properties specific to developing software for Kinetis.

The properties that you specify in the Tool Settings panels apply to the selected build
tool on the Tool Settings page of the Properties for <project> window.

Table 3-181. Build Properties for ARM (Kinetis)

Build Tool Build Properties Panels

ARM CPU ARM CPU

Debugging Debugging

Messages Messages

Librarian Librarian

ARM Linker ARM Linker > Input

ARM Linker > General

Table continues on the next page...

Build Properties for ARM (Kinetis)

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

314 Freescale Semiconductor, Inc.



Table 3-181. Build Properties for ARM (Kinetis) (continued)

Build Tool Build Properties Panels

ARM Linker > Output

ARM Compiler ARM Compiler > Input

ARM Compiler > Warnings

ARM Compiler > Optimization

ARM Compiler > Processor

ARM Compiler > Language

ARM Assembler ARM Assembler > Input

ARM Assembler > General

ARM Assembler > Output

ARM Preprocessor ARM Preprocessor > Preprocessor Settings

ARM Disassembler ARM Disassembler > Disassembler Settings

3.8.1 ARM CPU

Use this panel to specify the CPU type, and the encoding that the architecture uses. The
build tools (compiler, linker, and assembler) then use the properties set in this panel to
generate CPU-specific code.

The following table lists and describes the ARM CPU options.

Table 3-182. Tool Settings - ARM CPU Options

Option Description

Processor Lists the processor families supported by the ARM compiler.
When you select a processor from this list, the compiler
generates code that makes use of any of its hardware
features or special instructions. For more detailed information
on the features of each processor, refer to its reference
manual document.

Floating Point Specifies handling method for floating point operations:
• Software - C runtime library code emulates floating-

point operations.
• Hardware vfpv4 - Processor hardware performs

floating point operations; only appropriate for
processors that have floating-point units.

Default: Software For software selection, your project must
include the appropriate FP_ARM C runtime library file.
Grayed out if your target processor lacks an FPU.

Endianness Lists the byte order for the output file.

Mode Select the mode from the drop-down list.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 315



Table 3-182. Tool Settings - ARM CPU Options (continued)

Option Description

Interworking (required for processor) Check to if you write ARM code that you want to interwork
with Thumb code, or Thumb code that you want to interwork
with ARM code. The only functions that need to be compiled
for interworking are the functions that are called from the
other state. The linker generates suitable interworking
veneers when it links the assembler output. Clear if you write
ARM code that you do not want to interwork with Thumb
code, or Thumb code that you do not want to interwork with
ARM code. If you check this checkbox, you must ensure that
your code uses the correct interworking return instructions.
The IDE enables this setting only for architectures and
processors that support ARM/Thumb interworking.

3.8.2 Debugging

Use this panel to specify the options whether to generate symbolic information for
debugging the build target.

The following table lists and describes the debugging options.

Table 3-183. Tool Settings - Debugging Options

Option Description

Generate Debug Information Check to generate symbolic information for debugging the
build target.

3.8.3 Messages

Use this panel to specify the options whether to generate symbolic information for
debugging the build target.

The following table lists and describes the message options.

Table 3-184. Tool Settings - Messages Options

Option Description

Maximum Number of Errors Specify the number of errors allowed until the application
stops processing.

Maximum Number of Warnings Specify the maximum number of warnings.

Build Properties for ARM (Kinetis)

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

316 Freescale Semiconductor, Inc.



3.8.4 Librarian

Use this panel to select options whether the linker will identify standard libraries.

The following table lists and describes the librarian options.

Table 3-185. Tool Settings - Librarian Options

Option Description

Enable automatic library configurations Select to let the compiler identify standard libraries.

Model Select a standard complying or EWL model from the drop-
down list. EWL lets you precisely define the I/O operations.
EWL drastically reduces the size of executables as you
explicitly select the appropriate I/O behavior. Options are: e
wl, c9x, ewl_c++, and c9x_c++.

Print formats Select the print formats from the drop-down list. The available
options are: int, int_FP, int_LL, and int_LL_FP.

Scan formats Select the scan formats from the drop-down list. The available
options are: int, int_FP, int_LL, and int_LL_FP.

IO Mode Select the input-output mode from the drop-down list. The
available options are: raw and buffered.

3.8.5 ARM Linker

Use this panel to specify ARM linker behavior. You can specify the command, options,
and expert settings for the build tool linker. Additionally, the Linker tree control includes
the input, general, and output settings.

The following table lists and describes the linker options for ARM.

Table 3-186. Tool Settings - ARM Linker Options

Option Description

Command Shows the location of the linker executable file. Default value
is: "${CF_ToolsDir}/mwldarm". You can specify
additional command line options for the linker; type in custom
flags that are not otherwise available in the UI.

All options Shows the actual command line the ARM linker will be called
with.

Expert Settings

Command line pattern Shows the command line pattern; default is ${COMMAND} $
{FLAGS} ${OUTPUT_FLAG} ${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 317



3.8.5.1 ARM Linker > Input

Use this panel to specify files the ARM Linker should use. You can specify multiple
additional libraries and library search paths. Also, you can change the order in which the
IDE uses or searches the libraries.

The following table lists and describes the input options for ARM.

Table 3-187. Tool Settings - ARM Linker > Input Options

Option Description

No Standard Library Select if there is no standard library attached.

Dead-strip unused code Determines whether to pool constants from all functions in a
file.

Suppress Link Warnings Prevents the IDE from displaying linker warning messages.

Linker Command File Consists of three kinds of segments, which must be in this
order: A memory segment, which begins with the MEMORY{}
directive Optional closure segments, which begin with the
FORCE_ACTIVE{}, KEEP_SECTION{}, or REF_INCLUDE{}
directives A sections segment, which begins with the
SECTIONS{} directive

Entry Point Specifies the program starting point: the first function the
debugger uses upon program start; default: __thumb_startup.
This default function is in file ARM__thumb_startup.c. It sets
up the ARM EABI environment before code execution. Its final
task is calling main().

Library Search Paths Specifies the search pathname of libraries or other resources
related to the project. Type the pathname into this text box.
Alternatively, click Workspace or File system, then use the
subsequent dialog box to browse to the correct location.

Additional Library Files Specifies the pathname of libraries or other resources related
to the project. Type the pathname into this text box.
Alternatively, click Workspace or File system, then use the
subsequent dialog box to browse to the correct location.

Force Active Symbols Disables deadstripping for particular symbols, enter the
symbol names in the Force Active Symbols text box of the
ARM Linker Panel.

3.8.5.2 ARM Linker > General

Use this panel to specify the general linker behavior.

Build Properties for ARM (Kinetis)

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

318 Freescale Semiconductor, Inc.



The following table lists and describes the general linker options for ARM.

Table 3-188. Tool Settings - ARM Linker > General Options

Option Description

Other Flags Specify additional command line options for the linker; type in
custom flags that are not otherwise available in the UI.

3.8.5.3 ARM Linker > Output

Use this panel to specify the output settings for the ARM linker.

The following table lists and describes the output settings for ARM linker.

Table 3-189. Tool Settings - ARM Linker > Output Options

Option Description

Output Type Select application as Application (default), Library, or Partial
Linking.

Generate Link Map Check to generate link map.

List Unused Symbols in Map Check to list unused symbols; appears grayed out if the
Generate Link Map checkbox is not checked.

Show Transitive Closure in Map Check show transitive closure; appears grayed out if the
Generate Link Map checkbox is not checked.

Keep Map on Failure Check to keep the linker generated map in case of failure.

Generate Symbol Table Check to generate symbol table.

Sort symbols by Address Check to sort symbols by address; appears grayed out if the
Generate Symbol Table checkbox is not checked.

Mapping Symbols First Check to map symbols first; appears grayed out if the
Generate Symbol Table checkbox is not checked.

Generate S-Record File Check to generate a S-record file.

Max S-Record Length Specify the maximum length for S-record; appears grayed out
if the Generate S-Record File checkbox is not checked. The
default value is 252.

S-Record EOL Character Specify the end-of-line character; appears grayed out if the
Generate S-Record File checkbox is not checked. The default
value is DOS (\r\n).

Generate X-Record File Check to generate a X-record file.

Max X-Record Length Specify the maximum value for X-record; appears grayed out
if the Generate X-Record checkbox is not checked.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 319



3.8.6 ARM Compiler

Use this panel to specify the command, options, and expert settings for the build tool
compiler. Additionally, the ARM Compiler tree control includes the general, include file
search path settings.

The following table lists and describes the compiler options for ARM.

Table 3-190. Tool Settings - ARM Compiler Options

Option Description

Command Shows the location of the compiler executable file. Default
value is: "${ARM_ToolsDir}/mwccarm" -gccinc. You
can specify additional command line options for the compiler;
type in custom flags that are not otherwise available in the UI.

All options Shows the actual command line the ARM compiler will be
called with.

Expert Settings

Command line pattern Shows the command line pattern; default is ${COMMAND} $
{FLAGS} ${OUTPUT_FLAG} ${OUTPUT_PREFIX}$
{OUTPUT}-c ${INPUTS}.

3.8.6.1 ARM Compiler > Input

Use this panel to specify additional files the ARM Compiler should use. You can specify
multiple additional libraries and library search paths. Also, you can change the order in
which the IDE uses or searches the libraries.

The following table lists and describes the input options for ARM compiler.

Table 3-191. Tool Settings - ARM Compiler > Input Options

Option Description

Allow Macro Redefinition Enables to redefine the macros with the #define directive
without first undefining them with the #undef directive.

Define AEABI Portability Defines the _AEABI_PORTABILITY_LEVEL to 1. The option
ensures that C library dependencies produced by this
compiler are ARM EABI compliant. For more information on
the ARM EABI and associated compatibility models, the user
should consult the ARM, Ltd. website.

Prefix File Specifies a prefix file that you want the compiler to include at
the top of each file.

Source File Encoding Enables you to specify the default encoding of the source file.

Table continues on the next page...

Build Properties for ARM (Kinetis)

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

320 Freescale Semiconductor, Inc.



Table 3-191. Tool Settings - ARM Compiler > Input Options (continued)

Option Description

Include User Search Paths (-i) Enables you to add new directories to the list of directories
where the user files are searched. Note: Manually edit the
absolute paths if the project is moved to a new location. The
path will be correct, however, for the location in which the
project was originally created. Furthermore, it is a good idea
to open the settings of the new project and click 'Apply' to
avoid the problem of disappearing user-added include paths.

Include User Recursive Search Paths (-ir) Enables you to add new directories to the list of directories
recursively where the user files are searched.

Include System Search Paths (-I- -I) Enables you to add new directories to the list of directories
where the system files are searched.

Include System Recursive Search Paths (-I- -ir) Enables you to add new directories to the list of directories
recursively where the system files are searched.

Defined Macros Lists the defined command-line macros.

Undefined Macros Lists the undefined command-line macros.

3.8.6.2 ARM Compiler > Warnings

Use this panel to control how the ARM compiler formats the listing file, as well as error
and warning messages.

The following table lists and describes the warnings options for ARM compiler.

Table 3-192. Tool Settings - ARM Compiler > Warnings Options

Option Description

Treat All Warnings As Errors Check to treat all warnings as errors. The compiler will stop if
it generates a warning message.

Enable Warnings Select the level of warnings you want reported from the
compiler. Custom lets you to select individual warnings. Other
settings select a pre-defined set of warnings.

Illegal #Pragmas (most) Check to notify the presence of illegal pragmas.

Possible Unwanted Effects (most) Check to notify most of the possible errors.

Extended Error Checks (most) Check if you want to do an extended error checking.

Hidden Virtual Functions (most) Check to generate a warning message if you declare a non-
virtual member function that prevents a virtual function, that
was defined in a superclass, from being called and is
equivalent to pragma warn_hidevirtual and the command-
line option -warnings hidevirtual.

Implicit Arithmentic Conversions (all) Check to warn of implict arithmetic conversions.

Implicit Signed/Unsigned Conversion (all) Check to enable warning of implict conversions between
signed and unsigned variables.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 321



Table 3-192. Tool Settings - ARM Compiler > Warnings Options (continued)

Option Description

Implicit Float to Integer Conversions (all) Check to warn of implict conversions of a floating-point
variable to integer type.

Implicit Integer to Float Conversions (all) Check to warn of implict conversion of an integer variable to
floating-point type.

Pointer/Integer Conversions (most) Check to enable warnings of conversions between pointer
and integers.

Relax Implicit Integer to Interger Arithmetic Conversions Check to warn when the compiler applies implicit conversion
of integer.

Unused Arguments (most) Check to warn of unused arguments in a function.

Unused Variables (most) Check to warn of unused variables in the code.

Unused Result From Non-Void-Returning Function (full) Check to warn of unused result from non-void-returning
functions.

Missing `return' Value in Non-Void-Returning Function (most) Check to warn of when a function lacks a return statement.

Expression has no Side Effect (most) Check to issue a warning message if a source statement
does not change the program's state. This is equivalent to the
pragma warn_no_side_effect, and the command-line
option -warnings unusedexpr.

Extra Commas (most) Check to issue a warning message if a list in an enumeration
terminates with a comma. The compiler ignores terminating
commas in enumerations when compiling source code that
conforms to the ISO/IEC 9899-1999 ("C99") standard and is
equivalent to pragma warn_extracomma and the command-
line option -warnings extracomma.

Empty Declarations (most) Check to warn of empty declarations.

Inconsistent `class' / `struct' Usage (most) Check to warn of inconsistent usage of class or struct.

Incorrect Capitalization in #include (most) Check to issue a warning message if the name of the file
specified in a #include "file" directive uses different letter case
from a file on disk and is equivalent to pragma
warn_filenamecaps and the command-line option -
warnings filecaps.

Incorrect Capitalization in System #Includes (most) Check to issue a warning message if the name of the file
specified in a #include <file> directive uses different letter
case from a file on disk and is equivalent to pragma
warn_filenamecaps_system and the command-line
option -warnings sysfilecaps.

Pad Bytes Added (full) Check to issue a warning message when the compiler adjusts
the alignment of components in a data structure and is
equivalent to pragma warn_padding and the command-line
option -warnings padding.

Undefined Macro in #if/#elif (full) Check to issues a warning message if an undefined macro
appears in #if and #elif directives and is equivalent to pragma
warn_undefmacro and the command-line option -
warnings undefmacro.

Non-Inlined Functions (full) Check to issue a warning message if a call to a function
defined with the inline, __inline__, or __inline keywords could
not be replaced with the function body and is equivalent to
pragma warn_notinlined and the command-line option -
warnings notinlined.

Table continues on the next page...

Build Properties for ARM (Kinetis)

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

322 Freescale Semiconductor, Inc.



Table 3-192. Tool Settings - ARM Compiler > Warnings Options (continued)

Option Description

Token not Formed by ## Operator (most) Check to enable warnings for the illegal uses of the
preprocessor's token concatenation operator (##). It is
equivalent to the pragma warn_illtokenpasting on.

3.8.6.3 ARM Compiler > Optimization

Use this panel to control compiler optimizations. The compiler's optimizer can apply any
of its optimizations in either global or non-global optimization mode. You can apply
global optimization at the end of the development cycle, after compiling and optimizing
all source files individually or in groups.

The following table lists and defines each option of the Optimization panel.

Table 3-193. Tool Settings - ARM Compiler > Optimization Options

Option Description

Optimization Level (-opt) Specify the optimizations that you want the compiler to apply
to the generated object code: 0-Disable optimizations. This
setting is equivalent to specifying the -O0 command-line
option. The compiler generates unoptimized, linear assembly-
language code. 1-The compiler performs all target-
independent (that is, non-parallelized) optimizations, such as
function inlining. This setting is equivalent to specifying the -
O1 command-line option. The compiler omits all target-
specific optimizations and generates linear assembly-
language code. 2-The compiler performs all optimizations
(both target-independent and target-specific). This setting is
equivalent to specifying the -O2 command-line option. The
compiler outputs optimized, non-linear, parallelized assembly-
language code. 3-The compiler performs all the level 2
optimizations, then the low-level optimizer performs global-
algorithm register allocation. This setting is equivalent to
specifying the -O3 command-line option. At this optimization
level, the compiler generates code that is usually faster than
the code generated from level 2 optimizations. 4- The
compiler performs all the level 3 optimizations. This setting is
equivalent to specifying the -O4 command-line option.
At this level, the compiler adds repeated subexpression
elimination and loop-invariant code motion.

Speed Vs Size Use to specify an Optimization Level greater than 0.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 323



Table 3-193. Tool Settings - ARM Compiler > Optimization Options (continued)

Option Description

• Speed-The compiler optimizes object code at the
specified Optimization Level such that the resulting
binary file has a faster execution speed, as opposed to
a smaller executable code size.

• Size-The compiler optimizes object code at the
specified Optimization Level such that the resulting
binary file has a smaller executable code size, as
opposed to a faster execution speed. This setting is
equivalent to specifying the -Os command-line option.

Inter-Procedural Analysis Control whether the compiler views single or multiple source
files at compile time.

• Off-Compiler compiles one file at a time. The functions
are displayed in order as they appear in the source file.
An object file is created for each source.

• File-The compiler sees all the functions and data in a
translation unit (source file) before code or data is
generated. This allows inlining of functions that may not
have been possible in -ipa off mode.

Inlining Enables inline expansion. If there is a #pragma INLINE before
a function definition, all calls of this function are replaced by
the code of this function, if possible. Using the -Oi=c0 option
switches off inlining. Functions marked with the #pragma
INLINE are still inlined. To disable inlining, use the -Oi=OFF
option.

• Smart - Inlines function declared with the inline qualifier.
This is default.

• Auto Inline - Inlines small function even if they are not
declared with the inline qualifier.

• Off - No functions are inlined.

Bottom-up Inlining Check to control the bottom-up function inlining method.
When active, the compiler inlines function code starting with
the last function in the chain of functions calls, to the first one.

3.8.6.4 ARM Compiler > Processor

Use this panel to specify processor behavior. You can specify the file paths and define
macros.

The following table lists and defines each option of the Processor panel.

Table 3-194. Tool Settings - ARM Compiler > Processor Options

Option Description

Allow Semihosting This option enables users to ARM semihosting features in
their applications (such as console output).

Enable ARM Shared Library Architecture Support This option is disabled for this product.

Table continues on the next page...

Build Properties for ARM (Kinetis)

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

324 Freescale Semiconductor, Inc.



Table 3-194. Tool Settings - ARM Compiler > Processor Options (continued)

Option Description

Pool Constants and Disable Dead-Stripping This option combines the literal constant pools of multiple
functions in a translation unit. The implication of this is that
multiple functions reside in a single ELF section, thus
disabling dead-stripping by the linker (each function must
reside in a unique ELF section to be dead-stripped).

Generate Code for Profiling Check to enable the processor generate code for use with a
profiling tool. Checking this box corresponds to using the
command-line option -profile. Clearing this checkbox is
equivalent to using the command-line option -noprofile.

Position-Independent Code Equivalent to -pic, Using PIC frees you from having to commit
to loading your code at a particular address in memory. This
means that the code can move to different memory locations
and still work correctly. The generated code that is the same
regardless of its load address.

Position-Independent Data Equivalent to -pid, Using PID frees you from having to commit
to loading your data at a particular address in memory. This
means that the data can move to different memory locations
and still work correctly.

Place Read-Only Strings in .rodata Section Instructs the compiler to place string constants into
the .rodata section.

Use Generic Static Symbol Names Obfuscates the name of static symbols within binaries (such
as libraries) as protective measure against unauthorized
persons disassembling the binary. Such a disassembly can
reveal the names of static symbols and may expose internal
structures and other proprietary details.

Set Max Size before Spill to .sdata (bytes) Enter the maximum number of bytes (n) of an object length
for which the processor uses a .sdata section.

3.8.6.5 ARM Compiler > Language

Use this panel direct the ARM compiler to apply specific processing modes to the
language source code. You can compile source files with just one collection at a time. To
compile source files with multiple collections, you must compile the source code
sequentially. After each compile iteration change the collection of settings that the ARM
compiler uses.

The following table lists and defines each option of the Language Settings panel.

Table 3-195. Tool Settings - ARM Compiler > Language Settings Options

Option Description

Force C++ Compilation Check to translate all C source files as C++ source code.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 325



Table 3-195. Tool Settings - ARM Compiler > Language Settings Options (continued)

Option Description

ANSI Strict Check to enable C compiler operate in strict ANSI mode. In
this mode, the compiler strictly applies the rules of the ANSI/
ISO specification to all input files. This setting is equivalent to
specifying the -ansi command-line option. The compiler
issues a warning for each ANSI/ISO extension it finds.

ANSI Keywords Only Check to generate an error message for all non-standard
keywords (ISO/IEC 9899-1990 C, ï¿½6.4.1). If you must write
source code that strictly adheres to the ISO standard, enable
this setting; is equivalent to pragma only_std_keywords
and the command-line option -stdkeywords.

Enable C99 Extensions Check to r ecognize ISO/IEC 9899-1999 ("C99") language
features; is equivalent to pragma c99 and the command-line
option - dialect c99.

Enable GCC Extensions Check to recognize language features of the GNU Compiler
Collection (GCC) C compiler that are supported by
CodeWarrior compilers; is equivalent to pragma
gcc_extensions and the command-line option -
gcc_extensions.

Enums Always Int Check to u se signed integers to represent enumerated
constants and is equivalent to pragma enumsalwaysint
and the command-line option -enum.

Use Unsigned Chars Check to t reat char declarations as unsigned char
declarations and is equivalent to pragma unsigned_char
and the command-line option -char unsigned.

Require Function Prototypes Check to enforce the requirement of function prototypes. The
compiler generates an error message if you define a
previously referenced function that does not have a prototype.
If you define the function before it is referenced but do not
give it a prototype, this setting causes the compiler to issue a
warning message.

Expand Trigraphs Check to recognize trigraph sequences (ISO/IEC 9899-1990
C, ï¿½5.2.1.1); is equivalent to pragma trigraphs and the
command-line option -trigraphs.

Enable Exceptions Check to generate executable code for C++ exceptions; is
equivalent to pragma exceptions and the command-line
option - cpp_exceptions.

Enable RTTI Support Check to allow the use of the C++ runtime type information
(RTTI) capabilities, including the dynamic_cast and
typeid operators; is equivalent to pragma RTTI and the
command-line option -RTTI.

Enable bool support Check to enable the C++ compiler to recognize the bool type
and its true and false values specified in the ISO/IEC
14882-1998 C++ standard.

Enable wchar_t support Check to enable C++ compiler recognize the wchar_t data
type specified in the ISO/IEC 14882-1998 C++ standard; is
equivalent to pragma wchar_type and the command-line
option -wchar_t.

Table continues on the next page...

Build Properties for ARM (Kinetis)

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

326 Freescale Semiconductor, Inc.



Table 3-195. Tool Settings - ARM Compiler > Language Settings Options (continued)

Option Description

ISO Template Parser Check to follow the ISO/IEC 14882-1998 standard for C++ to
translate templates, enforcing more careful use of the
typename and template keywords. The compiler also follows
stricter rules for resolving names during declaration and
instantiation.

Use Instance Manager Check to r educe compile time by generating any instance of
a C++ template (or non-inlined inline) function only once.

Legacy for-scoping Check to g enerate an error message when the compiler
encounters a variable scope usage that the ISO/IEC
14882-1998 C++ standard disallows, but is allowed in the C+
+ language specified in The Annotated C++ Reference
Manual ("ARM"); is equivalent to pragma ARM_scoping and
the command-line option -for_scoping.

Reuse Strings Check to store only one copy of identical string literals and is
equivalent to opposite of the pragma dont_reuse_strings
and the command-line option -string reuse.

Pool Strings Check to collect all string constants into a single data section
in the object code it generates and is equivalent to pragma
pool_strings and the command-line option -strings
pool.

Other flags Specify additional command line options for the compiler; type
in custom flags that are not otherwise available in the UI.
Note : To enable CodeWarrior MCU V10.x to generate .lst file
for each source file in ARM, you need to specify -S in the
Other Flags option.

3.8.7 ARM Assembler

Use this panel to specify the command, options, and expert settings for the build tool
assembler. Additionally, the Assembler tree control includes the general and include file
search path settings.

The following table lists and defines each option of the ARM Assembler panel.

Table 3-196. Tool Settings - ARM Assembler Options

Option Description

Command Shows the location of the assembler executable file. You can
specify additional command line options for the assembler;
type in custom flags that are not otherwise available in the UI.

All options Shows the actual command line the assembler will be called
with.

Expert Settings

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 327



Table 3-196. Tool Settings - ARM Assembler Options (continued)

Option Description

Command line pattern Shows the command line pattern; default is ${COMMAND} $
{FLAGS} ${OUTPUT_FLAG} ${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}.

3.8.7.1 ARM Assembler > Input

Use this panel to specify additional files the ARM Assembler should use. You can
specify multiple additional libraries and library search paths. Also, you can change the
order in which the IDE uses or searches the libraries.

The following table lists and describes the input options for ARM assembler.

Table 3-197. Tool Settings - ARM Compiler > Input Options

Option Description

Prefix File Specify a prefix file that you want the compiler to include at
the top of each file.

Enable Debug Check to automatically generate the debug information for the
project.

Always Search Both User and System Paths (-nosyspath) Performs a search of both the user and system paths, treating
#include statements of the form #include <xyz> the same as
the form #include " xyz".

Include User Search Paths (-i) Enables you to add new directories to the list of directories
where the user files are searched.

Include User Recursive Search Paths (-ir) Enables you to add new directories to the list of directories
recursively where the user files are searched.

Include System Search Paths (-I- -I) Enables you to add new directories to the list of directories
where the system files are searched.

Include System Recursive Search Paths (-I- -ir) Enables you to add new directories to the list of directories
recursively where the system files are searched.

The following table lists and describes the toolbar buttons that help work with the user
and system search paths.

Table 3-198. Search Paths Toolbar Buttons

Button Description

Add - Click to open the Add directory path dialog box and
specify the search path.

Delete - Click to delete the selected search path.

Table continues on the next page...

Build Properties for ARM (Kinetis)

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

328 Freescale Semiconductor, Inc.



Table 3-198. Search Paths Toolbar Buttons (continued)

Button Description

Edit - Click to open the Edit directory path dialog box and
update the selected search path.

Move up - Click to move the selected search path one
position higher in the list

Move down - Click to move the selected search path one
position lower in the list

Teh following figure shows the Add directory path dialog box.

Figure 3-36. Add directory path Dialog Box

The following table shows the Edit directory path dialog box.

Figure 3-37. Edit directory path Dialog Box

The buttons in the Add directory path and Edit directory path dialog boxes help work
with the object file search paths.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.
• Workspace - Click to display the Folder selection dialog box and specify the object

file search path. The resulting path, relative to the workspace, appears in the
appropriate list.

• File system - Click to display the Browse for Folder dialog box and specify the
object file search path. The resulting path appears in the appropriate list.

• Variables- Click to display the Select build variable dialog box and select the
object file variable for search path. The resulting variable in the appropriate list.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 329



3.8.7.2 ARM Assembler > General

Use this panel to specify the general assembler behavior.

The following table lists and describes the general assembler options for ARM.

Table 3-199. Tool Settings - ARM Assembler > General Options

Option Description

Label Must End With `:' Clear if system does not require labels to end with colons. By
default, the option is checked.

Directives Begin With `.' Clear if the system does not require directives to start with
periods. By default, the option is checked.

Allow Space In Operand Field Clear to restrict the assembler from adding spaces in operand
fields. By default, the option is checked.

Case-Sensitive Identifier Clear to instruct the assembler to ignore case in identifiers. By
default, the option is checked.

Enable GNU Assembler Compatible Syntax Instructs the assembler to accept GNU-style assembly
syntax.

Enable ARM ADS Compatible Syntax Instructs the assembler to accept ARM ADS compatible
syntax extensions.

Other Flags Specify additional command line options for the assembler;
type in custom flags that are not otherwise available in the UI.

3.8.7.3 ARM Assembler > Output

Use this panel to specify the output settings for the ARM assembler.

The following table lists and describes the output assembler options for ARM.

Table 3-200. Tool Settings - ARM Assembler > Output Options

Option Description

Generate Listing File Instructs the assembler to generate a disassembly output file.
The disassembly output file contains the file source, along
with line numbers, relocation information, and macro
expansion.

3.8.8 ARM Preprocessor

Build Properties for ARM (Kinetis)

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

330 Freescale Semiconductor, Inc.



Use this panel to specify preprocessor behavior and define macros.

The following table lists and describes the preprocessor options for ARM.

Table 3-201. Tool Settings - ARM Preprocessor Options

Option Description

Command Shows the location of the preprocessor executable file. You
can specify additional command line options for the
preprocessor; type in custom flags that are not otherwise
available in the UI.

All options Shows the actual command line the preprocessor will be
called with.

Expert Settings

Command line pattern Shows the command line pattern; default ${COMMAND} -E$
{FLAGS} ${INPUTS}.

3.8.8.1 ARM Preprocessor > Preprocessor Settings

Use this panel to specify preprocessor behavior.

The following table lists and describes the preprocessor options for ARM.

Table 3-202. Tool Settings - ARM Preprocessor Options

Option Description

Emit File/Line Breaks Check to notify file breaks (or #line breaks) appear in the
output.

Keep #pragmas Check to show pragma directives in the preprocessor output.
Essential for producing reproducible test cases for bug
reports.

Show Full Path Check to display file changes in comments (as before) or in
#line directives.

Keep Comments Check to display comments in the preprocessor output.

Emit #line Directives Check to display file changes in comments (as before) or in
#line directives.

Keep Whitespace Check to copy whitespaces in preprocessor output. This is
useful for keeping the starting column aligned with the original
source, though the compiler attempts to preserve space
within the line. This does not apply when macros are
expanded.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 331



3.8.9 ARM Disassembler

Use this panel to specify the command, options, and expert settings for ARM
Disassembler.

The following table lists and describes the ARM disassembler options.

Table 3-203. Tool Settings - ARM Disassembler Options

Option Description

Command Shows the location of the disassembler executable file. You
can specify additional command line options for the
disassembler; type in custom flags that are not otherwise
available in the UI.

All options Shows the actual command line the linker will be called with.

Expert Settings

Command line pattern Shows the command line pattern; default is ${COMMAND} -
dis ${FLAGS} ${INPUTS}

3.8.9.1 ARM Disassembler > Disassembler Settings

Use this panel to control how the disassembler formats the listing file, as well as error
and warning messages. You can specify verbosity of messages, whether to show headers,
core modules, extended mnemonics, addresses, object or source code, ldata modules,
exception tables, and debug information.

The following table lists and describes the ARM disassembler settings.

Table 3-204. Tool Settings - ARM Disassembler Options

Option Description

Show Headers Check to display headers in the listing file; disassembler
writes listing headers, titles, and subtitles to the listing file.

Show Symbol and String Tables Check to display symbol and string tables directives to the
listing file.

Verbose Info Check to shows each command line that it passes to the
shell, along with all progress, error, warning, and
informational messages that the tools emit.

Show Relocations Check to have the disassembler show information about
relocated symbols. Clear to prevent the disassembler from
showing information about relocated symbols.

Show Code Modules Check to show code modules in the listing file.

Show Extended Mnemonics Check to show the extended mnemonics in the listing file.

Table continues on the next page...

Build Properties for ARM (Kinetis)

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

332 Freescale Semiconductor, Inc.



Table 3-204. Tool Settings - ARM Disassembler Options (continued)

Option Description

Show Addresses and Opcodes Check to show the addresses and object code in the listing
file.

Show Source Code Check to show the source code in the listing file.

Show Comments Check to show the comments in the listing file.

Show Data Modules Check to show the data modules in the listing file.

Disassemble Exception Tables Check to disassemble exception tables in the listing file.

Show Debug Info Check to generate symbolic information for debugging the
build target.

3.9 Build Properties for ARM Ltd Windows GCC

The Properties for <project> window shows the corresponding build properties for
ARM project that supports the GCC toolchain.

The properties that you specify in the Tool Settings panels apply to the selected build
tool on the Tool Settings page of the Properties for <project> window.

The following table lists and describes the settings.

Table 3-205. Build Properties for ARM (GCC)

Build Tool Build Properties Panels

Target Processor Target Processor

Debugging Debugging

Additional Tools Additional Tools

Librarian Librarian

ARM Ltd. Windows GCC Assembler ARM Ltd. Windows GCC Assembler > Preprocessor

ARM Ltd. Windows GCC Assembler > Directories

ARM Ltd. Windows GCC Assembler > Warnings

ARM Ltd. Windows GCC Assembler > Miscellaneous

ARM Ltd. Windows GCC Compiler ARM Ltd. Windows GCC Compiler > Preprocessor

ARM Ltd. Windows GCC Compiler > Directories

ARM Ltd. Windows GCC Compiler > Optimization

ARM Ltd. Windows GCC Compiler > Warnings

ARM Ltd. Windows GCC Compiler > Miscellaneous

ARM Ltd. Windows GCC Linker ARM Ltd. Windows GCC Linker > General

ARM Ltd. Windows GCC Linker > Libraries

ARM Ltd. Windows GCC Linker > Miscellaneous

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 333



Table 3-205. Build Properties for ARM (GCC) (continued)

Build Tool Build Properties Panels

ARM Ltd. Windows GCC Disassembler ARM Ltd. Windows GCC Disassembler > Disassembler
Settings

ARM Ltd. Windows GCC C Preprocessor ARM Ltd. Windows GCC C Preprocessor > Preprocessor
Settings

3.9.1 Target Processor

Use the Target Processor panel to specify the processor family for the project. The
properties specified on this page are also used by the build tools (compiler, linker, and
assembler).

The table below lists and describes the various options available on the Target Processor
panel.

Table 3-206. Tool Settings - Target Processor

Option Description

Processor Use to specify the target processor architecture. The
debugger configures the appropriate register views according
to the target processor that you specify.

Thumb (-mthumb) Check to have the processor generate Thumb code
instructions.

Thumb interwork (-mthumb-interwork) Check this option if you are writing ARM code that you want
to interwork with Thumb code, or Thumb code that you want
to interwork with ARM code. The only functions that need to
be compiled for interworking are the functions that are called
from the other state. The linker generates suitable
interworking veneers when the compiler output is linked.

Endiannes Use to specify the byte order of the target hardware
architecture:

• Big - Select if the target processor uses big-endian (BE)
byte order (leftmost bytes are most significant: B3 B2
B1 B0).

• Little - Select if the target processor uses little-endian
(LE) byte order (rightmost bytes are most significant: B0
B1 B2 B3).

Float ABI Specify the floating-point options. The options avaialable are:
Toolchain Default, Library (-mfloat -abi=soft), Library with FP
(-mfloat-ai=softfp), and FP instructions (-mfloat-abi=hard).

FPU Type From the list box, select the architecture or processor that
corresponds to your target hardware.

• Software-software-based FPU library.
• FPA-Floating Point Accelerator format and instructions

Build Properties for ARM Ltd Windows GCC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

334 Freescale Semiconductor, Inc.



Table 3-206. Tool Settings - Target Processor

Option Description

• VFP-hardware vector FPU format and instructions
compatible with the VFPv1 architecture

• VFPV2-hardware vector FPU format and instructions
compatible with the VFPv2 architecture

The compiler might display error messages or warnings if the
selected FPU architecture is not compatible with the target
architecture.

3.9.2 Debugging

Use the Debugging panel to specify the debugging settings for the project.

The table below lists and describes the various options available on the Debugging panel.

Table 3-207. Tool Settings - Debugging

Option Description

Debug level Specify the debug levels:
• None - No Debug level.
• Minimal ( -g1) - The compiler provides minimal

debugging support.
• Default ( -g) - The compiler generates DWARF 1.x-

conforming debugging information.
• Maximum ( -g3) - The compiler provides maximum

debugging support.

Debug format Specify the debug formats for the compiler.
• dwarf-2 - Generates DWARF 2.x-conforming debugging

information.
• stabs - Generates STABS-conforming debugging

information.

Other debugging flags Specify the other debugging flags that need to be passed with
the compiler

Generate prof information (-p) Generates extra code to write profile information suitable for
the analysis program prof. You must use this option when
compiling the source files you want data about, and you must
also use it when linking.

Generate gprof information (-pg) Generates extra code to write profile information suitable for
the analysis program gprof. You must use this option when
compiling the source files you want data about, and you must
also use it when linking.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 335



3.9.3 Additional Tools

Use the Additional Tools panel to specify additional settings for the project.

The table below lists and describes the various options available on the Additional Tools
panel.

Table 3-208. Tool Settings - Additional Tools

Option Description

Create Flash Image Check if you want to create a flash image.

Create Extended Listing Check if you want to enable the support for extended listing.

Print Size Check to enable the print size.

3.9.4 Librarian

Use the Librarian panel to specify library settings for the project.

The table below lists and describes the various options available on the Librarian panel.

Table 3-209. Tool Settings - Librarian

Option Description

Enable automatic library configurations Select to let the compiler identify standard libraries.

Model Select a standard complying or EWL model from the drop-
down list. EWL lets you precisely define the I/O operations.
EWL drastically reduces the size of executables as you
explicitly select the appropriate I/O behavior. Options are:
ewl, ewl_c++, c9x, c9x_c++, ewl_hosted, ewl_c
++_hosted, c9x_hosted, c9x_c++_hosted,
ewl_noio, ewl_c++_noio, c9x_noio, and c9x_c+
+_noio.

Print formats Select the print formats from the drop-down list. The available
options are: int, int_FP, int_LL, and int_LL_FP.

Scan formats Select the scan formats from the drop-down list. The available
options are: int, int_FP, int_LL, and int_LL_FP.

3.9.5 ARM Ltd. Windows GCC Assembler

Build Properties for ARM Ltd Windows GCC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

336 Freescale Semiconductor, Inc.



Use the ARM Ltd. Windows GCC Assembler panel to specify the assembler settings
for the project.

The following table lists and describes the various options available on the ARM Ltd.
Windows GCC Assembler panel.

Table 3-210. Tool Settings - ARM Ltd. Windows GCC Assembler

Option Description

Command Shows the location of the assembler executable file. Default:
arm-none-eabi-gcc

All options Shows the actual command line the assembler will be called
with. Default: -x assembler-with-cpp -Wall -Wa,-
adhlns="$@.lst" -c -fmessage-length=0 -
mcpu=cortex-m0 -mthumb -g3 -gstabs

Expert settings Shows the expert settings command line parameters. Default:
"${ARMSourceryDir}/${COMMAND}" ${INPUTS} $
{FLAGS} ${OUTPUT_FLAG}${OUTPUT_PREFIX}$
{OUTPUT}

Command line pattern

3.9.5.1 ARM Ltd. Windows GCC Assembler > Preprocessor

Use the Preprocessor panel to specify the preprocessor behavior. You can specify
whether to search system directories or preprocess only based on the options available in
this panel.

The following table lists and describes the various options available on the Preprocessor
panel.

Table 3-211. ARM Ltd. Windows GCC Assembler > Preprocessor

Option Description

Use preprocessor (-x assembler) Check this option to use the preprocessor for the assembler.

Do not search system directories (-nostdinc) Check this option if you do not want the assembler to search
the system directories. By default, this checkbox is clear. The
assembler performs a full search that includes the system
directories.

Preprocess only (-E) Check this option if you want the assembler to preprocess
source files and not to run the compiler. By default, this
checkbox is clear and the source files are not preprocessed.

Defined symbols (-D) Use this option to specify the substitution strings that the
assembler applies to all the assembly-language modules in
the build target. Enter just the string portion of a substitution
string. The IDE prepends the -D token to each string that you
enter. For example, entering opt1 x produces this result on

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 337



Table 3-211. ARM Ltd. Windows GCC Assembler > Preprocessor (continued)

Option Description

the command line: -Dopt1 xNote: This option is similar to
the DEFINE directive, but applies to all assembly-language
modules in a build target.

Undefined symbols (-U) Undefines the substitution strings you specify in this panel.

3.9.5.2 ARM Ltd. Windows GCC Assembler > Directories

Use the Directories panel to specify the directories paths.

The following table lists and describes the various options available on the Directories
panel.

Table 3-212. ARM Ltd. Windows GCC Assembler > Directories

Option Description

Include paths ( -I) This option changes the build target's search order of access
paths to start with the system paths list. The compiler can
search #include files in several different ways. You can also
set the search order as follows: For include statements of the
form #include"xyz", the compiler first searches user
paths, then the system paths For include statements of the
form #include<xyz>, the compiler searches only system
paths This option is global.

3.9.5.3 ARM Ltd. Windows GCC Assembler > Warnings

Use the Warnings panel to control how the compiler reports the error and warning
messages.

The following table lists and describes the various options available on the Warnings
panel.

Table 3-213. ARM Ltd. Windows GCC Assembler > Warnings

Option Description

Check syntax only (-fsyntax-only) Check this option if you want to check the syntax of
commands and throw a syntax error.

Table continues on the next page...

Build Properties for ARM Ltd Windows GCC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

338 Freescale Semiconductor, Inc.



Table 3-213. ARM Ltd. Windows GCC Assembler > Warnings (continued)

Option Description

Pedantic (-pedantic) Check this option if you want to issue all the warnings
demanded by strict ISO C and ISO C++; reject all programs
that use forbidden extensions, and some other programs that
do not follow ISO C and ISO C++. For ISO C, follows the
version of the ISO C standard specified by any `-std' option
used.

Pedantic warnings as erros (-pedantic-errors) Check this option if you want to issue all the mandatory
diagnostics, and make all mandatory diagnostics into errors.
This includes mandatory diagnostics that GCC issues without
-pedantic but treats as warnings.

Inhibit all warnings (-w) Check this option if you want to inhibit the display of warning
messages.

All warnings (-Wall) Check this option to turn on all optional warnings which are
desirable for normal code. At present this is -Wcomment, -
Wtrigraphs, -Wmultichar and a warning about integer
promotion causing a change of sign in #if expressions.
NOTE : Many of the preprocessor's warnings are on by
default and have no options to control them.

Extra warnings (-Wextra) Check this option to enable any extra warnings.

Warning as errors (-Werror) Check this option if you want to make all warnings into hard
errors. Source code which triggers warnings will be rejected.

3.9.5.4 ARM Ltd. Windows GCC Assembler > Miscellaneous

Use the Miscellaneous panel to specify compiler options.

The following table lists and describes the various options available on the
Miscellaneous panel.

Table 3-214. ARM Ltd. Windows GCC Assembler > Miscellaneous

Option Description

Assembler flags Specify the flags that need to be passed with the assembler.

Enable Assembler Listing Enables the assembler to create a listing file as it compiles
assembly language into object code.

Assembler Listing Displays the listing file. Default: -adhlns="$@.lst"

Support ANSI programs (-ansi) Check this option if you want the assembler to operate in
strict ANSI mode. In this mode, the compiler strictly applies
the rules of the ANSI/ISO specification to all input files. This
setting is equivalent to specifying the - ansi command-line
option. The compiler issues a warning for each ANSI/ISO
extension it finds. By default this checkbox is clear. The
assembler does not operate in strict ANSI mode.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 339



Table 3-214. ARM Ltd. Windows GCC Assembler > Miscellaneous (continued)

Option Description

Verbose (-v) Check this option if you want the IDE to show each
command-line that it passes to the shell, along with all
progress, error, warning, and informational messages that the
tools emit. This setting is equivalent to specifying the -v
command-line option. By default this checkbox is clear. The
IDE displays just error messages that the compiler emits. The
IDE suppresses warning and informational messages.

Other flags Specifies the assembler flags. Default: -c -fmessage-
length=0

3.9.6 ARM Ltd. Windows GCC Compiler

Use the ARM Ltd. Windows GCC Compiler panel to specify the compiler options that
are specific to the ARM (GCC).

NOTE
The list of tools presented on the Tool Settings page can differ,
based upon the toolchain used by the project.

The following table lists and describes the various options available on the ARM Ltd.
Windows GCC Compiler panel.

Table 3-215. Tool Settings - ARM Ltd. Windows GCC Compiler

Option Description

Command Shows the location of the assembler executable file. Default:
arm-none-eabi-gcc

All options Shows the actual command line the assembler will be called
with. Default: -nostdinc -I"D:\Profiles
\b14174\16may2012\Project_1/Project_Headers"
-I"D:\Freescale\CW MCU v10.x\eclipse\../
Cross_Tools/arm-none-eabi-gcc-4_6_2/bin/../
ewl/EWL_C/include" -I"D:\Freescale\CW MCU
v10.x\eclipse\../Cross_Tools/arm-none-eabi-
gcc-4_6_2/bin/../ewl/EWL_Runtime/include" -O0
-Wall -Wa,-adhlns="$@.lst" -c -fmessage-
length=0 -mcpu=cortex-m0 -mthumb -g3 -gstabs

Expert settings Shows the expert settings command line parameters. Default:
" ${ARMSourceryDir}/${COMMAND}" ${INPUTS} $
{FLAGS} ${OUTPUT_FLAG}${OUTPUT_PREFIX}$
{OUTPUT}"

Command line pattern

Build Properties for ARM Ltd Windows GCC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

340 Freescale Semiconductor, Inc.



3.9.6.1 ARM Ltd. Windows GCC Compiler > Preprocessor

Use the Preprocessor panel to specify preprocessor behavior. You can specify whether
to search system directories or preprocess only based on the options available in this
panel.

The following table lists and describes the various options available on the Preprocessor
panel.

Table 3-216. ARM Ltd. Windows GCC Compiler > Preprocessor

Option Description

Do not search system directories (-nostdinc) Check this option to specify the -nostdinc command to the
compiler. The compiler does not search the system
directories. By default this checkbox is clear. The compiler
performs a full search that includes the system directories

Preprocess only (-E) Check this option to specify the -E command to the compiler.
The compiler tells the command-line tool to preprocess
source files. By default this checkbox is clear. The compiler
does not preprocess source files.

Defined symbols ( -D) Use this option to specify the substitution strings that the
assembler applies to all the assembly-language modules in
the build target. Enter just the string portion of a substitution
string. The IDE prepends the -D token to each string that you
enter. For example, entering opt1 x produces this result on
the command line: -Dopt1 xNote: This option is similar to
the DEFINE directive, but applies to all assembly-language
modules in a build target.

Undefined symbols ( -U) Undefines the substitution strings you specify in this panel.

3.9.6.2 ARM Ltd. Windows GCC Compiler > Directories

Use the Directories panel to specify the directories paths.

The following table lists and describes the various options available on the Directories
panel.

Table 3-217. ARM Ltd. Windows GCC Compiler > Directories

Option Description

Include paths ( -I) This option changes the build target's search order of access
paths to start with the system paths list. The compiler can
search #include files in several different ways. You can also
set the search order as follows: For include statements of the
form #include"xyz", the compiler first searches user

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 341



Table 3-217. ARM Ltd. Windows GCC Compiler > Directories

Option Description

paths, then the system paths For include statements of the
form #include<xyz>, the compiler searches only system
paths This option is global.

3.9.6.3 ARM Ltd. Windows GCC Compiler > Optimization

Use the Optimization panel to control compiler optimizations. Compiler optimization
can be applied in either global or non-global optimization mode. You can apply global
optimization at the end of the development cycle, after compiling and optimizing all
source files individually or in groups.

The following table lists and describes the various options available on the Optimization
panel.

Table 3-218. ARM Ltd. Windows GCC Compiler > Optimization

Option Description

Optimization Level Use this option to specify the optimizations that you want the
compiler to apply to the generated object code. The options
available are:

• None (-O0) - Disable optimizations. This setting is
equivalent to specifying the -O0 command-line option.
The compiler generates unoptimized, linear assembly-
language code.

• Optimize (-O1) - The compiler performs all target-
independent (that is, non-parallelized) optimizations,
such as function inlining. This setting is equivalent to
specifying the -O1 command-line option. The compiler
omits all target-specific optimizations and generates
linear assembly-language code.

• Optimize more (-O2) - The compiler performs all
optimizations (both target-independent and target-
specific). This setting is equivalent to specifying the -O2
command-line option. The compiler outputs optimized,
non-linear, parallelized assembly-language code.

• Optimize most (-O3) - The compiler performs all the
level 2 optimizations, then the low-level optimizer
performs global-algorithm register allocation. This
setting is equivalent to specifying the -O3 command-line
option. At this optimization level, the compiler generates
code that is usually faster than the code generated from
level 2 optimizations.

• Optimize for size (-Os) - Optimize for size. -Os
enables all -O2 optimizations that do not typically
increase code size. It also performs further

Table continues on the next page...

Build Properties for ARM Ltd Windows GCC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

342 Freescale Semiconductor, Inc.



Table 3-218. ARM Ltd. Windows GCC Compiler > Optimization (continued)

Option Description

optimizations designed to reduce code size. This setting
is equivalent to specifying the - Os command-line
option.

Pack structures (-fpack-struct) Packed data structures are supported in the compiler with the
keyword __packed or __attribute__((packed)).
There is no code generation support for accessing un-aligned,
packed data members.Users should exercise caution when
accessing packed data structures because data might not be
aligned.

Short enumerations (-fshort-enums) Check to use short enumerated constants and is equivalent to
-fshort-enums.

Function sections (-ffunction-sections) Check to use function sections and is equivalent to -
ffunction-sections.

Data sections (-fdata-sections) Check to use short data sections and is equivalent to -
ffunction-sections.

Other optimization flags Specifies individual optimization flag that can be turned ON/
OFF based on the user requirements.

3.9.6.4 ARM Ltd. Windows GCC Compiler > Warnings

Use the Warnings panel to control how the compiler reports the error and warning
messages. The following table lists and describes the various options available on the
Warnings panel.

Table 3-219. ARM Ltd. Windows GCC Compiler > Warnings

Option Description

Check syntax only (-fsyntax-only) Check this option if if you want to check the syntax of
commands and throw a syntax error.

No common (-fno-common) Check this option if if you want to issue all the warnings
demanded by strict ISO C and ISO C++; reject all programs
that use forbidden extensions, and some other programs that
do not follow ISO C and ISO C++. For ISO C, follows the
version of the ISO C standard specified by any `-std' option
used.

Pedantic (-pedantic) Check if you want warnings like -pedantic, except that
errors are produced rather than warnings.

Pedantic warnings as errors (-pedantic-errors) Check this option if if you want to inhibit the display of warning
messages.

Inhibit all warnings (-w) Check this option if if you want to enable all the warnings
about constructions that some users consider questionable,
and that are easy to avoid (or modify to prevent the warning),
even in conjunction with macros.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 343



Table 3-219. ARM Ltd. Windows GCC Compiler > Warnings (continued)

Option Description

All warnings (-Wall) Check this option if if you want to enable all the warnings
about constructions that some users consider questionable,
and that are easy to avoid (or modify to prevent the warning),
even in conjunction with macros.

Extra warnings (-Wextra) Check this option to enable any extra warnings.

Warnings as errors (-Werror) Check this option if if you want to make all warnings into hard
errors. Source code which triggers warnings will be rejected.

3.9.6.5 ARM Ltd. Windows GCC Compiler > Miscellaneous

Use the Miscellaneous panel to specify compiler options.

The following table lists and describes the various options available on the
Miscellaneous panel.

Table 3-220. ARM Ltd. Windows GCC Compiler > Miscellaneous

Option Description

Language Standard Select the programming language or standard to which the
compiler should conform.

• ISO C90 (-ansi) - Select this option to compile code
written in ANSI standard C. The compiler does not
enforce strict standards. For example, your code can
contain some minor extensions, such as C++ style
comments (//), and $ characters in identifiers.

• ISO C99 (-std=c99) - Select this option to instruct the
compiler to enforce stricter adherence to the ANSI/ISO
standard.

• Compiler Default (ISO C90 with GNU extensions) -
Select this option to enforce adherence to ISO C90 with
GNU extensions.

• ISO C99 with GNU Extensions (-std=gnu99)

Enable Assembler Listing Enables the assembler to create a listing file as it compiles
assembly language into object code. Default: -
adhlns="$@.lst"

Do not inline functions (-fno-inline-functions) Check this option if you do not wnat to inline function.

char is signed (-fsigned-char) Check this option if you want to ensure that the char is
signed.

Bitfield are unsigned (-funsigned-bitfields) Check this option to ensure bitfields are unsigned.

Verbose (-v) Check this option if if you want the IDE to show each
command-line that it passes to the shell, along with all
progress, error, warning, and informational messages that the
tools emit. This setting is equivalent to specifying the -v

Table continues on the next page...

Build Properties for ARM Ltd Windows GCC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

344 Freescale Semiconductor, Inc.



Table 3-220. ARM Ltd. Windows GCC Compiler > Miscellaneous (continued)

Option Description

command-line option. By default this checkbox is clear. The
IDE displays just error messages that the compiler emits. The
IDE suppresses warning and informational messages.

Other flags Specifies the compiler flags. The default value is: -c -
fmessage-length=0

3.9.7 ARM Ltd. Windows GCC Linker

Use the ARM Ltd. Windows GCC Linker panel to specify the linker behaviour. The
following table lists and describes the various options available on the ARM Ltd.
Windows GCC Linker panel.

Table 3-221. ARM Ltd. Windows GCC Linker

Option Description

Command Shows the location of the assembler executable file.

All options Shows the actual command line the assembler will be called
with.

Expert Settings Command line pattern Shows the expert settings command line parameters; default
is "${VSPAGCCToolsDir}/${COMMAND}" ${FLAGS} $
{OUTPUT_FLAG}${OUTPUT_PREFIX}${OUTPUT} $
{INPUTS}

Command Shows the location of the assembler executable file.

3.9.7.1 ARM Ltd. Windows GCC Linker > General

Use the General panel to specify the linker behaviour. The following table lists and
describes the various options available on the General panel.

Table 3-222. ARM Ltd. Windows GCC Linker > General

Option Description

Script file (-T) This option passes the -T argument to the linker file

Do not use standard start files (-nostartfiles) This option passes the -nostartfiles argument to the
linker file. It does not allow the use of the standard start files.

Do not use default libraries (-nodefaultlibs) This option passes the -nodefaultlibs argument to the
linker file. It does not allow the use of the default libraries.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 345



Table 3-222. ARM Ltd. Windows GCC Linker > General (continued)

Option Description

No startup or default libs (-nostdlib) This option passes the -nostdlib argument to the linker file.
It does not allow the use of startup or default libs.

Remove unused sections (-Xlinker --gc-sections) This option passes the -Xlinker --gc-sections
argument to the linker file. It removes the unused sections.

Print removed sections (-Xlinker --print-gc-sections) This option passes the -Xlinker --print-gc-sections
argument to the linker file. It ptints the removed sections.

Omit all symbol information (-s) This option passes the -s argument to the linker file. This
option omits all symbol information.

3.9.7.2 ARM Ltd. Windows GCC Linker > Libraries

Use the Libraries panel to specify the libraries and their search paths if the libraries are
available in nonstandard location. You can specify multiple additional libraries and
library search paths. The following table lists and describes the various options available
on the Libraries panel.

Table 3-223. ARM Ltd. Windows GCC Linker > Libraries

Option Description

Libraries ( -l) This option enables the linker to search a standard list of
directories for the library, which is actually a file named '
liblibrary.a'. The linker then uses this file as if it had
been specified precisely by name. The directories searched
includes several standard system directories plus any that
you specify with ' -L'. The only difference between using an '
-l' option and specifying a file name is that ' -l' surrounds
library with ' lib' and ' .a' and searches several directories.

Library search path ( -L) This option lists paths that the VSPA linker searches for
libraries. The linker searches the paths in the order it appears
in the list.

3.9.7.3 ARM Ltd. Windows GCC Linker > Link Order

Use this panel to control the order in which the linker receives the object files.

Build Properties for ARM Ltd Windows GCC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

346 Freescale Semiconductor, Inc.



The following table lists and describes the link order options.

Table 3-224. Tool Settings - Link Order Options

Option Description

Customize linker input order Select if you want the linker to receive the object files in the
specified order.

Link Order Lists the object files corresponding to the source files
specified in the "link order" list. This option is enables only if
Customize linker input order is selected.

3.9.7.4 ARM Ltd. Windows GCC Linker > Miscellaneous

Use the Miscellaneous panel to specify linker options. The following table lists and
describes the various options available on the Miscellaneous panel.

Table 3-225. ARM Ltd. Windows GCC Linker > Miscellaneous

Option Description

Linker flags This option specifies the flags to be passed with the linker file.

Other objects This option lists paths that the VSPA linker searches for
objects. The linker searches the paths in the order shown in
this list.

Map Filename This option specifies the map filename. Default: $
{BuildArtifactFileBaseName}.map

Cross Reference (-Xlinker --cref) Check this option to instruct the linker to list cross-reference
information on symbols. This includes where the symbols
were defined and where they were used, both inside and
outside macros.

Print link map (-Xlinker --printf-map) Check this option to instruct the linker to print the map file.

Verbose (-v) Check this option to show verbose information, including hex
dump of program segments in applications; default setting

Other flags Specify additional command line options for the linker; type in
custom flags that are not otherwise available in the UI.

3.9.8 ARM Ltd. Windows GCC Disassembler

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 347



Use this panel to specify the command, options, and expert settings for the GCC
disassembler settings. The following table lists and describes the various options
available on the GCC Disassembler panel.

Table 3-226. ARM Ltd. Windows GCC Disassembler

Option Description

Command Shows the location of the GCC compiler executable file used
for building the project.

All options Shows the actual command line the compiler will be called
with.

Expert settings Shows the expert settings command line parameters; default
is "${ARMSourceryDir}/${COMMAND}" ${INPUTS} $
{FLAGS}

Command line pattern

3.9.8.1 ARM Ltd. Windows GCC Disassembler > Disassembler
Settings

Use this panel to specify the GCC disassembler settings. The following table lists and
describes the various options available on the GCC Disassembler Settings panel.

Table 3-227. ARM Ltd. Windows GCC Disassembler > Disassembler Settings

Option Description

Disassemble All Section Content (including debug
information) (-D)

Check this option to specify the -D command to the
disassembler, to disassemble all section content and sends
the output to a file. This command is global and case-
sensitive.

Disassemble Executable Section Content (-d) Check this option to specify the -d command to the
disassembler, to disassemble all executable content and send
output to a file.

Intermix Source Code With Disassembly (-S) Check this option to specify the -S command to the
disassembler, to convert jbsr into jsr.

Display All Header Content (-x) Check this option to specify the -x command to the
disassembler, to display the contents of all headers.

Display Archive Header information (-a) Check this option to specify the -a command to the
disassembler, to display the archive header information.

Display Overall File Header content (-f) Check this option to specify the -f command to the
disassembler, to display the contents of the overall file
header.

Display Object Format Specific File Header Contents (-p) Check this option to specify the -p command to the
disassembler, to display the file header contents and object
format

Display Section Header Content (-h) Check this option to specify the -h command to the
disassembler, to display the section header of the file.

Table continues on the next page...

Build Properties for ARM Ltd Windows GCC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

348 Freescale Semiconductor, Inc.



Table 3-227. ARM Ltd. Windows GCC Disassembler > Disassembler Settings (continued)

Option Description

Display Full Section Content (-s) Check this option to specify the -s command to the
disassembler, to display the full section of the file.

Display Debug Information (-g) Check this option to specify the -g command to the
disassembler, to display debug information in the object file.

Display Debug Information Using ctage Style (-e) Check this option to specify the -e command to the
disassembler, to display debug information using the ctags
style.

Display STABS Information (-G) Check this option to specify the -G command to the
disassembler, to display any STABS information in the file, in
raw form.

Display DWARF Information (-W) Check this option to specify the -W command to the
disassembler, to display any DWARF information in the file.

Display Symbol Table Content (-t) Check this option to specify the -t command to the
disassembler, to display the contents of the symbol tables.

Display Dynamic Symbol Table Content (-T) Check this option to specify the -T command to the
disassembler, to display the contents of the dynamic symbol
table.

Display Relocation Entries (-r) Check this option to specify the -r command to the
disassembler, to display the relocation entries in the file.

Display Dynamic Relocation Entries (-R) Check this option to specify the -R command to the
disassembler, to display the dynamic relocation
entries in the file.

3.9.9 ARM Ltd. Windows GCC C Preprocessor

Use the ARM Ltd. Windows GCC C Preprocessor to specify specify the command,
options, and expert settings for

the preprocessor.

The following table lists and describes the various options available on the ARM Ltd.
Windows GCC C Preprocessor panel.

Table 3-228. Tool Settings - ARM Ltd. Windows GCC C Preprocessor

Option Description

Command This option shows the location of the linker executable file.

All options This option shows the actual command line the linker will be
called with.

Expert settings This option shows the expert settings command line
parameters; default is "${ARMSourceryDir}/$
{COMMAND}" ${INPUTS} ${FLAGS}

Command line pattern

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 349



3.9.9.1 ARM Ltd. Windows GCC C Preprocessor > Preprocessor
Settings

Use the ARM Ltd. Windows GCC C Preprocessor settings to specify specify the
command, options, and expert settings for the preprocessor.

The following table lists and describes the various options available on the ARM Ltd.
Windows GCC C Preprocessor panel.

Table 3-229. ARM Ltd. Windows GCC C Preprocessor > Preprocessor Settings

Option Description

Handle Directives Only (fdirectives-only) Check this option to specify the -fdirectives-only
command to the preprocessor to handle only directives.

Print Header File Names (-H) Check this option to specify the -H command to the
preprocessor if you want to print header filenames.

Do not search system directories (-nostdinc) Check this option if you do not want the assembler to search
the system directories. By default, this checkbox is clear. The
assembler performs a full search that includes the system
directories.

3.9.9.2 ARM Ltd. Windows GCC C Preprocessor > Directories

Use the ARM Ltd. Windows GCC C PreprocessorDirectories panel to include paths.

Table 3-230. ARM Ltd. Windows GCC C Preprocessor > Directories

Option Description

Include User Search Paths (-i) Enables you to add new directories to the list of directories
where the user files are searched. Note: Manually edit the
absolute paths if the project is moved to a new location. The
path will be correct, however, for the location in which the
project was originally created. Furthermore, it is a good idea
to open the settings of the new project and click 'Apply' to
avoid the problem of disappearing user-added include paths.

3.10 Build Properties for DSC

Build Properties for DSC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

350 Freescale Semiconductor, Inc.



The Properties for <project> window shows the corresponding build properties for
DSC CPU project.

Figure 3-38. Build Properties - DSC

The following table lists the build properties specific to developing software for DSC.

The properties that you specify in the Tool Settings panels apply to the selected build
tool on the Tool Settings page of the Properties for <project> window.

Table 3-231. Build Properties for DSC

Build Tool Build Properties Panels

Global Settings Global Settings

DSC Linker DSC Linker > Input

DSC Linker > General

DSC Linker > Output

DSC Compiler DSC Compiler > Input

DSC Compiler > Access Paths

DSC Compiler > Warnings

DSC Compiler > Optimization

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 351



Table 3-231. Build Properties for DSC (continued)

Build Tool Build Properties Panels

DSC Compiler > Processor

DSC Compiler > Language

DSC Assembler DSC Assembler > Input

DSC Assembler > General

DSC Assembler > Output

DSC Preprocessor DSC Preprocessor > Settings

DSC Disassembler DSC Disassembler > Settings

3.10.1 Global Settings

Use this panel to specify the global settings the DSC architecture uses. The build tools
(compiler, linker, and assembler) then use the properties set in this panel to generate
CPU-specific code.

The following table lists and describes the global settings options for DSC.

Table 3-232. Tool Settings - Global Settings

Option Description

Generate Debug Information Check to generate symbolic information for debugging the
build target.

Message Style List options to select message style.
• GCC (default) - Uses the message style of the Gnu

Compiler Collection tools
• MPW - Uses the Macintosh Programmer's Workshop

(MPWï¿½) message style
• standard - Uses the standard message style
• IDE - Uses context-free machine parseable message

style
• Enterprise-IDE - Uses CodeWarrior's Integrated

Development Environment (IDE) message style.
• parseable - Uses parseable message style.

Maximum Number of Errors Specify the number of errors allowed until the application
stops processing.

Maximum Number of Warnings Specify the maximum number of warnings.

3.10.2 DSC Linker

Build Properties for DSC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

352 Freescale Semiconductor, Inc.



Use this panel to specify the DSC linker behavior. You can specify the command,
options, and expert settings for the build tool linker. Additionally, the Linker tree control
includes the input, general, and output settings.

The following table lists and describes the linker options for DSC.

Table 3-233. Tools Settings > DSC Linker Options

Option Description

Command Shows the location of the linker executable file. You can
specify additional command line options for the linker; type in
custom flags that are not otherwise available in the UI.

All options Shows the actual command line the linker will be called with.

Expert settings Shows the command line pattern; default is ${COMMAND} $
{FLAGS} ${OUTPUT_FLAG} ${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}.

Command line pattern

3.10.2.1 DSC Linker > Input

Use this panel to specify files the DSC Linker should use. You can specify multiple
additional libraries and library search paths. Also, you can change the order in which the
IDE uses or searches the libraries.

The following table lists and describes the linker input options for DSC.

Table 3-234. Tools Settings > DSC Linker > Input

Option Description

No Standard Library Uses the system library access paths (specified by
%MWLibraries%) and add system libraries (specified by
%MWLibraryFiles%) at the end of link order.

Linker Command File Consists of three kinds of segments, which must be in this
order:

• A memory segment, which begins with the MEMORY{}
directive.

• Optional closure segments, which begin with the
FORCE_ACTIVE{}, KEEP_SECTION{}, or
REF_INCLUDE{} directives.

• A sections segment, which begins with the
SECTIONS{} directive.

Entry Point Specifies the program starting point: the first function the
debugger uses upon program start. This default function is in
file Finit_MC56F824x_5x_ISR_HW_RESET. It sets up the
DSC environment before code execution. Its final task is
calling main().

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 353



Table 3-234. Tools Settings > DSC Linker > Input (continued)

Option Description

Library Search Paths (-L) Specifies the search pathname of libraries or other resources
related to the project. Type the pathname into this text box.
Alternatively, click Workspace or File system , then use the
subsequent dialog box to browse to the correct location.

Library Recursive Search Paths (-lr) Specifies the recursive user paths that the CodeWarrior IDE
searches to find files in your project. You can add several
kinds of paths including absolute and project relative.

Additional Libraries Specify multiple additional libraries and library search paths.
Also, you can change the order in which the IDE uses or
searches the libraries.

Force Active Symbols This option allows you to specify symbols that you do not
want the linker to deadstrip. You must specify the symbol(s)
you want to keep before you use the SECTIONS keyword.

3.10.2.2 DSC Linker > Link Order

Use this panel to control the order in which the linker receives the object files.

The following table lists and describes the link order options.

Table 3-235. Tool Settings - Link Order Options

Option Description

Customize linker input order Select if you want the linker to receive the object files in the
specified order.

Link Order Lists the object files corresponding to the source files
specified in the "link order" list. This option is enables only if
Customize linker input order is selected.

3.10.2.3 DSC Linker > General

Use this panel to specify the general linker behavior.

The following table lists and describes the linker options for DSC.

Table 3-236. Tools Settings > DSC Linker > General

Option Description

Dead-Strip Unused Code Determines whether to pool constants from all functions in a
file.

Table continues on the next page...

Build Properties for DSC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

354 Freescale Semiconductor, Inc.



Table 3-236. Tools Settings > DSC Linker > General (continued)

Option Description

Suppress Link Warnings Prevents the IDE from displaying linker warning messages.

Large Data Memory Model The large data memory model allows data to be placed in
memory at addresses greater than the 16-bit address
limitation of the small data model. When selected this option
informs the compiler that global and static data should be
addressed with the 24-bit variants of the absolute addressing
modes of the device. Also in the large memory model,
pointers are treated as 24-bit quantities when moved from
register to register, memory to register, or register to memory.

Generates elf file for 56800EX core Check to generate an ELF file (the default output file format)
and an S-record output file for your application.

Other Flags Specify additional command line options for the linker; type in
custom flags that are not otherwise available in the UI.

3.10.2.4 DSC Linker > Output

Use this panel to specify the output settings for the DSC linker output.

The following table lists and describes the linker options for DSC.

Table 3-237. Tools Settings > DSC Linker > Output

Option Description

Output Type Select output type as Application (default) or Library.

Generate Link Map Check to generate link map.

List Unused Symbols in Map Check to list unused symbols; appears grayed out if the
Generate Link Map checkbox is not checked.

Show Transitive Closure in Map Check show transitive closure; appears grayed out if the
Generate Link Map checkbox is not checked.

Annotate Byte Symbols in Map Checked - Linker includes B annotation for byte data types
(e.g., char) in the Linker Command File. Clear - By default,
the Linker does not include the B annotation in the Linker
Command File. Everything without the B annotation is a word
address.

Generate ELF Symbol Table Check to generated the ELF symbol table.

Generate S-Record File Check to generate a S-record file.

Sort by Address Check to sort by address.

Generate Byte Addresses Check to generate byte address.

Max S-Record Length Specify the maximum length for S-record; appears grayed out
if the Generate S-Record File checkbox is not checked. The
default value is 252.

S_Record EOL Character Specify the end-of-line character; appears grayed out if the
Generate S-Record File checkbox is not checked. The default
value is DOS (\r\n).

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 355



3.10.3 DSC Compiler

Use this panel to specify the command, options, and expert settings for the build tool
compiler. Additionally, the DSC Compiler tree control includes the general and the file
search path settings.

The following table lists and describes the linker options for DSC.

Table 3-238. Tools Settings > DSC Compiler

Option Description

Command Shows the location of the compiler executable file. You can
specify additional command line options for the compiler; type
in custom flags that are not otherwise available in the UI.

All options Shows the actual command line the compiler will be called
with.

Expert settings Shows the command line pattern; default is ${COMMAND} -c
${FLAGS} ${OUTPUT_FLAG} ${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}.

Command line pattern

3.10.3.1 DSC Compiler > Input

Use this panel to specify additional files the DSC Compiler should use. You can specify
multiple additional libraries and library search paths. Also, you can change the order in
which the IDE uses or searches the libraries.

The following table lists and describes the compiler inputs options for DSC.

Table 3-239. Tools Settings > DSC Compiler > Input

Option Description

Prefix File Specifies a file to be included at the beginning of every
assembly file of the project. Lets you include common
definitions without using an include directive in every file.

Source File Encoding Allows you to specify the default encoding of source files.
Multibyte and Unicode source text is supported. The options
available are:

• ASCII (default)
• Auto-Detect (multibyte encoding)
• System (use system locale)
• UTF-8
• Shift-JIS

Table continues on the next page...

Build Properties for DSC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

356 Freescale Semiconductor, Inc.



Table 3-239. Tools Settings > DSC Compiler > Input (continued)

Option Description

• EUC-JP
• ISO-2022-JP

Allow Macro Redefinition Enables to redefine the macros with the #define directive
without first undefining them with the #undef directive.

Defined Macros Lists the defined command-line macros.

Undefined Macros Lists the undefined command-line macros.

3.10.3.2 DSC Compiler > Access Paths

Use this panel to specify the access paths. Access paths are directory paths the
CodeWarrior tools use to search for libraries, runtime support files, and other object files.

The following table lists and describes the compiler access paths for DSC.

Table 3-240. Tools Settings > DSC Compiler > Access Paths

Option Description

Search User Paths (#include "...") Lets you add/update the user paths that the CodeWarrior IDE
searches to find files in your project. You can add several
kinds of paths including absolute and project-relative.

Search User Paths Recursively Lets you add/update the recursive user paths that the
CodeWarrior IDE searches to find files in your project. You
can add several kinds of paths including absolute and project-
relative.

Search System Paths (#include <...>) Lets you add/update the system paths that the CodeWarrior
IDE searches to find files in your project. You can add several
kinds of paths including absolute and project-relative.

Search System Paths Recursively Lets you add/update the recursive system paths that the
CodeWarrior IDE searches to find files in your project. You
can add several kinds of paths including absolute and project-
relative.

3.10.3.3 DSC Compiler > Warnings

Use this panel to control how the DSC compiler formats the listing file, error and warning
messages.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 357



The following table lists and describes the compiler warnings options for DSC.

Table 3-241. Tool Settings - DSC Compiler > Warnings

Option Description

Treat All Warnings As Errors Check to treat all warnings as errors. The compiler will stop if
it generates a warning message.

Enable Warnings Select the level of warnings you want reported from the
compiler. Custom lets you to select individual warnings. Other
settings select a pre-defined set of warnings.

Illegal #pragmas (most) Check to notify the presence of illegal pragmas.

Possible Unwanted Effects (most) Check to notify most of the possible errors.

Extended Error Checks (most) Check if you want to do an extended error checking.

Hidden Virtual Functions (most) Check to generate a warning message if you declare a non-
virtual member function that prevents a virtual function, that
was defined in a superclass, from being called and is
equivalent to pragma warn_hidevirtual and the command-
line option -warnings hidevirtual.

Implicit Arithmetic Conversions (all) Check to warn of implict arithmetic conversions.

Implicit Signed/Unsigned Conversions (all) Check to enable warning of implict conversions between
signed and unsigned variables.

Implicit Float to Integer Conversions (all) Check to warn of implict conversions of a floating-point
variable to integer type.

Implicit Integer to Float Conversions (all) Check to warn of implict conversion of an integer variable to
floating-point type.

Pointer/Integer Conversions (most) Check to enable warnings of conversions between pointer
and integers.

Unused Arguments (most) Check to warn of unused arguments in a function.

Unused Variables (most) Check to warn of unused variables in the code.

Unused Result from Non-Void-Returning Function (full) Check to warn of unused result from non-void-returning
functions.

Missing 'return' Value in Non-Void-Returning Function (most) Check to warn of when a function lacks a return statement.

Expression has no Side Effect (most) Check to issue a warning message if a source statement
does not change the program's state. This is equivalent to the
pragma warn_no_side_effect, and the command-line
option -warnings unusedexpr.

Extra Commas (most) Check to issue a warning message if a list in an enumeration
terminates with a comma. The compiler ignores terminating
commas in enumerations when compiling source code that
conforms to the ISO/IEC 9899-1999 ("C99") standard and is
equivalent to pragma warn_extracomma and the command-
line option -warnings extracomma.

Empty Declarations (most) Check to warn of empty declarations.

Inconsistent 'class'/'struct' Usage (most) Check to warn of inconsistent usage of class or struct.

Incorrect Capitalization in #include "..." (most) Check to issue a warning message if the name of the file
specified in a #include "file" directive uses different letter case
from a file on disk and is equivalent to pragma
warn_filenamecaps and the command-line option -
warnings filecaps.

Table continues on the next page...

Build Properties for DSC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

358 Freescale Semiconductor, Inc.



Table 3-241. Tool Settings - DSC Compiler > Warnings (continued)

Option Description

Incorrect Capitalization in System #include <...> (most) Check to issue a warning message if the name of the file
specified in a #include <file> directive uses different letter
case from a file on disk and is equivalent to pragma
warn_filenamecaps_system and the command-line
option -warnings sysfilecaps.

Pad Bytes Added (full) Check to issue a warning message when the compiler adjusts
the alignment of components in a data structure and is
equivalent to pragma warn_padding and the command-line
option -warnings padding.

Undefined Macro in #if/#elif (full) Check to issues a warning message if an undefined macro
appears in #if and #elif directives and is equivalent to pragma
warn_undefmacro and the command-line option -
warnings undefmacro.

Non-Inlined Functions (full) Check to issue a warning message if a call to a function
defined with the inline, __inline__, or __inline keywords could
not be replaced with the function body and is equivalent to
pragma warn_notinlined and the command-line option -
warnings notinlined.

Token not Formed by ## Operator (most) Check to enable warnings for the illegal uses of the
preprocessor's token concatenation operator (##). It is
equivalent to the pragma warn_illtokenpasting on.

3.10.3.4 DSC Compiler > Optimization

Use this panel to control compiler optimizations. The compiler's optimizer can apply any
of its optimizations in either global or non-global optimization mode. You can apply
global optimization at the end of the development cycle, after compiling and optimizing
all source files individually or in groups.

The following table lists and describes the compiler optimization options for DSC.

Table 3-242. Tool Settings - DSC Compiler > Optimization

Option Description

Optimization Level (-opt) Specify the optimizations that you want the compiler to apply
to the generated object code: 0-Disable optimizations. This
setting is equivalent to specifying the -O0 command-line
option. The compiler generates unoptimized, linear assembly-
language code. 1-The compiler performs all target-
independent (that is, non-parallelized) optimizations, such as
function inlining. This setting is equivalent to specifying the -
O1 command-line option. The compiler omits all target-
specific optimizations and generates linear assembly-
language code. 2-The compiler performs all optimizations
(both target-independent and target-specific). This setting is
equivalent to specifying the -O2 command-line option. The

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 359



Table 3-242. Tool Settings - DSC Compiler > Optimization (continued)

Option Description

compiler outputs optimized, non-linear, parallelized assembly-
language code. 3-The compiler performs all the level 2
optimizations, then the low-level optimizer performs global-
algorithm register allocation. This setting is equivalent to
specifying the -O3 command-line option. At this optimization
level, the compiler generates code that is usually faster than
the code generated from level 2 optimizations. 4- The
compiler performs all the level 3 optimizations. This setting is
equivalent to specifying the -O4 command-line option.
At this level, the compiler adds repeated subexpression
elimination and loop-invariant code motion.

Speed Vs Size Use to specify an Optimization Level greater than 0.
• Speed-The compiler optimizes object code at the

specified Optimization Level such that the resulting
binary file has a faster execution speed, as opposed to
a smaller executable code size.

• Size-The compiler optimizes object code at the
specified Optimization Level such that the resulting
binary file has a smaller executable code size, as
opposed to a faster execution speed. This setting is
equivalent to specifying the -Os command-line option.

Inter-Procedural Analysis Control whether the compiler views single or multiple source
files at compile time.

• Off-Compiler compiles one file at a time. The functions
are displayed in order as they appear in the source file.
An object file is created for each source.

• File-The compiler sees all the functions and data in a
translation unit (source file) before code or data is
generated. This allows inlining of functions that may not
have been possible in -ipa off mode.

• Program-The compiler sees all the source files of a
project before code and data are generated. This allows
for cross-module optimizations, including inlining.

• Program-Final-The compiler sees all the source files of
a project before code and data are generated. The
object files are passed explicitly to the linker.

Inline Level Enables inline expansion. If there is a #pragma INLINE before
a function definition, all calls of this function are replaced by
the code of this function, if possible. Using the -Oi=c0 option
switches off inlining. Functions marked with the #pragma
INLINE are still inlined. To disable inlining, use the -Oi=OFF
option.

• Smart- Inlines function declared with the inline qualifier
• Off- No functions are inlined.

Auto Inline Inlines small function even if they are not declared with the
inline qualifier

Bottom-up Inlining Check to control the bottom-up function inlining method.
When active, the compiler inlines function code starting with
the last function in the chain of functions calls, to the first one.

Build Properties for DSC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

360 Freescale Semiconductor, Inc.



3.10.3.5 DSC Compiler > Processor

Use this panel to specify processor behavior. You can specify the file paths and define
macros.

The following table lists and describes the compiler procesor options for DSC.

Table 3-243. Tool Settings - DSC Compiler > Processor Options

Option Description

Hardware DO Loops Specifies the level of hardware DO loops: No DO Loops -
Compiler does not generate any No Nested DO Loops -
Compiler generates hardware DO loops, but does not nest
them Nested DO Loops - Compiler generates hardware DO
loops, nesting them two deep. If hardware DO loops are
enabled, debugging will be inconsistent about stepping into
loops. Test immediately after this table contains additional
Do-loop information.

Small Program Model Checked - Compiler generates a more efficient switch table,
provided that code fits into the range 0x0-0xFFFF Clear -
Compilr generates an ordinary switch table. Do not check this
checkbox unless the entire program code fits into the
0x0-0xFFFF memory range.

Large Data Memory Model Checked - Extends DSP56800E addressing range by
providing 24-bit address capability to instructions Clear - Does
not extend address range 24-bit address modes allow access
beyond the 64K-byte boundary of 16-bit addressing.

Globals Live in Lower Memory Checked - Compiler uses 24-bit addressing for pointer and
stack operations, 16-bit addressing for access to global and
static data. Clear - Compiler uses 24-bit addressing for all
data access. This checkbox is available only if the Large Data
Model checkbox is checked.

Zero-Initialized Globals LIve in Data Instead of BSS Checked - Globals initialized to zero reside in the .data
section. Clear - Globals initialized to zero reside in the .bss
section.

Segregate Data Section Check to segregate data section.

Pad Pipeline for Debugger Checked - Mandatory for using the debugger. Inserts NOPs
after certain branch instructions to make breakpoints work
reliably. Clear - Does not insert such NOPs. If you select this
option, you should select the same option in the assembler
panel. Selecting this option increases code size by 5 percent.
But not selecting this option risks nonrecovery after the
debugger comes to breakpoint branch instructions.

Generate Code for Profiling Checked - Compiler generates code for profiling. Clear -
Compiler does not generate code for profiling.

Generate elf file for 56800EX core Checked - Compiler generates elf file for 56800EX core. Clear
- Compiler does not generates elf file for 56800EX core.

Check Inline Assembly for Pipeline Specifies pipeline conflict detection during compiling of inline
assembly source code: Not Detected - compiler does not
check for conflicts Conflict Error - compiler issues error

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 361



Table 3-243. Tool Settings - DSC Compiler > Processor Options (continued)

Option Description

messages if it detects conflicts Conflict Error/Hardware Stall
Warning - compiler issues error messages if it detects
conflicts, warnings if it detects hardware stalls

Check C Source for Pipeline Specifies pipeline conflict detection during compiling of C
source code: Not Detected - compiler does not check for
conflicts Conflict error - compiler issues error messages if it
detects conflicts

3.10.3.6 DSC Compiler > Language

Use this panel direct the DSC compiler to apply specific processing modes to the
language source code. You can compile source files with just one collection at a time. To
compile source files with multiple collections, you must compile the source code
sequentially. After each compile iteration change the collection of settings that the DSC
compiler uses.

The following table lists and describes the compiler optimization options for DSC.

Table 3-244. Tool Settings - DSC Compiler > Language Settings

Option Description

ANSI Strict Check to enable C compiler operate in strict ANSI mode. In
this mode, the compiler strictly applies the rules of the ANSI/
ISO specification to all input files. This setting is equivalent to
specifying the - ansi command-line option. The compiler
issues a warning for each ANSI/ISO extension it finds.

ANSI Keywords Only Check to generate an error message for all non-standard
keywords (ISO/IEC 9899-1990 C, ï¿½6.4.1). If you must write
source code that strictly adheres to the ISO standard, enable
this setting; is equivalent to pragma only_std_keywords
and the command-line option -stdkeywords.

Enums Always Int Check to u se signed integers to represent enumerated
constants and is equivalent to pragma enumsalwaysint
and the command-line option -enum.

Use Unsigned Chars Check to t reat char declarations as unsigned char
declarations and is equivalent to pragma unsigned_char
and the command-line option -char unsigned.

Require Function Prototypes Check to enforce the requirement of function prototypes. The
compiler generates an error message if you define a
previously referenced function that does not have a prototype.
If you define the function before it is referenced but do not
give it a prototype, this setting causes the compiler to issue a
warning message.

Table continues on the next page...

Build Properties for DSC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

362 Freescale Semiconductor, Inc.



Table 3-244. Tool Settings - DSC Compiler > Language Settings (continued)

Option Description

Expand Trigraphs Check to recognize trigraph sequences (ISO/IEC 9899-1990
C, ï¿½5.2.1.1); is equivalent to pragma trigraphs and the
command-line option -trigraphs.

Legacy for-scoping Check to g enerate an error message when the compiler
encounters a variable scope usage that the ISO/IEC
14882-1998 C++ standard disallows, but is allowed in the C+
+ language specified in The Annotated C++ Reference
Manual.

Reuse Strings Check to store only one copy of identical string literals and is
equivalent to opposite of the pragma dont_reuse_strings
and the command-line option -string reuse.

Pool Strings Check to collect all string constants into a single data section
in the object code it generates and is equivalent to pragma
pool_strings and the command-line option -strings
pool.

Other flags Specify additional command line options for the compiler; type
in custom flags that are not otherwise available in the UI.
Note : To enable CodeWarrior MCU V10.x to generate .lst file
for each source file in DSC you need to specify -S in the
Other Flags option.

3.10.4 DSC Assembler

Use this panel to specify the command, options, and expert settings for the build tool
assembler. Additionally, the Assembler tree control includes the general and include file
search path settings.

The following table lists and describes the compiler optimization options for DSC.

Table 3-245. Tool Settings - DSC Assembler

Option Description

Command Shows the location of the assembler executable file. You can
specify additional command line options for the assembler;
type in custom flags that are not otherwise available in the UI.

All options Shows the actual command line the assembler will be called
with.

Expert Settings

Command line pattern Shows the command line pattern; default is ${COMMAND} $
{FLAGS} ${OUTPUT_FLAG} ${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 363



3.10.4.1 DSC Assembler > Input

Use this panel to specify additional files the DSC Assembler should use. You can specify
multiple additional libraries and library search paths. Also, you can change the order in
which the IDE uses or searches the libraries.

The following table lists and describes the compiler optimization options for DSC.

Table 3-246. Tool Settings - DSC Assembler > Input

Option Description

Prefix File Specify a prefix file that you want the compiler to include at
the top of each file.

Always Search User Paths (-nosyspath) Performs a search of the user paths, treating #include
statements of the form #include <xyz> the same as the form
#include " xyz".

User Path (-i) Enables you to add new directories to the list of directories
where the user files are searched.

User Recursive Path (-ir ) Enables you to add new directories to the list of directories
recursively where the user files are searched.

System Path (-I- -I) Enables you to add new directories to the list of directories
where the system files are searched.

System Recursive Path (-I- -ir) Enables you to add new directories to the list of directories
recursively where the system files are searched.

3.10.4.2 DSC Assembler > General

Use this panel to specify additional files the DSC Assembler should use. You can specify
multiple additional libraries and library search paths. Also, you can change the order in
which the IDE uses or searches the libraries.

The following table lists and describes the assembler options for DSC.

Table 3-247. Tool Settings - DSC Assembler > General

Option Description

Identifiers are Case-Sensitive Clear to instruct the assembler to ignore case in identifiers. By
default, the option is checked.

Table continues on the next page...

Build Properties for DSC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

364 Freescale Semiconductor, Inc.



Table 3-247. Tool Settings - DSC Assembler > General (continued)

Option Description

Assert NOPs on Pipeline Conflicts Checked - Assembler automatically resolves pipeline conflicts
by inserting NOPs. Clear - Assembler does not insert NOPs; it
reports pipeline conflicts in error messages. NOP is optional.
The core will stall for you (delay the required time) even if you
do not put the NOP.

Emit Warnings for NOP Assertions Checked - Assembler issues a warning any time it inserts a
NOP to prevent a pipeline conflict. Clear - Assembler does
not issue such warnings. This checkbox is available only if the
Assert NOPs on pipeline conflicts checkbox is checked.

Emit Warnings for Hardware Stalls Checked - Assembler warns when a hardware stall occurs
upon execution. Clear - Assembler does not issue such
warnings. This option helps optimize the cycle count.

Pad Pipeline for Debugger Checked - Mandatory for using the debugger. Inserts NOPs
after certain branch instructions to make breakpoints work
reliably. Clear - Does not insert such NOPs. If you select this
option, you should select the same option in the processor
settings panel. Selecting this option increases code size by 5
percent. But not selecting this option risks nonrecovery after
the debugger comes to breakpoint branch instructions.

Emit Warnings for Odd SP Increment/Decrement Checked - Enables assembler warnings about instructions
that could misalign the stack frame. Clear - Does not enable
such warnings.

Allow Legacy Instructions (default to 16-bit memory models) Checked - Assembler permits legacy DSP56800 instruction
syntax. Clear - Assembler does not permit this legacy syntax.
Selecting this option sets the Default Data Memory Model and
Default Program Memory Model values to 16 bits.

Generates elf file for 56800EX core Check to generate an ELF file (the default output file format)
and an S-record output file for your application.

Default Data Memory Model Specifies 16 or 24 bits as the default size. Factory setting: 16
bits.

Default Program Memory Model Specifies 16, 19, or 21 bits as the default size. Factory
setting: 19 bits.

Other Flags Specify additional command line options for the assembler;
type in custom flags that are not otherwise available in the UI.
Note: To enable CodeWarrior MCU V10.x to generate .lst file
for each source file in DSC, you need to specify -S in the
Other Flags option.

3.10.4.3 DSC Assembler > Output

Use this panel to control how the assembler generates the output file, as well as error and
warning messages. You can specify whether to allocate constant objects in ROM,
generate debugging information, and strip file path information.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 365



The following table lists and describes the assembler output options for DSC.

Table 3-248. Tool Settings - DSC Assembler > Output

Option Description

Generate Listing File Instructs the assembler to generate a disassembly output file.
The disassembly output file contains the file source, along
with line numbers, relocation information, and macro
expansion.

Expand Macros in Listing File Checked - Assembler macros expand in the assembler listing.
Clear - Assembler macros do not expand. This checkbox is
available only if the Generate Listing File checkbox is
checked.

3.10.5 DSC Preprocessor

Use this panel to specify the preprocessor settings for DSC.

The following table lists and describes the preprocessor options for DSC.

Table 3-249. Tool Settings - DSC Preprocesor

Option Description

Command Shows the location of the assembler executable file. You can
specify additional command line options for the assembler;
type in custom flags that are not otherwise available in the UI.

All options Shows the actual command line the assembler will be called
with.

Expert Settings

Command line pattern Shows the command line pattern; default is ${COMMAND} -E
${FLAGS} ${INPUTS}.

3.10.5.1 DSC Preprocessor > Settings

Use this panel to specify the preprocessor settings of DSC Preprocessor.

Build Properties for DSC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

366 Freescale Semiconductor, Inc.



The following table lists and describes the preprocessor settings options for DSC.

Table 3-250. Tool Settings - DSC Preprocessor > Settings

Option Description

Emit File/Line Breaks Check to notify file breaks (or #line breaks) appear in the
output.

Emit #pragma directives Check to show pragma directives in the preprocessor output.
Essential for producing reproducible test cases for bug
reports.

Emit #line Directives Check to display file changes in comments (as before) or in
#line directives.

Show Full Path Check to control whether file changes show the full path or
the base filename of the file.

Keep Comments Check to display comments in the preprocessor output.

Keep Whitespace Check to copy whitespaces in preprocessor output. This is
useful for keeping the starting column aligned with the original
source, though the compiler attempts to preserve space
within the line. This does not apply when macros are
expanded.

3.10.6 DSC Disassembler

Use this panel to specify the command, options, and expert settings for DSC
Disassembler.

The following table lists and describes the disassembler options for DSC.

Table 3-251. Tool Settings - DSC Disassembler

Option Description

Command Shows the location of the preprocessor executable file.
Default value is ""${DSC_ToolsDir}/mwld56800e". You
can specify additional command line options for the
preprocessor; type in custom flags that are not otherwise
available in the UI.

All options Shows the actual command line the linker will be called with.

Expert settings

Command line pattern Shows the command line pattern; default is ${COMMAND} -
dis ${FLAGS} ${INPUTS}

3.10.6.1 DSC Disassembler > Settings

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 367



Use this panel to specify disassembler settings.

The following table lists and describes the disassembler settings options for DSC.

Table 3-252. Tool Settings - DSC Disassembler > Settings

Option Description

Show Headers Check to display headers in the listing file; disassembler
writes listing headers, titles, and subtitles to the listing file

Show Symbol and String Tables Check to display symbol and string tables directives to the
listing file

Verbose Information Tells the compiler to provide verbose, cumulative information
in messages.

Show Relocations Check to have the disassembler show information about
relocated symbols. Clear to prevent the disassembler from
showing information about relocated symbols.

Show Code Modules Check to show core modules in the listing file

Show Extended Mnemonics Check to show the extended mnemonics in the listing file

Show Addresses and Opcodes Check to show the addresses and object code in the listing
file

Show Source Code Check to show the source code in the listing file

Show Comments Check to show the comments in the listing file

Show Data Modules Check to show the data modules in the listing file

Show Exception Tables Check to disassemble exception tables in the listing file

Show Debug Information Check to generate symbolic information for debugging the
build target

3.11 Build Properties for S12Z

The Properties for <project> dialog box shows the corresponding build properties for
S12Z CPU project.

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

368 Freescale Semiconductor, Inc.



Figure 3-39. Build Properties - S12Z

The following table lists the build properties specific to developing software for S12Z.

The properties that you specify in the Tool Settings panels apply to the selected build
tool on the Tool Settings page of the Properties for <project> dialog box.

Table 3-253. Build Properties for S12Z

Build Tool Build Properties Panels

S12Z Preprocessor S12Z Preprocessor > Settings

S12Z Disassembler S12Z Disassembler > Output

S12Z Disassembler > Input

S12Z Disassembler > Host

S12Z Disassembler > Messages

S12Z Disassembler > Messages > Disable User Messages

S12Z Burner S12Z Burner > Output > Configure S-Record

S12Z Burner > Input

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 369



Table 3-253. Build Properties for S12Z (continued)

Build Tool Build Properties Panels

S12Z Burner > Host

S12Z Burner > Messages

S12Z Burner > Messages > Disable User Messages

S12Z Burner > General

S12Z Linker S12Z Linker > Optimization

S12Z Linker > Output

S12Z Linker > Input

S12Z Linker > Host

S12Z Linker > Messages

S12Z Linker > Messages > Disable User Messages

S12Z Linker > General

S12Z Compiler S12Z Compiler > Input

S12Z Compiler > Access Paths

S12Z Compiler > Warnings

S12Z Compiler > Code Generation

S12Z Compiler > Optimization

S12Z Compiler > Language

S12Z Compiler > Messages

S12Z Compiler > General

S12Z Assembler S12Z Assembler > Output

S12Z Assembler > Output > Configure Listing File

S12Z Assembler > Input

S12Z Assembler > Language

S12Z Assembler > Language > Compatibility modes

S12Z Assembler > Host

S12Z Assembler > Code Generation

S12Z Assembler > Messages

S12Z Assembler > Messages > Disable User Messages

S12Z Assembler > General

3.11.1 S12Z Burner

Use the Burner for S12Z Preference Panel to select the settings for the S12Z Burner.

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

370 Freescale Semiconductor, Inc.



The following table lists and describes the burner options for S12Z.

Table 3-254. Tool Settings - S12Z Burner Options

Option Description

Command Shows the location of the burner executable file. Default value
is: "${S12Z_ToolsDir}/burner". You can specify
additional command line options for the burner; type in
custom flags that are not otherwise available in the UI.

All options Shows the actual command line the burner will be called with.

Expert Settings Shows the command line pattern; default is ${COMMAND} $
{FLAGS} ${INPUTS}.Command line pattern

3.11.1.1 S12Z Burner > Output > Configure S-Record

Use this panel to control how the burner generates the output file, as well as error and
warning messages. You can specify whether to allocate constant objects in ROM,
generate debugging information, and strip file path information.

Use this panel to configure the S-record options of the Burner.

The following table lists and describes the general options for S12Z configure S-Record
panel.

Table 3-255. Tool Settings - S12Z Burner > Output > Configure S-Record Options

Option Description

Select all This option disables the generation of all records, from the
start (S0) to the end records (S7, S8, or S9).

No path in S0-record This option removes the path (if present) from the file name in
the S0 record.

No S9-record This option disables the generation of S9-record.

No S8-record This option disables the generation of S8-record.

No S7-record This option disables the generation of S7-record.

No S0-record This option disables the generation of S0-record.

3.11.1.2 S12Z Burner > Input

Use this panel to specify the execute command file of the S12Z Burner input.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 371



The following table lists and describes the inputs options for burner.

Table 3-256. Tool Settings - S12Z Burner > Input Options

Option Description

Execute command file This option allows you to execute a Batch Burner command
file.

3.11.1.3 S12Z Burner > Host

Use this panel to specify the host settings of the S12Z.

The following table lists and describes the memory model options for S12Z.

Table 3-257. Tool Settings - Host

Option Description

Borrow License Feature This option allows you to borrow a license feature until a
given date or time. Borrowing allows you to use a floating
license even if disconnected from the floating license server.

Wait Until a License is Available from Floating License Server By default, if a license is not available from the floating license
server, then the application will immediately return. With -
LicWait set, the application will wait (blocking) until a license
is available from the floating license server.

Application Standard Occurrence This option allows you to select the way you want the
application window to start. Normally, the application starts
with a normal window if no arguments are given. If you start
the application with arguments (e.g., from the Maker to
assemble, compile, or link a file), then the application runs
minimized to allow for batch processing. However, you may
specify the application's window behavior with the View
option.

• -ViewWindow, the application appears with its normal
window.

• -ViewMin the application appears as an icon in the
task bar.

• -ViewMax, the application appears maximized (filling
the whole screen).

• -ViewHidden, the application processes arguments
(e.g., files to be compiled or linked) in the background
(no window or icon visible in the task bar).

Set Environment Variable This option sets an environment variable. Use this
environment variable in the maker, or use to overwrite system
environment variables.

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

372 Freescale Semiconductor, Inc.



The following table lists and describes the toolbar buttons for the Set Environment
Variable option.

Table 3-258. Toolbar Buttons - Set Environment Variable Option

Button Description

Add - Click to open the Enter Value dialog box and specify
the object file search path.

Delete - Click to delete the selected object file search path.

Edit - Click to open the Edit Dialog dialog box and update the
selected object file search path.

Move up - Click to move the selected object file search path
one position higher in the list.

Move down - Click to move the selected object file search
path one position lower in the list.

The following figure shows the Enter Value dialog box for the Set Environment
Variable option in the S12Z Burner > Host panel.

Figure 3-40. Set Environment Variable - Enter Value Dialog Box

The following figure shows the Edit Dialog dialog box for the Set Environment
Variable option in the S12Z Burner > Host panel.

Figure 3-41. Set Environment Variable - Edit Dialog

The buttons in the Enter Value and Edit Dialog dialog boxes help work with the object
file search paths.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 373



• Variables - Click to display the Select build variable dialog box and specify the
object file search path variable. The resulting path variable, relative to the
workspace, appears in the appropriate list.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.

3.11.1.4 S12Z Burner > Messages

Use this panel to specify whether to generate symbolic information for debugging.

The following table lists and describes the message options.

Table 3-259. Tool Settings - S12Z Burner > Messages Options

Option Description

Don't Print INFORMATION Messages This option allows you to disable the INFORMATION
messsges. The -W1 command inhibits the INFORMATION
message reporting.

Don't Print INFORMATION or WARNING Messages This option allows you to disable the printing of
INFORMATION or WARNING messages. The -W2 command
suppresses all messages of the type INFORMATION or
WARNING.

Create err.log Error File You can use this option to enable the burner to create the
err.log error file. The -WErrFileOn command creates or
deletes the err.log file when the application is finished.
When the errors occur, 16-bit window environments use the
err.log files, containing a list of error numbers, to report the
errors. If no errors occur, the 16-bit window environments
delete the err.log file. By default, this checkbox is checked.

Create Error Listing File You can use this option to create an error listing file. The -
WOutFileOn command creates an error listing file. This
option controls whether an error listing file should be created.
The error listing file contains a list of all messages and errors
that are created during processing. By default, this checkbox
is checked.

Cut File Names in Microsoft Format to 8.3 This option truncates the filename to the 8.3 format. The -
Wmsg8x3 command cuts the filenames in Microsoft Format to
8.3. Some editors (early versions of WinEdit) expect the
filename in Microsoft message format (8.3 format). That
means the filename can have up to eight characters and no
more than a three-character extension. Longer filenames are
possible when you use Win95 or WinNT.

Set Message File Format for Batch Mode Use this option to set the message file format for batch mode.
The -WmsgFb(-WmsgFbi,-WmsgFbm) command sets the
message file format for the batch mode. This option starts the
Compiler with additional arguments (for example, files and
Compiler options). If you start the Compiler with the
arguments (for example, from the Make Tool or with the
appropriate argument from an external editor), the Compiler

Table continues on the next page...

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

374 Freescale Semiconductor, Inc.



Table 3-259. Tool Settings - S12Z Burner > Messages Options (continued)

Option Description

compiles the files in a batch mode. No Compiler window is
visible and the Compiler terminates after the job completion.
The options available are:

• Verbose Format
• Microsoft Format (default)

Message Format for batch mode (e.g. %"%f%e%"(%l): %K
%d: %m\n)

This option modifies the default message format in batch
mode. The -WmsgFob command sets the message format for
batch mode. The supported formats are (assuming that the
source file is X:\Freescale\mysourcefile.cpph):

• %s: Source Extract
• %p: Path (example, X:\Freescale\)
• %f: Path and name (example, X:\Freescale
\mysourcefile)

• %n: filename (example, mysourcefile)
• %e: Extension (example, .cpph)
• %N: File (8 chars) (example, mysource )
• %E: Extension (3 chars) (example, .cpp)
• %l: Line (example, 3)
• %c: Column (example, 47)
• %o: Pos (example, 1234)
• %K: Uppercase kind (example, ERROR)
• %k: Lowercase kind (example, error)
• %d: Number (example, C1815)
• %m: Message (example, text)
• %%: Percent (example, %)
• \n: New line
• %": A " if the filename, the path, or the extension

contains a space
• %': A ' if the filename, the path, or the extension

contains a space

Message Format for No File Info (e.g. %K %d: %m\n) Use this option to set the message format for no file
information. If there is no file information available for a
message, then the <string> in the -WmsgFonf<string>
command defines the message format string to use. The
supported formats are:

• %K: Uppercase kind (example, ERROR)
• %k: Lowercase kind (example, error)
• %d: Number (example, C1815)
• %m: Message (example, text)
• %%: Percent (example, % )
• \n: New line
• %": A " if the filename, if the path or the extension

contains a space
• %': A ' if the filename, the path or the extension

contains a space

Message Format for No Position Info (e.g. %"%f%e%": %K
%d: %m\n)

This option allows you to set the message format for no
position information. If there is no position information
available for a message, then the <string> in the -
WmsgFonp<string> command defines the message format
string to use. The supported formats are:

• %K: Uppercase kind (example, ERROR)
• %k: Lowercase kind (example, error)
• %d: Number (example, C1815)
• %m: Message (example, text)

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 375



Table 3-259. Tool Settings - S12Z Burner > Messages Options (continued)

Option Description

• %%: Percent (example, % )
• \n: New line
• %": A " if the filename, if the path or the extension

contains a space
• %': A ' if the filename, the path or the extension

contains a space

Maximum Number of Error Messages This option allows you to set the maximum number of error
messages to be displayed. The <number> in the -
WmsgNe<number> command sets the number of error
messages to be displayed.

Maximum Number of Information Messages This option allows you to set the amount of information
messages that are logged. The <number> in the -
WmsgNi<number> command specifies the maximum number
of information messages allowed.

Set Messages to Disable This option allows you to disable the specified messages. The
-WmsgSd<number> command sets a message to disable,
where <number> is the message number to be disabled,
e.g., 1801.

Set Messages to Error This option changes a message to an error message. The
argument <number> in the command -WmsgSe<number>
sets the specified message number to be an error, e.g., 1853.

Set Messages to Warning This option sets a message to a warning message. The
argument <number> of the -WmsgSw<number> command,
sets the specified error number to be a warning, e.g., 2901.

Set Messages to Information This option sets a message to an information message. The
argument <number> of the command -WmsgSi<number>
sets the specified message number to be an information, e.g.,
1853.

The following table lists and describes the toolbar buttons for the Set Messages to
Disable , Set Messages to Error , Set Messages to Warning and Set Messages to
Information options of the S12Z Burner > Messages panel.

Table 3-260. Search Paths Toolbar Buttons - Messages Panel

Button Description

Add - Click to open the Enter Value dialog box and specify
the object file search path.

Delete - Click to delete the selected object file search path.

Edit - Click to open the Edit Dialog dialog box and update the
selected object file search path.

Move up - Click to move the selected object file search path
one position higher in the list.

Move down - Click to move the selected object file search
path one position lower in the list.

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

376 Freescale Semiconductor, Inc.



The following figure shows the Enter Value dialog box for the Set Messages to Disable
option in the S12Z Burner > Messages panel.

Figure 3-42. Set Messages to Disable - Enter Value Dialog Box

The following figure shows the Edit Dialog dialog box for the Set Messages to Disable
option in the S12Z Burner > Messages panel.

Figure 3-43. Set Messages to Disable - Edit Dialog

The following figur shows the Enter Value dialog box for the Set Messages to Error
option in the S12Z Burner > Messages panel.

Figure 3-44. Set Messages to Error - Enter Value Dialog Box

The following figure shows the Edit Dialog dialog box for the Set Messages to Error
option in the S12Z Burner > Messages panel.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 377



Figure 3-45. Set Messages to Error - Edit Dialog

The following figure shows the Enter Value dialog box for the Set Messages to
Warning option in the S12Z Burner > Messages panel.

Figure 3-46. Set Messages to Warning - Enter Value Dialog Box

The following figure shows the Edit Dialog dialog box for the Set Messages to
Warning option in the S12Z Burner > Messages panel.

Figure 3-47. Set Messages to Warning - Edit Dialog

The following figure shows the Enter Value dialog box for the Set Messages to
Information option in the S12Z Burner > Messages panel.

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

378 Freescale Semiconductor, Inc.



Figure 3-48. Set Messages to Information - Enter Value Dialog Box

The following figure shows the Edit Dialog dialog box for the Set Messages to
Information option in the S12Z Burner > Messages panel.

Figure 3-49. Set Messages to Information - Edit Dialog

The buttons in the Enter Value and Edit Dialog dialog boxes help work with the object
file search paths.

• Variables - Click to display the Select build variable dialog box and specify the
object file search path variable. The resulting path variable, relative to the
workspace, appears in the appropriate list.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.

3.11.1.4.1 S12Z Burner > Messages > Disable User Messages

Use this panel to specify the settings for disabling the user messages for the S12Z Burner
to use.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 379



The following table lists and describes the disable user messages options for S12Z
burner.

Table 3-261. Tool Settings - S12Z Burner > Messages > Disable User Messages Options

Option Description

Disable all Messages Use this option to disable all user messages. This option
disables messages that are not in the normal message
categories like, WARNING, INFORMATION, ERROR, or
FATAL by reducing the amount of messages, and simplifying
the error parsing of other tools.

Display Type of Messages Use this option to disable the type of messages.

Disable Informal Messages (e.g. memory model, floating point
format)

Use this option to disable the informal messages (e.g.,
memory model, floating point format).

Disable Processing Statistics Messages (e.g. code size,
RAM/ROM usage)

Use this option to disable the messages about processing
statistics.

Disable Generated Files Messages Use this option to disable the messages about the generated
files.

Disable Reading Files Messages (e.g. input files) Use this option to disable the messages about the reading
files.

Disable Included Files Messages Use this option to disable the messages about the include
files.

3.11.1.5 S12Z Burner > General

Use this panel to specify other flags for the S12Z Burner to use.

The following table lists and describes the general options for S12Z burner.

Table 3-262. Tool Settings - S12Z Burner > General Options

Option Description

Other flags Specify additional command line options for the burner; type
in custom flags that are not otherwise available in the UI.

3.11.2 S12Z Linker

Use this panel to specify the command, options, and expert settings for the build tool
linker. Additionally, the Linker tree control includes the general, libraries, and search
path settings.

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

380 Freescale Semiconductor, Inc.



The following table lists and describes the linker options for S12Z.

Table 3-263. Tool Settings - S12Z Linker Options

Option Description

Command Shows the location of the linker executable file. Default value
is "${S12Z_ToolsDir}/linker". You can specify
additional command line options for the linker; type in custom
flags that are not otherwise available in the UI.

All options Shows the actual command line the linker will be called with.

Expert Settings

Command line pattern Shows the command line pattern; default is ${COMMAND} $
{FLAGS}${OUTPUT_FLAG}${OUTPUT_PREFIX}$
{OUTPUT}

3.11.2.1 S12Z Linker > Optimization

Use this panel to control linker optimizations. The linker's optimizer can apply any of its
optimizations in either global or non-global optimization mode. You can apply global
optimization at the end of the development cycle, after compiling and optimizing all
source files individually or in groups.

The following table lists and describes the linker optimization options for S12Z .

Table 3-264. Tool Settings - S12Z Linker > Optimization Options

Option Description

Allocation over Segment Boundaries This option allows you the allocation over segment
boundaries. The available options are:

• Always Use Next Segment (default)
• Always Check for Free Previous Segment
• Check for Free Previous Segment when Current is Full

Allocate Non-Referenced Overlap Variables This option allows you to allocate Non-Referenced Overlap
Variables.

Enable Automatic const Placement With this option the linker constant optimizer is enabled.
Instead of performing usual linking actions, the linker
generates a data distribution file which contains optimized
distribution for constant objects.

Specify Constant Distribution Segment Name When this option is enabled, it's possible to specify the name
of the constant distribution segment.

Allocate Non-Specified const Segments in RAM This option allocates constant data segments not explicitly
allocated in a READ_ONLY segment in the default
READ_WRITE segment. This was the default for old versions
of the linker, so this option provides a compatible behavior
with old linker versions.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 381



Table 3-264. Tool Settings - S12Z Linker > Optimization Options (continued)

Option Description

Enable Automatic Data Placement With this option the linker data optimizer is enabled. Instead
of performing usual linking actions, the linker generates a
data distribution file which contains optimized distribution.

Specify Data Distribution File Name When this option is enabled, it's possible to specify the name
of the data distribution file. There, all distributed data and how
the compiler has to reallocate them are listed.

Generate Data Optimizer Information File When this option is enabled, the data optimizer generates a
data distribution information file giving information on object to
segment mapping

Specify Data Distribution Segment Name When this option is enabled, it's possible to specify the name
of the data distribution segment.

Enable Distribution Optimization This option enables the linker optimizer. Instead of a link, the
linker generates a distribution file which contains an optimized
distribution.

Specify Distribution File Name Enable this option to specify the name of the distribution file.
The distribution file lists all distributed functions and specifies
how the compiler reallocates them.

Generate Optimizer Information File Using this option, the optimizer generates a distribution
information file containing a list of all sections and their
functions. Available function information includes the old size,
optimized size, and new calling convention.

Choose Optimizing Method This option allows you to choose the optimizing method. With
the FillBanks argument the linker minimizes the free space in
every bank. FillBanks is most effective for functions using the
near calling convention. Use the CodeSize argument to
minimize code when free space within the banks is no
concern. The options available are:

• Priority is to Fill the Banks (default)
• Priority is to Minimize the Code Size

Specify Distribution Segment Name Use this option to specify the name of the distribution
segment.

Specify Library File Name When this option is enabled,linker generates
file<filename> which has information about the current
libraries and also about the files with which they should be
replaced with.

Enable Library Option File Generation Enables library information generation. When this option is
enabled,linker generates file (default libFile.txt) which
has information about the current library and the startup file
and also about the files with which they should be replaced
with.

Specify Data Optimizer Options File Name Specifies the name of the file that contains the set of linker-
generated compiler options. When this option is enabled,
linker places the second step compiler options in the specified
file<filename>.

Enable Option File Generation Enables compiler option generation. The generated options
will be used for second step compilation. Linker generates a
text file containing a compiler option for the second step (one
of the following: -ConstQualiNear, -

Table continues on the next page...

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

382 Freescale Semiconductor, Inc.



Table 3-264. Tool Settings - S12Z Linker > Optimization Options (continued)

Option Description

NonConstQualiNear, -Mb). The content of the file is
appended to the compiler options for the second compilation
step.

Specify Library File Name Specifies the name of the library information file. When this
option is enabled in second link step,linker reads
file<filename> which has information about the libraries.

Enable Option to Read libFile.txt in P2 Instructs the linker to read in the library information file that it
generated in step one. This option is passed in second link
step. It tells the linker to read library information file(default
libFile.txt).

Emit StartUp Information to Library Info File The information about the current startup file and the
replacement startup file will be added to the library file(default
libFile.txt) and used during the second compile-link
step.

Overlap Constants in ROM Defines the default if constants and code should be
optimized; commands DO_OVERLAP_CONSTS and
DO_NOT_OVERLAP_CONSTS take precedence over the
option. The options available are:

• No Overlap (default)
• Overlap Constant Data and Code
• Overlap Constant Data
• Overlap Code

Optimize Copy Down Changes the copy down structure to use few spaces. The
optimization does assume that the application does perform
both the zero out and the copy down step of the global
initialization. If a value is set to zero by the zero out, then zero
values are removed from the copy down information. The
resulting initialization is not changed by this optimization if the
default startup code is used.

3.11.2.2 S12Z Linker > Output

Use this panel to control how the linker formats the listing file, as well as error and
warning messages.

The following table lists and describes the linker output options for S12Z.

Table 3-265. Tool Settings - S12Z Linker > Output Options

Option Description

Link as ROM library Check to link the application as a ROM library. This option
has the same effect as specifying AS ROM_LIB in the linker
parameter file.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 383



Table 3-265. Tool Settings - S12Z Linker > Output Options (continued)

Option Description

Generate S-Record file Check to specify that in addition to an absolute file, also an
srecord file should be generated. The name of the srecord file
is the same as the name of the abs file, except that the
extension "SX" is used. The default.env variable "SRECORD"
may specify an alternative extension.

Check if Objects Overlap in the Absolute File (even if different
address spaces)

Check to instruct the linker to check if objects overlap, taking
into account their address space.

Define Default Value of the EPAGE Register Defines the reset value for the EEPROM Page Index Register
(EPAGE). The value is specific to the actual S12(X)
derivative.

Define Default Value of the PPAGE Register Defines the reset value for the Program Page Index Register
(PPAGE). The value is specific to the actual S12(X)
derivative.

Define Default Value of the RPAGE Register Defines the reset value for the RAM Page Index Register
(RPAGE). The value is specific to the actual S12(X)
derivative.

Generate Map File Check to scan source files for dependencies and emit a
Makefile, without generating object code.

Mapping for Memory Space 0x4000-0x7FFF This option sets the memory mapping for addresses between
0x4000 and 0x7FFF for HCS12XE. This mapping is
determined by the MMC control register (the ROMHM and
RAMHM bits) and the compiler must be aware of the current
setting to correctly perform address translations.

Never Check Section Qualifier Compatibility For some target CPU's, when placing a section in a segment
the linker checks if the qualifiers of the section are compatible
with the ones of the segment (for instance when placing .text
into RAM may result in a linker error).This option disables the
check.

Strip Symbolic Information Check to disable the generation of DWARF sections in the
absolute file to save memory space.

Generate Fixups in abs File Check to ensure compatibility with previous linker versions.
Usually, absolute files do not contain any fixups because all
fixups are evaluated at link time. But with fixups, the decoder
might symbolically decode the content in absolute files. Some
debuggers do not load absolute files which contain fixups
because they assume that these fixups are not yet evaluated.
But the fixups inserted with this option are actually already
handled by this linker.

Enable Stack Consumption Computation The linker computes maximum stack effect for given
application when the option is enabled and places the result
in the output .map file.

Specify Statistic File (e.g. statistic.txt) Specify the name of the linker statistic file. The statistic file
reports each allocated object and its attributes. Every attribute
is separated by a tab character, so it can be easily imported
into a spreadsheet/database program for further processing.

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

384 Freescale Semiconductor, Inc.



3.11.2.3 S12Z Linker > Input

Use this panel to specify the parameter file path, startup function, object file search paths,
and any additional libraries that the C/C++ Linker should use. You can specify multiple
additional libraries and library search paths. Also, you can change the order in which the
IDE uses or searches the libraries.

The following table lists and describes the linker input options for S12Z.

Table 3-266. Tool Settings - S12Z Linker > Input Options

Option Description

Parameter File Use this option to select the path of the parameter file. Default
value is ${ProjDirPath}/Project_Settings/
Linker_Files/mc9s12zvmc64.prm.

Specify Startup Function Defines the application entry point.

Object File Format Defines the object file format.

Link Case Insensitive With this option, the linker ignores object name capitalization.
This option supports case-insensitive linking of assembly
modules. Since all identifiers are linked case insensitive, this
also affects C or C++ modules. This option only affects the
comparison of names of linked objects. Section names or the
parsing of the link parameter file are unaffected. They remain
case sensitive.

Search paths Shows the list of all search paths; the ELF part of the linker
searches object files first in all paths and then the usual
environment variables are considered.

Libraries Lists paths to additional libraries that the C/C++ linker uses.
Default value is "${MCUToolsBaseDir}/
S12lisa_Support/s12lisac/lib/ansii.lib"

The following table lists and describes the toolbar buttons that help work with the
libraries and the additional object file search paths.

Table 3-267. Search Paths Toolbar Buttons

Button Description

Add - Click to open the Add directory path dialog box and
specify the object file search path.

Delete - Click to delete the selected object file search path.

Edit - Click to open the Edit directory path dialog box and
update the selected object file search path.

Move up - Click to move the selected object file search path
one position higher in the list.

Move down - Click to move the selected object file search
path one position lower in the list.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 385



The following figure shows the Add directory path dialog box for the Search Paths
option in the S12Z Linker > Input panel.

Figure 3-50. Search Paths - Add directory path Dialog Box

The following figure shows the Edit directory path dialog box for the Search Paths
option in the S12Z Linker > Input panel.

Figure 3-51. Search Paths - Edit directory path Dialog Box

The buttons in the Add directory path and Edit directory path dialog boxes help work
with the object file search paths.

• Variables - Click to display the Select build variable dialog box and specify the
object file search path variable. The resulting path variable, relative to the
workspace, appears in the appropriate list.

• Workspace - Click to display the Folder Selection dialog box and specify the
variable for object file search path. The resulting variable, relative to the workspace,
appears in the appropriate list.

• File system - Click to display the Browse for Folder dialog box and specify the
object file search path. The resulting path appears in the appropriate list.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

386 Freescale Semiconductor, Inc.



The following figure shows the Add file path dialog box for the Libraries option of the
S12Z Linker > Input panel.

Figure 3-52. Libraries - Add file path Dialog Box

The following figure shows the Edit file path dialog box.

Figure 3-53. Libraries - Edit file path Dialog Box

The buttons in the Add file path and Edit file path dialog boxes help work with the file
paths.

• Variables - Click to display the Select build variable dialog box and specify the
object file search path variable. The resulting path variable, relative to the
workspace, appears in the appropriate list.

• Workspace - Click to display the Folder Selection dialog box and specify the
variable for object file search path. The resulting variable, relative to the workspace,
appears in the appropriate list.

• File system - Click to display the Browse for Folder dialog box and specify the
object file search path. The resulting path appears in the appropriate list.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 387



3.11.2.4 S12Z Linker > Link Order

Use this panel to control the order in which the linker receives the object files.

The following table lists and describes the link order options.

Table 3-268. Tool Settings - Link Order Options

Option Description

Customize linker input order Select if you want the linker to receive the object files in the
specified order.

Link Order Lists the object files corresponding to the source files
specified in the "link order" list. This option is enables only if
Customize linker input order is selected.

3.11.2.5 S12Z Linker > Host

Use this panel to specify the host settings of the S12Z.

The following table lists and describes the memory model options for S12Z.

Table 3-269. Tool Settings - S12Z Linker > Host

Option Description

Borrow License Feature This option allows you to borrow a license feature until a
given date or time. Borrowing allows you to use a floating
license even if disconnected from the floating license server.

Wait Until a License is Available from Floating License Server By default, if a license is not available from the floating license
server, then the application will immediately return. With -
LicWait set, the application will wait (blocking) until a license
is available from the floating license server.

Application Standard Occurrence This option allows you to select the way you want the
application window to start. Normally, the application starts
with a normal window if no arguments are given. If you start
the application with arguments (e.g., from the Maker to
assemble, compile, or link a file), then the application runs
minimized to allow for batch processing. However, you may
specify the application's window behavior with the View
option.

• -ViewWindow, the application appears with its normal
window.

• -ViewMin, the application appears as an icon in the
task bar.

• -ViewMax, the application appears maximized (filling
the whole screen).

• -ViewHidden, the application processes arguments
(e.g., files to be compiled or linked) in the background
(no window or icon visible in the task bar).

Table continues on the next page...

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

388 Freescale Semiconductor, Inc.



Table 3-269. Tool Settings - S12Z Linker > Host (continued)

Option Description

Set Environment Variable This option sets an environment variable. Use this
environment variable in the maker, or use to overwrite system
environment variables.

The following table lists and describes the toolbar buttons for the Set Environment
Variable option.

Table 3-270. Toolbar Buttons - Set Environment Variable Option

Button Description

Add - Click to open the Enter Value dialog box and specify
the object file search path.

Delete - Click to delete the selected object file search path.

Edit - Click to open the Edit Dialog dialog box and update the
selected object file search path.

Move up - Click to move the selected object file search path
one position higher in the list.

Move down - Click to move the selected object file search
path one position lower in the list.

The following figure shows the Enter Value dialog box for the Set Environment
Variable option in the S12Z Linker > Host panel.

Figure 3-54. Set Environment Variable - Enter Value Dialog Box

The following figure shows the Edit Dialog dialog box for the Set Environment
Variable option in the S12Z Linker > Host panel.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 389



Figure 3-55. Set Environment Variable - Edit Dialog

The buttons in the Enter Value and Edit Dialog dialog boxes help work with the object
file search paths.

• Variables - Click to display the Select build variable dialog box and specify the
object file search path variable. The resulting path variable, relative to the
workspace, appears in the appropriate list.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.

3.11.2.6 S12Z Linker > Messages

Use this panel to specify whether to generate symbolic information for debugging.

The following table lists and describes the message options.

Table 3-271. Tool Settings - S12Z Linker > Messages Options

Option Description

Don't Print INFORMATION Messages This option allows you to disable the INFORMATION
messsges. The -W1 command inhibits the INFORMATION
message reporting.

Don't Print INFORMATION or WARNING Messages This option allows you to disable the printing of
INFORMATION or WARNING messages. The -W2 command
suppresses all messages of the type INFORMATION or
WARNING.

Create err.log Error File You can use this option to enable the burner to create the
err.log error file. The -WErrFileOn command creates or
deletes the err.log file when the application is finished.
When the errors occur, 16-bit window environments use the
err.log files, containing a list of error numbers, to report the
errors. If no errors occur, the 16-bit window environments
delete the err.log file. By default, this checkbox is checked.

Create Error Listing File You can use this option to create an error listing file. The -
WOutFileOn command creates an error listing file. This
option controls whether an error listing file should be created.

Table continues on the next page...

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

390 Freescale Semiconductor, Inc.



Table 3-271. Tool Settings - S12Z Linker > Messages Options (continued)

Option Description

The error listing file contains a list of all messages and errors
that are created during processing. By default, this checkbox
is checked.

Cut File Names in Microsoft Format to 8.3 This option truncates the filename to the 8.3 format. The -
Wmsg8x3 command cuts the filenames in Microsoft Format to
8.3. Some editors (early versions of WinEdit) expect the
filename in Microsoft message format (8.3 format). That
means the filename can have up to eight characters and no
more than a three-character extension. Longer filenames are
possible when you use Win95 or WinNT.

Set Message File Format for Batch Mode Use this option to set the message file format for batch mode.
The -WmsgFb(-WmsgFbi,-WmsgFbm) command sets the
message file format for the batch mode. This option starts the
Compiler with additional arguments (for example, files and
Compiler options). If you start the Compiler with the
arguments (for example, from the Make Tool or with the
appropriate argument from an external editor), the Compiler
compiles the files in a batch mode. No Compiler window is
visible and the Compiler terminates after the job completion.
The options available are:

• Verbose Format
• Microsoft Format (default)

Message Format for batch mode (e.g. %"%f%e%"(%l): %K
%d: %m\n) (-WmsgFob)

This option modifies the default message format in batch
mode. The -WmsgFob command sets the message format for
batch mode. The supported formats are (assuming that the
source file is X:\Freescale\mysourcefile.cpph):

• %s: Source Extract
• %p: Path (example, X:\Freescale\)
• %f: Path and name (example, X:\Freescale
\mysourcefile)

• %n: filename (example, mysourcefile)
• %e: Extension (example, .cpph)
• %N: File (8 chars) (example, mysource )
• %E: Extension (3 chars) (example, .cpp)
• %l: Line (example, 3)
• %c: Column (example, 47)
• %o: Pos (example, 1234)
• %K: Uppercase kind (example, ERROR)
• %k: Lowercase kind (example, error)
• %d: Number (example, C1815)
• %m: Message (example, text)
• %%: Percent (example, %)
• \n: New line
• %": A " if the filename, the path, or the extension

contains a space
• %': A ' if the filename, the path, or the extension

contains a space

Message Format for No File Info (e.g. %K %d: %m\n) Use this option to set the message format for no file
information. If there is no file information available for a
message, then the <string> in the -WmsgFonf<string>
command defines the message format string to use. The
supported formats are:

• %K: Uppercase kind (example, ERROR)
• %k: Lowercase kind (example, error)

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 391



Table 3-271. Tool Settings - S12Z Linker > Messages Options (continued)

Option Description

• %d: Number (example, C1815)
• %m: Message (example, text)
• %%: Percent (example, % )
• \n: New line
• %": A " if the filename, if the path or the extension

contains a space
• %': A ' if the filename, the path or the extension

contains a space

Message Format for No Position Info (e.g. %"%f%e%": %K
%d: %m\n)

This option allows you to set the message format for no
position information. If there is no position information
available for a message, then the <string> in the -
WmsgFonp<string> command defines the message format
string to use. The supported formats are:

• %K: Uppercase kind (example, ERROR)
• %k: Lowercase kind (example, error)
• %d: Number (example, C1815)
• %m: Message (example, text)
• %%: Percent (example, % )
• \n: New line
• %": A " if the filename, if the path or the extension

contains a space
• %': A ' if the filename, the path or the extension

contains a space

Maximum Number of Error Messages This option allows you to set the maximum number of error
messages to be displayed. The <number> in the -
WmsgNe<number> command sets the number of error
messages to be displayed.

Maximum Number of Information Messages This option allows you to set the amount of information
messages that are logged. The <number> in the -
WmsgNi<number> command specifies the maximum number
of information messages allowed.

Set Messages to Disable This option allows you to disable the specified messages. The
-WmsgSd<number> command sets a message to disable,
where <number> is the message number to be disabled,
e.g., 1801.

Set Messages to Error This option changes a message to an error message. The
argument <number> in the command -WmsgSe<number>
sets the specified message number to be an error, e.g., 1853.

Set Messages to Warning This option sets a message to a warning message. The
argument <number> of the -WmsgSw<number> command,
sets the specified error number to be a warning, e.g., 2901.

Set Messages to Information This option sets a message to an information message. The
argument <number> of the command -WmsgSi<number>
sets the specified message number to be an information, e.g.,
1853.

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

392 Freescale Semiconductor, Inc.



The following table lists and describes the toolbar buttons for the Set Messages to
Disable , Set Messages to Error , Set Messages to Warning and Set Messages to
Information options of the S12Z Linker > Messages panel.

Table 3-272. Toolbar Buttons - Messages Panel

Button Description

Add - Click to open the Enter Value dialog box and specify
the object file search path.

Delete - Click to delete the selected object file search path.

Edit - Click to open the Edit Dialog dialog box and update the
selected object file search path.

Move up - Click to move the selected object file search path
one position higher in the list.

Move down - Click to move the selected object file search
path one position lower in the list.

The following figure shows the Enter Value dialog box for the Set Messages to Disable
option in the S12Z Linker > Messages panel.

Figure 3-56. Set Messages to Disable - Enter Value Dialog Box

The following figure shows the Edit Dialog dialog box for the Set Messages to Disable
option in the S12Z Linker > Messages panel.

Figure 3-57. Set Messages to Disable - Edit Dialog

The following figure shows the Enter Value dialog box for the Set Messages to Error
option in the S12Z Linker > Messages panel.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 393



Figure 3-58. Set Messages to Error - Enter Value Dialog Box

The following figure shows the Edit Dialog dialog box for the Set Messages to Error
option in the S12Z Linker > Messages panel.

Figure 3-59. Set Messages to Error - Edit Dialog

The following figure shows the Enter Value dialog box for the Set Messages to
Warning option in the S12Z Linker > Messages panel.

Figure 3-60. Set Messages to Warning - Enter Value Dialog Box

The following figure shows the Edit Dialog dialog box for the Set Messages to
Warning option in the S12Z Linker > Messages panel.

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

394 Freescale Semiconductor, Inc.



Figure 3-61. Set Messages to Warning - Edit Dialog

The following figure shows the Enter Value dialog box for the Set Messages to
Information option in the S12Z Linker > Messages panel.

Figure 3-62. Set Messages to Information - Enter Value Dialog Box

The following figure shows the Edit Dialog dialog box for the Set Messages to
Information option in the S12Z Linker > Messages panel.

Figure 3-63. Set Messages to Information - Edit Dialog

The buttons in the Enter Value and Edit Dialog dialog boxes help work with the object
file search paths.

• Variables - Click to display the Select build variable dialog box and specify the
object file search path variable. The resulting path variable, relative to the
workspace, appears in the appropriate list.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 395



3.11.2.6.1 S12Z Linker > Messages > Disable User Messages

Use this panel to specify the settings for disabling the user messages for the S12Z Linker
to use.

The following table lists and describes the disable user messages options for S12Z
Linker.

Table 3-273. S12Z Linker > Messages > Disable User Messages Options

Option Description

Disable all Messages Use this option to disable all user messages. This option
disables messages that are not in the normal message
categories like, WARNING, INFORMATION, ERROR, or
FATAL by reducing the amount of messages, and simplifying
the error parsing of other tools.

Display Type of Messages Use this option to disable the type of messages.

Disable Informal Messages (e.g. memory model, floating point
format)

Use this option to disable the informal messages (e.g.,
memory model, floating point format).

Disable Included Files Messages Use this option to disable the messages about the generated
files.

Disable Reading Files Messages (e.g. input files) Use this option to disable the messages about the reading
files.

Disable Generated Files Messages Use this option to disable the messages about the include
files.

Disable Processing Statistics Messages (e.g. code size,
RAM/ROM usage)

Use this option to disable the messages about processing
statistics.

3.11.2.7 S12Z Linker > General

Use this panel to specify the general linker behavior.

The following table lists and describes the general linker options for S12Z.

Table 3-274. Tool Settings - Linker > General Options

Option Description

Other flags Specify additional command line options for the linker; type in
custom flags that are not otherwise available in the UI.

3.11.3 S12Z Compiler

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

396 Freescale Semiconductor, Inc.



Use this panel to specify the command, options, and expert settings for the build tool
compiler. Additionally, the S12Z Compiler tree control includes the general and the file
search path settings.

The following table lists and describes the compiler options for S12Z.

Table 3-275. Tool Settings - Compiler Options

Option Description

Command Shows the location of the compiler executable file. Default
value is: "${S12Z_ToolsDir}/mwccs12lisa". You can
specify additional command line options for the compiler; type
in custom flags that are not otherwise available in the UI.

All options Shows the actual command line the compiler will be called
with.

Expert Settings

Command line pattern Shows the command line pattern; default is ${COMMAND} -c
${FLAGS} ${OUTPUT_FLAG} ${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}.

3.11.3.1 S12Z Compiler > Input

Use this panel to specify file search paths and any additional include files the S12Z
Compiler should use. You can specify multiple search paths and the order in which you
want to perform the search.

The IDE first looks for an include file in the current directory, or the directory that you
specify in the INCLUDE directive. If the IDE does not find the file, it continues searching the
paths shown in this panel. The IDE keeps searching paths until it finds the #include file or
finishes searching the last path at the bottom of the Include File Search Paths list. The
IDE appends to each path the string that you specify in the INCLUDE directive.

NOTE
The IDE displays an error message if a header file is in a
different directory from the referencing source file. Sometimes,
the IDE also displays an error message if a header file is in the
same directory as the referencing source file.

For example, if you see the message Could not open source file myfile.h, you must add the
path for myfile.h to this panel.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 397



The following table lists and describes the input options for S12Z Compiler.

Table 3-276. Tool Settings - S12Z Compiler > Input Options

Option Description

Prefix File This option allows you to specify the prefix file or precompiled
header file search path.

Source File Encoding This option allows you to select the source file encoding. The
options available are:

• ASCII (default)
• Auto-Detect (multibyte encoding)
• System (use system locale)
• UTF-8
• Shift-JIS
• EUC-JP
• ISO-2022-JP

Allow Macro Redefinition This option allows macro redefinitions without an error or
warning.

Defined Macros Use this option to specify the defined macros.

Undefined Macros Use this option to specify the undefined macros.

The following table lists and describes the toolbar buttons that help work with the file
paths.

Table 3-277. Defined Macros/Undefined Macros Toolbar Buttons

Button Description

Add - Click to open the Enter Value dialog box and specify
location of the library you want to add.

Delete - Click to delete the selected library path.

Edit - Click to open the Edit Dialog dialog box and update the
selected path.

Move up - Click to move the selected path one position higher
in the list.

Move down - Click to move the selected path one position
lower in the list.

The following figure shows the Enter Value dialog box for Defined Macros .

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

398 Freescale Semiconductor, Inc.



Figure 3-64. Tool Settings - S12Z Compiler > Defined Macros > Enter value Dialog Box

The following figure shows the Edit Dialog dialog box for Defined Macros .

Figure 3-65. Defined Macros - Edit Dialog

The buttons in the Enter Value and Edit Dialog dialog boxes help work with the paths.

• Variables - Click to display the Select build variable dialog box and specify the
object file search path variable. The resulting path variable, relative to the
workspace, appears in the appropriate list.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.

The following figure shows the Enter Value dialog box for Undefined Macros .

Figure 3-66. Undefined Macros - Enter value Dialog Box

The following figure shows the Edit Dialog dialog box for Undefined Macros .

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 399



Figure 3-67. Undefined Macros - Edit Dialog

The buttons in the Enter Value and Edit Dialog dialog boxes help work with the paths.

• Variables - Click to display the Select build variable dialog box and specify the
object file search path variable. The resulting path variable, relative to the
workspace, appears in the appropriate list.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.

3.11.3.2 S12Z Compiler > Access Paths

Use this panel to specify access path options for the S12Z Compiler.

The following table lists and describes the access paths options for S12Z.

Table 3-278. Tool Settings - HCS08 Compiler > Language Options

Option Description

Do Not use MWCIncludes Variable This option inhibits the usage of MWCInclude variables. By
default, this checkbox is checked.

Always Search User Paths Use this option to enable the usage of the search paths.

Search User Paths (#include "...") Use this option to specify the user paths.

Search User Paths Recursively Use this option to specify the user paths recursively.

Search System Paths (#include <...>) Use this option to specify the system paths.

Search System Paths Recursively Use this option to specify the system paths recursively.

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

400 Freescale Semiconductor, Inc.



The following table lists and describes the toolbar buttons that help work with the
libraries and the additional object file search paths.

Table 3-279. Search Paths Toolbar Buttons

Button Description

Add - Click to open the Add directory path dialog box and
specify the object file search path.

Delete - Click to delete the selected object file search path.

Edit - Click to open the Edit directory path dialog box and
update the selected object file search path.

Move up - Click to move the selected object file search path
one position higher in the list.

Move down - Click to move the selected object file search
path one position lower in the list.

The following figure shows the Add directory path dialog box.

Figure 3-68. Add directory path Dialog Box

The following figure shows the Edit directory path dialog box.

Figure 3-69. Edit directory path Dialog Box

The buttons in the Add directory path and Edit directory path dialog boxes help work
with the object file search paths.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 401



• Variables - Click to display the Select build variable dialog box and specify the
object file search path variable. The resulting path variable, relative to the
workspace, appears in the appropriate list.

• Workspace - Click to display the Folder selection dialog box and specify the
variable for object file search path. The resulting variable, relative to the workspace,
appears in the appropriate list.

• File system - Click to display the Browse for Folder dialog box and specify the
object file search path. The resulting path appears in the appropriate list.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.

3.11.3.3 S12Z Compiler > Warnings

Use this panel to specify the warnings settings for S12Z compiler.

The following table lists and describes the Warnings options for S12Z compiler.

Table 3-280. Tool Settings - S12Z Compiler > Warnings Options

Option Description

Treat All Warnings as Errors Check to treat all warnings as errors. The compiler will stop if
it generates a warning message.

Enable Warnings Select the level of warnings you want reported from the
compiler. Custom lets you to select individual warnings. Other
settings select a pre-defined set of warnings.

Illegal #pragmas (most) Check to notify the presence of illegal pragmas.

Possible Unwanted Effects (most) Check to notify the presence of illegal pragmas.

Extended Error Checks (most) Check if you want to do an extended error checking.

Hidden Virtual Functions (most) Check to generate a warning message if you declare a non-
virtual member function that prevents a virtual function, that
was defined in a superclass, from being called and is
equivalent to pragma warn_hidevirtual and the
command-line option -warnings hidevirtual.

Implicit Arithmetic Conversions (all) Check to warn of implict arithmetic conversions.

Implicit Signed/Unsigned Conversions (all) Check to enable warning of implict conversions between
signed and unsigned variables.

Implicit Float to Integer Conversions (all) Check to warn of implict conversions of a floating-point
variable to integer type.

Implicit Integer to Float Conversions (all) Check to warn of implict conversion of an integer variable to
floating-point type.

Pointer/Integer Conversions (most) Check to enable warnings of conversions between pointer
and integers.

Unused Arguments (most) Check to warn of unused arguments in a function.

Unused Variables (most) Check to warn of unused variables in the code.

Table continues on the next page...

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

402 Freescale Semiconductor, Inc.



Table 3-280. Tool Settings - S12Z Compiler > Warnings Options (continued)

Option Description

Unused Result from Non-Void-Returning Function (full) Check to warn of unused result from nonvoid-returning
functions.

Missing 'return' Value in Non-Void-Returning Function (most) Check to warn of when a function lacks a return statement.

Expression Has No Side Effect (most) Check to issue a warning message if a source statement
does not change the program's state. This is equivalent to the
pragma warn_no_side_effect, and the command-line
option -warnings unusedexpr.

Extra Commas (most) Check to issue a warning message if a list in an enumeration
terminates with a comma. The compiler ignores terminating
commas in enumerations when compiling source code that
conforms to the ISO/IEC 9899-1999 ("C99") standard and is
equivalent to pragma warn_extracomma and the command-
line option -warnings extracomma.

Empty Declarations (most) Check to warn of empty declarations.

Inconsistent 'class'/'struct' Usage (most) Check to warn of inconsistent usage of class or struct.

Incorrect Capitalization in #include "..." (most) Check to issue a warning message if the name of the file
specified in a #include "file" directive uses different
letter case from a file on disk and is equivalent to pragma
warn_filenamecaps and the commandline option -
warnings filecaps.

Incorrect Capitalization in System #include <...> (most) Check to issue a warning message if the name of the file
specified in a #include <file> directive uses different
letter case from a file on disk and is equivalent to pragma
warn_filenamecaps_system and the command-line
option - warnings sysfilecaps.

Pad Bytes Added (full) Check to issue a warning message when the compiler adjusts
the alignment of components in a data structure and is
equivalent to pragma warn_padding and the command-line
option -warnings padding.

Undefined Macro in #if/#elif (full) Check to issues a warning message if an undefined macro
appears in #if and #elif directives and is equivalent to
pragma warn_undefmacro and the command-line option -
warnings undefmacro.

Non-Inlined Functions (full) Check to issue a warning message if a call to a function
defined with the inline, __inline__, or __inline
keywords could not be replaced with the function body and is
equivalent to pragma warn_notinlined and the command-
line option -warnings notinlined.

Token Not Formed by ## Operator (most) Check to enable warnings for the illegal uses of the
preprocessor's token concatenation operator (##). It is
equivalent to the pragma warn_illtokenpasting on.

3.11.3.4 S12Z Compiler > Code Generation

Use this panel to specify the code generation compiler behavior.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 403



The following table lists and describes the code generation compiler options for S12Z.

Table 3-281. Tool Settings - S12Z Compiler > Code Generation Options

Option Description

Memory Model This option allows to specify the memory model. The options
available are: Small, Medium (default), and Large.

Bit field byte allocation from LSB to MSB (right-to-left) By default, bit allocation in byte bitfields proceeds from the
least significant bit to the most significant bit. This produces
less code overhead in the case of partially- allocated byte
bitfields.

• MSB: Most significant bit in byte first (left to right)
• LSB: Least significant bit in byte first (right to left)

Bit field type size reduction This option is configurable whether or not the compiler uses
type-size reduction for bitfields. Type-size reduction means
that the compiler can reduce the type of an int bitfield to a
char bitfield if it fits into a character. This allows the compiler
to allocate memory only for one byte instead of for an integer.

3.11.3.5 S12Z Compiler > Optimization

Use this panel to control compiler optimizations. The compiler's optimizer can apply any
of its optimizations in either global or non-global optimization mode. You can apply
global optimization at the end of the development cycle, after compiling and optimizing
all source files individually or in groups.

The following table lists and describes the Optimization options for S12Z compiler.

Table 3-282. Tool Settings - S12Z Compiler > Optimization Options

Option Description

Optimization Level This option is disabled for S12Z Compiler.

Speed Vs Size This option allows you to specify the type of optimization. The
options available are:

• Speed
• Size

Memory Model This option allows to specify the memory model. The options
available are:

• Small
• Medium (default)
• Large

Inline Level Enables inline expansion. If there is a #pragma INLINE before
a function definition, all calls of this function are replaced by
the code of this function, if possible. The options available
are:

• Off
• Smart (default)
• 1

Table continues on the next page...

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

404 Freescale Semiconductor, Inc.



Table 3-282. Tool Settings - S12Z Compiler > Optimization Options (continued)

Option Description

• 2
• 3
• 4
• 5
• 6
• 7
• 8

Auto Inline Check to enable the auto inlining.

Bottom-Up Inlining Check to control the bottom-up function inlining method.
When active, the compiler inlines function code starting with
the last function in the chain of functions calls, to the first one.

3.11.3.6 S12Z Compiler > Language

Use this panel to specify the language settings for S12Z compiler.

The following table lists and describes the Language options for S12Z compiler.

Table 3-283. Tool Settings - S12Z Compiler > Language Options

Option Description

Require Function Prototypes Check to enforce the requirement of function prototypes. The
compiler generates an error message if you define a
previously referenced function that does not have a prototype.
If you define the function before it is referenced but do not
give it a prototype, this setting causes the compiler to issue a
warning message.

Enable C++ 'bool' type, 'true' and 'false' Constants Check to enable the C++ compiler to recognize the bool type
and its true and false values specified in the ISO/IEC
14882-1998 C++ standard.

ISO C++ Template Parser Check to follow the ISO/IEC 14882-1998 standard for C++ to
translate templates, enforcing more careful use of the
typename and template keywords. The compiler also follows
stricter rules for resolving names during declaration and
instantiation.

Use Instance Manager Check to reduce compile time by generating any instance of a
C++ template (or noninlined inline) function only once.

Force C++ Compilation Check to enable the forced C++ compilation.

Enable GCC Extensions Check to recognize language features of the GNU Compiler
Collection (GCC) C compiler that are supported by
CodeWarrior compilers; is equivalent to pragma
gcc_extensions and the command-line option -
gcc_extensions.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 405



Table 3-283. Tool Settings - S12Z Compiler > Language Options (continued)

Option Description

Enable C99 Extensions Check to recognize ISO/IEC 9899-1999 ("C99") language
features; is equivalent to pragma c99 and the command-line
option -dialect c99.

Enable C++ Exceptions Check to generate executable code for C++ exceptions; is
equivalent to pragma exceptions and the command-line
option -cpp_exceptions.

Enable RTTI Check to allow the use of the C++ runtime type information
(RTTI) capabilities, including the dynamic_cast and typeid
operators; is equivalent to pragma RTTI and the command-
line option -RTTI.

Enable wchar_t Support Check to enable C++ compiler recognize the wchar_t data
type specified in the ISO/IEC 14882-1998 C++ standard; is
equivalent to pragma wchar_type and the command-line
option -wchar_t.

ANSI Strict Check to enable C compiler operate in strict ANSI mode. In
this mode, the compiler strictly applies the rules of the ANSI/
ISO specification to all input files. This setting is equivalent to
specifying the - ansi command-line option. The compiler
issues a warning for each ANSI/ISO extension it finds.

ANSI Keywords Only Check to generate an error message for all non-standard
keywords (ISO/IEC 9899-1990 C, ï¿½6.4.1). If you must write
source code that strictly adheres to the ISO standard, enable
this setting; is equivalent to pragma only_std_keywords
and the commandlineoption -stdkeywords.

Expand Trigraphs Check to recognize trigraph sequences (ISO/ IEC 9899-1990
C, ï¿½5.2.1.1); is equivalent to pragma trigraphs and the
commandline option -trigraphs.

Legacy for-scoping Check to generate an error message when the compiler
encounters a variable scope usage that the ISO/IEC
14882-1998 C++ standard disallows, but is allowed in the C+
+ language specified in The Annotated C++ Reference
Manual ("ARM"); is equivalent to pragma ARM_scoping and
the commandline option -for_scoping.

Enum Always Int Check to use signed integers to represent enumerated
constants and is equivalent to pragma enumsalwaysint
and the command-line option -enum.

Use Unsigned Chars Check to treat char declarations as unsigned char
declarations and is equivalent to pragma unsigned_char
and the command-line option -char unsigned.

Reuse Strings Check to store only one copy of identical string literals and is
equivalent to opposite of the pragma dont_reuse_strings
and the command-line option -string reuse.

Pool Strings Check to collect all string constants into a single data section
in the object code it generates and is equivalent to pragma
pool_strings and the command-line option -strings
pool.

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

406 Freescale Semiconductor, Inc.



3.11.3.7 S12Z Compiler > Messages

Use this panel to specify the messages settings for S12Z compiler.

The following table lists and describes the Messages options for S12Z compiler.

Table 3-284. Tool Settings - S12Z Compiler > Messages Options

Option Description

Message Style Use this option to set the message style. The options
available are:

• GCC
• MPW
• Standard
• IDE
• Parseable (default)
• Enterprise-IDE

Maximum Number of Errors This option allows you to specify the maximum number of
error messages to be displayed.

Maximum Number of Warnings This option allows you to specify the maximum number of
warning messages to be displayed.

3.11.3.8 S12Z Compiler > General

Use this panel to specify the general compiler behavior.

The following table lists and describes the general compiler options for S12Z.

Table 3-285. Tool Settings - Linker > General Options

Option Description

Generate Debug Information This option allows the compiler to generate the debug
information. By default, this checkbox is checked.

Other Flags Specify additional command line options for the linker; type in
custom flags that are not otherwise available in the UI.

3.11.4 S12Z Assembler

Use this panel to specify the command, options, and expert settings for the S12Z build
tool assembler.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 407



The following table lists and describes the assembler options for S12Z.

Table 3-286. Tool Settings - S12Z Assembler Options

Option Description

Command Shows the location of the assembler executable file. You can
specify additional command line options for the assembler;
type in custom flags that are not otherwise available in the UI.

All options Shows the actual command line the assembler will be called
with.

Expert Settings

Command line pattern Shows the command line pattern; default is ${COMMAND} $
{FLAGS} ${OUTPUT_FLAG}${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}.

3.11.4.1 S12Z Assembler > Output

Use this panel to specify file search paths and any additional include files the S12Z
Assembler should use. You can specify multiple search paths and the order in which you
want to perform the search.

The following table lists and describes the input options for S12Z Assembler.

Table 3-287. Tool Settings - S12Z Assembler > Output Options

Option Description

Object File Format The Assembler writes the code and debugging info after
compilation into an object file. The Assembler uses a
HIWARE-proprietary object-file format when the -Fh, -F6, or -
F7 options are set. The Assembler produces an ELF/DWARF
object file when the -F1 or -F2 options are set. This object-file
format may also be supported by other Assembler vendors. In
the Assembler ELF/DWARF 2.0 output, some constructs
written in previous versions were not conforming to the ELF
standard because the standard was not clear enough in this
area. Because old versions of the simulator or debugger
(V5.2 or earlier) are not able to load the corrected new format,
the old behavior can still be produced by using -f2o instead of
-f2. Some old versions of the debugger (simulator or
debugger V5.2 or earlier) generate a GPF when a new
absolute file is loaded. If you want to use the older versions,
use -f2o instead of -f2. New versions of the debugger are able
to load both formats correctly. Also, some older ELF/DWARF
object file loaders from emulator vendors may require you to
set the -F2o option. The -F1o option is only supported if the
target supports the ELF/DWARF 1.1 format. This option is
only used with older debugger versions as a compatibility
option. The available options are:

• ELF/DWARF 2.0 Object File Format
• ELF/DWARF 2.0 Absolute File Format

Table continues on the next page...

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

408 Freescale Semiconductor, Inc.



Table 3-287. Tool Settings - S12Z Assembler > Output Options (continued)

Option Description

• Compatible ELF/DWARF 2.0 Object File Format
• Compatible ELF/DWARF 2.0 Absolute File Format
• HIWARE Object File Format

Show Label Statistics The -Ll option causes the Compiler to append statistical
information about the compilation session to the specified file.
Compiler options, code size (in bytes), stack usage (in bytes)
and compilation time (in seconds) are given for each
procedure of the compiled file. The information is appended to
the specified filename (or the file 'make.txt', if no argument
given).

Generate Listing File (e.g. %(TEXTPATH)/%n.lst) This option enables the Compiler to generate the listing files.

Address Size in the Listing File (integer) This option allows you to specify the address size in the listing
file.

Do Not Print Macro Call in Listing File This option disables the printing of the macro call in listing the
file.

Do Not Print Macro Definition in Listing File This option disables the printing of the macro definition in the
listing file.

Do Not Print Macro Expansion in Listing File This option disables the printing of the macro expansion in the
listing file.

Do Not Print Included Files in Listing File This option disables the printing of the included files in the
listing file.

3.11.4.1.1 S12Z Assembler > Output > Configure Listing File

Use this panel to specify the S12Z assembler's listing file configuration settings.

The following table lists and describes the configure listing file options for S12Z.

Table 3-288. Tool Settings - S12Z Assembler > Output > Configure Listing File

Option Description

Select All This option prints all the columns in the listing file.

Do Not Write the Source Line This option disables the printing of the source column in the
listing file.

Do Not Write the Relative Line This option disables the printing of the relative column in the
listing file.

Do Not Write the Macro Mark This option disables the printing of the macro mark column in
the listing file.

Do Not Write the Address This option disables the printing of the address coulumn in the
listing file.

Do Not Write the Location Kind This option disables the printing of the the location type
column in the listing file.

Do Not Write the Include Mark Column This option disables the printing of the include mark column in
the listing file.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 409



Table 3-288. Tool Settings - S12Z Assembler > Output > Configure Listing File (continued)

Option Description

Do Not Write the Object Code This option disables the printing of the object code in the
listing file.

Do Not Write the Absolute Line This option disables the printing of the absolute lines in the
listing file.

3.11.4.2 S12Z Assembler > Input

Use this panel to specify the input settings for S12Z assembler.

The following table lists and describes the input options for S12Z.

Table 3-289. Tool Settings - S12Z Assembler > Input

Option Description

Case Insensitivity on Label Name Use this option to enable the case insensitivity on the label
name.

Define Label (use spaces to separate labels) Use this option to specify the label names.

Support for Structured Types This option enables the support for the structured types.

Include File Search Path Use this option to specify the include file search path.

The following table lists and describes the toolbar buttons that help work with the
libraries and the additional object file search paths.

Table 3-290. Search Paths Toolbar Buttons

Button Description

Add - Click to open the Add directory path dialog box and
specify the object file search path.

Delete - Click to delete the selected object file search path.

Edit - Click to open the Edit directory path dialog box and
update the selected object file search path.

Move up - Click to move the selected object file search path
one position higher in the list.

Move down - Click to move the selected object file search
path one position lower in the list.

The following figure shows the Add directory path dialog box.

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

410 Freescale Semiconductor, Inc.



Figure 3-70. Add directory path Dialog Box

The following figure shows the Edit directory path dialog box.

Figure 3-71. Edit directory path Dialog Box

The buttons in the Add directory path and Edit directory path dialog boxes help work
with the object file search paths.

• Variables - Click to display the Select build variable dialog box and specify the
object file search path variable. The resulting path variable, relative to the
workspace, appears in the appropriate list.

• Workspace - Click to display the Folder Selection dialog box and specify the
variable for object file search path. The resulting variable, relative to the workspace,
appears in the appropriate list.

• File system - Click to display the Browse for Folder dialog box and specify the
object file search path. The resulting path appears in the appropriate list.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.

3.11.4.3 S12Z Assembler > Language

Use this panel to specify language options for the S12Z Assembler.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 411



The following table lists and describes the language options for S12Z Assembler.

Table 3-291. Tool Settings - S12Z Assembler > Language Options

Option Description

Angle Brackets for Macro Arguments Grouping Controls whether the < > syntax for macro invocation
argument grouping is available. When it is disabled, the
Assembler does not recognize the special meaning for < in
the macro invocation context.

Square Braces for Macro Arguments Grouping Controls the availability of the [? ?] syntax for macro
invocation argument grouping. When it is disabled, the
Assembler does not recognize the special meaning for [? in
the macro invocation context.

Maximum Macro Nesting Controls how deep macros calls can be nested. Its main
purpose is to avoid endless recursive macro invocations.

3.11.4.3.1 S12Z Assembler > Language > Compatibility modes

Use this panel to specify language compatibility modes for the HCS08 Assembler.

The following table lists and describes the compatibility mode options for HCS08
Assembler.

Table 3-292. Tool Settings - S12Z Assembler > Language > Compatibility mode Options

Option Description

Select All Check to enable all compatibility mode options.

Symbol Prefixes With this suboption, the Assembler accepts "pgz:" and "byte:"
prefixed for symbols in XDEFs and XREFs. They correspond
to XREF.B or XDEF.B with the same symbols without the
prefix.

Ignore FF Character at Line Start With this suboption, an otherwise improper character
recognized from feed character is ignored.

Alternate Comment Rules With this suboption, comments implicitly start when a space is
present after the argument list. A special character is not
necessary. Be careful with spaces when this option is given
because part of the intended arguments may be taken as a
comment. However, to avoid accidental comments, the
Assembler does issue a warning if such a comment does not
start with a "*" or a ";".

Support FOR Directive With this suboption, the Assembler supports a FOR - Repeat
assembly block assembly directive to generate repeated
patterns more easily without having to use recursive macros.

Support Additional Directives With this suboption, some additional directives are added for
enhanced compatibility.

Table continues on the next page...

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

412 Freescale Semiconductor, Inc.



Table 3-292. Tool Settings - S12Z Assembler > Language > Compatibility mode Options
(continued)

Option Description

Operator != Means Equal The Assembler takes the default value of the != operator as
not equal, as it is in the C language. For compatibility, this
behavior can be changed to equal with this option. Because
of the risks involved with this option for existing code, a
message is issued for every != which is treated as equal.

Support $ Character in Symbols With this suboption, the Assembler supports to start identifiers
with a $ sign.

Support Additional ! Operators With this suboption, the Assembler supports to start the
identifiers with a ! sign.

3.11.4.4 S12Z Assembler > Host

Use this panel to specify the host settings of the S12Z assembler.

The following table lists and describes the memory model options for S12Z.

Table 3-293. Tool Settings - S12Z Assembler > Host

Option Description

Borrow License Feature This option allows you to borrow a license feature until a
given date or time. Borrowing allows you to use a floating
license even if disconnected from the floating license server.

Wait Until a License is Available from Floating License Server By default, if a license is not available from the floating license
server, then the application will immediately return. With -
LicWait set, the application will wait (blocking) until a license
is available from the floating license server.

Application Standard Occurrence This option allows you to select the way you want the
application window to start. Normally, the application starts
with a normal window if no arguments are given. If you start
the application with arguments (e.g., from the Maker to
assemble, compile, or link a file), then the application runs
minimized to allow for batch processing. However, you may
specify the application's window behavior with the View
option.

• -ViewWindow, the application appears with its normal
window.

• -ViewMin, the application appears as an icon in the
task bar.

• -ViewMax, the application appears maximized (filling
the whole screen).

• -ViewHidden, the application processes arguments
(e.g., files to be compiled or linked) in the background
(no window or icon visible in the task bar).

Set Environment Variable This option sets an environment variable. Use this
environment variable in the maker, or use to overwrite system
environment variables.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 413



The following figure lists and describes the toolbar buttons for the Set Environment
Variable option.

Table 3-294. Toolbar Buttons - Set Environment Variable Option

Button Description

Add - Click to open the Enter Value dialog box and specify
the object file search path.

Delete - Click to delete the selected object file search path.

Edit - Click to open the Edit Dialog dialog box and update the
selected object file search path.

Move up - Click to move the selected object file search path
one position higher in the list.

Move down - Click to move the selected object file search
path one position lower in the list.

The following figure shows the Enter Value dialog box for the Set Environment
Variable option in the S12Z Assembler > Host panel.

Figure 3-72. Set Environment Variable - Enter Value Dialog Box

The following figure shows the Edit Dialog dialog box for the Set Environment
Variable option in the S12Z Assembler > Host panel.

Figure 3-73. Set Environment Variable - Edit Dialog

The buttons in the Enter Value and Edit Dialog dialog boxes help work with the object
file search paths.

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

414 Freescale Semiconductor, Inc.



• Variables - Click to display the Select build variable dialog box and specify the
object file search path variable. The resulting path variable, relative to the
workspace, appears in the appropriate list.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.

3.11.4.5 S12Z Assembler > Code Generation

Use this panel to specify the code generation assembler behavior.

The following table lists and describes the code generation assembler options for S12Z.

Table 3-295. Tool Settings - S12Z Assembler > Code Generation Options

Option Description

Associate Debug Information to Assembly Source File Passes the assembly source file name information to DWARF
sections. When the output .abs file is debugged, the actual
assembly source file is displayed instead of intermediary
<filename>.dbg file.

3.11.4.6 S12Z Assembler > Messages

Use this panel to specify whether to generate symbolic information for debugging.

The following table lists and describes the message options.

Table 3-296. Tool Settings - S12Z Assembler > Messages Options

Option Description

Don't Print INFORMATION Messages This option allows you to disable the INFORMATION
messsges. The -W1 command inhibits the INFORMATION
message reporting.

Don't Print INFORMATION or WARNING Messages This option allows you to disable the printing of
INFORMATION or WARNING messages. The -W2 command
suppresses all messages of the type INFORMATION or
WARNING.

Create err.log Error File You can use this option to enable the burner to create the
err.log error file. The -WErrFileOn command creates or
deletes the err.log file when the application is finished.
When the errors occur, 16-bit window environments use the
err.log files, containing a list of error numbers, to report the
errors. If no errors occur, the 16-bit window environments
delete the err.log file. By default, this checkbox is checked.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 415



Table 3-296. Tool Settings - S12Z Assembler > Messages Options (continued)

Option Description

Create Error Listing File You can use this option to create an error listing file. The -
WOutFileOn command creates an error listing file. This
option controls whether an error listing file should be created.
The error listing file contains a list of all messages and errors
that are created during processing. By default, this checkbox
is checked.

Cut File Names in Microsoft Format to 8.3 This option truncates the filename to the 8.3 format. The -
Wmsg8x3 command cuts the filenames in Microsoft Format to
8.3. Some editors (early versions of WinEdit) expect the
filename in Microsoft message format (8.3 format). That
means the filename can have up to eight characters and no
more than a three-character extension. Longer filenames are
possible when you use Win95 or WinNT.

Set Message File Format for Batch Mode Use this option to set the message file format for batch mode.
The -WmsgFb(-WmsgFbi,-WmsgFbm) command sets the
message file format for the batch mode. This option starts the
Compiler with additional arguments (for example, files and
Compiler options). If you start the Compiler with the
arguments (for example, from the Make Tool or with the
appropriate argument from an external editor), the Compiler
compiles the files in a batch mode. No Compiler window is
visible and the Compiler terminates after the job completion.
The options available are:

• Verbose Format
• Microsoft Format (default)

Message Format for batch mode (e.g. %"%f%e%"(%l): %K
%d: %m\n) (-WmsgFob)

This option modifies the default message format in batch
mode. The -WmsgFob command sets the message format for
batch mode. The supported formats are (assuming that the
source file is X:\Freescale\mysourcefile.cpph):

• %s: Source Extract
• %p: Path (example, X:\Freescale\)
• %f: Path and name (example, X:\Freescale
\mysourcefile)

• %n: filename (example, mysourcefile)
• %e: Extension (example, .cpph)
• %N: File (8 chars) (example, mysource )
• %E: Extension (3 chars) (example, .cpp)
• %l: Line (example, 3)
• %c: Column (example, 47)
• %o: Pos (example, 1234)
• %K: Uppercase kind (example, ERROR)
• %k: Lowercase kind (example, error)
• %d: Number (example, C1815)
• %m: Message (example, text)
• %%: Percent (example, %)
• \n: New line
• %": A " if the filename, the path, or the extension

contains a space
• %': A ' if the filename, the path, or the extension

contains a space

Table continues on the next page...

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

416 Freescale Semiconductor, Inc.



Table 3-296. Tool Settings - S12Z Assembler > Messages Options (continued)

Option Description

Message Format for No File Info (e.g. %K %d: %m\n) Use this option to set the message format for no file
information. If there is no file information available for a
message, then the <string> in the -WmsgFonf<string>
command defines the message format string to use. The
supported formats are:

• %K: Uppercase kind (example, ERROR)
• %k: Lowercase kind (example, error)
• %d: Number (example, C1815)
• %m: Message (example, text)
• %%: Percent (example, % )
• \n: New line
• %": A " if the filename, if the path or the extension

contains a space
• %': A ' if the filename, the path or the extension

contains a space

Message Format for No Position Info (e.g. %"%f%e%": %K
%d: %m\n)

This option allows you to set the message format for no
position information. If there is no position information
available for a message, then the <string> in the -
WmsgFonp<string> command defines the message format
string to use. The supported formats are:

• %K: Uppercase kind (example, ERROR)
• %k: Lowercase kind (example, error)
• %d: Number (example, C1815)
• %m: Message (example, text)
• %%: Percent (example, % )
• \n: New line
• %": A " if the filename, if the path or the extension

contains a space
• %': A ' if the filename, the path or the extension

contains a space

Maximum Number of Error Messages This option allows you to set the maximum number of error
messages to be displayed. The <number> in the -
WmsgNe<number> command sets the number of error
messages to be displayed.

Maximum Number of Information Messages This option allows you to set the amount of information
messages that are logged. The <number> in the -
WmsgNi<number> command specifies the maximum number
of information messages allowed.

Set Messages to Disable This option allows you to disable the specified messages. The
-WmsgSd<number> command sets a message to disable,
where <number> is the message number to be disabled,
e.g., 1801.

Set Messages to Error This option changes a message to an error message. The
argument <number> in the command -WmsgSe<number>
sets the specified message number to be an error, e.g., 1853.

Set Messages to Warning This option sets a message to a warning message. The
argument <number> of the -WmsgSw<number> command,
sets the specified error number to be a warning, e.g., 2901.

Set Messages to Information This option sets a message to an information message. The
argument <number> of the command -WmsgSi<number>
sets the specified message number to be an information, e.g.,
1853.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 417



The following table lists and describes the toolbar buttons for the Set Messages to
Disable , Set Messages to Error , Set Messages to Warning and Set Messages to
Information options of the S12Z Assembler > Messages panel.

Table 3-297. Search Paths Toolbar Buttons - Messages Panel

Button Description

Add - Click to open the Enter Value dialog box and specify
the object file search path.

Delete - Click to delete the selected object file search path.

Edit - Click to open the Edit Dialog dialog box and update the
selected object file search path.

Move up - Click to move the selected object file search path
one position higher in the list.

Move down - Click to move the selected object file search
path one position lower in the list.

The following figure shows the Enter Value dialog box for the Set Messages to Disable
option in the S12Z Assembler > Messages panel.

Figure 3-74. Set Messages to Disable - Enter Value Dialog Box

The following figure shows the Edit Dialog dialog box for the Set Messages to Disable
option in the S12Z Assembler > Messages panel.

Figure 3-75. Set Messages to Disable - Edit Dialog

The following figure shows the Enter Value dialog box for the Set Messages to Error
option in the S12Z Assembler > Messages panel.

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

418 Freescale Semiconductor, Inc.



Figure 3-76. Set Messages to Error - Enter Value Dialog Box

The following figure shows the Edit Dialog dialog box for the Set Messages to Error
option in the S12Z Assembler > Messages panel.

Figure 3-77. Set Messages to Error - Edit Dialog

The following figure shows the Enter Value dialog box for the Set Messages to
Warning option in the S12Z Assembler > Messages panel.

Figure 3-78. Set Messages to Warning - Enter Value Dialog Box

The following figure shows the Edit Dialog dialog box for the Set Messages to
Warning option in the S12Z Assembler > Messages panel.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 419



Figure 3-79. Set Messages to Warning - Edit Dialog

The following figure shows the Enter Value dialog box for the Set Messages to
Information option in the S12Z Assembler > Messages panel.

Figure 3-80. Set Messages to Information - Enter Value Dialog Box

The following figure shows the Edit Dialog dialog box for the Set Messages to
Information option in the S12Z Assembler > Messages panel.

Figure 3-81. Set Messages to Information - Edit Dialog

The buttons in the Enter Value and Edit Dialog dialog boxes help work with the object
file search paths.

• Variables - Click to display the Select build variable dialog box and specify the
object file search path variable. The resulting path variable, relative to the
workspace, appears in the appropriate list.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

420 Freescale Semiconductor, Inc.



3.11.4.6.1 S12Z Assembler > Messages > Disable User Messages

Use this panel to specify the settings for disabling the user messages for the S12Z
assembler to use.

The following table lists and describes the disable user messages options for S12Z
assembler.

Table 3-298. Tool Settings - S12Z Burner > Messages > Disable User Messages Options

Option Description

Disable all Messages Use this option to disable all user messages. This option
disables messages that are not in the normal message
categories like, WARNING, INFORMATION, ERROR, or
FATAL by reducing the amount of messages, and simplifying
the error parsing of other tools.

Display Type of Messages Use this option to disable the type of messages.

Disable Informal Messages (e.g. memory model, floating point
format)

Use this option to disable the informal messages (e.g.,
memory model, floating point format).

Disable Included Files Messages Use this option to disable the messages about the generated
files.

Disable Reading Files Messages (e.g. input files) Use this option to disable the messages about the reading
files.

Disable Generated Files Messages Use this option to disable the messages about the include
files.

Disable Processing Statistics Messages (e.g. code size,
RAM/ROM usage)

Use this option to disable the messages about processing
statistics.

3.11.4.7 S12Z Assembler > General

Use this panel to specify the general assembler behavior.

The following table lists and describes the general assembler options for S12Z.

Table 3-299. Tool Settings - Assembler > General Options

Option Description

MCUasm Compatibility Check to activate the compatibility mode with the MCUasm
Assembler.

Other Flags Specify additional command line options for the assembler;
type in custom flags that are not otherwise available in the UI.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 421



3.11.5 S12Z Preprocessor

Use this panel to specify the preprocessor settings of the S12Z.

The following table lists and describes the preprocessor options for S12Z.

Table 3-300. Tool Settings - S12Z Preprocessor Options

Option Description

Command Shows the location of the preprocessor executable file. You
can specify additional command line options for the
preprocessor; type in custom flags that are not otherwise
available in the UI.

All options Shows the actual command line the assembler will be called
with.

Expert Settings

Command line pattern Shows the command line pattern; default is ${COMMAND} -E
${FLAGS} ${INPUTS}.

3.11.5.1 S12Z Preprocessor > Settings

Use this panel to specify the preprocessor settings of S12Z.

The following table lists and describes the preprocessor settings options for S12Z.

Table 3-301. Tool Settings - Preprocessor > Preprocessor Settings Options

Option Description

Emit File/Line Breaks Check to notify file breaks (or #line breaks) appear in the
output.

Emit #pragma Directives Check to show pragma directives in the preprocessor output.
Essential for producing reproducible test cases for bug
reports.

Emit #line Directives Check to display file changes in comments (as before) or in
#line directives.

Show Full Path Check to display the full path in the preprocessor output.

Keep Comments Check to display comments in the preprocessor output.

Keep Whitespace Check to copy whitespaces in preprocessor output. This is
useful for keeping the starting column aligned with the original
source, though the compiler attempts to preserve space
within the line. This does not apply when macros are
expanded.

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

422 Freescale Semiconductor, Inc.



3.11.6 S12Z Disassembler

Use this panel to specify the command, options, and expert settings for S12Z
Disassembler.

The following table lists and describes the disassembler options for S12Z.

Table 3-302. Tool Settings - DSC Disassembler

Option Description

Command Shows the location of the preprocessor executable file.
Default value is "${S12Z_ToolsDir}/decoder". You can
specify additional command line options for the preprocessor;
type in custom flags that are not otherwise available in the UI.

All options Shows the actual command line the linker will be called with.

Expert settings

Command line pattern Shows the command line pattern; default is ${COMMAND} $
{FLAGS} ${OUTPUT_FLAG}${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}

3.11.6.1 S12Z Disassembler > Output

Use this panel to specify disassembler output settings.

The following table lists and describes the disassembler output settings options for S12Z.

Table 3-303. Tool Settings - S12Z Disassembler > Output

Option Description

Print Full Listing Prints a listing with the header information of the object file.

Write Disassembly Listing with Source File Check to enable the decoder decoding Freescale object files
write the source code within the disassembly listing. This
option setting is default for the Freescale object files as input.

Decode DWARF Section Check to write the DWARF section information in the listing
file. Decoding from the DWARF section inserts this
information in the listing file.

Configure Which Part of DWARF Information to Decode Check to configure parts of DWARF information to decode.

Decode ELF Sections Check to ensure that the ELF section information is also
written to the listing file. Decoding from the ELF section
inserts the following information in the listing file.

Dump ELF Section in LST File Check to generate a HEX dump of all ELF sections in a LST
file.

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 423



Table 3-303. Tool Settings - S12Z Disassembler > Output (continued)

Option Description

Produce Inline Assembly File Check to ensure that the output listing is an inline assembly
file without additional information, but in C comments.

No Symbols in Disassembled Listing Check to prevent symbols from printing in the disassembled
listing.

Show Cycle Count for Each Instruction Check to ensure that each instruction line contains the count
of cycles in '[',']' braces. The cycle count is written before the
mnemonics of the instruction. Note that the cycle count
display is not supported for all architectures.

Write Disassembly Listing Only Check to ensure that the Decoder decoding Freescale object
files writes the source code within the disassembly listing
only.

Write Disassembly Listing with Source and All Comments Check to write the origin source and its comments within the
disassembly listing.

3.11.6.2 S12Z Disassembler > Input

Use this panel to specify disassembler input settings.

The following table lists and describes the disassembler input settings options for S12Z.

Table 3-304. Tool Settings - S12Z Disassembler > Input

Option Description

Object File Format Use this option to specify the object file format. The options
available are:

• Automatic Detection (default)
• ELF (DWARF 1.1/DWARF 2.0)
• S-RECORD
• Modula-2 Symbol File
• Hex File
• Binary File
• HIWARE

Set processor Specifies which processor should be decoded. For object
files, libraries and applications, the processor is usually
detected automatically. For S-Record and Intel Hex files,
however, the decoder cannot determine which CPU the code
is for, and therefore the processor must be specified with this
option to get a disassembly output. Without this option, only
the structure of a SRecord file is decoded.

3.11.6.3 S12Z Disassembler > Host

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

424 Freescale Semiconductor, Inc.



Use this panel to specify the host settings of the S12Z disassembler.

The following table lists and describes the host options for S12Z.

Table 3-305. Tool Settings - S12Z Disassembler > Host

Option Description

Borrow License Feature This option allows you to borrow a license feature until a
given date or time. Borrowing allows you to use a floating
license even if disconnected from the floating license server.

Wait Until a License is Available from Floating License Server By default, if a license is not available from the floating license
server, then the application will immediately return. With -
LicWait set, the application will wait (blocking) until a license
is available from the floating license server.

Application Standard Occurrence This option allows you to select the way you want the
application window to start. Normally, the application starts
with a normal window if no arguments are given. If you start
the application with arguments (e.g., from the Maker to
assemble, compile, or link a file), then the application runs
minimized to allow for batch processing. However, you may
specify the application's window behavior with the View
option.

• -ViewWindow, the application appears with its normal
window.

• -ViewMin, the application appears as an icon in the
task bar.

• -ViewMax, the application appears maximized (filling
the whole screen).

• -ViewHidden, the application processes arguments
(e.g., files to be compiled or linked) in the background
(no window or icon visible in the task bar).

Set Environment Variable This option sets an environment variable. Use this
environment variable in the maker, or use to overwrite system
environment variables.

The following table lists and describes the toolbar buttons for the Set Environment
Variable option.

Table 3-306. Toolbar Buttons - Set Environment Variable Option

Button Description

Add - Click to open the Enter Value dialog box and specify
the object file search path.

Delete - Click to delete the selected object file search path.

Edit - Click to open the Edit Dialog dialog box and update the
selected object file search path.

Move up - Click to move the selected object file search path
one position higher in the list.

Move down - Click to move the selected object file search
path one position lower in the list.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 425



The following figure shows the Enter Value dialog box for the Set Environment
Variable option in the S12Z Disassembler > Host panel.

Figure 3-82. Set Environment Variable - Enter Value Dialog Box

The following figure shows the Edit Dialog dialog box for the Set Environment
Variable option in the S12Z Disassembler > Host panel.

Figure 3-83. Set Environment Variable - Edit Dialog

The buttons in the Enter Value and Edit Dialog dialog boxes help work with the object
file search paths.

• Variables - Click to display the Select build variable dialog box and specify the
object file search path variable. The resulting path variable, relative to the
workspace, appears in the appropriate list.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.

3.11.6.4 S12Z Disassembler > Messages

Use this panel to specify whether to generate symbolic information for debugging.

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

426 Freescale Semiconductor, Inc.



The following table lists and describes the message options.

Table 3-307. Tool Settings - S12Z Disassembler > Messages Options

Option Description

Don't Print INFORMATION Messages This option allows you to disable the INFORMATION
messsges. The -W1 command inhibits the INFORMATION
message reporting.

Don't Print INFORMATION or WARNING Messages This option allows you to disable the printing of
INFORMATION or WARNING messages. The -W2 command
suppresses all messages of the type INFORMATION or
WARNING.

Create err.log Error File You can use this option to enable the burner to create the
err.log error file. The -WErrFileOn command creates or
deletes the err.log file when the application is finished.
When the errors occur, 16-bit window environments use the
err.log files, containing a list of error numbers, to report the
errors. If no errors occur, the 16-bit window environments
delete the err.log file. By default, this checkbox is checked.

Create Error Listing File You can use this option to create an error listing file. The -
WOutFileOn command creates an error listing file. This
option controls whether an error listing file should be created.
The error listing file contains a list of all messages and errors
that are created during processing. By default, this checkbox
is checked.

Cut File Names in Microsoft Format to 8.3 This option truncates the filename to the 8.3 format. The -
Wmsg8x3 command cuts the filenames in Microsoft Format to
8.3. Some editors (early versions of WinEdit) expect the
filename in Microsoft message format (8.3 format). That
means the filename can have up to eight characters and no
more than a three-character extension. Longer filenames are
possible when you use Win95 or WinNT.

Set Message File Format for Batch Mode Use this option to set the message file format for batch mode.
The -WmsgFb(-WmsgFbi,-WmsgFbm) command sets the
message file format for the batch mode. This option starts the
Compiler with additional arguments (for example, files and
Compiler options). If you start the Compiler with the
arguments (for example, from the Make Tool or with the
appropriate argument from an external editor), the Compiler
compiles the files in a batch mode. No Compiler window is
visible and the Compiler terminates after the job completion.
The options available are:

• Verbose Format
• Microsoft Format (default)

Message Format for batch mode (e.g. %"%f%e%"(%l): %K
%d: %m\n) (-WmsgFob)

This option modifies the default message format in batch
mode. The -WmsgFob command sets the message format for
batch mode. The supported formats are (assuming that the
source file is X:\Freescale\mysourcefile.cpph):

• %s: Source Extract
• %p: Path (example, X:\Freescale\)
• %f: Path and name (example, X:\Freescale
\mysourcefile)

• %n: filename (example, mysourcefile)
• %e: Extension (example, .cpph)
• %N: File (8 chars) (example, mysource )

Table continues on the next page...

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 427



Table 3-307. Tool Settings - S12Z Disassembler > Messages Options (continued)

Option Description

• %E: Extension (3 chars) (example, .cpp)
• %l: Line (example, 3)
• %c: Column (example, 47)
• %o: Pos (example, 1234)
• %K: Uppercase kind (example, ERROR)
• %k: Lowercase kind (example, error)
• %d: Number (example, C1815)
• %m: Message (example, text)
• %%: Percent (example, %)
• \n: New line
• %": A " if the filename, the path, or the extension

contains a space
• %': A ' if the filename, the path, or the extension

contains a space

Message Format for No File Info (e.g. %K %d: %m\n) Use this option to set the message format for no file
information. If there is no file information available for a
message, then the <string> in the -WmsgFonf<string>
command defines the message format string to use. The
supported formats are:

• %K: Uppercase kind (example, ERROR)
• %k: Lowercase kind (example, error)
• %d: Number (example, C1815)
• %m: Message (example, text)
• %%: Percent (example, % )
• \n: New line
• %": A " if the filename, if the path or the extension

contains a space
• %': A ' if the filename, the path or the extension

contains a space

Message Format for No Position Info (e.g. %"%f%e%": %K
%d: %m\n)

This option allows you to set the message format for no
position information. If there is no position information
available for a message, then the <string> in the -
WmsgFonp<string> command defines the message format
string to use. The supported formats are:

• %K: Uppercase kind (example, ERROR)
• %k: Lowercase kind (example, error)
• %d: Number (example, C1815)
• %m: Message (example, text)
• %%: Percent (example, % )
• \n: New line
• %": A " if the filename, if the path or the extension

contains a space
• %': A ' if the filename, the path or the extension

contains a space

Maximum Number of Error Messages This option allows you to set the maximum number of error
messages to be displayed. The <number> in the -
WmsgNe<number> command sets the number of error
messages to be displayed.

Maximum Number of Information Messages This option allows you to set the amount of information
messages that are logged. The <number> in the -
WmsgNi<number> command specifies the maximum number
of information messages allowed.

Table continues on the next page...

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

428 Freescale Semiconductor, Inc.



Table 3-307. Tool Settings - S12Z Disassembler > Messages Options (continued)

Option Description

Set Messages to Disable This option allows you to disable the specified messages. The
-WmsgSd<number> command sets a message to disable,
where <number> is the message number to be disabled,
e.g., 1801.

Set Messages to Error This option changes a message to an error message. The
argument <number> in the command -WmsgSe<number>
sets the specified message number to be an error, e.g., 1853.

Set Messages to Warning This option sets a message to a warning message. The
argument <number> of the -WmsgSw<number> command,
sets the specified error number to be a warning, e.g., 2901.

Set Messages to Information This option sets a message to an information message. The
argument <number> of the command -WmsgSi<number>
sets the specified message number to be an information, e.g.,
1853.

The following table lists and describes the toolbar buttons for the Set Messages to
Disable , Set Messages to Error , Set Messages to Warning and Set Messages to
Information options of the S12Z Disassembler > Messages panel.

Table 3-308. Search Paths Toolbar Buttons - Messages Panel

Button Description

Add - Click to open the Enter Value dialog box and specify
the object file search path.

Delete - Click to delete the selected object file search path.

Edit - Click to open the Edit Dialog dialog box and update the
selected object file search path.

Move up - Click to move the selected object file search path
one position higher in the list.

Move down - Click to move the selected object file search
path one position lower in the list.

The following figure shows the Enter Value dialog box for the Set Messages to Disable
option in the S12Z Disassembler > Messages panel.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 429



Figure 3-84. Set Messages to Disable - Enter Value Dialog Box

The following figure shows the Edit Dialog dialog box for the Set Messages to Disable
option in the S12Z Disassembler > Messages panel.

Figure 3-85. Set Messages to Disable - Edit Dialog

The following figure shows the Enter Value dialog box for the Set Messages to Error
option in the S12Z Disassembler > Messages panel.

Figure 3-86. Set Messages to Error - Enter Value Dialog Box

The following figure shows the Edit Dialog dialog box for the Set Messages to Error
option in the S12Z Disassembler > Messages panel.

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

430 Freescale Semiconductor, Inc.



Figure 3-87. Set Messages to Error - Edit Dialog

The following figure shows the Enter Value dialog box for the Set Messages to
Warning option in the S12Z Disassembler > Messages panel.

Figure 3-88. Set Messages to Warning - Enter Value Dialog Box

The following figure shows the Edit Dialog dialog box for the Set Messages to
Warning option in the S12Z Disassembler > Messages panel.

Figure 3-89. Set Messages to Warning - Edit Dialog

The following figure shows the Enter Value dialog box for the Set Messages to
Information option in the S12Z Disassembler > Messages panel.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 431



Figure 3-90. Set Messages to Information - Enter Value Dialog Box

The following figure shows the Edit Dialog dialog box for the Set Messages to
Information option in the S12Z Disassembler > Messages panel.

Figure 3-91. Set Messages to Information - Edit Dialog

The buttons in the Enter Value and Edit Dialog dialog boxes help work with the object
file search paths.

• Variables - Click to display the Select build variable dialog box and specify the
object file search path variable. The resulting path variable, relative to the
workspace, appears in the appropriate list.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.

3.11.6.4.1 S12Z Disassembler > Messages > Disable User Messages

Use this panel to specify the settings for disabling the user messages for the S12Z
disassembler to use.

Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

432 Freescale Semiconductor, Inc.



The following table lists and describes the disable user messages options for S12Z.

Table 3-309. Tool Settings - S12Z Disassembler > Messages > Disable User Messages

Option Description

Disable all Messages Use this option to disable all user messages. This option
disables messages that are not in the normal message
categories like, WARNING, INFORMATION, ERROR, or
FATAL by reducing the amount of messages, and simplifying
the error parsing of other tools.

Display Type of Messages Use this option to disable the type of messages.

Disable Informal Messages (e.g. memory model, floating point
format)

Use this option to disable the informal messages (e.g.,
memory model, floating point format).

Disable Included Files Messages Use this option to disable the messages about the generated
files.

Disable Reading Files Messages (e.g. input files) Use this option to disable the messages about the reading
files.

Disable Generated Files Messages Use this option to disable the messages about the include
files.

Disable Processing Statistics Messages (e.g. code size,
RAM/ROM usage)

Use this option to disable the messages about processing
statistics.

Chapter 3 Build Properties for Bareboard Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 433



Build Properties for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

434 Freescale Semiconductor, Inc.



Chapter 4
Working with Debugger

A CodeWarrior project can have multiple associated launch configurations. A launch
configuration is a named collection of settings that the CodeWarrior tools use.

The CodeWarrior project wizard generates launch configurations with names that follow
the pattern projectname - configtype - targettype, where:

• projectname represents the name of the project
• configtype represents the type of launch configuration
• targettype represents the type of target software or hardware on which the launch

configuration acts

If you use the CodeWarrior wizard to create a new project, the IDE creates two debugger
related launch configurations:

• Debug configuration - Produces unoptimized code for development purposes.
• Release configuration - Produces code intended for production purposes.

The topics in this chapter are:

• Customizing Launch Configuration
• Debugging Bareboard Software
• Debugging Externally Built Executable Files

4.1 Customizing Launch Configuration
The Debug Configurations dialog box contains seven tabs allowing you to customize all
aspects of a launch configuration.

NOTE
The CodeWarrior debugger shares some pages, such as
Connection and Download. The settings that you specify in
these pages also apply to the selected debugger.

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 435



NOTE
As you modify a launch configuration's debugger settings, you
create pending, or unsaved, changes to that launch
configuration. To save the pending changes, you must click the
Apply button of the Debug Configurations dialog box, or click
the Close button and then the Yes button.

NOTE
You can revert pending changes and restore their last saved
settings. To undo pending changes, click the Revert button at
the bottom of the Debug Configurations dialog box. The IDE
restores the last set of saved settings to all pages of the Debug
Configurations dialog box. Also, the IDE disables the Revert
button until you make new pending changes.

The tabs in the Debug Configurations dialog box are:

• Main
• Arguments
• Debugger
• Source
• Environment
• Common
• Trace and Profile

4.1.1 Main

Use this page to specify the project and the application you want to run or debug.

The Main tab options are explained in the following table.

Table 4-1. Main Tab Options

Option Description

Debug session type Specifies the options to initiate a debug session using pre-
configured debug configurations. The options include:

• Download: Resets the target if the debug configuration
specifies the action. Further, the command stops the
target, (optionally) runs an initialization script,
downloads the specified ELF file, and modifies the
program counter(PC).

• Connect: Runs the target initialization file specified in
the RSE configuration to set up the board before
connecting to it. The Connect debug session type does
not load any symbolic debugging information for the
current build target’s executable thereby, denying
access to source-level debugging and variable display.

Table continues on the next page...

Customizing Launch Configuration

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

436 Freescale Semiconductor, Inc.



Table 4-1. Main Tab Options (continued)

Option Description

The Connect command resets the target if the launch
configuration specifies this action. Further, the
command stops the target, (optionally) runs an
initialization script, does not load symbolics, download
an ELF file, or modify the program counter(PC). NOTE:
The default debugger configuration causes the
debugger to cache symbolics between sessions.
However, selecting the Connect option invalidates this
cache. If you must preserve the contents of the
symbolics cache, and you plan to use the Connect
option, clear the Cache Symbolics Between Sessions
check box in the Symbolics tab page.

• Attach: Assumes that code is already running on the
board and therefore does not run a target initialization
file. The state of the running program is undisturbed.
The debugger loads symbolic debugging information for
the current build target’s executable. The result is that
you have the same source-level debugging facilities you
have in a normal debug session (the ability to view
source code and variables, and so on). The function
does not reset the target, even if the launch
configuration specifies this action. Further, the
command loads symbolics, does not stop the target, run
an initialization script, download an ELF file, or modify
the program counter (PC). NOTE: The debugger does
not support restarting debugging sessions that you start
by attaching the debugger to a process.

• Custom: Provides user an advantage to create a
custom debug configuration

C/C++ application • Project: Specifies the project to associate with the
selected debug launch configuration. Click Browse to
select a different project.

• Application: Specifies the name of the C or C++
application.

• Search Project: Click to open the Program Selection
dialog box and select a binary.

• Variables: Click to open the Select build variable dialog
box and select the build variables to be associated with
the program. Note: The dialog box displays an
aggregation of multiple variable databases and not all
these variables are suitable to be used from a build
environment. Given below are the variables that should
be used:

• ProjDirPath - returns the absolute path of the
current project location in the file system $
{ProjDirPath}/Source/main.c.

• workspace_loc - returns the absolute path of a
workspace resource in the file system, or the
location of the workspace if no argument is
specified ${workspace_loc:/ProjectName/Source
main.c"${workspace_loc}

• Gnu_Make_Install_Dir - returns the absolute path
of the GNU make.exe tool $
{Gnu_Make_Install_Dir}\make.exe

Table continues on the next page...

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 437



Table 4-1. Main Tab Options (continued)

Option Description

Build (if required) before launching Controls how auto build is configured for the launch
configuration. Changing this setting overrides the global
workspace setting and can provide some speed
improvements. NOTE: These options are set to default and
collapsed when Connect debug session type is selected. The
options include:

• Build configuration – Specifies the build configuration
either explicitly or use the current active configuration.

• Select configuration using ‘C/C++ Application’ – Select/
clear to enable/disable automatic selection of the
configuration to be built, based on the path to the
program.

• Enable auto build – Enables auto build for the debug
configuration which can slow down launch performance.

• Disable auto build – Disables auto build for the debug
configuration which may improve launch performance.
No build action will be performed before starting the
debug session. You have to rebuild the project
manually.

• Use workspace settings (default) – Uses the global auto
build settings.

• Configure Workspace Settings – Opens the Launching
preference panel where you can change the workspace
settings. It will affect all projects that do not have project
specific settings.

Target settings Specifies the connection and other settings for the target. The
options include:

• Connection – Specifies the applicable Remote System
configuration.

• Edit – Click to edit the selected Remote System
configuration.

• New – Click to create a new Remote System
configuration for the selected project and application.

• Execute reset sequence – Select to apply reset
settings, specified in the target configuration, when
attaching to a target. Alternatively, clear the option to
ignore reset settings. NOTE: This option is not available
when Connect debug session type is selected.

• Execute initialization script(s) – Select to execute the
initialization script(s), specified in the target
configuration, when attaching to a target. Alternatively,
clear the option to ignore the initialization script(s).
NOTE: This option is not available when Connect
debug session type is selected.

4.1.1.1 Editing Connection

To edit a remote system connection, click the Edit button in the Main tab of the Debug
Configurations dialog box.

Customizing Launch Configuration

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

438 Freescale Semiconductor, Inc.



The Properties for <project_connection> dialog box appears. Here,
<project_connection> is the name of the project followed by the associated connection.
For example, Proj_01_MC9S08AC128_PnE Full Chip Simulator.

The remote system options in the Properties for <project_connection> dialog box
change depending on the selected connection.

Figure 4-1. Properties for <project_connection> Dialog Box

The following table lists the remote system options available in the Properties for
<project_connection> dialog box.

Table 4-2. Properties for <project_connection> Dialog Box

Option Description

Parent profile Specifies the parent profile.

Name Specifies the name of the connection used.

Template Select the remote system template you want to use.

Edit Click to edit the system type. Note: For more information on
editing system types, refer to the topic Editing System Types
in the chapter Multicore Debugging.

New Click to create a new remote connection.

Table continues on the next page...

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 439



Table 4-2. Properties for <project_connection> Dialog Box (continued)

Option Description

Connection type Specifies the type of the connection in use. The list is
populated based on the selected remote system type and
system type. Note: The options in the Connection sub tab
will change depending on the selected connection.

Connection Enables you to specify connection settings for the selected
connection type. For more information, refer to the topic
Connection Tab Settings.

Initialization Enables you to specify initialization settings for the selected
connection type. For more information, refer to the topic
Initialization Tab Settings.

System Enables you to specify system settings for the selected
connection type. For more information, refer to the topic
System Tab Settings.

Advanced Enables you to specify advanced settings for the selected
connection type. For more information refer to the topic
Advanced Tab Settings.

Buttons • OK - Click to apply changes and close the Properties
for <project_connection> dialog box.

• Cancel - Click to close the Properties for
<project_connection> dialog box without applying the
changes.

4.1.1.2 Connection Tab Settings

Use this tab to specify the connection interface that the debugger uses to communicate
with the connection on the target hardware. For more information on connections, refer to
the respective connections chapter.

Table 4-3. Target Boards - Connection Types

Target Board Connections

HCS08 Connections - HCS08 Architecture

RS08 Connections - RS08

ColdFire V1/ColdFire+ V1 Connections - ColdFire V1/ColdFire+ V1

ColdFire V2/3/4 Connections - ColdFire V2/3/4

Qorivva MPC55xx/56xx Connections - Qorivva MPC55xx/56xx

Kinetis Connections — Kinetis Architecture

DSC Connections - DSC Architecture

S12Z Connections - S12Z Architecture

Customizing Launch Configuration

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

440 Freescale Semiconductor, Inc.



4.1.1.3 Initialization Tab Settings

Enables you to specify initialization settings for the selected connection type.

Table 4-4. Initialization Settings

Option Description

Initialize Target Specifies the target initialization file to be used by the
debugger at the start of each debugging session. Check this
option to activate the Target Initialization File text box where
you can specify the path of the initialization file. Alternatively,
you can specify the file path by using any of the buttons listed
below:

• Workspace - Opens a dialog box where you can specify
the initialization file in terms of a location relative to the
IDE's workspace directory. After you select the file, the
path to that file appears in the Target Initialization File
text box, relative to the path of the variable
workspace_loc. The IDE resolves this variable to the
absolute file system path of the workspace directory
root.

• File System - Opens a dialog box where you can
browse for the initialization file. After you select the file,
the absolute path to that file appears in the Target
Initialization File text box.

• Variables - Opens a dialog box where you can specify
the initialization file in terms of IDE path variables. After
you specify the file, the path to that file appears in the
Target Initialization File text box, relative to the path
variables that you use. The IDE resolves each path
variable as explained in the Variable Description box
at the bottom of the Select Variable dialog box.

Clear this option if you want the debugger to use a default
target initialization file.

Use MemoryConfiguration File Specifies the memory configuration file to be used by the
debugger at the start of each debugging session. Check this
option to activate the Memory Configuration File text box
where you can specify the path of the configuration file.
Alternatively, you can specify the file path by using any of the
buttons listed below:

• Workspace - Opens a dialog box where you can specify
the initialization file in terms of a location relative to the
IDE's workspace directory. After you specify the file, the
path to that file appears in the Memory Configuration
File text box, relative to the path of the variable
workspace_loc. The IDE resolves this variable to the
absolute file system path of the workspace directory
root.

• File System - Opens a dialog box where you can
browse for the initialization file. After you specify the file,
the absolute path to that file appears in the Memory
Configuration File text box.

• Variables - Opens a dialog box where you can specify
the initialization file in terms of IDE path variables. After
you specify the file, the path to that file appears in the
Memory Configuration File text box, relative to the

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 441



Table 4-4. Initialization Settings

Option Description

path variables that you use. The IDE resolves each
path variable as explained in the Variable Description
box at the bottom of the Select Variable dialog box.

Check the Use Default option to use the default memory
configuration file and to deactivate the Memory
Configuration File text box and the three buttons.

4.1.1.4 System Tab Settings

Enables you to specify system settings for the selected connection type.

Figure 4-2. System Tab Settings

The following table lists the available options in the System tab.

Table 4-5. System Settings

Option Description

Initialization

Execute Reset Specifies that the debugger resets the target hardware before
downloading a program for debugging purposes. Check this
option to have the debugger reset the target before
downloading the program to it. Clear this option to have the
debugger download a program to the target without resetting
that target.

Run out of reset Determines what the ColdFire Microcontroller does after it is
reset. Check this option to have the Microcontroller begin
executing the program after it is reset. Clear this option to
have the Microcontroller remain in debug mode after it is reset

Initialize target Specifies the target initialization file to be used by the
debugger at the start of each debugging session. Check this
option to activate the adjacent text box where you can specify

Table continues on the next page...

Customizing Launch Configuration

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

442 Freescale Semiconductor, Inc.



Table 4-5. System Settings (continued)

Option Description

the path of the initialization file. Alternatively, you can click ...
(Ellipsis) to open the Initialize target dialog box and specify
the path of the file.

System

Memory configuration Specifies the memory configuration file to be used by the
debugger at the start of each debugging session. Check this
option to activate the adjacent text box where you can specify
the path of the configuration file. Alternatively, you can click ...
(ellipsis) to open the Memory configuration dialog box and
specify the path of the file.

4.1.1.5 Advanced Tab Settings

Enables you to specify advanced settings for the selected connection type.

Figure 4-3. Advanced Tab Settings

The following table lists the available options in the Advanced tab.

Table 4-6. Advanced Settings

Option Description

Advanced TAP settings

Disable synchronous clocking Check this option to have the debugger use a standard (slow)
procedure to write to memory on the target system. Clear this
option to have the debugger use an optimized (fast) download
procedure to write to memory on the target system. The fast
download mechanism is used by default when writing to
target memory. Check this option if the fast download
procedure results in load failures.

Table continues on the next page...

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 443



Table 4-6. Advanced Settings (continued)

Option Description

Target connection lost settings

When an active connection is lost, do the following:

Try to reconnect Select if you want to reconnect to the target if the connection
is lost.

Timeout (seconds) Provide the time (in seconds) till you want to reconnect to the
target.

Terminate the debug session(s) Select if you want to terminate the debug section if the
connection to target is lost.

Ask me Select if you want the application to prompt you whether to
terminate or reconnect if the target connection is lost.

Advanced CCS settings

CCS timeout (seconds) Enter the number of seconds after which you want the
debugger to treat CCS as unresponsive. The debugger treats
the time interval that you specify as a window of validity in
which CCS must complete debugger requests. If CCS does
not complete the requests during the specified time interval,
the debugger treats CCS as unresponsive. For example, you
might specify 30 seconds to give intensive CCS operations
enough time to succeed during a debugging session. You do
not want to wait for 30 seconds for the initial connect
operation, if you mistyped the Ethernet TAP probe's IP
address, or forgot to turn on the target hardware. For these
reasons, the debugger treats the specified value differently for
initial-connect operations.

Enable logging Check this option to have the debugger output connection
protocol activity to a console in the Console view. Clear this
option if you do not want the debugger to output connection-
protocol activity to a console.

4.1.2 Arguments

Use this page to specify the program arguments that an application uses and the working
directory for a run or debug configuration.

The Arguments tab options are explained in the following table..

Table 4-7. Arguments Tab Options

Option Description

Program arguments Specifies the arguments passed on the command line.

Variables Click to select variables by name to include in the program
arguments list.

Working Directory Specifies the run/debug configuration working directory.

Use default Check to specify the local directory or uncheck to specify a
different workspace, a file system location, or variable.

Table continues on the next page...

Customizing Launch Configuration

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

444 Freescale Semiconductor, Inc.



Table 4-7. Arguments Tab Options (continued)

Option Description

Workspace Click to specify the path of, or browse to, a workspace relative
working directory.

File System Click to specify the path of, or browse to, a file system
directory.

Variables Click to specify variables by name to include in the working
directory.

4.1.3 Debugger

Use this page to select a debugger to use when debugging an application. The Debugger
tab presents different sub-tabs for specifying different settings.

NOTE
The sub-tabs under the Debugger tab change depending on the
derivative and connection you select while creating the project.

Figure 4-4. Debug Configurations - Debugger Tab

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 445



NOTE
The subsequent topics explain the various settings that you can
configure using the pages beneath the Debugger tab.

The sub-tabs available under the Debugger tab are:

• Debug
• Download
• PIC
• Other Executables
• Symbolics
• OS Awareness
• Exceptions
• Reset
• Interrupts
• Remote
• EPPC Exceptions
• System Call Services

4.1.3.1 Debug

Use this page to specify the program execution options, breakpoint, watchpoint options,
and target access behavior.

The Debug tab options are explained in the following table.

Table 4-8. Debug Tab Options

Group Option Description

Program execution Initialize program counter at Initializes program at specified location.

Program entry point Select to initialize the debugger at a
specified program entry point. Click
Advanced to modify the default program
entry points.

User specified Select to initialize the debugger at a
user-specified function. The default
location is main.

Resume program Check to enable program resume.

Stop on startup at Stops program at specified location.
when unchecked, the program runs until
you interrupt it manually, or until it hits a
breakpoint.

Program entry point Select to stop the debugger at a
specified program entry point. Click
Advanced to modify the default program
entry points.

Table continues on the next page...

Customizing Launch Configuration

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

446 Freescale Semiconductor, Inc.



Table 4-8. Debug Tab Options (continued)

Group Option Description

User specified Select to stop the debugger at a user-
specified function. The default location is
main.

Breakpoints and watchpoints Install regular breakpoints as Check this option to install breakpoints
as either:

• Regular, or
• Hardware, or
• Software

Clear this option to install breakpoints as
Regular breakpoints.

Restore watchpoints Check this option to restore previous
watchpoints.

Data access Disable display of variable values by
default

Check this option to disable the display
of variable values. Clear this option to
enable the display of variable values.

Disable display of register values by
default

Check this option to disable the display
of register values. Clear this option to
enable the display of register values.

Refresh while running period (seconds) Specifies the refresh period used when a
view is configured to refresh while the
application is running.

4.1.3.2 Download

Use this tab to specify the program sections the debugger downloads to the target, and
whether the debugger should read back those sections and verify them.

NOTE
Checking all checkboxes in the Program Download Options
group significantly increases download time.

The Download tab shows the Download tab. Briefly, the section data types are:

• Executable - These sections contain your program's code.
• Constant Data - These sections contain your program's constants. These values can

not be modified.
• Initialized Data - Initialized data sections contain your program's modifiable data.
• Uninitialized Data - Uninitialized data sections contain your program's uninitialized

variables.

The following table explains each option.

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 447



First options apply to the first debugging session. Subsequent options apply to successive
debugging sessions. The Download options control whether the debugger downloads the
specified section data type to the target hardware. The Verify options control whether the
debugger reads the specified section data type from the target hardware and compares the
data read against the data written to the device.

Figure 4-5. Download Tab

Table 4-9. Download Tab Settings

Section Data Type Description

Executable Controls downloading and verification for executable sections.
Check appropriate checkboxes to specify downloading and
verifications, for initial launch and for successive runs.

Constant Data Controls downloading and verification for constant-data
sections. Check appropriate checkboxes to specify
downloading and verifications, for initial launch and for
successive runs.

Initialized Data Controls downloading and verification for initialized-data
sections. Check appropriate checkboxes to specify
downloading and verifications, for initial launch and for
successive runs.

Uninitialized Data Controls downloading and verification for uninitialized-data
sections. Check appropriate checkboxes to specify
downloading and verifications, for initial launch and for
successive runs.

Select All Selects all of the options available for downloading and
verifying the program.

Deselect All The debugger will not download or verify any program
sections.

Execute Tasks Check the option if you want to execute the listed tasks.

Table continues on the next page...

Customizing Launch Configuration

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

448 Freescale Semiconductor, Inc.



Table 4-9. Download Tab Settings (continued)

Section Data Type Description

Add Click to add download task(s).

Remove Click to remove the listed download task(s).

Up Click to move the listed task up in the priority list.

Down Click to move the listed task down in the priority list.

4.1.3.3 PIC

Use this tab to specify an alternate address for the debugger to load a Position
Independent Code (PIC) module on a target board. at an different address than specified
in the ELF file. Also, when having to debug an application (such as U-Boot) built with
ROM addresses after it has relocated itself to RAM. Usually, PIC is linked in such a way
that the entire image starts at address 0x00000000. The PIC tab lets you specify an
alternate address at which the debugger will load the PIC module in target memory.

The following figure shows the PIC tab.

Figure 4-6. PIC Tab

Check the Alternate Load Address option and then enter the address (in hexadecimal
notation) in the corresponding text box. The address that you specify is the starting
address at which the debugger loads your program or finds it after runtime relocation.
Specifying an alternate load address lets the debugger map the symbolic debugging
information contained in the original ELF file to the relocated application image in RAM.

NOTE
The debugger does not verify whether your code can execute at
the specified address. As a result, the PIC generation settings of
the compiler, linker and your program's startup routines must
correctly set any base registers and perform any required
relocations.

Clear the Alternate Load Address option to have the debugger load your program at a
default starting address.

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 449



4.1.3.4 Other Executables

Use this tab to specify additional ELF files to download or debug in addition to the main
executable file associated with the launch configuration.

The follow9ing figure shows the Other Executables tab view.

Figure 4-7. Other Executables Tab

The following table describes the Other Executables debugger settings.

Table 4-10. Other Executables Tab Settings

Option Description

File list Shows files and projects that the debugger uses during each
debug session The Debug column (

) - If this option is checked the debugger loads symbolics for
the file. If you clear this option, the IDE does not load
symbolics for the file. The Download column (

) - If this option is checked the debugger downloads the file to
the target device. If you clear this option, the debugger does
not download the file to the target device.

Add Click to open the Debug Other Executable dialog box. Use
the dialog box to specify the following settings:

• Specify the location of the additional executable - Enter
the path to the executable file that the debugger
controls in addition to the current project's executable
file. Alternatively, click Browse to specify the file path.

• Load symbols - Check this option to have the debugger
load symbols for the specified file. Clear to prevent the
debugger from loading the symbols. The Debug column
of the File list corresponds to this setting.

• Download to device - Check this option to have the
debugger download the specified file to the target
device. Clear this option to prevent the debugger from
downloading the file to the device. The Download
column of the File list corresponds to this setting.

• OK - Click to add the information that you specify in the
Debug Other Executable dialog box to the File list.

Table continues on the next page...

Customizing Launch Configuration

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

450 Freescale Semiconductor, Inc.



Table 4-10. Other Executables Tab Settings (continued)

Option Description

Change Click to open the Debug Other Executable dialog box. The
dialog box shows the current settings for the selected
executable file in the File list column. Change this information
as required and click OK to update the entry in the File list.

Remove Click to remove the entry currently selected in the File list.

4.1.3.5 Symbolics

Use this tab to specify whether the debugger keeps symbolics in memory. Symbolics
represent an application's debugging and symbolic information. Keeping symbolics in
memory, known as caching symbolics, is beneficial when you debug a large-size
application.

Consider a situation in which the debugger loads symbolics for a large application, but
does not download content to a hardware device and the project uses custom makefiles
with several build steps to generate this application. In such a situation, caching
symbolics helps speed up the debugging process. The debugger uses the readily available
cached symbolics during subsequent debugging sessions. Otherwise, the debugger spends
significant time creating an in-memory representation of symbolics during subsequent
debugging sessions.

The following figure shows the Symbolics tab.

Figure 4-8. Symbolics Tab

The following table describes the Symbolics debugger settings.

Table 4-11. Symbolics Tab Settings

Option Description

Cache SymbolicsBetween Sessions Check this option to have the debugger cache symbolics
between debugging sessions. With Create and Use Copy of
Executable cleared, the executable file remains locked after
the debugging session ends. In the Debug view, right-click the
locked file and select Un-target Executables to have the
debugger delete its symbolics cache and release the file lock.
The IDE enables this menu command when there are

Table continues on the next page...

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 451



Table 4-11. Symbolics Tab Settings (continued)

Option Description

currently unused cached symbolics that it can purge. Clear
this option so that the debugger does not cache symbolics
between debugging sessions.

Create andUse Copy of Executable Check this option to have the debugger create and use a
copy of the executable file. Using the copy helps avoid file-
locking issues with the build system. If you check this
checkbox, the IDE can build the executable file in the
background during a debugging session. Clear this option so
that the debugger does not create and use a copy of the
executable file.

4.1.3.6 OS Awareness

Use the OS Awareness tab to specify the operating system (OS) that resides on the target
device.

Figure 4-9. OS Awareness Tab - HCS08

Use the Target OS list box to specify the OS that runs on the target device, or specify
None to have the debugger use the bareboard.

If you select OSEK as the target OS, you are required to specify the path of the OSEK
Run Time Interface (ORTI) description file. You can click any of the following to
navigate and browse to the ORTI file.

• Workspace - Click to open the Folder Selection dialog box and select a workspace
location for the project. This is the directory that will contain the plug-ins and
features to build, including any generated artifacts.

• File system - Click to open the Browse For Folder dialog box and select a folder.
• Variables - Click to open the Select build variable dialog box and select a variable

to specify as an argument for the build directory, or create and configure simple build
variables which you can reference in build configurations that support variables.

Selecting OSEK visualizes the RTOS's internal objects, like tasks, alarms, counters, and
resources. Other objectives are:

Customizing Launch Configuration

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

452 Freescale Semiconductor, Inc.



• contains basic trace implementation that records and displays the last N values of the
traceable attributes.

• enables multiple debuggers and handle multiple OSEK applications.
• enables components reuse.

Once the ORTI file is specified, click Apply and Debug. The ORTI file is automatically
loaded at process creation time. Check the OSEK console to ensure whether the file was
loaded or not. Any I/O exceptions or parse errors will be spilled out in the console. Once
the ORTI file is successfully loaded, the System Browser view appears.

Figure 4-10. System Browser View

The three tabs in the System Browser view are: Tasks, Implementation, and Trace.

4.1.3.6.1 Tasks

The Tasks tab is a built-in view tab which lists only basic OS info like: task name, id,
priority and state. For full information on application task open the Implementation tab.

Figure 4-11. System Browser View - Tasks

4.1.3.6.2 Implementation

The Implementation tab lists the full kernel object structure of the OSEK application
and is composed of the Kernel objects tree and Kernel type viewer panels, refer topics
Kernel Objects Tree Panel and Kernel Type Viewer Panel.

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 453



Figure 4-12. System Browser View - Implementation

4.1.3.6.3 Kernel Objects Tree Panel

Lists all kernel objects and their kernel types. To differentiate standard and vendor
defined types a different icon is used. Each selection is reflected in the Kernel type
viewer.

4.1.3.6.4 Kernel Type Viewer Panel

Lists all kernel objects of a certain kernel type. Each kernel object is described by its
attributes.

• Update attributes panel - The role of this panel is to update kernel type attribute on
each kernel object based on the next controller request. In UI terms, if an attribute is
cleared the entire column is not renewed on the next update request. If the kernel
type attribute is a String or the entire column contains only static attributes then the
implementation attribute does not appear in this panel. Similarly, each table item
have a checkbox which will prohibit the attribute update only for this kernel object.

• ORTI item description viewer. This is the lower text pane which displays static (or
information extracted about that item from the ORTI file) and dynamic (runtime
values) data. The ORTI description viewer also lists tags or links. A tag or link can
be any ORTI item, that is any kernel object, type or attribute name. At load time

Customizing Launch Configuration

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

454 Freescale Semiconductor, Inc.



these names are put in global cache along with their ORTI entity. They are marked as
hyperlinks and the open action will select that kernel type or object.

• Kernel objects detailed viewer - This table hold instances of the same kernel type.
Intuitively, each table cell represents a kernel object attribute; except the first column
which is allocated for object name. The table cells hold some graphical properties.

Table 4-12. Graphical Properties of Kernel Objects Detailed
Viewer

Option Description

Background Color

White Indicates static attributes like strings or constant C
type or enum values; default.

Blue Indicates dynamic attributes that need to be
computed through C formulas or expressions; they
are marked this way in order to distinguish them
from static attributes.

Yellow Indicates dynamic attributes to denote a value
change.

Black Indicates the table cursor or which cell is currently
selected.

Foreground color

Black Indicates default text color

Red Indicates an error or a value inconsistency.

Icons Signifies the attribute type (Enum, String or C type)
and the cells can a warning icon which indicates a
possible error or an invalid value; table columns are
appended with an image. For attribute
SERVICETRACE the special step in and step out
icons are used to indicate that the task has entered
or left a service routine procedure.

Cell context menu Contains options that change the attribute value
representation and update commands. The first
options are available only for integer attributes (not a
String attribute) and they affect the attribute
representation globally. This means that the change
is saved into the model and all views will show that
attribute consistently. A subgroup (Show label, Show
value, Show label and value) of these options treat
only enum attributes and handle label-value show.
The other subgroup controls the base number
representation (Binary, Octal, Decimal, Hex). The
options from update group are: Toggle update which
bypass the renew policies set to attribute column or
row and Update which refreshes unconditionally the
attribute's value direct from the target and not from
model's.

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 455



4.1.3.6.5 Trace

This tab is designated to show a simple trace view of the traceable attributes. You can set
the sample time and the trace buffer length. Because of a System Browser constraint this
view illustrated trace results only when the core is stopped; for example. after a step.

Figure 4-13. System Browser View - Trace

4.1.3.7 Exceptions

The Exceptions tab is available with P&E Microcomputer Systems, simulator, and
Freescale USB and Ethernet TAP remote connections. Use this tab to specify hardware
exceptions that you want the debugger to catch. Before you load and run the program, the
debugger inserts its own exception vector for each exception you check in tab. To use
your own exception vectors instead, clear the corresponding checkboxes.

If you check any options, the debugger reads the Vector_Based_Register (VBR), finds
the corresponding existing exception vector and then writes a new vector at that register
location. The address of this new vector is offset 0x408 from the VBR address. For
example, if the VBR address is 0x0000 0000, the new vector at address 0x0000 0408
catches and handles the checked exceptions.

The debugger writes a Halt instruction and a Return from Exception instruction at this
same location.

NOTE
If your exceptions are in Flash or ROM, do not check any boxes
in the CF Exceptions panel.

Customizing Launch Configuration

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

456 Freescale Semiconductor, Inc.



Figure 4-14. Exceptions Tab - For ColdFire

The following table describes the exceptions settings.

Table 4-13. Exceptions Settings - For ColdFire

Option Description

2 - Access Error Determines whether the debugger handles the access error
exception. Check this option to catch and display access
errors. Clear this option to ignore access errors.

3 - Address error Determines whether the debugger handles the address error
exception. Check this option to catch and display address
errors. Clear this option to ignore address errors.

4 - Illegal instruction Determines whether the debugger handles an invalid
instruction exception. Check this option to catch and display
invalid instructions. Clear this option to ignore invalid
instructions.

5 - Divide by zero Determines whether the debugger handles a divide by zero
exception. Check this option to catch and display any attempt
to divide by zero. Clear this option to ignore divide by zero
attempts.

8 - Privilege violation Determines whether the debugger handles a privilege
violation exception. Check this option to catch and display
privilege violations. Clear this option to ignore privilege
violations.

9 - Trace Determines whether the debugger handles a Trace exception.
Check this option to catch and display trace exceptions. Clear
this option to ignore trace exceptions.

10 -Unimplemented line-a opcode Determines whether the debugger handles a unimplemented
line-A opcode exception. Check this option to catch and
display unimplemented line-A opcodes Clear this option to
ignore unimplemented line-A opcodes.

Table continues on the next page...

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 457



Table 4-13. Exceptions Settings - For ColdFire (continued)

Option Description

11- Unimplemented line-f opcode Determines whether the debugger handles a unimplemented
line-F opcode exception. Check this option to catch and
display unimplemented line-F opcodes. Clear this option to
ignore unimplemented line-F opcodes.

12 - Non-PC breakpoint debug interrupt Determines whether the debugger handles non-PC
breakpoint debug interrupts. Check this option to catch and
display non-PC breakpoint debug interrupts. Clear this option
to ignore non-PC breakpoint debug interrupts.

13 - PC breakpoint debug interrupt Determines whether the debugger handles PC breakpoint
debug interrupts. Check this option to catch and display PC
breakpoint debug interrupts. Clear this option to ignore PC
breakpoint debug interrupts.

14 - Format error Determines whether the debugger handles format error
exceptions. Check this option to catch and display format
errors. Clear this option to ignore format errors.

15 - Uninitialized interrupt Determines whether the debugger handles uninitialized
interrupts. Check this option to catch and display uninitialized
interrupts. Clear this option to ignore uninitialized interrupts.

24 - Spurious interrupt Determines whether the debugger handles spurious
interrupts. Check this option to catch and display spurious
interrupts. Clear this option to ignore spurious interrupts.

31 - Level 7 autovectored interrupt (Suspend Button) Determines whether the debugger handles level 7 suspend
button exceptions. Check this option to catch and display the
use of the level 7 interrupts. Clear this option to ignore level 7
interrupts.

46 - Trap #14 instruction (Console I/O) Determines whether the debugger handles trap # 14
instructions, which implement console I/O. Clear this option to
ignore trap 14 instructions. Check this option to catche and
display uses of trap 14 instructions.

61 - Unsupported instruction Determines whether the debugger handles the unsupported
instruction exception. Check this options to catch and display
unsupported instructions. Clear this option to ignore
unsupported instructions.

Handle user application provided Trap #14 for console I/O Determines whether the debugger handles trap # 14
exceptions when they occur in an application. Clear this
option to ignore trap 14 instructions. Check this option to
catches and display uses of trap 14 instructions.

Customizing Launch Configuration

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

458 Freescale Semiconductor, Inc.



Figure 4-15. Exceptions Tab - For Kinetis

The following table describes the exceptions settings.

Table 4-14. Exceptions Settings - For Kinetis

Option Description

Enable File I/O Support Check to enable file input-output support.

Fault occuring during exception entry or return Check to suspend execution if a fault occurs during exception
or return.

Hard Fault Generic fault that exists for all classes of fault that cannot be
handled by any of the other exception mechanisms; typically
used for unrecoverable system failure situations, though this
is not required, and some uses of HardFault might be
recoverable. HardFault is permanently enabled and has a
fixed priority of -1.

UsageFault due to checking error The UsageFault fault handles non-memory related faults
caused by the instruction execution. A number of different
situations will cause usage faults, including:

• UNDEFINED Instructions
• invalid state on instruction execution
• errors on exception return
• disabled or unavailable coprocessor access.

The following can cause usage faults when the core is
configured to report them:

• unaligned addresses on word and halfword memory
accesses

• division by zero.

UsageFault can be disabled (in this case, a UsageFault will
escalate to HardFault). UsageFault has a configurable
priority.

MemManage MemManage fault handles memory protection related faults
which are determined by the Memory Protection Unit or by
fixed memory protection constraints, for both instruction and
data generated memory transactions. The fault can be
disabled (in this case, a MemManage fault will escalate to
HardFault). MemManage has a configurable priority.

BusFault Handles memory related faults other than those handled by
the MemManage fault for both instruction and data generated
memory transactions. These faults arise from errors detected
on the system buses. Implementations are permitted to report

Table continues on the next page...

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 459



Table 4-14. Exceptions Settings - For Kinetis (continued)

Option Description

synchronous or asynchronous BusFaults according to the
circumstances that trigger the exceptions. The fault can be
disabled (in this case, a BusFault will escalate to HardFault).
BusFault has a configurable priority.

UsageFault due to state information error Check to suspend execution if a usage fault due to state
information occurs.

UsageFault access to a Coprocessor Check to suspend execution if a usage fault access to
coprocessor occurs.

4.1.3.8 Reset

The Reset tab specifies the setup actions that the Microcontroller takes when it comes out
of a reset.

Figure 4-16. Reset Tab

Table 4-15. Reset Tab

Option Description

Fetch SP and PC from Reset Vector When selected, the debugger fetches the base of the stack
and the start address from the reset vector, and loads them
into the Microcontroller's SP and PC, respectively. Used for
ROM build targets.

Set PC to program Entry Point When selected, the debugger sets the Microcontroller's PC to
the program's start address. Used to emulate reset for RAM
build targets.

Set PC and SP to specified value When selected, the debugger takes the user-supplied values
for SP and PC and loads them the corresponding
Microcontroller registers. Used to reference the entry point of
a boot loader. When selected, the SP: and PC: text entry
boxes are active. Enter the hexadecimal addresses for SP
and PC in these boxes.

Do not set SP or PC When selected, the debugger takes no action and the
Microcontroller uses the default addresses in the PC and SP.

Customizing Launch Configuration

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

460 Freescale Semiconductor, Inc.



4.1.3.9 Interrupts

Debugging an application involves single-stepping through code. However, if you do not
modify the behavior of interrupts that are part of normal code execution, an interrupt may
occur and the debugger jumps to the interrupt handler code, rather than single-stepping to
the next instruction. Therefore, you must mask, or inhibit, certain interrupt levels to
prevent the interrupts from happening. The interrupt levels that you inhibit varies,
depending upon the microcontroller.

Use this tab to inhibit or allow interrupts. When inhibiting interrupts, you can mask
interrupts below a level that you specify. The following figure shows the Interrupts tab.

Figure 4-17. Interrupts Tab

The following table explains each option.

Table 4-16. Interrupts Tab

Option Description

Mask Interrupts Determines whether the debugger inhibits or allows interrupts.
Check this option to inhibit interrupts, using the level specified
in the Interrupt Level option. Uncheck this option to permit all
interrupts.

Interrupt Level Use this option to specify the interrupt level that the debugger
inhibits. Level 0 corresponds to the lowest priority interrupt,
while level 7 is the highest. If you specify a level of 4, then the
debugger inhibits interrupts of level 0 through 4, while
interrupts at levels 5 through 7 execute.

For HCS08/RS08/Kinetis

Disable interrupts during stepping Check this checkbox if you want to disable interrupts during
stepping.

Interrupt level Use this option to specify the interrupt level.

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 461



NOTE
The exact definitions of interrupt levels are different for each
target microcontroller, and masking all interrupts can cause
erratic behavior. This means that finding the best interrupt level
to mask can involve trial and error. Be alert for any code
statements that change the interrupt mask; stepping over such a
statement can modify the settings in the tab.

NOTE
The ARMv7-M profile supports two system level interrupts -
PendSV for software generation of asynchronous system calls,
and SysTick for a Timer integral to the ARMv7-M profile -
along with up to 496 external interrupts. All interrupts have a
configurable priority. The debugger can optionally set the
C_MASKINTS bit in the DHCSR to inhibit (mask) PendSV,
Systick, and external configurable interrupts from occurring
during stepping. Where C_MASKINTS is set, permitted
exception handlers which activate will execute along with the
stepped instruction.

4.1.3.10 Remote

When debugging a Linux application, use this tab to specify where the debugger
downloads the program for debug on the Linux host system, and whether to launch any
optional applications while debugging.

The following figure shows the Remote tab view.

Figure 4-18. Remote Tab

Customizing Launch Configuration

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

462 Freescale Semiconductor, Inc.



The following table describes the Remote tab settings.

Table 4-17. Remote Tab Settings

Option Description

Remote download path Specifies the directory path that the debugger downloads the
test program into.

Launch remote host application Specifies the directory path of a Linux program that is to be
launched along with the test program.

4.1.3.11 EPPC Exceptions

Use this page to specify which processor exceptions you want the debugger to catch.

The following table describes the EPPC Exceptions tab settings.

Table 4-18. EPPC Exceptions Tab Settings

Option Description

The features of this page view are currently not supported by
this implementation.

4.1.3.12 System Call Services

Use this page to activate the debugger's support for system calls and to select options that
define how the debugger handles system calls. The CodeWarrior debugger provides
system call support over JTAG. System call support lets bareboard applications use the
functions of host OS service routines. This feature is useful if you do not have a board
support package (BSP) for your target board. The host debugger implements these
services. Therefore, the host OS service routines are available only when you are
debugging a program on a target board or simulator.

NOTE
The OS service routines provided must comply with an
industry-accepted standard. The definitions of the system
service functions provided are a subset of Single UNIX
Specification (SUS).

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 463



Figure 4-19. Debug Configurations - System Call ServicesTab

The following table describes the settings on the System Call Services panel.

Table 4-19. System Call Services Settings

Option Description

Activate Supportfor System Services Check this option to enable support for system services. All
the other options on the System Call Services panel are
enabled only if you check this checkbox.

stdout/stderr By default, the output written to stdout and stderr appears in a
CodeWarrior IDE "console" window. To redirect console
output to a file, check the stdout/stderr checkbox. Click
Browse to display a dialog box and specify the path and name
of this file.

Use sharedconsole window Check this option if you wish to share the same console
window between different debug targets. This setting is useful
in multi-core or multi-target debugging.

Trace level Use this dropdown list to specify the system call trace level.
The place where the debugger displays the traced system
service requests is determined by the Trace checkbox. The
system call trace level options available are:

• No Trace - system calls are not traced
• Summary - the requests for system services are

displayed
• Detailed - the requests for system services are

displayed along with the arguments/parameters of the
request

Trace By default, traced system service requests appear in a
CodeWarrior IDE "console" window. To log traced system
service requests to a file, check the Trace checkbox. Click
Browse to display a dialog box and define the path and name
of this file. In a project created by the New Project wizard, use
the library syscall.a rather than a UART library for handling
the output.

Table continues on the next page...

Customizing Launch Configuration

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

464 Freescale Semiconductor, Inc.



Table 4-19. System Call Services Settings
(continued)

Option Description

Root folder The directory on the host system which contains the OS
routines that the bareboard program uses for system calls.

4.1.4 Source

Use this page to specify the location of source files used when debugging a C or C++
application. By default, this information is taken from the build path of your project.

The Source tab options are explained in the following table..

Figure 4-20. Debug Configurations - Source Tab

Table 4-20. Source Tab Options

Option Description

Source Lookup Path Lists the source paths used to load an image after connecting
the debugger to the target.

Add Click to add new source containers to the Source Lookup
Path search list.

Edit Click to modify the content of the selected source container.

Remove Click to remove selected items from the Source Lookup
Path list.

Table continues on the next page...

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 465



Table 4-20. Source Tab Options (continued)

Option Description

Up Click to move selected items up the Source Lookup Path
list.

Down Click to move selected items down the Source Lookup Path
list.

Restore Default Click to restore the default source search list.

Search for duplicate source files on the path Select to search for files with the same name on a selected
path.

NOTE
For more information on path mapping refer to the topic Path
Mapping in the CodeWarrior Common Feature Guide.

4.1.5 Environment

Use this page to specify the environment variables and values to use when an application
runs.

Figure 4-21. Debug Configurations - Environment Tab

Customizing Launch Configuration

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

466 Freescale Semiconductor, Inc.



The following table list the Environment tab options.

Table 4-21. Environment tab options

Option Description

Environment Variables to set Lists the environment variable name and its value.

New Click to create a new environment variable.

Select Click to select an existing environment variable.

Edit Click to modify the name and value of a selected environment
variable.

Remove Click to remove selected environment variables from the list.

Append environment to native environment Select to append the listed environment variables to the
current native environment.

Replace native environment with specified environment Select to replace the current native environment with the
specified environment set.

4.1.6 Common

Use this page to specify the location to store your run configuration, standard input and
output, and background launch options.

Figure 4-22. Debug Configurations - Common Tab

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 467



The following table lists and explains the the Common tab options.

Table 4-22. Common Tab Options

Option Description

Save as

Local file Select to save the launch configuration locally.

Shared file Select to specifies the path of, or browse to, a workspace to
store the launch configuration file, and be able to commit it to
a repository.

Display in favourites menu Check to add the configuration name to Run or Debug menus
for easy selection.

Encoding Select an encoding scheme to use for console output.

Standard Input and Output

Allocate Console (necessary for input) Select to assign a console view to receive the output.

File Specify the file name to save output.

Browse Workspace Specifies the path of, or browse to, a workspace to store the
output file.

Browse File System Specifies the path of, or browse to, a file system directory to
store the output file.

Variables Select variables by name to include in the output file.

Append Check to append output. Uncheck to recreate file each time.

Port Check to redirect standard output ( stdout, stderr) of a
process being debugged to a user specified socket. Note:
You can also use the redirect command in debugger shell
to redirect standard output streams to a socket.

Act as Server Select to redirect the output from the current process to a
local server socket bound to the specified port.

Hostname/IP Address Select to redirect the output from the current process to a
server socket located on the specified host and bound to the
specified port. The debugger will connect and write to this
server socket via a client socket created on an ephemeral
port

Launch in background Check to launch configuration in background mode.

4.1.7 Trace and Profile

Use this page to configure the selected launch configuration for simulator and hardware
profiling.

Customizing Launch Configuration

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

468 Freescale Semiconductor, Inc.



Figure 4-23. Debug Configurations - Trace and Profile Tab for HCS08

The following table describes the various Trace and Profile options for HCS08.

Table 4-23. Trace and Profile Options for HCS08

Group Options Descriptions

User Options Enable Logging When checked, creates a log file that
keeps details of the actions that took
place in the application. For example,
when the debug session terminated,
when the target execution resumed or
stopped.

Configuration Set in User Code When checked, lets you configure trace
registers from the application without
using the Trace and Profile page. In this
scenario, you can write the appropriate
registers in the source code to configure
the trace mode and triggers.

Trace Mode Options Collect Program Trace Consists of these options:
• Continuously - When selected,

collects the trace data
continuously. The trace buffer is
read, processed, and emptied
periodically, so that the Trace Data
viewer can collect all the trace
records generated by the
application. In this mode, the trace

Table continues on the next page...

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 469



Table 4-23. Trace and Profile Options for HCS08 (continued)

Group Options Descriptions

data is not lost. It is a bit intrusive
as it stops the target repeatedly in
the background for collecting the
trace buffers.

• Automatically - When selected, the
entries in the buffer start
overwriting without interruption
when the data reaches at the end
of the buffer. If there is more trace
data than the size of the buffer, the
old entries will be overwritten.

• LOOP1 Mode - Lets you collect
the trace data without any
consecutive identical addresses. If
the next address to be stored in
FIFO is the same as the one
stored last time, it is ignored. This
mode is particularly useful with
short busy-wait type loops, which
are repeated a large number of
times or recursive calls, and is
recommended when you want to
view the coverage of that code,
but not necessarily the number of
times the code executed.For more
information on Loop1 mode, refer
to the MC9S08QE128 Reference
Manual.

Note: The LOOP1 Mode option is visible
only for the debug version 3 (DbgVer 3)
targets, that is HCS08 target with three
comparators. For any other targets with
two comparators, this option is not
visible.

Collect Data Trace Collects the trace data of the values of a
variable, which is located at the address
where trigger B is set, for all the
accesses (Read/Write/Both).

Profile-Only When selected, collects trace by
sampling the program counter (PC) from
time to time.

Configure Expert Settings When selected, enables the Configure
Expert Settings button and gives you
access to most of the on-chip DBG
module registers. To configure expert
settings, download the processor
specific manual from the site: http://
www.freescale.com/

Trace Start/Stop Conditions No Trigger Specifies that no triggers are set for
collecting trace. When no triggers are
set and trace is collected, the trace data
starts collecting from the beginning of
the application.

Table continues on the next page...

Customizing Launch Configuration

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

470 Freescale Semiconductor, Inc.



Table 4-23. Trace and Profile Options for HCS08 (continued)

Group Options Descriptions

Collect Trace From Trigger Starts collecting trace when the triggers
generate, that is when the condition for
A and B is met.

Break on FIFO Full While debugging, suspends the
application automatically when buffer
gets full. The checkbox gets enabled in
the Automatically mode when the Collect
Trace From Trigger option is selected.

Collect Trace Until Trigger Starts collecting trace and stops when
the condition for triggers, A and B is met.
This option is not enabled in the
Continuously mode.

Break on Trigger Hit While debugging, suspends the
application automatically when the
trigger is hit, that is when the trigger
condition is met. The checkbox gets
enabled when the Collect Trace Until
Trigger option is selected.

Trigger Type Contains various conditions of triggers,
A and B for starting/stopping trace
collection.

Instruction at Address A is Executed Starts trace from the address or source
line corresponding to trigger A.

Instruction at Address A or Address B is
Executed

Starts trace from the address or source
line corresponding to trigger A or trigger
B whichever occurs first.

Instruction Inside Range from Address A
to Address B is Executed

Starts trace when any instruction in the
range between trigger address A and
trigger address B is executed. That is,
when [address at trigger A] <= [current
address] <= [address at trigger B].

Instruction Outside Range from Address
A to Address B is Executed

Starts trace when any instruction outside
the range between trigger address A and
trigger address B is executed. That is,
when [current address] < [address at
trigger A or address at trigger B] <
[current address].

Instruction at Address A, Then
Instruction at Address B are Executed

Starts trace from trigger B only if trigger
A occurred before.

Instruction at Address A is Executed and
Value on Data Bus Match

Collects the trace data from the
instruction where trigger A is set when
the value specified in the Value to
Compare on Data Bus text box
matches with the opcode read from
trigger A address, that is the value in
memory at trigger A address. Note:
Because the hardware has a small delay
in enabling the triggers, trace won't be
collected as expected if data match is
done for the instruction immediately
following the line where trigger is set.

Table continues on the next page...

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 471



Table 4-23. Trace and Profile Options for HCS08 (continued)

Group Options Descriptions

Instruction at Address A is Executed and
Value on Data Bus Mismatch

Collects the trace data from the
instruction, where trigger A is set, on
data mismatch. That is, trace is triggered
at address A when the value specified in
the Value to Compare on Data Bus
text box does not match with the opcode
read from trigger A address.

Value to Compare on Data Bus Contains the value that you specify to be
matched or not matched with the opcode
read from trigger A address.

Capture Read/Write Values at Address
B

Captures accesses to the variable
address, where trigger B is set, after you
press resume. Appears only when the
Collect Data Trace mode is selected.

Capture Read/Write Values at Address
B, After Access at Address A

Waits for the program to execute the
instruction at the address where trigger
A is set, monitors the variable address
where trigger B is set, and collects trace
from there. Appears only when the
Collect Data Trace mode is selected.

Trigger Selection Instruction Execute This option is related to how the
hardware executes triggering. An
address is triggered only when the
opcode is actually executed, but this
circuitry has a delay which sometimes
makes the very next instruction in
memory not caught in the trace when
you press resume. In this mode, the
output of the comparator must propagate
through an opcode tracking circuit before
triggering FIFO actions.

Memory Access When selected, allows memory access
to both variables and instructions. Refer
to the Memory Triggers topic in the
Profiling and Analysis User Guide.

NOTE
For Memory trigger and other details with respect to setting
tracepoints, refer to the Profiling and Analysis User Guide.

The following table describes the various Trace and Profile options for ColdFire V1.

Table 4-24. Trace and Profile Options for ColdFire V1

Group Options Descriptions

User Options Enable Logging Creates a log file that keeps details of
the actions that took place in the
application. For example, when the
debug session terminated, when the
target execution resumed or stopped.

Table continues on the next page...

Customizing Launch Configuration

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

472 Freescale Semiconductor, Inc.



Table 4-24. Trace and Profile Options for ColdFire V1 (continued)

Group Options Descriptions

Configuration Set in User Code When checked, lets you configure trace
registers from the application without
using the Trace and Profile page. In this
scenario, you can write the appropriate
registers in the source code to configure
the trace mode and triggers.

Select Trace Mode Continuous When selected, collects the trace data
continuously. It produces best possible
trace and profile results because it
captures all executed instructions.
However, it is slow and intrusive as it
stops the target in the background every
about 500 cycles.

Automatic (One-buffer) When selected, captures only the last
instructions executed before the target
gets suspended. It is totally unintrusive.

Halt the Target when Trace Buffer Gets
Full

Appears only when the Automatic (One-
Buffer) option is selected. It acts as a
breakpoint for stopping the application. If
selected, stops the application
automatically when trace buffer gets full.

Profile-Only. Sample PC every cycles When selected, captures the PC
address every N cycles, where N is
128/256/512.......16384. Trace is
mostly irrelevant in this mode, but Profile
Statistics will be fairly accurate for a long
cyclic run. This method is a bit intrusive
because it stops the target in the
background every about 8*N cycles.

Expert When selected, enables the Configure
Expert Settings button and lets you
configure the ColdFire V1 trace and
debug registers directly.

Trace Start/Stop Conditions Includes various conditions of triggers,
A, B, and C, for starting and stopping
trace.

Target PC Address 2 Bytes Select this option to save 5-30% trace-
buffer space if your PC addresses never
exceed 16-bits (64K). This results in less
intrusiveness, or more instructions
traced, depending on the trace mode
you use. This feature is not supported
for the Expert trace mode.

3 Bytes Select this default and recommended
option if the PC address length in your
program exceeds 16-bits (64K). This
feature is not supported for the Expert
trace mode.

Trace data values Read Data Traces the values of data operands
being read from the memory. This
feature is not supported for the Profile-
Only and Expert trace modes.

Table continues on the next page...

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 473



Table 4-24. Trace and Profile Options for ColdFire V1 (continued)

Group Options Descriptions

Write Data Traces the values of data operands
being written to the memory. This
feature is not supported for the Profile-
Only and Expert trace modes.

The following table describes the various Trace and Profile options.

Table 4-25. Trace and Profile Options for Kinetis

Group Option Description

ETB Embedded Trace Buffer where collected
trace data is stored.

JTrace Enables trace collection by using the
Segger/J-Trace probe.

TPIU Trace Port Interface Unit - Collects ETM
and ITM trace into the internal probe
buffer of size 4MB. TPIU is a block on
the processor that manages the output
of trace.

SWO Serial Wire Output - Single pin serial
output that collects only ITM trace into
the buffer of size 4MB. SWO uses the
Serial Wire Debug ( SWD) debug
connection. If selected, the Debug Port
Interface should be set as SWD.

Core clock ARM core clock in Mhz needed for the
serial connection setup. The core clock
can change due to multiple settings. For
example, when started, a K60 processor
rated at 100Mh works at 25Mhz, which is
the default value. You can change the
core clock value according to the
requirements.

Low Power Profiling Allows monitoring of low power Wait
states. This state lets peripherals to
function, while allowing CPU to go to
sleep reducing power.

Continuous Trace Collection Allows you to collect continuous trace
data when checked. That is, it stops the
target in the background to read the
trace every time the FIFO is almost full.

ETM Enables/disables trace output from the
Embedded Trace Macrocell (ETM)
block. It controls the ETM port selection
bit from ETM's control register.

ITM Enables/disables trace output from the
Instrumentation Trace Macrocell (ITM)
block.

Collect Instrumentation trace Collects instrumentation trace.

Table continues on the next page...

Customizing Launch Configuration

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

474 Freescale Semiconductor, Inc.



Table 4-25. Trace and Profile Options for Kinetis (continued)

Group Option Description

Collect Profiling Counters Enables/disables the following profiling
counters at once:

• Cycle Count Event Generation
• Exception Trace
• Exception Overhead Count
• CPI Count
• Sleep Overhead Count
• LSU Count
• Folded Instruction Count

4.2 Debugging Bareboard Software

This topic applies to debugging software on 10.x systems, that is, for hardware that is not
running an operating system.

The topics are:

• Displaying Register Contents
• Exporting Registers
• Importing Registers
• Changing Register Data Display Format
• Offline Registers View
• Using Register Details Window
• Viewing and Modifying Cache Contents
• Setting Stack Crawl Depth
• Changing Program Counter Value
• Viewing Memory
• Hard Resetting

4.2.1 Displaying Register Contents

Use the Registers view to display and modify the contents of the registers of the
processor on your target board. To display this view from the Debug perspective, Select 
Window > Show View > Registers , and the Registers view appears.

The Registers view displays categories of registers in a tree format. To display the
contents of a particular category of registers, expand the tree element of the register
category of interest.

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 475



The following figure shows the Registers view with the General Purpose Registers tree
element expanded.

Tip
You can also view and update registers by issuing the reg,
change, and display commands in the CodeWarrior Debugger
Shell view.

Figure 4-24. Registers View

4.2.1.1 Adding Register Group

By default, the Registers view lists the related register groups in a tree structure. You can
add a custom group of registers to the default tree structure. To add a new register group:

1. Right-click in the Registers view.

A context menu appears.

2. Select Add Register Group.

The Register Group dialog box appears.

Debugging Bareboard Software

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

476 Freescale Semiconductor, Inc.



Figure 4-25. Register Group Dialog Box
3. Enter in the Group Name text box a descriptive name for the new group. For

example, MyGroup.
4. Check the checkbox adjacent to each register you want to add in the new group.

Tip
Click Select All to check all of the checkboxes. Click
Deselect All to clear all the checkboxes.

5. Click OK.

The Register Group dialog box closes. The new group name appears in the Registers
view.

Figure 4-26. New Register Group

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 477



4.2.1.2 Editing Register Group

In the Registers view, you can edit both the default register groups and the groups that
you add. To do so:

1. In the Register view, right-click on the name of the register group you want to edit.
For example, right-click on MyGroup.

A context menu appears.

2. Select Edit Register Group.

The Register Group dialog box appears.

3. If required, enter a new name for the group in the Group Name text box.
4. Check the checkbox adjacent to each register you want to add in the group.

Tip
Click Select All to check all of the checkboxes. Click
Deselect All to clear all the checkboxes.

5. Click OK.

The Register Group dialog box closes. The new group name appears in the Registers
view.

4.2.1.3 Removing Register Group

In the Registers view, you can remove register groups. To remove a register group:

1. In the Registers view, right-click on the register group you want to remove.

A context menu appears.

2. Select Remove Register Group.

The selected register group is removed from the Registers view.

4.2.1.3.1 Changing Register's Bit Value

To change a bit value in a register, first switch the IDE to the Debug perspective, start a
debugging session and perform these steps.

1. Open the Registers view by selecting Window > Show View > Registers.
2. Expand the register group that contains the register with the bit value that you want

to change.

Debugging Bareboard Software

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

478 Freescale Semiconductor, Inc.



3. Click on the register's current bit value in the view's Value column.

The value appears editable.

4. Type in the new value.
5. Press the Enter key.

The debugger updates the bit value. The bit value in the Value column changes to
reflect your modification.

NOTE
Modified values are highlighted in yellow.

4.2.2 Exporting Registers

To export register data to a file:

1. Open the Registers view.
2. Click the Export registers button in the Registers view toolbar.

The Export Registers dialog box appears.

Figure 4-27. Export Registers Dialog Box

• Registers group - Controls the scope of export operation. Selecting the All option
exports all registers in the Register view. Selecting the Selected option exports

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 479



selected registers. If a register group is selected in the Register view then the
entire register tree, starting at the selected node, is exported.

NOTE
The Selected option is disabled if no register is selected
in the Registers view.

• File text box - Specifies the name of the file to store the exported register
information.

• Include register information check box - Check this check box to export the
location information for registers.

• Overwrite existing check box - Check this check box to overwrite an existing
file.

• Cancel on error check box - Check this check box to stop the export operation
upon encountering any error.

3. Click Finish.

4.2.3 Importing Registers

To import register data from a file:

1. Open the Registers view.
2. Click the Import registers button in the Registers view toolbar.

The Import Registers dialog box appears.

Debugging Bareboard Software

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

480 Freescale Semiconductor, Inc.



Figure 4-28. Import Registers Dialog Box

• File drop-down list - Specifies the name of the register data file to import register
information.

• Import all registers - Selecting this option allows you to import all registers from
the register data file.

• Import selected registers - Selecting this option allows you to select registers you
want to import.

• Verify check box - When checked, a register write to the target is followed by a
read and a comparison against the written value. This ensures that the import
operation on the register is successful.

• Cancel on error check box - Check this check box to stop the import operation
upon encountering any error.

3. Click Finish.

4.2.4 Changing Register Data Display Format

You can change the format in which the debugger displays the contents of registers. For
example, you can specify that a register's contents be displayed in hexadecimal, rather
than binary. The debugger provides these data formats:

• Default
• Decimal
• Hexadecimal

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 481



• Octal
• Binary
• Fractional

To change register display format:

1. Open the Registers view.
2. Expand the hierarchical list to reveal the register for which you want to change the

display format.
3. Select the register value that you want to view in a different format.

The value highlights.

4. Right-click to display the pop-up menu and and choose Format > [ dataformat from
the context menu that appears], where dataformat is the data format in which you
want to view the register value.

The register value changes format.

4.2.5 Offline Registers View

The Offline Registers View feature allows you to browse registers information from
debugger database offline (without a debug session). Register details are presented in the
same way as in registers view.

It also provides an editor for "regs" files (files exported from registers view). You can
browse the registers from file offline. You can update register values in visual and text
mode for later importing data through debugger.

To open offline registers view:

1. Click Offline Registers View button on the toolbar.

The Register Details page appears.

Debugging Bareboard Software

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

482 Freescale Semiconductor, Inc.



Figure 4-29. Offline Registers View - Register Details
2. Select a chip name from the Processor drop-down list.
3. Click the register from the list to see details like bit fields, actions and description.

4.2.6 Using Register Details Window

The default state of the Registers view is to provide details on the processor's registers.

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 483



Figure 4-30. Register View - Detailed Information

The Registers view displays several types of register details:

• Bit Fields
• Description
• Actions

NOTE
To display the register details, first you have to select a
register, then expand the view by clicking and dragging the
areas at the bottom of the Registers view to reveal the Bit
Field, Description, and Actions portions of the view.

Debugging Bareboard Software

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

484 Freescale Semiconductor, Inc.



4.2.6.1 Bit Fields

The Bit Fields group of the Registers view shows a graphical representation of the
selected register's bit values. This graphical representation shows how the register
organizes bits. You can use this representation to select and change the register's bit
values. Hover the cursor over each part of the graphical representation in order to see
additional information.

Figure 4-31. Register Details - Bit Fields Group

Tip
You can also view register details by issuing the reg command
in the Debugger Shell view.

A bit field is either a single bit or a collection of bits within a register. Each bit field has a
mnemonic name that identifies it. You can use the Field list box to view and select a
particular bit field of the selected register. The list box shows the mnemonic name and
bit-value range of each bit field. In the Bit Fields graphical representation, a box
surrounds each bit field. A red box surrounds the bit field shown in the Field list box.

After you use the Field list box to select a particular bit field, you see its current value in
the = text box. If you change the value shown in the text box, the Registers view shows
the new bit-field value.

The minimum resolution of bit-field descriptions is 2-bits. Consequently, register details
are not available for single-bit overflow registers.

The maximum resolution of bit-field descriptions is 32-bits.

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 485



4.2.6.1.1 Changing Bit Field

To change a bit field in a register, you must first start a debugging session and then open
the Registers view.

To change a bit field, perform these steps.

1. In the Registers view, view register details.
2. Expand the register group that contains the bit field you want to change.
3. Register details appear in the Registers view.

Figure 4-32. Registers View - Register Details
4. From the expanded register group above the register details, select the name of the

register that contains the bit field that you want to change.

The Bit Fields group displays a graphical representation of the selected bit field. The
Description group displays explanatory information about the selected bit field and
parent register.

5. In the Bit Fields group, click the bit field that you want to change. Alternatively, use
the Field list box to specify the bit field that you want to change.

6. In the = text box, type the new value that you want to assign to the bit field.
7. In the Action group, click the Write button.

NOTE
The Revert and Write buttons appear enabled if the value
in the = field is changed or you reset the values.

The debugger updates the bit-field value. The bit values in the Value column and the
Bit Fields group change to reflect your modification.

Debugging Bareboard Software

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

486 Freescale Semiconductor, Inc.



NOTE
Click the Reset button to discard your changes and restore
the original bit-field value. Click the Revert button to
revert to the last changes made.

4.2.6.2 Description

The Description group of the Registers view shows explanatory information for the
selected register.

Figure 4-33. Register View - Description Group

The registers information covers:

• Name
• Current Value
• Description
• Bit field explanations and values

Some registers have multiple modes (meaning that the register's bits can have multiple
meanings, depending on the current mode). If the register you examine has multiple
modes, you must select the appropriate mode.

4.2.6.3 Actions

Use the Actions group of the Registers view to perform various operations on the selected
register's bit-field values.

Figure 4-34. Register View - Actions Group

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 487



The following table lists each item in the Actions group and explains the purpose of each.

Table 4-26. Actions Group Items

Item Description

Revert Discard your changes to the current bit-field value and restore
the last change you made. The debugger disables this button
if you have not made any changes to the bit-field value.

Write Save your changes to the current bit-field value and write
those changes into the register's bit field. The debugger
disables this button after writing the new bit-field value, or if
you have not made any changes to that value.

Reset Change each bit of the bit-field value to its register-reset
value. The register takes on this value after a target-device
reset occurs. To confirm the bit-field change, click Write. To
cancel the change, click Reset .

Summary Display Description group content in a pop-up window. Press
the Esc key to close the pop-up window.

Format Specify the data format of the displayed bit-field values.

4.2.6.4 Register Details Context Menu

To display the Register Details context menu, right-click on a bit-field value in the
Registers view. This menu's commands duplicate capabilities available in the Register
Details view.

The following table lists each command in the Registers view and explains the purpose of
each.

Table 4-27. Register Details Context Menu

Menu Command Description

Select All Selects the entire contents of the current bit-field value

Copy Registers Copies to selected bit fields content to the system clipboard

Enable Lets the debugger to access the selected bit fields

Disable Prevents the debugger from accessing the selected bit fields

Format Formats the register value as decimal, hexadecimal, octal,
binary, or fractional.

Cast to Type Opens a dialog box that you can use to cast the selected bit
field values to a different data type

Restore Original Type Reverts the selected bit-field values to their default data types

View Memory Opens the Memory view and provides memory details of the
selected register.

Find Opens a dialog box that you can use to select a particular
register or bit field

Table continues on the next page...

Debugging Bareboard Software

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

488 Freescale Semiconductor, Inc.



Table 4-27. Register Details Context Menu (continued)

Menu Command Description

Change Value Open the Set Value dialog to change the selected registers
value.

Show Details As Helps you view details in the default viewer or in the registers
details pane. In case default viewer is selected, teh bit
description is not displayed as in case of the registers details
pane.

Add Register Group Opens a dialog box that you can use to create a new
collection of registers to display in the Registers view

Restores Default Register Group Resets the custom groups of registers created using the Add
Register Group option, and restores the default groups
provided by the debugger as they were when CodeWarrior
was installed. Note that if you select this option, all custom
groupings of registers done by you are lost.

Add Watchpoint (C/C++) Helps you add watchpoint to stop the execution of an
application whenever the value of a given expression
changes, without specifying where it might occur.

Edit Register Group Opens a dialog box that you can use to modify the collection
of registers that the Registers view displays for the selected
register group

Remove Register Group Deletes the selected register group from the Registers view

Profile As Helps you save your current profile.

Watch Opens the Expressions view.

Resource Configurations Helps you exclude or include resource configurations from the
build.

Add Visualization Enables you to specify the attributes for register read
operations in the Add Data Visualization dialog.

4.2.6.5 Viewing Register Details

To open the Registers view, you must first start a debugging session.

To see the registers and their descriptions, perform these steps.

1. In the Debug perspective, click the Registers tab.

The Registers view appears.

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 489



Figure 4-35. Registers View, Register Details
2. Click the toolbar's menu button (the inverted triangle highlighted in the above

figure).
3. Select Layout > Vertical View Orientation or Layout > Horizontal View

Orientation to see the register details.

NOTE
Selecting Layout > Registers View Only hides the register
details.

4. Expand a register group to see individual registers.
5. Select a specific register by clicking on it.

The debugger enables the appropriate buttons in the Actions group of the Registers
view.

NOTE
Use the Format list box to specify the format of data that
appears in the Registers view.

6. Use the Register view to examine register details.

Debugging Bareboard Software

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

490 Freescale Semiconductor, Inc.



For example, examine register details in these ways:

• Use the Bit Fields group to see a graphical representation of the selected
register's bit fields. You can use this graphical representation to select specific
bits or bit fields.

• Use the Description group to see an explanation of the selected register, bit
field, or bit value.

Tip
To enlarge the Registers view, click Maximize of the
view's toolbar. After you finish looking at the register
details, click Restore of the view's toolbar to return the
view to its previous size. Alternatively, right-click the
Registers tab and select Detached . The Registers view
becomes a floating window that you can resize. After you
finish looking at the register details, right-click the
Registers tab of the floating window and select Detached
again. You can rearrange the re-attached view by dragging
its tab to a different collection of view tabs.

4.2.7 Viewing and Modifying Cache Contents

The CodeWarrior debugger lets you view and modify the instruction cache and data
cache of the target system during a debug session.

• Cache Viewer
• Cache Viewer Toolbar Menu
• Components of Cache Viewer
• Using the Debugger Shell to View Caches
• Supported Processor Cache Features

4.2.7.1 Cache Viewer

Use the cache viewer to examine L1 cache (such as instruction cache or data cache).
Also, you can use the viewer to display L2 and L3 cache for targets that support it.

4.2.7.1.1 Opening the Cache Viewer

To open the cache viewer:

1. Start a debugging session.

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 491



2. From the main menu bar, select Window > Show View > Other .

The Show View dialog box appears as shown in the following figure.

Figure 4-36. Show View Dialog Box
3. Expand the Debug group.
4. Select Cache.
5. Click OK.

The Cache Viewer view appears as shown in the following figure.

Tip
You can use the type filter text box as a shortcut to specify
Cache Viewer. Start typing cache viewer into the text box.
The Show View dialog box shortens the list of views to
those whose names match the characters you type. The list
continues to shorten as you type each additional character.
When the list shows just the Cache Viewer view, select it
and click OK to open that view. You can click the Clear
button to empty the text box and restore the full list of
views.

Debugging Bareboard Software

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

492 Freescale Semiconductor, Inc.



Figure 4-37. Cache Viewer
6. Use the Choose a Cache list box to specify the cache that you want to examine.

NOTE
If the Choose a Cache list box is grayed out, the current
target does not support viewing cache.

4.2.7.2 Cache Viewer Toolbar Menu

Click the Cache Viewer toolbar menu button (the inverted triangle) to modify the data
display. The cache viewer toolbar buttons are alternate ways to implement these control
actions.

The following tab;e describes the Cache Viewer toolbar menu options.

NOTE
Certain toolbar buttons are unavailable (grayed out) if the target
hardware does not support their corresponding functions, or if a
specific operation can be performed in assembly language and
is not supported by the cache viewer.

Table 4-28. Cache Viewer Toolbar Menu Options

Option Description

Write Commit content changes from the cache viewer to the cache
registers on the target hardware (if the target hardware
supports doing so)

Refresh Read data from the target hardware and update the cache
viewer display

Invalidate Invalidate the entire contents of the cache

Flush Flush the entire contents of the cache. This option commits
uncommitted data to the next level of the memory hierarchy,
then invalidates the data within the cache.

Lock Lock the cache and prevent the debugger from fetching new
lines or discarding current valid lines

Table continues on the next page...

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 493



Table 4-28. Cache Viewer Toolbar Menu Options (continued)

Option Description

Enable Turn on the cache

Disable LRU Remove the Least Recently Used (LRU) attribute from the
existing display for each cache line

Inverse LRU Display the inverse of the Least Recently Used attribute for
each cache line

Copy Cache Copy the cache contents to the system clipboard

Export Cache Export the cache contents to a file

Search Find an occurrence of a string in the cache lines

Search Again Find the next occurrence of a string in the cache lines

View Memory View the corresponding memory for the selected cache lines

Lock Line Lock the selected cache lines

Invalidate Line Invalidate the selected cache lines

Flush Line Flush the entire contents of the selected cache lines

Lock Way Lock the cache ways specified with the Lock Ways menu
command. Locking a cache way means that the data
contained in that way must not change. If the cache needs to
discard a line, it will not discard locked lines (such as lines
explicitly locked, or lines belonging to locked ways).

Unlock Ways Unlock the cache ways specified with the Lock Ways menu
option

Lock Ways Specify the cache ways on which the Lock Way and Unlock
Way menu commands operate.

4.2.7.3 Components of Cache Viewer

Below the toolbar, there are two panes in the window, separated by another vertical
divider line. The pane to the left of the divider line displays the attributes for each
displayed cache line. The pane to the right of the divider line displays the actual contents
of each displayed cache line. You can modify information in this pane and click the Write
button to apply those changes to the cache on the target board.

Above the cache line display panes are the Refresh and Write buttons and the View As
dropdown menu. Click the Refresh button to clear the entire contents of the cache, re-
read status information from the target hardware, and update the cache lines display
panes. Click the Write button to commit cache content changes from this window to the
cache memory on the target hardware (if the target hardware supports doing so). Select
Raw Data, or Disassembly from the View As dropdown menu to change the way the IDE
displays the data in the cache line contents pane on the right side of the window.

Debugging Bareboard Software

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

494 Freescale Semiconductor, Inc.



You can perform all cache operations from assembly code in your programs. For details
about assembly code, refer to the core documentation for the target processor.You can
also perform cache operations by clicking the Menu button, shown as an inverted
triangle, that opens the view pull-down menu that contain actions for the Cache Viewer.

4.2.7.4 Using the Debugger Shell to View Caches

Another way to manipulate the processor's caches is by using the Debugger Shell.

To display the Debugger Shell:

1. Start a debugging session.
2. Select Window > Show View > Other.

The Show View dialog box appears.

3. Expand the Debug group.
4. Select Debugger Shell.
5. Click the OK button.

The Debugger Shell view appears.

To display a list of the commands supported by the Debugger Shell, enter this at the
command prompt:

  help -tree

  

  

For more information about the Debugger Shell support of cache commands, enter these
commands at the command prompt:

  help cmdwin::ca

  

  help cmdwin::caln

  

The next sections describe these commands in more detail.

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 495



4.2.7.4.1 Debugger Shell Global Cache Commands

The cmdwin::ca cache commands manage global cache operations. That is, they affect the
operation of the entire cache. For multi-core processors, these commands operate on a
specific cache if an optional ID number is provided. If the ID number is absent, the
command operates on the cache that was assigned as the default by the last
cmdwin::ca::default command.

The following table summarizes these cache commands.

Table 4-29. Debugger Shell Global Cache Commands

Command Description

cmdwin::ca::default Set specified cache as default

cmdwin::ca::enable Enable/disable cache

cmdwin::ca::flush Flushes cache

cmdwin::ca::inval Invalidates cache

cmdwin::ca::lock Lock/Unlock cache

cmdwin::ca::show Show the architecture of the cache

The basic format of a shell global cache command is:

command [<cache ID>] [on | off]

The optional cache ID number argument selects the cache that the command affects.

The optional on or off argument changes a cache's state.

For example, to display a particular cache's characteristics:

%> cmdwin::ca:show 1

displays the characteristics of the second processor cache.

You use the cmd::ca::default to assign a default cache that becomes the target of global
cache commands. For example:

%> cmdwin::ca:default 0

makes the first processor cache the default cache. Subsequent global cache commands
that do not specify a cache ID will affect this cache.

Other cache commands require the off or on state argument. When specifying a particular
cache, the state argument follows the ID argument. For example:

%> cmdwin::ca:lock 2 on

locks the contents of the third processor cache, while:

Debugging Bareboard Software

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

496 Freescale Semiconductor, Inc.



%> cmdwin::ca:enable 1 off

disables the second processor cache.

4.2.7.4.2 Debugger Shell Cache Line Commands

The cmdwin::caln commands manage cache line operations. They affect memory elements
within a designated cache.

The following table summarizes these commands.

Table 4-30. Debugger Shell Cache Line Commands

Command Description

cmdwin::caln::get Display cache line

cmdwin::caln::flush Flush cache line

cmdwin::caln::inval Invalidate cache line

cmdwin::caln::lock Locks/unlocks cache line

cmdwin::caln::set Writes specified data to cache line

The basic format for a shell cache line command is:

command [<cache ID>] <line> [<count>]

The optional cache ID argument specifies the cache that the command affects, otherwise
it affects the default cache, as set by the cmdwin::ca::default command.

The required line argument specifies the cache line to affect.

The optional count argument specifies the number of cache lines the command affects.
The default is one line. For example:

%> cmdwin::caln:flush 2

flushes line 2 of the default cache.

The cmdwin::caln:set command varies from the other commands in that you must specify
data words that fill the cache line. For example:

%> cmdwin::caln:set 2 = 0 1 1 2 3 5 8 13

Sets the contents of cache line two, where the first word has a value of 0, the second word
has a value of 1, the third word has a value of 1, the fourth word has a value of 2, and so
on.

NOTE
If the command specifies a list of data values that are less than
one line's worth of words, then the values are repeated from the

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 497



beginning of the list to complete the filling the cache line. If too
many data words are specified for the cache line to hold, the
extra values are discarded.

4.2.7.5 Supported Processor Cache Features

This section lists the cache features and supported status flags.

Table 4-31. P4080 - Supported Cache Operations and Status Flags

Cache Features Supported Operations Supported Status Flags

L1 data cache • 32 KB size
• 64 sets
• 8 ways
• 16 words / line

• enable/disable cache
• lock/unlock cache
• invalidate cache
• lock/unlock line
• invalidate line
• read/modify data
• flush cache
• flush line

• valid
• lock
• shared
• dirty
• castout
• plru

L1 instruction cache • 32 KB size
• 64 sets
• 8 ways
• 16 words / line

• enable/disable cache
• lock/unlock cache
• invalidate cache
• lock/unlock line
• invalidate line
• read/modify data

• valid
• lock
• plru

L2 cache • 128 KB size
• 256 sets
• 8 ways
• 16 words / line

• enable/disable cache
• lock/unlock cache
• invalidate cache
• lock/unlock line
• invalidate line
• read/modify data
• flush cache
• flush line

• valid
• lock
• shared
• dirty
• noncohe-rent
• plru

L3 cache • 2 banks
• 512KB/bank
• 512 sets
• 32 ways
• 16 words/line

• enable/disable cache
• lock/unlock cache
• invalidate cache
• lock/unlock line
• invalidate line
• read/modify data
• flush cache
• flush line

• valid
• locked
• modified
• plru

Debugging Bareboard Software

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

498 Freescale Semiconductor, Inc.



4.2.8 Setting Stack Crawl Depth

Select the Maximum stack crawl depth command lets you set the depth of the stack to
read and display. Showing all levels of calls when you are examining function calls
several levels deep can sometimes make stepping through code more time-consuming.
Therefore, you can use this menu option to reduce the depth of calls that the debugger
displays.

To set the stack crawl depth, perform these steps.

1. Select Window > Preferences.

The Preferences dialog box appears.

2. Expand the C/C++ tree control and select Debug.

The general settings for C/C++ debugging are displayed on the right-hand side of the
Preferences dialog box.

3. Specify the appropriate stack crawl depth, in the Maximum stack crawl depth text
box.

NOTE
You can specify any integer from 1 to 100.

4.2.9 Changing Program Counter Value

To change the program-counter value, perform these steps.

1. Start a debugging session.
2. In the Editor view, place the cursor on the line that you want the debugger to

execute next.
3. Right-click in the Editor view.

A context menu appears.

4. From the context menu, select Move To Line .

CodeWarrior IDE modifies the program counter to the specified location. The Editor
view shows the new location.

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 499



4.2.10 Viewing Memory

Use the Memory view to examine the active memory rendering of a specified expression
or address. To display this view from the Debug perspective, Select Window > Show
View > Memory , and the Memory view appears.

The Memory view supports the display of multiple memory spaces.

The following figure shows the Memory view with the Expression:baseaddr <name>
tree active memory rendering tab.

Figure 4-38. Memory View

4.2.10.1 Adding Memory Monitor

You can add multiple memory monitors to the Memory view. To add a new memory
monitor, perform these steps.

1. Start a debugging session.
2. Open the Memory view.
3. Click the plus-sign

icon on the Monitors pane toolbar. Alternatively, right-click in the Monitors pane and
select Add Memory Monitor from the context menu.

4. The Monitor Memory dialog box appears.

NOTE
The Enter memory space and address option appears only
when the debugger associated with the active debugging
context supports memory spaces, and the currently
debugged process has multiple memory spaces.

Debugging Bareboard Software

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

500 Freescale Semiconductor, Inc.



5. Specify options as explained in the following table.
Table 4-32. Monitor Memory Dialog Box

Options

Option Description

Enter address or expression Enter the expression to monitor in decimal or
hexadecimal values. You can use the drop-down list
to select a previously specified expression.

Figure 4-39. Monitor Memory Dialog Box
6. Click OK.

The memory monitor appears in the Memory view.

4.2.10.2 Adding Memory Rendering

You can use the Renderings pane of the Memory view to examine the memory content,
starting at any valid address. The information displayed in this page is read only and
cannot be used to modify the memory content.

To add a new memory rendering, perform these steps.

1. Start a debugging session.
2. Open the Memory view.
3. In the Monitors pane, select the memory monitor for which you want to add a

memory rendering.

NOTE
To create a memory monitor, right-click a blank area in the
Monitors pane and select Add Memory Monitor.
Alternatively, click the plus-sign

icon in the Monitors pane toolbar.

4. Click the New Renderings tab to select renderings.

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 501



Figure 4-40. New Renderings View
5. Select a rendering type from the Select rendering(s) to create list and click the Add

Rendering(s) button. Alternatively, right-click in the Renderings pane and select
Add Rendering from the context menu. For example, select Disassembly.

6. Click Rendering(s) .

The selected memory rendering type appears in the Memory view.

Figure 4-41. Added Rendering

4.2.10.3 Removing Memory Rendering

To remove a memory rendering from the Memory view, perform these steps.

1. Open the Memory view.
2. In the Renderings pane, select the tab that corresponds to the memory rendering that

you want to remove.
3. Click the cross-sign

icon on the Renderings pane toolbar. Alternatively, right-click on the Renderings
pane and select Remove Rendering from the context menu.

The memory rendering is removed from the Memory view.

Debugging Bareboard Software

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

502 Freescale Semiconductor, Inc.



4.2.10.4 Resetting to Base Address

To reset the memory rendering and display the base address of the rendering, perform
these steps.

1. Open the Memory view.
2. In the Renderings pane, select the tab that corresponds to the disassembly rendering

that you want to reset to the base address.
3. Right-click in the Renderings pane and select Reset to Base from the context menu.
4. The disassembly rendering scrolls to the line that contains the base address of the

displayed rendering.

4.2.10.5 Go to Address

The memory view provides graphical controls to display memory at a specific address.
To go to a specific address, perform these steps.

1. Open the Memory view.
2. In the Renderings pane, select the tab that corresponds to the disassembly rendering

for which you want to display a specific address.
3. Right-click in the Renderings pane and select Go to Address from the context menu.

A group of controls appears on the Renderings pane.

4. In the blank text box, enter the address that you want to display.

Figure 4-42. Disassembly Rendering - Go to Address

NOTE
Check the Input as Hex checkbox only if you enter the
address in hexadecimal notation.

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 503



5. Click OK to have the Disassembly rendering scroll to the specified address.
Alternatively, click Cancel to abort the operation and hide the group of controls.

4.2.11 Hard Resetting

Use the reset hard command in the Debugger Shell view to send a hard reset signal to the
target processor.

NOTE
The Hard Reset command is enabled only if the debug
hardware you are using supports it.

4.3 Debugging Externally Built Executable Files
You can use the Microcontrollers ELF executable wizards to debug .elf files generated by
a different IDE.

The main purpose of the MCU Executable Importer wizards is to create a CodeWarrior
for Microcontrollers Eclipse project that can be readily debugged starting from an
executable file build with a Microcontrollers toolchain.

The MCU Executable Import and PA ELF Executable wizards let you import a *.elf,
*.abs, or *.flt file and associate it to a project.

This topic describes the various pages of the two wizards and the list steps that assists
you in importing and associating an executable ( *.elf, *.abs, or *.flt) file to a project.

• Microcontrollers ELF Executable
• Importing Projects from Command Line
• Debug an Externally Built Microcontrollers Executable File

4.3.1 Microcontrollers ELF Executable

The pages in the Microcontrollers ELF Executable are:

• Import a MCU Executable File Page
• Select MCU executable file to be imported Page
• Device and Board Page
• Connections Page

Debugging Externally Built Executable Files

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

504 Freescale Semiconductor, Inc.



4.3.1.1 Import a MCU Executable File Page

Use this page to name your new project, and specify the workspace directory.

Figure 4-43. Import MCU Executable - Import a MCU Executable File Page

The following table describes the purpose of the various options.

Table 4-33. Import a MCU Executable File Page Settings

Option Description

New Project Name Enter the name for the new project in this text box.

Use default location Stores the files required to build the program in the
Workbench's current workspace directory. The project files
are stored in the default location. Uncheck the Use default
location checkbox and click Browse to specify a new location.

Location Specifies the directory that contains the project files. Click
Browse to navigate to the desired directory. This option is
only available when Use default location checkbox is clear.

Choose file system Specifies the file system to use. However, this option is
available only when Use default location checkbox is clear.
You can select either the default file system or a Target
Management via Remote System Explorer (RSE).

4.3.1.2 Select MCU executable file to be imported Page

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 505



Use this page to select an existing Microcontrollers ELF, ABS, or FLT file you want to
import.

Figure 4-44. Import MCU Executable - Select MCU executable file to be imported Page

The following table explains the options available on the page.

Table 4-34. Select MCU executable file to be imported Page Settings

Option Description

File to Import Specifies the path of the ELF, ABS, or FLT files.

Browse Click to locate the directory that contains the *.elf, *.abs,
or *.flt files.

Copy to project Check to copy the selected import file in the new project.

MCU Bareboard Executable Select to use the microcontrollers bareboard executable.

ColdFire Linux/uClinux Executable for Application Debug Select to use the ColdFire Linux/uClinux executable for
application debug.

ColdFire Linux/uClinux Kernel Image Select to use the ColdFire Linux/uClinux Kernel Image.

Select binary parser Select a binary parser for the executable to be imported into
the CodeWarrior IDE. The drop-down list includes various
parsers supported by the CodeWarrior IDE.The commonly
used parsers are:

• ELF/ABS/AFX parser
• bFLT (uClinux flat binary) parser

Debugging Externally Built Executable Files

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

506 Freescale Semiconductor, Inc.



4.3.1.3 Device and Board Page

Use this page to select the derivative or board you would like to use.

Figure 4-45. Import MCU Executable - Devices Page

4.3.1.4 Connections Page

Use this page to select a connection to use for the project. Depending on the selected
derivative or board, the connections will appear enabled or grayed out.

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 507



Figure 4-46. Import MCU Executable - Connections Page

4.3.2 Importing Projects from Command Line

To import some projects into a specific workspace from command line:

1. Copy the projects into the workspace location

2. Execute the command:

ecd -updateWorkspace -data your_workspace_location.

For example:

cwidec -application com.freescale.wsupdater.updater -data your_workspace_location

The following options are supported:

-logfile <file>

Debugging Externally Built Executable Files

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

508 Freescale Semiconductor, Inc.



By default, the workspace updater outputs information to stdout. However, you can ask
for the output to go to a file

   -noclose

  

By default, the workspace updater closes the workbench after it has completed adding/
removing projects. However, the user can request that the workbench remain open.

This application brings up the Eclipse IDE. The user is presented with a modal progress
dialog while the update operation is in progress. The dialog is a standard Jobs dialog. It
not only provides progress but gives the user the option to dismiss the dialog and have the
operation run in the "background". Also, like most jobs in Eclipse, the operation is
cancelable.

4.3.3 Debug an Externally Built Microcontrollers Executable File

You can use the Microcontrollers ELF Executable wizard to debug an .elf file generated
by a different IDE.

To debug externally built executable files, perform these steps.

1. Import a MCU Executable File Page
2. Specify Executable File to Import
3. Select Derivative or Board
4. Select Connection
5. Edit Launch Configuration
6. Source Lookup Path
7. Debug Executable File

4.3.3.1 Import a MCU Executable File

You specify the externally built executable file that you want to debug in the
CodeWarrior IDE. The IDE imports the executable file into a new project. To specify the
executable file, perform these steps.

1. Select Start > Programs > Freescale CodeWarrior > CW MCU V10.x >
CodeWarrior.

The IDE launches and the WorkSpace Launcher dialog box prompts you to select a
workspace to use.

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 509



Figure 4-47. WorkSpace Launcher Dialog Box
2. Click OK to accept the default workspace. To use a workspace different from the

default, click Browse and specify the desired workspace.

The IDE starts and displays the Welcome page.

NOTE
You can also select the Use this as the default and do not
ask again checkbox to set default/selected path as a default
location for storing all your projects.

3. Click the Go to Workbench link.

The Workbench window opens.

4. Select File > Import, from the IDE menu bar.

The Import wizard appears.

5. Expand the CodeWarrior group.
6. Select MCU Executabl e Importer to debug a Microcontrollers *.elf, *.abs, or *.flt

file.
7. Click Next.

The Import a MCU executable file page appears.

8. Specify a name for the new project. For example, enter the project name as
ImportProject_1.

NOTE
If you do not want to use the default location, clear the Use
default location checkbox. In the Location text box, enter
the full path of the directory in which you want to create
your project including the project name.

Debugging Externally Built Executable Files

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

510 Freescale Semiconductor, Inc.



Alternatively, click checkbox. In select the desired
location from the Browse For Folder dialog box and click
OK . Ensure that you append the path with the name of the
project to create a new location for your project.

9. Click Next .

The Select MCU executable file to be imported page appears.

4.3.3.2 Specify Executable File to Import
1. Click Browse .

The Select file dialog box appears.

2. Navigate to the executable file that you want to import and click Open .

The path of the selected file appears in the File to import text box.

3. Check the Copy to project checkbox if you want to copy the specified file in the
new project. By default, the Copy to project checkbox is cleared.

4. From the Select binary parser to use , select the parser you want to use.
5. Click Next .

The Devices page appears.

4.3.3.3 Select Derivative or Board
1. Expand the tree control and select the derivative or board you would like to use. For

example, select HCS08 > HCS08A Family > MC9S08AC128.
2. Click Next.

The Connections page appears.

4.3.3.4 Select Connection
1. Select the desired connection from the Connection to be used group. For example,

check the P&E Full Chip Simulation checkbox.

NOTE
You can select multiple connections by checking
appropriate checkboxes in the Connections page.

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 511



2. Click Finish .

The Import MCU Executable window closes and the wizard creates a project
according to your specifications. You can access the project from the CodeWarrior
Projects view in the Workbench window.

Figure 4-48. CodeWarrior Projects View
3. Right-click on the project and from the context menu select Build Project .

The new project is ready for use. You can now customize it by adding your own
source code files, changing debugger settings, or adding libraries.

4.3.3.5 Edit Launch Configuration

Before you edit the launch configuration, ensure that you create a project for the
executable file.

To edit the launch configuration for your executable file, perform these steps.

1. From the main menu bar of the IDE, select Run > Debug Configurations . The IDE
uses the settings in the launch configuration to generate debugging information and
initiate communications with the target board.

The Debug Configurations dialog box appears. The left side of this dialog box has a
list of debug configurations that apply to the current application.

Debugging Externally Built Executable Files

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

512 Freescale Semiconductor, Inc.



Figure 4-49. Debug Configurations Dialog Box
2. Expand the CodeWarrior Download configuration.
3. From the expanded list, select the newly created debug configuration. For example,

select ImportProject_1 - MC9S08AC128.

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 513



Figure 4-50. Selected Launch Configuration
4. Click the Debugger tab of the Debug Configurations dialog box.

The corresponding page appears.

5. Use the Debugger list box to specify the debugger that corresponds to your type of
executable file.

6. Configure the debugger options as appropriate for your executable file.

For example, specify the appropriate target processor, any initialization files, and
connection protocol.

4.3.3.6 Source Lookup Path

You need to specify the source lookup path in terms of the compilation path and the local
file-system path for the newly imported executable file. The CodeWarrior debugger uses
both of these paths to debug the executable file.

The compilation path is the path to the original project that built the executable file. If the
original project is from an IDE on a different computer, you specify the compilation path
in terms of the file system on that computer.

The local file-system path is the path to the project that the CodeWarrior IDE creates in
order to debug the executable file.

Debugging Externally Built Executable Files

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

514 Freescale Semiconductor, Inc.



To specify a source lookup path for your executable file:

1. Click the Source tab of the Debug Configurations dialog box.

The corresponding page appears.

Figure 4-51. Debug Configurations Dialog Box - Source Page
2. Click Add.

The Add Source dialog box appears.

3. Select Path Mapping.

Figure 4-52. Add Source Dialog Box
4. Click OK.

The Path Mappings dialog box appears.

5. Provide a name for the new path mapping.
6. Specify a name for the compilation path.

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 515



7. In the Local file system path text box, enter the path to the parent project of the
executable file, relative to your computer. Alternatively, click the ellipis button to
specify the parent project.

8. Click OK .

The Path Mappings dialog box closes. The IDE selects the new mapping in the
Source Lookup Path list of the Source page.

Figure 4-53. Source Lookup Path

Tip
You can use the IDE to discover the path to the parent
project of the executable file, relative to the computer that
generated the file. In the C/C++ Projects view of the C/C+
+ perspective, expand the project that contains the
executable file that you want to debug. Next, expand the
group that has the name of the executable file itself. A list
of paths appears, relative to the computer that generated the
file. Search this list for the names of source files used to
build the executable file. The path to the parent project of
one of these source files is the path you should enter in the
Compilation path text box.

9. If required, change the order in which the IDE searches the paths.

The IDE searches the paths in the order shown in the Source Lookup Path list,
stopping at the first match. To change this order, select a path, then click the Up or
Down button to change its position in the list.

10. Click Apply.

Debugging Externally Built Executable Files

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

516 Freescale Semiconductor, Inc.



The IDE saves your changes.

4.3.3.7 Debug Executable File

Use the CodeWarrior debugger to debug the externally built executable file.

To debug the executable file, click the Debug button of the Debug Configurations dialog
box.

Chapter 4 Working with Debugger

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 517



Debugging Externally Built Executable Files

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

518 Freescale Semiconductor, Inc.



Chapter 5
Kinetis Cache Viewer

This chapter describes the Kinetis Cache Viewer, which is available in CodeWarrior for
Microcontrollers, Version 10.2. This feature works only for Kinetis derivatives that have
cache, as Pioneer 3. In this chapter:

• Kinetis Cache
• CodeWarrior Cache View for Kinetis
• Performance Considerations and Kinetis Particularities

5.1 Kinetis Cache

There are two caches available in a Pioneer 3 MCU. The Code Cache, which is
associated with the Processor Code (PC) Bus and the System Cache, associated the
Processor System (PS) bus. One important aspect here is that both are unified caches,
meaning that both are capable of storing instructions and data as well. However, as the
bus names imply, the typical operations issue code accesses on the PC bus and the data
accesses on the PS bus. The buses are partitioned as follows:

• The memory accesses to the addresses from 0x0 to 0x1FFFFFFF use the PC bus.
• The memory accesses to the addresses from 0x20000000 to 0xFFFFFFFF use the PS bus.

The figure below describes the Kinetis P3 local memory controller.

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 519



Figure 5-1. Kinetis P3 Local Memory Controller Block Diagram

In terms of structure, the Code Cache and the System Cache are identical. Each of them
has 8KB, they are 2-way set associative and have four word lines (16 bytes).

Whenever a cache address is targeted to be processed by the cache module, its address
generates the Tag and the Cache Line in a way, that the upper 20 bits represent the Tag
and the next 8 bytes represent the Line. The bits 3-2 determine the word within a line and
bits 1-0 determine the byte within a word.

Figure 5-2. Tag and Line Number in a 32 Bits Address on Kinetis

Whenever a cache-miss occurs, one line data consisting in 16 bytes will be stored into the
cache in the cache data array at the line number index at one available way. In addition
the line tag will be stored into the cache tag array at the line number index.

Kinetis Cache

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

520 Freescale Semiconductor, Inc.



Figure 5-3. Kinetis Cache Contents

Each cache line has the following properties:

• Valid - the cache line contains valid data that can be used instead of the
corresponding data from the memory

• Modified (Dirty) - the cache line is modified by the core, but its content is not saved
back to the corresponding memory yet.

The Kinetis local memory controller supports three modes of operation:

• Write-through
• Write-back
• Non-cacheable

5.1.1 Write-through

The write-through operation inculdes:

• A write-through read miss on the input bus causes a line read on the output bus of a
16-byte-aligned memory address containing the desired address. This data is loaded
into the cache and is marked as valid and not modified.

• A write-through read hit to a valid cache location returns data from the cache with no
output bus access.

Chapter 5 Kinetis Cache Viewer

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 521



• A write-through write miss bypasses the cache and writes to the output bus without
allocating and fetching the corresponding line into the cache (no allocate on write
miss policy)

• A write-through write hit updates the cache hit data and writes to the output bus.

5.1.2 Write-back

The write-back operation inculdes:

• A write-back read miss on the input bus causes a line read on the output bus of a 16-
byte-aligned memory address containing the desired address. This miss data is loaded
into the cache and marked as valid and not modified.

• A write-back read hit to a valid cache location returns data from the cache with no
output bus access.

• A write-back write miss brings the corresponding line into the cache (allocate on
write miss policy). If the line to be brought into the cache, replaces another dirty line,
the latter is saved back to the memory before reading the new line. In this case, a line
read on the output bus of a 16 byte aligned memory address containing the desired
write address is performed.

5.1.3 Non-cacheable

The non-cacheable accesses bypass the cache and access the output bus.

The Kinetis memory map contains multiple regions as shown in the following table. Each
region has one or more available cache modes.

Kinetis Cache

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

522 Freescale Semiconductor, Inc.



Figure 5-4. Kinetis Cache Regions

The Kinetis architecture supports the following cache operations:

• Read - The cache data and tag are accessible for reading.
• Write - The user is able to modify the cache data using the Local Memory Controller

support.
• Invalidate - Unconditionally clear, valid and modify bits of a cache entry.
• Push (or Synchronize) - Writes a cache entry in the memory if it is valid and

modified, then clear the modify bit. If entry not valid or not modified, leave as is.
• Clear (or Flush) - Push a cache entry if it is valid and modified, then clear the valid

and modify bits. If the entry is not valid or not modified, clear the valid bit.

The scope of Invalidate, Push and Clear commands may be a particular cache line or an
entire cache way.

5.2 CodeWarrior Cache View for Kinetis

To open the Cache View:

1. Start a debugging session.
2. In the Debug view of the Debug perspective, select the process for which you want

to work with Cache.
3. Select Window > Show View > Other .

Chapter 5 Kinetis Cache Viewer

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 523



The Show View dialog box appears.

4. Expand the Debug tree control.
5. Select Cache.
6. Click OK .

The Show View dialog box closes. The Cache view appears, attached to an existing
collection of views in the current perspective.

Figure 5-5. Cache View Structure

Figure 5-6. Cache View Toolbar

Line scope commands are available in the contextual menu, by right-clicking on a cache
line (data or tag area). See the following picture.

CodeWarrior Cache View for Kinetis

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

524 Freescale Semiconductor, Inc.



Figure 5-7. Cache View Context-menu

5.3 Performance Considerations and Kinetis Particularities

Kinetis local memory controller has some particularities that affect the debugger
performance. Besides the common performance degradation given by the latency of
reading the cache and updating the cache view, there are some specific performance
issues that must be taken into account when performing various operations with the
debugger.

When accessing a memory location, the Kinetis platform uses the same mechanism
regardless the source of the access, the core or the debugger module. Therefore, without
any preventive actions, the Kinetis cache may be easily polluted with debugger accesses
to the memory (reads or writes). In order to solve this problem, additional algorithms
were developed to avoid the debugger intrusiveness and also to maintain the cache
coherency.

For example, the biggest performance degradation may be observed when stepping
having the cache enabled and a memory monitor for a Write-back region active. At each
step, besides the time required to populate the cache view, the user may experience a
bigger latency of about 4 times longer. This latency is the result of the debugger
intrusiveness prevention algorithm that is activated when accessing cacheable regions.

Chapter 5 Kinetis Cache Viewer

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 525



The algorithm is so slow because it performs cache searches for all the data that is read or
written by the debugger. A workaround for this performance issue is to flush and then
deactivate the cache before stepping with a write-back zone memory monitor active.

Another Kinetis specific issue is that the cache is not automatically flushed or cleared at a
normal reset. This is done only at a Power-On reset. Therefore, if the user wants to use
the cache in a debug session by enabling it using the Cache Viewer, the user shall also
perform an Invalidate command right after the Enable Cache command.

Figure 5-8. Debug Perspective - Cache and Memory View

Performance Considerations and Kinetis Particularities

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

526 Freescale Semiconductor, Inc.



Chapter 6
Multicore Debugging

This chapter lists the steps to define multiple, arbitrary groupings of cores and perform
multicore operations. This is of particular importance in the case that the hardware has
provided a means to synchronize an operation across multiple cores.

Additionally, the chapter lists the steps to add multicore operations to Eclipse through
both the UI and through the Debugger Shell. The operations are divided into two sets.
One set is for controlling target execution state, also known as run control, and consists
of Resume, Suspend and Step Into. The other set is for controlling debug session lifetime,
which we'll refer to as session control, and consists of Restart and Terminate. An integral
part of the feature will be the ability to select any subset of cores for operation.

The topic in this chapter is:

• Creating DPM/LSM Projects
• Debugging DPM/LSM Projects
• Debugging Multicore Project
• Editing Multicore Groups
• Editing Target Types

NOTE
CodeWarrior for Microcontrollers does not enable user
debug subsequently core by core manually. This means
when a debug session is started already, no other debug
session is permitted.

6.1 Creating DPM/LSM Projects

The Power Architecture e200 Lock-Step Mode (LSM) and Dual Processor Mode (DPM)
projects are ideal examples of a multicore project.

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 527



• Creating LSM Project
• Creating DPM Project

MPC5643L devices can operate in two modes of operation:

• Lock-Step Mode (LSM) - This mode takes its name from the execution of the same
commands by both cores in synchronicity (lock-step).

• Decoupled Parallel Mode (DPM) - In this mode, each CPU core and connected
channel run independently from the other one and redundancy checkers (RCCU) are
disabled. MPC5643L devices support only static configuration at power-on (either
LS or DP modes).

NOTE
One of the two modes is statically selected at power-up.
The selected mode may be changed only going through a
full power-on reset. Each of these modes has several
specific submodes that the device can enter. These modes
differ, for example, in the list of enabled modules, pin
configurations, reset phase, and safety status.

Lock-Step Mode (LSM) is used to increase safety, Dual
Processor Mode (DPM) is used to increase performance. 1
Device is in Lockstep Mode (LSM) and 0 Device is in Dual
Processor Mode (DPM).

In the target processor, LSM/DPM configuration is written
in the internal Flash Memory and therefore is persistent
throughout successive debug sessions. A project created for
one mode cannot be debugged on a target configured with
the other mode, e.g. a LSM project cannot be debugged on
a processor that was configured for DPM. Switch Between
Decoupled Parallel and Lock-Step Modes describes how to
change the processor configuration.

6.1.1 Creating LSM Project

To create a LSM, perform these steps.

1. Select Start > Programs > Freescale CodeWarrior > CW MCU V10.x >
CodeWarrior.

Creating DPM/LSM Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

528 Freescale Semiconductor, Inc.



The IDE launches and the WorkSpace Launcher dialog box prompts you to select a
workspace to use.

2. Click OK to accept the default workspace. To use a workspace different from the
default, click Browse and specify the desired workspace.

The IDE starts and displays the Welcome page.

NOTE
You can also select the Use this as the default and do not
ask again checkbox to set default/selected path as a default
location for storing all your projects.

3. Click the Go to Workbench link.

The Workbench window opens.

4. Select File > New > Bareboard Project, from the IDE menu bar.

The Create an MCU bareboard Project page of the New Bareboard Project
wizard appears.

5. Specify a name for the new project. For example, enter the project name as Project_1.

NOTE
If you do not want to use the default location, clear the Use
default location checkbox. In the Location text box, enter
the full path of the directory in which you want to create
your project including the project name. Alternatively,
click Browse and select the desired location from the
Browse For Folder dialog box and click OK . Ensure that
you append the path with the name of the project to create a
new location for your project.

6. Click Next.

The Devices page appears.

7. Expand the tree control and select the derivative or board you would like to use. For
example, select Qorivva > MPC56xxL Family > MPC5643L .

8. Click Next.

The Connections page appears.

9. Check the appropriate connection.

The LSM/ DPM Configuration page appears.

Chapter 6 Multicore Debugging

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 529



Figure 6-1. New Bareboard Project Wizard - LSM/ DPM Configuration Page
10. Select the Lock-Step Mode (LSM) option .
11. Click Next.

The Languages and Build Tools Options page appears.

12. Select the appropriate options to enable programming language, build tools options,
and floating point supports.

13. Click Finish.

The wizard creates a project for the Kinetis architecture. You can access the project
from the CodeWarrior Projects view in the Workbench window.

6.1.2 Creating DPM Project

To create a DPM, perform these steps.

1. Select Start > Programs > Freescale CodeWarrior > CW MCU V10.x >
CodeWarrior.

The IDE launches and the WorkSpace Launcher dialog box prompts you to select a
workspace to use.

Creating DPM/LSM Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

530 Freescale Semiconductor, Inc.



2. Click OK to accept the default workspace. To use a workspace different from the
default, click Browse and specify the desired workspace.

The IDE starts and displays the Welcome page.

NOTE
You can also select the Use this as the default and do not
ask again checkbox to set default/selected path as a default
location for storing all your projects.

3. Click the Go to Workbench link.

The Workbench window opens.

4. Select File > New > Bareboard Project, from the IDE menu bar.

The Create an MCU bareboard Project page of the New Bareboard Project
wizard appears.

5. Specify a name for the new project. For example, enter the project name as Project_2.

NOTE
If you do not want to use the default location, clear the Use
default location checkbox. In the Location text box, enter
the full path of the directory in which you want to create
your project including the project name. Alternatively,
click Browse and select the desired location from the
Browse For Folder dialog box and click OK . Ensure that
you append the path with the name of the project to create a
new location for your project.

6. Click Next.

The Devices page appears.

7. Expand the tree control and select the derivative or board you would like to use. For
example, select Qorivva > MPC56xxL Family > MPC5643L .

8. Click Next.

The Connections page appears.

9. Check the appropriate connection.

The LSM/ DPM Configuration page appears.

Chapter 6 Multicore Debugging

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 531



Figure 6-2. New Bareboard Project Wizard - LSM/ DPM Configuration Page
10. Select the Decoupled Parallel Mode (DPM) option.
11. Click Next.

The Languages and Build Tools Options page appears.

12. Select the appropriate options to enable programming language, build tools options,
and floating point supports.

13. Click Finish.

The wizard creates a project for the Kinetis architecture. You can access the project
from the CodeWarrior Projects view in the Workbench window.

6.2 Debugging DPM/LSM Projects

The settings in the launch configurations handles all core-specific initializations. To set
up the launch configurations, perform these steps.

1. Ensure that you machine has USB NEXUS Multilink connected to a Leopard
(MPC5643L) DPM board.

Debugging DPM/LSM Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

532 Freescale Semiconductor, Inc.



2. Select Run > Debug Configurations.

A menu of launch configurations appears.

Figure 6-3. Debug Configurations Dialog Box
3. Select the core or cores to be debugged using the Target checkboxes. In this case you

can debug core 0 or both cores.
4. Click Debug.
5. Debugger halts execution at first statement of main().

The Debug view displays all the threads associated with the core.

Chapter 6 Multicore Debugging

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 533



Figure 6-4. Multicore Debugging - Debug Core 0
6. Repeat steps one through four to download all the other cores.

Figure 6-5. Multicore Debugging - Debug All Cores

NOTE
When you enter debug, the DPM project will show you two
cores, first stopped at main() and the second stopped at
__start_p1. For the LSM project you will see only one core
stopped at main().

7. Select a thread from core 0 in the Debug view.

All the views in the Debug perspective will be updated to display the debug session
for the selected core.

Debugging DPM/LSM Projects

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

534 Freescale Semiconductor, Inc.



Figure 6-6. Debugging a LSM Project

Chapter 6 Multicore Debugging

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 535



Figure 6-7. Viewing Debug Information for Core 0

6.3 Debugging Multicore Project

The debugger in CodeWarrior Development Suite provides the facility to debug multiple
processors using a single debug environment. The run control operations can be operated
independently or synchronously. A common debug kernel facilitates multicore, run
control debug operations for examining and debugging the interaction of the software
running on the different cores on the system. This topic describes how the CodeWarrior
debugger connects and downloads software to separate cores in a multicore processor and
how you can choose to debug a program on a specific core.

Debugging Multicore Project

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

536 Freescale Semiconductor, Inc.



NOTE
This procedure assumes that you have already created a
Multicore project named Project_1.

To debug multicore projects, perform these steps.

• Targeting Core
• Starting Debugging Session for Core
• Debugging Specific Core
• Multicore Operations

6.3.1 Targeting Core

The CodeWarrior debugger connects to specific processor core through information
stored in a Download launch configuration. Specifically, the core index value on the
Main tab of the DebugConfigurations dialog box determines the core targeted for debug
operations.

NOTE
The core index value starts from zero. That is, the first
processor core has an index value of zero, the second processor
core has an index of 1, and so on.

You can set this core index value on the Main tab on the Debug Configurations dialog
box, when you are modifying the settings of a Download launch configuration.

Chapter 6 Multicore Debugging

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 537



Figure 6-8. Debug Configurations Dialog Box

6.3.2 Starting Debugging Session for Core

To connect the debugger to a specific core and start a debugging session, start the
Download launch configuration for that core. You start a Download launch configuration
from either the Run menu or the toolbar's Debug icon.

• From Debug Configurations Dialog Box
• From Run Menu
• From Toolbar's Debug Icon

6.3.2.1 From Debug Configurations Dialog Box

Debugging Multicore Project

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

538 Freescale Semiconductor, Inc.



1. Select Run > Debug Configurations .

The Debug Configurations dialog box appears.

2. Pick the desired launch configuration from the left-hand side panel.
3. In the Main tab, select the core you want to debug.

6.3.2.2 From Run Menu

1. Choose Run > Debug History .

A menu of launch configurations appears.

2. Select the desired launch configuration from this menu.
3. In the Main tab, select the core you want to debug.

6.3.2.3 From Toolbar's Debug Icon

1. Click the Debug icon in the IDE's toolbar in the Debug perspective.

A menu of launch configurations appears.

2. Select the desired launch configuration from this menu.
3. In the Main tab, select the core you want to debug.

6.3.3 Debugging Specific Core

After you click Debug select the launch configuration, the debugger downloads the
program to the specific core and the Debug perspective appears. Within the Debug view,
the program’s thread appears. The thread is identified by its launch configuration name
and the index value of the core that it executes on. If you are source code debugging, the
program’s source appears in an editor view.

To debug a specific core's program, click on its thread in the Debug view. The Debug
perspective automatically displays the source, registers, and variables for this core. If you
click on another thread, the Debug perspective updates all of the views to display that
core's context.

Chapter 6 Multicore Debugging

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 539



6.3.4 Multicore Operations

This topic explains the various features available to you when debugging a multicore
processor.

• Multicore Commands in CodeWarrior IDE
• Multicore Commands in Debugger Shell

6.3.4.1 Multicore Commands in CodeWarrior IDE

When you start a multicore debug session, multicore commands are enabled on the
CodeWarrior IDE Run menu. These commands, when issued, affect all cores
simultaneously. The table below describes each menu choice. For detailed information on
these commands, refer the CodeWarrior Common Features Guide .

Table 6-1. Multicore Debugging Commands

Command Icon Description

Multicore Resume Starts all cores of a Multicore system
running simultaneously.

Multicore Suspend Stops execution of all cores of a
Multicore system simultaneously.

Multicore Restart Restarts all the debug sessions for all
cores of a Multicore system
simultaneously.

Multicore Terminate Kills all the debug sessions for all cores
of a Multicore system simultaneously.

NOTE
The Resume and Step Into buttons are enabled whenever one
or more selected cores are in the stopped state. The Suspend
button is enabled whenever one or more selected cores are in
the running state. The Restart and Terminate buttons are
enabled whenever one or more cores are being debugged.

To use the Multicore commands from the Debug perspective, perform these steps.

1. Start a debugging session by selecting the appropriately configured launch
configuration.

2. If necessary, expand the desired core's list of active threads by clicking on the tree
control.

3. Click on the thread you want to use with multicore operations.

Debugging Multicore Project

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

540 Freescale Semiconductor, Inc.



NOTE
Selecting a thread uses the Multicore Group the core is part
of in the multicore. For more information on the Multicore
Groups feature, refer to the CodeWarrior Common Features
Guide.

4. From the Run menu, specify the multicore operation to perform on the thread.

NOTE
The keyboard shortcut for the Multicore Resume
operation is Shift-F8.

6.3.4.2 Multicore Commands in Debugger Shell

In addition to the multicore-specific toolbar buttons and menu commands available in the
Debug view, the Debugger Shell has Multicore specific commands that can control the
operation of one or more processor cores at the same time. Like the menu commands, the
Multicore debugger shell commands allow you to select, start, and stop a specific core.
You can also restart or kill sessions executing on a particular core. The table below lists
and defines the affect of each Multicore debugging command.

Table 6-2. Multicore Debugging Commands

Command Shortcut Description

mc::go mc::g Resume multiple cores

Syntax

go

Examples

mc::go

Resumes the selected cores associated
with the current thread context.

mc::kill mc::kill Terminates the debug session for
selected cores associated with the
current thread context.

Syntax

mc::kill

Examples

mc::kill

Terminates multiple cores.

Table continues on the next page...

Chapter 6 Multicore Debugging

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 541



Table 6-2. Multicore Debugging Commands (continued)

Command Shortcut Description

mc::restart mc::restart Restarts the debug session for selected
cores associated with the current thread
context.

Syntax

mc::restart

Examples

mc::restart

Restarts multiple cores

mc::stop mc::stop Stops the selected cores associated with
the current thread context.

Syntax

mc::stop

Examples

mc::stop

Suspends multiple cores

mc::group mc::gr Display or edit multicore groups

Syntax

group group new <type-name>
[<name>] group rename <name>|
<group-index> <new-name>group
remove <name>|<group-
index> ... group removeall
group enable|disable
<index> ...|all

Examples

mc::group

Shows the defined groups, including
indices for use in the mc::group
rename|enable|remove set of
commands.

mc::group new 8572

Creates a new group for system type
8572. The group name will be based on
the system name and will be unique.
The enablement of the group elements
will be all non-cores enabled, all cores
disabled.

mc::group rename 0 "My Group
Name"

Renames the group at index 0 to "My
Group Name".

mc::group enable 0 0.0

Table continues on the next page...

Debugging Multicore Project

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

542 Freescale Semiconductor, Inc.



Table 6-2. Multicore Debugging Commands (continued)

Command Shortcut Description

Enables the group at index 0 and the
element at index 0.0 of the mc::group
command.

mc::group remove "My Group
Name"

Removes the group named "My Group
Name".

mc::group removeall

Removes all groups.

mc::type mc::t Shows the system types available for
multicore debugging as well as type
indices for use by the mc::type
remove and mc::group new
commands.

Syntax

type type import <filename>
type remove <filename>|<type-
index> ... type removeall

Examples

mc::type

Display or edit system types

mc::type import 8572_jtag.txt

Creates a new type from the JTAG
configuration file.

mc::type remove 8572_jtag.txt

Removes the type imported from the
specified file.

mc::group removeall

Removes all imported types.

6.4 Editing Multicore Groups

To edit a multicore group, perform these steps.

1. Right-click on the launch configuration in the Debug perspective and select Edit
Multicore Group from the context menu.

Chapter 6 Multicore Debugging

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 543



Figure 6-9. Edit Multicore Group in Context Menu

The Multicore Groups dialog box appears.

Figure 6-10. Multicore Groups Dialog Box
2. Click New.

Editing Multicore Groups

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

544 Freescale Semiconductor, Inc.



The New Multicore Group dialog box appears. This is a simple selection dialog
consisting of all types of multicore systems known to the product as well as any
imported multiprocessor systems.

Figure 6-11. New Multicore Group Dialog Box
3. Select a system type and click OK .

The selected system type appears in the Multicore Groups dialog box.

Chapter 6 Multicore Debugging

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 545



Figure 6-12. Multicore Groups Dialog Box

The tree view in the dialog shows the list of defined groups. The groups are the top-
level nodes in the tree, and each has an editable checkbox to specify whether the
group is enabled or not. Each group contains one or more children, each representing
a processor or a core. A processor will, in turn, have children representing the cores
in the processor. Each processor/core node has an editable checkbox for choosing
whether that element will be included in the group (root node). The buttons are used
as follows:

• New - Click to create a new group via the New Multicore Group dialog. The
initial name of the group will be the system type name unless the name is already
in use, in which case an index will be appended as is customary, e.g., '8572 (1)'.
The initial enablement of the group and its descendants will be non-cores
enabled, cores disabled. This guarantees an initial state with no error due to
overlap.

• Remove - Click to remove the selected group. The button is disabled if no
groups exist in the list or if no group is selected.

• Remove All - Click to remove all groups. The button is disabled if no groups
exist in the list.

Editing Multicore Groups

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

546 Freescale Semiconductor, Inc.



• Select All - Click to enable all groups, processors and cores. The button is
disabled if no groups exist in the list.

• Deselect All - Click to disable all groups, processors and cores. The button is
disabled if no groups exist in the list.

NOTE
The buttons Select All and Deselect All are used as is
customary in other dialog boxes to mean Enable/
Disable All Checkboxes .

4. Click Apply .
5. Click OK .

6.5 Editing Target Types

To edit a system type, perform these steps.

1. Right-click on the launch configuration in the Debug perspective and select Edit
Target Types from the context menu.

Figure 6-13. Edit Target Types in Context Menu

The Target Types dialog box appears.

Chapter 6 Multicore Debugging

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 547



Figure 6-14. System Types Dialog Box

• Import - Creates a custom target type by importing it from a configuration file.
• Remove - Removes a target type from the list.
• Remove All - Removes all target types from the list.

2. Click Import.

The Import Target Type dialog box appears.

3. Select the desired file and click Open.

The selected file appears in the Import Target Type dialog box.

The Import Target Type dialog box lists the current imports, with buttons to
remove existing entries and to import new entries. If you attempt to remove a type
that has associated groups, you will be asked whether you want to continue, in which
case all associated groups will be removed as well. Similarly, if you try to remove a
type that has associated launch configurations, you will be asked whether you want
to continue, in which case all associated launch configurations will be reset to the
uniprocessor type.

Editing Target Types

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

548 Freescale Semiconductor, Inc.



Chapter 7
CodeWarrior Command Line Debugging

CodeWarrior supports a command-line interface to some of its features including the
debugger. You can use the command-line interface together with various scripting
engines, such as the Microsoft® Visual Basic® script engine, the Java™ script engine,
Tcl, Python, and Perl. You can even issue a command that saves the command-line
activity to a log file.

You can use the Debugger Shell view to issue command lines to the IDE. For example,
you can enter the command debug in this window to start a debugging session. The
window lists the standard output and standard error streams of command-line activity.

Figure 7-1. Debugger Shell View

To open the Debugger Shell view, perform these steps.

1. Switch the IDE to the Debug perspective and start a debugging session.
2. Select Window > Show View > Debugger Shell.

The Debugger Shell view appears.

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 549



NOTE
Alternatively, select Window > Show View > Other .
Expand the Debug tree control in the Show View dialog
box, select Debugger Shell, and click OK.

Figure 7-2. Show View - Debugger Shell

To issue a command-line command, type the desired command at the command prompt
( %>) in the Debugger Shell view, then press Enter or Return. The command-line
debugger executes the specified command.

If you work with hardware as part of your project, you can use the command-line
debugger to issue commands to the debugger while the hardware is running.

NOTE
To list the commands the command-line debugger supports,
type help at the command prompt and press Enter. The help
command lists each supported command along with a brief
description of each command.

Tip
To view page-wise listing of the debugger shell commands,
right-click in the Debugger Shell view and select Paging from
the context menu. Alternatively, click the Enable Paging icon.

When you debug from the command line, you can use:

• Tcl Support

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

550 Freescale Semiconductor, Inc.



• Command-Line Debugging Tasks
• Debugger Shell Command List
• Microcontrollers-Specific HIWARE Commands

7.1 Tcl Support

This topic describes command-line debugger's Tcl support.

7.1.1 Resolution of Conflicting Command Names

The names of several command-line debugger commands conflict with the Tcl
commands. The table below explains how the command-line debugger resolves such
conflicts (if the mode is set to auto).

Table 7-1. Resolving Conflicting Commands

Command Resolution

load If you pass the command-line debugger a load command that
includes a filename containing the suffix .eld or .mcp, the
debugger loads the project. Otherwise, the debugger invokes
the Tcl load command.

bp If you pass the command-line debugger a bp command from
within a script and the command has no arguments, the
debugger invokes the Tcl break command. Otherwise, the
debugger interprets a break command as a command to
control breakpoints.

close If you pass the command-line debugger a close command
that has no arguments, the debugger terminates the debug
session. Otherwise, the debugger invokes the Tcl close
command.

7.1.2 Execution of Script Files

Tcl usually executes a script file as one large block, returning only after execution of the
entire file. For the run command, however, the command-line debugger executes script
files line-by-line. If a particular line is not a complete Tcl command, the debugger
appends the next line. The debugger continues appending lines until it gets a complete
Tcl script block.

Chapter 7 CodeWarrior Command Line Debugging

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 551



The listing below lists code that includes a script. For the Tclsource command, the
debugger executes this script as one block. But for the run debug command, the debugger
executes this script as two blocks, the set statement and the while loop.

Listing: Example Tcl Script

set x 0;

while {$x < 5}

{

puts "x is $x";

set x [expr $x + 1]

}

NOTE
The run debug command synchronizes debug events between
blocks in a script file. For example, after a go, next, or step
command, run polls the debug thread state and does not execute
the next line or block until the debug thread terminates.
However, the Tcl source command does not consider the debug
thread state. Consequently, use the run debug command to
execute script files that contain these debug commands: debug,
go, next, stop, and kill.

7.1.3 Tcl Startup Script

The command-line debugger can automatically run a Tcl script each time you open the
command-line debugger window. This script is called a startup script.

You can use both Tcl and command-line debugger commands in the startup script. For
example, you might include commands that set an alias or a define color configuration in
a startup script.

To create a command-line debugger startup script, follow these steps.

1. Put the desired Tcl and command-line debugger commands in a text file.

Tcl Support

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

552 Freescale Semiconductor, Inc.



2. Name this file tcld.tcl.
3. Place tcld.tcl in one of the directories listed below.

• On a Windows® PC, put tcld.tcl in the system directory.

For example, on Windows XP, put tcld.tcl in the WINDOWS directory.

• On a Solaris Workstation, put tcld.tcl in your home directory.

NOTE
There is no synchronization of debug events in the
startup script. Consequently, put the c debug command
to the startup script and place the debug commands
debug, go, stop, kill, next, and step in another script so
that they execute successfully.

7.1.4 Command-Line Syntax

Start the CodeWarrior Eclipse IDE and execute a Debugger Shell script with a TclScript
script as input from the command-line, as shown in the example below:

D:\MCU\eclipse>cwide.exe -vmargsplus -Dcw.script=D:\my_script.tcl

NOTE
Users familiar with the -vmargs option in the CodeWarrior
Eclipse IDE should note that CodeWarrior will not work
properly if -vmargs is used. Use the custom -vmargsplus option in
place of the -vmargs option.

7.2 Command-Line Debugging Tasks

The table below provides instructions for common command-line debugging tasks.

Table 7-2. Common Command-Line Debugging Tasks

Task Instruction Comments

Open the Debugger Shell Select Windows > Show View >
Others > Debugger Shell

The Debugger Shell view appears.

Use the help command 1. On the Debugger shell command
prompt ( %> ), type help.

2. Press Enter.

The Command List for CodeWarrior is
appears.

Table continues on the next page...

Chapter 7 CodeWarrior Command Line Debugging

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 553



Table 7-2. Common Command-Line Debugging Tasks (continued)

Task Instruction Comments

Enter a command 1. On the Debugger shell, type a
command followed by a space.

2. Specify any valid command-line
options, separating each with a
space.

3. Press Enter.

You can use shortcuts instead of
complete command names, such as k
for kill.

View debug command hints Specify alias followed by a space The syntax for the rest of the command
appears.

Review previous commands Press Up Arrow and Down Arrow keys

Clear command from the command line Press the Esc key

Stop an executing script Press the Esc key

Toggle between insert/overwrite mode Press the Insert key

Scroll up/ down a page Press Page Up or Page Down key

Scroll left/right one column Press Ctrl-Left Arrow or Ctrl-Right Arrow
keys

Scroll to beginning or end of buffer Press Ctrl-Home or Ctrl-End keys

7.3 Debugger Shell Command List

This topic lists and defines each command-line debugger command.

NOTE
This chapter contains only the commands specific to the
architectures supported in MCU product. The complete list of
commands is available in CodeWarrior Common Features
Guide.

7.3.1 cmdwin::eppc::getcoreid

Get the current core ID.

Syntax

  cmdwin::eppc::getcoreid  

Examples

  cmdwin::eppc::getcoreid  

Debugger Shell Command List

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

554 Freescale Semiconductor, Inc.



Display the current core ID value.

7.3.2 cmdwin::eppc::setMMRBaseAddr

Set the MMR base address.

Syntax

  cmdwin::eppc::SetMMRBaseAddr  <addr>  

Examples

  cmdwin::eppccmdwin::eppc::SetMMRBaseAddr 0x04700000  

Tell the debugger to use 0x04700000 and the MMR base address.

All memory mapped register reads and writes will use this new base address.

7.3.3 cmdwin::eppc::setcoreid

Set the core ID.

Syntax

  cmdwin::eppc::setcoreid  <coreID>  

Examples

The table below lists and defines the examples of the cmdwin::eppc::setcoreid command.

Table 7-3. cmdwin::eppc::setcoreid Command-Line Debugger Command - Examples

Command Description

cmdwin::eppc::setcoreid 1 Set the core ID value to 1.

cmdwin::eppc::setcoreid default Set the core ID value to default. All commands will be
executed on the new set core. To see the current core ID use
getcoreid command.

7.3.4 gdi

Forwards third party custom commands.

Chapter 7 CodeWarrior Command Line Debugging

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 555



Syntax

  gdi<custom cmd> [<custom cmd arg list>]  

Examples

  gdi help  

Forwards help command to currently selected GDI connection. The purpose of this
command is to forward third party custom commands to their debug instrument, which is
currently opened.

7.4 Microcontrollers-Specific HIWARE Commands

This topic lists and defines Microcontrollers-specific HIWARE commands.

7.4.1 Command List

The table below lists the supported HIWARE commands followed by:

• CodeWarrior debugger shell syntax,
• partially supported commands,
• commands that are not applicable in CodeWarrior
• commands supported in script files with Tcl control flow statements, and
• unsupported commands.

The following columns represent the status in the CodeWarrior Eclipse IDE:

• S-CW - Supported command which follows CodeWarrior debugger shell syntax
• P - Command is partially supported, meaning some options/parameters are not

supported
• NA - Command is not applicable in CodeWarrior
• S-Tcl - Commands is supported in script files with Tcl control flow statements
• U - Command is not supported

Table 7-4. Microcontrollers-Specific Debugger Command
List

Command Status Description

HIWARE

VER S-CW Lists the version of all loaded
commands

Table continues on the next page...

Microcontrollers-Specific HIWARE Commands

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

556 Freescale Semiconductor, Inc.



Table 7-4. Microcontrollers-Specific Debugger Command List
(continued)

Command Status Description

Syntax

about

AUTOSIZE NA Selects window sizing mode

OPENIO NA Loads an IO simulation
component

OPENPROJECT U Opens an existing project

OPEN NA Opens a component window

SET U Loads a target component

LOAD U Loads an application (Code &
Symbols)

LOADCODE U Loads an application (Code
only)

LOADSYMBOLS S-CW Loads an application (Symbols
only)

Syntax

loadsym <filename>

FONT U Changes font in component
windows

BCKCOLOR U Changes background color of
component windows

SLAY NA Saves the layout and options of
all components

ACTIVATE NA Activates a window component
(in/out focus)

CLOSE NA Closes a component window

SYSTEM S-CW Executes an external application

Syntax

system <command>

EXIT S-CW Terminates this application

Syntax

quitIDE

RESET S-CW Resets the target MCU
SyntaxReset

HELP S-CW Lists available commands; to get
help on a specific command, use
the command followed by '?'

Syntax

help

help
<command><command> ?

Table continues on the next page...

Chapter 7 CodeWarrior Command Line Debugging

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 557



Table 7-4. Microcontrollers-Specific Debugger Command List
(continued)

Command Status Description

HIWARE Engine

LF S-CW Opens a log file

Syntax (for command)

log c <file>

Syntax (for session)

log s <file>

NOLF S-CW Closes a log file

Syntax (for command)

log off c

Syntax (for session)

log off s

CR U Records all commands to a file

NOCR U Stops recording commands to a
file

LOG S-CW Specifies items to be logged

Syntax (for command)

log c <file>

Syntax (for session)

log s <file>

BS P Sets breakpoint

Syntax

bp [-{hw|sw|auto}]
{<func>|[<ms>:]<addr>|
<file> <line>
[<column>]}

bp all|#<id>|<func>|
<addr> enable|disable|
{ignore <count>}

bp #<id> cond <c-expr>

SAVEBP U Saves breakpoints into a file

STEPINTO S-CW Step Into

Syntax

step [asm|src] into

STEPOUT S-CW Step out

Syntax

step [asm|src] out

STEPOVER S-CW Step over

Table continues on the next page...

Microcontrollers-Specific HIWARE Commands

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

558 Freescale Semiconductor, Inc.



Table 7-4. Microcontrollers-Specific Debugger Command List
(continued)

Command Status Description

Syntax

step [asm|src] over

RESTART S-CW Restart execution

Syntax

restart

DDEPROTOCOL U DDE Protocol options

DEFINEVALUEDLG U Opens a GUI to define a value
for the symbol/variable given as
parameter

BC S-CW Clears breakpoint

Syntax

bp all|#<id>|<func>|
<addr> off

BD S-CW Lists breakpoints

Syntax

bp

GO S-CW Starts execution (Go)

Syntax

go

STOP S-CW Stops execution (Halt)

Syntax

stop

P S-CW Executes an instruction (Flat
step)

Syntax

stepi

T S-CW Executes CPU instructions

Syntax

stepi

Configuration Example
• radix x
• config MemIdentifier 0
• config MemWidth 32
• config MemAccess 32
• config MemSwap off

Note : These options apply only to the memory commands below.

WB S-CW Writes byte(s) into target
memory

Table continues on the next page...

Chapter 7 CodeWarrior Command Line Debugging

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 559



Table 7-4. Microcontrollers-Specific Debugger Command List
(continued)

Command Status Description

Syntax

mem <addr-spec>
[<range>] [-s|-ns]
[%<conv>] =<value>

WW S-CW Writes word(s) into target
memory (2 bytes)

Syntax

mem <addr-spec>
[<range>] [-s|-ns]
[%<conv>] =<value>

WL S-CW Writes long(s) into target
memory (4 bytes)

Syntax

mem <addr-spec>
[<range>] [-s|-ns]
[%<conv>] =<value>

MS S-CW Writes byte(s) into target
memory (same as WB)

Syntax

mem <addr-spec>
[<range>] [-s|-ns]
[%<conv>] =<value>

RD S-CW Lists registers

Syntax

reg all

RS S-CW Sets registers

Syntax

reg <reg-spec>{..<reg>|
#<n>} [-s|-ns] [%<conv>]
=<value>

MEM U Lists memory map

DASM S-CW Disassembles target memory

Syntax

disassemble pc|
[<ms>:]<addr> [<count>]

DB S-CW Lists byte(s) from target memory

Syntax

mem <addr-spec>
[<range>] [-s|-ns]
[%<conv>] [-np]

Table continues on the next page...

Microcontrollers-Specific HIWARE Commands

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

560 Freescale Semiconductor, Inc.



Table 7-4. Microcontrollers-Specific Debugger Command List
(continued)

Command Status Description

DW S-CW Lists words from target memory
(2 bytes)

Syntax

mem <addr-spec>
[<range>] [-s|-ns]
[%<conv>] [-np]

DL S-CW Lists long(s) from target memory
(4 bytes )

Syntax

mem <addr-spec>
[<range>] [-s|-ns]
[%<conv>] [-np]

CD S-CW Lists or changes directory

Syntax

cd

E S-CW Evaluates an expression and
lists its result

Syntax

evaluate [#<format>] [-
l] [<var|expr>]

A S-CW Evaluates an expression and
assigns its result to an existing
variable

Syntax

var <var-spec> [-s|-ns]
[%<conv>]=[evaluate
[#<format>] [-l] [<var|
expr>]]

Example

var myVar = [evaluate
1+1] - assigns value "2"
to "myVar"

PRINTF U Display a string on the window
using printf like format

FPRINTF U Write a string to a file using
fprintf like format

NB S-CW Changes or displays the default
number base for the value of
expressions

Syntax

Table continues on the next page...

Chapter 7 CodeWarrior Command Line Debugging

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 561



Table 7-4. Microcontrollers-Specific Debugger Command List
(continued)

Command Status Description

evaluate [#<format>] [-
l] [<var|expr>]

LS U Lists also global variables and
procedures of the loaded
application

SREC P Loads of Motorola S-records
from a specified file

Syntax

restore -h *.lod
[[<ms>:]<addr>|
+<offset>] [8bit|16bit|
32bit|64bit]

restore -b *.lod
[<ms>:]<addr> [8bit|
16bit|32bit|64bit]

SAVE S-CW Saves a specified block of
memory to a specified file in
Motorola S-record format

Syntax

save -h|-b
[<ms>:]<addr>...
<filename> [-a|-o]
[8bit|16bit|32bit|64bit]

PAUSETEXT NA Displays a modal message box
for testing purpose

TESTBOX NA Displays a modal message box
with a given string

REGFILE U Loads the I/O register
descriptions from a 'register file'

REGBASE U Sets the base address of the on-
chip I/O registers

ANDB U Bitwise-AND with target memory
byte

ANDW U Bitwise-AND with target memory
word (2 bytes)

ANDL U Bitwise-AND with target memory
long (4 bytes)

NANDB U Bitwise-NAND with target
memory byte

NANDW U Bitwise-NAND with target
memory word (2 bytes)

NANDL U Bitwise-NAND with target
memory long (4 bytes)

Table continues on the next page...

Microcontrollers-Specific HIWARE Commands

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

562 Freescale Semiconductor, Inc.



Table 7-4. Microcontrollers-Specific Debugger Command List
(continued)

Command Status Description

ORB U Bitwise-OR with target memory
byte

ORW U Bitwise-OR with target memory
word (2 bytes)

ORL U Bitwise-OR with target memory
long (4 bytes)

NORB U Bitwise-NOR with target memory
byte

NORW U Bitwise-NOR with target memory
word (2 bytes)

NORL U Bitwise-NOR with target memory
long (4 bytes)

EXORB U Bitwise-EXOR with target
memory byte

EXORW U Bitwise-EXOR with target
memory word (2 bytes)

EXORL U Bitwise-EXOR with target
memory long (4 bytes)

MEMCOPY S-CW Copies the target memory

MEMBITCOPY S-CW Copies one bit from one memory
address to another bit to another
memory address

Syntax

copy
[<ms>:]<addr>[..<addr>|
#<bytes>] [<ms>:]<addr>

DEFINE S-CW Defines a symbol and
associates a value

Syntax

set varName ?value? <Tcl
command>

UNDEF S-CW Removes a symbol definition

Syntax

unset varName <Tcl
command>

RETURN U Terminates the current
command processing level

GOTO U Goes to the line following the
label

GOTOIF U Goes to the line following the
label if condition is TRUE

WHILE S-Tcl Executes commands as long as
the condition is true

Table continues on the next page...

Chapter 7 CodeWarrior Command Line Debugging

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 563



Table 7-4. Microcontrollers-Specific Debugger Command List
(continued)

Command Status Description

FOR S-Tcl Executes commands up to a
predefined number of times

REPEAT S-Tcl Executes commands until a
certain condition is true

IF S-Tcl Executes different command
sections depending on the
conditions

FOCUS NA Assigns a component as the
destination for all subsequent
commands

WAIT S-CW Waits by time tenths of a second

Syntax

wait

AT U Executes the next command at
time (in ms)

CF S-CW Executes commands in the
specified command file

CALL S-CW Executes commands in the
specified command file

Syntax

source

Source

SPC NA Highlights the statement
corresponding to the code
address

SMEM NA Highlights the statements
corresponding to the code
address range

SMOD NA Loads the corresponding
module's source text

SPROC NA Highlights the statement of the
procedure that is in the
procedure chain

FOLD NA Hides source text for clearness
at program block level

UNFOLD NA Exhibits the contents of folded
source text blocks

SLINE NA Displays the line

FINDPROC NA Find the Procedure

FIND NA Searches an arbitrary pattern in
the currently loaded source file

ATTRIBUTES NA Sets up the display

Assembly

Table continues on the next page...

Microcontrollers-Specific HIWARE Commands

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

564 Freescale Semiconductor, Inc.



Table 7-4. Microcontrollers-Specific Debugger Command List
(continued)

Command Status Description

SPC NA Lists the specified address

SMEM NA Lists the specified address

ATTRIBUTES NA Sets up the display

Procedure

ATTRIBUTES NA Sets up the display

Register

ATTRIBUTES NA Sets up the display

Memory

SPC NA Lists the address given as an
argument

SMEM NA Lists the memory range given as
an argument

SMOD NA Lists the first global variable of
the module

FILL S-CW Fills a memory range with the
given value

Syntax

mem <addr-spec>
[<range>] [-s|-ns]
[%<conv>] =<value>

UPDATERATE NA Sets the update rate

ATTRIBUTES NA Sets up the display

COPYMEM S-CW Copies a memory range to a
specified location

Syntax

copy
[<ms>:]<addr>[..<addr>|
#<bytes>] [<ms>:]<addr>

SEARCHPATTERN NA Search a pattern in memory

REFRESHMEMORY S-CW After releasing caches,
refreshes the memory

Syntax

refresh

Data

SPROC NA Displays local or global variables
of the procedure given as
parameter

ADDXPR NA Adds a new expression in the
data component

PTRARRAY NA Switches on or off the pointer as
array displaying

Table continues on the next page...

Chapter 7 CodeWarrior Command Line Debugging

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 565



Table 7-4. Microcontrollers-Specific Debugger Command List
(continued)

Command Status Description

SMOD NA Displays global variables of the
module given as parameter

ZOOM NA Exhibits the member fields of
structures by 'diving' into the
structure

UPDATERATE NA Sets the update rate of the data
component

DUMP P Dumps the content of the data
component to the command line

Syntax

display

ATTRIBUTES NA Sets up the display

REFRESHDATA S-CW After releasing caches,
refreshes the display

Syntax

refresh

Command

CLR S-CW Clears the Command window

Syntax

cls

ATTRIBUTES NA Sets up the display

Microcontrollers-Specific HIWARE Commands

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

566 Freescale Semiconductor, Inc.



Chapter 8
Build Properties for Linux Project

This chapter explains build properties for Microcontrollers Linux projects. The
Microcontrollers New Linux/ uClinux Application Project wizard uses the information
it gathers from you to set up the project's build and launch configurations.

A project's build configuration contains information on the tool settings used to make the
program. For example, it describes the compiler and linker settings, and the files
involved, such as source and libraries.

A project's launch configuration describes how the IDE starts the program, such as
whether it executes by itself on a target, or under debugger control. Launch
configurations also specify the core the program executes on (if the target processor has
multiple cores).They also specify the connection interface and communications protocol
that the debugger uses to control the environment that the program executes in.

NOTE
The settings of the CodeWarrior IDE's build and launch
configuration correspond to an object called a target made by
the classic CodeWarrior IDE.

When the wizard completes its process, it generates launch configurations with names
that follow the pattern projectname - configtype - targettype, where:

• projectname represents the name of the project
• configtype represents the project's name, which usually describes the build

configuration
• targettype represents the type of target software or hardware on which the launch

configuration acts

For each launch configuration, you can specify build properties, such as:

• additional libraries to use for building code
• behavior of the compilers, linkers, assemblers, and other build-related tools
• specific build properties, such as the byte ordering of the generated code

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 567



The topics in this chapter are:

• Changing Build Properties
• Restoring Build Properties
• Build Properties for Linux/uClinux Project

8.1 Changing Build Properties

The Microcontrollers New Linux/uClinux Application Project wizard creates a set of
build properties for the project. You can modify these build properties to better suit your
needs.

Perform these steps to change build properties:

1. Start the IDE.
2. In the CodeWarrior Projects view, select the project for which you want to modify

the build properties.
3. Select Project > Properties.

The Properties window appears. The left side of this window has a properties list.
This list shows the build properties that apply to the current project.

4. Expand the C/C++ Build property.
5. Select Settings.

The Properties window shows the corresponding build properties.

Changing Build Properties

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

568 Freescale Semiconductor, Inc.



Figure 8-1. Properties for <Project> Window
6. Use the Configuration drop-down list to specify the launch configuration for which

you want to modify the build properties.
7. Click the Tool Settings tab.

The corresponding page appears.

8. From the list of tools on the Tool Settings page, select the tool for which you want to
modify properties.

9. Change the settings that appear in the page.
10. Click Apply.

The IDE saves your new settings.

You can select other tool pages and modify their settings. When you finish, click OK to
save your changes and close the Properties window.

Chapter 8 Build Properties for Linux Project

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 569



NOTE
To build any Linux/uClinux application debug projects, ensure
that the CodeSourcery GCCs are located on your machine.
Usually they are located in the Cross_Tools folder in the
CodeWarrior installation. Also, you must ensure that you have
two environment variables defined for the two GCCs:
Embedded Linux and uClinux. CFGCCUCINSTALLDIR referring to the
bin folder of the CodeSourcery uClinux GCC install directory.
CFGCCINSTALLDIR referring to the bin folder of the CodeSourcery GNU
Linux GCC install directory.

8.2 Restoring Build Properties

If you modify a build configuration that the CodeWarrior wizard generates, you can
restore that configuration to its default state. You might want to restore the build
properties in order to have a factory-default configuration, or to revert to a last-known
working build configuration. To undo your modifications to build properties, click the
Restore Defaults button at the bottom of the Properties window.

This changes the values of the options to the absolute default of the toolchain. By default,
the toolchain options are blank.

8.3 Build Properties for Linux/uClinux Project

The Properties for <project> window shows the corresponding build properties for a
uClinux project.

Restoring Build Properties

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

570 Freescale Semiconductor, Inc.



Figure 8-2. Build Properties - uClinux

The table below lists the build properties specific to developing software for uClinux.

The properties that you specify in these panels apply to the selected build tool on the
Tool Settings page of the Properties for <project> window.

Table 8-1. Build Properties for uClinux Project

Build Tool Build Properties Panels

Architecture Architecture

ColdFire uClinux Linker ColdFire uClinux Linker > General

ColdFire uClinux Linker > Libraries

ColdFire uClinux Linker > Miscellaneous

ColdFire uClinux Linker > Shared Library Settings

ColdFire uClinux Linker > ColdFire Environment

ColdFire uClinux Compiler ColdFire uClinux Compiler > Preprocessor

Table continues on the next page...

Chapter 8 Build Properties for Linux Project

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 571



Table 8-1. Build Properties for uClinux Project (continued)

Build Tool Build Properties Panels

ColdFire uClinux Compiler > Symbols

ColdFire uClinux Compiler > Directories

ColdFire uClinux Compiler > Optimization

ColdFire uClinux Compiler > Debugging

ColdFire uClinux Compiler > Warnings

ColdFire uClinux Compiler > Miscellaneous

ColdFire uClinux Assembler ColdFire uClinux Assembler > General

ColdFire uClinux Assembler > Miscellaneous

ColdFire uClinux Preprocessor ColdFire uClinux Preprocessor > Settings

ColdFire uClinux Disassembler ColdFire uClinux Disassembler > Settings

8.3.1 Architecture

Use this panel to select the ColdFire uClinux architecture for the build.

The table below lists and describes the options in the Architecture panel.

Table 8-2. Tool Settings - Architecture Options

Option Architecture

Architecture Specify which architecture variant is used by the target.

8.3.2 ColdFire uClinux Linker

Use this panel to specify the command, options, and expert settings for the build tool
linker. Additionally, the Linker tree control includes the general, libraries, and search
path settings.

The table below lists and describes the options for the ColdFire uClinux Linker panel.

Table 8-3. tool Settings - ColdFire uClinux Linker Options

Option Description

Command Default: m 68k-uclinux-g++

All options Shows the actual command line the linker will be called with.

Table continues on the next page...

Build Properties for Linux/uClinux Project

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

572 Freescale Semiconductor, Inc.



Table 8-3. tool Settings - ColdFire uClinux Linker Options (continued)

Option Description

Expert settings Default: "$ {CFGCCUCInstallDir}/${COMMAND}" $
{FLAGS} ${OUTPUT_FLAG}${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}

Command line pattern

8.3.2.1 ColdFire uClinux Linker > General

Use this panel to specify general settings for the ColdFire uClinux linker.

The table below lists and describes the general options for the ColdFire uClinux Linker
panel.

Table 8-4. Tool Settings - ColdFire uClinux Linker > General Options

Option Description

Do not use standard start files ( -nostartfiles) Check if you do not want to use the standard system startup
files when linking. The standard system libraries are used by
default, unless -nostdlib or -nodefaultlibs is used.

Do not use default libraries ( -nodefaulltlibs) Check if you do not want to use the standard system libraries
when linking. Only the libraries you specify will be passed to
the linker. The standard startup files are used normally,
unless -nostartfiles is used. The compiler may generate
calls to memcmp, memset, memcpy and memmove. These
entries are usually resolved by entries in libc. These entry
points should be supplied through some other mechanism
when this option is specified.

No startup or default libs ( -nostdlib) Check if you do not want to use the standard system startup
files or libraries when linking. No startup files and only the
libraries you specify will be passed to the linker. The compiler
may generate calls to memcmp, memset, memcpy, and
memmove. These entries are usually resolved by entries in
libc. These entry points should be supplied through some
other mechanism when this option is specified.

One of the standard libraries bypassed by -nostdlib and -
nodefaultlibs is libgcc.a, a library of internal
subroutines that GCC uses to overcome shortcomings of
particular machines, or special needs for some languages.

Omit all symbol information ( -s) Check if you do not want to remove all symbol table and
relocation information from the executable.

No shared libraries ( -static) Check to prevent linking against or with the shared libraries
for systems that support dynamic linking. On other systems,
this option has no effect.

Chapter 8 Build Properties for Linux Project

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 573



8.3.2.2 ColdFire uClinux Linker > Libraries

Use this panel to specify library settings for the ColdFire uClinux Linker . You can
specify multiple additional libraries and library search paths. Also, you can change the
order in which the IDE uses or searches the libraries.

The table below lists and describes the libraries options for the ColdFire uClinux linker.

Table 8-5. ColdFire uClinux Linker > Libraries

Option Description

Libraries ( -l) Specifies the linker command-line switches for any libraries
that you want the IDE to include in the GCC command line for
each file in the project.

Library search path ( -L) Specifies the search pathname of libraries or other resources
related to the project.

8.3.2.3 ColdFire uClinux Linker > Miscellaneous

Use this panel to specify miscellaneous settings for the ColdFire uClinux Linker .

The table below lists and describes the miscellaneous options for ColdFire uClinux
Linker .

Table 8-6. ColdFire uClinux Linker > Miscellaneous Options

Option Description

Linker flags Specify the other required linker flag options.

Other options (-Xlinker [option]) Pass an option to the linker. You can use this option to supply
system-specific linker options which GCC does not know how
to recognize.

If you want to pass an option that takes a separate argument,
you must use -Xlinker twice, once for the option and once
for the argument. For example, to pass -assert
definitions, you must write -Xlinker -assert -
Xlinker definitions. It does not work if you write -
Xlinker "-assert definitions because this passes
the entire string as a single argument, which is not what the
linker expects.

When using the GNU linker, it is usually more convenient to
pass arguments to linker options using the option=value
syntax than as separate arguments.

Table continues on the next page...

Build Properties for Linux/uClinux Project

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

574 Freescale Semiconductor, Inc.



Table 8-6. ColdFire uClinux Linker > Miscellaneous Options (continued)

Option Description

For example, you can specify -Xlinker -
Map=output.map rather than -Xlinker -Map -Xlinker
output.map. Other linkers may not support this syntax for
command-line options.

Other objects Specify the other required object options.

8.3.2.4 ColdFire uClinux Linker > Shared Library Settings

Use this panel to specify shared library settings for the ColdFire uClinux Linker .

The table below lists and describes the shared library settings for ColdFire uClinux
linker.

Table 8-7. ColdFire uClinux Linker > Shared Library Settings Options

Option Description

Shared (-shared) Check to build shared versions of libraries, if shared libraries
are supported on the target platform.

Shared object name (-Wl, -soname=) Specifies the shared object name for the shared library.

Import Library name (-Wl, --out-implib=) Specifies the import library name. The linker will create the file
which will contain an import lib corresponding to the DLL the
linker is generating. This import lib (which should be called
*.dll.a or *.a may be used to link clients against the generated
DLL; this behaviour makes it possible to skip a separate
dlltool import library creation step. This option is specific to
the i386 PE targeted port of the linker.

DEF file name (_Wl, --output-def=) Species the name of the .def file to be created by dlltool.

8.3.2.5 ColdFire uClinux Linker > ColdFire Environment

Use this panel to specify environment settings for the ColdFire uClinux Linker .

Chapter 8 Build Properties for Linux Project

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 575



The table below lists and describes the shared ColdFire environment settings for ColdFire
uClinux linker.

Table 8-8. ColdFire uClinux Linker > ColdFire Environment Options

Option Description

Map File Specify the file that will be written as a linker memory map
file.

LCF File Read the specified linker script file.

8.3.3 ColdFire uClinux Compiler

Use this panel to specify the command, options, and expert settings for the build tool
compiler. Additionally, the Compiler tree control includes the general, libraries, and
search path settings.

The table below lists and describes the options for ColdFire uClinux compiler.

Table 8-9. Tool Settings - ColdFire uClinux Compiler Options

Option Description

Command Default: m68k-uclinux-gcc

All options Shows the actual command line the compiler will be called
with.

Expert settings Default: " ${CFGCCUCInstallDir}/${COMMAND}" $
{FLAGS} ${OUTPUT_FLAG}${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}

Command line pattern

8.3.3.1 ColdFire uClinux Compiler > Preprocessor

Use this panel to specify the preprocessor behavior. You can specify the file paths and
define macros for the preprocessor.

Build Properties for Linux/uClinux Project

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

576 Freescale Semiconductor, Inc.



The table below lists and describes the options for the ColdFire uClinux Compiler
panel.

Table 8-10. ColdFire uClinux Compiler > Preprocessor Options

Option Description

Do not search system directories (-nostdinc) Select if you do not want to search the standard system
directories for header files. Only the directories you have
specified with `-I' options and the directory of the current file, if
appropriate are searched.

Preprocess only (-E) Select if you do not want to compile, assemble, or link.

8.3.3.2 ColdFire uClinux Compiler > Symbols

Use this panel to specify code- and symbol-generation options for the ColdFire uClinux
Compiler .

The table below lists and describes the options for the ColdFire uClinux Compiler
panel.

Table 8-11. ColdFire uClinux Compiler > Symbols Options

Option Description

Defined symbols (-D) Display only defined symbols for each object file.

Undefined symbols (-U) Display only undefined symbols; those external to each object
file.

8.3.3.3 ColdFire uClinux Compiler > Directories

Use this panel to specify include path directories for the ColdFire uClinux Compiler .

The table below lists and describes the options for the Directories panel.

Table 8-12. ColdFire uClinux Compiler > Directories Options

Option Description

Include paths Specify locations to header files. Append a list of directories
to the standard directory list.

Chapter 8 Build Properties for Linux Project

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 577



8.3.3.4 ColdFire uClinux Compiler > Optimization

Use this panel to control compiler optimizations. The compiler's optimizer can apply any
of its optimizations in either global or non-global optimization mode. You can apply
global optimization at the end of the development cycle, after compiling and optimizing
all source files individually or in groups.

The table below lists and describes the options for the Optimization panel.

Table 8-13. ColdFire uClinux Compiler > Optimization Options

Option Description

Optimization Level Specify the optimizations that you want the compiler to apply
to the generated object code:

• None (-O0) - Disable optimizations. This setting is
equivalent to specifying the -O0 command-line option.
The compiler generates unoptimized, linear assembly-
language code.

• Optimize (-O1) - The compiler performs all target-
independent (that is, non-parallelized) optimizations,
such as function inlining. This setting is equivalent to
specifying the -O1 command-line option.

The compiler omits all target-specific optimizations and
generates linear assembly-language code.

• Optimize more (-O2) - The compiler performs all
optimizations (both target-independent and target-
specific). This setting is equivalent to specifying the -O2
command-line option. The compiler outputs optimized,
non-linear, parallelized assembly-language code.

• Optimize most (-O3) - The compiler performs all the
level 2 optimizations, then the low-level optimizer
performs global-algorithm register allocation. This
setting is equivalent to specifying the -O3 command-
line option. At this optimization level, the compiler
generates code that is usually faster than the code
generated from level -O2 optimizations.

Other optimization flags Specify other optimization flags, like -Os (optimize for size) or
specific optimizations if you would like to do a "fine-tuning" of
optimizations.

8.3.3.5 ColdFire uClinux Compiler > Debugging

Use this panel to specify whether to generate symbolic information for debugging the
build target.

Build Properties for Linux/uClinux Project

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

578 Freescale Semiconductor, Inc.



The table below lists and describes the options for the Debugging panel.

Table 8-14. ColdFire uClinux Compiler > Debugging Options

Option Description

Debug Level Generates a compiled file containing debugging information.
By default, it will be generated in DWARF-2 format.

Other debugging flags Allows specifying other debugging options, like changing the
format of debugging information or the level.

Generate gprof information (-pg) Generate extra code to write profile information suitable for
the analysis program gprof. You must use this option when
compiling the source files you want data about, and you must
also use it when linking.

Generate prof information (-p) Generate extra code to write profile information suitable for
the analysis program prof. You must use this option when
compiling the source files you want data about, and you must
also use it when linking.

8.3.3.6 ColdFire uClinux Compiler > Warnings

Use this panel to control how the ColdFire compiler formats the listing file, as well as the
error and warning messages.

The table below lists and describes the options for the Warnings panel.

Table 8-15. ColdFire uClinux Compiler > Warnings

Option Description

Check syntax only (-fsyntax-only) Check the option if you want to scan the code only for syntax
errors and nothing else.

Warnings are diagnostic messages that report constructions
which are not inherently erroneous but which are risky or
suggest there may have been an error.

The following language-independent options do not enable
specific warnings but control the kinds of diagnostics
produced by GCC.

Pednatic (-pedantic) Check is you want to issue all the warnings demanded by
strict ISO C and ISO C++; reject all programs that use
forbidden extensions, and some other programs that do not
follow ISO C and ISO C++. For ISO C, follows the version of
the ISO C standard specified by any `-std' option used.

Pedantic warnings as errors (-pedantic-errors) Check if you want warnings like -pedantic, except that
errors are produced rather than warnings.

Inhibit all warnings (-w) Check if you want to inhibit all warning messages.

Table continues on the next page...

Chapter 8 Build Properties for Linux Project

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 579



Table 8-15. ColdFire uClinux Compiler > Warnings (continued)

Option Description

All warnings (-Wall) Check to enable all the warnings about constructions that
some users consider questionable, and that are easy to avoid
(or modify to prevent the warning), even in conjunction with
macros.

Warnings as errors (-Werror) Check to make all warnings into hard errors. Source code
which triggers warnings will be rejected.

8.3.3.7 ColdFire uClinux Compiler > Miscellaneous

Use this panel to specify miscellaneous settings for the ColdFire uClinux Compiler.

The table below lists and describes the miscellaneous options for ColdFire uClinux
Linker.

Table 8-16. ColdFire uClinux Compiler > Miscellaneous

Option Description

Other flags Specify additional command line options for the compiler; type
in custom flags that are not otherwise available in the UI.

Verbose (-v) Check to enable the verbose mode. Print out GNU CPP's
version number at the beginning of execution, and report the
final form of the include path.

Support ANSI program (-ansi) Check to specify the standard to which the code should
conform.

No common symbols (-fno-common) Check to control the placement of uninitialized global
variables.

8.3.4 ColdFire uClinux Assembler

Use this panel to specify the command, options, and expert settings for the build tool
assembler. Additionally, the Assembler tree control includes the general and include file
search path settings.

Build Properties for Linux/uClinux Project

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

580 Freescale Semiconductor, Inc.



The table below lists and defines each option of the ColdFire uClinux Assembler panel.

Table 8-17. ColdFire uClinux Assembler

Option Description

Command Enter the command line arguments for the GCC assembler in
the Command Line Arguments text box. The contents of
this text box are passed as command-line switches in the gcc
command line for each file in your project as they are
assembled.

Shows the location of the assembler executable file.

Default value is: m68k-uclinux-as

All options Shows the actual command line the assembler will be called
with.

Expert Settings

Command line pattern Default value is: "${CFGCCUCInstallDir}/${COMMAND}"
${FLAGS} ${OUTPUT_FLAG}${OUTPUT_PREFIX}$
{OUTPUT} ${INPUTS}

8.3.4.1 ColdFire uClinux Assembler > General

Use this panel to specify additional files the ColdFire Assemble r should use. You can
specify multiple additional libraries and library search paths. Also, you can change the
order in which the IDE uses or searches the libraries.

The table below lists and defines each option of the General panel.

Table 8-18. ColdFire uClinux Assembler > General

Option Description

Assembler flags Specify options that will be passed to the assembler.

Include paths (-I) Use this option to add a path to the list of directories as
searches for files specified in .include directives.

Suppress warnings (-W) Check to inhibit all warning messages.

Announce version (-v) Check to find out what version of assembler is running.

8.3.4.2 ColdFire uClinux Assembler > Miscellaneous

Use this panel to specify miscellaneous settings for the ColdFire uClinux Assembler .

Chapter 8 Build Properties for Linux Project

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 581



The table below lists and defines each option of the Miscellaneous panel.

Table 8-19. ColdFire uClinux Assembler > Miscellaneous

Option Description

Other options (-Xassembler) Provide an option to the assembler. You can use this to
supply system-specific assembler options which GCC does
not know how to recognize.

If you want to pass an option that takes an argument, you
must use -Xassembler twice, once for the option and once
for the argument.

8.3.5 ColdFire uClinux Preprocessor

Use this panel to specify preprocessor behavior and define macros.

The table below lists and defines each option of the Preprocessor panel.

Table 8-20. ColdFire uClinux Preprocessor

Option Description

Command Provide the command line arguments for the GCC assembler
in the Command Line Arguments text box. The contents of
this text box are passed as command-line switches in the gcc
command line for each file in your project as they are
assembled.

Shows the location of the linker executable file.

Default value is: m68k-uclinux-gcc

All options Shows the actual command line the preprocessor will be
called with.

Expert Settings

Command line pattern Default value is: "${CFGCCUCInstallDir}/${COMMAND}"
${FLAGS} ${INPUTS}

8.3.5.1 ColdFire uClinux Preprocessor > Settings

Use this panel to specify preprocessor behavior.

Build Properties for Linux/uClinux Project

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

582 Freescale Semiconductor, Inc.



The table below lists and defines each option of the Settings panel.

Table 8-21. ColdFire uClinux Preprocessor > Settings

Option Description

Handle Directives Only Select to handle directives only.

Print Header File Names Select if you want to print header filenames.

8.3.6 ColdFire uClinux Disassembler

Use this panel to specify the command, options, and expert settings for the ColdFire
uClinux Disassembler.

The table below lists and defines each option of the Settings panel.

Table 8-22. ColdFire uClinux Disassembler

Option Description

Command You can enter the command line arguments for the GCC
disassembler in the Command text box. The contents of this
text box are passed as command-line switches in the gcc
command line for each file in your project as they are
assembled.

Shows the location of the linker executable file.

Default value is: m68k-uclinux-objdump.

All options Shows the actual command line the preprocessor will be
called with.

Expert Settings

Command line pattern Default value is: "${CFGCCUCInstallDir}/${COMMAND}"
${FLAGS} ${INPUTS}

8.3.6.1 ColdFire uClinux Disassembler > Settings

Use this panel to control how the disassembler formats the listing file, as well as error
and warning messages. You can specify verbosity of messages, whether to show headers,
core modules, extended mnemonics, addresses, object or source code, data modules,
exception tables, and debug information.

Chapter 8 Build Properties for Linux Project

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 583



The table below lists and defines each option of the Settings panel.

Table 8-23. ColdFire uClinux Disassembler

Option Description

Disassemble All Section Content Disassembles all section content and sends the output to a
file. This command is global and case-sensitive.

Disassemble Executable Section Content Disassembles all executable content and send output to a file.

Intermix Source Code with Disassembly Turn jbsr into jsr.

Display All Header Content Display the contents of all headers.

Display Archive Header Information Display archive header information.

Display Overall File Header Content Display the contents of the overall file header.

Display Full Section Content Display the full section of the file.

Display Debug Information Display debug information in the object file.

Display Debug Information Using ctag Style Display debug information using the ctags style.

Display STABS Information Displays any STABS information in the file, in raw form.

Display DWARF Information Displays any DWARF information in the file.

Display Symbol Table Content Displays the contents of the symbol tables.

Display Dynamic Symbol Table Content Displays the contents of the dynamic symbol table.

Display Relocation Entries Displays the relocation entries in the file.

Display Dynamic Relocation Entries Displays the dynamic relocation entries in the file.

Build Properties for Linux/uClinux Project

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

584 Freescale Semiconductor, Inc.



Chapter 9
Connections - HCS08 Architecture

This chapter describes the features and settings of the connections that interface the
CodeWarrior debugger with the HCS08 simulator or the target board.

For the IDE to communicate with the target hardware, you must specify several key
items: the debugger protocol, a connection type, and any connection parameters. You can
enter these items using options in the Launch Configuration panel. The Launch
Configuration panel can be accessed by clicking on the Edit button located within the
Main tab of the Debug Configurations dialog box. These options are:

• The Connection Type option determines what debugger protocol the debugger uses
to communicate with the target.

• After you make the option for the connection type, the Connection Settings changes
to display configuration options specific for the hardware probe.

The topics in this chapter discuss the features and settings of the connections that
interface the CodeWarrior debugger with simulation platforms and hardware devices that
are part of the HCS08 device family.

The topics in this chapter are:

• P&E Full Chip Simulation
• P&E Hardware Interface Connection for HCS08

9.1 P&E Full Chip Simulation

This topic details the settings of the connections that interface the CodeWarrior debugger
with the HCS08 simulator.

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 585



9.1.1 Create New Connection for Full Chip Simulation

A Full Chip Simulation (FCS) connection runs a complete simulation of all processor
peripherals and I/O on your personal computer. Thus, when debugging an FCS project
for a selected derivative it is not necessary to connect your PC with a Microcontrollers
development or target board.

To change connection in the IDE, perform these steps.

1. Right-click on your Project > Properties.

The Properties windows appears.

2. Select Run/Debug Settings and click on the New... button.
3. Select CodeWarrior Download and click OK.

The Edit Configuration window appears.

4. By default the project and application is already set. Change the name of your
connection if you wish. You will need to create a new Connection. Within the
Connection section, click on the New... button.

The New Connection Wizard will appear.

5. Open the CodeWarrior Bareboard Debugging and select Hardware or Simulator
Connection. Click Next.

6. Give your new connection a name. For connection type, change the setting to P&E
HCS08 FCS for Full Chip Simulation.

7. You will need to select the Target device. You can either select a pre-existing target
or create a New target. When complete, click on the Finish button.

8. The wizard creates a simulator project for the HCS08 architecture according to your
specifications. You can access and edit the project connections by right-click on your
project > Debug As > Debug Configurations.

9.1.2 Module Options

The PEMicro menu includes the Full Chip Simulation options for the modules that have
specialty commands associated with them for a chosen device.

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

586 Freescale Semiconductor, Inc.



Figure 9-1. PEMicro Menu

The options available are:

• Analog-to-Digital Converter Module
• 16-Bit Analog-to-Digital Converter Module
• Clock Generation Module
• Digital-to-Analog Converter Module
• EEPROM Module
• Fault Detection and Shutdown Module
• Flash Module
• Flextimer Module
• High-Speed Analog Comparator Module Flextimer Module
• Inter-Integrated Circuit Module
• Interrupt Priority Controller Module
• External Interrupt (IRQ) Module
• Keyboard Interrupt Module
• Liquid Crystal Display Driver Module
• Modulo Timer Interrupt Module
• MSCAN Controller Module
• Programmable Delay Block Module
• Programmable Gain Amplifier Module
• Programmable Reference Analog Comparator Module
• Input/Output (I/O) Ports Module
• Serial Communications Interface Module
• Slave LIN Interface Controller (SLIC) Module
• Serial Peripheral Interface Module
• Timer Interface Module
• Time Of Day Module Option
• Universal Serial Bus (USB) Module
• Voltage Reference Module

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 587



9.1.2.1 Analog-to-Digital Converter Module

In Full Chip Simulation (FCS) mode, this module simulates all functionality of the
Analog-to-Digital Conversion ( ADC) module, including data input on all ADC channels,
flag polling, interrupt operation, and the bus and CGMXCLK reference clock sources.
FCS mode uses the buffered input structure to simulate the ADC inputs. You can queue
up to 256 data values. To queue the ADC Input Data, use the ADDI command in the
command prompt. If the data parameter is given, the value is placed into the next slot in
the input buffer. Otherwise, if no parameter is provided, a window is displayed with the
input buffer values. Input values can be entered while the window is open. An arrow
points to the next value to be used as input to the ADC. The conversion takes place after
a proper value is written to the ADC Status and Control register. Once the conversion
occurs, the arrow moves to the next value in the ADC Buffer.

Figure 9-2. ADC IN Buffer Display

The ADCLR command can be used at any point to flush the input buffer for the ADC
simulation.

After the conversion is complete, the first queued value is passed from the data buffer
into the ADC data register. It can be observed in the Memory window by displaying the
memory location corresponding to the ADC data register.

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

588 Freescale Semiconductor, Inc.



Figure 9-3. Memory Component Window

When the conversion is complete, FCS sets the appropriate flag. If interrupts are enabled,
the Program Counter changes flow to the interrupt routine (as defined in the vector space
of the MCU).

NOTE
For more information on ADC configuration, refer to the
Freescale user manual for your microprocessor.

9.1.2.1.1 ADC Module Commands

The following commands are available for the HC08/HCS08 ADC Module.

9.1.2.1.2 ADDI Command

The ADDI command lets you input the data into the ADC converter. If a data parameter is
given, the value is placed into the next slot in the input buffer. Otherwise, if no parameter
is given, a window is displayed with the input buffer values. Input values can be entered
while the window is open. An arrow points to the next value to be used by the ADC. The
maximum number of input values is 256 bytes. Syntax

  >gdi 
  ADDI [<n>]  

Where: <n> The value to be entered into the next location in the input buffer. Example

  >gdi 
  ADDI $55  

Set the next input value to the ADDI to $55

  >gdi ADDI  

Pull up the data window with all the input values.

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 589



9.1.2.1.3 ADCLR Command

Use the ADCLR command to flush the input buffer for ADC simulation. This resets the input
data buffer and clears out all values. Notice that if the ADC is currently using a value,
this command does not prevent the ADC from using it.

NOTE
Refer the ADDI command for information on how to access the
input buffer of the ADC interface.

Syntax

  >gdi ADCLR  

Example

  >gdi ADCLR  

Clear the input buffer for ADC simulation.

9.1.2.2 16-Bit Analog-to-Digital Converter Module

The following commands are available for the HCS08 ADC16V1 Module.

9.1.2.2.1 ADDI Command
The ADDI command allows the user to input the data into the ADC16 converter. If a data
parameter is given, the value is placed into the next slot in the input buffer. If no data
parameter is given, a window is displayed with the input buffer values shown in the
followimng figure. Input values can be entered while the window is open. An arrow
points to the next value that will be used by the ADC16. The maximum number of input
values is 256 bytes.

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

590 Freescale Semiconductor, Inc.



Figure 9-4. ADC16 IN Buffer Display

After the conversion is complete, the first queued value is passed from the data buffer
into the ADC16 data register. It can be observed in the memory window by displaying
the memory location corresponding to the ADC16 data register. Syntax

  >gdi ADDI <n>  

Where: <n> The value to be entered into the next location in the input buffer. Example

  >gdi ADDI $55  

Set the next ADDI input value to $55

  >gdi ADDI  

Pull up the data window with all the input values.

9.1.2.2.2 ADCLR Command

Use the ADCLR command to flush the input buffer for ADC16 simulation. This resets
the input data buffer and clears out all values. Note that if the ADC16 is currently using a
value, this command does not prevent the ADC16 from using it. Refer the ADDI
command for information on how to access the input buffer of the ADC16 interface.

Syntax

  >gdi ADCLR  

Example

  >gdi ADCLR  

Clear the input buffer for ADC simulation.

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 591



9.1.2.2.3 ADDID Command

The ADDID command allows the user to input the differential data into the ADC16
converter. A window is displayed that allows the user to input differential values. The
user may specify the differential data of the Differential Analog Channel (DADx) input
voltages, the Temperature Sensor (TEMP) input, and the Voltage References (VREF).

Figure 9-5. ADC Differential Data Display

When using FCS, the ADDID command shows the simulated differential inputs to the
ADC16 module. Syntax

  >gdi ADDID  

Example

  >gdi ADDID  

Pull up the differential data window

9.1.2.3 Clock Generation Module

In Full Chip Simulation (FCS) mode, this module simulates all functionality of the Clock
Generation Module (ICG), including:

• Phase Locked Loop (PLL) generation
• Automatic lock detection
• Interrupt
• Acquisition
• Tracking
• Flag polling

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

592 Freescale Semiconductor, Inc.



FCS mode uses a simulated External Oscillator Frequency change command ( XTAL) lets
you input the desired XTAL value. To check the current value of the External Oscillator,
Bus Frequency and CGMXCLK Frequency, open the HCS08FCS menu and select
Clocks Module > Show MCU Clocks.

Figure 9-6. Clocks Module Extended Menu

Once you select the MCU Clocks menu, the Cycles window displays all of the
aforementioned Clock Frequencies, or you can select the Show Cycle Counter option
within the FCS menu to get the same window.

Figure 9-7. Frequency Display

Within the FCS menu, you can select the Run till Cycle option, which lets you begin code
execution and stop execution when the specified cycle count is reached. Note that the
parameter given is not the number of cycles that executed, but rather the total cycle-count
of the simulator (displayed in the Register Window).

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 593



Figure 9-8. Run till Cycle Command

This command is extremely useful for verifying specific timings of a given event,
running until a given event is complete, or just before it completes to enable stepping
through the event or any application where cycle-timed execution is desired.

Figure 9-9. Run till a specific cycle Dialog Box

You can also select the Clear Cycle Counter option within the FCS menu, which clears
the cycle counter. If you select the Show Cycle Counter option within the FCS menu, you
can check to make sure that the cycle counter is zero.

Figure 9-10. Cycles Dialog Box with Cleared Counter

Once the ICG is properly configured, you can monitor the status of the PLL by polling
the corresponding flag. If PLL interrupt is enabled, FCS jumps to an appropriate
subroutine, as long as the interrupt vector is properly defined. To observe the flag going
up as a result of the corresponding CPU event, situate your Memory window on the
memory location of the ICG Status and Control register.

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

594 Freescale Semiconductor, Inc.



Figure 9-11. Memory Window

For more information on how to properly configure Clock Generation, refer to the
Freescale reference manual for your microprocessor.

9.1.2.3.1 Clock Generation Module Commands

The following commands are available for the HC08/HCS08 Clock Generation Module.

9.1.2.3.1.1 XTAL Command

Use the XTAL command to change the value of the simulated external oscillator. This in
turn affects the input to the PLL/DCO, and therefore the bus frequency. The P&E
simulator is a cycle-based simulator, so changing the XTAL value does not affect the
speed of simulation. It does, however, affect the ratio in which peripherals receive cycles.
Certain peripherals that run directly from the XTAL will run at different speeds than
those that run from the bus clock.

9.1.2.3.1.2 Syntax

  >gdi XTAL <n>  

where, <n>, by default, is a hexadecimal number, representing the simulated frequency of
an external oscillator. Adding the suffix `t' to the 'n' parameter forces the input value to
be interpreted as base 10.

Example

  >gdi 
  XTAL
  

Brings up an input window. The default base for this input value is 10. However, this
value can be forced to a hexadecimal format through use of the suffix `h'.

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 595



9.1.2.4 Digital-to-Analog Converter Module

In Full Chip Simulation (FCS) Mode, this module lets you simulate all the functionality
of the 5-bit Digital-to-Analog Converter (DAC) module. This module provides 32
distinct selectable voltage levels through the use of a 32-tap resistor ladder network and a
32-to-1 multiplexer. Each DAC module output can be routed to an HSCMP input.

9.1.2.4.1 Digital-to-Analog User Commands

The following DAC commands are available for the HCS08.

9.1.2.4.2 SHOWDACO1 Command

The SHOWDACO1 command displays the DAC Output dialog box shown in the
following figure.

Figure 9-12. Figure DAC Output Dialog Box

Syntax

  >gdi SHOWDACO1  

Example

  >gdi SHOWDACO1  

Show DAC Output Dialog Box

9.1.2.5 EEPROM Module

In Full Chip Simulation (FCS) mode, this module simulates all functionality of EEPROM
module including sector erase abort, burst programming capability, security feature,
flexible block protection and vector redirection, and command interface for fast program
and erase operation.

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

596 Freescale Semiconductor, Inc.



9.1.2.5.1 EEPROM User Commands

The following EEPROM commands are available for the HCS08.

9.1.2.5.2 EEPROM<x> Command

The EEPROM<x> command simulates changing of the EEPROM page for devices that have
paged EEPROM.

Syntax

  >gdi EEPROM<x>  

Where: <x> is the letter representing corresponding EEPROM page number

Example

  > gdi EEPROM1  

Simulate change to EEPROM page 1.

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 597



Figure 9-13. Example of using EEPROM<x>Command

9.1.2.6 Fault Detection and Shutdown Module

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

598 Freescale Semiconductor, Inc.



In Full Chip Simulation (FCS) Mode, this module lets you simulate all the functionality
of the Fault Detection and Shutdown (FDS) module. When a fault condition occurs, the
module provides a mechanism to immediately place port pins into a pre-defined state; the
output pin of FDS can be configured as output 0, output 1, high impedance, or bypass
during shutdown. The module can configure up to 8 fault input sources and control up to
8 port pins.

9.1.2.7 Flash Module

In Full Chip Simulation (FCS) mode, this module simulates all functionality of Flash
module including sector erase abort, burst programming capability, security feature,
flexible block protection and vector redirection, and command interface for fast program
and erase operation.

9.1.2.7.1 Flash User Commands

The following Flash commands are available for the HCS08.

9.1.2.7.2 PPAGE <x> Command

The PPAGE <x> command simulates changing of Flash PPAGE for devices that have paged
FLASH.

Syntax

  >gdi PPAGE <x>  

Where: <x> is the letter representing corresponding PPAGE number

Example

  >gdi PPAGE 1  

Simulate change to PPAGE 1.

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 599



Figure 9-14. Example of using PPAGE <x> command

9.1.2.8 Flextimer Module

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

600 Freescale Semiconductor, Inc.



In Full Chip Simulation (FCS) Mode, this option lets you simulate all the functionality of
the Flextimer (FTMV2) module, including:

• Input capture/output compare
• Pulse width modulation
• Internal or external clock input
• Free running or modulo up count operation
• Flag polling
• Interrupt enabled mode of operation.
• All channels can be configured for center-aligned PWM mode
• Each pair of channels can be combined to generate a PWM signal (with independent

control of both edges of PWM signal)
• The FTM channels can operate as pairs with equal outputs, pairs with complimentary

outputs, or independent channels (with independent outputs)
• The dead-time insertion is available for each complementary pair
• Generation of triggers (hardware trigger)

9.1.2.9 High-Speed Analog Comparator Module

In Full Chip Simulation (FCS) mode, this option lets you simulate all the functionality of
the High-Speed Analog Comparator (HSCMP) module, including data input on all
HSCMP channels, flag polling, and interrupt operation, as well as output connection to
PDB input triggers. The user can utilize either the HSCMP Inputs display form or
command-line commands to provide inputs to the HSCMP module.

9.1.2.9.1 High-Speed Analog Comparator User Commands

The following commands are available for the HCS08 HSCMP Module.

9.1.2.9.2 HSC<x>INPUT<y> Command

The HSC<x>INPUT<y> command lets you input a voltage value for the external analog
input CIN<y>. For HCS08 devices that have more than one HSCMP module, <x> is the
number representing the corresponding module. For HCS08 devices that only have one
HSCMP module, <x>=1.

Syntax

  >gdi HSC<x>INPUT<y> <n>

Where: <x> is the number representing the corresponding HSCMP module

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 601



<y> is the number representing the corresponding external analog input CIN

<n> is the voltage input value

Examples

  >gdi HSC1INPUT1 5.00  

Simulate a 5.00 volt input on CIN1 of HSCMP1.

  >gdi HSC4INPUT3 2.50  

Simulate a 2.50 volt input on CIN3 of HSCMP4.

9.1.2.9.3 HSC<x>INPUTS Command

In FCS mode, the HSC<x>INPUTS command opens the HSCMP<x> Input Value dialog
box shown in the following figure. The user may then use this box to specify the external
analog input voltages. For HCS08 devices that have more than one HSCMP module, <x>
is the number representing the corresponding module. For HCS08 devices that only have
one HSCMP module, <x>=1.

Figure 9-15. HSCMPx Input Value Dialog Box

When using FCS, the HSC<x>INPUTS command shows the simulated input analog
voltages to any applicable HSCMPx module.

Syntax

  >gdi HSC<x>INPUTS  

Where:

<x> is the number representing the corresponding HSCMP module

Example

  >gdi HSC1INPUTS  

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

602 Freescale Semiconductor, Inc.



Show input analog voltages.

9.1.2.10 Inter-Integrated Circuit Module

In Full Chip Simulation (FCS) mode, this module simulates all functionality of the Inter-
Integrated Circuit (IIC) module including:

• Flag polling
• Interrupt enabled mode
• Transmission and reception of external data
• Master and slave modes of operation
• START and STOP signal generation detection
• Acknowledge bit generation detection

FCS mode uses the buffered input/output structure to simulate IIC inputs. You can queue
up to 256 data bytes into the input buffer. The output buffer of the USB module can also
hold 256 output bytes. To queue the IIC Input Packets, use the IICDI <...> command in
the command prompt. For a more detailed description of the command, refer to the IIC
Commands section. If the IIC packet parameters are properly defined, the packet is
placed into the next slot in the input buffer. Otherwise, if no parameters are provided, an
IIC Input Buffer window is displayed.

You can enter different IIC packet parameters while the window is open, including
START, STOP, ACK, NACK and data bytes. An arrow points to the next byte to be used
as input to the IIC. The data from the IIC input buffer is written to the IIC module
registers once the IIC module is turned on and properly configured for receiving data
from an external IIC device. Once simulation of the data transmission is over, the arrow
moves to the next value in the IIC Input Buffer.

Figure 9-16. IIC Input Buffer Display

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 603



The IIC data input/output log buffer simulation lets you gain access to the past 256 IIC
data bytes that have been shifted in and out of the module. To bring up the IIC IN/OUT
LOG buffer dialog box, use the IICDO command.

Figure 9-17. IIC IN/OUT LOG Buffer Display

At any point, use the IICCLR command to flush the input as well as input/output log IIC
buffers. After the IIC simulated input is received, the first queued-in data byte is passed
from the data buffer into the corresponding IIC module registers. It can be observed in
the Memory Window by displaying the appropriate register location there.

Figure 9-18. Memory Component Window

You can also observe different IIC flags in the Memory window. If you run the module in
Flag Polling mode, poll the flag corresponding to the expected IIC event. If the IIC
interrupts are enabled, FCS jumps to an appropriate subroutine as long as the IIC
interrupt vectors are properly defined.

NOTE
For more information on how to configure IIC module for
desired operation, refer to the Freescale user manual for your
microprocessor.

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

604 Freescale Semiconductor, Inc.



9.1.2.10.1 Inter-Integrated Circuit Module Commands

The following commands are available for the HCS08 Inter-Integrated Circuit (IIC)
module and the HC08 Multi-Master Inter-Integrated Circuit (MMIIC) module. Command
function is identical even though the module names differ.

9.1.2.10.2 IICDI Command

The IICDI command lets you input data into a buffer of data to shift into the IIC module
when it receives data from an external device. If a data parameter is given, the value is
placed into the next slot in the input buffer. Otherwise, if no parameter is given, a
window is displayed with the input buffer values. Input values can be entered while the
window is open. The maximum number of input values is 256. This command is useful
for either inputting response data from a slave target or for inputting data packets from an
external master. Note that when the microprocessor attempts to read an acknowledge
from an external device, and the next value in the buffer is neither ACK nor NACK, the
microprocessor automatically receives an ACK signal (i.e. assumes ACK unless NACK
is specified).

Syntax

  >gdi IICDI [<n>][START][STOP][ACK][NACK]

Where: ï¿½ <n> indicates the value to be entered into the next location in the input buffer

ï¿½ START indicates the incoming START signal

ï¿½ STOP indicates the incoming STOP signal

ï¿½ ACK corresponds to ACK signal

ï¿½ NACK corresponds to NACK signal

NOTE
For a detailed description of the IIC protocol and a proper way
to configure the IIC module, refer to the Freescale user manual
for your microprocessor.

Example

  >gdi IICDI  

Pulls up the data window with all the input values

  >gdi IICDI 22 33  

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 605



This is an example of data being returned from a slave device. Once the MCU transmits a
start signal and the target address, it receives an ACK from the slave device. An ACK is
implied unless a NACK is specified via the IICDI command. The next two data bytes read
are 22 and 23. If the microprocessor attempts to read another byte, it gets an $FF value
followed by a NACK signal (NACK because nothing remains in the input buffer). The
receiving device then generates a STOP signal. A more exact input from a device
designed to return two bytes is:

  >gdi IICDI ACK 22 ACK 23 NACK  

IIC in master mode transmits to a slave:

ï¿½ If the slave device acknowledges all output bytes of the transmitting device, there is
no need to specify an input packet. If the master device is going to transmit an address
and two bytes, the following packet is equivalent to no packet:

  >gdi IICDI ACK ACK ACK  

ï¿½ If, however, the slave receiver is designed to generate a NACK signal after the
second received data byte, the proper response packet is:

  >gdi IICDI ACK ACK NACK  

ï¿½ The address result being the first ACK, the first data result being the second ACK,
and the second data byte being the NACK.

IIC in MASTER mode is not acknowledged by any Slave:

  >gdi IICDI NACK  

ï¿½ If the NACK signal is entered before the master device transmits a START signal,
then the master device gets a NACK when it tries to read an acknowledge after the
address is output. The master device then generates a STOP signal and releases the BUS.

IIC in SLAVE mode receives a Write from an external Master:

This example is for an external master that is writing to the microprocessor configured to
simulate the slave mode operation. The packet contains both START and STOP signals
which puts the simulated device into the slave mode.

  >gdi IICDI START 55 AA 22 STOP  

This input adds five values to the input queue, which is a packet from an external master,
including the following procedure values:

ï¿½ A start signal comes in

ï¿½ The address $55 comes in specifying a write (slave receive). The Address Register in
the current simulated device has been previously set to $55

ï¿½ The data byte $AA comes in

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

606 Freescale Semiconductor, Inc.



ï¿½ The data byte $22 comes in

ï¿½ A STOP signal comes in

9.1.2.10.3 IICDO Command

The IICDO command displays a window, which shows data both shifted in and shifted
out of the IIC peripheral. An arrow points to the last output value transmitted/received.
The maximum number of output values that the buffer can hold is 256.

Syntax

  >gdi IICDO  

Example

  >gdi IICDO  

View data from the input/output log buffer for IIC simulation.

IICCLR Command Use the IICCLR command to flush the input and output buffers for IIC
simulation. This resets the buffers and clears all values. Notice that if the IIC is currently
shifting a value, this command does not prevent the IIC from finishing the transfer.

Syntax

  >gdi IICCLR  

Example

  >gdi IICCLR  

Clear input and output buffers for IIC simulation.

9.1.2.11 Interrupt Priority Controller Module

In Full Chip Simulation (FCS) Mode, this module simulates all the functionality of the
Interrupt Priority Controller (IPC) module. This module provides a hardware-based,
nested-interrupt mechanism in HCS08 MCUs and allows all prioritized non-software
interrupts to interrupt. IPC features a four-level programmable interrupt priority for each
source, supports prioritized preemptive interrupt service routines, and the interrupt
priority mask can be modified during main flow or interrupt service execution. When the
interrupt vector is being fetched, the module can automatically update the interrupt
priority mask with its serviced interrupt source priority level and automatically store
previous interrupt mask levels.

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 607



9.1.2.12 External Interrupt (IRQ) Module

In Full Chip Simulation (FCS) mode, this module simulates the input, flag polling and
interrupt functionality of the External Interrupt (IRQ) module. FCS mode uses the INPUTS
command and let you monitor and change the simulated value of the IRQ input pin state.
Once you enter the INPUTS command into the command line prompt, the Simulated Port
Inputs window appears. Refer the INPUT<x> Command for more information about the
various forms of this command. In addition, the state of the IRQ pin can be modified
directly using the IRQ<n> command (documented below).

Figure 9-19. Simulated Port Inputs Dialog Box

An IRQ event occurrence sets the appropriate flag in the corresponding IRQ register. You
can poll the IRQ flag if the Polling Mode is simulated. In the Interrupt Mode, the
simulator branches to an appropriate interrupt subroutine as long as the IRQ interrupt
vector is properly configured.

NOTE
For more information on IRQ configuration, refer to the
Freescale user manual for your microprocessor.

Following the IRQ event, you can observe the IRQ Flag being set in the IRQ Status and
Control register.

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

608 Freescale Semiconductor, Inc.



Figure 9-20. Memory Component Window

9.1.2.12.1 IRQ Commands

The following interrupt request command is available for the HC08/HCS08 processors.

9.1.2.12.2 INPUTS Command

In FCS and CPU-Only Simulation mode, the INPUTS command opens the Simulated Port
Inputs dialog box shown in the following figure. You may then use this box to specify the
input states of port pins and IRQ.

Figure 9-21. Simulated Port Inputs Dialog Box

When using In-Circuit Simulation mode, the INPUTS command shows the simulated input
values for any applicable port.

Syntax

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 609



  >gdi INPUTS

  

Example

  >gdi INPUTS

  

Show I/O port input values.

NOTE
The IRQ pin state can be directly manipulated with the IRQ
command. For example, IRQ 1 simulates a high state on the
IRQ pin; likewise, IRQ 0 simulates a logic-low state on the IRQ
pin.

9.1.2.13 Keyboard Interrupt Module

In Full Chip Simulation (FCS) mode, this module simulates all functionality of the
Keyboard Interrupt (KBI) module, including the edge-only, edge and level interrupt, and
flag polling modes of operation. FCS mode uses simulated port inputs to trigger the KBI
event from the proper I/O port pin.

To define an input state of the specific port, write the INPUT<x> <n> command in the
Command window. The <x> represents the corresponding I/O port, while <n> stands for
the input value to write to this port. At the same time, you can use the INPUTS command to
bring up the Simulated Port Inputs for all general I/O ports. It displays the current
simulated values to all applicable input ports. Refer the documentation for Timer Module
Commands for more information about the various forms of this command.

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

610 Freescale Semiconductor, Inc.



Figure 9-22. Simulated Port Inputs Dialog Box

Use the Simulated Port Inputs dialog box to reconfigure the input value to any I/O port.
To trigger the event, manipulate the inputs to the port in the appropriate manner,
depending on whether the KBI is configured for edge-only or edge and level. Once the
KBI event takes place, you can observe the KEYF Flag bit, which is a part of the
Keyboard Status and Control register, in the Memory window.

Figure 9-23. Memory Component Window

You can poll the KBI Interrupt Pending flag if the Polling Mode is simulated. In Interrupt
Mode, the simulator branches to an appropriate interrupt subroutine as long as the KBI
interrupt vector is properly configured.

NOTE
For more information on KBI configuration, refer to the
Freescale user manual for your microprocessor.

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 611



9.1.2.13.1 Keyboard Interrupt Commands

Use the following commands for Keyboard Interrupt manipulation.

9.1.2.13.2 INPUT<x> Command

The INPUT<x> command sets the simulated inputs to port <x>. The CPU reads this input
value when port <x> is set as an input port.

Syntax

  >gdi INPUT<x> <n>  

Where: <x> is the letter representing corresponding port

<n> is an eight-bit simulated value for port <x>

Example

  >gdi INPUTA AA 

Simulate the input AA on port A.

9.1.2.13.3 INPUTS Command

In FCS and CPU-Only Simulation mode, the INPUTS command opens the Simulated Port
Inputs dialog box shown in the following figure. You may then use this box to specify the
input states of port pins and IRQ.

Figure 9-24. Simulated Port Inputs Dialog Box

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

612 Freescale Semiconductor, Inc.



When using In-Circuit Simulation mode, the INPUTS command shows the simulated input
values to any applicable port.

Syntax

  >gdi INPUTS  

Example

  >gdi INPUTS  

Show I/O port input values.

9.1.2.14 Liquid Crystal Display Driver Module

In Full Chip Simulation (FCS) mode, this option lets you simulate all the functionality of
the Liquid Crystal Display (LCD) module, including programmable LCD frame
frequency, front plane pin configuration, back plane pin configuration, programmable
blink frequency, and LCD interrupt flag generation. By default, LCD front and back
plane pins are mapped to match device use on the corresponding Freescale
DEMO9S08xx device board.

9.1.2.15 Modulo Timer Interrupt Module

In Full Chip Simulation (FCS) mode, this module simulates all functionality of the
Modulo Timer Interrupt (MTIM) Module, including:

• Programmable MTIM clock input
• Free running or modulo up count operation
• Flag polling
• Interrupt enabled mode of operation

Once the MTIM Status and Control register properly configures the operation of the
module, the MTIM Counter starts incrementing. If modulo up count operation is enabled,
you can observe the MTIM overflow flag in the MTIM Status and Control register in the
Memory window.

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 613



Figure 9-25. Memory Component Window

If the MTIM interrupt is enabled, the FCS jumps to an appropriate subroutine as long as
the MTIM interrupt vector is properly defined.

9.1.2.15.1 Modulo Timer Interrupt Module User Commands

The following commands are available for the MTIM.

9.1.2.15.2 TclK Command

The TclK opens the TclK frequency dialog box shown in the following figure. You may
then use this box to specify the input frequency of the TclK.

Figure 9-26. TclK Frequency Dialog Box

Syntax

  >gdi TclK 

Example

  >gdi TclK 

Show TclK Frequency Dialog Box

9.1.2.15.3 TclK <n> Command

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

614 Freescale Semiconductor, Inc.



The TclK <n> command sets the TclK input frequency to <n>.

Syntax

  >gdi TclK <n>  

Where: <n> is the input frequency of TclK

Example

  >gdi TclK 200000t  

Simulate the TclK input frequency of 200000 Hz.

9.1.2.16 MSCAN Controller Module

The MSCAN Controller Module fully simulates the operation of the MSCAN08 Protocol
Version 2.0 based device, including:

• Flag polling
• Interrupt enabled mode
• 0-8 bytes data length
• Transmission and reception of external data

The MSCAN08 peripheral is a scalable Control Area Network (CAN) 2.0 compliant
device that allows microcontrollers to exchange data between themselves at high speeds.
This is done through a high-speed serial link that is deterministic and reliable. CAN
devices are often utilized in automobiles, where multiple microcontrollers need to be
connected into a network. The CAN specification indicates that any unit on the bus can
be a master at any time, which sends a message to another unit at any time, provided the
bus is free to do so. All of these messages can be set up through the CAN I/O commands
built into the simulator. This section goes through an example which shows how the
simulator can be used to test out code that drives the CAN peripheral

9.1.2.17 Programmable Delay Block Module

In Full Chip Simulation (FCS) Mode, this module lets you simulate all the functionality
of the Programmable Delay Block (PDB) module. This module's primary function is to
provide a controllable delay from FTM SYNC output to the sample trigger input of PGA
or ADC, or a controllable window synchronized with PWM pulses for ACMP to compare
the analog signals in a defined window. PDB can alternately generate PWM pulses that
are synchronized to FTM, CMPR output, and RTC.

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 615



9.1.2.18 Programmable Gain Amplifier Module

In Full Chip Simulation (FCS) Mode, this option lets you simulate all the functionality of
the Programmable Gain Amplifier (PGAV1) module, including data input on all PGA
channels, flag polling, and output connection to the ADC input channel. The user can
utilize either the PGA Inputs display form or command-line commands to provide inputs
to the PGA module. The PGAINPUTS command shows the simulated PGA input/output
values. There are also three specific commands in the simulation for providing PGA
inputs to simulation via a command line. They are: PGAINPLUS <x>, PGAINMINUS
<x>, PGAINVDDA <x>. These commands allow the user to automate the testing/
debugging procedure without relying on a modal form for entering the data.

9.1.2.18.1 Programmable Gain Amplifier User Commands

The following commands are available for the HCS08 PGAV1 Module.

9.1.2.18.2 PGAINPUTS Command

The PGAINPUTS command shows the simulated PGA input/output values. The user may
use this window to specify the input values of PGA+, PGA-, and PGAVDDA. The read-
only PGAOUT is the value of PGA output.

Figure 9-27. PGA Inputs Window

The PGAINPUTS command can be used at any point to bring up this PGA Inputs
window. The window displays the input values of PGA+, PGA-, PGAVDDA and the
output value of PGAOUT.

Syntax

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

616 Freescale Semiconductor, Inc.



  >gdi PGAINPUTS  

Examples

  >gdi PGAINPUTS  

Pull up the PGA Inputs window

9.1.2.18.3 PGAINPLUS <x> Command

The PGAINPLUS <x> command allows user to input a value for PGA+ channel.

Syntax

  >gdi PGAINPLUS <x>  

Where: <x> is the input value in volts

Examples

  >gdi PGAINPLUS 2.00  

Simulate the input 2.00 volts for the PGA+ channel

9.1.2.18.4 PGAINMINUS <x> Command

The PGAINMINUS <x> command allows the user to input a value for the PGA- channel.

Syntax

  >gdi PGAINMINUS <x>  

Where: <x> is the input value in volts

Examples

  >gdi PGAINMINUS 3.50  

Simulate the input 3.50 volts for PGA- channel

9.1.2.18.5 PGAINVDDA <x> Command

The PGAINVDDA <x> command allows the user to input a value for the VDDA signal
that the PGA module connects to.

Syntax

  >gdi PGAINVDDA <x>  

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 617



Where: <x> is the input value in volts

Examples

  >gdi PGAINVDDA 1.50  

Simulate the input 1.50 volts for VDDA signal

9.1.2.19 Programmable Reference Analog Comparator Module

In Full Chip Simulation (FCS) Mode, this option lets you simulate all the functionality of
the Programmable Reference Analog Comparator (PRACMP) module, including data
input on all PRACMP channels, flag polling, and interrupt operation. The user can use
either the PRACMP Inputs display form or command-line commands to provide inputs to
PRACMP module.

9.1.2.19.1 Programmable Reference Analog Comparator User Commands

The following commands are available for the HCS08 PRACMP Module.

9.1.2.19.2 PR<x>INPUT<y> Command

The PR<x>INPUT<y> command allows the user to input voltage value for the external
analog input CIN<y>. For HCS08 devices that have more than one PRACMP module,
<x> is the number representing the corresponding module. For HCS08 devices that only
have one PRACMP module, <x>=1.

Syntax

  >gdi PR<x>INPUT<y> <n>  

Where: <x> is the number representing the corresponding PRACMP module

<y> is the number representing the corresponding external analog input CIN

<n> is the voltage input value

Examples

  >gdi PR1INPUT1 5.00  

Simulate the input 5.00 volts on CIN1 of PRACMP1.

  >gdi PR4INPUT3 2.50  

Simulate the input 2.50 volts on CIN3 of PRACMP4.

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

618 Freescale Semiconductor, Inc.



9.1.2.19.3 PR<x>INPUTS Command

In FCS Mode, the PR<x>INPUTS command opens the PRACMP<x> Input Value dialog
box shown in the following figure. The user may then use this box to specify the external
analog input voltages. For HCS08 devices that have more than one PRACMP module,
<x> is the number representing the corresponding module. For HCS08 devices that only
have one PRACMP module, <x>=1.

Figure 9-28. PRACMPx Input Value dialog box

When using FCS, the PR<x>INPUTS command shows the simulated input analog
voltages to any applicable PRACMPx module.

Syntax

  >gdi PR<x>INPUTS  

Where: <x> is the number representing the corresponding PRACMP module

Example

  >gdi PR1INPUTS  

Show input analog voltages of PRACMP1.

9.1.2.20 Input/Output (I/O) Ports Module

In Full Chip Simulation (FCS) mode, this module simulates all input and output
functionality of the Input/Output (I/O) Ports module. FCS mode uses a set of designated
commands to simulate the input and output activity on corresponding I/O port pins. To

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 619



define an input state of a specific port, write the INPUT <x> <n> command in the
Command window. The <x> represents the corresponding I/O port, while the <n> stands
for the input value to write to this port. At the same time, you can use the INPUTS
command to bring up the Simulated Port Inputs for all general I/O ports. It displays the
current simulated values to all applicable input ports.

NOTE
Refer the Input/Output Ports User Commands and IRQ
Commands for more information about the various forms of
this command.

Figure 9-29. Simulated Port Inputs Dialog Box

Use the Simulated Port Inputs dialog box to reconfigure the input value to any I/O port.
Use the INPUTS command to reconfigure the output values on any relevant I/O port.
You can observe the manipulation of I/O port pins in the Memory window.

Figure 9-30. Memory Component Window

Note that if the regular I/O pins are multiplexed to be used by a different MCU Module,
they might not be available for general I/O functionality.

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

620 Freescale Semiconductor, Inc.



NOTE
For more information on how to properly configure I/O pins,
refer to the Freescale user manual for your microprocessor.

9.1.2.20.1 Input/Output Ports User Commands

Use the following commands for general I/O ports manipulation.

9.1.2.20.2 INPUT<x> Command

The INPUT<x> command sets the simulated inputs to port <x>. The CPU reads this
input value when port <x> is set as an input port.

Syntax

  >gdi INPUT<x> <n>  

Where: <x> is the letter representing corresponding port

<n> Eight-bit simulated value for port <x>

Example

  >gdi INPUTA AA  

Simulate the input AA on port A.

9.1.2.20.3 INPUTS Command

In FCS and CPU-Only Simulation mode, the INPUTS command opens the Simulated
Port Inputs dialog box shown in the following figure. You may then use this box to
specify the input states of port pins and IRQ.

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 621



Figure 9-31. Simulated Port Inputs Dialog Box

When using In-Circuit Simulation mode, the INPUTS command shows the simulated
input values to any applicable port.

Syntax

  >gdi INPUTS  

Example

  >gdi INPUTS  

Show I/O port input values.

9.1.2.20.4 DDR<x>OUT Command

For devices that have a dedicated enable register for input and output GPIO functionality,
the DDR<x>OUT command sets the simulated pins on port <x> as an output and clears
corresponding input enable bit (see DDR<x>IN). Use the INPUT <x> command to
change the values of the port pins.

Syntax

  >gdi DDR<x>OUT <n>  

Where: <x> is the letter representing corresponding port

<n> Eight-bit simulated value for port <x>

Example

  >gdi DDRBOUT F0  

Simulate port B with bits 4-7 as output.

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

622 Freescale Semiconductor, Inc.



9.1.2.20.5 DDR<x>IN Command

For devices that have a dedicated enable register for input and output GPIO functionality,
the DDR<x>IN command sets the simulated pins on port <x> as an input and clears
corresponding output enable bit (see DDR<x>OUT). Use the INPUT <x> command to
change the values of the port pins.

Syntax

  >gdi DDR<x>IN<n>  

Where: <x> is the letter representing corresponding port

<n> Eight-bit simulated value for port <x>

Example

  >gdi DDRCIN 0F  

Simulate port C with bits 0-3 as input.

9.1.2.21 Serial Communications Interface Module

In Full Chip Simulation (FCS) mode, this module simulates all functionality of the Serial
Peripheral Interface (SPI) module including:

• Flag polling
• Interrupt enabled mode
• 8- or 9-bit length data codes
• Odd and even parity modes
• Transmission and reception of external data

FCS mode uses the buffered input/output structure to simulate SCI inputs. You can queue
up to 256 data values into the input buffer. The output buffer of the SCI module can also
hold 256 output values. To queue the SCI Input Data, use the SCDI <n> command in the
command prompt. If <n> (the data parameter) is given, the value is placed into the next
slot in the input buffer.

Otherwise, if no parameter is provided, a window is displayed with the input buffer
values. You can enter input values while the window is open. An arrow points to the next
value to be used as input to the SCI. The data from the SCI input buffer is written to the

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 623



SCI data register once the SCI module has been turned on and is properly configured for
receiving data from an external serial device. Once the simulation of the data
transmission is over, the arrow moves to the next value in the SCI IN Buffer.

Figure 9-32. SCI IN Buffer Display

SCI Data Output Buffer simulation lets you gain access to the past 256 SCI data values
transmitted out of the module. To bring up the SCI OUT buffer dialog box, use the
SCDO command.

Figure 9-33. SCI OUT Buffer Display

The SCCLR command may be used at any point to flush the input and output SCI
buffers. After the SCI simulated input is received, the first queued value is passed from
the data buffer into the SCI data register. It can be observed in the memory window by
displaying the memory location corresponding to the SCI data register.

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

624 Freescale Semiconductor, Inc.



Figure 9-34. Memory Component Window

You can also observe different SCI flags in the Memory window. If the module is run in
Flag Polling mode, poll the flag corresponding to the expected SCI event. If the SCI
interrupts are enabled, the FCS jumps to an appropriate subroutine as long as the SCI
interrupt vectors are properly defined.

NOTE
For more information on how to configure the SCI module for
desired operation, refer to the Freescale user manual for your
microprocessor.

9.1.2.21.1 SCI Commands

The following serial communication interface commands are available for the HC08/
HCS08.

9.1.2.21.2 SCCLR Command

Use the SCCLR command to flush the input and output buffers for SCI simulation. This
resets the buffers and clears out all values. Note that if the SCI is in the process of
shifting a value, this command allows the SCI to finish the transfer. Refer the SCDI and
SCDO commands for accessing the input and output buffers of the SCI interface.

Syntax

  >gdi SCCLR
  

Example

  >gdi SCCLR  

Clear input and output buffer for SCI simulation

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 625



9.1.2.21.3 SCDI Command

The SCDI command lets you input data into the SCI. If a data parameter is given, the
value is placed into the next slot in the SCI input buffer. If no parameter is given, a
window displays the input buffer values. Input values can be entered while the window is
open. An arrow points to the next value to be used as input to the SCI. The maximum
number of input values is 256 bytes.

Syntax

  >gdi SCDI [<n>]  

Where: <n> The value to be entered into the next location in the input buffer

Example

  >gdi SCDI $55  

Set the next input value to the SCI to $55

  >gdi SCDI  

Pull up the data window with all the input values.

Figure 9-35. SCI IN Buffer Display

9.1.2.21.4 SCDO Command

The SCDO command displays the output buffer from the SCI. A window is opened that
shows all the data that the SCI has shifted out. An arrow points to the last output value
transmitted. The maximum number of output values that the buffer holds is 256 bytes.

Syntax

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

626 Freescale Semiconductor, Inc.



  >gdi SCDO  

Example

  >gdi SCDO  

View data from the output buffer for the SCI simulation.

Figure 9-36. SCI OUT Buffer Display

9.1.2.22 Slave LIN Interface Controller (SLIC) Module

In Full Chip Simulation (FCS) mode, this option will simulate all functionality of the
Slave LIN Interface Controller (SLIC) Module, including:

• Flag polling
• Interrupt enabled mode
• Transmission and reception of external data
• Check sum generation and verification
• Different message lengths data modes

Full Chip Simulation (FCS) mode uses a buffered structure to simulate SLIC inputs and
outputs. You can queue up to 256 data bytes into the input buffer. The output buffer of
the SLIC module can also hold 256 output bytes. To queue the SLIC Input bytes use the
SLCIN instruction in the command prompt. For a more detailed description of the
command, refer to the SLIC Commands section. The SLIC instruction brings up a
window, which displays a list of queued input data. Different SLIC packets can be
entered while the window is open. An arrow points to the byte that will be used next as
input to the SLIC. Once the SLIC module is turned on and properly configured for
receiving data from an external SLIC device, the data from the SLIC input buffer is
written to the SLIC module identifier or data registers. After the simulation of the data
transmission is complete, the arrow moves to the next value in the SLIC IN Buffer.

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 627



9.1.2.23 Serial Peripheral Interface Module

In Full Chip Simulation (FCS) mode, this module simulates all functionality of the Serial
Peripheral Interface (SPI) module including:

• Flag polling
• Interrupt enabled mode
• Master and slave modes
• Slave input clock
• Transmission and reception of external data

FCS mode uses the buffered input/output structure to simulate SPI inputs. You can queue
up to 256 data values into the input buffer. The output buffer of the SPI module can also
hold 256 output values. To queue the SPI Input Data, use the SPDI <n> command at the
command prompt. If <n> (the data parameter) is given, the value is placed into the next
slot in the input buffer.

Otherwise a window is displayed with the input buffer values. You can enter input values
while the window is open. An arrow points to the next input value to the SPI. The data
from the SPI input buffer is written to the SPI data register once the SPI module is turned
on and is properly configured for receiving data from an external serial device. Once the
simulation of the data transmission is over, the arrow moves to the next value in the SPI
IN Buffer.

Figure 9-37. SPI IN Buffer Display

SPI data output buffer simulation lets you gain access to the past 256 SPI data values
transmitted out of the module. To bring up the SPI OUT buffer dialog box, use the SPDO
command.

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

628 Freescale Semiconductor, Inc.



Figure 9-38. SPI OUT Buffer Display

The SPCLR command may be used at any point to flush the input and output SPI buffers.
After the SPI simulated input is received, the first queued value is passed from the data
buffer into the SPI data register. It can be observed in the Memory Window by displaying
the memory location corresponding to the SPI data register.

Figure 9-39. Memory Component Window

You can also observe different SPI flags in the Memory window. If the module is run in
Flag Polling mode, poll the flag corresponding to the expected SPI event. If the SPI
interrupts are enabled, the FCS jumps to an appropriate subroutine as long as the SPI
channel interrupt vectors are properly defined.

To simulate the frequency of the SPI slave input clock, use the SPFREQ <n> command.
If the SPI is configured for slave mode, this command let you enter the number of cycles
<n> in the period of the input clock. If the SPFREQ command is not used, then clocking
is set by the SPI control register.

NOTE
For more information on how to configure the SPI module for
desired operation, refer to the Freescale user manual for your
microprocessor.

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 629



9.1.2.23.1 SPI Commands

The following serial peripheral interface commands are available for the HCS08.

9.1.2.23.2 SPCLR Command

Use the SPCLR command to flush the input and output buffers for SPI simulation. This
resets the buffers and clears out all values. Notice that if the SPI is currently shifting a
value, this command allows the SPI to finish the transfer. Refer the SPDI and SPDO
commands for accessing the input and output buffers of the SPI interface.

Syntax

  >gdi SPCLR  

Example

  >gdi SPCLR  

Clear input and output buffer for SPI simulation

9.1.2.23.3 SPDI Command

The SPDI command lets you input data into the SPI. If a data parameter is given, the
value is placed into the next slot in the SPI input buffer. If no parameter is given, a
window displays the input buffer values. You can enter input values while the window is
open. An arrow points to the next input value to the SPI. The maximum number of input
values is 256 bytes.

Syntax

  >gdi SPDI [<n>]  

Where: <n> The value to be entered into the next location in the input buffer

Example

  >gdi SPDI $55
  

Set the next input value to the SPI to $55

  >gdi SPDI  

Pull up the data window with all the input values.

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

630 Freescale Semiconductor, Inc.



Figure 9-40. SPI IN Buffer Display

9.1.2.23.4 SPDO Command

The SPDO command displays the output buffer from the SPI. A window opens that
shows all the data that the SPI has shifted out. An arrow points to the last output value
transmitted. The maximum number of output values that the buffer holds is 256 bytes.

Syntax

  >gdi SPDO  

Example

  >gdi SPDO  

View data from the output buffer for the SPI simulation.

Figure 9-41. SPI OUT Buffer Display

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 631



9.1.2.23.5 SPFREQ Command

The SPFREQ command lets you set the frequency of the SPI slave input clock. If the SPI
is configured for the slave mode, this command lets you enter the number of cycles <n>
per one input clock period. If no value is given, a window appears and you are prompted
for a value. If this command is not used, then the clocking is assumed to be set by the SPI
control register.

Syntax

  >gdi SPFREQ [<n>]  

Where: <n> The number of cycles for the period of the input clock.

Example

  >gdi SPFREQ 8  

Set the period of the input slave clock to 8 cycles (total shift = 8*8 cycles per bit =64
cycles)

9.1.2.24 Timer Interface Module

In Full Chip Simulation (FCS) mode, this module simulates all functionality of the Timer
Interface module, including:

• Input capture/output compare
• Pulse width modulation
• Internal or external clock input
• Free running or modulo up count operation
• Flag polling
• Interrupt enabled mode of operation.

FCS mode uses the simulated port inputs to trigger the input capture on a given timer
channel. To define an input state of the specific port, use the INPUT<x> <n> command
in the Command window. The <x> represents the corresponding I/O port, while <n>
stands for the input value to write to this port. At the same time, the INPUTS command
can be used to display the Simulated Port Inputs for all general I/O ports. It displays the
current simulated values to all applicable input ports. Refer the documentation for Timer
Module Commands for more information about the various forms of this command.

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

632 Freescale Semiconductor, Inc.



Figure 9-42. Simulated Port Inputs Dialog Box

Use the Simulated Port Inputs dialog box to reconfigure the input value to any I/O port.
To trigger the event, first set the port inputs high or low and then invert them to an
opposite value, depending on whether the input capture is set for rising/falling edge.
Once the Input Capture event takes place you can observe the CHxF in the Channel
Status and Control register in the Memory window.

Figure 9-43. Memory Component Window

If the Timer module is configured for an Output Compare event, then once the event
takes place you can observe the same CHxF Flag via the Memory window. If the timer
channel interrupt is enabled, the FCS jumps to an appropriate subroutine as long as the
Timer channel interrupt vector is properly defined. To observe the Timer Overflow Flag
(TOF) flag being set as a result of the corresponding CPU event, situate your Memory
window on the memory location of the Timer Status and Control register.

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 633



To observe the Pulse Width Modulation (PWM) operation, properly configure the Timer
to operate in the Modulo up count mode, select the toggle-on-overflow or clear/set output
on compare events to create the desired duty cycle wave. Once a PWM event takes place,
you can observe pin toggle/clear/set behavior corresponding to the Timer configuration in
the Memory window displaying the I/O port associated with a given timer channel.

To observe the accuracy of the Timer module operation, you can observe the number of
CPU cycles that it takes for the event to occur. The cycle counter is only incremented as
the you step through the code. To determine the exact amount of cycles over which the
event occurs, one can either observe the cycle display in the Register window or use the
built in simulation commands. To display the current number of cycles in the Command
window, use the CYCLES command. To change the number of cycles in the cycle
counter, use CYCLES <n>, where <n> is the new cycle value. If the event has a pre-
calculated number of cycles, use CYCLE 00 to reset the number of cycles and
GOTOCYCLE <n> to run through the code until you reach the expected event.

Figure 9-44. Register Window With Cycles Display

9.1.2.24.1 Timer Module Commands

The following timer module commands are available for use with the HC08/HCS08
processors.

9.1.2.24.2 CYCLES Command

The CYCLES command changes the value of the cycles counter. The cycles counter
counts the number of the processor cycles that have passed during execution. The Cycles
window shows the cycle counter. The cycle count can be useful for timing procedures.

Syntax

  >gdi CYCLES <n>  

Where: <n> Integer value for the cycles counter

Examples

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

634 Freescale Semiconductor, Inc.



  >gdi CYCLES 0  

Reset cycles counter

  >gdi CYCLES 1000
  

Set cycle counter to 1000.

9.1.2.24.3 GOTOCYCLE Command

The GOTOCYCLE command executes the program in the simulator beginning at the
address in the program counter (PC). Execution continues until the cycle counter is equal
to or greater than the specified value, until a key or the Stop button on the toolbar is
pressed, until it reaches a break point, or until an error occurs.

Syntax

  >gdi GOTOCYCLE <n>  

Where: <n> Cycle-counter value at which the execution stops

Example

  >gdi GOTOCYCLE 100  

Execute the program until the cycle counter equals 100.

9.1.2.24.4 INPUT<x> Command

The INPUT<x> command sets the simulated inputs to port <x>. The CPU reads this
input value when port <x> is set as an input port.

Syntax

  >gdi INPUT<x> <n>  

Where: <x> is the letter representing corresponding port

<n> Eight-bit simulated value for port <x>

Example

  >gdi INPUTA AA  

Simulate the input AA on port A.

9.1.2.24.5 INPUTS Command

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 635



In FCS and CPU-Only Simulation mode, the INPUTS command opens the Simulated
Port Inputs dialog box shown in the following figure. You may then use this box to
specify the input states of port pins and IRQ.

Figure 9-45. Simulated Port Inputs Dialog Box

When using In-Circuit Simulation mode, the INPUTS command shows the simulated
input values to any applicable port.

Syntax

  >gdi INPUTS  

Example

  >gdi INPUTS  

Show I/O port input values.

9.1.2.25 Time Of Day Module Option

In Full Chip Simulation (FCS) mode, this module lets you simulate all the functionality
of the Time Of Day (TOD) module. The module includes an 8-bit counter, a 6-bit match
register, several binary-based and decimal-based prescaler dividers, three clock source
options, and one interrupt that can be used for quarter second, one second and match
conditions. A 4 Hz signal is used as the reference clock for the TOD counter, where each
tick of the TOD counter is 0.25 seconds. This module can be used for time-of-day,
calendar, or any task scheduling functions. It can also serve as a cyclic wake up from
low-power modes without the need for external components.

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

636 Freescale Semiconductor, Inc.



9.1.2.26 Universal Serial Bus (USB) Module

In Full Chip Simulation (FCS) mode, this module simulates all functionality of the
Universal Serial Bus (USB) module including USB flags and interrupts, seven USB
endpoints, USB RAM and USB reset options. While all control transactions occur
through bi-directional endpoint 0, the other endpoints can be set up for data transfer in the
input or output direction.

Some of the microcontrollers in the HCS08 family contain USB compliant peripheral
devices. These can be low-speed or high-speed USB slave devices. This means that all
USB transfers are initiated by a host (i.e. a personal computer) and that the
microcontroller needs to be set up to respond with the appropriate acknowledgement
messages. According to the USB specification, there are a series of messages that go back
and forth between the host and the device in order to set up and describe the channel for
data transfer. All of these messages can be set up through the USB I/O commands built
into the simulator. This section goes through an example of this, showing how the
simulator can be used to test out code for driving the USB peripheral.

9.1.2.27 Voltage Reference Module

In Full Chip Simulation (FCS) mode, this module lets you simulate all the functionality
of the Voltage Reference (VREF) module. The module is a bandgap buffer system
intended to supply an accurate voltage output that is trimmable by an 8-bit register in 0.5
mV steps. It can be used internally for the analog peripherals of an ADC channel or for
an ACMP input. VREF has three operating modes that provide different levels of load
regulation and power consumption.

9.2 P&E Hardware Interface Connection for HCS08

This section describes the HCS08 P&E Connection options. The Connection setting
permits a connection to HCS08 Freescale devices via P&E Multilink, Cyclone (including
the Cyclone PRO, Cyclone Universal [FX]), and OSBDM hardware interfaces. This
connection mode lets you debug code, as the firmware is fully resident in the Flash or
RAM of the microprocessor.

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 637



9.2.1 New Project Wizard

When creating a new project using the New Project Wizard,, you will be given the option
to select which hardware you will be using to debug your chip. Select the P&E hardware
interfaces you want to use by checking the checkboxes.

9.2.2 Launch Configuration Settings

To set the launch configurations for the debugger:

1. Right-click on your project and navigate to -> Debug As -> Debug Configurations.
The Debug Configuration Window will appear.

2. In the left column, select the project for which you would like to set the launch
configurations.

Figure 9-46. Debug Configuration Dialog Box
3. In the right column, click the Main tab and use the Connection Selection drop-down

box to select a connection.
4. Click the Edit button beside the selected connection and the Launch Configuration

Window will appear.

P&E Hardware Interface Connection for HCS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

638 Freescale Semiconductor, Inc.



5. Set your configurations, click the OK button, and click the Debug button to start the
debugger.

Figure 9-47. Launch Configuration Dialog Box

9.2.3 Connection Options

This topic describes all P&E HCS08 connection options, which are common to all P&E
USB Multilink Universal [FX]/ USB Multilink, P&E Cyclone Serial, P&E Cyclone USB,
P&E Cyclone Ethernet, and Open Source BDM connections.

The connection options include:

• Changing P&E Connections Settings
• Connection Assistant

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 639



9.2.3.1 Changing P&E Connections Settings

All connection settings for P&E hardware interfaces are configured using the
Connection group in the Main tab of the Debugger Configuration dialog box.

Figure 9-48. P&E HCS08 Launch Configuration Dialog Box

The following table describes the options for the P&E Multilink/Cyclone /OSBDM
connection.

Table 9-1. Connection Parameter Options for P&E Multilink/Cyclone/OSBDM

Option Description

Interface Use this option to select the interface type. Select a supported
interface from the list box. The options are:

• USB BDM Multilink (HCS08/HCS12/CFV1) - USB Port
• USB Multilink Universal [FX] - USB Port

NOTE: The USB Multilink Universal and the USB Multilink
Universal [FX] can conveniently support all Freescale
architectures found in the current CodeWarrior 10 version

• Cyclone- Serial Port

Table continues on the next page...

P&E Hardware Interface Connection for HCS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

640 Freescale Semiconductor, Inc.



Table 9-1. Connection Parameter Options for P&E Multilink/Cyclone/OSBDM (continued)

Option Description

• Cyclone- USB Port
• Cyclone- Ethernet Port
• OSBDM

NOTE: Click on the "Compatible Hardware" link to help you
determine which P&E hardware is most suitable for your
project.

Refresh Click this button to have the workstation scan for a valid
interface and port. Valid interfaces and ports appear in the
Interface and Port list boxes.

Port This option selects the port over which debug
communications is conducted. Select an available port from
the list box. NOTE: If you are having issues trying to get a
port to display, click on the [FAQ #29] link for help.

Socket Programming Options The Socket Programming Options button brings up a dialog
that provides you with a graphical representation of the
signals that must be connected from the BDM header to the
pins of the microprocessor, in order to use Freescale socket
adapters.

Advanced Programming Options The Advanced Programming Options button brings up a
dialog that provides you with options to configure the flash
programming procedure.

Specify IP (Cyclone Ethernet only) Use this option to specify the IP address of a Cyclone outside
of the local network. Click on the checkbox to enable the
textbox. This will also disable the port dropdown box.
Currently supports IPv4 only.

Specify Network Card IP (Cyclone Ethernet only) Use this option to specify the local network card IP address if
there are multiple cards on your computer. Click on the
checkbox to enable the textbox. Currently supports IPv4 only.

Provide power to target (Cyclone and USB Multilink Universal
FX only)

Check this option to have the Cyclone or USB Multilink
Universal FX (circuitry) supply power to the hardware target.
Uncheck this option to not provide power.

NOTE: For USB Multilink Universal FX, use the jumper
settings located at JP10 to provide either 3.3V or 5V.

Power off target upon software exit (Cyclone and USB
Multilink Universal FX only)

Check this option to turn off the power when the program
terminates. Uncheck this option to leave the hardware target
powered continuously.

Regulator Output Voltage (Cyclone and USB Multilink
Universal FX only)

This option adjusts the output voltage that powers the
hardware target. Select a voltage value from this option's list
box.

Power down delay (Cyclone and USB Multilink Universal FX
only)

This option specifies amount of time for which the target will
be turned off during a RESET power cycling sequence. Enter
the delay interval (in milliseconds) in this option's text box.

Power up delay (Cyclone and USB Multilink Universal FX
only)

This option specifies amount of time for which the target will
remain powered prior to a RESET power cycling sequence.
Enter the delay interval (in milliseconds) in this option's text
box.

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 641



WARNING
An improper voltage setting can damage the board.

To change P&E Connections settings, perform these steps.

1. In the CodeWarrior Projects view, select the project for which you want to change
the P&E Connections settings.

NOTE
It is assumed that you have created a project and built it.

2. Select Run > Debug Configurations from the main menu bar of the IDE.

The Debug Configurations dialog box appears.

3. Expand the CodeWarrior tree control in the left pane and select the launch
configuration you want to debug

4. Click the Main tab.

The Main page appears in the area beneath the tabs.

5. Select a system within Connection which you would like to use to debug. You could
create a new system by clicking the New button. For more details about creating a
new remote system, refer to the topic Target Management via Remote System
Explorer in the CodeWarrior Common Features Guide. Once a remote system is
selected, click the Edit button. The Launch Configuration Panel will appear.

6. Ensure that the Target is the correct microcontrollers you want to debug. Use the
drop-down box or the Edit button to change this option.

7. In the Connection Type drop-down box, select P&E HCS08 Multilink/Cyclone/
OSBDM. The P&E connections settings will appear below.

8. Click Refresh to scan valid interface and port.

Valid interfaces and ports appear in the Interface and Port drop-down lists in the
Connection Port and Interface Type group.

9. Select a supported interface from the Interface drop-down list.
10. Select a supported port from the Port drop-down list.

NOTE
The port displayed may vary depending on the interface.
For example, if you select interface as Cyclone- Serial Port,
the available port option is COM1 : Serial Port 1.

11. Specify settings in the Hardware Interface Power Control (Voltage --> Power -Out
Jack) group.

P&E Hardware Interface Connection for HCS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

642 Freescale Semiconductor, Inc.



NOTE
This group will be enabled for the Tracelink and USB
Multilink Universal FX interfaces only. For USB Multilink
Universal FX interface, use the jumper settings located at
JP10 to provide either 3.3V or 5V.

• Check the Provide power to target checkbox to have the hardware interface
(circuitry) provide power to the target else clear the checkbox if you do not want
to provide power to the target.

• Check the Power off target upon software exit checkbox to turn off the power
when the program terminate else clear the checkbox to leave the hardware target
powered continuously.

• Select a voltage value from the Regulator Output Voltage drop-down list. This
adjusts the output voltage that powers the hardware target.

WARNING
An improper voltage setting can damage the board.

• Enter the delay interval (in milliseconds) in the Power Down Delay text box.
This option specifies the time interval to wait before shutting off the power to the
hardware target. The hardware interface powers down the device once the debug
session is over, or while executing a power cycling sequence after beginning a
new debug session.

• Enter the delay interval (in milliseconds) in the Power Up Delay text box. This
option specifies the time interval to wait before turning on the power to the
hardware target. If the power to target feature is enabled, the hardware interface
will power up the device while executing a power cycling sequence at the
beginning of every debug session.

• Click OK to save changes to the P&E Connections settings. The Connection
Assistant dialog box will close.

• Click Close button to close the Debug Configuration dialog box.

9.2.3.1.1 P&E Hardware Interface Connection-Specific Options

This topic describes the connection-specific options. The connections include:

• P&E USB Multilink Universal [FX]/ USB Multilink
• P&E Cyclone Serial
• P&E Cyclone USB
• P&E Cyclone Ethernet
• Open Source BDM

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 643



9.2.3.1.1.1 P&E USB Multilink Universal [FX]/ USB Multilink

The P&E USB Multilink Universal [FX]/ USB Multilink Connection setting permits a
connection to USB Multilink devices, which include the P&E BDM Multilink, USB
Multilink Universal, and the USB Multilink Universal FX. P&E USB Multilink
Universal [FX]/USB Multilink mode lets you debug code, as the firmware is fully
resident in the Flash of the microprocessor. The operation of all modules fully reflects the
actual operation of the onboard resources. Like the USB Multilink Universal, the USB
Multilink Universal FX can conveniently debug all Freescale architectures found in the
current CodeWarrior 10 version, however, the FX version is up to 8 times faster than the
USB Multilink Universal and it can also provide power to the target.

9.2.3.1.1.1.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection Selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E HCS08 Multilink/Multilink Universal/Cyclone/
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings..

To use P&E’s USB Multilink Universal [FX]/USB Multilink, first connect your hardware
interface to your computer, and then set the interface to USB Multilink, USB Multilink
FX, Embedded OSBDM/OSJTAG – USB Port. The Port selection should automatically
populate your hardware interface. If not, use the Refresh button and the Port selection
drop-down box. If you are having issues getting your device to populate, use the link to
FAQ #29 to find popular solutions.

9.2.3.1.1.2 P&E Cyclone Serial

The P&E Cyclone Serial Connection setting permits a connection to Cyclone Serial
devices. P&E Cyclone Serial mode lets you debug code, as the firmware is fully resident
in the Flash of the microprocessor. The operation of all modules fully reflects the actual
operation of the onboard resources.

P&E Hardware Interface Connection for HCS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

644 Freescale Semiconductor, Inc.



9.2.3.1.1.2.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection Selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E HCS08 Multilink/Multilink Universal/Cyclone Pro/
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings.

Figure 9-49. P&E's Launch Configuration Dialog Box

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 645



To use P&E’s Cyclone Serial, first connect your hardware interface to your computer,
and then set the interface to Cyclone – Serial Port. The Port selection should
automatically populate your hardware interface. If not, use the Refresh button and the
Port selection drop-down box. If you are having issues getting your device to populate,
use the link for FAQ #29 to find popular solutions.

9.2.3.1.1.3 P&E Cyclone USB

The P&E Cyclone USB Connection setting permits a connection to Cyclone USB
devices. P&E Cyclone USB mode lets you debug code, as the firmware is fully resident
in the Flash of the microprocessor. The operation of all modules fully reflects the actual
operation of the onboard resources..

9.2.3.1.1.3.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection Selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E HCS08 Multilink/Multilink Universal/Cyclone Pro/
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings.

P&E Hardware Interface Connection for HCS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

646 Freescale Semiconductor, Inc.



Figure 9-50. P&E's Launch Configuration Dialog Box

To use P&E’s Cyclone USB, first connect your hardware interface to your computer, and
then set the interface to Cyclone – USB Port. The Port selection should automatically
populate your hardware interface. If not, use the Refresh button and the Port selection
drop-down box. If you are having issues getting your device to populate, use the link for
FAQ #29 to find popular solutions.

9.2.3.1.1.4 P&E Cyclone Ethernet

The P&E Cyclone Ethernet Connection setting permits a connection to Cyclone Ethernet
devices. P&E Cyclone Ethernet mode lets you debug code, as the firmware is fully
resident in the Flash of the microprocessor. The operation of all modules fully reflects the
actual operation of the onboard resources.

9.2.3.1.1.4.1 Debug configurations

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 647



To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection Selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E HCS08 Multilink/Multilink Universal/Cyclone Pro/
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings.

Figure 9-51. P&E's Launch Configuration Dialog Box

To use P&E’s Cyclone Ethernet, first connect your hardware interface to your computer,
and then set the interface to Cyclone – Ethernet Port. The Port selection should
automatically populate your hardware interface. If not, use the Refresh button and the
Port selection drop-down box. You can also specify IP and Network Card IP by clicking
on the checkboxes. If you are having issues getting your device to populate, use the link
for FAQ #29 to find popular solutions.

P&E Hardware Interface Connection for HCS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

648 Freescale Semiconductor, Inc.



9.2.3.1.1.5 Open Source BDM

Freescale supplies certain development boards with an integrated debug circuit based on
Open Source BDM. This allows the development board to be debugged from the PC via
the USB bus without requiring external debug hardware, such as the Cyclone or USB
Multilink. The development board also derives its power from the USB Bus.

The Open Source BDM circuit design (OSBDM-JM60) is an open source, community
driven design. It has been published on Freescale's website, and full documentation can
be found in the Community Forums. The latest documentation and firmware can be
downloaded from www.pemicro.com/osbdm.

Integration with CodeWarrior is handled via the "Open Source BDM" connection. P&E
has integrated the Open Source BDM support into the same connection that supports both
the USB Multilink and the Cyclone. All of the dialogs that affect operation of these
hardware interfaces function in the same manner when using OSBDM (albeit at a lower
data rate).

The Open Source BDM Connection setting permits a connection to Open Source BDM
devices. Open Source BDM mode lets you debug code, as the firmware is fully resident
in the Flash of the microprocessor. The operation of all modules fully reflects the actual
operation of the onboard resources.

9.2.3.1.1.5.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection Selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E HCS08 Multilink/Multilink Universal/Cyclone/
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings.

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 649



Figure 9-52. P&E's Launch Configuration Dialog Box

To use Open Source BDM, first connect your hardware interface to your computer, and
then set the interface to USB Multilink, USB Multilink FX, Embedded OSBDM/
OSJTAG - USB Port. The Port selection should automatically populate your hardware
interface. If not, use the Refresh button and the Port selection drop-down box. If you are
having issues getting your device to populate, use the link for FAQ #29 to find popular
solutions.

9.2.3.1.1.5.2 OSBDM Firmware Update

All CodeWarrior IDE's version 10.x and higher have an automatic firmware update
mechanism for built-in OSBDM hardware interfaces. Whenever an OSBDM-integrated
hardware interface is plugged into a USB port and CodeWarrior attempts to contact the
device, it will automatically check to see if the device has the latest OSBDM firmware
version. If the firmware on the device is older than the one found within the CodeWarrior
package, then a dialog box will indicate that a firmware update is necessary.

P&E Hardware Interface Connection for HCS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

650 Freescale Semiconductor, Inc.



Figure 9-53. Old OSBDM Firmware Detected

To update the firmware, the OSBDM device must enter Bootloader mode. To do so the
USB cable must be disconnected from the device and the OSBDM-JM60 IRQ pin must
be connected to ground usually done by using a 2-pin female jumper. Use the OSBDM
device schematics to find the IRQ pin. Once the IRQ pin is grounded, connect the USB
cable to the OSBDM device and click on the OK button. If done correctly, the automatic
firmware update will occur.

Figure 9-54. OSBDM Firmware Updating

When the firmware is done updating, a dialog box will indicate that the OSBDM device
must exit Bootloader mode and enter into Run mode.

Figure 9-55. Start OSBDM Run Mode

To enter Run Mode, the user must disconnect the USB cable from the OSBDM device
and the 2-pin female jumper on the IRQ pin must be removed. Next, reconnect the USB
cable and the device will be in Run Mode. Click on OK and CodeWarrior will move onto
programming or running the code.

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 651



The CodeWarrior IDE layout will have the latest OSBDM firmware. If for any reason
you experience difficulty performing OSBDM firmware update, visit www.pemicro.com/
osbdm and use the Multilink/OSBDM Firmware Update Utility to force an update, or use
the OSBDM Firmware Recovery Utility for a fail-safe way to reprogram a working,
corrupted, or blank OSBDM firmware via an external USB-ML-12 hardware interface.

9.2.3.1.2 Advanced Programming/Debug Options

The Advanced Programming/Debug Options menu option takes you to the Advanced
Options dialog box, where you can configure the software settings for the flash
programming procedure.

Figure 9-56. Advanced Options Dialog Box

9.2.3.1.2.1 Enable Flash Programming Dialog

Setting the Enable Flash Programming dialog box lets you view the steps taken by the
Flash Programmer.

9.2.3.1.2.1.1 Trim Options

P&E Hardware Interface Connection for HCS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

652 Freescale Semiconductor, Inc.



The Calculate Trim and Program the Non-Volatile Trim Register checkbox enables
automatic calculation and programming of the trim value to a designated Non-Volatile
memory location.

9.2.3.1.2.1.2 Non-Volatile Memory Preservation

You have the option of preserving up to three independent ranges of non-volatile memory
(on devices with EEPROM, the entire EEPROM array may optionally be preserved as
well). Ranges that are designated as "preserved" are read before an erase, and re-
programmed immediately afterwards, thereby preserving the data in these ranges. Any
attempt to program data into a preserved range is ignored. When entering an address into
the preserved range field (hexadecimal input is expected), the values are masked
according to the row size of the device. This ensures that the reprogramming of preserved
data does not cause any conditions that disturb programming.

9.2.3.1.2.1.3 Sync to PLL Change Checkbox

The debugger requires that Sync to PLL Change be selected to synchronize the software/
hardware connection with the microprocessor during the Flash erasing/programming
procedure. This option is always enabled for M68HCS08 devices.

9.2.3.1.2.1.4 Calculate and Program Non-Volatile Trim

The checkbox gives you the option of trimming device to default center frequency. If this
checkbox is selected, a calculated trim frequency will be programmed to a dedicated non-
volatile memory location during the next debugging session.

9.2.3.1.2.1.5 Custom Trim

When the checkbox is checked, you have the ability to input a custom center frequency
within an allowed range for a given device. A trim value based on this frequency will be
calculated and programming into dedicated non-volatile memory location during the next
debug session.

9.2.3.1.2.1.6 Alternative Algorithm Functionality

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 653



Once you create a project for a specific HCS08/RS08/CFV1 microprocessor, the
debugger specifies a default algorithm to use during all Flash programming operations.
The debugger uses this algorithm for nearly all programming requirements. The default
algorithm can be found in the <CW_Install>/MCU/bin/plugins/support/HC08/gdi/P&E directory

However, you can override the default algorithm via the Alternative Algorithm function,
located in the Advanced Programming/Debug Options menu. This feature can be used to
select a custom programming algorithm, or select another one of P&E's many
programming algorithms for use with a specific project.

Tip
Selecting a wrong programming algorithm may damage your
device, lead to under/over programming situations, or simply
not program portions of the project file. Therefore it is
recommended to use the default algorithm unless there is a
compelling reason to do otherwise.

Use these steps to override the default algorithm:

1. Check the Use Alternative Algorithm checkbox.

Figure 9-57. Advanced Options - Alternative Algorithm Checkbox
2. Click the Choose Alternative Algorithm button, which lets you browse for an

alternative algorithm.

P&E Hardware Interface Connection for HCS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

654 Freescale Semiconductor, Inc.



3. Once you select the alternative algorithm, the name of the algorithm along with its
full path appears in the text field below the Choose Alternative Algorithm button.

At this point, the current project performs all future Flash programming operations using
the alternative algorithm. You may revert to the default algorithm at any time by clearing
the Use Alternative Algorithm checkbox.

9.2.3.1.3 Socket Programming Options Button

The Programming Adapter Connections dialog assistant is designed to facilitate the use
of an extensive set of Freescale programming socket adapters. This dialog can be used to
get a graphical representation of the signals that must be connected from the BDM header
to the pins of the microprocessor. Making these connections lets you establish
communication with a given device via a hardware debug interface.

The Socket Programming Options button in the BDM Launch Configuration dialog box
takes you to the Programming Adapter Connections dialog box, where you can look up
pin connection settings for the selected package type of the target processor. Only
available package types for each target processor are listed in the Package drop-down list.
Once you have selected a package type, the Adapter Information section provides the part
number of the adapter board, the socket number where the processor should be placed,
and a pair of header numbers that indicate which connections should be made between
them. Immediately below the Adapter Information section you will find a pin layout that
displays the required connections between the aforementioned pair of headers.

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 655



Figure 9-58. HCS08 BDM Launch Configuration Dialog Box

P&E Hardware Interface Connection for HCS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

656 Freescale Semiconductor, Inc.



Figure 9-59. Programming Adapter Connections Dialog Box

9.2.3.2 Connection Assistant

The P&E Connection Assistant is displayed when you attempt to debug and the program
cannot connect to the interface hardware specified in the Launch Configuration dialog
box. To edit or change your debugger connection:

1. Select the P&E device that you are using from the first drop-down list and click
Refresh..

2. Using the second drop-down list, select the port on which the interface is connected.
3. Use the Cyclone Power Control panel to configure the power and delay settings

(Cyclone only).
4. Click the Retry button.

9.2.4 Active Mode Menu Options

Chapter 9 Connections - HCS08 Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 657



When the microprocessor is connected, the active mode menu shows the name of the
microprocessor and gives you the access to P&E Microcomputer Systems' Compatible
Hardware Interfaces web page and home page. If the OSBDM interface is being used for
the debugging session, then the OSBDM Documentation option appears within the active
mode menu, which takes you to P&E Microcomputer Systems' OSBDM website. When
the microprocessor is not connected, the menu is not available.

Figure 9-60. Additional Connection Menu Options

P&E Hardware Interface Connection for HCS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

658 Freescale Semiconductor, Inc.



Chapter 10
Connections - RS08

This chapter describes the features and settings of the connections that interface the
CodeWarrior debugger with the RS08 full chip simulator or the target board.

For the IDE to communicate with the target hardware, you must specify several key
items: the debugger protocol, a connection type, and any connection parameters. You can
enter these items using options in the Launch Configuration panel. Launch Configuration
panel can be accessed by clicking on the Edit button located within the Main tab of the
Debug Configurations dialog box. These options are:

• The Connection Type option determines what debugger protocol the debugger uses
to communicate with the target.

• After you make the option for the connection type, the Connection Settings changes
to display configuration options specific for the hardware probe.

The topics in this chapter discuss the features and settings of the connections that
interface the CodeWarrior debugger with simulation platforms and hardware devices that
are part of the RS08 device family.

The topics in this chapter are:

• P&E Full Chip Simulation
• P&E Hardware Interface Connection for RS08

10.1 P&E Full Chip Simulation

This topic describes the settings of the connections that interface the CodeWarrior
debugger with the RS08 simulator.

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 659



10.1.1 Create New Connection for Full Chip Simulation

Full Chip Simulation (FCS) connection runs a complete simulation of all processor
peripherals and I/O on your personal computer. Thus, when debugging an FCS project
for a selected derivative, it is not necessary to connect your PC with a Microcontrollers
development or target board.

To change connection in the IDE, perform these steps.

1. Right-click on your Project > Properties.

The Properties windows appears.

2. Select Run/Debug Settings and click on the New... button.
3. Select CodeWarrior Download and click OK.

The Edit Configuration window appears.

4. By default the project and application is already set. Change the name of your
connection if you wish. You will need to create a new Connection. Within the
Connection section, click on the New... button.

The New Connection Wizard will appear.

5. Open the CodeWarrior Bareboard Debugging and select Hardware or Simulator
Connection. Click Next.

6. Give your new connection a name. For connection type, change the setting to P&E
RS08 FCS for Full Chip Simulation.

7. You will need to select the Target device. You can either select a pre-existing target
or create a New target. When complete, click on the Finish button.

8. The wizard creates a simulator project for the HCS08 architecture according to your
specifications. You can access and edit the project connections by right-click on your
project > Debug As > Debug Configurations.

10.1.2 Module Options

The PEMicro menu includes the Full Chip Simulation options for the modules that have
specialty commands associated with them for a chosen device.

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

660 Freescale Semiconductor, Inc.



Figure 10-1. PEMicro Menu

The options available are:

• ADC Module
• Internal Clock Source Module
• Inter-Integrated Circuit Module Option
• Keyboard Interrupt Module
• Liquid Crystal Display Driver Module Option
• Modulo Timer Interrupt Module
• Input/Output (I/O) Ports Module
• Serial Communications Interface Module
• Serial Peripheral Interface Module
• Timer Interface Module

10.1.2.1 ADC Module

In Full Chip Simulation (FCS) mode, this module simulates all functionality of the
Analog to Digital Conversion (ADC) module including data input on all ADC channels,
flag polling, interrupt operation, and the bus and CGMXCLK reference clock sources.
FCS mode uses the buffered input structure to simulate the ADC inputs. You can queue
up to 256 data values. To queue the ADC Input Data, use the ADDI command in the
command prompt. If the data parameter is given, the value is placed into the next slot in
the input buffer. Otherwise, if no parameter is provided, a window is displayed with the
input buffer values. Input values can be entered while the window is open. An arrow
points to the next value to be used as input to the ADC. The conversion takes place after
a proper value is written to the ADC Status and Control register. Once the conversion
occurs, the arrow moves to the next value in the ADC Buffer.

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 661



Figure 10-2. ADC IN Buffer Display

The ADCLR command can be used at any point to flush the input buffer for the ADC
simulation.

After the conversion is complete, the first queued value is passed from the data buffer
into the ADC data register. It can be observed in the Memory window by displaying the
memory location corresponding to the ADC data register.

Figure 10-3. Memory Component Window

When the conversion is complete, FCS sets the appropriate flag. If interrupts are enabled,
the Program Counter changes flow to the interrupt routine (as defined in the vector space
of the MCU).

NOTE
For more information on ADC configuration, refer to the
Freescale user manual for your microprocessor.

10.1.2.1.1 ADC Module Commands

The following commands are available for the RS08/HCS08 ADC Module.

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

662 Freescale Semiconductor, Inc.



10.1.2.1.1.1 ADDI Command

The ADDI command lets you input the data into the ADC converter. If a data parameter
is given, the value is placed into the next slot in the input buffer. Otherwise, if no
parameter is given, a window is displayed with the input buffer values. Input values can
be entered while the window is open. An arrow points to the next value to be used by the
ADC. The maximum number of input values is 256 bytes.

Syntax

 >gdi ADDI [<n>]  

Where: <n> The value to be entered into the next location in the input buffer.

Example

 >gdi ADDI $55  

Set the next input value to the ADDI to $55

 >gdi ADDI  

Pull up the data window with all the input values.

10.1.2.1.1.2 ADCLR Command

Use the ADCLR command to flush the input buffer for ADC simulation. This resets the
input data buffer and clears out all values. Notice that if the ADC is currently using a
value, this command does not prevent the ADC from using it. Refer to ADDI command
for information on how to access the input buffer of the ADC interface.

Syntax

  >gdi ADCLR  

Example

  >gdi ADCLR  

Clear the input buffer for ADC simulation.

10.1.2.2 Internal Clock Source Module

In Full Chip Simulation (FCS) mode, this module simulates all functionality of the
Internal Clock Source (ICS) Module, including:

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 663



• Phase Locked Loop (PLL) generation
• Automatic lock detection
• Interrupt
• Acquisition
• Tracking
• Flag polling

FCS mode uses a simulated External Oscillator Frequency change command (XTAL) lets
you input the desired XTAL value. To check the current value of the External Oscillator,
Bus Frequency and ICSCLK Frequency, open the RS08FCS menu and select Clocks
Module > Show MCU Clocks.

Figure 10-4. Clocks Module Extended Menu

Once you select the MCU Clocks menu, the Cycles window displays all of the
aforementioned Clock Frequencies, or you can select the Show Cycle Counter option
within the FCS menu to get the same window.

Figure 10-5. Frequency Display

Within the FCS menu, you can select the Run till Cycle option, which lets you begin code
execution and stop execution when the specified cycle count is reached. Note that the
parameter given is not the number of cycles that executed, but rather the total cycle-count
of the simulator (displayed in the Register Window).

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

664 Freescale Semiconductor, Inc.



Figure 10-6. Run till Cycle command

This command is extremely useful for verifying specific timings of a given event,
running until a given event is complete, or just before it completes to enable stepping
through the event or any application where cycle-timed execution is desired.

Figure 10-7. Run till Cycle Dialog Box

You can also select the Clear Cycle Counter option within the FCS menu, which clears
the cycle counter. If you select the Show Cycle Counter option within the FCS menu, you
can check to make sure that the cycle counter is zero.

Figure 10-8. Cycle Counter Dialog Box with Cleared Counter

Once the ICG is properly configured, you can monitor the status of the PLL by polling
the corresponding flag. If PLL interrupt is enabled, FCS jumps to an appropriate
subroutine, as long as the interrupt vector is properly defined. To observe the flag going
up as a result of the corresponding CPU event, situate your Memory window on the
memory location of the ICG Status and Control register.

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 665



Figure 10-9. Memory Window

For more information on how to properly configure Clock Generation, refer to the
Freescale reference manual for your microprocessor.

10.1.2.2.1 Internal Clock Source Commands

The following commands are available for the RS08 Internal Clock Source Module.

10.1.2.2.2 XTAL Command

Use the XTAL command to change the value of the simulated external oscillator. This in
turn affects the input to the PLL/DCO, and therefore the bus frequency. The P&E
simulator is a cycle-based simulator, so changing the XTAL value does not affect the
speed of simulation. It does, however, affect the ratio in which peripherals receive cycles.
Certain peripherals that run directly from the XTAL will run at different speeds than
those that run from the bus clock.

Syntax

  >gdi XTAL <n>  

Where: ï¿½ <n>, by default, is a hexadecimal number, representing the simulated
frequency of an external oscillator. Adding the suffix `t' to the 'n' parameter forces the
input value to be interpreted as base 10.

Example

  >gdi XTAL  

Brings up an input window. The default base for this input value is 10. However, this
value can be forced to a hexadecimal format through use of the suffix 'h'.

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

666 Freescale Semiconductor, Inc.



10.1.2.3 Inter-Integrated Circuit Module Option

In Full Chip Simulation (FCS) mode, this module simulates all functionality of the Inter-
Integrated Circuit (IIC) module including:

• Flag polling
• Interrupt enabled mode
• Transmission and reception of external data
• Master and slave modes of operation
• START and STOP signal generation detection
• Acknowledge bit generation detection

FCS mode uses the buffered input/output structure to simulate IIC inputs. You can queue
up to 256 data bytes into the input buffer. The output buffer of the USB module can also
hold 256 output bytes. To queue the IIC Input Packets, use the IICDI <...> command in
the command prompt. For a more detailed description of the command, refer to the IIC
Commands section. If the IIC packet parameters are properly defined, the packet is
placed into the next slot in the input buffer. Otherwise, if no parameters are provided, an
IIC Input Buffer window is displayed.

You can enter different IIC packet parameters while the window is open, including
START, STOP, ACK, NACK and data bytes. An arrow points to the next byte to be used
as input to the IIC. The data from the IIC input buffer is written to the IIC module
registers once the IIC module is turned on and properly configured for receiving data
from an external IIC device. Once simulation of the data transmission is over, the arrow
moves to the next value in the IIC Input Buffer.

Figure 10-10. IIC Input Buffer Display

The IIC data input/output log buffer simulation lets you gain access to the past 256 IIC
data bytes that have been shifted in and out of the module. To bring up the IIC IN/OUT
LOG buffer dialog box, use the IICDO command.

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 667



Figure 10-11. IIC IN/OUT LOG Buffer Display

The IICCLR command may be used at any point to flush the input as well as input/output
log IIC buffers. After the IIC simulated input is received, the first queued-in data byte is
passed from the data buffer into the corresponding IIC module registers. It can be
observed in the Memory window by displaying the appropriate register location there.

Figure 10-12. Memory Component Window

You can also observe different IIC flags in the Memory window. If you run the module in
Flag Polling mode, poll the flag corresponding to the expected IIC event. If the IIC
interrupts are enabled, FCS jumps to an appropriate subroutine as long as the IIC
interrupt vectors are properly defined.

NOTE
For more information on how to configure IIC module for
desired operation, refer to the Freescale user manual for your
microprocessor.

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

668 Freescale Semiconductor, Inc.



10.1.2.3.1 Inter-Integrated Circuit Module Commands

The following commands are available for the RS08 Inter-Integrated Circuit (IIC)
module. Command function is identical even though the module names differ.

10.1.2.3.2 IICDI Command

The IICDI command lets you input data into a buffer of data to shift into the IIC module
when it receives data from an external device. If a data parameter is given, the value is
placed into the next slot in the input buffer. Otherwise, if no parameter is given, a
window is displayed with the input buffer values. Input values can be entered while the
window is open. The maximum number of input values is 256. This command is useful
for either inputting response data from a slave target or for inputting data packets from an
external master. Note that when the microprocessor attempts to read an acknowledge
from an external device, and the next value in the buffer is neither ACK nor NACK, the
microprocessor automatically receives an ACK signal (i.e. assumes ACK unless NACK
is specified).

Syntax

  >gdi IICDI [<n>][START][STOP][ACK][NACK]  

Where: ï¿½ <n> indicates the value to be entered into the next location in the input buffer

ï¿½ START indicates the incoming START signal

ï¿½ STOP indicates the incoming STOP signal

ï¿½ ACK corresponds to ACK signal

ï¿½ NACK corresponds to NACK signal

NOTE
For a detailed description of the IIC protocol and a proper way
to configure the IIC module, refer to the Freescale user manual
for your microprocessor.

Eaxmple

  >gdi IICDI  

Pulls up the data window with all the input values

  >gdi IICDI 22 33  

This is an example of data being returned from a slave device. Once the MCU transmits a
start signal and the target address, it receives an ACK from the slave device. An ACK is
implied unless a NACK is specified via the IICDI command. The next two data bytes

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 669



read are 22 and 23. If the microprocessor attempts to read another byte, it gets an $FF
value followed by a NACK signal (NACK because nothing remains in the input buffer).
The receiving device then generates a STOP signal. A more exact input from a device
designed to return two bytes is:

 >gdi IICDI ACK 22 ACK 23 NACK  

IIC in master mode transmits to a slave:

ï¿½ If the slave device acknowledges all output bytes of the transmitting device, there is
no need to specify an input packet. If the master device is going to transmit an address
and two bytes, the following packet is equivalent to no packet:

  >gdi IICDI ACK ACK ACK  

ï¿½ If, however, the slave receiver is designed to generate a NACK signal after the
second received data byte, the proper response packet is:

  >gdi IICDI ACK ACK NACK  

ï¿½ The address result being the first ACK, the first data result being the second ACK,
and the second data byte being the NACK.

IIC in MASTER mode is not acknowledged by any Slave:

  >gdi IICDI NACK  

ï¿½ If the NACK signal is entered before the master device transmits a START signal,
then the master device gets a NACK when it tries to read an acknowledge after the
address is output. The master device then generates a STOP signal and releases the BUS.

IIC in SLAVE mode receives a Write from an external Master:

This example is for an external master that is writing to the microprocessor configured to
simulate the slave mode operation. The packet contains both START and STOP signals
which puts the simulated device into the slave mode.

  >gdi IICDI START 55 AA 22 STOP  

This input adds five values to the input queue, which is a packet from an external master,
including the following procedure values:

ï¿½ A start signal comes in

ï¿½ The address $55 comes in, specifying a write (slave receive). The Address Register
in the current simulated device has been previously set to $55

ï¿½ The data byte $AA comes in

ï¿½ The data byte $22 comes in

ï¿½ A STOP signal comes in

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

670 Freescale Semiconductor, Inc.



10.1.2.3.3 IICDO Command

The IICDO command displays a window, which shows data shifted in as well as shifted
out of the IIC peripheral. An arrow points to the last output value transmitted/received.
The maximum number of output values that the buffer can hold is 256.

Syntax

  >gdi IICDO  

Example

  >gdi IICDO  

View data from the input/output log buffer for IIC simulation.

10.1.2.3.4 IICCLR Command

Use the IICCLR command to flush the input and output buffers for IIC simulation. This
resets the buffers and clears all values. Notice that if the IIC is currently shifting a value,
this command does not prevent the IIC from finishing the transfer.

Syntax

  >gdi IICCLR 

Example

  >gdi IICCLR  

Clear input and output buffers for IIC simulation.

10.1.2.4 Keyboard Interrupt Module

In Full Chip Simulation (FCS) mode, this module simulates all functionality of the
Keyboard Interrupt (KBI) module, including the edge-only, edge and level interrupt, and
flag polling modes of operation. FCS mode uses simulated port inputs to trigger the KBI
event from the proper I/O port pin.

To define an input state of the specific port, enter the INPUT<x> <n> command in the
Command window. The <x> represents the corresponding I/O port, while <n> stands for
the input value to write to this port. At the same time, you can use the INPUTS command

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 671



to bring up the Simulated Port Inputs for all general I/O ports. It displays the current
simulated values to all applicable input ports. Refer the documentation for Timer Module
Commands for more information about the various forms of this command.

Figure 10-13. Simulated Port Inputs Dialog Box

Use the Simulated Port Inputs dialog box to reconfigure the input value to any I/O port.
To trigger the event, manipulate the inputs to the port in the appropriate manner,
depending on whether the KBI is configured for edge-only or edge and level. Once the
KBI event takes place, you can observe the KEYF Flag bit, which is a part of the
Keyboard Status and Control register, in the Memory window.

Figure 10-14. Memory Component Window

You can poll the KBI Interrupt Pending flag if the Polling Mode is simulated. In Interrupt
Mode, the simulator branches to an appropriate interrupt subroutine as long as the KBI
interrupt vector is properly configured.

NOTE
For more information on KBI configuration, refer to the
Freescale user manual for your microprocessor.

10.1.2.4.1 Keyboard Interrupt Commands

Use the following commands for Keyboard interrupt manipulation.

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

672 Freescale Semiconductor, Inc.



10.1.2.4.2 INPUT<x> Command

The INPUT<x> command sets the simulated inputs to port <x>. The CPU reads this
input value when port <x> is set as an input port.

Syntax

  >gdi INPUT<x> <n>  

Where: <x> is the letter representing corresponding port

<n> is an eight-bit simulated value for port <x>

Example

  >gdi INPUTA AA  

Simulate the input AA on port A.

10.1.2.4.3 INPUTS Command

In FCS and CPU-Only Simulation mode, the INPUTS command opens the Simulated
Port Inputs dialog box shown in the following figure. You may then use this box to
specify the input states of port pins and IRQ.

Figure 10-15. Simulated Port Inputs Dialog Box

When using In-Circuit Simulation mode, the INPUTS command shows the simulated
input values to any applicable port.

Syntax

  >gdi INPUTS  

Example

  >gdi INPUTS  

Show I/O port input values.

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 673



10.1.2.5 Liquid Crystal Display Driver Module Option

In Full Chip Simulation (FCS) Mode, this option lets you simulate all the functionality of
the Liquid Crystal Display (LCD) module, including programmable LCD frame
frequency, front plane pin configuration, back plane pin configuration, programmable
blink frequency, and LCD interrupt flag generation. By default LCD front and back plane
pins are mapped to match device use on the corresponding Freescale DEMO9RS08xx
device board. These settings can be changed by you through modification of the
LCDRS08V<x>_<DEVICE>.INI file, where <x> indicates the version number. This file
is located in the "<CW_Install>\prog\P&E" folder.

10.1.2.6 Modulo Timer Interrupt Module

In Full Chip Simulation (FCS) mode, this module simulates all functionality of the
Modulo Timer Interrupt (MTIM) Module, including:

• Programmable MTIM clock input
• Free running or modulo up count operation
• Flag polling
• Interrupt enabled mode of operation

Once the MTIM Status and Control register properly configures the operation of the
module, the MTIM Counter starts incrementing. If modulo up count operation is enabled,
you can observe the MTIM overflow flag in the MTIM Status and Control register in the
Memory window.

Figure 10-16. Memory Component Window

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

674 Freescale Semiconductor, Inc.



If the MTIM interrupt is enabled, the FCS jumps to an appropriate subroutine as long as
the MTIM interrupt vector is properly defined.

10.1.2.6.1 Modify MTIM TclK

The following figure shows the TclK frequency dialog box.

Figure 10-17. TclK Frequency Dialog Box

This dialog box lets you set the frequency of the TclK signal for the MTIM peripheral. In
order for this value to have any effect, the TclK must be selected as the clock source for
the MTIM.

10.1.2.6.2 Modulo Timer Interrupt Module User Commands

The following commands are available for the MTIM.

10.1.2.6.3 TclK Command

The TclK opens the TclK frequency dialog box shown in the following figure. You may
then use this box to specify the input frequency of the TclK.

Figure 10-18. TclK Frequency Dialog Box

Syntax

  >gdi TclK  

Example

  >gdi TclK  

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 675



Show TclK Frequency Dialog Box

10.1.2.6.4 TclK <n> Command

The TclK <n> command sets the TclK input frequency to <n>.

Syntax

  >gdi TclK <n>  

Where: <n> is the input frequency of TclK

Example

  >gdi TclK 200000t  

Simulate the TclK input frequency of 200000 Hz.

10.1.2.7 Input/Output (I/O) Ports Module

In Full Chip Simulation (FCS) mode, this module simulates all input and output
functionality of the Input/Output (I/O) Ports module. FCS mode uses a set of designated
commands to simulate the input and output activity on corresponding I/O port pins. To
define an input state of the specific port, write the INPUT <x> <n> command in the
Command window. The <x> represents the corresponding I/O port, while the <n> stands
for the input value to write to this port. At the same time, you can use the INPUTS
command to bring up the Simulated Port Inputs for all general I/O ports. It displays the
current simulated values to all applicable input ports.

NOTE
Refer Input/Output Ports User Commands and IRQ Commands
for more information about the various forms of this command.

Figure 10-19. Simulated Port Inputs Dialog Box

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

676 Freescale Semiconductor, Inc.



Use the Simulated Port Inputs dialog box to reconfigure the input value to any I/O port.
Use the INPUTS command to reconfigure the output values on any relevant I/O port.
You can observe the manipulation of I/O port pins in the Memory window.

Note that if the regular I/O pins are multiplexed to be used by a different MCU Module,
they might not be available for general I/O functionality.

NOTE
For more information on how to properly configure I/O pins,
refer to the Freescale user manual for your microprocessor.

10.1.2.7.1 Input/Output Ports User Commands

Use the following commands for general I/O ports manipulation.

10.1.2.7.2 INPUT<x> Command

The INPUT<x> command sets the simulated inputs to port <x>. The CPU reads this
input value when port <x> is set as an input port.

Syntax

  >gdi INPUT<x> <n>  

Where: <x> is the letter representing corresponding port

<n> Eight-bit simulated value for port <x>

Example

  >gdi INPUTA AA  

Simulate the input AA on port A.

10.1.2.7.3 INPUTS Command

In FCS and CPU-Only Simulation modes, the INPUTS command opens the Simulated
Port Inputs dialog box shown in the following figure. You may then use this box to
specify the input states of port pins and IRQ.

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 677



Figure 10-20. Simulated Port Inputs Dialog Box

When using In-Circuit Simulation mode, the INPUTS command shows the simulated
input values to any applicable port.

Syntax

  >gdi INPUTS
  

Example

  >gdi INPUTS  

Show I/O port input values.

10.1.2.8 Serial Communications Interface Module

In Full Chip Simulation (FCS) mode, this module simulates all functionality of the Serial
Peripheral Interface (SPI) module including:

• Flag polling
• Interrupt enabled mode
• 8- or 9-bit length data codes
• Odd and even parity modes
• Transmission and reception of external data

FCS mode uses the buffered input/output structure to simulate SCI inputs. You can queue
up to 256 data values into the input buffer. The output buffer of the SCI module can also
hold 256 output values. To queue the SCI Input Data, use the SCDI <n> command in the
command prompt. If <n> (the data parameter) is given, the value is placed into the next
slot in the input buffer.

Otherwise, if no parameter is provided, a window is displayed with the input buffer
values. You can enter input values while the window is open. An arrow points to the next
value to be used as input to the SCI. The data from the SCI input buffer is written to the

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

678 Freescale Semiconductor, Inc.



SCI data register once the SCI module has been turned on and is properly configured for
receiving data from an external serial device. Once the simulation of the data
transmission is over, the arrow moves to the next value in the SCI IN Buffer.

Figure 10-21. SCI IN Buffer Display

SCI Data Output Buffer simulation lets you gain access to the past 256 SCI data values
transmitted out of the module. To bring up the SCI OUT buffer dialog box, use the
SCDO command.

Figure 10-22. SCI OUT Buffer Display

At any point, the SCCLR command may be used to flush the input and output SCI
buffers. After the SCI simulated input is received, the first queued value is passed from
the data buffer into the SCI data register. It can be observed in the memory window by
displaying the memory location corresponding to the SCI data register.

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 679



Figure 10-23. Memory Component Window

You can also observe different SCI flags in the Memory window. If the module is run in
Flag Polling mode, poll the flag corresponding to the expected SCI event. If the SCI
interrupts are enabled, the FCS jumps to an appropriate subroutine as long as the SCI
interrupt vectors are properly defined.

NOTE
For more information on how to configure the SCI module for
desired operation, refer to the Freescale user manual for your
microprocessor.

10.1.2.8.1 SCI Commands

Use the following commands for serial communication interface manipulation.

10.1.2.8.2 SCCLR Command

Use the SCCLR command to flush the input and output buffers for SCI simulation. This
resets the buffers and clears out all values. Note that if the SCI is in the process of
shifting a value, this command allows the SCI to finish the transfer. Refer the SCDI and
SCDO commands for accessing the input and output buffers of the SCI interface.

Syntax

  >gdi SCCLR  

Example

  >gdi SCCLR  

Clear input and output buffer for SCI simulation

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

680 Freescale Semiconductor, Inc.



10.1.2.8.3 SCDI Command

The SCDI command lets you input data into the SCI. If a data parameter is given, the
value is placed into the next slot in the SCI input buffer. If no parameter is given, a
window displays the input buffer values. Input values can be entered while the window is
open. An arrow points to the next value to be used as input to the SCI. The maximum
number of input values is 256 bytes.

Syntax

  >gdi SCDI [<n>]  

Where: <n> The value to be entered into the next location in the input buffer

Example

  >gdi SCDI $55 

Set the next input value to the SCI to $55

  >gdi SCDI  

Pull up the data window with all the input values.

Figure 10-24. SCI IN buffer display

10.1.2.8.4 SCDO Command

The SCDO command displays the output buffer from the SCI. A window is opened that
shows all the data that the SCI has shifted out. An arrow points to the last output value
transmitted. The maximum number of output values that the buffer holds is 256 bytes.

Syntax

  >gdi SCDO  

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 681



Example

  >gdi SCDO  

View data from the output buffer for the SCI simulation.

Figure 10-25. SCI OUT Buffer Display

10.1.2.9 Serial Peripheral Interface Module

In Full Chip Simulation (FCS) mode, this module simulates all functionality of the Serial
Peripheral Interface (SPI) module including:

• Flag polling
• Interrupt enabled mode
• Master and slave modes
• Slave input clock
• Transmission and reception of external data

FCS mode uses the buffered input/output structure to simulate SPI inputs. You can queue
up to 256 data values into the input buffer. The output buffer of the SPI module can also
hold 256 output values. To queue the SPI Input Data, use the SPDI <n> command at the
command prompt. If <n> (the data parameter) is given, the value is placed into the next
slot in the input buffer.

Otherwise a window is displayed with the input buffer values. You can enter input values
while the window is open. An arrow points to the next input value to the SPI. The data
from the SPI input buffer is written to the SPI data register once the SPI module is turned
on and is properly configured for receiving data from an external serial device. Once the
simulation of the data transmission is over, the arrow moves to the next value in the SPI
IN Buffer.

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

682 Freescale Semiconductor, Inc.



SPI data output buffer simulation lets you gain access to the past 256 SPI data values
transmitted out of the module. To bring up the SPI OUT buffer dialog box, use the SPDO
command.

Figure 10-26. SPI OUT Buffer Display

The SPCLR command may be used at any point to flush the input and output SPI buffers.
After the SPI simulated input is received, the first queued value is passed from the data
buffer into the SPI data register. It can be observed in the Memory window by displaying
the memory location corresponding to the SPI data register.

Figure 10-27. Memory Component Window

You can also observe different SPI flags in the Memory window. If the module is run in
Flag Polling mode, poll the flag corresponding to the expected SPI event. If the SPI
interrupts are enabled, the FCS jumps to an appropriate subroutine as long as the SPI
channel interrupt vectors are properly defined.

To simulate the frequency of the SPI slave input clock, use the SPFREQ <n> command.
If the SPI is configured for slave mode, this command lets you enter the number of cycles
<n> in the period of the input clock. If the SPFREQ command is not used, then clocking
is set by the SPI control register.

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 683



NOTE
For more information on how to configure the SPI module for
desired operation, refer to the Freescale user manual for your
microprocessor.

10.1.2.9.1 SPI Commands

The following serial peripheral interface commands are available for the RS08.

10.1.2.9.2 SPCLR Command

Use the SPCLR command to flush the input and output buffers for SPI simulation. This
resets the buffers and clears out all values. Notice that if the SPI is currently shifting a
value, this command allows the SPI to finish the transfer. Refer the SPDI and SPDO
commands for accessing the input and output buffers of the SPI interface.

Syntax

  >gdi SPCLR  

Example

  >gdi SPCLR  

Clear input and output buffer for SPI simulation

10.1.2.9.3 SPDI Command

The SPDI command lets you input data into the SPI. If a data parameter is given, the
value is placed into the next slot in the SPI input buffer. If no parameter is given, a
window displays the input buffer values. You can enter input values while the window is
open. An arrow points to the next input value to the SPI. The maximum number of input
values is 256 bytes.

Syntax

  >gdi SPDI [<n>]  

Where: <n> The value to be entered into the next location in the input buffer

Example

  >gdi SPDI $55  

Set the next input value to the SPI to $55

  >gdi SPDI  

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

684 Freescale Semiconductor, Inc.



Pull up the data window with all the input values.

Figure 10-28. SPI IN Buffer Display

10.1.2.9.4 SPDO Command

The SPDO command displays the output buffer from the SPI. A window opens that
shows all the data that the SPI has shifted out. An arrow points to the last output value
transmitted. The maximum number of output values that the buffer holds is 256 bytes.

Syntax

  >gdi SPDO  

Example

  >gdi SPDO  

View data from the output buffer for the SPI simulation.

Figure 10-29. SPI OUT Buffer Display

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 685



10.1.2.9.5 SPFREQ Command

The SPFREQ command lets you set the frequency of the SPI slave input clock. If the SPI
is configured for the slave mode, this command lets you enter the number of cycles <n>
per one input clock period. If no value is given, a window appears and you are prompted
for a value. If this command is not used, then the clocking is assumed to be set by the SPI
control register.

Syntax

  >gdi SPFREQ [<n>]  

Where: <n> The number of cycles for the period of the input clock.

Example

  >gdi SPFREQ 8  

Set the period of the input slave clock to 8 cycles (total shift = 8*8 cycles per bit = 64
cycles).

10.1.2.10 Timer Interface Module

In Full Chip Simulation (FCS) mode, this module simulates all functionality of the Timer
Interface module, including:

• Input capture/output compare
• Pulse width modulation
• Internal or external clock input
• Free running or modulo up count operation
• Flag polling
• Interrupt enabled mode of operation

FCS mode uses the simulated port inputs to trigger the input capture on a given timer
channel. To define an input state of the specific port, use the INPUT<x> <n> command
in the Command window. The <x> represents the corresponding I/O port, while <n>
stands for the input value to write to this port. At the same time, you can use the INPUTS
command to display the Simulated Port Inputs for all general I/O ports. It displays the
current simulated values to all applicable input ports. Refer the documentation for Timer
Module Commands for more information about the various forms of this command.

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

686 Freescale Semiconductor, Inc.



Figure 10-30. Simulated Port Inputs Dialog Box

Use the Simulated Port Inputs dialog box to reconfigure the input value to any I/O port.
To trigger the event, first set the port inputs high or low and then invert them to an
opposite value, depending on whether the input capture is set for rising/falling edge.
Once the Input Capture event takes place, you can observe the CHxF in the Channel
Status and Control register in the Memory window.

Figure 10-31. Memory Component Window

If the Timer module is configured for an Output Compare event, then once the event
takes place you can observe the same CHxF Flag via the Memory window. If the timer
channel interrupt is enabled, the FCS jumps to an appropriate subroutine as long as the
Timer channel interrupt vector is properly defined. To observe the Timer Overflow Flag
(TOF) flag being set as a result of the corresponding CPU event, situate your Memory
window on the memory location of the Timer Status and Control register.

To observe the Pulse Width Modulation (PWM) operation, properly configure the Timer
to operate in the Modulo up count mode, then select the toggle-on-overflow or clear/set
output on compare events to create the desired duty cycle wave. Once a PWM event takes
place, you can observe pin toggle/clear/set behavior corresponding to the Timer
configuration in the Memory window that is displaying the I/O port associated with a
given timer channel.

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 687



To observe the accuracy of the Timer module operation, you can observe the number of
CPU cycles that it takes for the event to occur. The cycle counter is only incremented as
you step through the code. To determine the exact amount of cycles over which the event
occurs, one can either observe the cycle display in the Register window or use the built in
simulation commands. To display the current number of cycles in the Command window,
use the CYCLES command. To change the number of cycles in the cycle counter, use
CYCLES <n>, where <n> is the new cycle value. If the event has a pre-calculated
number of cycles, use CYCLE 00 to reset the number of cycles and GOTOCYCLE <n>
to run through the code until you reach the expected event.

Figure 10-32. Register Window With Cycles Display

10.1.2.10.1 Timer Module Commands

The following timer module commands are available for use with the HC08/HCS08
processors.

10.1.2.10.2 CYCLES Command

The CYCLES command changes the value of the cycles counter. The cycles counter
counts the number of the processor cycles that have passed during execution. The Cycles
Window shows the cycle counter. The cycle count can be useful for timing procedures.

Syntax

  >gdi CYCLES <n> 

Where: <n> Integer value for the cycles counter

Examples

  >gdi CYCLES 0  

Reset cycles counter

  >gdi CYCLES 1000  

Set cycle counter to 1000.

P&E Full Chip Simulation

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

688 Freescale Semiconductor, Inc.



10.1.2.10.3 GOTOCYCLE Command

The GOTOCYCLE command executes the program in the simulator beginning at the
address in the program counter (PC). Execution continues until the cycle counter is equal
to or greater than the specified value, until a key or the Stop button on the toolbar is
pressed, until it reaches a break point, or until an error occurs.

Syntax

  >gdi GOTOCYCLE <n>  

Where: <n> Cycle-counter value at which the execution stops

Example

  >gdi GOTOCYCLE 100  

Execute the program until the cycle counter equals 100.

10.1.2.10.4 INPUT<x> Command

The INPUT<x> command sets the simulated inputs to port <x>. The CPU reads this
input value when port <x> is set as an input port.

Syntax

  >gdi INPUT<x> <n>  

Where: <x> is the letter representing corresponding port

<n> Eight-bit simulated value for port <x>

Example

  >gdi INPUTA AA  

Simulate the input AA on port A.

10.1.2.10.5 INPUTS Command

In FCS and CPU-Only Simulation modes, the INPUTS command opens the Simulated
Port Inputs dialog box shown in the following figure. You may then use this box to
specify the input states of port pins and IRQ.

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 689



Figure 10-33. Simulated Port Inputs Dialog Box

When using In-Circuit Simulation mode, the INPUTS command shows the simulated
input values to any applicable port.

Syntax

  >gdi INPUTS  

Example

  >gdi INPUTS  

Show I/O port input values.

10.2 P&E Hardware Interface Connection for RS08
This section describes the RS08 P&E Connection options. The Connection setting
permits a connection to RS08 Freescale devices via P&E Multilink, Cyclone (including
the Cyclone ), and OSBDM hardware interfaces. This connection mode lets you debug
code, as the firmware is fully resident in the Flash or RAM of the microprocessor.

10.2.1 New Project Wizard

When creating a new project using the New Project Wizard, you will be given the option
to select which hardware you will be using to debug your chip. Select the P&E hardware
interfaces you want to use by checking the checkboxes.

P&E Hardware Interface Connection for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

690 Freescale Semiconductor, Inc.



Figure 10-34. New project wizard

NOTE
Once the project is created, new connections will be created
with the P&E hardware interfaces you have selected as the
default settings. Use Debug Configurations if you want to edit
or change your hardware interface and its settings. If the P&E
Cyclone was selected, the USB port will be the default setting.
Use Debug Configurations to switch to Ethernet or Serial port
connections.

10.2.2 Launch Configuration Settings

To set the launch configurations for the debugger:

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 691



1. Right-click on your project and navigate to -> Debug As -> Debug Configurations.
The Debug Configuration Window will appear.

2. In the left column, select the project type you would like to set the launch
configurations. Refer to the following figure.

Figure 10-35. Debug Configuration Dialog Box
3. In the right column, click the Main tab and use the Connection Selection drop-down

box to select a connection.
4. Click the Edit button beside the selected connection and the Launch Configuration

Window will appear. Refer to the following figure.

P&E Hardware Interface Connection for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

692 Freescale Semiconductor, Inc.



Figure 10-36. Launch Configuration Dialog Box
5. Set your configurations, click the OK button, and click the Debug button to start the

debugger.

10.2.3 Connection Options

This topic describes all P&E RS08 Multilink/Cyclone/OSBDM connection options,
which are common to all P&E USB Multilink Universal [FX]/USB Multilink , P&E
Cyclone Serial , P&E Cyclone USB , P&E Cyclone Ethernet and Open Source BDM
connections.

The options include:

• Changing P&E Connection Settings
• Connection Assistant

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 693



10.2.3.1 Changing P&E Connection Settings

All connection settings for P&E hardware interfaces are configured using the
Connection group in the Main tab of the Debugger Configuration dialog box.

Figure 10-37. P&E RS08 Launch Configuration Dialog Box

The following table describes the options for this view.

Table 10-1. Connection Parameter Options for P&E Multilink/Cyclone /OSBDM

Option Description

Interface Use this option to select the interface type. Select a supported
interface from the list box. The options are:

• USB Multilink, USB Multilink FX, Embedded OSBDM/
OSJTAG - USB Port

NOTE: The USB Multilink Universal can conveniently support
all Freescale architectures found in the current CodeWarrior
10 version

• Cyclone - Serial Port
• Cyclone - USB Port

Table continues on the next page...

P&E Hardware Interface Connection for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

694 Freescale Semiconductor, Inc.



Table 10-1. Connection Parameter Options for P&E Multilink/Cyclone /OSBDM (continued)

Option Description

• Cyclone - Ethernet Port
• OSBDM

NOTE: Click on the "Compatible Hardware" link to help you
determine which P&E hardware is most suitable for your
project.

Refresh Click this button to have the workstation scan for a valid
interface and port. Valid interfaces and ports appear in the
Interface and Port list boxes.

Port This option selects the port over which debug
communications is conducted. Select an available port from
the list box. NOTE: If you are having issues trying to get a
port to display, click on the [FAQ #29] link for help.

Socket Programming Options The Socket Programming Options button brings up a dialog
that provides you with a graphical representation of the
signals that must be connected from the BDM header to the
pins of the microprocessor, in order to use Freescale socket
adapters.

Advanced Programming Options The Advanced Programming Options button brings up a
dialog that provides you with options to configure the flash
programming procedure.

Specify IP (Cyclone Ethernet only) Use this option to specify the IP address of a Cyclone outside
of the local network. Click on the checkbox to enable the
textbox. This will also disable the port dropdown box.
Currently supports IPv4 only.

Specify Network Card IP (Cyclone Ethernet only) Use this option to specify the local network card IP address if
there are multiple cards on your computer. Click on the
checkbox to enable the textbox. Currently supports IPv4 only.

Provide power to target (Cyclone and USB Multilink Universal
FX only)

Check this option to have the Cyclone or USB Multilink
Universal FX (circuitry) supply power to the hardware target.
Uncheck this option to not provide power.

NOTE: For USB Multilink Universal FX, use the jumper
settings located at JP10 to provide either 3.3V or 5V.

Power off target upon software exit (Cyclone and USB
Multilink Universal FX only)

Check this option to turn off the power when the program
terminates. Uncheck this option to leave the hardware target
powered continuously.

Regulator Output Voltage (Cyclone and USB Multilink
Universal FX only)

This option adjusts the output voltage that powers the
hardware target. Select a voltage value from this option's list
box.

Power down delay (Cyclone and USB Multilink Universal FX
only)

This option specifies amount of time for which the target will
be turned off during a RESET power cycling sequence. Enter
the delay interval (in milliseconds) in this option's text box.

Power up delay (Cyclone and USB Multilink Universal FX
only)

This option specifies amount of time for which the target will
remain powered prior to a RESET power cycling sequence.
Enter the delay interval (in milliseconds) in this option's text
box.

WARNING
An improper voltage setting can damage the board.

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 695



To change P&E Connections settings, perform these steps.

1. In the CodeWarrior Projects view, select the project for which you want to change
the P&E Connections settings.

NOTE
It is assumed that you have created a project and built it.

2. Select Run > Debug Configurations from the main menu bar of the IDE.

The Debug Configurations dialog box appears.

3. Expand the CodeWarrior tree control in the left pane and select the launch
configuration you want to debug.

4. Click the Main tab.

The Main page appears in the area beneath the tabs.

5. Select a system within Connection which you would like to use to debug. You could
create a new system by clicking the New button. For more details about creating a
new remote system, refer to the topic Target Management via Remote System
Explorer in the CodeWarrior Common Features Guide. Once a remote system is
selected, click the Edit button. The Launch Configuration Panel will appear.

6. Ensure that the Target is the correct microcontroller you want to debug. Use the
drop-down box or the Edit button to change this option.

7. In the Connection Type drop-down box, select P&E RS08 Multilink/Cyclone/
OSBDM. The P&E connections settings will appear below.

8. Click Refresh to scan valid interface and port.

Valid interfaces and ports appear in the Interface and Port drop-down lists in the
Connection Port and Interface Type group.

9. Select a supported interface from the Interface drop-down list.
10. Select a supported port from the Port drop-down list.

NOTE
The port displayed may vary depending on the interface.
For example, if you select interface as Cyclone - Serial
Port, the available port option is COM1 : Serial Port 1.

11. Specify settings in the Hardware Interface Power Control (Voltage --> Power -Out
Jack) group.

NOTE
This group will be enabled for the Cyclone, Tracelink and
USB Multilink Universal FX interfaces only. For USB

P&E Hardware Interface Connection for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

696 Freescale Semiconductor, Inc.



Multilink Universal FX interface, use the jumper settings
located at JP10 to provide either 3.3V or 5V.

• Check the Provide power to target checkbox to have the hardware interface
(circuitry) provide power to the target else clear the checkbox if you do not want
to provide power to the target.

• Check the Power off target upon software exit checkbox to turn off the power
when the program terminate else clear the checkbox to leave the hardware target
powered continuously.

• Select a voltage value from the Regulator Output Voltage drop-down list. This
adjusts the output voltage that powers the hardware target.

NOTE
An improper voltage setting can damage the board.

• Enter the delay interval (in milliseconds) in the Power Down Delay text box.
This option specifies the time interval to wait before shutting off the power to the
hardware target. The hardware interface powers down the device once the debug
session is over, or while executing a power cycling sequence after beginning a
new debug session.

• Enter the delay interval (in milliseconds) in the Power Up Delay text box. This
option specifies the time interval to wait before turning on the power to the
hardware target. If the power to target feature is enabled, the hardware interface
will power up the device while executing a power cycling sequence at the
beginning of every debug session.

• Click OK to save changes to the P&E Connections settings. The Launch
Configuration Panel dialog box will close.

• Click Close button to close the Debug Configuration dialog box.

10.2.3.1.1 P&E Hardware Interface Connection-Specific Options

This topic describes the connection-specific options. The connections include:

• P&E USB Multilink Universal [FX]/USB Multilink
• P&E Cyclone Serial
• P&E Cyclone USB
• P&E Cyclone Ethernet
• Open Source BDM

10.2.3.1.1.1 P&E USB Multilink Universal [FX]/USB Multilink

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 697



The P&E USB Multilink Universal [FX]/USB Multilink Connection setting permits a
connection to USB Multilink devices, which include the P&E BDM Multilink, USB
Multilink Universal, and the USB Multilink Universal FX. P&E USB Multilink
Universal [FX]/USB Multilink mode lets you debug code, as the firmware is fully
resident in the Flash of the microprocessor. The operation of all modules fully reflects the
actual operation of the onboard resources. Like the USB Multilink Universal, the USB
Multilink Universal FX can conveniently debug all Freescale architectures found in the
current CodeWarrior 10 version, however, the FX version is up to 8 times faster than the
USB Multilink Universal and it can also provide power to the target.

10.2.3.1.1.1.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project type you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E RS08 Multilink/Multilink Universal/Cyclone/
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings, as shown in the following figure.

P&E Hardware Interface Connection for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

698 Freescale Semiconductor, Inc.



Figure 10-38. P&E's Launch Configuration Dialog Box

To use P&E’s USB Multilink Universal [FX]/USB Multilink, first connect your hardware
interface to your computer, and then set the interface to USB Multilink, USB Multilink
FX, Embedded OSBDM/OSJTAG – USB Port. The Port selection should automatically
populate your hardware interface. If not, use the Refresh button and the Port selection
drop-down box. If you are having issues getting your device to populate, use the link for
FAQ #29 to find popular solutions.

10.2.3.1.1.2 P&E Cyclone Serial

The P&E Cyclone Serial Connection setting permits a connection to Cyclone Serial
devices. P&E Cyclone Serial mode lets you debug code, as the firmware is fully resident
in the Flash of the microprocessor. The operation of all modules fully reflects the actual
operation of the onboard resources.

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 699



10.2.3.1.1.2.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E RS08 Multilink/Multilink Universal/Cyclone Pro/
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings, as shown in the following figure.

Figure 10-39. P&E's Launch Configuration Dialog Box

To use P&E’s Cyclone Serial, first connect your hardware interface to your computer,
and then set the interface to Cyclone – Serial Port. The Port selection should
automatically Connections — RS08 P&E Hardware Interface Connection for RS08 858

P&E Hardware Interface Connection for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

700 Freescale Semiconductor, Inc.



Microcontrollers V10.x Targeting Manual populate your hardware interface. If not, use
the Refresh button and the Port selection drop-down box. If you are having issues getting
your device to populate, use the link for FAQ #29 to find popular solutions.

10.2.3.1.1.3 P&E Cyclone USB

The P&E Cyclone USB Connection setting permits a connection to Cyclone USB
devices. P&E Cyclone USB mode lets you debug code, as the firmware is fully resident
in the Flash of the microprocessor. The operation of all modules fully reflects the actual
operation of the onboard resources..

10.2.3.1.1.3.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E RS08 Multilink/Multilink Universal/Cyclone Pro/
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings, as shown in the following figure.

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 701



Figure 10-40. P&E's Launch Configuration Dialog Box

To use P&E’s Cyclone USB, first connect your hardware interface to your computer, and
then set the interface to Cyclone – USB Port. The Port selection should automatically
populate your hardware interface. If not, use the Refresh button and the Port selection
drop-down box. If you are having issues getting your device to populate, use the link for
FAQ #29 to find popular solutions.

10.2.3.1.1.4 P&E Cyclone Ethernet

The P&E Cyclone Ethernet Connection setting permits a connection to Cyclone Ethernet
devices. P&E Cyclone Ethernet mode lets you debug code, as the firmware is fully
resident in the Flash of the microprocessor. The operation of all modules fully reflects the
actual operation of the onboard resources.

10.2.3.1.1.4.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

P&E Hardware Interface Connection for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

702 Freescale Semiconductor, Inc.



1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E RS08 Multilink/Multilink Universal/Cyclone pro/
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings, as shown in the following figure.

Figure 10-41. P&E's Launch Configuration Dialog Box

To use Open Source BDM, first connect your hardware interface to your computer, and
then set the interface to USB Multilink, USB Multilink FX, Embedded OSBDM/
OSJTAG – USB Port. The Port selection should automatically populate your hardware
interface. If not, use the Refresh button and the Port selection drop-down box. If you are
having issues getting your device to populate, use the link for FAQ #29 to find popular
solutions.

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 703



10.2.3.1.1.5 Open Source BDM

Freescale supplies certain development boards with an integrated debug circuit based on
Open Source BDM. This allows the development board to be debugged from the PC via
the USB bus without requiring external debug hardware, such as the Cyclone or USB
Multilink. The development board also derives its power from the USB Bus.

The Open Source BDM circuit design (OSBDM-JM60) is an open source, community
driven design. It has been published on Freescale's website, and full documentation can
be found in the Community Forums. The latest documentation and firmware can be
downloaded from www.pemicro.com/osbdm.

Integration with CodeWarrior is handled via the "Open Source BDM" connection. P&E
has integrated the Open Source BDM support into the same connection that supports both
the USB Multilink and the Cyclone. All of the dialogs that affect operation of these
hardware interfaces function in the same manner when using OSBDM (albeit at a lower
data rate).

The Open Source BDM Connection setting permits a connection to Open Source BDM
devices. Open Source BDM mode lets you debug code, as the firmware is fully resident
in the Flash or RAM of the microprocessor. The operation of all modules fully reflects
the actual operation of the onboard resources.

10.2.3.1.1.5.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E RS08 Multilink/Multilink Universal/Cyclone/
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings, as shown in the following figure.

P&E Hardware Interface Connection for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

704 Freescale Semiconductor, Inc.



Figure 10-42. P&E's Launch Configuration Dialog Box

To use Open Source BDM, first connect your hardware interface to your computer, and
then set the interface to USB Multilink, USB Multilink FX, Embedded OSBDM/
OSJTAG - USB Port. The Port selection should automatically populate your hardware
interface. If not, use the Refresh button and the Port selection drop-down box. If you are
having issues getting your device to populate, use the link for FAQ #29 to find popular
solutions.

10.2.3.1.1.5.2 OSBDM Firmware Update

All CodeWarrior IDE's version 10.1 and higher have an automatic firmware update
mechanism for built-in OSBDM hardware interfaces. Whenever an OSBDM-integrated
hardware interface is plugged into a USB port and CodeWarrior attempts to contact the
device, it will automatically check to see if the device has the latest OSBDM firmware
version. If the firmware on the device is older than the one found within the CodeWarrior
package, then a dialog box will indicate that a firmware update is necessary.

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 705



Figure 10-43. Old OSBDM Firmware Detected

To update the firmware, the OSBDM device must enter Bootloader mode. To do so the
USB cable must be disconnected from the device and the OSBDM-JM60 IRQ pin must
be connected to ground usually done by using a 2-pin female jumper. Use the OSBDM
device schematics to find the IRQ pin. Once the IRQ pin is grounded, connect the USB
cable to the OSBDM device and click on the OK button. If done correctly, the automatic
firmware update will occur.

Figure 10-44. OSBDM Firmware Updating

When the firmware is done updating, a dialog box will indicate that the OSBDM device
must exit Bootloader mode and enter into Run mode.

Figure 10-45. Start OSBDM Run Mode

To enter Run Mode, the user must disconnect the USB cable from the OSBDM device
and the 2-pin female jumper on the IRQ pin must be removed. Next, reconnect the USB
cable and the device will be in Run Mode. Click on OK and CodeWarrior will move onto
programming or running the code.

P&E Hardware Interface Connection for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

706 Freescale Semiconductor, Inc.



The CodeWarrior IDE layout will have the latest OSBDM firmware. If for any reason
you experience difficulty performing OSBDM firmware update, visit www.pemicro.com/
osbdm and use the Multilink/OSBDM Firmware Update Utility to force an update, or use
the OSBDM Firmware Recovery Utility for a fail safe way to reprogram a working,
corrupted, or blank OSBDM firmware via an external USB-ML-12 hardware interface.

10.2.3.1.2 Advanced Programming/Debug Options

The Advanced Programming/Debug Options menu option takes you to the Advanced
Options dialog box, where you can configure the software settings for the Flash
programming procedure.

Figure 10-46. Advanced Options Dialog Box

10.2.3.1.2.1 Enable Flash Programming Dialog Box

Setting the Enable Flash Programming dialog box lets you view the steps taken by the
Flash Programmer.

10.2.3.1.2.1.1 Trim Options

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 707



The Calculate Trim and Program the Non-Volatile Trim Register checkbox enables
automatic calculation and programming of the trim value to a designated Non-Volatile
memory location.

10.2.3.1.2.1.2 Non-Volatile Memory Preservation

You have the option of preserving up to three independent ranges of non-volatile memory
(on devices with EEPROM, the entire EEPROM array may optionally be preserved as
well). Ranges that are designated as "preserved" are read before an erase and re-
programmed immediately afterwards, thereby preserving the data in these ranges. Any
attempts to program data into a preserved range is ignored. When entering an address into
the preserved range field (hexadecimal input is expected), the values are masked
according to the row size of the device. This ensures that the reprogramming of preserved
data does not cause any conditions that disturb programming.

10.2.3.1.2.1.3 Sync to PLL Change Checkbox

The debugger requires the Sync to PLL Change to synchronize the software/hardware
connection with the microprocessor during the Flash erasing/programming procedure.

10.2.3.1.2.1.4 Calculate and Program Non-Volatile Trim

The checkbox gives you the option of trimming device to default center frequency. If this
checkbox is selected, a calculated trim frequency will be programmed to a dedicated non-
volatile memory location during the next debugging session.

10.2.3.1.2.1.5 Custom Trim

When the checkbox is checked, you have the ability to input a custom center frequency
within an allowed range for a given device. A trim value based on this frequency will be
calculated and programming into dedicated non-volatile memory location during the next
debug session.

NOTE
For more information about the specific functionality of the
internal clock source, see the Freescale Data Sheet for your
specific device.

P&E Hardware Interface Connection for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

708 Freescale Semiconductor, Inc.



10.2.3.1.2.1.6 Alternative Algorithm Functionality

Once you create a project for a specific HCS08/RS08/CFV1 microprocessor, the
debugger specifies a default algorithm to use during all Flash programming operations.
The debugger uses this algorithm for nearly all programming requirements. The default
algorithm can be found in the <CW_Install>/MCU/bin/plugins/support/HC08/gdi/P&E directory.

However, the default algorithm may be overridden via the Alternative Algorithm
function, located in the Advanced Programming/Debug Options menu. You can use this
feature to select a custom programming algorithm, or simply select another one of P&E's
many programming algorithms for use with a specific project.

CAUTION
Selecting the wrong programming algorithm may damage their
device, lead to under/over programming situations, or simply
not program portions of the project file. You are recommended
to use the default algorithm unless there is a compelling reason
to do otherwise.

Use these steps to override the default algorithm:

1. Check the Use Alternative Algorithm checkbox.

Figure 10-47. Advanced Options - Alternative Algorithm Checkbox

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 709



2. Click the Choose Alternative Algorithm button, which lets you browse for an
alternative algorithm.

3. Once you select the alternative algorithm, the name of the algorithm along with its
full path appears in the text field below the Choose Alternative Algorithm button.

At this point, the current project performs all future Flash programming operations using
the alternative algorithm. You may revert to the default algorithm at any time by clearing
the Use Alternative Algorithm checkbox.

10.2.3.1.3 Socket Programming Options Button

The Programming Adapter Connections dialog assistant is designed to facilitate the use
of an extensive set of Freescale programming socket adapters. This dialog can be used to
get a graphical representation of the signals that must be connected from the BDM header
to the pins of the microprocessor. Making these connections lets you establish
communication with a given device via a hardware debug interface.

The Socket Programming Options button in the BDM Launch Configuration dialog box
takes you to the Programming Adapter Connections dialog box (see the following figure),
where you can look up pin connection settings for the selected package type of the target
processor. Only available package types for each target processor are listed in the
Package drop-down menu. Once you have selected a package type, the Adapter
Information section provides the part number of the adapter board, the socket number
where the processor should be placed, and a pair of header numbers that indicate which
connections should be made between them. Immediately below the Adapter Information
section you will find a pin layout that displays the required connections between the
aforementioned pair of headers.

P&E Hardware Interface Connection for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

710 Freescale Semiconductor, Inc.



Figure 10-48. Programming Adapter Connections Dialog Box

10.2.3.2 Connection Assistant

The P&E Connection Assistant is displayed when you attempt to debug and the program
cannot connect to the interface hardware specified in the Launch Configuration dialog
box. To edit or change your debugger connection:

1. Select the P&E device that you are using from the first drop-down menu and click
Refresh.

2. Using the second drop-down menu, select the port on which the interface is
connected.

3. Use the Cyclone Power Control panel to configure the power and delay settings
(Cyclone only). Refer to Connection Parameter Options for P&E RS08 Multilink/
Cyclone /OSBDM for more details of each setting.

4. Click the Retry button

Chapter 10 Connections - RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 711



Figure 10-49. Connection Assistant Interface Selected

10.2.4 Active Mode Menu Options

When the microprocessor is connected, the active mode menu shows the name of the
microprocessor and gives you the access to P&E Microcomputer Systems' Compatible
Hardware Interfaces web page and home page. If the OSBDM interface is being used for
the debugging session, then the OSBDM Documentation option appears within the active
mode menu, which takes you to P&E Microcomputer Systems' OSBDM website. When
the microprocessor is not connected, the menu is not available.

Figure 10-50. Additional Connection Menu Options

P&E Hardware Interface Connection for RS08

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

712 Freescale Semiconductor, Inc.



Chapter 11
Connections - ColdFire V1/ColdFire+ V1

This chapter describes the features and settings of the connections that interface the
CodeWarrior debugger with the ColdFire V1/ColdFire+ V1 target board.

For the IDE to communicate with the target hardware, you must specify several key
items: the debugger protocol, a connection type, and any connection parameters. You can
enter these items using options in the Launch Configuration panel. Launch Configuration
panel can be accessed by clicking on the Edit button located within the Main tab of the
Debug Configurations dialog box. These options are:

• The Connection Type option determines what debugger protocol the debugger uses
to communicate with the target.

• After you make the option for the connection type, the Connection Settings changes
to display configuration options specific for the hardware probe.

The topics in this chapter discuss the features and settings of the connections that
interface the CodeWarrior debugger with the ColdFire V1/ColdFire+ V1 device family.

NOTE
The MMA95xx sensor chip uses the ColdFire V1 chip core;
therefore, users should use the ColdFire V1/ColdFire+ V1
connection settings within the CodeWarrior debugger.

11.1 P&E Hardware Interface Connections for ColdFire V1
This section describes the ColdFire V1/ColdFire+ V1 P&E Connection options. The
Connection setting permits a connection to CFV1/CF+V1 Freescale devices via P&E
Multilink, Cyclone, and OSBDM hardware interfaces. This connection mode lets you
debug code, as the firmware is fully resident in the Flash or RAM of the microprocessor.

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 713



This topic describes all P&E Multilink/Cyclone/OSBDM connection options, which are
common to all P&E Cyclone Serial, P&E Cyclone USB, P&E Cyclone Ethernet, and
Open Source BDM connections.

The options include:

• New Project Wizard
• Launch Configurations Settings
• Changing P&E Connection Settings

11.1.1 New Project Wizard
When creating a new project using the New Project Wizard, you will be given the option
to select which hardware you will be using to debug your chip. Select the P&E hardware
interfaces you want to use by checking the checkboxes.

NOTE
Once the project is created, new connections will be created
with the P&E hardware interfaces you have selected as the
default settings. Use Debug Configurations if you want to edit
or change your hardware interface and its settings. If the P&E
Cyclone was selected, the USB port will be the default setting.
Use Debug Configurations to switch to Ethernet or Serial port
connections.

11.1.2 Launch Configurations Settings

To set the launch configurations for the debugger:

1. Right-click on your project and navigate to -> Debug As -> Debug Configurations.
The Debug Configuration Window will appear.

2. In the left column, select the project type you would like to set the launch
configurations. Refer to the following figure.

3. In the right column, click the Main tab and use the Connection Selection drop-down
box to select a connection.

4. Click the Edit button beside the selected connection and the Launch Configuration
Window will appear.

5. Set your configurations, click the OK button, and click the Debug button to start the
debugger.

P&E Hardware Interface Connections for ColdFire V1

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

714 Freescale Semiconductor, Inc.



Figure 11-1. Debug Configuration Dialog Box

11.1.3 Changing P&E Connection Settings

All connection settings for P&E hardware interfaces are configured in the Launch
Configurations dialog box.

Chapter 11 Connections - ColdFire V1/ColdFire+ V1

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 715



Figure 11-2. P&E ColdFire V1 Launch Configuration Dialog Box

The following table describes the options for this dialog box.

Table 11-1. Connection Parameter Options for P&E Multilink /Cyclone/OSBDM

Option Description

Interface Use this option to select the interface type. Select a supported
interface from the list box. The options are:

• USB Multilink, USB Multilink FX, Embedded OSBDM/
OSJTAG - USB Port

• Cyclone - Serial Port
• Cyclone - USB Port
• Cyclone - Ethernet Port

NOTE: Click on the "Compatible Hardware" link to help you
determine which P&E hardware is most suitable for your
project.

Refresh Click this button to have the workstation scan for a valid
interface and port. Valid interfaces and ports appear in the
Interface and Port list boxes.

Port This option selects the port over which debug
communications is conducted. Select an available port from
the list box. NOTE: If you are having issues trying to get a
port to display, click on the [FAQ #29] link for help.

Table continues on the next page...

P&E Hardware Interface Connections for ColdFire V1

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

716 Freescale Semiconductor, Inc.



Table 11-1. Connection Parameter Options for P&E Multilink /Cyclone/OSBDM (continued)

Option Description

Socket Programming Options The Socket Programming Options button brings up a dialog
that provides you a graphical representation of the signals
that must be connected from the BDM header to the pins of
the microprocessor, in order to use Freescale socket
adapters.

Advanced Programming Options The Advanced Programming Options button brings up a
dialog that provides you with options to configure the flash
programming procedure.

Specify IP (Cyclone Ethernet only) Use this option to specify the IP address of a Cyclone outside
of the local network. Click on the checkbox to enable the
textbox. This will also disable the port dropdown box.
Currently supports IPv4 only.

Specify Network Card IP (Cyclone Ethernet only) Use this option to specify the local network card IP address if
there are multiple cards on your computer. Click on the
checkbox to enable the textbox. Currently supports IPv4 only.

Provide power to target (Cyclone and USB Multilink Universal
FX only)

Check this option to have the Cyclone or USB Multilink
Universal FX (circuitry) supply power to the hardware target.
Uncheck this option to not provide power.

NOTE: For USB Multilink Universal FX, use the jumper
settings located at JP10 to provide either 3.3V or 5V.

Power off target upon software exit (Cyclone and USB
Multilink Universal FX only)

Check this option to turn off the power when the program
terminates. Uncheck this option to leave the hardware target
powered continuously.

Regulator Output Voltage (Cyclone and USB Multilink
Universal FX only)

This option adjusts the output voltage that powers the
hardware target. Select a voltage value from this option's list
box. NOTE: An improper voltage setting can damage the
board.

Power down delay (Cyclone and USB Multilink Universal FX
only)

This option specifies amount of time for which the target will
be turned off during a RESET power cycling sequence. Enter
the delay interval (in milliseconds) in this option's text box.

Power up delay (Cyclone and USB Multilink Universal FX
only)

This option specifies amount of time for which the target will
remain powered prior to a RESET power cycling sequence.
Enter the delay interval (in milliseconds) in this option's text
box.

WARNING
An improper voltage setting can damage the board.

To change P&E Connections settings, perform these steps.

1. In the CodeWarrior Projects view, select the project for which you want to change
the P&E Connections settings.

NOTE
It is assumed that you have created a project and built it.

2. Select Run > Debug Configurations from the main menu bar of the IDE.

Chapter 11 Connections - ColdFire V1/ColdFire+ V1

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 717



The Debug Configurations dialog box appears.

3. Expand the CodeWarrior tree control in the left pane and select the launch
configuration you want to debug.

4. Click the Main tab.

The Main page appears in the area beneath the tabs.

5. Select a system within Connection which you would like to use to debug. You could
create a new system by clicking the New button. For more details about creating a
new remote system, refer to the topic Target Management via Remote System
Explorer in the CodeWarrior Common Features Guide. Once a remote system is
selected, click the Edit button. The Launch Configuration Panel will appear.

6. Ensure that the Target is the correct microcontroller you want to debug. Use the
drop-down box or the Edit button to change this option.

7. In the Connection Type drop-down box, select P&E ColdFire V1 Multilink/Cyclone/
OSBDM. The P&E connections settings will appear below.

8. Click Refresh to scan valid interface and port.

Valid interfaces and ports appear in the Interface and Port drop-down lists in the
Connection Port and Interface Type group.

9. Select a supported interface from the Interface drop-down list.
10. Select a supported port from the Port drop-down list.

NOTE
The port displayed may vary depending on the interface.
For example, if you select interface as Cyclone- Serial Port,
the available port option is COM1 : Serial Port 1.

11. Specify settings in the Hardware Interface Power Control (Voltage --> Power -Out
Jack) group.

NOTE
This group will be enabled for the Tracelink and USB
Multilink Universal FX interfaces only. For USB Multilink
Universal FX interface, use the jumper settings located at
JP10 to provide either 3.3V or 5V.

• Check the Provide power to target checkbox to have the hardware interface
(circuitry) provide power to the target else clear the checkbox if you do not want
to provide power to the target.

• Check the Power off target upon software exit checkbox to turn off the power
when the program terminate else clear the checkbox to leave the hardware target
powered continuously.

P&E Hardware Interface Connections for ColdFire V1

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

718 Freescale Semiconductor, Inc.



• Select a voltage value from the Regulator Output Voltage drop-down list. This
adjusts the output voltage that powers the hardware target.

WARNING
An improper voltage setting can damage the board.

• Enter the delay interval (in milliseconds) in the Power Down Delay text box.
This option specifies the time interval to wait before shutting off the power to the
hardware target. The hardware interface powers down the device once the debug
session is over, or while executing a power cycling sequence after beginning a
new debug session.

• Enter the delay interval (in milliseconds) in the Power Up Delay text box. This
option specifies the time interval to wait before turning on the power to the
hardware target. If the power to target feature is enabled, the hardware interface
will power up the device while executing a power cycling sequence at the
beginning of every debug session.

• Click OK to save changes to the P&E Connections settings. The Launch
Configuration Panel dialog box will close.

• Click Close button to close the Debug Configuration dialog box.

11.1.3.1 P&E Hardware Interface Connection-Specific Options

This topic describes the connection-specific options. The connections include:

• P&E USB Multilink Universal [FX]/USB Multilink
• P&E Cyclone Serial
• P&E Cyclone USB
• P&E Cyclone Ethernet
• Open Source BDM

11.1.3.1.1 P&E USB Multilink Universal [FX]/USB Multilink

The P&E USB Multilink Universal [FX]/ USB Multilink Connection setting permits a
connection to USB Multilink devices, which include the P&E BDM Multilink, USB
Multilink Universal, and the USB Multilink Universal FX. P&E USB Multilink
Universal [FX]/USB Multilink mode lets you debug code, as the firmware is fully
resident in the Flash of the microprocessor. The operation of all modules fully reflects the
actual operation of the onboard resources. Like the USB Multilink Universal, the USB
Multilink Universal FX can conveniently debug all Freescale architectures found in the
current CodeWarrior 10 version, however, the FX version is up to 8 times faster than the
USB Multilink Universal and it can also provide power to the target.

Chapter 11 Connections - ColdFire V1/ColdFire+ V1

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 719



11.1.3.1.1.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E ColdFire V1 Multilink/Multilink Universal/Cyclone/
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings.

Figure 11-3. P&E's Launch Configuration Dialog Box

To use P&E's USB Multilink Universal [FX]/USB Multilink, first connect your hardware
interface to your computer, and then set the interface to USB Multilink, USB Multilink
FX, Embedded OSBDM/OSJTAG - USB Port. The Port selection should automatically

P&E Hardware Interface Connections for ColdFire V1

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

720 Freescale Semiconductor, Inc.



populate your hardware interface. If not, use the Refresh button and the Port selection
drop-down box. If you are having issues getting your device to populate, use the link for
FAQ #29 to find popular solutions.

11.1.3.1.2 P&E Cyclone Serial

The P&E Cyclone Serial Connection setting permits a connection to Cyclone Serial
devices. P&E Cyclone Serial mode lets you debug code, as the firmware is fully resident
in the Flash of the microprocessor. The operation of all modules fully reflects the actual
operation of the onboard resources.

11.1.3.1.2.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E ColdFire V1 Multilink/Multilink Universal/Cyclone
Pro/OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings.

Chapter 11 Connections - ColdFire V1/ColdFire+ V1

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 721



Figure 11-4. P&E's Launch Configuration Dialog Box

To use P&E's Cyclone Serial, first connect your hardware interface to your computer, and
then set the interface to Cyclone - Serial Port. The Port selection should automatically
populate your hardware interface. If not, use the Refresh button and the Port selection
drop-down box. If you are having issues getting your device to populate, use the link for
FAQ #29 to find popular solutions.

11.1.3.1.3 P&E Cyclone USB

The P&E Cyclone USB Connection setting permits a connection to Cyclone USB
devices. P&E Cyclone USB mode lets you debug code, as the firmware is fully resident
in the Flash of the microprocessor. The operation of all modules fully reflects the actual
operation of the onboard resources.

11.1.3.1.3.1 Debug configurations

P&E Hardware Interface Connections for ColdFire V1

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

722 Freescale Semiconductor, Inc.



To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E ColdFire V1 Multilink/Multilink Universal/Cyclone
Pro/OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings.

Figure 11-5. P&E's Launch Configuration Dialog Box

To use P&E’s Cyclone USB, first connect your hardware interface to your computer, and
then set the interface to Cyclone – USB Port. The Port selection should automatically
populate your hardware interface. If not, use the Refresh button and the Port selection
drop-down box. If you are having issues getting your device to populate, use the link for
FAQ #29 to find popular solutions.

Chapter 11 Connections - ColdFire V1/ColdFire+ V1

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 723



11.1.3.1.4 P&E Cyclone Ethernet

The P&E Cyclone Ethernet Connection setting permits a connection to Cyclone Ethernet
devices. P&E Cyclone Ethernet mode lets you debug code, as the firmware is fully
resident in the Flash of the microprocessor. The operation of all modules fully reflects the
actual operation of the onboard resources.

11.1.3.1.4.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E ColdFire V1 Multilink/Multilink Universal/Cyclone
Pro/OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings.

P&E Hardware Interface Connections for ColdFire V1

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

724 Freescale Semiconductor, Inc.



Figure 11-6. P&E's Launch Configuration Dialog Box

To use P&E's Cyclone Ethernet, first connect your hardware interface to your computer,
and then set the interface to Cyclone - Ethernet Port. The Port selection should
automatically populate your hardware interface. If not, use the Refresh button and the
Port selection drop-down box. You can also specify IP and Network Card IP by clicking
on the checkboxes. If you are having issues getting your device to populate, use the link
for FAQ #29 to find popular solutions.

11.1.3.1.5 Open Source BDM

Freescale supplies certain development boards with an integrated debug circuit based on

Open Source BDM. This allows the development board to be debugged from the PC via
the USB bus without requiring external debug hardware, such as the Cyclone or USB
Multilink. The development board also derives its power from the USB Bus.

Chapter 11 Connections - ColdFire V1/ColdFire+ V1

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 725



The Open Source BDM circuit design (OSBDM-JM60) is an open source, community
driven design. It has been published on Freescale's website, and full documentation can
be found in the Community Forums. The latest documentation and firmware can be
downloaded from www.pemicro.com/osbdm.

Integration with CodeWarrior is handled via the "Open Source BDM" connection. P&E
has integrated the Open Source BDM support into the same connection that supports both
the USB Multilink and the Cyclone. All of the dialogs that affect operation of these
hardware interfaces function in the same manner when using OSBDM (albeit at a lower
data rate).

The Open Source BDM Connection setting permits a connection to Open Source BDM
devices. Open Source BDM mode lets you debug code, as the firmware is fully resident
in the Flash or RAM of the microprocessor. The operation of all modules fully reflects
the actual operation of the onboard resources.

11.1.3.1.5.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E ColdFire V1 Multilink/Multilink Universal/Cyclone/
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings.

P&E Hardware Interface Connections for ColdFire V1

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

726 Freescale Semiconductor, Inc.



Figure 11-7. P&E's Launch Configuration Dialog Box

To use Open Source BDM, first connect your hardware interface to your computer, and
then set the interface to USB Multilink, USB Multilink FX, Embedded OSBDM/
OSJTAG - USB Port. The Port selection should automatically populate your hardware
interface. If not, use the Refresh button and the Port selection drop-down box. If you are
having issues getting your device to populate, use the link for FAQ #29 to find popular
solutions.

11.1.3.1.5.2 OSBDM Firmware Update

All CodeWarrior IDE's version 10.1 and higher have an automatic firmware update
mechanism for built-in OSBDM hardware interfaces. Whenever an OSBDM-integrated
hardware interface is plugged into a USB port and CodeWarrior attempts to contact the
device, it will automatically check to see if the device has the latest OSBDM firmware
version. If the firmware on the device is older than the one found within the CodeWarrior
package, then a dialog box will indicate that a firmware update is necessary.

Chapter 11 Connections - ColdFire V1/ColdFire+ V1

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 727



Figure 11-8. Old OSBDM Firmware Detected

To update the firmware, the OSBDM device must enter Bootloader mode. To do so the
USB cable must be disconnected from the device and the OSBDM-JM60 IRQ pin must
be connected to ground usually done by using a 2-pin female jumper. Use the OSBDM
device schematics to find the IRQ pin. Once the IRQ pin is grounded, connect the USB
cable to the OSBDM device and click on the OK button. If done correctly, the automatic
firmware update will occur.

Figure 11-9. OSBDM Firmware Updating

When the firmware is done updating, a dialog box will indicate that the OSBDM device
must exit Bootloader mode and enter into Run mode.

Figure 11-10. Start OSBDM Run Mode

To enter Run Mode, the user must disconnect the USB cable from the OSBDM device
and the 2-pin female jumper on the IRQ pin must be removed. Next, reconnect the USB
cable and the device will be in Run Mode. Click on OK and CodeWarrior will move onto
programming or running the code.

P&E Hardware Interface Connections for ColdFire V1

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

728 Freescale Semiconductor, Inc.



The CodeWarrior IDE layout will have the latest OSBDM firmware. If for any reason
you experience difficulty performing OSBDM firmware update, visit www.pemicro.com/
osbdm and use the Multilink/OSBDM Firmware Update Utility to force an update, or use
the OSBDM Firmware Recovery Utility for a fail safe way to reprogram a working,
corrupted, or blank OSBDM firmware via an external USB-ML-12 hardware interface.

11.1.3.2 Advanced Programming/Debug Options

The Advanced Programming/Debug Options menu option takes you to the Advanced
Options dialog box, where you can configure the software settings for the Flash
programming procedure.

Figure 11-11. Advanced Options Dialog Box

Chapter 11 Connections - ColdFire V1/ColdFire+ V1

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 729



11.1.3.2.1 Enable Flash Programming Dialog

Setting the Enable Flash Programming dialog box lets you view the steps taken by the
Flash Programmer.

11.1.3.2.2 Trim Options

The Calculate Trim and Program the Non-Volatile Trim Register checkbox enables
automatic calculation and programming of the trim value to a designated Non-Volatile
memory location.

11.1.3.2.3 Non-Volatile Memory Preservation

You have the option of preserving up to three independent ranges of non-volatile memory
(on devices with EEPROM, the entire EEPROM array may optionally be preserved as
well). Ranges that are designated as "preserved" are read before an erase and re-
programmed immediately afterwards, thereby preserving the data in these ranges. Any
attempts to program data into a preserved range are ignored. When entering an address
into the preserved range field (hexadecimal input is required), the values are masked
according to the row size of the device. This ensures that the reprogramming of preserved
data does not cause any conditions that disturb programming.

11.1.3.2.4 Sync to PLL Change Checkbox

The debugger requires the Sync to PLL Change to synchronize the software/hardware
connection with the microprocessor during the Flash erase/program procedure.

11.1.3.2.5 Calculate and Program Non-Volatile Trim

The checkbox gives you the option of trimming device to default center frequency. If this
checkbox is selected, a calculated trim frequency will be programmed to a dedicated non-
volatile memory location during the next debugging session.

11.1.3.2.6 Custom Trim

P&E Hardware Interface Connections for ColdFire V1

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

730 Freescale Semiconductor, Inc.



When the checkbox is checked, you have the ability to input a custom center frequency
within an allowed range for a given device. A trim value based on this frequency will be
calculated and programming into dedicated non-volatile memory location during the next
debug session.

11.1.3.2.7 Alternative Algorithm Functionality

Once you create a project for a specific HCS08/RS08/CFV1 microprocessor, the
debugger specifies a default algorithm to use during all Flash programming operations.
The debugger uses this algorithm for nearly all programming requirements. The default
algorithm can be found in the <CW_Install>/MCU/bin/plugins/support/Coldfire/gdi/P&E
directory.

However, the default algorithm may be overridden via the Alternative Algorithm
function, located in the Advanced Programming/Debug Options menu. You can use this
feature to select a custom programming algorithm, or simply select another one of P&E's
many programming algorithms for use with a specific project.

CAUTION
Selecting the wrong programming algorithm may damage their
device, lead to under/over programming situations, or simply
not program portions of the project file. It is therefore
recommended using the default algorithm unless there is a
compelling reason to do otherwise.

Use these steps to override the default algorithm:

1. Check the Use Alternative Algorithm checkbox.

Chapter 11 Connections - ColdFire V1/ColdFire+ V1

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 731



Figure 11-12. Advanced Options - Alternative Algorithm Checkbox
2. Click the Choose Alternative Algorithm button, which lets you browse for an

alternative algorithm.
3. Once you select the alternative algorithm, the name of the algorithm along with its

full path appears in the text field below the Choose Alternative Algorithm button.
4. At this point, the current project performs all future Flash programming operations

using the alternative algorithm. You may revert to the default algorithm at any time
by clearing the Use Alternative Algorithm checkbox.

11.1.3.3 Connection Assistant

The P&E Connection Assistant is displayed when you attempt to debug but CodeWarrior
cannot connect to the interface hardware specified in the Launch Configuration dialog
box. To select the P&E Multilink/Cyclone /OSBDM as your debugger connection::

P&E Hardware Interface Connections for ColdFire V1

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

732 Freescale Semiconductor, Inc.



1. Select the P&E device that you are using from the first drop-down menu and click
Refresh.

2. Using the second drop-down menu, select the port on which the interface is
connected.

3. Use the Cyclone Power Control panel to configure the power and delay settings
(Cyclone only).

4. Click the Retry button.

11.1.4 Active Mode Menu Options

When the microprocessor is connected, the active mode menu shows the name of the
microprocessor and gives you the access to P&E Microcomputer Systems' Compatible
Hardware Interfaces web page and home page. If the OSBDM interface is being used for
the debugging session, then the OSBDM Documentation option appears within the active
mode menu, which takes you to P&E Microcomputer Systems' OSBDM website. When
the microprocessor is not connected, the menu is not available.

Figure 11-13. Additional Connection Menu Options

Chapter 11 Connections - ColdFire V1/ColdFire+ V1

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 733



P&E Hardware Interface Connections for ColdFire V1

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

734 Freescale Semiconductor, Inc.



Chapter 12
Connections - ColdFire V2/3/4

This chapter describes the features and settings of the connections that interface the
CodeWarrior debugger with the ColdFire V2/3/4 target board.

For the IDE to communicate with the target hardware, you must specify several key
items: the debugger protocol, a connection type, and any connection parameters. You can
enter these items using options in the Launch Configuration panel. Launch Configuration
panel can be accessed by clicking on the Edit button located within the Main tab of the
Debug Configurations dialog box. These options are:

• The Connection Type option determines what debugger protocol the debugger uses
to communicate with the target.

• After you make the option for the connection type, the Connection Settings changes
to display configuration options specific for the hardware probe.

The topics in this chapter discuss the features and settings of the connections that
interface the CodeWarrior debugger with the ColdFire V2/3/4 device family.

The topics in this chapter are:

• P&E Hardware Interface Connection for ColdFire V234

12.1 P&E Hardware Interface Connection for ColdFire V234
This section describes the CFV234 P&E Connection options. The P&E Connection
setting permits a connection to CFV234 Freescale devices via P&E Multilink, Cyclone ,
Tracelink, and OSBDM hardware interfaces. This connection mode lets you debug code,
as the firmware is fully resident in the Flash or RAM of the microprocessor.

This topic describes all P&E Multilink/Cyclone /Tracelink/OSBDM connection options,
which are common to all P&E USB Multilink Universal [FX]/ USB Multilink, P&E
Cyclone Serial, P&E Cyclone USB, P&E Cyclone Ethernet, P&E TraceLink USB, P&E
TraceLink Ethernet, and Open Source BDM

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 735



The options include:

• New Project Wizard
• Launch Configuration Settings
• Changing P&E Connection Settings

12.1.1 New Project Wizard

When creating a new project using the New Project Wizard, you will be given the option
to select which hardware you will be using to debug your chip. Select the P&E hardware
interfaces you want to use by checking the checkboxes.

Figure 12-1. New project wizard

P&E Hardware Interface Connection for ColdFire V234

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

736 Freescale Semiconductor, Inc.



NOTE
Once the project is created, new connections will be created
with the P&E hardware interfaces you have selected as the
default settings. Use Debug Configurations if you want to edit
or change your hardware interface and its settings. If the P&E
Cyclone was selected, the USB port will be the default setting.
Use Debug Configurations to switch to Ethernet or Serial port
connections.

12.1.2 Launch Configuration Settings

To set the launch configurations for the debugger:

1. Right-click on your project and navigate to -> Debug As -> Debug Configurations.
The Debug Configuration Window will appear.

Figure 12-2. Debug Configuration Dialog Box
2. In the left column, select the project type you would like to set the launch

configurations.

Chapter 12 Connections - ColdFire V2/3/4

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 737



3. In the right column, click the Main tab and use the Connection Selection drop-down
box to select a connection.

4. Click the Edit button beside the selected connection and the Launch Configuration
Window will appear.

5. Set your configurations, click the OK button, and click the Debug button to start the
debugger.

Figure 12-3. Launch Configuration Dialog Box

12.1.3 Changing P&E Connection Settings

P&E Hardware Interface Connection for ColdFire V234

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

738 Freescale Semiconductor, Inc.



All connection settings for P&E hardware interfaces are configured in the Launch
Configurations dialog box.

Figure 12-4. P&E CFV234 Launch Configuration Dialog Box

The following table describes the options for this view.

Table 12-1. Connection Parameter Options for P&E Multilink/Cyclone /Tracelink/OSBDM

Option Description

Interface Use this option to select the interface type. Select a supported
interface from the list box. The options are:

• USB ColdFire Multilink - USB Port
• USB Multilink Universal [FX]- USB Port

NOTE: The USB Multilink Universal and USB Multilink
Universal FX can conveniently support all Freescale
architectures found in the current CodeWarrior 10 version

• Cyclone - Serial Port
• Cyclone - USB Port
• Cyclone - Ethernet Port
• TraceLink - USB Port

Table continues on the next page...

Chapter 12 Connections - ColdFire V2/3/4

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 739



Table 12-1. Connection Parameter Options for P&E Multilink/Cyclone /Tracelink/OSBDM
(continued)

Option Description

• TraceLink - Ethernet Port
• OSBDM

NOTE: Click on the "Compatible Hardware" link to help you
determine which P&E hardware is most suitable for your
project.

Port This option selects the port over which debug
communications is conducted. Select an available port from
the list box. NOTE: If you are having issues trying to get a
port to display, click on the [FAQ #29] link for help

Specify IP (Cyclone and Tracelink Ethernet only) Use this option to specify the IP address of a Cyclone or
Tracelink outside of the local network. Click on the checkbox
to enable the textbox. This will also disable the port drop
down box. Currently supports IPv4 only.

Specify Network Card IP (Cyclone and Tracelink Ethernet
only)

Use this option to specify the local network card IP address if
there are multiple cards on your computer. Click on the
checkbox to enable the textbox. Currently supports IPv4 only.

Refresh Click this button to have the workstation scan for a valid
interface and port. Valid interfaces and ports appear in the
Interface and Port list boxes.

Provide power to target (Tracelink and USB Multilink
Universal FX only)

Check this option to have the Cyclone or USB Multilink
Universal FX (circuitry) supply power to the hardware target.
Uncheck this option to not provide power.

NOTE: For USB Multilink Universal FX, use the jumper
settings located at JP10 to provide either 3.3V or 5V.

Power off target upon software exit (Tracelink and USB
Multilink Universal FX only)

Check this option to turn off the power when the program
terminates. Uncheck this option to leave the hardware target
powered continuously.

Regulator Output Voltage (Tracelink only) This option adjusts the output voltage that powers the
hardware target. Select a voltage value from this option's list
box.

CAUTION: An improper voltage setting can damage the
board.

Power down delay (Tracelink and USB Multilink Universal FX
only)

This option specifies amount of time for which the target will
be turned off during a RESET power cycling sequence. Enter
the delay interval (in milliseconds) in this option's text box.

Power up delay (Tracelink and USB Multilink Universal FX
only)

This option specifies amount of time for which the target will
remain powered prior to a RESET power cycling sequence.
Enter the delay interval (in milliseconds) in this option's text
box.

Debug Shift Freq. This option lets you to set the debug shift clock speed of
P&E's interfaces. This integer value may be used to
determine the speed of communications according to the
following equations: Cyclone / TraceLink : (50000000/(2*N
+5)) Hz USB-ML-CF : ( 1000000/(N+1)) Hz USB Multilink
Universal: (1000000/(N+1)) Hz USB ML Universal FX :
(25000000/(N+1)) Hz OSBDM : Fixed Frequency The value n
should be between 0 and 31. This shift clock takes effect after
the commands in the top of the programming algorithm are

Table continues on the next page...

P&E Hardware Interface Connection for ColdFire V234

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

740 Freescale Semiconductor, Inc.



Table 12-1. Connection Parameter Options for P&E Multilink/Cyclone /Tracelink/OSBDM
(continued)

Option Description

executed so that these commands can increase the target
frequency and allow a faster shift clock. This clock can't
generally exceed a div 4 of the processor bus frequency.

Delay After Reset Specifies a delay after the programmer resets the target that
we check to see if the part has properly gone into background
debug mode. This is useful if the target has a reset driver
which hold the MCU in reset after the programmer releases
the reset line. The n value is a delay in milliseconds.

Trace Max Buffer Size Only applicable for the P&E TraceLink interface. Configures
the trace buffer capacity of the TraceLink. Smaller sizes result
in faster trace upload times, whereas larger sizes allow the
user to view more trace information.

To change P&E Connections settings, perform these steps:

1. In the CodeWarrior Projects view, select the project for which you want to change
the P&E Connections settings.

NOTE
It is assumed that you have created a project and built it.

2. Select Run > Debug Configurations from the main menu bar of the IDE.

The Debug Configurations dialog box appears.

3. Expand the CodeWarrior tree control in the left pane and select the launch
configuration you want to debug.

4. Click the Main tab.

The Main page appears in the area beneath the tabs.

5. Select a system within Connection of which you would like to use to debug. You
could create a new system by clicking the New button. For more details about
creating a new remote system, refer to the topic Target Management via Remote
System Explorer in the CodeWarrior Common Features Guide. Once a remote
system is selected, click the Edit button. The Launch Configuration Panel will
appear.

6. Ensure that the Target is the correct microcontroller you want to debug. Use the
drop-down box or the Edit button to change this option.

7. In the Connection Type drop-down box, select P&E ColdFire V234 Multilink/
Multilink Universal/Cyclone /OSBDM. The P&E connections settings will appear
below.

8. Click Refresh to scan valid interface and port.

Chapter 12 Connections - ColdFire V2/3/4

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 741



Valid interfaces and ports appear in the Interface and Port drop-down lists in the
Connection Port and Interface Type group.

9. Select a supported interface from the Interface drop-down list.
10. Select a supported port from the Port drop-down list.

NOTE
The port displayed may vary depending on the interface.
For example, if you select interface as Cyclone - Serial
Port, the available port option is COM1 : Serial Port 1.

11. Specify settings in the Hardware Interface Power Control (Voltage --> Power -Out
Jack) group.

NOTE
This group will be enabled for the Tracelink and USB
Multilink Universal FX interfaces only. For USB Multilink
Universal FX interface, use the jumper settings located at
JP10 to provide either 3.3V or 5V.

• Check the Provide power to target checkbox to have the hardware interface
(circuitry) provide power to the target else clear the checkbox if you do not want
to provide power to the target.

• Check the Power off target upon software exit checkbox to turn off the power
when the program terminate else clear the checkbox to leave the hardware target
powered continuously.

• Select a voltage value from the Regulator Output Voltage drop-down list. This
adjusts the output voltage that powers the hardware target.

CAUTION
An improper voltage setting can damage the board.

• Enter the delay interval (in milliseconds) in the Power Down Delay text box.
This option specifies the time interval to wait before shutting off the power to the
hardware target. The hardware interface powers down the device once the debug
session is over, or while executing a power cycling sequence after beginning a
new debug session.

• Enter the delay interval (in milliseconds) in the Power Up Delay text box. This
option specifies the time interval to wait before turning on the power to the
hardware target. If the power to target feature is enabled, the interface will power
up the device while executing a power cycling sequence at the beginning of
every debug session.

• Select a BDM speed using the drop-down box in the BDM Debug Shift
Frequency.

P&E Hardware Interface Connection for ColdFire V234

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

742 Freescale Semiconductor, Inc.



NOTE
If you select a fast BDM speed, there may be scenarios
where you may have difficulty communicating with
your target device. You may want to experimentally
select a BDM speed that is fast and yet have a good
communication with your target.

• Click on the Delay after Reset checkbox and enter the desired delay (in
milliseconds) in the text box.

This option specifies the time interval to wait between resetting and
communicating the target device.

• Click the OK to save changes to the P&E Connections settings. The Launch
Configuration Panel dialog box will close.

• Click on the Close button to close the Debug Configuration dialog box.

12.1.3.1 P&E Hardware Interface Connection- Specific Options

This topic describes the connection-specific options. The connections include:

• P&E USB Multilink Universal [FX]/ USB Multilink
• P&E Cyclone Serial
• P&E Cyclone USB
• P&E Cyclone Ethernet
• P&E TraceLink USB
• P&E TraceLink Ethernet
• Open Source BDM

12.1.3.1.1 P&E USB Multilink Universal [FX]/ USB Multilink

The P&E USB Multilink Universal [FX]/ USB Multilink Connection setting permits a
connection to USB Multilink devices, which include the P&E ColdFire Multilink, USB
Multilink Universal, and the USB Multilink Universal FX. P&E USB Multilink
Universal [FX]/ USB Multilink mode lets you debug code, as the firmware is fully
resident in the Flash of the microprocessor. The operation of all modules fully reflects the
actual operation of the onboard resources. Like the USB Multilink Universal, the USB
Multilink Universal FX can conveniently debug all Freescale architectures found in the
current CodeWarrior 10 version, however, the FX version is up to 8 times faster than the
USB Multilink Universal and it can also provide power to the target.

Chapter 12 Connections - ColdFire V2/3/4

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 743



12.1.3.1.1.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E ColdFire V234 Multilink/Multilink Universal/
Cyclone /OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings.

Figure 12-5. P&E's Launch Configuration Dialog Box

P&E Hardware Interface Connection for ColdFire V234

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

744 Freescale Semiconductor, Inc.



To use P&E’s USB Multilink Universal [FX]/USB Multilink, first connect your hardware
interface to your computer, and then set the interface to USB Multilink, USB Multilink
FX, Embedded OSBDM/OSJTAG – USB Port. The Port selection should automatically
populate your hardware interface. If not, use the Refresh button and the Port selection
drop-down box. If you are having issues getting your device to populate, use the link for
FAQ #29 to find popular solutions.

12.1.3.1.2 P&E Cyclone Serial

The P&E Cyclone Serial Connection setting permits a connection to Cyclone Serial
devices. P&E Cyclone Serial mode lets you debug code, as the firmware is fully resident
in the Flash of the microprocessor. The operation of all modules fully reflects the actual
operation of the onboard resources.

12.1.3.1.2.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E ColdFire V234 Multilink/Multilink Universal/
Cyclone Max/OSBDM so that the Connection tab will populate P&E's hardware
interface connection settings.

Chapter 12 Connections - ColdFire V2/3/4

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 745



Figure 12-6. P&E's Launch Configuration Dialog Box

To use P&E's Cyclone Serial, first connect your hardware interface to your computer, and
then set the interface to Cyclone - Serial Port. The Port selection should automatically
populate your hardware interface. If not, use the Refresh button and the Port selection
drop-down box. If you are having issues getting your device to populate, use the link for
FAQ #29 to find popular solutions.

NOTE
The Cyclone MAX does not support the ability to provide
power to the target.

12.1.3.1.3 P&E Cyclone USB

P&E Hardware Interface Connection for ColdFire V234

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

746 Freescale Semiconductor, Inc.



The P&E Cyclone USB Connection setting permits a connection to Cyclone USB
devices. P&E Cyclone USB mode lets you debug code, as the firmware is fully resident
in the Flash of the microprocessor. The operation of all modules fully reflects the actual
operation of the onboard resources.

12.1.3.1.3.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E ColdFire V234 Multilink/Multilink Universal/
Cyclone Max/OSBDM so that the Connection tab will populate P&E's hardware
interface connection settings.

Chapter 12 Connections - ColdFire V2/3/4

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 747



Figure 12-7. P&E's Launch Configuration Dialog Box

To use P&E's Cyclone USB, first connect your hardware interface to your computer, and
then set the interface to Cyclone - USB Port. The Port selection should automatically
populate your hardware interface. If not, use the Refresh button and the Port selection
drop-down box. If you are having issues getting your device to populate, use the link for
FAQ #29 to find popular solutions.

12.1.3.1.4 P&E Cyclone Ethernet

P&E Hardware Interface Connection for ColdFire V234

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

748 Freescale Semiconductor, Inc.



The P&E Cyclone Ethernet Connection setting permits a connection to Cyclone Ethernet
devices. P&E Cyclone Ethernet mode lets you debug code, as the firmware is fully
resident in the Flash of the microprocessor. The operation of all modules fully reflects the
actual operation of the onboard resources.

12.1.3.1.4.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E ColdFire V234 Multilink/Multilink Universal/
Cyclone Max/OSBDM so that the Connection tab will populate P&E's hardware
interface connection settings.

Chapter 12 Connections - ColdFire V2/3/4

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 749



Figure 12-8. P&E's Launch Configuration Dialog Box

To use P&E's Cyclone Ethernet, first connect your hardware interface to your computer,
and then set the interface to Cyclone - Ethernet Port. The Port selection should
automatically populate your hardware interface. If not, use the Refresh button and the
Port selection drop-down box. You can also specify IP and Network Card IP by clicking
on the checkboxes. If you are having issues getting your device to populate, use the link
for FAQ #29 to find popular solutions.

NOTE
The Cyclone MAX does not support the ability to provide
power to the target.

P&E Hardware Interface Connection for ColdFire V234

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

750 Freescale Semiconductor, Inc.



12.1.3.1.5 P&E TraceLink USB

The P&E TraceLink USB Connection setting permits a connection to TraceLink USB
devices. P&E TraceLink USB mode lets you debug code, as the firmware is fully resident
in the Flash of the microprocessor. The operation of all modules fully reflects the actual
operation of the onboard resources. P&E's TraceLink can conveniently support all
Freescale architectures found in the current CodeWarrior 10 version; however, it can only
capture the external trace signals for the ColdFire V2/3/4 and Kinetis ARM architectures.

12.1.3.1.5.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E ColdFire V234 Multilink/Multilink Universal/
Cyclone Max/OSBDM so that the Connection tab will populate P&E's hardware
interface connection settings.

Chapter 12 Connections - ColdFire V2/3/4

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 751



Figure 12-9. P&E's Launch Configuration Dialog Box

To use P&E's TraceLink USB, first connect your hardware interface to your computer,
and then set the interface to TraceLink - USB Port. The Port selection should
automatically populate your hardware interface. If not, use the Refresh button and the
Port selection drop-down box. If you are having issues getting your device to populate,
use the link for FAQ #29 to find popular solutions.

12.1.3.1.6 P&E TraceLink Ethernet

The P&E TraceLink Ethernet Connection setting permits a connection to TraceLink
Ethernet devices. P&E TraceLink Ethernet mode lets you debug code, as the firmware is
fully resident in the Flash of the microprocessor. The operation of all modules fully

P&E Hardware Interface Connection for ColdFire V234

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

752 Freescale Semiconductor, Inc.



reflects the actual operation of the onboard resources. P&E’s TraceLink can conveniently
support all Freescale architectures found in the current CodeWarrior 10 version; however,
it can only capture the external trace signals for the ColdFire V234 and Kinetis ARM
architectures. For external trace captures, the P&E TraceLink must have PST_CLK and
DDATA[3:0] pin connections from the ColdFire chip. Chips without these pins
connected can still be debugged by the TraceLink within CodeWarrior.

12.1.3.1.6.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E ColdFire V234 Multilink/Multilink Universal/
Cyclone Max/OSBDM so that the Connection tab will populate P&E's hardware
interface connection settings.

Chapter 12 Connections - ColdFire V2/3/4

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 753



Figure 12-10. P&E's Launch Configuration Dialog Box

To use P&E's TraceLink Ethernet, first connect your hardware interface to your
computer, and then set the interface to TraceLink - Ethernet Port. The Port selection
should automatically populate your hardware interface. If not, use the Refresh button and
the Port selection drop-down box. You can also specify IP and Network Card IP by
clicking on the checkboxes. If you are having issues getting your device to populate, use
the link for FAQ #29 to find popular solutions.

12.1.3.1.7 Open Source BDM

P&E Hardware Interface Connection for ColdFire V234

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

754 Freescale Semiconductor, Inc.



Freescale supplies certain development boards with an integrated debug circuit based on
Open Source BDM. This allows the development board to be debugged from the PC via
the USB bus without requiring external debug hardware, such as the Cyclone or USB
ColdFire Multilink. The development board also derives its power from the USB Bus.

The Open Source BDM circuit design (OSBDM-JM60) is an open source, community
driven design. It has been published on Freescale's website, and full documentation can
be found in the Community Forums. The latest documentation and firmware can be
downloaded from www.pemicro.com/osbdm.

Integration with CodeWarrior is handled via the "Open Source BDM" connection. P&E
has integrated the Open Source BDM support into the same connection that supports both
the USB ColdFire Multilink and the Cyclone . All of the dialogs that affect operation of
these hardware interfaces function in the same manner when using OSBDM (albeit at a
lower data rate).

The Open Source BDM Connection setting permits a connection to Open Source BDM
devices. Open Source BDM mode lets you debug code, as the firmware is fully resident
in the Flash or RAM of the microprocessor. The operation of all modules fully reflects
the actual operation of the onboard resources.

12.1.3.1.7.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E ColdFire V234 Multilink/Multilink Universal/
Cyclone Max/OSBDM so that the Connection tab will populate P&E's hardware
interface connection settings.

Chapter 12 Connections - ColdFire V2/3/4

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 755



Figure 12-11. P&E's Launch Configuration Dialog Box

To use Open Source BDM, first connect your hardware interface to your computer, and
then set the interface to USB Multilink, USB Multilink FX, Embedded OSBDM/
OSJTAG - USB Port. The Port selection should automatically populate your hardware
interface. If not, use the Refresh button and the Port selection drop-down box. If you are
having issues getting your device to populate, use the link for FAQ #29 to find popular
solutions.

12.1.3.1.7.2 OSBDM Firmware Update

P&E Hardware Interface Connection for ColdFire V234

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

756 Freescale Semiconductor, Inc.



All CodeWarrior IDE's version 10.1 and higher have an automatic firmware update
mechanism for built-in OSBDM hardware interfaces. Whenever an OSBDM-integrated
hardware interface is plugged into a USB port and CodeWarrior attempts to contact the
device, it will automatically check to see if the device has the latest OSBDM firmware
version. If the firmware on the device is older than the one found within the CodeWarrior
package, then a dialog box will indicate that a firmware update is necessary.

Figure 12-12. Old OSBDM Firmware Detected

To update the firmware, the OSBDM device must enter Bootloader mode. To do so the
USB cable must be disconnected from the device and the OSBDM-JM60 IRQ pin must
be connected to ground usually done by using a 2-pin female jumper. Use the OSBDM
device schematics to find the IRQ pin. Once the IRQ pin is grounded, connect the USB
cable to the OSBDM device and click on the OK button. If done correctly, the automatic
firmware update will occur.

Figure 12-13. OSBDM Firmware Updating

When the firmware is done updating, a dialog box will indicate that the OSBDM device
must exit Bootloader mode and enter into Run mode.

Chapter 12 Connections - ColdFire V2/3/4

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 757



Figure 12-14. Start OSBDM Run Mode

To enter Run Mode, the user must disconnect the USB cable from the OSBDM device
and the 2-pin female jumper on the IRQ pin must be removed. Next, reconnect the USB
cable and the device will be in Run Mode. Click on OK and Codewarrior will move onto
programming or running the code.

The Codewarrior IDE layout will have the latest OSBDM firmware. If for any reason you
experience difficulty performing OSBDM firmware update, visit www.pemicro.com/
osbdm and use the Multilink/OSBDM Firmware Update Utility to force an update, or use
the OSBDM Firmware Recovery Utility for a fail safe way to reprogram a working,
corrupted, or blank OSBDM firmware via an external USB-ML-12 hardware interface.

12.1.3.1.8 Trace and Profile

The P&E TraceLink allows the user to capture real-time external trace information
without having to stop or disturb the running application. This allows the user to see the
real-time execution of their code by continuously recording the processor events. For
external trace captures, the P&E TraceLink must have PST_CLK and DDATA[3:0] pin
connections from the ColdFire chip. Chips without these pins connected can still be
debugged by the TraceLink within CodeWarrior. The user must do the following to set
up external trace captures using the TraceLink.

1. Right-click on the project and right-click -> Debug as -> Debug Configurations. The
Debug Configuration dialog box will appear.

2. In the left column, select the project type for which you would like to set the
TraceLink settings.

3. In the right column, select the Trace and Profile tab..

P&E Hardware Interface Connection for ColdFire V234

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

758 Freescale Semiconductor, Inc.



Figure 12-15. Trace and Profile Tab
4. Click on the Enable Trace and Profile checkbox.
5. Change the other user settings that fits the users needs.
6. Click on the Main tab and select the correct connection setting from the drop-down

box or create a new connection by clicking on the New button.
7. Once the correct connection setting is selected, click on the Edit button. The launch

configuration dialog box will appear.
8. When the TraceLink is selected as the interface, the Additional Options will be

available. Change the Trace Max Buffer Size as the user sees fit by using the drop-
down box.

Chapter 12 Connections - ColdFire V2/3/4

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 759



Figure 12-16. Debugger Settings

12.1.3.2 Advanced Programming/Debug Options

The Advanced Programming/Debug Options menu option takes you to the Advanced
Options dialog box, where you can configure the software settings for the flash
programming procedure.

P&E Hardware Interface Connection for ColdFire V234

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

760 Freescale Semiconductor, Inc.



Figure 12-17. Advanced Options Dialog Box

12.1.3.2.1 Enable Flash Programming Dialog

Setting the Enable Flash Programming dialog box lets you view the steps taken by the
Flash Programmer.

12.1.3.2.2 Non-Volatile Memory Preservation

You have the option of preserving up to three independent ranges of non-volatile memory
(on devices with EEPROM, the EEPROM array may optionally be preserved as well).

Ranges that are designated as "preserved" are read before an erase, and reprogrammed
immediately afterwards, thereby preserving the data in these ranges. Any attempt to
program data into a preserved range is ignored. When entering an address into the
preserved range field (hexadecimal input is expected), the values are masked according to
the row size of the device. This ensures that the reprogramming of preserved data does
not cause any conditions that disturb programming.

12.1.3.2.3 Alternative Algorithm Functionality

Chapter 12 Connections - ColdFire V2/3/4

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 761



Once you create a project for a specific ColdFire V2/3/4 microprocessor, the debugger
specifies a default algorithm to use during all Flash programming operations. The
debugger uses this algorithm for nearly all programming requirements. The default
algorithm can be found in the <CW_Install>/MCU/bin/plugins/support/ColdFire/gdi/
P&E directory

However, you can override the default algorithm via the Alternative Algorithm function,
located in the Advanced Programming/Debug Options menu. This feature can be used to
select a custom programming algorithm, or select another one of P&E's many
programming algorithms for use with a specific project.

Tip
Selecting a wrong programming algorithm may damage your
device, lead to under/ over programming situations, or simply
not program portions of the project file.

Therefore it is recommended to use the default algorithm unless there is a compelling
reason to do otherwise.

Use these steps to override the default algorithm:

1. 1. Check the Use Alternative Algorithm checkbox.

Figure 12-18. Advanced Options - Alternative Algorithm Checkbox
2. 2. Click the Choose Alternative Algorithm button, which lets you browse for an

alternative algorithm.
3. 3. Once you select the alternative algorithm, the name of the algorithm along with its

full path appears in the text field below the Choose Alternative Algorithm button.

P&E Hardware Interface Connection for ColdFire V234

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

762 Freescale Semiconductor, Inc.



At this point, the current project performs all future Flash programming operations using
the alternative algorithm. You may revert to the default algorithm at any time by clearing
the Use Alternative Algorithm checkbox.

12.1.3.3 Connection Assistant

The P&E Connection Assistant is displayed when you attempt to debug but CodeWarrior
cannot connect to the interface hardware specified in the Launch Configuration dialog
box. To edit or change your debugger connection:

1. Choose the P&E device that you are using from the first drop-down menu and click
Refresh.

2. Using the second drop-down menu, select the port on which the interface is
connected.

3. Use the BDM Communication Speed panel to configure the shift frequency and
delay. Refer to Changing P&E Connection Settings for more details regarding each
setting.

4. Click the Retry button.

Figure 12-19. CFV2/3/4 Connection Assistant Interface Selected

12.1.4 Active Mode Menu Options

When the microprocessor is connected, the Active Mode menu shows the name of the
microprocessor and gives you access to P&E Microcomputer Systems' Compatible
Hardware Interfaces web page and home page. If the OSBDM interface is being used for

Chapter 12 Connections - ColdFire V2/3/4

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 763



the debugging session, then the OSBDM Documentation option appears within the active
mode menu, which takes you to P&E Microcomputer Systems' OSBDM web page. When
the microprocessor is not connected, the menu is not available.

Figure 12-20. ColdFire Active Mode Menu

P&E Hardware Interface Connection for ColdFire V234

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

764 Freescale Semiconductor, Inc.



Chapter 13
Connections - Qorivva MPC55xx/56xx

This chapter describes the features and settings of the connections that interface the
CodeWarrior debugger with the Qorivva MPC55xx/56xx target board.

For the IDE to communicate with the target hardware, you must specify several key
items: the debugger protocol, a connection type, and any connection parameters. You can
enter these items using options in the Launch Configuration panel. Launch Configuration
panel can be accessed by clicking on the Edit button located within the Main tab of the
Debug Configurations dialog box. These options are:

• The Connection Type option determines what debugger protocol the debugger uses
to communicate with the target.

• After you make the option for the connection type, the Connection Settings changes
to display configuration options specific for the hardware probe.

The topics in this chapter discuss the features and settings of the connections that
interface the CodeWarrior debugger with the Qorivva MPC55xx/56xx device family.

13.1 P&E Hardware Interface Connection for Qorivva

This section describes Qorivva Connection options. The QORIVVA P&E Connection
setting permits a connection to QORIVVA Freescale devices via P&E Multilink, Cyclone
(including Cyclone MAX), and OSJTAG hardware interfaces. This connection mode lets
you debug code, as the firmware is fully resident in the Flash or RAM of the
microprocessor.

13.1.1 New Project Wizard

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 765



When creating a new project using the New Project Wizard, you will be given the option
to select which hardware you will be using to debug your chip. Select the P&E hardware
interfaces you want to use by checking the checkboxes.

Figure 13-1. New project wizard

NOTE
Once the project is created, new connections will be created
with the P&E hardware interfaces you have selected as the
default settings. Use Debug Configurations if you want to edit
or change your hardware interface and its settings. If the P&E
Cyclone was selected, the USB port will be the default setting.
Use Debug Configurations to switch to Ethernet or Serial port
connections.

P&E Hardware Interface Connection for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

766 Freescale Semiconductor, Inc.



13.1.2 Launch Configurations Settings

To set the launch configurations for the debugger:

1. Right-click on your project and navigate to -> Debug As -> Debug Configurations.
The Debug Configuration Window will appear.

2. In the left column, select the project type you would like to set the launch
configurations.

3. In the right column, click the Main tab and use the Connection Selection drop-down
box to select a connection.

Figure 13-2. Debug Configuration Dialog Box
4. Click the Edit button beside the selected connection and the Launch Configuration

Window will appear..
5. Set your configurations, click the OK button, and click the Debug button to start the

debugger.

Chapter 13 Connections - Qorivva MPC55xx/56xx

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 767



Figure 13-3. Launch Configuration Dialog Box

13.1.3 Connection Options

This topic describes all P&E Multilink/Cyclone /OSJTAG connection options, which are
common to all P&E USB Multilink Universal [FX]/USB Multilink, P&E Cyclone Serial ,
P&E Cyclone USB , P&E Cyclone Ethernet , and Open Source JTAG connections.

The options include:

• Changing P&E Connections Settings
• Connection Assistant

P&E Hardware Interface Connection for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

768 Freescale Semiconductor, Inc.



13.1.3.1 Changing P&E Connections Settings

All connection settings for P&E hardware interfaces are configured in the Launch
Configurations dialog box.

Figure 13-4. P&E QORIVVA Launch Configuration Dialog Box

The following table describes the options of the view.

Table 13-1. Connection Parameter Options for P&E Multilink/Cyclone /OSJTAG

Option Description

Interface Use this option to select the interface type. Select a supported
interface from the list box. The options are:

• USB Multilink, USB Multilink FX, Embedded OSBDM/
OSJTAG - USB Port

• Cyclone - Serial Port
• Cyclone - USB Port
• Cyclone - Ethernet Port

Table continues on the next page...

Chapter 13 Connections - Qorivva MPC55xx/56xx

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 769



Table 13-1. Connection Parameter Options for P&E Multilink/Cyclone /OSJTAG (continued)

Option Description

NOTE: Click on the "Compatible Hardware" link to help you
determine which P&E hardware is most suitable for your
project.

Port This option selects the port over which debug
communications is conducted. Select an available port from
the list box. NOTE: If you are having issues trying to get a
port to display, click on the [FAQ #29] link for help.

Advanced Programming Options The Advanced Programming Options button brings up a
dialog that provides you with options to configure the flash
programming procedure.

Specify IP (Cyclone Ethernet only) Use this option to specify the IP address of a Cyclone outside
of the local network. Click on the checkbox to enable the
textbox. This will also disable the port dropdown box.
Currently supports IPv4 only.

Specify Network Card IP (Cyclone Ethernet only) Use this option to specify the local network card IP address if
there are multiple cards on your computer. Click on the
checkbox to enable the textbox. Currently supports IPv4 only.

Refresh Click this button to have the workstation scan for a valid
interface and port. Valid interfaces and ports appear in the
Interface and Port list boxes.

Provide power to target (USB Multilink Universal FX only) Check this option to have the Cyclone or USB Multilink
Universal FX (circuitry) supply power to the hardware target.
Uncheck this option to not provide power.

NOTE: For USB Multilink Universal FX, use the jumper
settings located at JP10 to provide either 3.3V or 5V.

Power off target upon software exit (USB Multilink Universal
FX only)

Check this option to turn off the power when the program
terminates. Uncheck this option to leave the hardware target
powered continuously.

Power down delay (USB Multilink Universal FX only) This option specifies amount of time for which the target will
be turned off during a RESET power cycling sequence. Enter
the delay interval (in milliseconds) in this option's text box.

Power up delay (USB Multilink Universal FX only) This option specifies amount of time for which the target will
remain powered prior to a RESET power cycling sequence.
Enter the delay interval (in milliseconds) in this option's text
box.

Debug Shift Freq. This option lets you to set the debug shift clock speed of
P&E's interfaces. This integer value may be used to
determine the speed of communications according to the
following equations:

• Cyclone : (50000000/(2*N+5)) Hz
• USB-ML-PPCNEXUS: (1000000/(N+1)) Hz
• USB Multilink Universal: (1000000/(N+1)) Hz
• USB ML Universal FX : (25000000/(N+1)) Hz OSJTAG :

Fixed Frequency

The value n should be between 0 and 31. This shift clock
takes effect after the commands in the top of the
programming algorithm are executed so that these
commands can increase the target frequency and allow a
faster shift clock. This clock can't generally exceed a div 4 of
the processor bus frequency.

Table continues on the next page...

P&E Hardware Interface Connection for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

770 Freescale Semiconductor, Inc.



Table 13-1. Connection Parameter Options for P&E Multilink/Cyclone /OSJTAG (continued)

Option Description

Delay After Reset Specifies a delay after the programmer resets the target that
we check to see if the part has properly gone into background
debug mode. This is useful if the target has a reset driver
which hold the MCU in reset after the programmer releases
the reset line. The n value is a delay in milliseconds.

To change P&E Connections settings, perform these steps:

1. In the CodeWarrior Projects view, select the project for which you want to change
the P&E Connections settings.

NOTE
It is assumed that you have created a project and built it.

2. Select Run > Debug Configurations from the main menu bar of the IDE.

The Debug Configurations dialog box appears.

3. Expand the CodeWarrior tree control in the left pane and select the launch
configuration you want to debug.

4. Click the Main tab.

The Main page appears in the area beneath the tabs.

5. Select a system within Connection of which you would like to use to debug. You
could create a new system by clicking the New button. For more details about
creating a new remote system, refer to the topic Target Management via Remote
System Explorer in the CodeWarrior Common Features Guide. Once a remote
system is selected, click the Edit button. The Hardware or Simulator Connection
panel appear.

6. Ensure that the Target is the correct microcontroller you want to debug. Use the
drop-down box or the Edit button to change this option.

7. In the Connection Type drop-down box, select P&E PowerPC Multilink\Multilink
Universal\Cyclone \OSJTAG. The P&E connections settings will appear below.

8. Click Refresh to scan valid interface and port.

Valid interfaces and ports appear in the Interface and Port drop-down lists in the
Connection Port and Interface Type group.

9. Select a supported interface from the Interface drop-down list.
10. Select a supported port from the Port drop-down list.

Chapter 13 Connections - Qorivva MPC55xx/56xx

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 771



NOTE
The port displayed may vary depending on the interface.
For example, if you select interface as Cyclone - Serial
Port, the available port option is COM1 : Serial Port 1.

11. Specify settings in the Target Communication Speed group.

NOTE
This group will be enabled for the Tracelink and USB
Multilink Universal FX interfaces only. For USB Multilink
Universal FX interface, use the jumper settings located at
JP10 to provide either 3.3V or 5V.

• Select a Debug Shift Frequency.

NOTE
If you select a fast speed, there may be scenarios where
you may have difficulty communicating with your
target device. You may want to experimentally select a
speed that is fast and yet have a good communication
with your target.

• Click on the Delay after Reset checkbox and enter the desired delay (in
milliseconds) in the text box.

This option specifies the time interval to wait between resetting and
communicating the target device.

• Click the OK to save changes to the P&E Connections settings. The Launch
Configuration Panel dialog box will close.

Click on the Close button to close the Debug Configuration dialog box.

13.1.3.1.1 P&E Hardware Interface Connection- Specific Options

This topic describes the connection-specific options. The connections include:

• P&E USB Multilink Universal [FX]/USB Multilink
• P&E Cyclone Serial
• P&E Cyclone USB
• P&E Cyclone Ethernet
• Open Source JTAG

13.1.3.1.1.1 P&E USB Multilink Universal [FX]/USB Multilink

P&E Hardware Interface Connection for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

772 Freescale Semiconductor, Inc.



The P&E USB Multilink Universal [FX]/USB Multilink Connection setting permits a
connection to USB Multilink devices, which include the P&E Qorivva Multilink, USB
Multilink Universal, and the USB Multilink Universal FX. P&E USB Multilink
Universal [FX]/USB Multilink mode lets you debug code, as the firmware is fully
resident in the Flash of the microprocessor. The operation of all modules fully reflects the
actual operation of the onboard resources. Like the USB Multilink Universal, the USB
Multilink Universal FX can conveniently debug all Freescale architectures found in the
current CodeWarrior 10 version, however, the FX version is up to 8 times faster than the
USB Multilink Universal and it can also provide power to the target.

13.1.3.1.1.1.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E PowerPC Multilink/Multilink Universal/Cyclone
Max /OSJTAG so that the Connection tab will populate P&E's hardware interface
connection settings.

Chapter 13 Connections - Qorivva MPC55xx/56xx

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 773



Figure 13-5. P&E's Launch Configuration Dialog Box

To use P&E's USB Multilink Universal [FX]/USB Multilink, first connect your hardware
interface to your computer, and then set the interface to USB Multilink, USB Multilink
FX, Embedded OSBDM/OSJTAG - USB Port. The Port selection should automatically
populate your hardware interface. If not, use the Refresh button and the Port selection
drop-down box. If you are having issues getting your device to populate, use the link for
FAQ #29 to find popular solutions.

13.1.3.1.1.2 P&E Cyclone Serial

The P&E Cyclone Serial Connection setting permits a connection to Cyclone Serial
devices. P&E Cyclone Serial mode lets you debug code, as the firmware is fully resident
in the Flash of the microprocessor. The operation of all modules fully reflects the actual
operation of the onboard resources.

P&E Hardware Interface Connection for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

774 Freescale Semiconductor, Inc.



13.1.3.1.1.2.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E PowerPC Multilink/Multilink Universal/Cyclone
Max/OSJTAG so that the Connection tab will populate P&E's hardware interface
connection settings.

Figure 13-6. P&E's Launch Configuration Dialog Box

Chapter 13 Connections - Qorivva MPC55xx/56xx

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 775



To use P&E's Cyclone Serial, first connect your hardware interface to your computer, and
then set the interface to Cyclone - Serial Port. The Port selection should automatically
populate your hardware interface. If not, use the Refresh button and the Port selection
drop-down box. If you are having issues getting your device to populate, use the link for
FAQ #29 to find popular solutions.

NOTE
The Cyclone MAX does not support the ability to provide
power to the target.

13.1.3.1.1.3 P&E Cyclone USB

The P&E Cyclone USB Connection setting permits a connection to Cyclone USB
devices. P&E Cyclone USB mode lets you debug code, as the firmware is fully resident
in the Flash of the microprocessor. The operation of all modules fully reflects the actual
operation of the onboard resources.

13.1.3.1.1.3.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E PowerPC Multilink/Multilink Universal/Cyclone
Max/OSJTAG so that the Connection tab will populate P&E's hardware interface
connection settings.

P&E Hardware Interface Connection for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

776 Freescale Semiconductor, Inc.



Figure 13-7. P&E's Launch Configuration Dialog Box

To use P&E's Cyclone USB, first connect your hardware interface to your computer, and
then set the interface to Cyclone - USB Port. The Port selection should automatically
populate your hardware interface. If not, use the Refresh button and the Port selection
drop-down box. If you are having issues getting your device to populate, use the link for
FAQ #29 to find popular solutions.

NOTE
The Cyclone MAX does not support the ability to provide
power to the target.

13.1.3.1.1.4 P&E Cyclone Ethernet

Chapter 13 Connections - Qorivva MPC55xx/56xx

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 777



The P&E Cyclone Ethernet Connection setting permits a connection to Cyclone Ethernet
devices. P&E Cyclone Ethernet mode lets you debug code, as the firmware is fully
resident in the Flash of the microprocessor. The operation of all modules fully reflects the
actual operation of the onboard resources.

13.1.3.1.1.4.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E PowerPC Multilink/Multilink Universal/Cyclone
Max/OSJTAG so that the Connection tab will populate P&E's hardware interface
connection settings.

P&E Hardware Interface Connection for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

778 Freescale Semiconductor, Inc.



Figure 13-8. P&E's Launch Configuration Dialog Box

To use P&E's Cyclone Ethernet, first connect your hardware interface to your computer,
and then set the interface to Cyclone - Ethernet Port. The Port selection should
automatically populate your hardware interface. If not, use the Refresh button and the
Port selection drop-down box. You can also specify IP and Network Card IP by clicking
on the checkboxes. If you are having issues getting your device to populate, use the link
for FAQ #29 to find popular solutions.

NOTE
The Cyclone MAX does not support the ability to provide
power to the target

.

13.1.3.1.1.5 Open Source JTAG

Chapter 13 Connections - Qorivva MPC55xx/56xx

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 779



Freescale supplies certain development boards with an integrated debug circuit based on
Open Source JTAG. This allows the development board to be debugged from the PC via
the USB bus without requiring external debug hardware, such as the Cyclone or USB
QORIVVA Multilink. The development board also derives its power from the USB Bus.

The Open Source JTAG circuit design (OSJTAG-JM60) is an open source, community
driven design. It has been published on Freescale's website, and full documentation can
be found in the Community Forums. The latest documentation and firmware can be
downloaded from www.pemicro.com/osbdm.

Integration with CodeWarrior is handled via the "P&E Open Source TAG" connection.
P&E has integrated the Open Source BDM support into the same connection that
supports both the USB ColdFire Multilink and the Cyclone . All of the dialogs that affect
operation of these hardware interfaces function in the same manner when using OSJTAG
(albeit at a lower data rate).

The Open Source JTAG Connection setting permits a connection to Open Source JTAG
devices. Open Source JTAG mode lets you debug code, as the firmware is fully resident
in the Flash or RAM of the microprocessor. The operation of all modules fully reflects
the actual operation of the onboard resources.

13.1.3.1.1.5.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E PowerPC Multilink/Multilink Universal/Cyclone
Max/OSJTAG so that the Connection tab will populate P&E's hardware interface
connection settings.

P&E Hardware Interface Connection for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

780 Freescale Semiconductor, Inc.



Figure 13-9. P&E's Launch Configuration Dialog Box

To use Open Source JTAG, first connect your hardware interface to your computer, and
then set the interface to USB Multilink, USB Multilink FX, Embedded OSBDM/
OSJTAG - USB Port. The Port selection should automatically populate your hardware
interface. If not, use the Refresh button and the Port selection drop-down box. If you are
having issues getting your device to populate, use the link for FAQ #29 to find popular
solutions.

13.1.3.1.1.5.2 OSJTAG Firmware Update

All CodeWarrior IDE's version 10.1 and higher have an automatic firmware update
mechanism for built-in OSJTAG hardware interfaces. Whenever an OSJTAG-integrated
hardware interface is plugged into a USB port and CodeWarrior attempts to contact the

Chapter 13 Connections - Qorivva MPC55xx/56xx

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 781



device, it will automatically check to see if the device has the latest OSJTAG firmware
version. If the firmware on the device is older than the one found within the CodeWarrior
package, then a dialog box will indicate that a firmware update is necessary.

Figure 13-10. Old OSJTAG Firmware Detected

To update the firmware, the OSJTAG device must enter Bootloader mode. To do so the
USB cable must be disconnected from the device and the OSJTAG-JM60 IRQ pin must
be connected to ground usually done by using a 2-pin female jumper. Use the OSJTAG
device schematics to find the IRQ pin. Once the IRQ pin is grounded, connect the USB
cable to the OSJTAG device and click on the OK button. If done correctly, the automatic
firmware update will occur.

Figure 13-11. OSJTAG Firmware Updating

When the firmware is done updating, a dialog box will indicate that the OSJTAG device
must exit Bootloader mode and enter into Run mode.

Figure 13-12. Start OSJTAG Run Mode

P&E Hardware Interface Connection for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

782 Freescale Semiconductor, Inc.



To enter Run Mode, the user must disconnect the USB cable from the OSJTAG device
and the 2-pin female jumper on the IRQ pin must be removed. Next, reconnect the USB
cable and the device will be in Run Mode. Click on OK and CodeWarrior will move onto
programming or running the code.

The CodeWarrior IDE layout will have the latest OSJTAG firmware. If for any reason
you experience difficulty performing OSJTAG firmware update, visit
www.pemicro.com/osbdm and use the Multilink/OSBDM Firmware Update Utility to
force an update, or use the OSBDM Firmware Recovery Utility for a fail safe way to
reprogram a working, corrupted, or blank OSBDM firmware via an external USB-ML-12
hardware interface.

13.1.3.1.2 Advanced Programming/Debug Options

The Advanced Programming/Debug Options menu option takes you to the Advanced
Options dialog box, where you can configure the software settings for the flash
programming procedure.

Figure 13-13. Advanced Options Dialog Box

13.1.3.1.2.1 Enable Flash Programming Dialog

Setting the Enable Flash Programming dialog box lets you view the steps taken by the
Flash Programmer.

Chapter 13 Connections - Qorivva MPC55xx/56xx

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 783



13.1.3.1.2.2 Non-Volatile Memory Preservation

You have the option of preserving up to three independent ranges of non-volatile memory
(on devices with EEPROM, the EEPROM array may optionally be preserved as well).
Ranges that are designated as "preserved" are read before an erase, and reprogrammed
immediately afterwards, thereby preserving the data in these ranges. Any attempt to
program data into a preserved range is ignored. When entering an address into the
preserved range field (hexadecimal input is expected), the values are masked according to
the row size of the device. This ensures that the reprogramming of preserved data does
not cause any conditions that disturb programming.

13.1.3.1.2.3 Alternative Algorithm Functionality

Once you create a project for a specific Qorivva MPC55xx/56xx microprocessor, the
debugger specifies a default algorithm to use during all Flash programming operations.
The debugger uses this algorithm for nearly all programming requirements. The default
algorithm can be found in the <CW_Install>/MCU/bin/plugins/support/EPPC/gdi/P&E
directory

However, you can override the default algorithm via the Alternative Algorithm function,
located in the Advanced Programming/Debug Options menu. This feature can be used to
select a custom programming algorithm, or select another one of P&E's many
programming algorithms for use with a specific project.

Tip
Selecting a wrong programming algorithm may damage your
device, lead to under/ over programming situations, or simply
not program portions of the project file.

Therefore it is recommended to use the default algorithm unless there is a compelling
reason to do otherwise.

Use these steps to override the default algorithm:

1. Check the Use Alternative Algorithm checkbox.

P&E Hardware Interface Connection for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

784 Freescale Semiconductor, Inc.



Figure 13-14. Advanced Options - Alternative Algorithm Checkbox
2. Click the Choose Alternative Algorithm button, which lets you browse for an

alternative algorithm.
3. Once you select the alternative algorithm, the name of the algorithm along with its

full path appears in the text field below the Choose Alternative Algorithm button.

At this point, the current project performs all future Flash programming operations using
the alternative algorithm. You may revert to the default algorithm at any time by clearing
the Use Alternative Algorithm checkbox.

13.1.3.2 Connection Assistant

The P&E Connection Assistant is displayed when you attempt to debug but CodeWarrior
cannot connect to the interface hardware specified in the Launch Configuration dialog
box. To select the P&E Multilink/Cyclone /OSJTAG as your debugger connection:

1. Choose the P&E device that you are using from the first drop-down menu and click
Refresh.

2. Using the second drop-down menu, select the port on which the interface is
connected.

3. Use the BDM Communication Speed panel to configure the shift frequency and
delay. Refer to Changing P&E Connections Settings for more details regarding each
setting.

4. Click the Retry button.

Chapter 13 Connections - Qorivva MPC55xx/56xx

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 785



Figure 13-15. Connection Assistant Interface Selected

13.1.4 Active Mode Menu Options

When the microprocessor is connected, the active mode menu shows the name of the
microprocessor and gives you the access to P&E Microcomputer Systems' Compatible
Hardware Interfaces web page and home page. If the OSBDM interface is being used for
the debugging session, then the OSBDM Documentation option appears within the active
mode menu, which takes you to P&E Microcomputer Systems' OSBDM website. When
the microprocessor is not connected, the menu is not available.

Figure 13-16. Additional Connection Menu Options

P&E Hardware Interface Connection for Qorivva

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

786 Freescale Semiconductor, Inc.



Chapter 14
Connections — Kinetis Architecture

This chapter describes the features and settings of the connections that interface the
CodeWarrior debugger with the Kinetis target board.

For the IDE to communicate with the target hardware, you must specify several key
items: the debugger protocol, a connection type, and any connection parameters. You can
enter these items using options in the Launch Configuration panel. Launch Configuration
panel can be accessed by clicking on the Edit button located within the Main tab of the
Debug Configurations dialog box. These options are:

• The Connection Type option determines what debugger protocol the debugger uses
to communicate with the target.

• After you make the option for the connection type, the Connection Settings changes
to display configuration options specific for the hardware probe.

The topics in this chapter discuss the features and settings of the connections that
interface the CodeWarrior debugger with the Kinetis device family.

14.1 P&E Hardware Interface Connection for Kinetis
This section describes Kinetis K-, L-, E-, and M-Series P&E Connection options. The
Kinetis P&E Connection setting permits a connection to Kinetis Freescale devices via
P&E Multilink, Cyclone , Tracelink, OSJTAG, and OpenSDA hardware interfaces. This
connection mode lets you debug code, as the firmware is fully resident in the Flash or
RAM of the microprocessor.

14.1.1 New Project Wizard

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 787



When creating a new project using the New Project Wizard, you will be given the option
to select which hardware you will be using to debug your chip. Select the P&E hardware
interfaces you want to use by checking the checkboxes.

Figure 14-1. New project wizard

NOTE
Once the project is created, new connections will be created
with the P&E hardware interfaces you have selected as the
default settings. Use Debug Configurations if you want to edit
or change your hardware interface and its settings. If the P&E
Cyclone was selected, the USB port will be the default setting.
Use Debug Configurations to switch to Ethernet or Serial port
connections.

P&E Hardware Interface Connection for Kinetis

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

788 Freescale Semiconductor, Inc.



14.1.2 Launch Configurations Settings

To set the launch configurations for the debugger:

1. Right-click on your project and navigate to -> Debug As -> Debug Configurations.
The Debug Configuration Window will appear.

2. In the left column, select the project type you would like to set the launch
configurations.

Figure 14-2. Debug Configuration Dialog Box
3. In the right column, click the Main tab and use the Connection Selection drop-down

box to select a connection.
4. Click the Edit button beside the selected connection and the Launch Configuration

Window will appear.
5. Set your configurations, click the OK button, and click the Debug button to start the

debugger.

Chapter 14 Connections — Kinetis Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 789



Figure 14-3. Launch Configuration Dialog Box

14.1.3 Connection Options

This topic describes all P&E MultiLink/Cyclone /Tracelink/OSJTAG/OpenSDA
connection options, which are common to all P&E USB MultiLink Universal [FX], P&E
Cyclone Serial , P&E Cyclone USB , P&E Cyclone Ethernet , P&E TraceLink USB,
P&E TraceLink Ethernet, Open Source JTAG, and OpenSDA connections.

The options include:

P&E Hardware Interface Connection for Kinetis

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

790 Freescale Semiconductor, Inc.



• Changing P&E Connections Settings
• Connection Assistant

14.1.3.1 Changing P&E Connections Settings

All connection settings for P&E hardware interfaces are configured in the Launch
Configurations dialog box.

Figure 14-4. P&E Kinetis Launch Configuration Dialog Box

Chapter 14 Connections — Kinetis Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 791



The following table describes the options for this dialog box.

Table 14-1. Tool Settings - Disable user messages Options

Option Description

Interface Use this option to select the interface type. Select a supported
interface from the list box. The options are:

• USB Multilink Universal [FX] - USB Port

NOTE: The USB Multilink Universal and the USB Multilink
Universal FX can conveniently support all Freescale
architectures found in the current CodeWarrior 10 version

• Cyclone - Serial Port
• Cyclone - USB Port
• Cyclone - Ethernet Port
• TraceLink - USB Port
• TraceLink - Ethernet Port
• OSJTAG
• OpenSDA

NOTE: Click on the "Compatible Hardware" link to help you
determine which P&E hardware is most suitable for your
project.

Port This option selects the port over which debug
communications is conducted. Select an available port from
the list box. NOTE: If you are having issues trying to get a
port to display, click on the [FAQ #29] link for help.

Advanced Programming Options The Advanced Programming Options button brings up a
dialog that provides you with options to configure the flash
programming procedure.

Refresh Click this button to have the workstation scan for a valid
interface and port. Valid interfaces and ports appear in the
Interface and Port list boxes.

Specify IP (Cyclone Ethernet and TraceLink Ethernet only) Use this option to specify the IP address of a hardware
interface outside of the local network. Click on the checkbox
to enable the textbox. This will also disable the port dropdown
box. Currently supports IPv4 only.

Specify Network Card IP (Cyclone Ethernet and TraceLink
Ethernet only)

Use this option to specify the local network card IP address if
there are multiple cards on your computer. Click on the
checkbox to enable the textbox. Currently supports IPv4 only.

Provide power to target (USB Multilink Universal FX and
TraceLink only)

Check this option to have the Cyclone or USB Multilink
Universal FX (circuitry) supply power to the hardware target.
Uncheck this option to not provide power.

NOTE: For USB Multilink Universal FX, use the jumper
settings located at JP10 to provide either 3.3V or 5V.

Power off target upon software exit (USB Multilink Universal
FX and TraceLink only)

Check this option to turn off the power when the program
terminates. Uncheck this option to leave the hardware target
powered continuously.

Regulator Output Voltage (Tracelink only) This option adjusts the output voltage that powers the
hardware target. Select a voltage value from this option's list
box.

CAUTION: An improper voltage setting can damage the
board.

Table continues on the next page...

P&E Hardware Interface Connection for Kinetis

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

792 Freescale Semiconductor, Inc.



Table 14-1. Tool Settings - Disable user messages Options (continued)

Option Description

Power down delay (USB Multilink Universal FX and TraceLink
only)

This option specifies amount of time for which the target will
be turned off during a RESET power cycling sequence. Enter
the delay interval (in milliseconds) in this option's text box.

Power up delay (USB Multilink Universal FX and TraceLink
only)

This option specifies amount of time for which the target will
remain powered prior to a RESET power cycling sequence.
Enter the delay interval (in milliseconds) in this option's text
box.

Debug Shift Freq. This option lets you to set the debug shift clock speed of
P&E's interfaces. This integer value may be used to
determine the speed of communications according to the
following equations: Cyclone / TraceLink: (50000000/(2*N+5))
Hz USB Multilink Universal: (1000000/(N+1)) Hz USB ML
Universal FX : (25000000/(N+1)) Hz OSJTAG : Fixed
Frequency OpenSDA : Fixed Frequency The value n should
be between 0 and 31. This shift clock takes effect after the
commands in the top of the programming algorithm are
executed so that these commands can increase the target
frequency and allow a faster shift clock. This clock can't
generally exceed a div 4 of the processor bus frequency.

Delay After Reset Specifies a delay after the programmer resets the target that
we check to see if the part has properly gone into background
debug mode. This is useful if the target has a reset driver
which hold the MCU in reset after the programmer releases
the reset line. The n value is a delay in milliseconds.

Always Mass Erase on Connect Performs a mass erase of the internal flash immediately upon
connection. This is used to recover a device which was
incorrectly programmed with junk data in its reset vector.

Use SWD Reduced Pin Protocol Uses the 2-pin serial wire debug (SWD) protocol instead of
JTAG. SWD requires 2 fewer pins than JTAG.

NOTE: For Kinetis L-, E-, and M-Series, SWD protocol must
be used.

Trace Max Buffer Size Only applicable for the P&E TraceLink interface. Configures
the trace buffer capacity of the TraceLink. Smaller sizes result
in faster trace upload times, whereas larger sizes allow the
user to view more trace information.

To change P&E Connections settings, perform these steps:

1. In the CodeWarrior Projects view, select the project for which you want to change
the P&E Connections settings.

NOTE
It is assumed that you have created a project and built it.

2. Select Run > Debug Configurations from the main menu bar of the IDE.

The Debug Configurations dialog box appears.

Chapter 14 Connections — Kinetis Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 793



3. Expand the CodeWarrior tree control in the left pane and select the launch
configuration you want to debug.

4. Click the Main tab

The Main page appears in the area beneath the tabs.

5. Select a system within Connection of which you would like to use to debug. You
could create a new system by clicking the New button. For more details about
creating a new remote system, refer to the topic Target Management via Remote
System Explorer in the Freescale Eclipse Extensions Guide. Once a remote system is
selected, click the Edit button. The Launch Configuration Panel will appear.

6. Ensure that the Target is the correct microcontroller you want to debug. Use the
drop-down box or the Edit button to change this option.

7. In the Connection Type drop-down box, select P&E ARM Multilink/Multilink
Universal/Cyclone /OSJTAG. The P&E connections settings will appear below.

8. Click Refresh to scan valid interface and port.

Valid interfaces and ports appear in the Interface and Port drop-down lists in the
Connection Port and Interface Type group.

9. Select a supported interface from the Interface drop-down list.
10. Select a supported port from the Port drop-down list.

NOTE
The port displayed may vary depending on the interface.
For example, if you select interface as Cyclone - Serial
Port, the available port option is COM1 : Serial Port 1.

11. Specify settings in the Hardware Interface Power Control (Voltage --> Power -Out
Jack) group.

NOTE
This group will be enabled for the Tracelink and USB
Multilink Universal FX interfaces only. For USB Multilink
Universal FX interface, use the jumper settings located at
JP10 to provide either 3.3V or 5V.

12. Check the Provide power to target checkbox to have the hardware interface
(circuitry) provide power to the target else clear the checkbox if you do not want to
provide power to the target.

13. Check the Power off target upon software exit checkbox to turn off the power when
the program terminate else clear the checkbox to leave the hardware target powered
continuously.

14. Select a voltage value from the Regulator Output Voltage drop-down list. This
adjusts the output voltage that powers the hardware target.

P&E Hardware Interface Connection for Kinetis

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

794 Freescale Semiconductor, Inc.



CAUTION
An improper voltage setting can damage the board.

15. Enter the delay interval (in milliseconds) in the Power Down Delay text box. This
option specifies the time interval to wait before shutting off the power to the
hardware target. The hardware interface powers down the device once the debug
session is over, or while executing a power cycling sequence after beginning a new
debug session.

16. Enter the delay interval (in milliseconds) in the Power Up Delay text box. This
option specifies the time interval to wait before turning on the power to the hardware
target. If the power to target feature is enabled, the interface will power up the device
while executing a power cycling sequence at the beginning of every debug session.

17. Select a BDM speed using the drop-down box in the BDM Debug Shift Frequency.

NOTE
If you select a fast BDM speed, there may be scenarios
where you may have difficulty communicating with your
target device. You may want to experimentally select a
BDM speed that is fast and yet have a good communication
with your target.

18. Click on the Delay after Reset checkbox and enter the desired delay (in milliseconds)
in the text box.

This option specifies the time interval to wait between resetting and communicating
the target device.

19. Click the OK to save changes to the P&E Connections settings. The Launch
Configuration Panel dialog box will close.

20. Click on the Close button to close the Debug Configuration dialog box.

14.1.3.1.1 P&E Hardware Interface Connection-Specific Options

This topic describes the connection-specific options. The connections include:

• P&E USB MultiLink Universal [FX]
• P&E Cyclone Serial P&E Cyclone Serial
• P&E Cyclone USB
• P&E Cyclone Ethernet
• P&E TraceLink USB
• P&E TraceLink Ethernet
• Open Source JTAG
• OpenSDA

Chapter 14 Connections — Kinetis Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 795



14.1.3.1.1.1 P&E USB MultiLink Universal [FX]

The P&E Kinetis setting permits a connection to USB Multilink devices, which include
the USB Multilink Universal, and the USB Multilink Universal FX. P&E USB MultiLink
Universal [FX] mode lets you debug code, as the firmware is fully resident in the Flash of
the microprocessor. The operation of all modules fully reflects the actual operation of the
onboard resources. Like the USB Multilink Universal, the USB Multilink Universal FX
can conveniently debug all Freescale architectures found in the current CodeWarrior 10
version, however, the FX version is up to 8 times faster than the USB Multilink Universal
and it can also provide power to the target.

14.1.3.1.1.1.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E ARM Multilink/Multilink Universal/Cyclone /
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings.

P&E Hardware Interface Connection for Kinetis

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

796 Freescale Semiconductor, Inc.



Figure 14-5. P&E's Launch Configuration Dialog Box

To use P&E’s USB Multilink Universal [FX]/USB Multilink, first connect your hardware
interface to your computer, and then set the interface to USB Multilink, USB Multilink
FX, Embedded OSBDM/OSJTAG – USB Port. The Port selection should automatically
populate your hardware interface. If not, use the Refresh button and the Port selection
drop-down box. If you are having issues getting your device to populate, use the link for
FAQ #29 to find popular solutions.

14.1.3.1.1.2 P&E Cyclone Serial

Chapter 14 Connections — Kinetis Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 797



The P&E Cyclone Serial Connection setting permits a connection to Cyclone Serial
devices. P&E Cyclone Serial mode lets you debug code, as the firmware is fully resident
in the Flash of the microprocessor. The operation of all modules fully reflects the actual
operation of the onboard resources.

NOTE
Use of SWD with the Cyclone requires the JTAG SWD
Adapter. This can be found at www.pemicro.com.

14.1.3.1.1.2.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E ARM V234 Multilink/Multilink Universal/Cyclone
Max/OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings.

P&E Hardware Interface Connection for Kinetis

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

798 Freescale Semiconductor, Inc.



Figure 14-6. P&E's Launch Configuration Dialog Box

To use P&E’s Cyclone Serial, first connect your hardware interface to your computer,
and then set the interface to Cyclone – Serial Port. The Port selection should
automatically populate your hardware interface. If not, use the Refresh button and the
Port selection drop-down box. If you are having issues getting your device to populate,
use the link for FAQ #29 to find popular solutions.

NOTE
The Cyclone MAX does not support the ability to provide
power to the target.

Chapter 14 Connections — Kinetis Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 799



14.1.3.1.1.3 P&E Cyclone USB

The P&E Cyclone USB Connection setting permits a connection to Cyclone USB
devices. P&E Cyclone USB mode lets you debug code, as the firmware is fully resident
in the Flash of the microprocessor. The operation of all modules fully reflects the actual
operation of the onboard resources.

NOTE
Use of SWD with the Cyclone MAX requires the JTAG SWD
Adapter. This can be found at www.pemicro.com

.

14.1.3.1.1.3.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E ARM Multilink/Multilink Universal/Cyclone Max/
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings.

P&E Hardware Interface Connection for Kinetis

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

800 Freescale Semiconductor, Inc.



Figure 14-7. P&E's Launch Configuration Dialog Box

To use P&E's Cyclone USB, first connect your hardware interface to your computer, and
then set the interface to Cyclone - USB Port. The Port selection should automatically
populate your hardware interface. If not, use the Refresh button and the Port selection
drop-down box. If you are having issues getting your device to populate, use the link for
FAQ #29 to find popular solutions.

NOTE
The Cyclone MAX does not support the ability to provide
power to the target.

Chapter 14 Connections — Kinetis Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 801



14.1.3.1.1.4 P&E Cyclone Ethernet

The P&E Cyclone Ethernet Connection setting permits a connection to Cyclone Ethernet
devices. P&E Cyclone Ethernet mode lets you debug code, as the firmware is fully
resident in the Flash of the microprocessor. The operation of all modules fully reflects the
actual operation of the onboard resources.

NOTE
Use of SWD with the Cyclone MAX requires the JTAG SWD
Adapter. This can be found at www.pemicro.com.

14.1.3.1.1.4.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E ARM V234 Multilink/Multilink Universal/Cyclone
Max/OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings.

P&E Hardware Interface Connection for Kinetis

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

802 Freescale Semiconductor, Inc.



Figure 14-8. P&E's Launch Configuration Dialog Box

To use P&E's Cyclone Ethernet, first connect your hardware interface to your computer,
and then set the interface to Cyclone - Ethernet Port. The Port selection should
automatically populate your hardware interface. If not, use the Refresh button and the
Port selection drop-down box. You can also specify IP and Network Card IP by clicking
on the checkboxes. If you are having issues getting your device to populate, use the link
for FAQ #29 link to find popular solutions.

NOTE
The Cyclone MAX does not support the ability to provide
power to the target.

Chapter 14 Connections — Kinetis Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 803



14.1.3.1.1.5 P&E TraceLink USB

The P&E TraceLink USB Connection setting permits a connection to TraceLink USB
devices. P&E TraceLink USB mode lets you debug code, as the firmware is fully resident
in the Flash of the microprocessor. The operation of all modules fully reflects the actual
operation of the onboard resources. P&E's TraceLink can conveniently support all
Freescale architectures found in the current CodeWarrior 10 version; however, it can only
capture the external trace signals for the ColdFire V2/3/4 and Kinetis ARM architectures.

NOTE
For external trace captures, the P&E TraceLink supports ETM
trace. The Kinetis chip must have the Trace_CLKOUT and
Trace_D[3:0] pins to support ETM trace. Chips without these
pins can still be debugged by the TraceLink within
CodeWarrior.

14.1.3.1.1.5.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E ARM Multilink/Multilink Universal/Cyclone Max/
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings.

P&E Hardware Interface Connection for Kinetis

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

804 Freescale Semiconductor, Inc.



Figure 14-9. P&E's Launch Configuration Dialog Box

To use P&E's TraceLink USB, first connect your hardware interface to your computer,
and then set the interface to TraceLink - USB Port. The Port selection should
automatically populate your hardware interface. If not, use the Refresh button and the
Port selection drop-down box. If you are having issues getting your device to populate,
use the link for FAQ #29 to find popular solutions.

14.1.3.1.1.6 P&E TraceLink Ethernet

Chapter 14 Connections — Kinetis Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 805



The P&E TraceLink Ethernet Connection setting permits a connection to TraceLink
Ethernet devices. P&E TraceLink Ethernet mode lets you debug code, as the firmware is
fully resident in the Flash of the microprocessor. The operation of all modules fully
reflects the actual operation of the onboard resources. P&E's TraceLink can conveniently
support all Freescale architectures found in the current CodeWarrior 10 version; however,
it can only capture the external trace signals for the ColdFire V2/3/4 and Kinetis ARM
architectures.

NOTE
For external trace captures, the P&E TraceLink supports ETM
trace. The Kinetis chip must have the Trace_CLKOUT and
Trace_D[3:0] pins to support ETM trace. Chips without these
pins can still be debugged by the TraceLink within
CodeWarrior.

14.1.3.1.1.6.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E ARM Multilink/Multilink Universal/Cyclone Max/
OSJTAG so that the Connection tab will populate P&E’s hardware interface
connection settings.

P&E Hardware Interface Connection for Kinetis

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

806 Freescale Semiconductor, Inc.



Figure 14-10. P&E's Launch Configuration Dialog Box

To use Open Source BDM, first connect your hardware interface to your computer, and
then set the interface to USB Multilink, USB Multilink FX, Embedded OSBDM/
OSJTAG/OpenSDA – USB Port. The Port selection should automatically populate your
hardware interface. If not, use the Refresh button and the Port selection drop-down box.
If you are having issues getting your device to populate, use the link for FAQ #29 to find
popular solutions.

14.1.3.1.1.7 Open Source JTAG

Chapter 14 Connections — Kinetis Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 807



Freescale supplies certain development boards with an integrated debug circuit based on
Open Source JTAG. This allows the development board to be debugged from the PC via
the USB bus without requiring external debug hardware, such as the Cyclone or USB
Multilink Universal. The development board also derives its power from the USB Bus.

The Open Source JTAG circuit design (OSJTAG-JM60) is an open source, community
driven design. It has been published on Freescale's website, and full documentation can
be found in the Community Forums. The latest documentation and firmware can be
downloaded from www.pemicro.com/osbdm.

Integration with CodeWarrior is handled via the "Open Source JTAG" connection. P&E
has integrated the Open Source JTAG support into the same connection that supports
both the USB ColdFire Multilink and the Cyclone . All of the dialogs that affect
operation of these hardware interfaces function in the same manner when using OSJTAG
(albeit at a lower data rate).

The Open Source JTAG Connection setting permits a connection to Open Source JTAG
devices. Open Source JTAG mode lets you debug code, as the firmware is fully resident
in the Flash or RAM of the microprocessor. The operation of all modules fully reflects
the actual operation of the onboard resources.

14.1.3.1.1.7.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E ARM Multilink/Multilink Universal/Cyclone /
OSJTAG so that the Connection tab will populate P&E's hardware interface
connection settings.

P&E Hardware Interface Connection for Kinetis

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

808 Freescale Semiconductor, Inc.



Figure 14-11. P&E's Launch Configuration Dialog Box

To use Open Source BDM, first connect your hardware interface to your computer, and
then set the interface to USB Multilink, USB Multilink FX, Embedded OSBDM/
OSJTAG/OpenSDA – USB Port. The Port selection should automatically populate your
hardware interface. If not, use the Refresh button and the Port selection drop-down box.
If you are having issues getting your device to populate, use the link for FAQ #29 to find
popular solutions.

14.1.3.1.1.7.2 OSJTAG Firmware Update

Chapter 14 Connections — Kinetis Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 809



All CodeWarrior IDE's version 10.1 and higher have an automatic firmware update
mechanism for built-in OSJTAG hardware interfaces. Whenever an OSJTAG-integrated
hardware interface is plugged into a USB port and CodeWarrior attempts to contact the
device, it will automatically check to see if the device has the latest OSJTAG firmware
version. If the firmware on the device is older than the one found within the CodeWarrior
package, then a dialog box will indicate that a firmware update is necessary.

Figure 14-12. Old OSJTAG Firmware Detected

To update the firmware, the OSJTAG device must enter Bootloader mode. To do so the
USB cable must be disconnected from the device and the OSJTAG-JM60 IRQ pin must
be connected to ground usually done by using a 2-pin female jumper. Use the OSJTAG
device schematics to find the IRQ pin. Once the IRQ pin is grounded, connect the USB
cable to the OSJTAG device and click OK. If done correctly, the automatic firmware
update will occur.

Figure 14-13. OSJTAG Firmware Updating

When the firmware is done updating, a dialog box will indicate that the OSJTAG device
must exit Bootloader mode and enter into Run mode.

P&E Hardware Interface Connection for Kinetis

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

810 Freescale Semiconductor, Inc.



Figure 14-14. Start OSJTAG Run Mode

To enter Run Mode, the user must disconnect the USB cable from the OSJTAG device
and the 2-pin female jumper on the IRQ pin must be removed. Next, reconnect the USB
cable and the device will be in Run Mode. Click OK and CodeWarrior will move onto
programming or running the code.

The CodeWarrior IDE layout will have the latest OSJTAG firmware. If for any reason
you experience difficulty performing OSJTAG firmware update, visit www.pemicro.com/
osbdm and use the Multilink/OSBDM Firmware Update Utility to force an update, or use
the OSBDM Firmware Recovery Utility for a fail safe way to reprogram a working,
corrupted, or blank OSBDM firmware via an external USB-ML-12 hardware interface.

14.1.3.1.1.8 OpenSDA

Freescale supplies certain development boards with an integrated debug circuit based on
OpenSDA. This allows the development board to be debugged from the PC via the USB
bus without requiring external debug hardware, such as the Cyclone or USB Multilink
Universal. The development board also derives its power from the USB Bus.

The OpenSDA circuit design is incorporated into many of Freescale's tower cards. The
main processor is pre-programmed with a Bootloader. The Bootloader can be used to
load P&E's OpenSDA Debug Application, which is shipped with the board. It can also be
downloaded from http://www.pemicro.com/opensda.

Integration with CodeWarrior is handled via the "OpenSDA" connection. The OpenSDA
Connection setting permits a connection to OpenSDA devices. OpenSDA mode lets you
debug code, as the firmware is fully resident in the Flash or RAM of the microprocessor.

14.1.3.1.1.8.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

Chapter 14 Connections — Kinetis Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 811



1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E ARM Multilink/Multilink Universal/Cyclone /
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings, as shown in .

Figure 14-15. P&E's Launch Configuration Dialog Box

P&E Hardware Interface Connection for Kinetis

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

812 Freescale Semiconductor, Inc.



To use Open Source BDM, first connect your hardware interface to your computer, and
then set the interface to USB Multilink, USB Multilink FX, Embedded OSBDM/
OSJTAG/OpenSDA – USB Port. The Port selection should automatically populate your
hardware interface. If not, use the Refresh button and the Port selection drop-down box.
If you are having issues getting your device to populate, use the link for FAQ #29 to find
popular solutions.

14.1.3.1.1.9 Trace and Profile

The P&E TraceLink allows the user to capture real-time external trace information
without having to stop or disturb the running application. This allows the user to see the
real-time execution of their code by continuously recording the processor events. For
external trace captures, the P&E TraceLink supports ETM trace. The Kinetis chip must
have Trace_CLKOUT and Trace_D[3:0] pins to support ETM trace. Chips without these
pins can still be debugged by the TraceLink within CodeWarrior

1. Right-click on the project and right-click -> Debug as -> Debug Configurations. The
Debug Configuration dialog box will appear.

2. In the left column, select the project type for which you would like to set the
TraceLink settings.

3. In the right column, select the Trace and Profile tab.

Chapter 14 Connections — Kinetis Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 813



Figure 14-16. Trace and Profile Tab
4. Click on the Enable Trace and Profile checkbox.
5. Change the other user settings that fits the users needs.
6. Click on the Main tab and select the correct connection setting from the drop-down

box or create a new connection by clicking on the New button.
7. Once the correct connection setting is selected, click on the Edit button. The launch

configuration dialog box will appear.
8. When the TraceLink is selected as the interface, the Additional Options will be

available. Change the Trace Max Buffer Size as the user sees fit by using the drop-
down box. Refer to Figure 14-17.

P&E Hardware Interface Connection for Kinetis

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

814 Freescale Semiconductor, Inc.



Figure 14-17. Debugger Settings

NOTE
Kinetis L-, E-, and M-Series devices can be debugged by
the TraceLink, however Trace and Profile is currently not
supported. Kinetis K-Series devices are fully supported.

14.1.3.1.2 Advanced Programming/Debug Options

Chapter 14 Connections — Kinetis Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 815



The Advanced Programming/Debug Options menu option takes you to the Advanced
Options dialog box, where you can configure the software settings for the flash
programming procedure.

Figure 14-18. Advanced Options Dialog Box

14.1.3.1.2.1 Enable Flash Programming Dialog

Setting the Enable Flash Programming dialog box lets you view the steps taken by the
Flash Programmer.

14.1.3.1.2.2 Non-Volatile Memory Preservation

P&E Hardware Interface Connection for Kinetis

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

816 Freescale Semiconductor, Inc.



You have the option of preserving up to three independent ranges of non-volatile memory
(on devices with EEPROM, the EEPROM array may optionally be preserved as well).
Ranges that are designated as "preserved" are read before an erase, and reprogrammed
immediately afterwards, thereby preserving the data in these ranges. Any attempt to
program data into a preserved range is ignored. When entering an address into the
preserved range field (hexadecimal input is expected), the values are masked according to
the row size of the device. This ensures that the reprogramming of preserved data does
not cause any conditions that disturb programming.

14.1.3.1.2.3 Calculate and Program Non-Volatile Trim

The checkbox gives you the option of trimming device to default center frequency. If this
checkbox is selected, a calculated trim frequency will be programmed to a dedicated non-
volatile memory location during the next debugging session.

14.1.3.1.2.4 Custom Trim

When the checkbox is checked, you have the ability to input a custom center frequency
within an allowed range for a given device. A trim value based on this frequency will be
calculated and programming into dedicated non-volatile memory location during the next
debug session.

14.1.3.1.2.5 Alternative Algorithm Functionality

Once you create a project for a specific Kinetis microprocessor, the debugger specifies a
default algorithm to use during all Flash programming operations. The debugger uses this
algorithm for nearly all programming requirements. The default algorithm can be found
in the <CW_Install>/MCU/bin/plugins/support/ARM/gdi/P&E directory

However, you can override the default algorithm via the Alternative Algorithm function,
located in the Advanced Programming/Debug Options menu. This feature can be used to
select a custom programming algorithm, or select another one of P&E's many
programming algorithms for use with a specific project.

Tip
Selecting a wrong programming algorithm may damage your
device, lead to under/ over programming situations, or simply
not program portions of the project file.

Chapter 14 Connections — Kinetis Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 817



Therefore it is recommended to use the default algorithm unless there is a compelling
reason to do otherwise.

Use these steps to override the default algorithm:

1. Check the Use Alternative Algorithm checkbox.

Figure 14-19. Advanced Options - Alternative Algorithm Checkbox
2. Click the Choose Alternative Algorithm button, which lets you browse for an

alternative algorithm.
3. Once you select the alternative algorithm, the name of the algorithm along with its

full path appears in the text field below the Choose Alternative Algorithm button.

At this point, the current project performs all future Flash programming operations using
the alternative algorithm. You may revert to the default algorithm at any time by clearing
the Use Alternative Algorithm checkbox.

P&E Hardware Interface Connection for Kinetis

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

818 Freescale Semiconductor, Inc.



14.1.3.1.2.6 Enable Partitioning

Setting the Enable Partitioning checkbox enables you to partition your Kinetis chip. To
setup partitioning, you must provide two bytes in hexadecimal format. The first byte
represents the EEPROM Data Set Size, which determines the amount of FlexRAM used
in each of the available EEPROM subsystems. This byte must be in the range of 0x00 to
0x3F. The second byte represents the FlexNVM Partition Code, which specifies how to
split the FlexNVM block between data flash and EEPROM backup memory supporting
EEPROM functions. This must be in the range of 0x00 to 0x0E. Refer to the reference
manual specific to the device you are working with for more information on how to
specify the EEPROM Data Set Size and FlexNVM Partition Code.

NOTE
This option is only available for Kinetis K-series devices with
Flex memory.

14.1.3.2 Connection Assistant

The P&E Connection Assistant is displayed when you attempt to debug but CodeWarrior
cannot connect to the interface hardware specified in the Launch Configuration dialog
box. To edit or change your debugger connection:

1. Choose the P&E device that you are using from the first drop-down menu and click
Refresh.

2. Using the second drop-down menu, select the port on which the interface is
connected.

3. Use the BDM Communication Speed panel to configure the shift frequency and
delay.

4. Click the Retry button.

Chapter 14 Connections — Kinetis Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 819



Figure 14-20. Connection Assistant Interface Selected

14.1.4 Active Mode Menu Options

When the microprocessor is connected, the active mode menu shows the name of the
microprocessor and gives you the access to P&E Microcomputer Systems' Compatible
Hardware Interfaces web page and home page. If the OSBDM interface is being used for
the debugging session, then the OSBDM Documentation option appears within the active
mode menu, which takes you to P&E Microcomputer Systems' OSBDM website. When
the microprocessor is not connected, the menu is not available.

Figure 14-21. ARM Active Mode Menu

P&E Hardware Interface Connection for Kinetis

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

820 Freescale Semiconductor, Inc.



Chapter 15
Connections - DSC Architecture

This chapter describes the features and settings of the connections that interface the
CodeWarrior debugger with the Digital Signal Controller (DSC) target board.

For the IDE to communicate with the target hardware, you must specify several key
items: the debugger protocol, a connection type, and any connection parameters. You can
enter these items using options in the Launch Configuration panel. The Launch
Configuration panel can be accessed by clicking on the Edit button located within the
Main tab of the Debug Configurations dialog box. These options are:

• The Connection Type option determines what debugger protocol the debugger uses
to communicate with the target.

• After you make the option for the connection type, the Connection Settings changes
to display configuration options specific for the hardware probe.

The topics in this chapter discuss the features and settings of the connections that
interface the CodeWarrior debugger with the DSC device family.

15.1 P&E Hardware Interface for DSC
This section describes DSC P&E Connection options. The DSC P&E Connection setting
permits a connection to DSC Freescale devices via P&E Multilink, Cyclone (including
the Cyclone MAX), and OSJTAG hardware interfaces. This connection mode lets you
debug code, as the firmware is fully resident in the Flash or RAM of the microprocessor.

15.1.1 New Project Wizard

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 821



When creating a new project using the New Project Wizard, you will be given the option
to select which hardware you will be using to debug your chip. Select the P&E hardware
interfaces you want to use by checking the checkboxes.

Figure 15-1. New project wizard

NOTE
Once the project is created, new connections will be created
with the P&E hardware interfaces you have selected as the
default settings. Use Debug Configurations if you want to edit
or change your hardware interface and its settings. If the P&E
Cyclone was selected, the USB port will be the default setting.
Use Debug Configurations to switch to Ethernet or Serial port
connections.

P&E Hardware Interface for DSC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

822 Freescale Semiconductor, Inc.



15.1.2 Launch Configurations Settings

To set the launch configurations for the debugger:

1. Right-click on your project and navigate to -> Debug As -> Debug Configurations.
The Debug Configuration Window will appear.

2. In the left column, select the project type you would like to set the launch
configurations.

3. In the right column, click the Main tab and use the Connection Selection drop-down
box to select a connection.

4. Click the Edit button beside the selected connection and the Launch Configuration
Window will appear.

5. Set your configurations, click the OK button, and click the Debug button to start the
debugger.

Figure 15-2. Debug Configuration Dialog Box

Chapter 15 Connections - DSC Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 823



Figure 15-3. Launch Configuration Dialog Box

15.1.3 Connection Options

This topic describes all P&E Multilink/Cyclone /OSJTAG connection options, which are
common to all P&E USB Multilink Universal [FX], P&E Cyclone Serial, P&E Cyclone
USB, P&E Cyclone Ethernet, P&E Cable DSC, and Open Source JTAG connections.

The options include:

• Changing P&E Connections Settings
• Connection Assistant

15.1.3.1 Changing P&E Connections Settings

All connection settings for P&E hardware interfaces are configured in the Launch
Configurations dialog box.

P&E Hardware Interface for DSC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

824 Freescale Semiconductor, Inc.



The following table describes the options for this view

Table 15-1. Connection Parameter Options for P&E Multilink/Cyclone /OSJTAG

Option Description

Interface Use this option to select the interface type. Select a supported
interface from the list box. The options are:

• USB Multilink Universal [FX] - USB Port

NOTE: The USB Multilink Universal and the USB Multilink
Universal FX can conveniently support all Freescale
architectures found in the current CodeWarrior 10 version

• Cyclone - Serial Port
• Cyclone - USB Port
• Cyclone - Ethernet Port
• Cable DSC
• OSJTAG

NOTE: Click on the "Compatible Hardware" link to help you
determine which P&E hardware is most suitable for your
project.

Port This option selects the port over which debug
communications is conducted. Select an available port from
the list box. NOTE: If you are having issues trying to get a
port to display, click on the [FAQ #29] link for help.

Refresh Click this button to have the workstation scan for a valid
interface and port. Valid interfaces and ports appear in the
Interface and Port list boxes.

Provide power to target (USB Multilink Universal FX only) Check this option to have the Cyclone or USB Multilink
Universal FX (circuitry) supply power to the hardware target.
Uncheck this option to not provide power.

NOTE: For USB Multilink Universal FX, use the jumper
settings located at JP10 to provide either 3.3V or 5V.

Power off target upon software exit (USB Multilink Universal
FX only)

Check this option to turn off the power when the program
terminates. Uncheck this option to leave the hardware target
powered continuously.

Power down delay (USB Multilink Universal FX only) This option specifies amount of time for which the target will
be turned off during a RESET power cycling sequence. Enter
the delay interval (in milliseconds) in this option's text box.

Power up delay (USB Multilink Universal FX only) This option specifies amount of time for which the target will
remain powered prior to a RESET power cycling sequence.
Enter the delay interval (in milliseconds) in this option's text
box.

Debug Shift Freq. This option lets you to set the debug shift clock speed of
P&E's interfaces. This integer value may be used to
determine the speed of communications according to the
following equations:

• Cyclone : (50000000/(2*N+5)) Hz
• USB Multilink Universal: (1000000/(N+1)) Hz
• USB ML Universal FX : (25000000/(N+1)) Hz
• OSJTAG : Fixed Frequency

The value n should be between 0 and 31. This shift clock
takes effect after the commands in the top of the
programming algorithm are executed so that these

Table continues on the next page...

Chapter 15 Connections - DSC Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 825



Table 15-1. Connection Parameter Options for P&E Multilink/Cyclone /OSJTAG (continued)

Option Description

commands can increase the target frequency and allow a
faster shift clock. This clock can't generally exceed a div 4 of
the processor bus frequency.

Delay After Reset Specifies a delay after the programmer resets the target that
we check to see if the part has properly gone into background
debug mode. This is useful if the target has a reset driver
which hold the MCU in reset after the programmer releases
the reset line. The n value is a delay in milliseconds.

To change P&E Connections settings, perform these steps:

1. In the CodeWarrior Projects view, select the project for which you want to change
the P&E Connections settings.

NOTE
It is assumed that you have created a project and built it.

2. Select Run > Debug Configurations from the main menu bar of the IDE.

The Debug Configurations dialog box appears.

3. Expand the CodeWarrior tree control in the left pane and select the launch
configuration you want to debug.

4. Click the Main tab.

The Main page appears in the area beneath the tabs.

5. Select a system within Connection of which you would like to use to debug. You
could create a new system by clicking the New button. For more details about
creating a new remote system, refer to the topic Target Management via Remote
System Explorer in the CodeWarrior Common Features Guide. Once a remote
system is selected, click the Edit button. The Launch Configuration Panel will
appear.

6. Ensure that the Target is the correct microcontroller you want to debug. Use the
drop-down box or the Edit button to change this option.

7. In the Connection Type drop-down box, select P&E DSC Multilink/Multilink
Universal/Cyclone /OSJTAG. The P&E connections settings will appear below

8. Click Refresh to scan valid interface and port.

Valid interfaces and ports appear in the Interface and Port drop-down lists in the
Connection Port and Interface Type group.

9. Select a supported interface from the Interface drop-down list.
10. Select a supported port from the Port drop-down list.

P&E Hardware Interface for DSC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

826 Freescale Semiconductor, Inc.



NOTE
The port displayed may vary depending on the interface.
For example, if you select interface as Cyclone - Serial
Port, the available port option is COM1 : Serial Port 1.

11. Specify settings in the Hardware Interface Power Control (Voltage --> Power -Out
Jack) group.

NOTE
This group will be enabled for the USB Multilink Universal
FX interface only. For USB Multilink Universal FX
interface, use the jumper settings located at JP10 to provide
either 3.3V or 5V.

• Check the Provide power to target checkbox to have the hardware interface
(circuitry) provide power to the target else clear the checkbox if you do not want
to provide power to the target.

• Check the Power off target upon software exit checkbox to turn off the power
when the program terminate else clear the checkbox to leave the hardware target
powered continuously.

• Enter the delay interval (in milliseconds) in the Power Down Delay text box.
This option specifies the time interval to wait before shutting off the power to the
hardware target. The hardware interface powers down the device once the debug
session is over, or while executing a power cycling sequence after beginning a
new debug session.

• Enter the delay interval (in milliseconds) in the Power Up Delay text box. This
option specifies the time interval to wait before turning on the power to the
hardware target. If the power to target feature is enabled, the interface will power
up the device while executing a power cycling sequence at the beginning of
every debug session.

• Select a BDM speed using the drop-down box in the BDM Debug Shift
Frequency.

NOTE
If you select a fast BDM speed, there may be scenarios
where you may have difficulty communicating with
your target device. You may want to experimentally
select a BDM speed that is fast and yet have a good
communication with your target.

• Click on the Delay after Reset checkbox and enter the desired delay (in
milliseconds) in the text box.

Chapter 15 Connections - DSC Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 827



This option specifies the time interval to wait between resetting and
communicating the target device.

• Click the OK to save changes to the P&E Connections settings. The Launch
Configuration Panel dialog box will close.

12. Click on the Close button to close the Debug Configuration dialog box.

15.1.3.1.1 P&E Hardware Interface Connection- Specific Options

This topic describes the connection-specific options. The connections include:

• P&E USB Multilink Universal [FX]
• P&E Cyclone Serial
• P&E Cyclone USB
• P&E Cyclone Ethernet
• P&E Cable DSC
• Open Source JTAG

15.1.3.1.1.1 P&E USB Multilink Universal [FX]

The P&E DSC Connection setting permits a connection to USB Multilink devices, which
include the P&E USB Multilink Universal, and the USB Multilink Universal FX. P&E
USB Multilink Universal [FX] mode lets you debug code, as the firmware is fully
resident in the Flash of the microprocessor. The operation of all modules fully reflects the
actual operation of the onboard resources. Like the USB Multilink Universal, the USB
Multilink Universal FX can conveniently debug all Freescale architectures found in the
current CodeWarrior 10 version, however, the FX version is up to 8 times faster than the
USB Multilink Universal and it can also provide power to the target.

15.1.3.1.1.1.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

P&E Hardware Interface for DSC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

828 Freescale Semiconductor, Inc.



3. Set the connection type to P&E DSC Multilink/Multilink Universal/Cyclone /
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings, as shown in the following figure.

Figure 15-4. P&E's Launch Configuration Dialog Box

To use P&E's USB Multilink Universal [FX]/USB Multilink, first connect your hardware
interface to your computer, and then set the interface to USB Multilink, USB Multilink
FX, Embedded OSBDM/OSJTAG - USB Port. The Port selection should automatically
populate your hardware interface. If not, use the Refresh button and the Port selection
drop-down box. If you are having issues getting your device to populate, use the link for
FAQ #29 to find popular solutions.

15.1.3.1.1.2 P&E Cyclone Serial

The P&E Cyclone Serial Connection setting permits a connection to Cyclone Serial
devices. P&E Cyclone Serial mode lets you debug code, as the firmware is fully resident
in the Flash of the microprocessor. The operation of all modules fully reflects the actual
operation of the onboard resources.

Chapter 15 Connections - DSC Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 829



15.1.3.1.1.2.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E DSC Multilink/Multilink Universal/Cyclone Pro/
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings, as shown in the following figure.

Figure 15-5. P&E's Launch Configuration Dialog Box

To use P&E’s Cyclone Serial, first connect your hardware interface to your computer,
and then set the interface to Cyclone – Serial Port. The Port selection should
automatically populate your hardware interface. If not, use the Refresh button and the
Port selection drop-down box. If you are having issues getting your device to populate,
use the link for FAQ #29 to find popular solutions.

P&E Hardware Interface for DSC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

830 Freescale Semiconductor, Inc.



NOTE
The Cyclone MAX does not support the ability to provide
power to the target

.

15.1.3.1.1.3 P&E Cyclone USB

The P&E Cyclone USB Connection setting permits a connection to Cyclone USB
devices. P&E Cyclone USB mode lets you debug code, as the firmware is fully resident
in the Flash of the microprocessor. The operation of all modules fully reflects the actual
operation of the onboard resources.

15.1.3.1.1.3.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E DSC Multilink/Multilink Universal/Cyclone Pro/
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings, as shown in the following figure.

Chapter 15 Connections - DSC Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 831



Figure 15-6. P&E's Launch Configuration Dialog Box

To use P&E’s Cyclone USB, first connect your hardware interface to your computer, and
then set the interface to Cyclone – USB Port. The Port selection should automatically
populate your hardware interface. If not, use the Refresh button and the Port selection
drop-down box. If you are having issues getting your device to populate, use the link for
FAQ #29 to find popular solutions.

NOTE
The Cyclone MAX does not support the ability to provide
power to the target.

15.1.3.1.1.4 P&E Cyclone Ethernet

The P&E Cyclone Ethernet Connection setting permits a connection to Cyclone Ethernet
devices. P&E Cyclone Ethernet mode lets you debug code, as the firmware is fully
resident in the Flash of the microprocessor. The operation of all modules fully reflects the
actual operation of the onboard resources.

P&E Hardware Interface for DSC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

832 Freescale Semiconductor, Inc.



15.1.3.1.1.4.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E DSC Multilink/Multilink Universal/Cyclone Pro/
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings, as shown in the following figure.

Figure 15-7. P&E's Launch Configuration Dialog Box

To use P&E’s Cyclone Ethernet, first connect your hardware interface to your computer,
and then set the interface to Cyclone – Ethernet Port. The Port selection should
automatically populate your hardware interface. If not, use the Refresh button and the
Port selection drop-down box. You can also specify IP and Network Card IP by clicking
on the checkboxes. If you are having issues getting your device to populate, use the link
for FAQ #29 to find popular solutions.

Chapter 15 Connections - DSC Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 833



NOTE
The Cyclone MAX does not support the ability to provide
power to the target.

15.1.3.1.1.5 P&E Cable DSC

The P&E Cable DSC Connection setting permits a connection to Cable DSC devices.
P&E Cable DSC mode lets you debug code, as the firmware is fully resident in the Flash
of the microprocessor. The operation of all modules fully reflects the actual operation of
the onboard resources.

15.1.3.1.1.6 Open Source JTAG

Freescale supplies certain development boards with an integrated debug circuit based on
Open Source JTAG. This allows the development board to be debugged from the PC via
the USB bus without requiring external debug hardware, such as the Cyclone or USB
Multilink Universal [FX]. The development board also derives its power from the USB
Bus.

The Open Source JTAG circuit design (OSJTAG-JM60) is an open source, community
driven design. It has been published on Freescale's website, and full documentation can
be found in the Community Forums. The latest documentation and firmware can be
downloaded from www.pemicro.com/osbdm.

Integration with CodeWarrior is handled via the "P&E Open Source TAG" connection.
P&E has integrated the Open Source JTAG support into the same connection that
supports both the USB Multilink Universal [FX] and the Cyclone . All of the dialogs that
affect operation of these hardware interfaces function in the same manner when using
OSJTAG (albeit at a lower data rate).

The Open Source JTAG Connection setting permits a connection to Open Source JTAG
devices. Open Source JTAG mode lets you debug code, as the firmware is fully resident
in the Flash or RAM of the microprocessor. The operation of all modules fully reflects
the actual operation of the onboard resources.

15.1.3.1.1.6.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

P&E Hardware Interface for DSC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

834 Freescale Semiconductor, Inc.



1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E DSC V234 Multilink/Multilink Universal/Cyclone
MOSJTAG so that the Connection tab will populate P&E's hardware interface
connection settings, as shown in the following figure.

Figure 15-8. P&E's Launch Configuration Dialog Box

To use Open Source JTAG, first connect your hardware interface to your computer, and
then set the interface to USB Multilink, USB Multilink FX, Embedded OSBDM/
OSJTAG – USB Port. The Port selection should automatically populate your hardware
interface. If not, use the Refresh button and the Port selection drop-down box. If you are
having issues getting your device to populate, use the link for FAQ #29 to find popular
solutions.

15.1.3.1.1.6.2 OSJTAG Firmware Update

Chapter 15 Connections - DSC Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 835



All CodeWarrior IDE's version 10.1 and higher have an automatic firmware update
mechanism for built-in OSJTAG hardware interfaces. Whenever an OSJTAG-integrated
hardware interface is plugged into a USB port and CodeWarrior attempts to contact the
device, it will automatically check to see if the device has the latest OSJTAG firmware
version. If the firmware on the device is older than the one found within the CodeWarrior
package, then a dialog box will indicate that a firmware update is necessary.

Figure 15-9. Old OSJTAG Firmware Detected

To update the firmware, the OSJTAG device must enter Bootloader mode. To do so the
USB cable must be disconnected from the device and the OSJTAG-JM60 IRQ pin must
be connected to ground usually done by using a 2-pin female jumper. Use the OSJTAG
device schematics to find the IRQ pin. Once the IRQ pin is grounded, connect the USB
cable to the OSJTAG device and click on the OK button. If done correctly, the automatic
firmware update will occur.

Figure 15-10. OSJTAG Firmware Updating

When the firmware is done updating, a dialog box will indicate that the OSJTAG device
must exit Bootloader mode and enter into Run mode.

P&E Hardware Interface for DSC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

836 Freescale Semiconductor, Inc.



Figure 15-11. Start OSJTAG Run Mode

To enter Run Mode, the user must disconnect the USB cable from the OSJTAG device
and the 2-pin female jumper on the IRQ pin must be removed. Next, reconnect the USB
cable and the device will be in Run Mode. Click on OK and CodeWarrior will move onto
programming or running the code.

The CodeWarrior IDE layout will have the latest OSJTAG firmware. If for any reason
you experience difficulty performing OSJTAG firmware update, visit
www.pemicro.com/osbdm and use the Multilink/OSBDM Firmware Update Utility to
force an update, or use the OSBDM Firmware Recovery Utility for a fail safe way to
reprogram a working, corrupted, or blank OSBDM firmware via an external USB-ML-12
hardware interface.

15.1.3.1.2 Advanced Programming/Debug Options

The Advanced Programming/Debug Options menu option takes you to the Advanced
Options dialog box, where you can configure the software settings for the flash
programming procedure.

Chapter 15 Connections - DSC Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 837



Figure 15-12. Advanced Options Dialog Box

15.1.3.1.2.1 Alternative Algorithm Functionality

Once you create a project for a specific S12Z microprocessor, the debugger specifies a
default algorithm to use during all flash programming operations. The debugger uses this
algorithm for nearly all programming requirements. The default algorithm can be found
in the <CW_Install>/MCU/bin/plugins/support/S12Z/gdi/P&E directory

However, you can override the default algorithm via the Alternative Algorithm function,
located in the Advanced Programming/Debug Options menu. This feature can be used to
select a custom programming algorithm or select another one of P&E's many
programming algorithms for use with a specific project.

CAUTION
Selecting the wrong programming algorithm may damage your
device, lead to under/over programming situations, or simply
not program portions of the project file. Therefore it is
recommended to use the default algorithm unless there is a
compelling reason to do otherwise.

Use these steps to override the default algorithm:

1. Check the Use Alternative Algorithm checkbox.
2. Click the Choose Alternative Algorithm button, which lets you browse for an

alternative algorithm.

P&E Hardware Interface for DSC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

838 Freescale Semiconductor, Inc.



3. Once you select the alternative algorithm, the name of the algorithm along with its
full path appears in the text field below the Choose Alternative Algorithm button.

4. At this point, the current project will perform all future flash programming
operations using the alternative algorithm. You may revert to the default algorithm at
any time by clearing the Use Alternative Algorithm checkbox.

15.1.3.1.2.2 Non-Volatile Memory Preservation

You have the option of preserving up to three independent ranges of non-volatile memory
(on devices with EEPROM, the EEPROM array may optionally be preserved as well).
Ranges that are designated as "preserved" are read before an erase and reprogrammed
immediately afterwards, thereby preserving the data in these ranges. Any attempt to
program data into a preserved range is ignored. When entering an address into the
preserved range field (hexadecimal input is expected), the values are masked according to
the row size of the device. This ensures that the reprogramming of preserved data does
not cause any conditions that disturb programming.

15.1.3.1.2.3 Enable Flash Programming Dialog

Setting the Enable Flash Programming dialog box lets you view the steps taken by the
Flash Programmer.

15.1.3.2 Connection Assistant

The P&E Connection Assistant is displayed when you attempt to debug but CodeWarrior
cannot connect to the interface hardware specified in the Launch Configuration dialog
box. To edit or change your debugger connection: 1. Choose the P&E device that you are
using from

1. Choose the P&E device that you are using from the first drop-down menu and click
Refresh.

2. Using the second drop-down menu, select the port on which the interface is
connected.

3. Use the BDM Communication Speed panel to configure the shift frequency and
delay.

4. Click the Retry button.

Chapter 15 Connections - DSC Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 839



15.1.4 Active Mode Menu Options

When the microprocessor is connected, the active mode menu shows the name of the
microprocessor and gives you the access to P&E Microcomputer Systems' Compatible
Hardware Interfaces web page and home page. If the OSBDM interface is being used for
the debugging session, then the OSBDM Documentation option appears within the active
mode menu, which takes you to P&E Microcomputer Systems' OSBDM website. When
the microprocessor is not connected, the menu is not available.

Figure 15-13. Additional Connection Menu Options

P&E Hardware Interface for DSC

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

840 Freescale Semiconductor, Inc.



Chapter 16
Connections - S12Z Architecture

This chapter describes the features and settings of the connections that interface the
CodeWarrior debugger with the S12Z target board.

For the IDE to communicate with the target hardware, you must specify several key
items: the debugger protocol, a connection type, and any connection parameters. You can
enter these items using options in the Launch Configuration panel. Launch Configuration
panel can be accessed by clicking on the Edit button located within the Main tab of the
Debug Configurations dialog box. These options are:

• The Connection Type option determines what debugger protocol the debugger uses
to communicate with the target.

• After you make the option for the connection type, the Connection Settings changes
to display configuration options specific for the hardware probe.

The topics in this chapter discuss the features and settings of the connections that
interface the CodeWarrior debugger with hardware devices that are part of the S12Z
device family.

The topics in this chapter are:

• P&E Hardware Interface for S12Z

16.1 P&E Hardware Interface for S12Z
This section describes the S12Z P&E Connection options. The S12Z Connection setting
permits a connection to S12Z Freescale devices via P&E Multilink, Cyclone (including
Cyclone PRO), Tracelink, and OSBDM hardware interfaces. This connection mode lets
you debug code, as the firmware is fully resident in the Flash or RAM of the
microprocessor.

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 841



16.1.1 New Project Wizard

When creating a new project using the New Project Wizard, you will be given the option
to select which hardware you will be using to debug your chip. Select the P&E hardware
interfaces you want to use by checking the checkboxes.

Figure 16-1. New project wizard

NOTE
Once the project is created, new connections will be created
with the P&E hardware interfaces you have selected as the
default settings. Use Debug Configurations if you want to edit
or change your hardware interface and its settings. If the P&E
Cyclone was selected, the USB port will be the default setting.
Use Debug Configurations to switch to Ethernet or Serial port
connections.

P&E Hardware Interface for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

842 Freescale Semiconductor, Inc.



16.1.2 Launch Configurations Settings

To set the launch configurations for the debugger:

1. Right-click on your project and navigate to -> Debug As -> Debug Configurations.
The Debug Configuration Window will appear.

2. In the left column, select the project type you would like to set the launch
configurations.

3. In the right column, click the Main tab and use the Connection Selection drop-down
box to select a connection.

4. Click the Edit button beside the selected connection and the Launch Configuration
Window will appear.

5. Set your configurations, click the OK button, and click the Debug button to start the
debugger.

Figure 16-2. Debug Configuration Dialog Box

Chapter 16 Connections - S12Z Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 843



Figure 16-3. Launch Configuration Dialog Box

16.1.3 Connection Options

This topic describes all P&E Multilink/Cyclone/Tracelink/OSBDM connection options,
which are common to all P&E USB Multilink Universal [FX]/USB Multilink, P&E
Cyclone Serial, P&E Cyclone USB , P&E Cyclone Ethernet, P&E TraceLink USB, and
P&E TraceLink Ethernet connections.

The options include:

• Changing P&E Connection Settings
• Connection Assistant

P&E Hardware Interface for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

844 Freescale Semiconductor, Inc.



16.1.3.1 Changing P&E Connection Settings

All connection settings for P&E hardware interfaces are configured in the Launch
Configurations dialog box.

Figure 16-4. P&E S12Z Launch Configuration Dialog Box

The followin table describes the options for this view.

Table 16-1. Connection Parameter Options

Option Description

Interface Use this option to select the interface type. Select a supported
interface from the list box. The options are:

• USB BDM Multilink (HCS08/HCS12/CFV1)- USB Port
• USB Multilink Universal [FX] - USB Port

Table continues on the next page...

Chapter 16 Connections - S12Z Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 845



Table 16-1. Connection Parameter Options (continued)

Option Description

NOTE: The USB Multilink Universal can conveniently support
all Freescale architectures found in the current CodeWarrior
10 version

• Cyclone- Serial Port
• Cyclone- USB Port
• Cyclone- Ethernet Port
• Tracelink - USB Port
• Tracelink - Ethernet Port
• OSBDM

NOTE: Click on the "Compatible Hardware" link to help you
determine which P&E hardware is most suitable for your
project.

Refresh Click this button to have the workstation scan for a valid
interface and port. Valid interfaces and ports appear in the
Interface and Port list boxes.

Port This option selects the port over which debug
communications is conducted. Select an available port from
the list box. NOTE: If you are having issues trying to get a
port to display, click on the [FAQ #29] link for help.

Specify IP (Cyclone Ethernet only) Use this option to specify the IP address of a Cyclone outside
of the local network. Click on the checkbox to enable the
textbox. This will also disable the port dropdown box.
Currently supports IPv4 only.

Specify Network Card IP (Cyclone Ethernet only) Use this option to specify the local network card IP address if
there are multiple cards on your computer. Click on the
checkbox to enable the textbox. Currently supports IPv4 only.

Provide power to target (Cyclone, Tracelink, and USB
Multilink Universal FX only)

Check this option to have the Cyclone , Tracelink, or USB
Multilink Universal FX (circuitry) supply power to the hardware
target.. Uncheck this option to not provide power.

NOTE: For USB Multilink Universal FX, use the jumper
settings located at JP10 to provide either 3.3V or 5V.

Power off target upon software exit (Cyclone, Tracelink, and
USB Multilink Universal FX only)

Check this option to turn off the power when the program
terminates. Uncheck this option to leave the hardware target
powered continuously.

Regulator Output Voltage (Cyclone, Tracelink, and USB
Multilink Universal FX only)

This option adjusts the output voltage that powers the
hardware target. Select a voltage value from this option's list
box.

Power down delay (Cyclone, Tracelink, and USB Multilink
Universal FX only)

This option specifies amount of time for which the target will
be turned off during a RESET power cycling sequence. Enter
the delay interval (in milliseconds) in this option's text box.

Power up delay (Cyclone, Tracelink, and USB Multilink
Universal FX only)

This option specifies amount of time for which the target will
remain powered prior to a RESET power cycling sequence.
Enter the delay interval (in milliseconds) in this option's text
box.

NOTE
Improper voltage setting can damage the board.

To change P&E Connections settings, perform these steps.

P&E Hardware Interface for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

846 Freescale Semiconductor, Inc.



1. In the CodeWarrior Projects view, select the project for which you want to change
the P&E Connections settings.

NOTE
It is assumed that you have created a project and built it.

2. Select Run > Debug Configurations from the main menu bar of the IDE.

The Debug Configurations dialog box appears.

3. Expand the CodeWarrior tree control in the left pane and select the launch
configuration you want to debug.

4. Click the Main tab.

The Main page appears in the area beneath the tabs.

5. Select a system within Connection which you would like to use to debug. You could
create a new system by clicking the New button. For more details about creating a
new remote system, refer to the topic Target Management via Remote System
Explorer in the CodeWarrior Common Features Guide. Once a remote system is
selected, click the Edit button. The Launch Configuration Panel will appear.

6. Ensure that the Target is the correct microcontroller you want to debug. Use the
drop-down box or the Edit button to change this option.

7. In the Connection Type drop-down box, select P&E S12Z Multilink/Multilink
Universal/Cyclone/OSBDM. The P&E connections settings will appear below.

8. Click Refresh to scan valid interface and port.

Valid interfaces and ports appear in the Interface and Port drop-down lists in the
Connection Port and Interface Type group.

9. Select a supported interface from the Interface drop-down list.
10. Select a supported port from the Port drop-down list.

NOTE
The port displayed may vary depending on the interface.
For example, if you select interface as Cyclone- Serial Port,
the available port option is COM1 : Serial Port 1.

11. Specify settings in the Cyclone Power Control (Voltage --> Power -Out Jack) group.

NOTE
This group will be enabled enabled for the Cyclone,
Tracelink and USB Multilink Universal FX interfaces only.
For USB Multilink Universal FX interface, use the jumper
settings located at JP10 to provide either 3.3V or 5V.

Chapter 16 Connections - S12Z Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 847



• Check the Provide power to target checkbox to have the hardware interface
(circuitry) provide power to the target else clear the checkbox if you do not want
to provide power to the target.

• Check the Power off target upon software exit checkbox to turn off the power
when the program terminate else clear the checkbox to leave the hardware target
powered continuously.

• Select a voltage value from the Regulator Output Voltage drop-down list. This
adjusts the output voltage that powers the hardware target.

NOTE
An improper voltage setting can damage the board.

• Enter the delay interval (in milliseconds) in the Power Down Delay text box.
This option specifies the time interval to wait before shutting off the power to the
hardware target. The hardware interface powers down the device once the debug
session is over, or while executing a power cycling sequence after beginning a
new debug session.

• Enter the delay interval (in milliseconds) in the Power Up Delay text box. This
option specifies the time interval to wait before turning on the power to the
hardware target. If the power to target feature is enabled, the hardware interface
will power up the device while executing a power cycling sequence at the
beginning of every debug session.

• Click OK to save changes to the P&E Connections settings. The Launch
Configuration Panel dialog box will close.

• Click Close button to close the Debug Configuration dialog box.

16.1.3.1.1 P&E Hardware Interface Connection-Specific Options

This topic describes the connection-specific options. The connections include:

• P&E USB Multilink Universal [FX]/USB Multilink
• P&E Cyclone Serial
• P&E Cyclone USB
• P&E Cyclone Ethernet
• P&E TraceLink USB
• P&E TraceLink Ethernet
• Open Source BDM

16.1.3.1.1.1 P&E USB Multilink Universal [FX]/USB Multilink

P&E Hardware Interface for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

848 Freescale Semiconductor, Inc.



The P&E S12Z Connection setting permits a connection to USB Multilink devices, which
include the P&E BDM Multilink, USB Multilink Universal, and the USB Multilink
Universal FX. The P&E USB Multilink Universal [FX]/USB Multilink mode lets you
debug code, as the firmware is fully resident in the Flash of the microprocessor. The
operation of all modules fully reflects the actual operation of the onboard resources. Like
the USB Multilink Universal, the USB Multilink Universal FX can conveniently debug
all Freescale architectures found in the current CodeWarrior 10 version, however, the FX
version is up to 8 times faster than the USB Multilink Universal and it can also provide
power to the target.

16.1.3.1.1.1.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E S12Z Multilink/Multilink Universal/Cyclone/
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings.

Chapter 16 Connections - S12Z Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 849



Figure 16-5. P&E's Launch Configuration Dialog Box

To use P&E's USB Multilink Universal [FX]/USB Multilink, first connect your hardware
interface to your computer, and then set the interface to USB Multilink, USB Multilink
FX, Embedded OSBDM/OSJTAG - USB Port. The Port selection should automatically
populate your hardware interface. If not, use the Refresh button and the Port selection
drop-down box. If you are having issues getting your device to populate, use the link for
FAQ #29 to find popular solutions.

16.1.3.1.1.2 P&E Cyclone Serial

The P&E Cyclone Serial Connection setting permits a connection to Cyclone Serial
devices. P&E Cyclone Serial mode lets you debug code, as the firmware is fully resident
in the Flash of the microprocessor. The operation of all modules fully reflects the actual
operation of the onboard resources.

P&E Hardware Interface for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

850 Freescale Semiconductor, Inc.



16.1.3.1.1.2.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E S12Z Multilink/Multilink Universal/Cyclone Pro/
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings, as shown in the following figure.

Figure 16-6. P&E's Launch Configuration Dialog Box

Chapter 16 Connections - S12Z Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 851



To use P&E's Cyclone Serial, first connect your hardware interface to your computer, and
then set the interface to Cyclone - Serial Port. The Port selection should automatically
populate your hardware interface. If not, use the Refresh button and the Port selection
drop-down box. If you are having issues getting your device to populate, use the link for
FAQ #29 to find popular solutions.

16.1.3.1.1.3 P&E Cyclone USB

The P&E Cyclone USB Connection setting permits a connection to Cyclone USB
devices. P&E Cyclone USB mode lets you debug code, as the firmware is fully resident
in the Flash of the microprocessor. The operation of all modules fully reflects the actual
operation of the onboard resources.

16.1.3.1.1.3.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E S12Z Multilink/Multilink Universal/CyclonemPro/
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings, as shown in the following figure.

P&E Hardware Interface for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

852 Freescale Semiconductor, Inc.



Figure 16-7. P&E's Launch Configuration Dialog Box

To use P&E’s Cyclone USB, first connect your hardware interface to your computer, and
then set the interface to Cyclone – USB Port. The Port selection should automatically
populate your hardware interface. If not, use the Refresh button and the Port selection
drop-down box. If you are having issues getting your device to populate, use the link for
FAQ #29 to find popular solutions.

16.1.3.1.1.4 P&E Cyclone Ethernet

The P&E Cyclone Ethernet Connection setting permits a connection to Cyclone Ethernet
devices. P&E Cyclone Ethernet mode lets you debug code, as the firmware is fully
resident in the Flash of the microprocessor. The operation of all modules fully reflects the
actual operation of the onboard resources.

16.1.3.1.1.4.1 Debug configurations

Chapter 16 Connections - S12Z Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 853



To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E S12Z Multilink/Multilink Universal/Cyclone Pro/
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings, as shown in the following figure.

Figure 16-8. P&E's Launch Configuration Dialog Box

To use P&E’s Cyclone Ethernet, first connect your hardware interface to your computer,
and then set the interface to Cyclone – Ethernet Port. The Port selection should
automatically populate your hardware interface. If not, use the Refresh button and the

P&E Hardware Interface for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

854 Freescale Semiconductor, Inc.



Port selection drop-down box. You can also specify IP and Network Card IP by clicking
on the checkboxes. If you are having issues getting your device to populate, use the link
for FAQ #29 to find popular solutions.

16.1.3.1.1.5 P&E TraceLink USB

The P&E TraceLink USB Connection setting permits a connection to TraceLink USB
devices. P&E TraceLink USB mode lets you debug code, as the firmware is fully resident
in the Flash of the microprocessor. The operation of all modules fully reflects the actual
operation of the onboard resources. P&E’s TraceLink can conveniently support all
Freescale architectures found in the current CodeWarrior 10 version; however, it can only
capture the external trace signals for the ColdFire V2/3/4 and Kinetis ARM architectures.

NOTE
S12Z devices can be debugged by the Tracelink, however Trace
and Profile is currently not supported.

16.1.3.1.1.5.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear.

3. Set the connection type to P&E S12Z Multilink/Multilink Universal/Cyclone/
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings, as shown in the following figure.

Chapter 16 Connections - S12Z Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 855



Figure 16-9. P&E's Launch Configuration Dialog Box

To use P&E's Cyclone USB, first connect your hardware interface to your computer, and
then set the interface to Cyclone - USB Port. The Port selection should automatically
populate your hardware interface. If not, use the Refresh button and the Port selection
drop-down box. If you are having issues getting your device to populate, use the link for
FAQ #29 to find popular solutions.

16.1.3.1.1.6 P&E TraceLink Ethernet

The P&E TraceLink Ethernet Connection setting permits a connection to TraceLink
Ethernet devices. P&E TraceLink Ethernet mode lets you debug code, as the firmware is
fully resident in the Flash of the microprocessor. The operation of all modules fully
reflects the actual operation of the onboard resources. P&E’s TraceLink can conveniently

P&E Hardware Interface for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

856 Freescale Semiconductor, Inc.



support all Freescale architectures found in the current CodeWarrior 10 version; however,
it can only capture the external trace signals for the ColdFire V2/3/4 and Kinetis ARM
architectures

NOTE
S12Z devices can be debugged by the Tracelink, however Trace
and Profile iscurrently not supported.

.

16.1.3.1.1.6.1 Debug configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration dialog box will appear.

3. Set the connection type to P&E S12Z Multilink/Multilink Universal/Cyclone/
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings, as shown in the following figure.

Chapter 16 Connections - S12Z Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 857



Figure 16-10. P&E's Launch Configuration Dialog Box

To use P&E’s TraceLink Ethernet, first connect your hardware interface to your
computer, and then set the interface to TraceLink – Ethernet Port. The Port selection
should automatically populate your hardware interface. If not, use the Refresh button and
the Port selection drop-down box. You can also specify IP and Network Card IP by
clicking on the checkboxes. If you are having issues getting your device to populate, use
the link for FAQ #29 to find popular solutions.

16.1.3.1.1.7 Open Source BDM

Freescale supplies certain development boards with an integrated debug circuit based on
Open Source BDM. This allows the development board to be debugged from the PC via
the USB bus without requiring external debug hardware, such as the Cyclone or USB
Multilink Universal [FX]/USB Multilink. The development board also derives its power
from the USB Bus.

P&E Hardware Interface for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

858 Freescale Semiconductor, Inc.



The Open Source BDM circuit design (OSBDM-JM60) is an open source, community
driven design. It has been published on Freescale's website, and full documentation can
be found in the Community Forums. The latest documentation and firmware can be
downloaded from www.pemicro.com/osbdm.

Integration with CodeWarrior is handled via the "Open Source BDM" connection. P&E
has integrated the Open Source BDM support into the same connection that supports both
the USB Multilink and the Cyclone. All of the dialogs that affect operation of these
hardware interfaces function in the same manner when using OSBDM (albeit at a lower
data rate).

The Open Source BDM Connection setting permits a connection to Open Source BDM
devices. Open Source BDM mode lets you debug code, as the firmware is fully resident
in the Flash or RAM of the microprocessor. The operation of all modules fully reflects
the actual operation of the onboard resources.

16.1.3.1.1.7.1 Debug Configurations

To change P&E's hardware interface connection settings within Debug Configurations:

1. In the left column select the project for which you would like to change the settings.
Within the Main tab, use the Connection selection drop-down box to select a
connection.

2. Then click on the Edit button beside your selected connection. The Launch
Configuration Dialog will appear. \

3. Set the connection type to P&E S12Z Multilink/Multilink Universal/Cyclone/
OSBDM so that the Connection tab will populate P&E's hardware interface
connection settings, as shown in the following figure.

Chapter 16 Connections - S12Z Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 859



Figure 16-11. P&E's Launch Configuration Dialog Box

To use Open Source BDM, first connect your hardware interface to your computer, and
then set the interface to USB Multilink, USB Multilink FX, Embedded OSBDM/
OSJTAG - USB Port. The Port selection should automatically populate your hardware
interface. If not, use the Refresh button and the Port selection drop-down box. If you are
having issues getting your device to populate, use the link for FAQ #29 to find popular
solutions.

16.1.3.1.1.7.2 OSBDM Firmware Update

All CodeWarrior IDE's version 10.1 and higher have an automatic firmware update
mechanism for built-in OSBDM hardware interfaces. Whenever an OSBDM-integrated
hardware interface is plugged into a USB port and CodeWarrior attempts to contact the
device, it will automatically check to see if the device has the latest OSBDM firmware
version. If the firmware on the device is older than the one found within the CodeWarrior
package, then a dialog box will indicate that a firmware update is necessary.

P&E Hardware Interface for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

860 Freescale Semiconductor, Inc.



Figure 16-12. Old OSBDM Firmware Detected

To update the firmware, the OSBDM device must enter Bootloader mode. To do so the
USB cable must be disconnected from the device and the OSBDM-JM60 IRQ pin must
be connected to ground usually done by using a 2-pin female jumper. Use the OSBDM
device schematics to find the IRQ pin. Once the IRQ pin is grounded, connect the USB
cable to the OSBDM device and click on the OK button. If done correctly, the automatic
firmware update will occur.

Figure 16-13. OSBDM Firmware Updating

When the firmware is done updating, a dialog box will indicate that the OSBDM device
must exit Bootloader mode and enter into Run mode.

Figure 16-14. Start OSBDM Run Mode

To enter Run Mode, the user must disconnect the USB cable from the OSBDM device
and the 2-pin female jumper on the IRQ pin must be removed. Next, reconnect the USB
cable and the device will be in Run Mode. Click on OK and CodeWarrior will move onto
programming or running the code.

Chapter 16 Connections - S12Z Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 861



The CodeWarrior IDE layout will have the latest OSBDM firmware. If for any reason
you experience difficulty performing OSBDM firmware update, visit www.pemicro.com/
osbdm and use the Multilink/OSBDM Firmware Update Utility to force an update, or use
the OSBDM Firmware Recovery Utility for a fail safe way to reprogram a working,
corrupted, or blank OSBDM firmware via an external USB-ML-12 hardware interface.

16.1.3.1.2 Advanced Programming/Debug Options

The Advanced Programming/Debug Options menu option takes you to the Advanced
Options dialog box, where you can configure the software settings for the flash
programming procedure.

Figure 16-15. Advanced Options Dialog Box

16.1.3.1.2.1 Enable Flash Programming Dialog

Setting the Enable Flash Programming dialog box lets you view the steps taken by the
Flash Programmer.

16.1.3.1.2.2 Non-Volatile Memory Preservation

You have the option of preserving up to three independent ranges of non-volatile memory
(on devices with EEPROM, the EEPROM array may optionally be preserved as well).
Ranges that are designated as "preserved" are read before an erase and reprogrammed

P&E Hardware Interface for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

862 Freescale Semiconductor, Inc.



immediately afterwards, thereby preserving the data in these ranges. Any attempt to
program data into a preserved range is ignored. When entering an address into the
preserved range field (hexadecimal input is expected), the values are masked according to
the row size of the device. This ensures that the reprogramming of preserved data does
not cause any conditions that disturb programming.

16.1.3.1.2.3 Alternative Algorithm Functionality

Once you create a project for a specific S12Z microprocessor, the debugger specifies a
default algorithm to use during all flash programming operations. The debugger uses this
algorithm for nearly all programming requirements. The default algorithm can be found
in the <CW_Install>/MCU/bin/plugins/support/S12Z/gdi/P&E directory

However, you can override the default algorithm via the Alternative Algorithm function,
located in the Advanced Programming/Debug Options menu. This feature can be used to
select a custom programming algorithm or select another one of P&E's many
programming algorithms for use with a specific project.

CAUTION
Selecting the wrong programming algorithm may damage your
device, lead to under/over programming situations, or simply
not program portions of the project file. Therefore it is
recommended to use the default algorithm unless there is a
compelling reason to do otherwise.

Use these steps to override the default algorithm:

1. Check the Use Alternative Algorithm checkbox.
2. Click the Choose Alternative Algorithm button, which lets you browse for an

alternative algorithm.
3. Once you select the alternative algorithm, the name of the algorithm along with its

full path appears in the text field below the Choose Alternative Algorithm button.
4. At this point, the current project will perform all future flash programming

operations using the alternative algorithm. You may revert to the default algorithm at
any time by clearing the Use Alternative Algorithm checkbox.

16.1.3.2 Connection Assistant

Chapter 16 Connections - S12Z Architecture

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 863



The P&E Connection Assistant is displayed when you attempt to debug and the program
cannot connect to the interface hardware specified in the Launch Configuration dialog
box. To select the P&E USB Multilink Universal [FX]/USB Multilink as your debugger
connection:

1. Select USB Multilink - USB Port from the first drop-down menu and click Refresh.
2. Using the second drop-down menu, select the port on which the interface is

connected.
3. Use the Cyclone Power Control panel to configure the power and delay settings

(Cyclone Pro only).
4. Click the Retry button.

Figure 16-16. S12Z Connection Assistant Interface Selected

16.1.4 Active Mode Menu Options

When the microprocessor is connected, the active mode menu shows the name of the
microprocessor and gives you the access to P&E Microcomputer Systems' Compatible
Hardware Interfaces web page and home page. If the OSBDM interface is being used for
the debugging session, then the OSBDM Documentation option appears within the active
mode menu, which takes you to P&E Microcomputer Systems' OSBDM website. When
the microprocessor is not connected, the menu is not available.

P&E Hardware Interface for S12Z

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

864 Freescale Semiconductor, Inc.



Chapter 17
Common Connection Features

This chapter explains how to use the CodeWarrior hardware tools. Use these tools for
board bring-up, test, and analysis.

The topics in this chapter are:

• Working with Flash Programmer
• Flash Programmer Tutorials
• Working with Hardware Diagnostics Window
• Manipulating Target Memory

17.1 Working with Flash Programmer

The CodeWarrior Flash Programmer can program the flash memory of the target board
with code from any CodeWarrior IDE project or any individual files. The Flash
Programmer (FP) feature is a target task that lets you run a series of actions on a flash:
internal or present on a board (NOR, NAND, etc.). The supported operations are:

• Program/Verify, refer Add Program / Verify Actions.
• Erase/Blank Check, refer Add Erase/Blank Check Actions.
• Checksum, refer Add Checksum Actions.
• Diagnostics, refer Add Diagnostics Actions.
• Dump Flash, refer Add Dump Flash Actions.
• Protect/Unprotect, refer Add Protect/Unprotect Actions.
• Secure/Unsecure, refer Add Secure/Unsecure Actions

The CodeWarrior Flash Programmer lets you program the flash memory of any of the
supported target boards, from within the IDE. You can do this using either the pre-
defined tasks provided with the CodeWarrior installation, or create your own specialized
tasks. Each of these options is described in the following topics:

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 865



• Use Pre-Defined Programming Task
• Create Flash Programmer Task
• Flash Programmer for MCF5441X
• Importing Pre-defined Task
• Creating Flash Programmer Target Task
• Configure the Flash Programmer Target Task
• Run Flash Programmer Target Task

17.1.1 Use Pre-Defined Programming Task

To use a pre-defined flash programming task, you first import its *.xml file into the
Target Tasks view. CodeWarrior for Microcontrollers provides default flash
configuration files for a wide variety of supported target boards.

The pre-defined task files are in the following directories.

Table 17-1. Pre-defined Task Files Locations

Connection Location

ARM <CWInstallDir>/MCU/bin/plugins/support/
TargetTask/Flash_Programmer/ARM

ColdFire <CWInstallDir>/MCU/bin/plugins/support/
TargetTask/Flash_Programmer/ColdFire

DSC <CWInstallDir>/MCU/bin/plugins/support/
TargetTask/Flash_Programmer/DSC

E200 <CWInstallDir>/MCU/bin/plugins/support/
TargetTask/Flash_Programmer/E200

RS08 <CWInstallDir>/MCU/bin/plugins/support/
TargetTask/Flash_Programmer/RS08

S12Z <CWInstallDir>/MCU/bin/plugins/support/
TargetTask/Flash_Programmer/S12Z

17.1.2 Importing Pre-defined Task

After you have imported the task, it appears in the Target Tasks view, where you can
execute it.

To import a pre-defined Flash Programmer task:

1. From the CodeWarrior menu bar, select Window > Show View > Other.

Working with Flash Programmer

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

866 Freescale Semiconductor, Inc.



The Show View dialog box appears.

2. Expand the Debug tree control and select Target Tasks.

Figure 17-1. Show View Dialog Box
3. Click OK.

The Target Tasks view appears.

Figure 17-2. Target Tasks View
4. Right-click in the Target Tasks view and select Import . Alternatively, click the

Import icon on the Target Tasks view toolbar.

The Open dialog box appears.

5. Navigate to the pre-defined tasks folder at <CW MCU install>\MCU\bin\plugins\support
\TargetTask\Flash_Programmer\ and select the desired .xml file for your hardware target.
For example, select MCF5213_INTFLASH.xml from the ColdFire folder.

6. Click Open.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 867



The selected task appears in the Target Tasks view.

Figure 17-3. Pre-defined Task in Target Tasks View
7. Right-click on the task's name and select Execute.

The task's Flash Programmer actions execute in sequence. First, they erase the
hardware target's flash memory.

NOTE
When a predefined flash programmer task is imported, its
Run Configuration is set as Active Debug Context. If the task
is imported and there is no active debug session, then the
Execute icon will be disabled. Associate the selected target
task to a different Run Configuration to enable the Execute
icon.

8. Double-click on the task's name, to examine the task's stored Flash Programmer
actions.

The <target> Flash ProgrammerTask editor window appears, and displays the
actions in the Flash Programmer Actions group.

Working with Flash Programmer

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

868 Freescale Semiconductor, Inc.



Figure 17-4. <target> Flash Programmer Task Editor Window Displaying Stored Actions

If you are working with special hardware that require a different sequence of Flash
Programmer actions, you can create your own target tasks.

17.1.3 Creating Flash Programmer Target Task

1. Select Windows > Show Views > Others from the IDE menu bar.

The Show View dialog box appears.

2. Expand the Debug group and select Target Tasks.
3. Click OK.

The Target Tasks view appears.

4. Click the Create a new Target Task icon in the Target Tasks view toolbar.

The Create New Target Task wizard appears.

5. In the Task Name text box, enter the name of the target task.
6. From the Run Configuration drop-down list, select a configuration.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 869



NOTE
Select Active Debug Context from the Run
Configuration drop-down list, if you want to use Flash
Programmer over an active debug session, else select any
of the specified debug context from the list.

7. From the Task Type drop-down list, select the appropriate Flash Programmer.

Figure 17-5. Create New Target Task Wizard
8. Click Finish.

The <target> Flash Programmer Task editor window appears.

NOTE
The <target> Flash Programmer Task editor window has
groups to define flash devices, Flash Programmer actions,
and target RAM settings.

17.1.4 Configure the Flash Programmer Target Task

To configure a flash programmer target task, you need to perform the following actions.

• Adding Flash Device
• Specify Target RAM Settings
• Add Flash Programmer Actions

Working with Flash Programmer

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

870 Freescale Semiconductor, Inc.



NOTE
Click the Save button or press CTRL + S to save the task
settings.

Figure 17-6. Flash Programmer Task Editor Window

The table below lists the groups in the Flash Programmer Task Editor window.

Table 17-2. Flash Programmer Task Editor Window - Groups

Group Description

Flash Devices Lists the devices added in the current task.

Target RAM Enables you to specify the settings for Target RAM.

Flash Program Actions Lists the programmer actions to be performed on the flash
devices.

17.1.4.1 Adding Flash Device

To add a flash device to the Flash Devices table:

1. Click the Add Device button.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 871



The Add Device dialog box appears.

Figure 17-7. Add Device Dialog Box
2. Select a flash device from the device list.
3. Click Add Device from the Flash Devices group to add a new hardware device.

The Add Device dialog box appears with a list of supported devices.

a. Select the specific device from the list.
b. Change the device's memory organization (if required).

NOTE
To change the device memory organization, click the
adjacent value in the Organization column. Click the
down button icon, and select the required organization.

c. Click Add Device.

You get a popup with a status that the device is added.

Working with Flash Programmer

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

872 Freescale Semiconductor, Inc.



Figure 17-8. Add Device Dialog Box - Popup with Status
d. You can select other devices, if required.

4. Click Done.

The Add Device dialog box closes. The devices appear in the Flash Devices group
of the <target> Flash Programmer Task editor window.

17.1.4.2 Specify Target RAM Settings

The Target RAM is used by Flash Programmer to download its algorithms.

NOTE
The Target RAM memory area is not restored by flash
programmer. If you are using flash programmer with Active
Debug Context, it will impact your debug session.

1. Enter the first address from target memory used by the flash algorithm (running on
the target) in the Address text box of the Target RAM group.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 873



a. Enter the size of the memory that the flash algorithm is allowed to use in the Size
text box.

b. Check the Verify Target Memory Writes checkbox to verify all write
operations to the hardware RAM during Flash programming.

2. From the Flash Programmer Actions group, you can use any of the buttons listed in
the table below to add various Flash Programmer actions.

Table 17-3. Task Actions and Sequence
Organization

Button/Option Usage

Erase / Blank Check Lets you add erase or blank check actions for flash
devices

Program / Verify Lets you add program or verify flash actions for flash
devices

Checksum Lets you add checksum actions for flash devices

Diagnostics Lets you add a diagnostics action to the actions
table.

Dump Flash Lets you dump a portion of the flash or the entire
flash.

Protect/Unprotect Lets you modify the protection of a sector.

Secure/Unsecure Lets you add secure or unsecure actions.

Remove Action Lets you remove a sector, a group of sector, or an
entire device from the Flash Programmer Actions
table, depending on the flash capabilities.

Move Up Lets you move a selected flash action up in the
Flash Programmer Actions table, so that it
executes before other actions beneath it in the table.

Move Down Lets you move a selected flash action down in the
Flash Programmer Actions table, so that the action
executes after other actions above of it in the table
execute.

17.1.4.3 Add Flash Programmer Actions

In the Flash Programmer Actions group in the Flash Programmer Task editor window,
add the flash programmer actions to be performed on the flash device. You can perform
the following actions on a flash device.

• Add Erase/Blank Check Actions
• Add Program / Verify Actions
• Add Checksum Actions
• Add Diagnostics Actions
• Add Dump Flash Actions

Working with Flash Programmer

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

874 Freescale Semiconductor, Inc.



• Add Protect/Unprotect Actions
• Add Secure/Unsecure Actions

NOTE
Actions can also be enabled or disabled using the Enabled
column. The Description column contains the default
description for the flash programmer actions. You can also edit
the default description.

17.1.4.3.1 Add Erase/Blank Check Actions

The erase action enables you erase sectors from the flash device. You can also use the
erase action to erase the entire flash memory without selecting sectors. The blank check
action verifies if the specified areas have been erased from the flash device.

NOTE
Flash Programmer will not erase a bad sector in the NAND
flash. After the erase action a list of bad sectors is reported (if
any).

To add an erase/blank check action:

1. Select the Erase / Blank Check action from the Add Action drop-down list.

The Add Erase / Blank Check Action dialog box appears.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 875



Figure 17-9. Add Erase / Blank Check Action Dialog Box
2. Select a sector from the Sectors table and click the Add Erase Action button to add

an erase operation on the selected sector.

NOTE
Press CTRL or SHIFT keys for selecting multiple sectors
from the Sectors table.

3. Click the Add Blank Check Action button to add a blank check operation on the
selected sector.

4. Check the Mass erase all devices check box to erase the entire flash memory for
HCS08/RS08/CFv1/Kinetis.

NOTE
After checking the Erase All Sectors Using Chip Erase
Command check box (for CFv2, DSC, Power
Architecture), you need to add either erase or blank check
action to erase all sectors. For S12Z use the Erase entry
flash block.

5. Click Done.

Working with Flash Programmer

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

876 Freescale Semiconductor, Inc.



The Add Erase / Blank Check Action dialog box closes and the added erase / blank
check actions appear in the Flash Programmer Actions table in the Flash
Programmer Task editor window.

Figure 17-10. Added Erase / Blank Check Actions

17.1.4.3.2 Add Program/Verify Actions

The program action enables you to program the flash device and the verify action verifies
the programmed flash device.

NOTE
The program action will abort and fail if it is performed in a bad
block for NAND flashes.

To add a program/verify action:

1. Select the Program / Verify action from the Add Action drop-down list.

The Add Program / Verify dialog box appears.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 877



Figure 17-11. Add Program / Verify Action Dialog Box
2. Select the file to be written to the flash device.

• Check the Use File from Launch Configuration check box to use the file from
the launch (run) configuration associated with the task.

• Specify the file name in the File text box. You can use Workspace, File
System, or Variables buttons to select the desired file.

3. Select the file type from the File Type drop-down list. You can select any one of the
following file types:

• Auto - Detects the file type automatically.
• Abs/Elf - Specifies executable in ABS or ELF format.
• Srec - Specifies files in Motorola S-record format.
• Binary - Specifies binary files.

4. Check the Erase sectors before program checkbox to erase sectors before program.
5. Check the Verify after program checkbox to verify after the program.
6. Check the Restricted To Addressin the Range check box to specify a memory

range. The write action is permitted only in the specified address range. In the Start
text box, specify the start address of the memory range sector and in the End text
box, specify the end address of the memory range.

7. Check the Apply Address Offset check box and set the memory address in the
Address text box. Value is added to the start address of the file to be programmed or
verified.

8. Click the Add Program Action button to add a program action on the flash device.
9. Click the Add Verify Action button to add a verify action on the flash device.

10. Click Done.

The Add Program/Verify Action dialog box closes and the added program / verify
actions appear in the Flash Programmer Actions table in the Flash Programmer
Task editor window.

Working with Flash Programmer

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

878 Freescale Semiconductor, Inc.



Figure 17-12. Added Program/Verify Actions

17.1.4.3.3 Add Checksum Actions

The checksum can be computed over host file, target file, memory range or entire flash
memory. To add a checksum action:

1. Select the Checksum action from the Add Action drop-down list.

The Add Checksum dialog box appears.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 879



Figure 17-13. Add CheckSum Action Dialog Box
2. Select the file for checksum action.

• Check the Use File from Launch Configuration check box to use the file from
the launch (run) configuration associated with the task.

• Specify the filename in the File text box. You can use the Workspace, File
System, or Variables buttons to select the desired file.

3. Select the file type from the File Type drop-down list.
4. Select an option from the Compute Checksum Over options. The checksum can be

computed over the host file, the target file, the memory range, or the entire flash
memory.

5. Specify the memory range in the Restricted To Addresses in the Range group. The
checksum action is permitted only in the specified address range. In the Start text
box, specify the start address of the memory range sector and in the End text box,
specify the end address of the memory range.

6. Check the Apply Address Offset check box and set the memory address in the
Address text box. Value is added to the start address of the file to be programmed or
verified.

7. Click the Add Checksum Action button.
8. Click Done.

Working with Flash Programmer

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

880 Freescale Semiconductor, Inc.



The Add Checksum Action dialog box closes and the added checksum actions
appear in the Flash Programmer Actions table in the Flash Programmer Task
editor window.

Figure 17-14. Added Checksum Actions

17.1.4.3.4 Add Diagnostics Actions

The diagnostics action generates the diagnostic information for a selected flash device.

NOTE
Flash Programmer will report bad blocks, if they are present in
the NAND flash.

To add a diagnostics action:

1. Select the Diagnostics action from the Add Action drop-down list.

The Add Diagnostics dialog box appears.

2. Select a device to perform the diagnostics action.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 881



3. Click the Add Diagnostics Action button to add diagnostic action on the selected
flash device.

NOTE
Check the Perform Full Diagnostics check box to perform
full diagnostics on a flash device.

4. Click Done.

The Add Diagnostics Action dialog box closes and the added diagnostics action
appears in the Flash Programmer Actions table in the Flash Programmer Task
editor window.

17.1.4.3.5 Add Dump Flash Actions

The dump flash action enables you to dump selected sectors of a flash device or the entire
flash device.

To add a dump flash action:

1. Select the Dump Flash action from the Add Action drop-down list.

The AddDump Flash Action dialog box appears.

Figure 17-15. Add Dump Flash Action Dialog Box
2. Specify the file name in the File text box. The flash is dumped in this selected file.
3. Select the file type from the File Type drop-down list. You can select any one of the

following file types:
• Srec - Saves files in Motorola S-record format.
• Binary - Saves files in binary file format.

4. Specify the memory range for which you want to add dump flash action.
• Type the start address of the range in the Start text box.
• Type the end address of the range in the End text box.

5. Click the Add Dump Flash Action button to add a dump flash action.
6. Click Done.

Working with Flash Programmer

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

882 Freescale Semiconductor, Inc.



The Add Dump Flash Action dialog box closes and the added dump flash action
appear in the Flash Programmer Actions table in the Flash Programmer Task
editor window.

Figure 17-16. Added Dump Flash Actions

17.1.4.3.6 Add Protect/Unprotect Actions

The protect/unprotect actions enable you to change the protection of a sector in the flash
device.

To add a protect/unprotect action:

1. Select the Protect/Unprotect action from the Add Action drop-down list.

The Add Protect/Unprotect Action dialog box appears.

2. Select a sector from the Sectors table and click the Add Protect Action button to
add a protect operation on the selected sector.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 883



NOTE
Press CTRL or SHIFT keys for selecting multiple sectors
from the Sectors table.

3. Click the Add Unprotect Action button to add an unprotect action on the selected
sector.

4. Check the All Device check box to add action on full device.
5. Click Done.

The Add Protect/Unprotect Action dialog box closes and the added protect or
unprotect actions appear in the Flash Programmer Actions table in the Flash
Programmer Task editor window.

17.1.4.3.7 Add Secure/Unsecure Actions

The secure/unsecure actions enable you to change the security of a flash device.

To add a secure/unsecure action:

1. Select the Secure/Unsecure action from the Add Action drop-down list.

The Add Secure/UnSecure Action dialog box appears.

2. Select a device from the Flash Devices table.
3. Click the Add Secure Action button to add Secure action on the selected flash

device.
a. Type a password in the Password text box.
b. Select the password format from the Format drop-down list box.

4. Click the Add Unsecure Action button to add an unprotect action on the selected
sector.

5. Click Done.

The Add Secure/UnSecure Action dialog box closes and the added secure or
unsecure action appears in the Flash Programmer Actions table in the Flash
Programmer Task editor window.

17.1.4.3.8 Remove an Action

To remove a flash programmer action from the Flash Programmer Actions table:

1. Select the action in the Flash Programmer Actions table.
2. Click the Remove Action button.

Working with Flash Programmer

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

884 Freescale Semiconductor, Inc.



The selected action is removed from the Flash Programmer Action table.

17.1.5 Run Flash Programmer Target Task

To execute the configured flash programmer target task, select a target task and click the
Execute button in the Target Tasks view toolbar. Alternatively, right-click on a target
task and select Execute from the context menu.

NOTE
You can use predefined target tasks for supported boards. To
load a predefined target task, right-click in the Target Tasks
view and select Import Target Task from the context menu.
To save your custom tasks, right-click in the Target Tasks view
and then select Export Target Task from the context menu.

You can check the results of flash batch actions in the Console view. The green color
indicates the success and the red color indicates the failure of the task.

17.1.6 Create Flash Programmer Task

In the Eclipse IDE, the Flash Programmer runs like a target task.

To create a Flash Programmer target task:

1. From the CodeWarrior main menu bar, select Window > Show View > Other.

The Show View dialog box appears.

2. Expand the Debug tree control and select Target Tasks.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 885



Figure 17-17. Show View Dialog Box
3. Click OK.

The Target Tasks view appears.

Figure 17-18. Target Tasks View
4. Click the add icon from the Target Tasks view toolbar to create a new target task.

The Create New Target Task wizard appears.

17.1.7 Flash Programmer for MCF5441X

Working with Flash Programmer

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

886 Freescale Semiconductor, Inc.



The flash programmer for MCF5441X has a specific way of writing data. The flash is
comprised of multiple physical pages, each of them with the size of 0x800 bytes. At boot
time the processor will read data from the first 4 pages up to 0xF80 bytes. The space
between address 0xF80 and 0x2000 will not be used. Assuming we write a binary file,
the data will be programmed as follows:

• Binary file address 0x0 - 0xF7F will be programmed at 0x0 - 0xF7f in flash.
• Binary file addresses higher than 0xF80 will be programmed starting from 5th

physical page at 0x2000.

Because of the way how the processor boots there isn't a 1 to 1 correspondence for
addresses. The pages are written with the following settings:

• Boot pages (index 0 - 3): 60 ECC bytes, in NFC_CFG register BTMD is 1 and
16BIT is 0.

• User pages (index > 3): 60 ECC bytes, in NFC_CFG register BTMD is 0 and 16BIT
is 1.

17.2 Flash Programmer Tutorials

This topic consists of two tutorials that demonstrate how to import and execute pre-
defined target tasks. Additionally, there are tutorials on how use the <target> Flash
Programmer Task editor window to create tasks, such as erasing on-chip memory, or
downloading a file, and writing it into flash memory.

NOTE
The Flash Programmer for RS08 works only if OSBDM
connection is used.

The tutorials include:

• Tutorial A: Import and Execute HCS08 Flash Task
• Tutorial B: Import and Execute ColdFire Flash Task
• Tutorial C: Create Erase Memory Task for HCS08
• Tutorial D: Create Erase Flash Memory Task for ColdFire
• Tutorial E: Create Download Program Task for ColdFire
• Tutorial F: Import and Execute Power Architecture Flash Task
• Tutorial G: Switching Between Lock-Step and Decoupled Parallel Modes
• Tutorial H: Create and Execute Diagnostics Action Task
• Tutorial I: Dump Entire Flash
• Tutorial J: Change Protection of Sector
• Tutorial K: Fast Access to Target Tasks Editors

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 887



• Tutorial L: Programming with Simple Flash
• Tutorial M: Exporting Target Tasks

17.2.1 Tutorial A: Import and Execute HCS08 Flash Task

The goal of this tutorial is to select and import a pre-defined task that erases and
programs the flash memory in a DEMOS908QG8, an evaluation board based on a
Freescale MC9S08QG8 microcontroller.

• Import HCS08 Program Flash Task
• Execute MC9S08QG8 Task

17.2.1.1 Import HCS08 Program Flash Task

NOTE
This procedure assumes that the Target Tasks view is visible
in the perspective. If it is not visible, perform the steps in the
Working with Flash Programmer topic to open the Target
Tasks view.

After you have launched CodeWarrior and connected the DEMOS908QG8 board to the
workstation using a USB cable:

1. Go to the Target Tasks view in either the C/C++ or Debug perspective.
2. Right-click on this view and select Import. Alternatively, click the Import icon on

the Target Tasks view toolbar.

The Open dialog box appears.

3. Navigate to <CWInstallDir>/MCU/bin/plugins/support/TargetTask/Flash_Programmer/HC08 and
select the XML file for the board's microcontroller. For this tutorial, select
MC9S08QG8.xml.

4. Click Open.

The MC9S08QG8 task appears in the Target Tasks view.

5. Double-click on the MC9S08QG8 task to examine its contents.

Flash Programmer Tutorials

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

888 Freescale Semiconductor, Inc.



The <target> Flash Programmer Task editor window appears, and displays the
memory settings and actions for the task. Notice the actions to erase, program, and
verify the contents of flash memory in the Flash Programmer Actions group. These
actions execute in the order as they are displayed in the table, from top to bottom.

Figure 17-19. Memory Settings and Actions for MC9S08QG8 Task

17.2.1.2 Execute MC9S08QG8 Task

To execute the task:

1. Right-click on the MC9S08QG8 task.
2. Select Execute. Alternatively, select the MC9S08QG8 task and click the Execute

icon on the Target Tasks view toolbar.

CodeWarrior establishes contact with the DEMOS908QG8 board, erases the
microcontroller's flash memory, downloads the code, and verifies that the contents of
flash match those of the file.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 889



Congratulations! You have selected and used a target task that erased and programmed
the flash memory on the MC9S08QG8 microcontroller.

17.2.2 Tutorial B: Import and Execute ColdFire Flash Task

The goal of this tutorial is to select and import a pre-defined task that erases and then
programs the flash memory in a board based on the ColdFire MCF5213 microcontroller.

• Import MCF5213 Program Flash Task
• Execute MCF5213_INTFLASH Task

17.2.2.1 Import MCF5213 Program Flash Task

NOTE
This tutorial assumes that you have already built a ColdFire
project with the name ColdFire_test. It also assumes that you
have previously created other tasks, so that the Target Tasks
view is visible. If it is not visible, perform the steps in the
Working with Flash Programmer topic to open the Target
Tasks view.

After you have connected an MCF5213-based evaluation board to the workstation with a
USB cable:

1. Go to the Target Tasks view in either the C/C++ or Debug perspective.
2. Right-click on this view and select Import . Alternatively, click the Export icon on

the Target Tasks view toolbar.

The Open dialog box appears.

3. Navigate to <CWInstallDir>/MCU/bin/plugins/support/TargetTask/Flash_Programmer/ColdFire
and select the XML file for the board's microcontroller. For this tutorial, select
MCF5213_INTFLASH.xml.

4. Click Open .

The MCF5213_INTFLASH task appears in the Target Tasks view.

5. Double-click on the MCF5213_INTFLASH task to examine its contents.

Flash Programmer Tutorials

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

890 Freescale Semiconductor, Inc.



The <target> Flash Programmer Task editor window appears, and displays the
memory settings and actions for the task. Notice the actions to erase, program, and
verify the contents of flash memory in the Flash Programmer Actions group. These
actions execute in the order as they are displayed in the table, from top to bottom.

Figure 17-20. Memory Settings and Actions for the MCF5213_INTFLASH Task

17.2.2.2 Execute MCF5213_INTFLASH Task

To execute the task:

1. Right-click on the MCF5213_INTFLASH task.
2. Select Execute . Alternatively, select the MCF5213_INTFLASH task and click the Execute

icon on the Target Tasks view toolbar.

CodeWarrior establishes contact with the MCF5213-based board board, erases the
microcontroller's flash memory, downloads the code, and verifies that the contents of
flash match those of the file.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 891



Congratulations! You have selected and used a target task that erased and programmed
the flash memory on the MCF5213 microcontroller.

17.2.3 Tutorial C: Create Erase Memory Task for HCS08

The goal of this tutorial is to demonstrate how to create a task that erases the flash
memory in a DEMOS908QG8, an evaluation board based on a Freescale MC9S08QG8
microcontroller.

• Set Up HCS08 Erase Task
• Execute HCS08 Erase Task

17.2.3.1 Set Up HCS08 Erase Task

NOTE
This procedure assumes that you have already created a project
named DEMO9S08QG8_test. It also assumes that you have
previously created other tasks, so that the Target Tasks view is
visible. If it is not visible, perform the steps in the Working
with Flash Programmer topic to open the Target Tasks view.

After you have launched CodeWarrior and connected the DEMOS908QG8 board to the
host system using a USB cable:

1. Go to the Target Tasks view in either the C/C++ or Debug perspective.
2. Right-click on this view and select New Task.

The Create New Target Task wizard appears.

3. In the Task Name text box, enter the name of the target task. For example, enter
Erase Flash DEMO9S08QG8.

4. From the Run Configuration drop-down list, select a run configuration.
5. From the Task Type drop-down list, select Flash Programmer for HCS08/RS08/

ColdFire V1 from the listbox.

The dialog box should appear.

Flash Programmer Tutorials

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

892 Freescale Semiconductor, Inc.



Figure 17-21. Task Settings for Erasing Flash on MC9S08QG8
6. Click Finish to create the task.

The <target> Flash Programmer Task editor window appears.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 893



Figure 17-22. <target> Flash Programmer Task Editor Window to Erase HCS08 Flash
7. Click Add Device.

The Add Device dialog box appears.

Flash Programmer Tutorials

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

894 Freescale Semiconductor, Inc.



Figure 17-23. Add Device for HCS08 Derivative
8. Scroll through the list of microcontroller derivatives and select

MC9S08QG8_FLASH. You can also type the filter text in the given text box.
9. Click Add Device.

10. Click Done.

You return to the <target> Flash Programmer Task editor window, with the
selected device appearing in the Flash Devices group. The Target RAM group
displays the start address of RAM memory, and its size.

11. Select the Erase / Blank Check action from the Add Action drop-down list.

The Add Erase / Blank Check Action dialog box appears. It displays the flash
devices added in the task and their base addresses.

12. Select the flash devices and the sectors you want to add the erase action to.
13. Click Add Erase Action.
14. Click Done.

You return to the <target> Flash Programmer Task editor window, and the action
appears in the Flash Programmer Actions group.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 895



Figure 17-24. <target> Flash Programmer Task Editor Window Settings for
DEMO9S08QG8

15. Click the Close icon to save the settings and close the <target> Flash Programmer
Task editor window.

You can access the newly-made Erase Flash DEMO9S08QG8 task from the Target Tasks
view.

17.2.3.2 Execute HCS08 Erase Task

To erase the Flash memory on the MC9S08QG8, you use the Erase Flash
DEMO9S08QG8 task that you made in the previous topic.

To execute the task and erase the memory:

1. Go the Target Tasks view and right-click on the Erase Flash DEMO9S08QG8 task.
2. Select Execute . Alternatively, select the Erase Flash DEMO9S08QG8 task and click the

Execute icon on the Target Tasks view toolbar.

Flash Programmer Tutorials

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

896 Freescale Semiconductor, Inc.



3. In the Console view, status messages appear as the IDE connects to the board and
erases the memory.

Congratulations! You have erased the on-chip Flash memory in the DEMO9S08QG8
board's microcontroller.

17.2.4 Tutorial D: Create Erase Flash Memory Task for ColdFire

The goal of this tutorial is to demonstrate how to use the <target> Flash Programmer
Task editor window to create a task that erases specific topics of Flash memory in a
ColdFire MCF5213.

• Set Up ColdFire Erase Task
• Execute ColdFire Erase Task

17.2.4.1 Set Up ColdFire Erase Task

NOTE
This tutorial assumes that you have already built a ColdFire
project with the name ColdFire_test. It also assumes that you
have previously created other tasks, so that the Target Tasks
view is visible. If it is not visible, perform the steps in the
Working with Flash Programmer topic to open the Target
Tasks view.

After you have connected an MCF5213-based evaluation board to the workstation with a
USB cable:

1. Go to the Target Tasks view in either the C/C++ or Debug perspective.
2. Right-click on this view and select New Task.

The Create New Target Task wizard appears.

3. In the Task Name text box, enter the name of the target task. For example, enter
Erase portion of Flash.

4. From the Run Configuration drop-down list, select a run configuration.
5. From the Task Type drop-down list, select Flash Programmer for ColdFire V234

from the drop-down listbox.

The Create New Target Task wizard should appear.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 897



Figure 17-25. Task Settings for Erasing Flash on MCF5213
6. Click Finish to create the task.

The <target> Flash Programmer Task editor window appears.

Flash Programmer Tutorials

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

898 Freescale Semiconductor, Inc.



Figure 17-26. <target> Flash Programmer Task Editor Window
7. Click Add Device.

The Add Device dialog box appears.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 899



Figure 17-27. Add Device for ColdFire Derivative
8. Scroll through the list of microcontroller derivatives and select CFM_MCF5213.
9. Click Add Device.

10. Click Done.

You return to the <target> Flash Programmer Task editor window, with the
selected device appearing in the Flash Devices group.

11. Select the Erase / Blank Check action from the Add Action drop-down list.

The Add Erase / Blank Check Action dialog box appears. It displays the flash
devices and their addresses.

12. In the Sectors group, click on the desired start address of the flash memory, then
shift-click on the end address to select all of the sectors of Flash memory you want
erased.

Flash Programmer Tutorials

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

900 Freescale Semiconductor, Inc.



Figure 17-28. Add Erase / Blank Action Dialog Box for ColdFire
13. Click Add Erase Action.
14. Click Done.

NOTE
To erase of all Flash memory at the same time, check
Erase All Sectors Using Chip Erase Command.

You return to the <target> Flash Programmer Target editor window, and the action
appears in the Flash Programmer Actions group.

15. To allocate a buffer of RAM to hold the erasure algorithm.
a. Enter the start address of the RAM buffer in Address text box of the Target

RAM group.
b. In the Size option, enter the amount of RAM that makes up the buffer.
c. Check the Verify Target Memory Writes checkbox. For this example, the start

address of the buffer was 0X20000000, and its size was 0X00008000.

The Target RAM group displays the start address of the RAM memory buffer,
and its size.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 901



Figure 17-29. Flash Programmer Task Editor Window with ColdFire Erase Settings
16. Click the Close icon to save the settings and close the <target> Flash Programmer

Task editor window.

You can access the newly-made Erase portion of Flash task from the Target Tasks
view.

17.2.4.2 Execute ColdFire Erase Task

To erase the Flash memory on the MCF5213, you use the task that you made in the
previous topic.

To execute the task:

1. Go the Target Tasks view.
2. Right-click on the Erase portion of Flash task.
3. Select Execute. Alternatively, click the Execute icon on the Target Tasks view

toolbar.

Flash Programmer Tutorials

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

902 Freescale Semiconductor, Inc.



In the Console view, status messages appear as the IDE connects to the board and
erases the flash memory.

You have erased the selected on-chip Flash memory sectors in the MCF5123
microcontroller.

17.2.5 Tutorial E: Create Download Program Task for ColdFire

The goal of this tutorial is to demonstrate how to create a task that downloads a program
into the ColdFire microcontroller's flash memory before being debugged.

• Set Up Download Task
• Execute ColdFire Program Task

17.2.5.1 Set Up Download Task

NOTE
This tutorial assumes that you have already built a ColdFire
project with the name ColdFire_test. It also assumes that you
have created the Erase portion of Flash task from the previous
tutorial.

NOTE
To avoid the microcontroller getting caught in an indeterminant
state, it is important that its flash memory be erased before
attempting to program it. The erase memory action of this task
will erase the microcontroller's flash memory before the second
action, created in this topic, downloads a program into it. Do
not attempt to program flash memory without erasing it first.

After you have connected an MCF5213-based evaluation board to the workstation with a
USB cable:

1. Go to the Target Tasks view in either the C/C++ or Debug perspective.
2. Right-click on this view and double-click on the task Erase portion of Flash that you

made in the previous topic.

The ColdFire V234 Flash Programmer Task editor window appears.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 903



Figure 17-30. Task Settings for Erasing Memory on MCF5213
3. Allocate a buffer of RAM that holds the programming algorithm, along with any

program code as it is written into flash.
a. Enter the start address of the RAM buffer in Address text box of the Target

RAM group.
b. In the Size text box, enter the amount of RAM that makes up the buffer.
c. Check the Verify Target Memory Writes option. For this example, the start

address of the buffer was 0X20000000, and its size was 0X00008000.

NOTE
Since this configuration was taken care of when the
Erase action was set up, you do not have to enter
anything for this step. However, it is described here for
the sake of completeness.

The Target RAM group displays the start address of the RAM memory buffer,
and its size.

4. Select the Program / Verify action from the Add Action drop-down list.

Flash Programmer Tutorials

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

904 Freescale Semiconductor, Inc.



The Add Program / Verify Action dialog box appears, with the ColdFire device
selected.

5. Check Use File from Launch Configuration to use the default .elf file made by the
project.

Figure 17-31. Adding File to Add Program / Verify Action Dialog Box
6. Click Add Program Action.
7. Click Done.

You return to the <target> Flash Programmer Target editor window, with the
program action appearing in the Flash Programmer Actions group.

NOTE
If you want to download a file other than the launch
configuration's default file, click on the Workspace, File
System, or Variables button and navigate to the file.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 905



Figure 17-32. Settings for Downloading Program to ColdFire Microcontroller
8. Click the Close icon to save the settings and close the <target> Flash Programmer

Task editor window.

The revised Erase portion of Flash task is available from the Target Tasks view.

17.2.5.2 Execute ColdFire Program Task

To execute this task:

1. Go the Target Tasks view and right-click on the MCF5213_INTFLASH task.
2. Select Execute . Alternatively, select the MCF5213_INTFLASH task and click the Execute

icon on the Target Tasks view toolbar.
3. In the Console view, status messages appear as the IDE connects to the board and

erases the memory.

Congratulations! You have erased the on-chip Flash memory in the DEMO9S08QG8
board's microcontroller.

Flash Programmer Tutorials

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

906 Freescale Semiconductor, Inc.



17.2.6 Tutorial F: Import and Execute Power Architecture Flash
Task

The goal of this tutorial is to select and import a pre-defined Power Architecture flash
task.

• Import Power Architecture Program Flash Task
• Execute Predefined Task

17.2.6.1 Import Power Architecture Program Flash Task

To import a pre-defined Power Architecture flash task:

1. Go to the Target Tasks view in either the C/C++ or Debug perspective.
2. Right-click on this view and select Import . Alternatively, click the Import icon on

the Target Tasks view toolbar.

The Open dialog box appears.

3. Navigate to <CWInstallDir>/MCU/bin/plugins/support/TargetTask/Flash_Programmer/E200 and
select the XML file for the board's microcontroller.

NOTE
One processor has multiple flash areas that are treated as
different devices. Therefore, you should be very sure of the
needs when selecting a task.

There are predefined target tasks for each flash module. However, depending on
processor type some of them might not be available.

• Internal Flash - The Internal Flash target task is for Code Flash and Data Flash if
they exist or for the user area of Internal Flash. Comprises everything - the area
for application (sometimes has code + data), shadow flash and tester areas.

• Code Flash - Program's code should be programmed here.
• Data flash - Flash special design to hold data.

• Shadow Flash - Flash that contains system configuration options besides
the user area. Erasing it can also change the system state after reset.
Some of these registers are for device's security and you cannot write
anything there. Additionally, the erase sequence is different. After you

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 907



erase the device, the security information is programmed in the flash
and thus the blank check fails.

• Tester Areas - Special flash that cannot be erased and also have registers
that can change processor's behavior like which flash sectors are
protected. Changing them cannot be reverted, which means that the
Flash is written once.

NOTE
Some processors can interpret two sets of
instructions: BOOKE and VLE. If the
processor supports both of them target tasks
are provided for each instruction set. The user
should choose the right one.

• Click Open.

The selected task appears in the Target Tasks view.

• Double-click on the task to examine its contents.

The <target> Flash Programmer Task editor window appears, and displays
the memory settings and actions for the task. Notice the actions to erase,
program, and/or verify the contents of flash memory in the Flash
Programmer Actions group.

17.2.6.2 Execute Predefined Task

To execute the task:

1. Right-click on the imported task.
2. Select Execute . Alternatively, select the imported task and click the Execute icon

on the Target Tasks view toolbar.

CodeWarrior establishes contact with the board, erases the microcontroller's flash
memory, downloads the code, and verifies that the contents of flash match those of
the file.

Congratulations! You have selected and used a target task that erased and programmed
the flash memory on the pre-defined Power Architecture task.

Flash Programmer Tutorials

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

908 Freescale Semiconductor, Inc.



17.2.7 Tutorial G: Switching Between Lock-Step and Decoupled
Parallel Modes

The goal of this tutorial is to demonstrate the steps to switch between the Lock-Step
Mode (LSM) and Decoupled Parallel Mode (DPM) .

• Import DPM Target Task
• Execute Predefined DPM Task
• Hardware Reset
• Import LSM Target Task
• Execute Predefined LSM Task

17.2.7.1 Import DPM Target Task

NOTE
This procedure assumes that the Target Tasks view is visible
in the perspective. If it is not visible, perform the steps in the
Working with Flash Programmer topic to open the Target
Tasks view.

After you have launched CodeWarrior and the machine has a USB NEXUS Multilink
connected to a Leopard (for example, MPC5643L) DPM board:

1. Go to the Target Tasks view in either the C/C++ or Debug perspective.
2. Right-click on this view and select Import . Alternatively, click the Import icon on

the Target Tasks view toolbar.

The Open dialog box appears.

3. Navigate to <CWInstallDir>/MCU/bin/plugins/support/TargetTask/Flash_Programmer/E200 and
select the XML file for the board's microcontroller. For this tutorial, select
MPC5643L_DPM_VLE.xml.

4. Click Open.

The MPC5643L_DPM_VLE task appears in the Target Tasks view.

5. Double-click on the MPC5643L_DPM_VLE to examine its contents.

The <target> Flash Programmer Task editor window appears, and displays the
memory settings and actions for the task. Notice the actions to erase, program, and
verify the contents of flash memory in the Flash Programmer Actions group. These
actions execute in the order as they are displayed in the table, from top to bottom.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 909



Figure 17-33. Settings for MPC5643L_DPM_VLE Target Task

17.2.7.2 Execute Predefined DPM Task

To execute the task:

1. Right-click on the imported task.
2. Select Execute . Alternatively, select the imported task and click the Execute icon

on the Target Tasks view toolbar.

CodeWarrior establishes contact with the board, erases the microcontroller's flash
memory, downloads the code, and verifies that the contents of flash match those of
the file.

17.2.7.3 Hardware Reset

Flash Programmer Tutorials

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

910 Freescale Semiconductor, Inc.



To reset the hardware:

1. Unplug the power cord.
2. Plug the power cord again.

or

Simply press the reset button on the hardware or target board.

Congratulations! You have selected and used a target task that erased and programmed
the flash memory on the pre-defined Power Architecture task.

17.2.7.4 Import LSM Target Task

NOTE
This procedure assumes that the Target Tasks view is visible
in the perspective. If it is not visible, perform the steps in the
Working with Flash Programmer topic to open the Target
Tasks view.

After you have launched CodeWarrior and the machine has a USB NEXUS Multilink
connected to a Leopard (for example, MPC5643L) LSM board:

1. Go to the Target Tasks view in either the C/C++ or Debug perspective.
2. Right-click on this view and select Import . Alternatively, click the Import icon on

the Target Tasks view toolbar.

The Open dialog box appears.

3. Navigate to <CWInstallDir>/MCU/bin/plugins/support/TargetTask/Flash_Programmer/E200 and
select the XML file for the board's microcontroller. For this tutorial, select
MPC5643L_LSM_VLE.xml.

4. Click Open.

The MPC5643L_LSM_VLE task appears in the Target Tasks view.

5. Double-click on the MPC5643L_LSM_VLE to examine its contents.

The <target> Flash Programmer Task editor window appears, and displays the
memory settings and actions for the task. Notice the actions to erase the contents of
flash memory in the Flash Programmer Actions group. These actions execute in the
order as they are displayed in the table, from top to bottom.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 911



Figure 17-34. Settings for MPC5643L_LSM_VLE Target Task

17.2.7.5 Execute Predefined LSM Task

To execute the task:

1. Right-click on the imported task.
2. Select Execute . Alternatively, select the imported task and click the Execute icon

on the Target Tasks view toolbar.

CodeWarrior establishes contact with the board, erases the microcontroller's flash
memory.

Congratulations! You have switched between the Lock-Step and Decoupled Parallel
Modes.

17.2.8 Tutorial H: Create and Execute Diagnostics Action Task

The goal of this tutorial is to demonstrate the steps to create and execute the diagnostics
action using the flash programmer.

Flash Programmer Tutorials

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

912 Freescale Semiconductor, Inc.



• Set Up Diagnostics Action Task
• Execute Diagnostics Action Task

17.2.8.1 Set Up Diagnostics Action Task

NOTE
This procedure assumes that you have imported a pre-defined
Flash Programmer task in the Target Tasks view. It also
assumes that you have previously created other tasks, so that
the Target Tasks view is visible. If it is not visible, perform the
steps in the Working with Flash Programmer topic to open the
Target Tasks view.

After you have launched CodeWarrior and connected the M52277EVB_SPI board to the host
system using a USB cable:

1. Go to the Target Tasks view in either the C/C++ or Debug perspective.
2. Right-click in the Target Tasks view and select Import . Alternatively, click the

Import icon on the Target Tasks view toolbar.

The Open dialog box appears.

3. Navigate to the pre-defined tasks folder at <CW MCU install>\MCU\bin\plugins\support
\TargetTask\Flash_Programmer\ and select the desired .xml file for your hardware target.
For example, select M52277EVB_SPI.xml.

4. Click Open.

The selected task appears in the Target Tasks view.

Figure 17-35. Pre-defined Task in Target Tasks View

NOTE
The predefined erase/program tasks are not mandatory for
diagnostics.

5. Right-click on the task's name and select Execute.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 913



The task's Flash Programmer actions execute in sequence. First, they erase the
hardware target's flash memory. Next, they check whether the flash is correctly
erased. If true, they program the file's code into the flash and check if it programmed
without errors.

NOTE
When a predefined flash programmer task is imported, its
Run Configuration is set as Active Debug Context. If the
task is imported and there is no active debug session, then
the Execute icon will be disabled as in. Associate the
selected target task to a different Run Configuration to
enable the Execute icon.

6. Double-click on the task name, to examine the task stored Flash Programmer actions.

The <target> Flash Programmer Task editor window appears.

Figure 17-36. <target> Flash Programmer Task Editor Window
7. Select the Diagnostics action from the Add Action drop-down list.

The Add Diagnostics Action dialog box appears. It displays the flash devices and
the base addresses.

Flash Programmer Tutorials

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

914 Freescale Semiconductor, Inc.



NOTE
The full diagnostics does the same thing as diagnostics but
also prints the blank status for sectors. It can take
significantly longer to complete.

NOTE
If more than one flash is available in Flash Devices table,
the Add Diagnostics Action table lets you select the flash
where you want to run the diagnostics.

Figure 17-37. Add Diagnostics Action Dialog Box
8. Check the Perform Full Diagnostics checkbox if you want to perform complete

diagnostics on the selected flash device.
9. Select the Diagnostics action from the Add Action drop-down list.

You get a popup with a status that the device is added.

Figure 17-38. Add Diagnostics Actions Dialog Box - Popup with Status
10. Click Done.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 915



The Add Diagnostics Action dialog box closes. The action appears in the Flash
Programmer Actions table of the <target> Flash Programmer Task editor
window.

Figure 17-39. Flash Programmer Actions Table

17.2.8.2 Execute Diagnostics Action Task

To execute the task:

1. Right-click on the M52277EVB_SPI task.
2. Select Execute. Alternatively, select the M52277EVB_SPI task and click the Execute icon

on the Target Tasks view toolbar.

CodeWarrior establishes contact with the M52277EVB_SPI board, erases the
microcontroller's flash memory, downloads the code, verifies, and diagnoses the
contents on M52277EVB_SPI.

You have created and executed a diagnostic action task on the M52277EVB_SPI
microcontroller.

17.2.9 Tutorial I: Dump Entire Flash

The goal of this tutorial is to demonstrate how to dump selected sectors of a flash device
or the entire flash device.

To add a dump flash action:

1. Select the Dump Flash action from the Add Action drop-down list.

The AddDump Flash Action dialog box appears.

Flash Programmer Tutorials

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

916 Freescale Semiconductor, Inc.



Figure 17-40. Add Dump Flash Action Dialog Box
2. Specify the file name in the File text box. The flash is dumped in this selected file.
3. Select the file type from the File Type drop-down list. You can select any one of the

following file types:
• Srec - Saves files in Motorola S-record format.
• Binary - Saves files in binary file format.

4. Specify the memory range for which you want to add dump flash action.
• Specify the start address of the range in the Start text box.
• Specify the end address of the range in the End text box.

5. Click Add Dump Flash Action.
6. Click Done.

The Add Dump Flash Action dialog box closes and the added dump flash action
appear in the Flash Programmer Actions table in the Flash Programmer Task
editor window.

17.2.10 Tutorial J: Change Protection of Sector

The goal of this tutorial is to demonstrate how to protect / unprotect actions enable you to
change the protection of a sector in the flash device.

To add a protect / unprotect action:

1. Select the Protect/Unprotect action from the Add Action drop-down list.

The Add Protect/Unprotect Action dialog box appears.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 917



Figure 17-41. Add Protect / Unprotect Action Dialog Box
2. Select a sector from the Sectors table and click the Add Protect Action button to

add a protect operation on the selected sector.

NOTE
Press CTRL or SHIFT keys for selecting multiple sectors
from the Sectors table.

3. Click the Add Unprotect Action button to add an unprotect action on the selected
sector.

NOTE
Check the All Device checkbox to add action on full
device.

4. Click Done.

The Add Protect/ Unprotect Action dialog box closes and the added protect or
unprotect actions appear in the Flash Programmer Actions table in the Flash
Programmer Task editor window.

Flash Programmer Tutorials

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

918 Freescale Semiconductor, Inc.



Figure 17-42. Protect / Unprotect Action

17.2.11 Tutorial K: Fast Access to Target Tasks Editors

The goal of this tutorial is to demonstrate managing and fast accessing of the target tasks'
editors used by the Target Task framework.

You can access target tasks by:

• Editing tasks in a project. Refer Editing Tasks in Project.
• Editing tasks imported in a previous session. Refer Editing Tasks Imported in

Previous Session.
• Storing task to a file. Refer Storing Task to File.

17.2.11.1 Editing Tasks in Project

NOTE
Before editing ensure that the target task has been added to the
project by a wizard or another method and has an extension
recognized by the feature (.ttf).

To edit tasks in a project:

1. Double-click on the file in the project.
2. The appropriate task editor appears.
3. The task is imported in the Target Task Framework.

17.2.11.2 Editing Tasks Imported in Previous Session

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 919



NOTE
Before editing ensure that a target task has been imported and
the previous Eclipse session has been closed.

To edit tasks imported in a previous session:

1. Open the Target Tasks view.
2. Double-click to open the desired task.

The target task editor appears.

3. Make the appropriate changes and close the target task editor.

NOTE
Changing the task will also save changes to the file in the
project. The save is done to the file in project only if the
task has been imported from a project (with double click).
Otherwise, it will prompt to save the file.

17.2.11.3 Storing Task to File

NOTE
Before storing the task ensure that the target task has been
imported or created and appropriate changes have been made.

To store task to a file:

1. Open the Target Tasks view.
2. Double-click to open the desired task.

The target task editor appears.

3. Make the appropriate changes and save the target task.

The Store Task dialog box appears.

Flash Programmer Tutorials

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

920 Freescale Semiconductor, Inc.



Figure 17-43. Store Task Dialog Box
4. Select the Save to File option.
5. In the Task Path text box, specify the path where you want to store the task. You

can use the Workspace, File System, or Variables buttons to navigate to the desired
location.

6. From the Project drop-down list select the project where you want to store you target
task.

NOTE
Check the Do not ask me again for this task checkbox to
save these settings for the current target task.

7. Click OK.

The dialog box closes and associates the file to the specified project and saves in
target task framework and not necessarily in the project.

NOTE
The above mentioned feature has a preference that will not
display the save as dialog and always save in target task
framework. The settings are located in Windows >
Preferences > C/C++ >Debug > CodeWarrior Debugger
> Show "Save As" dialog box when saving a new task.

17.2.12 Tutorial L: Programming with Simple Flash

The goal of this tutorial is to demonstrate the use of CodeWarrior Simple Flash
Programmer. This feature enables you to perform these basic flash operations:

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 921



• Erasing Flash Device
• Programming File

To open the Simple Flash dialog box:

1. Click the Flash Programmer icon on the IDE toolbar.

Figure 17-44. Flash Programmer Icon
2. Select Flash File to Target.

The Simple Flash dialog box appears.

Figure 17-45. Simple Flash Dialog Box

• Remote system Connection drop-down list - Lists all run configurations
defined in Eclipse. If a connection to the target has already been made the
control becomes inactive and contains the text Active Debug Configuration.

Flash Programmer Tutorials

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

922 Freescale Semiconductor, Inc.



• Flash Configuration File pop-up menu - Lists predefined target tasks for the
processor selected in the Launch Configuration and tasks added by user with the
Browse button. The items in this pop-up menu are updated based on the
processor selected in the launch configuration.

• Unprotect flash memory before erase checkbox - Select to unprotect flash
memory before erasing the flash device. This feature allows you to unprotect
the flash memory from Flash File To Target dialog.

• File to Flash group - Allows selecting the file to be programmed on the flash
device and the location.

• File textbox - Used for specifying the filename. You can use the Workspace, File
System, or Variables buttons to select the desired file.

• Offset:0x textbox - Used for specifying offset location for a file. If no offset is
specified the default value of zero is used. The offset is always added to the start
address of the file. If the file does not contain address information then zero is
considered as start address.

• Save as Target Task - Select to enable Task Name textbox.
• Task Name textbox - Lets you to save the specified settings as a Flash target

task. Use the testbox to specify the name of the target task.
• Erase Whole Device button - Erases the flash device. In case you have multiple

flash blocks on the device, all blocks are erased. If you want to selectively erase
or program blocks, use the Flash programmer feature.

• Erase and Program button - Erases the sectors that are occupied with data and
then programs the file. If the flash device can not be accessed at sector level then
the flash device is completely erased. This feature helps you perform these basic
flash operations:

17.2.12.1 Erasing Flash Device

To erase a flash device:

1. Click the Flash Programmer icon on the IDE toolbar.

Figure 17-46. Flash Programmer Icon
2. Select Flash File to Target.
3. The Simple Flash dialog box appears.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 923



4. Select a run configuration from the Run Configuration drop-down list.

NOTE
If a connection is already established with the target, this
control is disabled.

The Flash Configuration drop-down list is updated with the supported
configurations for the processor from the launch configuration.

5. Select a flash configuration from the Flash Configuration drop-down list.
6. Click the Erase Device button.

17.2.12.2 Programming File

1. Click the Flash Programmer icon on the IDE toolbar.

Figure 17-47. Flash Programmer Icon
2. Select Flash File to Target.
3. The Simple Flash dialog box appears.
4. Select a run configuration from the Run Configuration drop-down list.

NOTE
If a connection is already established with the target, this
control is disabled.

The Flash Configuration drop-down list is updated with the supported
configurations for the processor from the launch configuration.

5. Select a flash configuration from the Flash Configuration drop-down list.
6. Specify the file name in the File text box. You can use the Workspace, File System,

or Variables buttons to select the desired file.
7. Specify the offset location in the Offset text box.
8. Click the Program with Erase button.

17.2.13 Tutorial M: Exporting Target Tasks

Flash Programmer Tutorials

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

924 Freescale Semiconductor, Inc.



The goal of this tutorial is to demonstrate how to export a target task to an external file.

To export a target task:

1. Select the target task in the Target Task view.
2. Click the Export button from the Target Task view toolbar. Alternatively, right-

click the target task and select Export from the context menu.

The Save As dialog box appears.

3. Specify a file name in the File name drop-down list.
4. Click Save.

The exported task is stored in XML format.

17.3 Working with Hardware Diagnostics Window

The Hardware Diagnostics window lets you run a series of diagnostic tests that
determine if the basic hardware is functional.

These tests include:

• Memory read/write - Makes a read / write access to memory in order to read or write
a byte, word (2 bytes), and long word (4 bytes) to / from memory.

• Scope loop - Makes read and write accesses to memory in a loop at target address.
The the loop speed settings determine the time between accesses. The loop can only
be stopped by cancelling the test.

• Memory tests - Requires you to set the access size and target address from the access
settings group and the settings present in the Memory Tests group.

On the Eclipse IDE, the hardware diagnostics feature runs like a target task.

To create a hardware diagnostic target task:

1. Click Window > Show View > Other.

The Show View dialog box appears.

2. Expand the Debug group and select Target Tasks.
3. Click OK.
4. Click Add New Task from the Target Tasks view t oolbar to create a new target

task.

The Create New Target Task wizard appears.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 925



5. In the Task Name text box, enter the name of the target task.
6. From the Run Configuration drop-down list, select a configuration.

NOTE
Select Active Debug Context from the Run Configuration
drop-down list, if you want to use hardware diagnostics
over an active debugger session, else select any of the
specified debug context from the list.

7. From the Task Type drop-down list, select Hardware Diagnostic.
8. Click Finish.

The Hardware Diagnostics Action window appears.

Figure 17-48. Hardware Diagnostics Action Window

Working with Hardware Diagnostics Window

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

926 Freescale Semiconductor, Inc.



The Hardware Diagnostics Action window includes the following groups:

• Action Type - Used to set various action types. The options you select in this group
enables the options in the other groups of the window.

• Memory Access - Configures diagnostic tests for performing memory reads and
writes over the remote connection interface.

• Loop Speed - Configures diagnostic tests for performing repeated memory reads and
writes over the remote connection interface.

• Memory Tests - Configures the memory tests that you can run on the target.

NOTE
The Use Target CPU group appears grayed-out and is not
applicable for the HCS08 and RS08 Target Tasks. Refer the
CodeWarrior Common Features Guide for detailed
documentation of the various options available in the
Hardware Diagnostics Action window.

17.4 Manipulating Target Memory

You can manipulate the target's memory in these ways:

• Import - Read encoded data from a specified file, decode that data into a specific
format, and copy the decoded data into a specified memory range. For information,
refer Creating Target Task to Import Memory.

• Export - Read data from a specified memory range, encode that data in a specific
format, and store the encoded data in an output file. For information, refer Creating
Target Task to Export Memory.

• Fill - Fill a specified memory range with a specific data pattern. For information,
refer Fill Memory with Data Pattern.

17.4.1 Creating Target Task to Import Memory

Perform these steps to create a target task to import memory:

1. Select Window > Show View > Other.

The Show View dialog box appears.

2. From the Debug group, select Target Tasks.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 927



The Target Tasks view appears.

Figure 17-49. Target Tasks View
3. Right-click in the Target Tasks view and select New Task from the context menu.

The Create New Target Task wizard appears.

4. In the Task Name text box, enter a name for the new task. For example,
Importing_Memory.

5. Use the Run Configuration list box to specify the configuration that the task
launches and uses to connect the target. For example, select Active Debug Context.

NOTE
If the task does not successfully launch the configuration
that you specify, the Execute button of the Target Tasks
view toolbar stays disabled.

6. From the Task Type list box, select Import/Export/Fill Memory.

Figure 17-50. Create New Target Task Wizard
7. Click Finish.

Manipulating Target Memory

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

928 Freescale Semiconductor, Inc.



The Import/Export/Fill Memory Action editor appears. This editor lets you read
encoded data from a user specified file, decode it, and copy it into a user specified
memory range.

NOTE
The Import memory option is selected by default.

Figure 17-51. Importing Memory
8. Specify options as explained in the following table.

NOTE
CodeWarrior IDE validates information as you enter it. If
there are errors, a message appears near the page title.

Table 17-4. Import Data from a File into memory Page
Options

Item Description

Memory space and address Enter the literal address and memory space on
which the data transfer is performed.

The Literal address field allows only decimal and
hexadecimal values.

Expression Enter the memory address or expression at which
the data transfer starts.

Table continues on the next page...

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 929



Table 17-4. Import Data from a File into memory Page Options
(continued)

Item Description

Access size Denotes the number of addressable units of memory
that the debugger accesses in transferring one data
element.

The default values shown are 1, 2, 4, and 8 units.

When target information is available, this list shall be
filtered to display the access sizes that are
supported by the target.

Select File Enter the path to the file that contains the data to be
imported. Click the Browse button to select the
import file through the standard File Open dialog
box.

File type Defines the format in which the wizard encodes the
data it imports. By default, the following file types are
supported:

• Annotated Hex Text
• Hex Text
• Motorola S-Record
• Raw Binary
• Signed Decimal Text
• Unsigned decimal Text

Fill Pattern Denotes the sequence of bytes, ordered from low to
high memory, the wizard mirrors in the target.

The field accept only hexadecimal values. If the
width of the pattern exceeds the access size, the
wizard displays an error message.

Number of Elements Enter the total number of elements to be transferred.

Verify Memory Writes Check the option to verify success of each data write
to the memory.

9. Click the save icon on the IDE toolbar.

CodeWarrior IDE saves your changes, closes the Configure Import/Export/Fill
Memory task wizard, and displays the newly created import task in the Tasks list of
the Target Tasks view.

10. Click the Execute icon to execute the task.

17.4.2 Creating Target Task to Export Memory

Perform these steps to create a target task to export memory:

1. Select Window > Show View > Other.

Manipulating Target Memory

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

930 Freescale Semiconductor, Inc.



The Show View dialog box appears.

2. From the Debug group, select Target Tasks.

The Target Tasks view appears.

Figure 17-52. Target Tasks View
3. Right-click in the Target Tasks view and select New Task from the context menu.

The Create New Target Task wizard appears.

4. In the Task Name text box, enter a name for the new task. For example,
Exporting_Memory.

5. Use the Run Configuration list box to specify the configuration that the task
launches and uses to connect the target. For example, Active Debug Context.

NOTE
If the task does not successfully launch the configuration
that you specify, the Execute button of the Target Tasks
view toolbar stays disabled.

6. From the Task Type list box, select Import/Export/Fill Memory.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 931



Figure 17-53. Create New Target Task Wizard
7. Click Finish.

The Import/Export/Fill Memory Action editor appears. This page lets you read
data from a user specified memory range, encode it in a user specified format, and
store this encoded data in a user specified output file.

8. Select the Export memory option.

Manipulating Target Memory

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

932 Freescale Semiconductor, Inc.



Figure 17-54. Exporting Memory
9. Specify options as explained in the following table.

NOTE
CodeWarrior IDE validates information as you enter it. If
there are errors, a message appears near the page title.

Table 17-5. Export Data from Memory into a File
Options

Item Description

Memory space and address Enter the literal address and memory space on
which the data transfer is performed.

The Literal address field allows only decimal and
hexadecimal values.

Expression Enter the memory address or expression at which
the data transfer starts.

Access size Denotes the number of addressable units of memory
that the debugger accesses in transferring one data
element.

The default values shown are 1, 2, 4, and 8 units.
When target information is available, this list shall be
filtered to display the access sizes that are
supported by the target.

Table continues on the next page...

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 933



Table 17-5. Export Data from Memory into a File Options
(continued)

Item Description

Select File Enter the path to the file that contains the data to be
imported. Click the Browse button to select the
import file through the standard File Open dialog
box.

File type Defines the format in which the wizard encodes the
data it imports. By default, the following file types are
supported:

• Annotated Hex Text
• Hex Text
• Motorola S-Record
• Raw Binary
• Signed Decimal Text
• Unsigned decimal Text

Number of Elements Enter the total number of elements to be transferred.

10. Click the save icon on the IDE toolbar.

CodeWarrior IDE saves your changes, closes the Configure Import/Export/Fill
Memory task wizard, and displays the newly created export task in the Tasks list of
the Target Tasks view.

11. Click the Execute icon to execute the task.

17.4.3 Fill Memory with Data Pattern

To fill memory with a specified data pattern:

1. Select Window > Show View > Other.

The Show View dialog box appears.

2. From the Debug group, select Target Tasks.

The Target Tasks view appears.

Figure 17-55. Target Tasks View

Manipulating Target Memory

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

934 Freescale Semiconductor, Inc.



3. Right-click in the Target Tasks view and select New Task from the context menu.

The Create New Target Task wizard appears.

4. In the Task Name text box, enter a name for the new task. For example, Fill
Memory.

5. Use the Run Configuration list box to specify the configuration that the task
launches and uses to connect the target. For example, Active Debug Context.

NOTE
If the task does not successfully launch the configuration
that you specify, the Execute button of the Target Tasks
view toolbar stays disabled.

6. From the Task Type list box, select Import/Export/Fill Memory.

Figure 17-56. Create New Target Task Wizard
7. Click Finish.
8. Select the Fill memory option.

The Import/Export/Fill Memory Action editor appears. This page lets you fill a
user specified memory range with a user specified data pattern.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 935



Figure 17-57. Fill memory with a data pattern Page
9. Specify options as explained in the following table.

NOTE
CodeWarrior IDE validates information as you enter it. If
there are errors, a message appears near the page title.

Table 17-6. Fill memory with a data pattern Page
Options

Item Description

Memory space and address Enter the literal address and memory space on
which the data transfer is performed.

The Literal address field allows only decimal and
hexadecimal values.

Expression Enter the memory address or expression at which
the data transfer starts.

Access size Denotes the number of addressable units of memory
that the debugger accesses in transferring one data
element.

The default values shown are 1, 2, 4, and 8 units.
When target information is available, this list shall be
filtered to display the access sizes that are
supported by the target.

Table continues on the next page...

Manipulating Target Memory

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

936 Freescale Semiconductor, Inc.



Table 17-6. Fill memory with a data pattern Page Options
(continued)

Item Description

Fill Pattern Denotes the sequence of bytes, ordered from low to
high memory, the wizard mirrors in the target.

The field accept only hexadecimal values. If the
width of the pattern exceeds the access size, the
wizard displays an error message.

Number of Elements Enter the total number of elements to be transferred.

Verify Memory Writes Check this option to verify success of each data
write to the memory.

10. Click the Save icon on the IDE toolbar.

CodeWarrior IDE saves your changes, closes the Configure Import/Export
Memory task wizard, and displays the newly created fill task in the Tasks list of the
TargetTasks view.

11. Click the Execute icon to execute the task.

Chapter 17 Common Connection Features

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 937



Manipulating Target Memory

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

938 Freescale Semiconductor, Inc.



Chapter 18
CRC Utility for All Architectures
The Cyclic Redundancy Check or CRC is a technique, which is designed to check the
integrity of user-defined memory areas. It helps in calculating the checksum of a binary
application file.

Command Syntax

crcgen input -crc file [-vaddr] [-o file] [-srec [file] [length]] [-bin [file] [length]]

Listing: Input crc file syntax for crcgen utility

CRC
SEED = default_or_initial_value_of_checksum
FILL = 0xff
FROM start_address TO end_address; 
FROM start_address TO end_address; 
FROM start_address TO end_address; 
DEST = destination_address

CRCgen.exe utility computes the single checksum value, CRC-16 (2-byte size) for the
bytes that are present in all specified memory ranges (FROM start_address TO
end_address) and stores the resulted checksum value in the destination address (DEST =
destination_address).

It loads the ELF segment and calculates the checksum value and these values are written
as distinct ELF segment.

Listing: Output format

**Program Segment **
Destination_address: checksum value

18.1 Using CRCgen on Microcontrollers
To use the CRCgen utility, perform the followings steps.

1. Create a file calc_crc.crc in the Project/Project_Settings/Linker_Files directory.
2. Configure the post-linker to use it.

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 939



Listing: Command line for post build

"${MCU_TOOLS_HOME}/bin/crcgen.exe" "${BuildLocation}/
${BuildArtifactFileName}" -crc "${ProjDirPath}/Project_Settings/
Linker_Files/calc_crc.crc" -o "${BuildLocation}/
${BuildArtifactFileName}.crc.elf"

Figure 18-1. Post-build Steps in Microcontrollers

This command line uses several Eclipse variables:

• ${MCU_TOOLS_HOME} : Points to the MCU folder inside the CodeWarrior
for Microcontrollers v10.x installation.

• $(BuildLocation} : Points to the output folder inside the project of build where
the ELF file is located.

• ${BuildArtifactFileName} : Points to the variable that contains the ELF file.
• ${ProjDirPath}:Points to the project folder.

3. Build the project.

The post build step is executed and CRC of the application is calculated.

Using CRCgen on Microcontrollers

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

940 Freescale Semiconductor, Inc.



Figure 18-2. Post Build Step in Console View

18.2 Examples
The CRC command, the CRC file syntax and the options are generic and work for all the
architectures and devices.

The following illustrate examples on specific architecture and device.

18.2.1 ColdFire

Target Family : MCF5485

Listing: Memory Segments

MEMORY {
   vectorram   (RWX) : ORIGIN = 0x20000000, LENGTH = 0x00000400
   userram     (RWX) : ORIGIN = 0x20000400, LENGTH = 0x00001A00
   code        (RX)  : ORIGIN = 0x10010000, LENGTH = 0x00008000
}

Listing: Input calc_crc.crc File

CRC
SEED = 0xFEF
FILL = 0xFF
FROM 0x10010000 TO 0x10010004;   //range from code segment
DEST = 0x10017FFA

Listing: Input Bytes from .elf File

                       *** PROGRAM SEGMENT 7 ***
0x10010000:  20 00 1F FC 10     //memory range 0x10010000 To 0x10010004

Chapter 18 CRC Utility for All Architectures

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 941



Listing: Program Header Before Post Linking

                        *** PROGRAM HEADER TABLE ***
no type offset     vaddr      paddr      filesz     memsz      flags     align

0  LOAD 0x00000154 0x20000000 0x20000000 0x00000000 0x00000000 0x00000007 4
1  LOAD 0x00000154 0x20000400 0x20000400 0x00000000 0x00000000 0x00000007 4
2  LOAD 0x00003674 0x20000400 0x10013520 0x00000018 0x00000018 0x00000007 4
3  LOAD 0x0000368C 0x20000418 0x20000418 0x00000000 0x00000004 0x00000007 4
4  LOAD 0x0000368C 0x2000041C 0x2000041C 0x00000000 0x00000000 0x00000007 4
5  LOAD 0x0000368C 0x2000041C 0x10013538 0x00000018 0x00000018 0x00000007 4
6  LOAD 0x00000154 0x10010000 0x10010000 0x00000000 0x00000000 0x00000005 4
7  LOAD 0x00000154 0x10010000 0x10010000 0x00000400 0x00000400 0x00000005 4
8  LOAD 0x00000554 0x10010400 0x10010400 0x00003120 0x00003120 0x00000005 4

Listing: Output in '.elf.crc.elf' file

                         *** PROGRAM SEGMENT 9 ***
0x10017FFA: 16 86      //calculated checksum value -2 bytes

Listing: Program Header after post linking

*** PROGRAM HEADER TABLE ***
no type offset     vaddr      paddr      filesz     memsz      flags     align

0  LOAD 0x00000174 0x20000000 0x20000000 0x00000000 0x00000000 0x00000007  4
1  LOAD 0x00000174 0x20000400 0x20000400 0x00000000 0x00000000 0x00000007  4
2  LOAD 0x00003694 0x20000400 0x10013520 0x00000018 0x00000018 0x00000007  4
3  LOAD 0x000036AC 0x20000418 0x20000418 0x00000000 0x00000004 0x00000007  4
4  LOAD 0x000036AC 0x2000041C 0x2000041C 0x00000000 0x00000000 0x00000007  4
5  LOAD 0x000036AC 0x2000041C 0x10013538 0x00000018 0x00000018 0x00000007  4
6  LOAD 0x00000174 0x10010000 0x10010000 0x00000000 0x00000000 0x00000005  4
7  LOAD 0x00000174 0x10010000 0x10010000 0x00000400 0x00000400 0x00000005  4
8  LOAD 0x00000574 0x10010400 0x10010400 0x00003120 0x00003120 0x00000005  4
9  LOAD 0x0000F864 0x10017FFA 0x10017FFA 0x00000002 0x00000002 0x00000004  0

New segment added by the post linker or crcgen utility.

18.2.2 PowerPC

Target Family : MPC5675K

Listing: Memory Segments

MEMORY
{
   /* FLASH: 0x00000000 - 0x001FFFFF */
resetvector:     org = 0x00000000,  len = 0x00000010
init:            org = 0x00000010,  len = 0x00000FF0 /* ~4K */ 
exception_handlers_p0: org = 0x00010000, len = 0x00010000 /* 64K core_0 */
exception_handlers_p1: org = 0x00020000, len = 0x00020000 /* 128K core_1 */
internal_flash:         org = 0x00040000, len = 0x001C0000 /* 1792 KB */

Listing: Input calc_crc.crc File

CRC
SEED = 0xFFFF
FILL = 0xFF
FROM 0x00040000 TO 0x00040008;     //range from internal_flash segment
DEST = 0x1FFFEA

Examples

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

942 Freescale Semiconductor, Inc.



To read bytes present at specified memory location go to file offset.

Listing: Input Bytes from .elf file:

Program Header [7]
 p_type:   00000001, p_offset: 00000e00
p_vaddr:  00040000, p_paddr:  00000000
 p_filesz: 0000027c, p_memsz:  0000027c, p_flags: 10000005, p_align: 00000010

E00: 70 08 E0 00 70 00 C0 00 70     //memory range from 0x00040000 To 0x00040008

Listing: Program Header Before Post Linking

Program Header [0]
  p_type:   00000001, p_offset: 00000360
  p_vaddr:  00000000, p_paddr:  00000000
  p_filesz: 00000008, p_memsz:  00000008, p_flags: 00000004, p_align: 00000004
.
.
.
Program Header [7]
  p_type:   00000001, p_offset: 00000e00
  p_vaddr:  00040000, p_paddr:  00000000
  p_filesz: 0000027c, p_memsz:  0000027c, p_flags: 10000005, p_align: 00000010
.
.
.
Program Header [13]
  p_type:   00000001, p_offset: 00002028
  p_vaddr:  40001528, p_paddr:  00000000
  p_filesz: 00000000, p_memsz:  0000000c, p_flags: 00000006, p_align: 00000008

Program Header [14]
  p_type:   00000001, p_offset: 00003000
  p_vaddr:  50000000, p_paddr:  00000000
  p_filesz: 00000000, p_memsz:  00001500, p_flags: 00000006, p_align: 00001000

To read the checksum value go to the file offset.

Listing: Output in '.elf.crc.elf' File

Program Header [15]
 p_type:   00000001, p_offset: 00009cb8
 p_vaddr:  001fffea, p_paddr:  001fffea
 p_filesz: 00000002, p_memsz:  00000002, p_flags: 00000004, p_align: 00000000

9CB0: 00 00 00 10 00 00 00 00 F0 76   //calculated checksum value -2 bytes

Listing: Program Header After Post Linking

Program Header [0]
 p_type:   00000001, p_offset: 00000360
 p_vaddr:  00000000, p_paddr:  00000000
 p_filesz: 00000008, p_memsz:  00000008, p_flags: 00000004, p_align: 00000004
.
.
.
Program Header [7]
 p_type:   00000001, p_offset: 00000e00
 p_vaddr:  00040000, p_paddr:  00000000
 p_filesz: 0000027c, p_memsz:  0000027c, p_flags: 10000005, p_align: 00000010
.
.
.

Chapter 18 CRC Utility for All Architectures

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 943



Program Header [13]
 p_type:   00000001, p_offset: 00002028
 p_vaddr:  40001528, p_paddr:  00000000
 p_filesz: 00000000, p_memsz:  0000000c, p_flags: 00000006, p_align: 00000008

Program Header [14]
 p_type:   00000001, p_offset: 00003000
 p_vaddr:  50000000, p_paddr:  00000000
 p_filesz: 00000000, p_memsz:  00001500, p_flags: 00000006, p_align: 00001000

Program Header [15]
 p_type:   00000001, p_offset: 00009cb8
 p_vaddr:  001fffea, p_paddr:  001fffea
 p_filesz: 00000002, p_memsz:  00000002, p_flags: 00000004, p_align: 00000000

New segment added by the post linker or crcgen utility.

18.2.3 Freescale ARM

Target Family : PK60N512

Listing: Memory Segments

MEMORY 
{
m_interrupts  (RX) : ORIGIN = 0x00000000, LENGTH = 0x000001E0
m_text        (RX) : ORIGIN = 0x00000800, LENGTH = 0x0007F800
m_data        (RW) : ORIGIN = 0x1FFF0000, LENGTH = 0x00020000
m_cfmprotrom  (RX) : ORIGIN = 0x00000400, LENGTH = 0x00000010
}

Listing: Input calc_crc.crc File

CRC
SEED = 0xfef
FILL = 0xff
FROM 0x00000800 TO 0x00000804;         //ranges from m_text segment
DEST = 0x7F400

Listing: Input Bytes from .elf File

  *** PROGRAM SEGMENT 1 ***
0x00000800: DF F8 34 10 4E   //for memory range from 0x00000800 To 0x00000804

Listing: Program Header Before Post Linking

                           *** PROGRAM HEADER TABLE ***
no type offset     vaddr      paddr      filesz     memsz      flags     align
0  LOAD 0x000000F4 0x00000000 0x00000000 0x000001E0 0x000001E0 0x00000005  4
1  LOAD 0x000002D8 0x00000800 0x00000800 0x00000D84 0x00000D84 0x80000005  8
2  LOAD 0x00001060 0x1FFF0000 0x00001584 0x000000D8 0x000000D8 0x00000006  8
3  LOAD 0x00001138 0x1FFF00D8 0x1FFF00D8 0x00000000 0x000000E8 0x00000006  8
4  LOAD 0x00001138 0x1FFF01C0 0x0000165C 0x00000018 0x00000018 0x00000006  4
5  LOAD 0x000002D4 0x00000400 0x00000400 0x00000000 0x00000000 0x00000005  4

Listing: Output in '.elf.crc.elf' file

                       *** PROGRAM SEGMENT 6 ***
0x0007F400:  74 CE             //calculated checksum value -2 bytes

Listing: Program Header After Post Linking

Examples

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

944 Freescale Semiconductor, Inc.



                             *** PROGRAM HEADER TABLE ***
no type offset     vaddr      paddr      filesz     memsz      flags     align
0  LOAD 0x00000114 0x00000000 0x00000000 0x000001E0 0x000001E0 0x00000005  4
1  LOAD 0x000002F8 0x00000800 0x00000800 0x00000D84 0x00000D84 0x80000005  8
2  LOAD 0x00001080 0x1FFF0000 0x00001584 0x000000D8 0x000000D8 0x00000006  8
3  LOAD 0x00001158 0x1FFF00D8 0x1FFF00D8 0x00000000 0x000000E8 0x00000006  8
4  LOAD 0x00001158 0x1FFF01C0 0x0000165C 0x00000018 0x00000018 0x00000006  4
5  LOAD 0x000002F4 0x00000400 0x00000400 0x00000000 0x00000000 0x00000005  4
6  LOAD 0x0000A444 0x0007F400 0x0007F400 0x00000002 0x00000002 0x00000004  0

New segment added by the post linker or crcgen utility.

18.2.4 GCC ARM

Target Family: MK60DN512Z

Listing: Memory Segments

MEMORY
{

 m_interrupts (rx) : ORIGIN = 0x00000000, LENGTH = 0x1E0
 m_cfmprotrom (rx) : ORIGIN = 0x00000400, LENGTH = 0x10
 m_text (rx) : ORIGIN = 0x00000800, LENGTH = 512K - 0x800  m_data    (rwx) : ORIGIN = 
0x1FFF0000, LENGTH = 64K /* Lower SRAM */
  m_data2   (rwx) : ORIGIN = 0x20000000, LENGTH = 64K  /* Upper SRAM */
}

Listing: Input calc_crc.crc file

CRC
SEED = 0xFEF
FILL = 0xFF
FROM 0x00000800 TO 0x00000804; //memory range from m_text segment
DEST = 0x7FFEA

To read bytes present at specified memory location go to file offset.

Listing: Input Bytes from .elf file

LOAD off 0x000002b4 vaddr 0x00000800 paddr 0x00000800 align 2**2
     filesz 0x000013f0 memsz 0x000013f0 flags r-x

2B0: 01 08 00 00 80 B4 00 AF 00 //bytes present in memory range from 0x00000800 TO 0x00000804

Listing: Program Header Before Post Linking

Program Header:
 LOAD off 0x000000d4 vaddr 0x00000000 paddr 0x00000000 align 2**2
   filesz 0x000001e0 memsz 0x000001e0 flags r--
 LOAD off    0x000002b4 vaddr 0x00000800 paddr 0x00000800 align 2**2
   filesz 0x000013f0 memsz 0x000013f0 flags r-x
 LOAD off    0x000016a4 vaddr 0x1fff0000 paddr 0x00001bf0 align 2**2
   filesz 0x00000014 memsz 0x00000030 flags rw-
 LOAD off    0x000016b8 vaddr 0x20000000 paddr 0x00001c04 align 2**0
   filesz 0x00000024 memsz 0x00000024 flags rw-
 LOAD off    0x000016dc vaddr 0x1fff0030 paddr 0x00001c20 align 2**0
   filesz 0x00000000 memsz 0x00001000 flags rw-

To read the checksum value go to the file offset.

Chapter 18 CRC Utility for All Architectures

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 945



Listing: Output in .elf.crc.elf File

LOAD off    0x000777bc vaddr 0x0007ffea paddr 0x0007ffea align 2**0
         filesz 0x00000002 memsz 0x00000002 flags r--

777B0: 5F 64 61 74 61 5F 73 69 7A 65 00 00 4D 21 //calculated checksum value -2 bytes

Listing: Program Header After Post Linking

Program Header:
  LOAD off    0x000000f4 vaddr 0x00000000 paddr 0x00000000 align 2**2
    filesz 0x000001e0 memsz 0x000001e0 flags r--
  LOAD off    0x000002d4 vaddr 0x00000800 paddr 0x00000800 align 2**2
    filesz 0x000013f0 memsz 0x000013f0 flags r-x
  LOAD off    0x000016c4 vaddr 0x1fff0000 paddr 0x00001bf0 align 2**2
    filesz 0x00000014 memsz 0x00000030 flags rw-
  LOAD off    0x000016d8 vaddr 0x20000000 paddr 0x00001c04 align 2**0
    filesz 0x00000024 memsz 0x00000024 flags rw-
  LOAD off    0x000016fc vaddr 0x1fff0030 paddr 0x00001c20 align 2**0
    filesz 0x00000000 memsz 0x00001000 flags rw- 
 LOAD off 0x000777bc vaddr 0x0007ffea paddr 0x0007ffea align 2**0 filesz 0x00000002 memsz 
0x00000002 flags r--

New segment added by the post linker or crcgen utility.

18.2.5 DSC

Target Family : MC56F84789

Listing: Memory Segments

MEMORY {
## Program Memory space 
.p_interruptsboot_ROM(RX) : ORIGIN = 0x000000, LENGTH = 0x000004 # reserved for boot 
location 
.p_interrupts_ROM(RX)  : ORIGIN = 0x000004,  LENGTH = 0x000200 # reserved for interrupt 
vectoring
# .p_reserved_IFR     (RX)  : ORIGIN = 0x000200, LENGTH = 0x000008 # 16 bytes reserved for 
IFR
.p_flash_ROM          (RX)  : ORIGIN = 0x000208, LENGTH = 0x01FDF8 # primary location for 
code to be run - to 0x1ffff

Listing: Input calc_crc.crc File

CRC
SEED = 0xFFFF
FILL = 0xFF
FROM 0x000208 TO 0x000210;
DEST = 0x3000            //Address as DATA BYTE

Listing: Input Bytes from .elf File

*** PROGRAM SEGMENT 2 ***
0x00000208:  7B 82 4B 86 0A 00 7B 82 48 87 00 40 1F D8 7C F8  '{.K...{.H..@..|.'
0x00000210:  BC

Listing: Program Header Before Post Linking

*** PROGRAM HEADER TABLE ***
no type offset     vaddr      paddr      filesz     memsz      flags     align

Examples

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

946 Freescale Semiconductor, Inc.



0  LOAD 0x000001B4 0x00000000 0x00000000 0x00000008 0x00000008 0x00000005  1
1  LOAD 0x000001BC 0x00000004 0x00000004 0x000001B4 0x000001B4 0x00000005  1
2  LOAD 0x00000370 0x00000208 0x00000208 0x000039BC 0x000039BC 0x00000005  4
3  LOAD 0x00000000 0x00068000 0x00068000 0x00000000 0x00008000 0x00000005  1
4  LOAD 0x00003D2C 0x00001EE6 0x00002000 0x00000290 0x00000290 0x00000005  4
5  LOAD 0x00000000 0x00000000 0x00000000 0x00000000 0x00004000 0x00000006  1
6  LOAD 0x00003FC0 0x00002000 0x00002000 0x00000290 0x00000DB0 0x00000006  8
7  LOAD 0x00000000 0x0000C000 0x0000C000 0x00000000 0x00004000 0x00000006  1
8  LOAD 0x00000000 0x0000E000 0x0000E000 0x00000000 0x00004000 0x00000006  1
9  LOAD 0x00000000 0x0001E000 0x0001E000 0x00000000 0x00000800 0x00000006  1
10 LOAD 0x00000000 0x0001E400 0x0001E400 0x00000000 0x00003800 0x00000006  1
11 LOAD 0x00000000 0x00FFFF00 0x00FFFF00 0x00000000 0x00000200 0x00000006  1

Listing: Output in '.elf.crc.elf' file

                               ** PROGRAM SEGMENT 12 ***
0x00001800:  56 D0    //
Address as "DATA WORD"
--calculated checksum value -2 bytes

NOTE
DEST (destination_address) in the input *.crc file for DSC
should be a BYTE ADDRESS value. In the above example, '
DEST = 0x3000' in the ' calc_crc.crc' file.

Since the DSC disassembler output lists the segments addresses as WORD ADDRESS ,
the checksum value segment in the final disassembly should be checked using the
corresponding WORD ADDRESS .

For DSC, the byte address is converted to a word address by dividing the byte address by
two. For example, the checksum data value generated for the above example is located at
0x1800 'WORD ADDRESS'.

Listing: Program Header after post linking

                             *** PROGRAM HEADER TABLE ***
no type offset      vaddr       paddr       filesz      memsz       flags      align

0  LOAD 0x000001D4  0x00000000  0x00000000  0x00000008  0x00000008  0x00000005  1
1  LOAD 0x000001DC  0x00000004  0x00000004  0x000001B4  0x000001B4  0x00000005  1
2  LOAD 0x00000390  0x00000208  0x00000208  0x000039BC  0x000039BC  0x00000005  4
3  LOAD 0x00000000  0x00068000  0x00068000  0x00000000  0x00008000  0x00000005  1
4  LOAD 0x00003D4C  0x00001EE6  0x00002000  0x00000290  0x00000290  0x00000005  4
5  LOAD 0x00000000  0x00000000  0x00000000  0x00000000  0x00004000  0x00000006  1
6  LOAD 0x00003FE0  0x00002000  0x00002000  0x00000290  0x00000DB0  0x00000006  8
7  LOAD 0x00000000  0x0000C000  0x0000C000  0x00000000  0x00004000  0x00000006  1
8  LOAD 0x00000000  0x0000E000  0x0000E000  0x00000000  0x00004000  0x00000006  1
9  LOAD 0x00000000  0x0001E000  0x0001E000  0x00000000  0x00000800  0x00000006  1
10 LOAD 0x00000000  0x0001E400  0x0001E400  0x00000000  0x00003800  0x00000006  1
11 LOAD 0x00000000  0x00FFFF00  0x00FFFF00  0x00000000  0x00000200  0x00000006  1
12 LOAD 0x0001BC7C  0x00001800  0x00001800  0x00000002  0x00000002  0x00000004  0

New segment added by the post linker or crcgen utility.

Chapter 18 CRC Utility for All Architectures

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 947



18.2.6 8/16 bit

Target Family : MC9S08QE128

Listing: Memory Segments

SEGMENTS /* Here all RAM/ROM areas of the device are listed. Used in PLACEMENT below. */
    Z_RAM                    = READ_WRITE  0x0080 TO 0x00FF;
    RAM                      = READ_WRITE  0x0100 TO 0x17FF;
    RAM1                     = READ_WRITE  0x1880 TO 0x207F
 /* unbanked FLASH ROM */
    ROM = READ_ONLY 0x2080 TO 0x7FFF;
    ROM1                     = READ_ONLY   0xC000 TO 0xFFAD;

Listing: Input calc_crc.crc file

CRC
SEED = 0xfef
FILL = 0xff
FROM 0x211E TO 0x2123;
DEST = 0x21D2

To read bytes present at specified memory location go to file offset.

Listing: Input Bytes from .elf file

NO   TYPE    OFFSET SIZE VIRTADDR PHYADDR MEMSIZE FLAGS ALIGNMNT
28 - PT_LOAD D4       C5     211E       0      C5   R X       0 

D0 : 00 00 00 00  A7 FA 45 0F EF 9E     //memory range from 0x211E TO 0x2123

Listing: Program Header Before Post Linking

PROGRAM HEADER TABLE - 32 Items
Starts at:    148D1, Size of an entry:     20, Ends at:    14CD1
  NO   TYPE         OFFSET     SIZE VIRTADDR  PHYADDR  MEMSIZE  FLAGS ALIGNMNT
   0 - PT_LOAD          34        0        0        0       2C   RW          0
   1 - PT_LOAD          34        0       2D        0        9   RW          0
   2 - PT_LOAD          34        0       38        0        7   RW          0
   3 - PT_LOAD          34        0       40        0        E   RW          0
   4 - PT_LOAD          34        0       50        0        E   RW          0
   5 - PT_LOAD          34        0       60        0       17   RW          0
   6 - PT_LOAD          34        0       78        0        8   RW          0
   7 - PT_LOAD          34        0      100        0      219   RW          0
   8 - PT_LOAD          34        0     1800        0        4   RW          0
   9 - PT_LOAD          34        0     1806        0        4   RW          0
  10 - PT_LOAD          34        0     180B        0        1   RW          0
  11 - PT_LOAD          34        0     180E        0       14   RW          0
  12 - PT_LOAD          34        0     1823        0        4   RW          0
  13 - PT_LOAD          34        0     1830        0        3   RW          0
  14 - PT_LOAD          34        0     1838        0        4   RW          0
  15 - PT_LOAD          34        0     183D        0        1   RW          0
  16 - PT_LOAD          34        0     1840        0        3   RW          0
  17 - PT_LOAD          34        0     1844        0        3   RW          0
  18 - PT_LOAD          34        0     1848        0        3   RW          0
  19 - PT_LOAD          34        0     184C        0        3   RW          0
  20 - PT_LOAD          34        0     1850        0        3   RW          0
  21 - PT_LOAD          34        0     1854        0        3   RW          0
  22 - PT_LOAD          34        0     1858        0        3   RW          0
  23 - PT_LOAD          34        0     185C        0        3   RW          0
  24 - PT_LOAD          34        0     1860        0        3   RW          0
  25 - PT_LOAD          34        0     1868        0        6   RW          0
  26 - PT_LOAD          34        0     1870        0        E   RW          0
  27 - PT_LOAD          34       9E     2080        0       9E   R X         0

Examples

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

948 Freescale Semiconductor, Inc.



  28 - PT_LOAD          D4       C5     211E        0       C5   R X         0
  29 - PT_LOAD         19C       1E     21E3        0       1E   R X         0
  30 - PT_LOAD         1BC        2     FFFE        0        2   R X         0
  31 - PT_NOTE       119EC      30D

To read the checksum value go to the file offset.

Listing: Output in '.elf.crc.elf' file

NO   TYPE    OFFSET     SIZE VIRTADDR PHYADDR MEMSIZE FLAGS ALIGNMNT
32 - PT_LOAD 14CF2        2     21D2     21D2        2   R       0

14CF0: 00 00 57 74          //calculated checksum value -2 bytes

Listing: Program Header After Post Linking

PROGRAM HEADER TABLE - 33 Items
Starts at:    148D1, Size of an entry:     20, Ends at:    14CF1
  NO   TYPE         OFFSET     SIZE VIRTADDR  PHYADDR  MEMSIZE  FLAGS ALIGNMNT
   0 - PT_LOAD          34        0        0        0       2C   RW          0
   1 - PT_LOAD          34        0       2D        0        9   RW          0
   2 - PT_LOAD          34        0       38        0        7   RW          0
   3 - PT_LOAD          34        0       40        0        E   RW          0
   4 - PT_LOAD          34        0       50        0        E   RW          0
   5 - PT_LOAD          34        0       60        0       17   RW          0
   6 - PT_LOAD          34        0       78        0        8   RW          0
   7 - PT_LOAD          34        0      100        0      219   RW          0
   8 - PT_LOAD          34        0     1800        0        4   RW          0
   9 - PT_LOAD          34        0     1806        0        4   RW          0
  10 - PT_LOAD          34        0     180B        0        1   RW          0
  11 - PT_LOAD          34        0     180E        0       14   RW          0
  12 - PT_LOAD          34        0     1823        0        4   RW          0
  13 - PT_LOAD          34        0     1830        0        3   RW          0
  14 - PT_LOAD          34        0     1838        0        4   RW          0
  15 - PT_LOAD          34        0     183D        0        1   RW          0
  16 - PT_LOAD          34        0     1840        0        3   RW          0
  17 - PT_LOAD          34        0     1844        0        3   RW          0
  18 - PT_LOAD          34        0     1848        0        3   RW          0
  19 - PT_LOAD          34        0     184C        0        3   RW          0
  20 - PT_LOAD          34        0     1850        0        3   RW          0
  21 - PT_LOAD          34        0     1854        0        3   RW          0
  22 - PT_LOAD          34        0     1858        0        3   RW          0
  23 - PT_LOAD          34        0     185C        0        3   RW          0
  24 - PT_LOAD          34        0     1860        0        3   RW          0
  25 - PT_LOAD          34        0     1868        0        6   RW          0
  26 - PT_LOAD          34        0     1870        0        E   RW          0
  27 - PT_LOAD          34       9E     2080        0       9E   R X         0
  28 - PT_LOAD          D4       C5     211E        0       C5   R X         0
  29 - PT_LOAD         19C       1E     21E3        0       1E   R X         0
  30 - PT_LOAD         1BC        2     FFFE        0        2   R X         0
  31 - PT_NOTE       119EC      30D
  32 - PT_LOAD       14CF2        2     21D2     21D2        2   R           0

New segment added by the post linker or crcgen.exe utility.

18.2.7 S12Z

Target Family: MC9S12ZVFP64

Listing: Memory Segments

Chapter 18 CRC Utility for All Architectures

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 949



SEGMENTS  /* Here all RAM/ROM areas of the device are listed. Used in 
PLACEMENT below. */
/* Register space  */
/*    IO_SEG        = PAGED         0x000000 TO   0x000FFF; 
intentionally not defined */
/* RAM */
      RAM           = READ_WRITE  0x001000 TO 0x001FFF;
/* EEPROM */
      EEPROM        = READ_ONLY   0x100000 TO 0x1007FF;
/* non-paged FLASHs */
      ROM           = READ_ONLY   0xFF0000 TO 0xFFFDFF;

Listing: Input calc_crc.crc file

CRC
SEED = 0xfef
FILL = 0xff
FROM  0xFF0000 TO 0xFF0004;
DEST = 0xFFFDFF

To read bytes present at specified memory location go to file offset.

Listing: Input Bytes from .elf file

NO   TYPE    OFFSET SIZE VIRTADDR PHYADDR MEMSIZE FLAGS ALIGNMNT
93 - PT_LOAD 34     5B   FF0000   0       5B      R X   0

30: 01 C6 01 C5 B6 FF 00 40 27 //memory range from 0xFF0000 TO 0xFF0004

Listing: Program Header before post linking

PROGRAM HEADER TABLE - 98 Items
Starts at:    28920, Size of an entry:     20, Ends at:    29560
NO   TYPE         OFFSET     SIZE VIRTADDR  PHYADDR  MEMSIZE  FLAGS ALIGNMNT
0 - PT_LOAD          34        0        0        0        4   RW          0
1 - PT_LOAD          34        0       10        0        2   RW          0
2 - PT_LOAD          34        0       17        0        9   RW          0
3 - PT_LOAD          34        0       70        0        1   RW          0
4 - PT_LOAD          34        0       80        0        4   RW          0
.
.
.
.
. 93 - PT_LOAD 34 5B FF0000 0 5B R X 0
94 - PT_LOAD          90       C9   FF005B        0       C9   R X         0
95 - PT_LOAD         15C       21   FF0124        0       21   R X         0
96 - PT_LOAD         180        3   FFFFFD        0        3   R X         0
97 - PT_NOTE       21934      2CF

To read the checksum value go to the file offset.

Listing: Output in '.elf.crc.elf' file

NO   TYPE         OFFSET     SIZE VIRTADDR PHYADDR MEMSIZE FLAGS ALIGNMNT
98 - PT_LOAD       29580        2   FFFDFF   FFFDFF     2   R        0

29580: C4 AC //calculated checksum value -2 bytes

Listing: Program Header after post linking

PROGRAM HEADER TABLE - 99 Items
Starts at:    28920, Size of an entry:     20, Ends at:    29580

Examples

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

950 Freescale Semiconductor, Inc.



NO   TYPE         OFFSET     SIZE VIRTADDR  PHYADDR  MEMSIZE  FLAGS ALIGNMNT
0 - PT_LOAD          34        0        0        0        4   RW          0
1 - PT_LOAD          34        0       10        0        2   RW          0
2 - PT_LOAD          34        0       17        0        9   RW          0
3 - PT_LOAD          34        0       70        0        1   RW          0
4 - PT_LOAD          34        0       80        0        4   RW          0
.
.
.
.
.
93 - PT_LOAD          34       5B   FF0000        0       5B   R X         0
94 - PT_LOAD          90       C9   FF005B        0       C9   R X         0
95 - PT_LOAD         15C       21   FF0124        0       21   R X         0
96 - PT_LOAD         180        3   FFFFFD        0        3   R X         0
97 - PT_NOTE       21934      2CF
98 - PT_LOAD       29580        2   FFFDFF   FFFDFF        2   R           0

New segment added by the post linker or crcgen.exe utility

18.3 Application Example
Quick example for ARM PK60N512.

#include<stdio.h>
#define CRC16START 0xFEF            // CRC16/Checksum Start Value (seed value according 
to .crc file)
unsigned char CalcCRC16(void);   

unsigned int crc16calc(unsigned short crc16, unsigned char data);  
unsigned long 
Memory[]={0x00000800,0x00000801,0x00000802,0x00000803,0x00000804}; //Array of addresses for 
which we want to calculate checksum

unsigned char CalcCRC16(void)
{
unsigned short checked_data = CRC16START;       // Start value of CRC16/Check-Sum

unsigned char data;                             // current data to be calculated

int index,SIZE;

unsigned long checksum_address=0x7F400;  //Destination address from calc_crc.crc file

unsigned short checksum_value;

checksum_value=*(unsigned short *)checksum_address;

SIZE=(sizeof(Memory)/sizeof(long));

for (index=0; index<SIZE; index++)

{

data = *(unsigned char *)Memory[index];

checked_data = crc16calc(checked_data, data);  // Calculate Checksum for each byte in 
current memory  block

}

return (checked_data != checksum_value); // is calculated value equal to stored value

Chapter 18 CRC Utility for All Architectures

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 951



}

/*function to calculate checksum */

unsigned int crc16calc(unsigned short crc16, unsigned char next)

{

unsigned char  token1, token2;

unsigned short quick1, quick2;

token1 = (unsigned char)((crc16 >> 8) ^ next);

token2= (unsigned char)crc16;

crc16= (unsigned short)(token2 << 8);

quick1 = (unsigned short)(token1 ^ (token1 >> 4));

crc16 ^= quick1;

quick2 = quick1 << 4;

crc16 ^= quick2 << 1;

crc16 = crc16 ^ quick2 << 8;

return crc16;

}

int main(void)

{

if (CalcCRC16())

    printf("CRC fail!"); 

        else

          printf("CRC pass"); 

return 0;

}

Application Example

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

952 Freescale Semiconductor, Inc.



Chapter 19
How to...
This chapter consists of the following topics.

• Switch Between Decoupled Parallel and Lock-Step Modes

19.1 Switch Between Decoupled Parallel and Lock-Step
Modes

The following topic lists the steps to switch between the Decoupled Parallel Mode and
Lock-Step Mode (LSM) . However, before proceeding ensure that you known the
processor mode before proceeding with the actual mode.

• Things to Remember
• Switching from DPM to LSM using VLE

19.1.1 Things to Remember

Before Switching from DPM to LSM using VLE remember the following prerequisites.

• Changing the mode is done via target task.
• Each mode change target task is named as: {processor}_[LSM|DPM]_[BOOKE|VLE].xml, LSM

= lock step mode, DPM = decoupled parallel mode

• Select the FINAL processor mode. If you have a processor in LSM mode and
you want to change it to DPM you will have to select the DPM task.

• Depending on your run configuration select either VLE or BOOKE task. For
each device that supports LS/DP there are two available script versions for VLE
and BOOKE.

• Each target task requires a run configuration. The run configuration can be:

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 953



• Active debug context meaning the current active connection - if you already
connected to the device.

• Manually set launch configuration. After importing the target task right-click to open
the context menu and select Change Run Configuration .

• Dialog box prompting to select a launch configuration.
• Ensure that both the target task script and and the initialization tcl script from launch

configuration have the same code encoding: VLE or BOOKE. However, it does not
matter if the script is labeled for RAM or FLASH. To check the label, you can open
the RSE system (aka processor) associated with that launch configuration and check
the Initialization tab.

Figure 19-1. Select Change Run Configuration

19.1.2 Switching from DPM to LSM using VLE

To select the target task script by using the right the code encoding, VLE or BOOKE and
the final processor mode, LSM or DPM, perform these steps.

• Import Target Task
• Execute Target Task
• Hardware Reset
• Unprotect Action
• Configure the Build Toolbar

19.1.2.1 Import Target Task

Switch Between Decoupled Parallel and Lock-Step Modes

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

954 Freescale Semiconductor, Inc.



NOTE
This procedure assumes that the Target Tasks view is visible in
the perspective. If it is not visible, perform the steps in the
Working with Flash Programmer topic to open the Target Tasks
view.

1. Go to the Target Tasks view in either the C/C++ or Debug perspective.
2. Right-click on this view and select Import. Alternatively, click the  icon on the

Target Tasks view toolbar.

The Open dialog box appears.

3. Navigate to <CWInstallDir>/MCU/bin/plugins/support/TargetTask/
Flash_Programmer/E200 and select the XML file for the board's microcontroller. For
example, select MPC5643L_DPM_VLE.xml.

4. Click Open.

The MPC5643L_DPM_VLE task appears in the Target Tasks view.

5. Double-click on the MPC5643L_DPM_VLE task to examine its contents.

The <target> Flash Programmer Task editor window appears, and displays the
memory settings and actions for the task. Notice the actions to erase, program, and
verify the contents of flash memory in the Flash Programmer Actions group. These
actions execute in the order as they are displayed in the table, from top to bottom.

6. Execute the target task. For more information, refer Execute Target Task.

19.1.2.2 Execute Target Task

To execute the task:

1. Right-click on the imported task.
2. Select Execute. Alternatively, select the imported task and click the Execute icon 

on the Target Tasks view toolbar.
3. CodeWarrior establishes contact with the board, erases the microcontroller's flash

memory, downloads the code, and verifies that the contents of flash match those of
the file. In this case the target task will erase the shadow flash which means that it
will set the Lock step bit.

4. Reset the board. For more information, refer Hardware Reset. This step is mandatory
in order to use the new LS configuration.

Chapter 19 How to...

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 955



NOTE
When changing the device back to DPM the shadow flash
will be programmed. However, it is possible that the
shadow flash sector is protected. In case the shadow flash
sector is protected then the target task will fail and you will
need to add an unprotect action to target task. This action
need to be run before any other actions.

19.1.2.3 Hardware Reset

To reset the hardware, perform these steps.

1. Unplug the power cord.
2. Plug the power cord again.

or

Simply press the reset button on the hardware or target board.

19.1.2.4 Unprotect Action

To add an unprotect action to the target task, perform these steps.

1. Select the Protect/Unprotect action from the Add Action drop-down list.

The Add Protect/Unprotect Action dialog box appears.

2. Check the All Device check box to add an unprotect action on the full device.
3. Click the Add Unprotect Action button.
4. Click Done.

The Add Protect/Unprotect Action dialog box closes and the added protect or
unprotect actions appear in the Flash Programmer Actions table in the Flash
Programmer Task editor window.

NOTE
None of the target task restores the shadow flash user
registers. If the device has some user defined configuration
in shadow flash then executing the changed target task will
erase the configuration also.

Switch Between Decoupled Parallel and Lock-Step Modes

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

956 Freescale Semiconductor, Inc.



19.1.2.5 Configure the Build Toolbar

The Build toolbar feature provides an easy way of managing the active configuration of
projects grouped in a working set. The toolbar is made of two elements:

• Projects drop-down list: Enables you to select the active configuration.
• Hammer icon: Enables you to start the build process of the selected configuration.

NOTE
The default value is (Active) and its means that all the projects
are in the workspace.

Figure 19-2. Build Toolbar

To create some entries in the drop-down list, perform the following steps:

1. Create a C/C++ working set with one or more projects. This can be done in the
dialog, which is opened from the “Project/Build Working Set/Select Working Set…”
menu, by clicking the “New…” button and then selecting the “C/C++“ type.

Chapter 19 How to...

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 957



Figure 19-3. Build Toolbar
2. Create a working set configuration(s). To do so, go to the “Project/Build

Configurations/Manage Working Sets…” menu and add one or more configurations
to the working set created in step 1.

NOTE
If you do not plan to use this feature, you may hide the
Build Toolbar in the “Customize Perspective” dialog
opened from the “Window/Customize Perspective…”
menu.

Switch Between Decoupled Parallel and Lock-Step Modes

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

958 Freescale Semiconductor, Inc.



Figure 19-4. Build Toolbar

Chapter 19 How to...

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 959



Switch Between Decoupled Parallel and Lock-Step Modes

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

960 Freescale Semiconductor, Inc.



Chapter 20
S12Z IEEE-754 Floating Point Library
This chapter presents an implementation of the floating point arithmetic as described in
the IEEE-754 standard. The following floating point routines for the S12Z device family
are implemented. Refer the standard for detailed description of their functionality

• Basic floating point operations for single precision and double precision: addition,
subtraction, multiplication, division

• Conversion to and from integer (16-bit, 32-bit and 64-bit) and floating point format
(32-bit and 64-bit).

• Conversion between 32-bit and 64-bit floating point
• Comparison functions
• ANSI functions: frexp/f, ldexp/f, modf/f for single and double precision
• Functions for manipulating exception flags: saveAllFlags, restoreFlags, testFlags,

testSavedFlags, lowerFlags, and raiseFlags.

Floating point functions are provided in the form of libraries and source code, both C and
assembly. The implementation is ready for use with the CodeWarrior compiler.

The implementation demonstrates a good balance between functionality and performance
and for this reason does not strictly follow the floating point standard. In particular, the
implementation provides several library variants, each of them differing in compliance
level to the standard.

Table 20-1. ansif and ansid Library Features

Features ansif ansifc ansid ansidc

64-bit double No No Yes Yes

Rounding None Round to the nearest
even

None Round to the nearest
even

Non-numerical values Yes Yes Yes Yes

Sub-normal values Yes Yes Yes Yes

Exceptions No Yes No Yes

ANSI functions Yes Yes Yes Yes

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 961



1. ansif.lib: This library is the smallest and generally the fastest. The double type is
mapped to 32-bit. Apart from basic functionality (arithmetic operations,
conversions), this version can handle denormalized numbers, as well as non-
numerical values.

2. ansidr.lib / ansidm.lib*: This library provides the best compromise between
functionality and performance. It is a bare bone implementation of the standard with
double precision capabilities. Denormalized numbers and non-numerical values are
supported.

3. ansidr.lib / ansidm.lib: This library offers a good level of IEEE-754 standard
compliance, without sacrificing much on performance. This version supports
rounding, namely the "round to nearest even number" rounding mode. Additionally,
it offers support for exception flags (overflow, underflow, inexact, invalid, divide by
zero). Comparisons with NaNs (unordered comparisons) behave according to the
standard.

NOTE
"r"-suffixed and "m"-suffixed libraries differ in terms of
calling convention for 64-bit data types. Depending on the -
bit64_code_gen option supplied to the compiler, the
appropriate library must be linked: ansidr(c) for a register-
based calling convention and ansidm(c) for a stack-based
calling convention.

NOTE
A detailed discussion regarding use of the different floating
point features imposed by the IEEE-754 standard is beyond
the scope of this chapter and shall not be provided.
However, users are reminded that this subject is non-trivial.
It is recommended that users familiarize themselves with
the appropriate literature in order to use such features
correctly.

20.1 Usage
The floating point libraries should be used by adding the respective library to a
CodeWarrior project. The CodeWarrior linker will link the project compiled binaries
against the added library.

Usage

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

962 Freescale Semiconductor, Inc.



All functions have been designed to execute as fast as possible in the presence of
normalized numbers as input arguments. In the case where sub-normal numbers are
supplied, the execution time may be longer. In any case, it should be noted that a frequent
appearance of sub-normal numbers in floating point computation may indicate that an
implemented algorithm needs some refinement.

20.2 Supported IEEE-754 Features Description
The description includes:

• Format
• Non-numerical Values
• Sub-normal Values
• Unordered Comparisons
• Rounding
• Exception Flags

20.2.1 Format

The implementation supports both the single precision (32-bit) and double precision (64
bit) formats described in the IEEE-754 standard. The ansif library only supports single
precision, because double precision numbers are restricted to 32-bits for performance
purposes. 80-bit extended precision is not supported.

20.2.2 Non-numerical Values

All library variants support non-numerical values (NaN, Infinity). The compliant libraries
support quiet and signaling NaNs and handle comparisons with NaN according to the
standard.

20.2.3 Sub-normal Values

Sub-normal values are supported by all library variants. It is not possible to treat the sub-
normal values in a different way (for example, as zero - "flushing to zero").

Chapter 20 S12Z IEEE-754 Floating Point Library

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 963



20.2.4 Unordered Comparisons

Floating point comparisons are mapped to C operators: ==, <, >=, etc. In the case of non-
compliant libraries, all comparisons are considered ordered, which means comparisons
with NaN have undefined results. Compliant libraries support unordered comparisons,
which have the added functionality of returning false for every comparison which
involves a NaN, except "not equal". In order to enable unordered comparisons, the
"fp_compliant" option needs to be passed to the compiler. The following table better
illustrates unordered comparisons:

Table 20-2. Unordered Comparison

== != > < >= <=

f NaN False True False False False False

NaN f False True False False False False

NaN NaN False True False False False False

20.2.5 Rounding

The ansif and ansid libraries use no rounding. Note that no rounding might yield different
results compared to truncation. The compliant libraries use only one rounding mode,
namely the "round to nearest even number". Although there is only one rounding mode, it
provides the best precision and is the standard choice for the vast majority of use cases.
With the exception of implicit floating point to integer conversions, all functions are
correctly rounded.

When no rounding mode is used, precision loss is generally 1ulp. However, in the case of
subnormal numbers, the precision loss may be greater.

20.2.6 Exception Flags

Compliant libraries offer support for exception flags, according to the IEEE754 standard.
For each exception, the implementation provides a status flag that is set when the
exception occurs. The flag is cleared only at the user's request. The user can test and alter
flags individually, or several at a time. Furthermore, all flags can be saved and restored.

There are five supported exceptions:

1. invalid operation: Signaled if an operand is invalid for the operation. For example:
Inf - Inf, 0 * Inf, 0 / 0, Inf / Inf and others. The result will be a NaN.

Supported IEEE-754 Features Description

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

964 Freescale Semiconductor, Inc.



2. division by zero: Signaled if the divisor is 0 and the dividend is a finite non-zero. The
result will be a correctly signed Inf.

3. overflow: Signaled when the destination format's largest finite number is exceeded
by the rounded result. The result will be a +Inf.

4. underflow: Signaled when a tiny (between +/- 2Emin) non-zero result is created. The
result will be 0.

5. inexact: Signaled when the result of an operation is not exact, including the case of
overflow.

The five exception flags are defined in except.h: FP_EINVALID, FP_EDIVZERO, FP_EOVERFLOW,
FP_EUNDERFLOW, FP_EINEXACT.

For example, in order to check if an operation has overflowed, the testFlags function is
used:

if (testFlags(FP_EOVERFLOW)) { do_something(); }

Multiple flags can be checked at the same time:

if (testFlags(FP_EOVERFLOW | FP_EUNDERFLOW)) { do_something(); }

Flags that have been set by a certain floating point operation are not cleared by
subsequent operations. The only way to clear flags is by using the lower_flags function:

lowerFlags(FP_INVALID | FP_EOVERFLOW | FP_EUNDERFLOW)

Finally, flags can be saved using the saveAllFlags() function. Any number and
combination of flags can be restored to their previous state using the restoreFlags(char,
char) function.

20.3 Performance
This topic discussed the code size and the stack consumption.

20.3.1 Code Size

The following table lists the library and the code size in bytes.

Table 20-3. Library and Code Size

Library Code Size (bytes)

ansif 1600

ansifc 2200

Table continues on the next page...

Chapter 20 S12Z IEEE-754 Floating Point Library

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

Freescale Semiconductor, Inc. 965



Table 20-3. Library and Code Size (continued)

Library Code Size (bytes)

ansid 2500

ansidc 3200

The following table list the operation and compliance.

Table 20-4. Operation and Complaince

Operation Default Compliant

Float addition 300 430

Float multiplication 450 590

Float division 370 530

Float to long conversion 170 230

Double addition 360 550

Double multiplication 650 800

Double division 550 730

Double to long long conversion 280 300

20.3.2 Stack Consumption

The difference in stack consumption between compliant and non-compliant libs is
negligible. Maximum stack consumption for float libs is 50 bytes; maximum stack
consumption for double libs is 90 bytes.

Note that these represent maximum values for the runtime library. Standard library
functions like sin, cos, etc. may induce serious stack overhead. Furthermore, operation
chains like a + b * c create temporaries which take up additional stack space.

Table 20-5. Stack Consumption

Operation Stack Consumption

Float addition 32

Float multiplication 50

Float division 36

Float to long conversion 24

Double addition 62

Double multiplication 90

Double division 56

Double to long long conversion 30

Performance

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual, Rev. 10.6, 03/2014

966 Freescale Semiconductor, Inc.



Index

16-Bit Analog-to-Digital Converter Module 590

A

Access 357, 400
Access to Target Tasks Editors 919
Accompanying 37
Action 884, 913, 916, 956
Actions 874, 875, 879, 881–884
Active 733, 763, 786, 820, 840, 864
Active Mode 657
Active Mode Menu 712
ADC 589, 661
ADCLR 590, 591, 663
ADC Module 589
Add 874, 875, 879, 881–884
ADDI 589, 663
ADDID 592
Adding 871
Additional 336
Add Program 877
Advanced 729, 760, 783, 815, 837, 862
Advanced Programming 652, 707
Algorithm 731, 761, 784, 817, 838, 863
Alternative 731, 761, 784, 817, 838, 863
Alternative Algorithm 709
Alternative Algorithm Functionality 653
Analog-to-Digital Converter Module 588
Application 67, 71–73, 76, 120
Application Debug Options 76
Architecture 572, 907
ARM 315, 317–321, 323–325, 327, 328, 330–333,
336–350
Assembler 194–197, 199–202, 251–254, 256–259,
277, 278, 280, 307, 308, 310, 327, 328, 330,
336–339, 363–365, 407–413, 415, 421, 580, 581
Assistant 732, 763, 785
Awareness 452

B

Bare 475
Bareboard 40, 41
Bareboard Build Properties 139
BDM 725, 754
Behavior 141, 144
Between 953
Board 103, 475
Box 538
branch 248
Branch 192

Build 64, 140–142, 144, 147, 204, 261, 333, 350,
368, 567, 568, 570
Building Projects 126
Build Properties 139
Build Properties for ARM (Kinetis) 313
Burner 165–167, 169, 170, 223–225, 227, 264,
370–372, 374, 379, 380

C

C 349, 350
C/C++ 69, 141, 304
C/C++ Options 69
Cable 834
Cache 498, 519, 523
Calculate 730, 817
Calculate and Program 708
Call 463
Change Protection of Sector 917
Changing 140, 568
Changing Build Properties 140
Changing Connection Setings 640
Changing P&E Connection Settings 694, 715, 738,
845
Changing P&E Connections Settings 769, 791, 824
Check 875
Checksum 879
Clock Generation Module 592
cmdwin::eppc::getcoreid 554
cmdwin::eppc::setcoreid 555
cmdwin::eppc::setMMRBaseAddr 555
Code Generation 403
ColdFire 64, 66, 261, 262, 265, 267, 268, 270–272,
274, 275, 277, 278, 280–282, 572–583, 735, 902,
906
ColdFire+ 713
ColdFire Build Options 64
ColdFire Derivatives 48
ColdFire V1 713
Command 549, 551, 554, 556
Command-Line 553
Commands 540, 541, 556
Common 865
CompactC++ 178, 236
Compatibility 197, 254, 412
Compiler 170, 172–174, 176, 178–180, 182, 183,
185, 186, 190, 192, 193, 228, 230–232, 234,
236–239, 241–245, 248–250, 268, 270–272, 274,
275, 295, 296, 298, 300, 301, 304, 320, 321,
323–325, 340–344, 356, 357, 359, 361, 362, 396,
397, 400, 402, 404, 405, 407, 576–580

Index

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual

Freescale Semiconductor, Inc. 967



Configuration 173, 231, 721, 722, 724, 745, 747,
749, 751, 753, 775, 776, 778, 798, 800, 802, 804,
806, 830, 831, 833, 851–853, 855, 857
Configurations 538, 726, 755, 780, 808, 811, 834,
859
Configurations/Launch 721, 722, 724, 745, 747,
749, 751, 753, 775, 776, 778, 798, 800, 802, 804,
806, 830, 831, 833, 851–853, 855, 857
Configure 166, 172, 195, 224, 230, 252, 371, 409,
870
Configure Build Toolbar 957
Conflicting 551
Connection 440, 732, 763, 785, 865
Connection Assistant 657, 711, 819, 839, 863
Connection Options 639, 693, 768, 790, 824, 844
Connections 43, 75, 585, 659, 713, 735, 765
Connections - DSC Architecture 821
Connections - Kinetis K/L Series Architecture 787
Connection Specific Options 697
Connections - S12Z Architecture 841
Considerations 525
Core 537–539
CPU 262, 284, 315
Create 41, 72, 885
Create a Linux/uClinux Application Project 72
Create and Execute Diagnostics Action Task 912
Create Download Program Task for ColdFire 903
Create Erase Flash Memory Task for ColdFire 897
Create Erase Memory Task for HCS08 892
Create New Connection 660
Creating 77, 103, 120, 527, 528, 530, 869, 927, 930
Creating Bareboard Projects 79
Creating Target Board Project for ColdFire V1/
ColdFire+ V1/Sensors 86
Creating Target Board Project for ColdFire V2/V3/
V4/V4e/Vx 92
Creating Target Board Project for Kinetis 97
Creating Target Board Projects for 56800/E (DSC)
108
Creating Target Board Projects for S08/RS08 79
Creating Target Board Projects for S12Z 114
Custom 730, 817
Custom Trim 653, 708
CYCLES 634, 688
Cyclone 721, 724, 745, 746, 748, 774, 776, 777,
797, 800, 802, 829, 831, 832, 850, 852, 853

D

Data 934
DDR<x>IN 623
DDR<x>OUT 622
Debug 73, 76, 538, 539, 721, 722, 724, 726, 745,
747, 749, 751, 753, 755, 775, 776, 778, 780, 798,
800, 802, 804, 806, 808, 811, 830, 831, 833, 834,
851–853, 855, 857, 859

Debug Configurations 644–647, 649, 698, 700–702,
704, 720, 773, 796, 828, 849
Debugger 435, 541, 554
Debugging 262, 286, 316, 335, 475, 527, 532, 536,
538, 539, 549, 553, 578
Debugging Projects 127
Debug Options 652
Decoupled 953
Define 142, 144
Defining 141
Deleting Projects 130
Derivatives 46, 55, 58, 59, 61, 64, 66
Details 489
Development 67
Device 73, 871, 923
Devices 42
Device used for Linux Application Debug Page 73
Diagnostics 881, 913, 916, 925
Dialog 538
Digital-to-Analog Converter 596
Digital-to-Analog Converter Module 596
Directories 338, 341, 350, 577
Disable 164, 169, 183, 201, 211, 222, 227, 241,
258, 379, 396, 421, 432
Disable user messages 153
Disassembler 150, 206–209, 211, 281, 282, 311,
332, 347, 348, 367, 423, 424, 426, 432, 583
Display Driver 674
Documentation 37
DPM 530, 910, 954
DPM/LSM 527, 532
DSC 350, 352–357, 359, 361–367, 834
Dump 882
Dump Entire Flash 916

E

Editing 543, 547, 919
EEPROM 596
EEPROM<x> 597
Enable 730, 761, 783, 816, 819, 839, 862
Environment 575
Erase 892, 896, 902
Erase/Blank 875
Erasing 923
Ethernet 724, 748, 752, 777, 802, 805, 832, 853,
856
executable 505
Execute 889, 891, 896, 902, 906, 908, 910, 912,
916, 955
Execution 551
Export 930
Exporting Target Tasks 924
External Interrupt 608

Index

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual

968 Freescale Semiconductor, Inc.



F

Fault Detection 598
features 178, 236
Features 498, 865
files 173
Files 551
Fill 934
Firmware 727, 756, 781, 809, 835, 860
Flash 599, 730, 761, 783, 816, 839, 862, 869–871,
874, 882, 885, 886, 907, 923
Flash Programmer 865
Flash Programmer Tutorials 887
Flextimer 600
for 173, 204, 261, 333, 350, 368, 538, 567, 570, 886
format 173
from 954
From 538, 539
Full Chip Simulation 586, 660
Function 192, 250

G

GCC 333, 336–350
gdi 555
General 149, 165, 170, 186, 202, 206, 223, 227,
244, 259, 264, 267, 280, 292, 310, 318, 330, 345,
354, 364, 380, 396, 407, 421, 573, 581
Generation 180, 199, 238, 256, 415
Global 352
GOTOCYCLE 635, 689
Groups 543

H

Hardware 910, 925, 956
HCS08 170, 172–174, 176, 178–180, 182, 183, 185,
186, 190, 192–197, 199–203, 585, 892, 896
HCS08/RS08 Derivatives 55
HCS08/ RS08 Derivatives 46
High-Speed Analog Comparator 601
HIWARE 556
Host 162, 167, 179, 199, 208, 220, 224, 237, 256,
372, 388, 413, 424
HSC<x>INPUT<y> 601
HSC<x>INPUTS 602

I

Icon 539
IDE 540
IIC 667
IICCLR 671
IICDI 605, 669
IICDO 607, 671
Import 907, 927, 954
Import and Execute ColdFire Flash Task 890

Import and Execute HCS08 Flash Task 888
Import and Execute Power Architecture Flash Task
907
Import DPM Target Task 909
imported 505
Imported 919
Import HCS08 Program Flash Task 888
Importing 866
Import LSM Target Task 911
Import MCF5213 Program Flash Task 890
included 173
Input 158, 166, 174, 196, 208, 216, 224, 232, 253,
265, 268, 278, 288, 296, 308, 318, 320, 328, 353,
356, 364, 371, 385, 397, 410, 424
INPUT<x> 612, 621, 635, 673, 677, 689
Input Output Ports 619
INPUTS 609, 612, 621, 635, 673, 677, 689
Inter-Integrated Circuit 603
Inter-Integrated Circuit 5 667
Inter-Integrated Circuit Module 605
Internal Clock 663
Interrupt Priority Controller 607
IRQ 608

J

JTAG 779, 807

K

Keyboard Interrupt 610, 671
Kinetis 58, 519, 523, 525
Kinetis Derivatives 49, 58

L

Language 74, 176, 178, 197, 234, 236, 254, 275,
304, 325, 362, 405, 411, 412
Languages 55
Languages Build Tools Options 56
Launch Configuration 638, 645–647, 691, 700–702
Launch Configurations 714, 767, 789, 823, 843
Launching Workbench 78
level 248
Librarian 263, 317, 336
Libraries 346, 574
Library 192, 250, 575
Line 549
Link 162, 219, 266, 292, 346, 354, 388
Linker 157, 158, 162–165, 211, 212, 215, 216,
220–223, 265, 267, 287, 288, 292, 293, 317–319,
345–347, 352–355, 380, 381, 383, 385, 388, 390,
396, 572–575
Link Order 162, 219, 266, 292, 346, 354, 388
Linux 40, 73, 567
Linux/uClinux 71, 72, 120, 570
Linux/uClinux Application Project 120

Index

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual

Freescale Semiconductor, Inc. 969



Liquid Crystal 674
Liquid Crystal Display Driver 613, 674
list 173
List 554, 556
listing 195
Listing 172, 230, 252, 409
Lock-Step 953
LSM 528, 912, 954
LSM/DPM Configuration 52
Ltd 333
Ltd. 336–350

M

make 173
Manipulating 927
MAX 745, 746, 748, 774, 776, 777, 797, 802, 829,
831, 832
MAX/OSJTAG 765
MC9S08QG8 889
MCF5213_INTFLASH 891
MCF5441X 886
MCU 505
Memory 730, 761, 784, 816, 839, 862, 927, 930,
934
Memory Preservation 653, 708
Menu 539, 733, 763, 786, 820, 840, 864
messages 164, 169, 183, 201, 211, 222, 227, 241,
258
Messages 163, 164, 167, 169, 182, 183, 200, 201,
209, 211, 221, 222, 225, 227, 239, 241, 257, 258,
263, 287, 316, 374, 379, 390, 396, 407, 415, 421,
426, 432
Microcontrollers-Specific 556
Mid 248
Miscellaneous 339, 344, 347, 574, 580, 581
Mode 733, 763, 786, 820, 840, 864
modes 197, 254, 412
Modes 953
Module 589
Module options 660
Module Options 586
Modulo Timer Interrupt 613, 674
MPC55xx/56xx 765
MSCAN Controller 615
MTIM 674, 675
Multicore 527, 536, 540, 541, 543
Multilink/Cyclone 765

N

Names 551
New 71
New Linux/uClinux Application Project Wizard 71
Non-cacheable 522
Non-Volatile 653, 708, 730, 761, 784, 816, 817,
839, 862

Non-Volatile Trim 653, 708
nput/Output (I/O) Ports 676

O

Open 725, 754, 779, 807
OpenSDA 811
Open Source BDM 649, 704, 858
Open Source JTAG 834
Operations 540
Optimization 186, 190, 192, 193, 212, 245,
248–250, 272, 300, 323, 342, 359, 381, 404, 578
optimizations 248
Optimize 192, 250
optimizer 190, 249
Optimizer 192
Options 64, 69, 76
Order 162, 219, 266, 292, 346, 354, 388
OSBDM 727, 756, 860
OSBDM Firmware 650, 705
OSJTAG 781, 809, 835
Output 74, 157, 166, 170, 172, 173, 194, 195, 207,
215, 224, 228, 230, 231, 251, 252, 267, 293, 319,
330, 355, 365, 371, 383, 408, 409, 423

P

P&E 721, 722, 724, 745, 746, 748, 751, 752, 765,
774, 776, 777, 797, 800, 802, 804, 805, 829, 831,
832, 834, 850, 852, 853, 855, 856
P&E ColdFire V234 Multilink\Multilink Universal
\Cyclone \OSBDM Connection- Specific Options
743
P&E Cyclone Ethernet 647
P&E Cyclone Serial 644, 699
P&E Cyclone USB 646
P&E DSC Multilink\Multilink Universal\Cyclone
\OSJTAG Connection- Specific Options 828
P&E Full Chip Simulation 585, 659
P&E HCS08 Multilink/Cyclone/OSBDM 643
P&E Multilink/Cyclone/OSBDM 637
P&E USB Multilink Universal [FX] 697, 828
P&E USB MultiLink Universal [FX] 796
P&E USB Multilink Universal [FX]/USB Multilink
719, 772, 848
P&E USB Multilink Universal [FX]/ USB Multilink
644, 743
P&E USB Multilink Universal [FX]/USB Multilink/
Cyclone /OSBDM Connection-Specific Options
848
Page 43, 55, 69
Parallel 953
Particularities 525
Partitioning 819
Paths 357, 400
Pattern 934
Peephole 193

Index

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual

970 Freescale Semiconductor, Inc.



Performance 525
PGAINMINUS <x> 617
PGAINPLUS <x> 617
PGAINPUTS 616
PGAINVDDA <x> 617
PLL 730
Porting Classic DSC Project 130
Power 907
Power Architecture Core Configuration 54
PowerPC 284, 287, 288, 292, 293, 295, 296, 298,
300, 301, 304, 307, 308, 310–313
PPAGE <x>PPAGE <x> 599
PR<x>INPUT<y> 618
PR<x>INPUTS 619
Predefined 908, 910, 912
Pre-defined 866
Pre-Defined 866
Preprocessor 183, 202, 203, 242, 259, 260, 270,
280, 281, 296, 312, 313, 330, 331, 337, 341, 349,
350, 366, 422, 576, 582
Preservation 730, 761, 784, 816, 839, 862
Previous 919
PRO 721
Processor 274, 301, 324, 334, 361, 498
Profile 758, 813
Program 730, 817, 906, 907
Programmable Delay Block 615
Programmable Gain Amplifier 616
Programmable Reference Analog Comparator 618
Programmer 869, 870, 874, 885, 886
Programming 730, 761, 783, 816, 839, 862, 866,
924
Programming/Debug 729, 760, 783, 815, 837, 862
Programming with Simple Flash 921
Project 528, 530, 567, 570, 919
Project Language and Output 74
Project Wizard 40
Properties 140, 141, 147, 204, 261, 333, 350, 368,
567, 568, 570
Protect/Unprotect 883

Q

Qorivva 59, 103, 765
Qorivva Derivatives 50, 59

R

RAM 873
Rapid 67
Rapid Application Development 67
Register 489
Remember 953
Remove 884
Reset 910, 956
Resolution 551
Restoring 141, 570

Restoring Build Properties 141
RS08 204, 228, 230–232, 234, 236–239, 241–245,
248–254, 256–260
Run 539, 885

S

S08 147, 150, 157, 158, 162–167, 169, 170,
206–209, 211, 212, 215, 216, 220–225, 227
S08/RS08 55
S08 Disassembler Input 151
S08 Disassembler Messages 151
S08 Disassembler Output 150
S08 Linker 154
S08 Linker Optimization 154
S12Z 61, 368, 370–372, 374, 379–381, 383, 385,
388, 390, 396, 397, 400, 402, 404, 405, 407–413,
415, 421–424, 426, 432
S12Z Derivatives 51, 61
SCCLR 625, 680
SCDI 626, 681
SCDO 626, 681
SCI 623, 678
Script 551, 552
Secure/Unsecure 884
Select 505
Serial 721, 745, 774, 797, 829, 850
Serial Communications Interface 678
Serial Peripheral Interface 682
Services 463
Session 538, 919
Set 892, 913
Settings 141, 142, 203, 260, 275, 281, 282, 311,
313, 331, 332, 348, 350, 352, 366, 367, 422, 440,
575, 582, 583, 873
Set Up ColdFire Erase Task 897
Set Up Download Task 903
Shared 575
Shell 541, 554
SHOWDACO1 596
Shutdown Module 598
Sizes 185, 243
SLIC 627
Socket Programming 655, 710
Software 475
Source 725, 754, 779, 807
SPCLR 630, 684
SPDI 630, 684
SPDO 631, 685
Specific 539
Specify 873
SPFREQ 632, 686
SPI 628, 682
S-Record 166, 224, 371
Starting 538
Startup 552
Storing 920

Index

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual

Freescale Semiconductor, Inc. 971



Support 551
Supported 498
Switch 953
Switching 954
Switching Between Lock-Step and Decoupled
Parallel Modes 909
Symbols 577
Sync 730
Sync to PLL 708
Sync to PLL Change 653
Syntax 553
System 463, 547

T

Tab 440
Target 103, 334, 869, 870, 873, 885, 927, 930, 954,
955
Target Board Project for ColdFire V2/V3/V4/V4e/
Vx 92
Target Board Project for Kinetis 97
Target Board Project for Qorivva 103
Target Board Projects for 56800/E (DSC) 108
Target Board Projects for S08/RS08 79
Target Board Projects for S12Z 114
Targeting 537
Task 866, 869, 870, 885, 889, 891, 892, 896, 902,
906–908, 910, 912, 913, 916, 920, 927, 930, 954,
955
Tasks 553, 919
Tcl 551, 552
TclK 614, 675
TclK <n> 614, 676
the 870
Things 953
Time Of Day Module 636
Timer Interface 632, 686
Toolbar's 539
Tools 336
Trace 758, 813
TraceLink 751, 752, 804, 805, 855, 856
Tree 190, 249
Trim 707, 708, 730, 817
Trim Option 652
Tutorial 130, 888, 890, 892, 897, 903, 907, 909,
912, 916, 917, 919, 921, 924
Type 185, 243
Types 39, 547

U

uClinux 572–583
Unprotect 956
Up 892, 913
Update 727, 756, 781, 809, 835, 860
USB 637, 722
USB Multilink 697

Use 866
used 73
user 164, 169, 183, 201, 211, 222, 227, 241, 258
User 379, 396, 421, 432

V

V1/ColdFire+ 64
V1/Sensors 64
V2/3/4 735
V2-4e/Vx 66
Verify Actions 877
View 523
Viewer 519
Viewing 489
VLE 954
Voltage Reference 637

W

Warnings 271, 298, 321, 338, 343, 357, 402, 579
Window 925
Windows 333, 336–350
with 39, 638, 690, 736, 765, 787, 821, 842, 925, 934
Wizard 40, 71
Working 39, 435, 925
Write-back 522
Write-through 521

X

XTAL 595, 666

Index

CodeWarrior Development Studio for Microcontrollers V10.x Targeting Manual

972 Freescale Semiconductor, Inc.



How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, ColdFire, ColdFire+,
Kinetis, Processor Expert, and Qorivva are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. ARM is the registered
trademark of ARM Limited. The Power Architecture and Power.org word
marks and the Power and Power.org logos and related marks are
trademarks and service marks licensed by Power.org.

© 2010–2014, Freescale Semiconductor, Inc.

Document Number CWMCUDBGUG
Revision 10.6, 03/2014

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Chapter 1: Introduction
	Release Notes
	About this Manual
	Accompanying Documentation

	Chapter 2: Working with Projects
	Types of Projects
	Bareboard Projects
	Linux Projects

	New Bareboard Project Wizard
	Create an MCU Bareboard Project Page
	Devices Page
	Connections Page
	56800/E DSC derivatives
	S08/ RS08 derivatives
	ColdFire derivatives
	Kinetis derivatives
	Qorivva derivatives
	S12Z derivatives

	LSM/DPM Configuration Page
	Power Architecture Core Configuration Page
	Languages Page
	S08/RS08 derivatives

	Languages and Build Tools Options Page
	56800/E (DSC) derivatives
	Kinetis derivatives
	Qorivva derivatives
	S12Z derivatives

	ColdFire Build Options Page
	ColdFire V1/ColdFire+ V1/Sensors Derivatives
	ColdFire V2-4e/Vx Derivatives

	Rapid Application Development Page
	C/C++ Options Page

	New Linux/uClinux Application Project Wizard
	Create a Linux/uClinux Application Project Page
	Device used for Linux Application Debug page
	Project Language and Output Page
	Connections Page
	Application Debug Options Page

	Creating Projects
	Launching Workbench
	Creating Bareboard Projects
	Creating Target Board Projects for S08/RS08
	Creating Target Board Projects for ColdFire V1/ColdFire+ V1/Sensors
	Creating Target Board Projects for ColdFire V2/V3/V4/V4e/Vx
	Creating Target Board Project for Kinetis
	Creating Target Board Project for Qorivva
	Creating Target Board Projects for 56800/E (DSC)
	Creating Target Board Projects for S12Z

	Creating Linux/uClinux Application Project

	Building Projects
	Debugging Projects
	Deleting Projects
	Porting Classic DSC Project to Eclipse Project

	Chapter 3: Build Properties for Bareboard Projects
	Changing Build Properties
	Restoring Build Properties
	Defining C/C++ Build Settings and Behavior
	Define Build Settings
	Define Build Behavior

	Build Properties for S08
	General
	S08 Disassembler
	S08 Disassembler > Output
	S08 Disassembler > Input
	S08 Disassembler > Messages
	S08 Disassembler > Messages > Disable user messages


	S08 Linker
	S08 Linker > Optimization
	S08 Linker > Output
	S08 Linker > Input
	S08 Linker > Link Order
	S08 Linker > Host
	S08 Linker > Messages
	S08 Linker > Messages > Disable user messages

	S08 Linker > General

	S08 Burner
	S08 Burner > Output > Configure S-Record
	S08 Burner > Input
	S08 Burner > Host
	S08 Burner > Messages
	S08 Burner > Messages > Disable user messages

	S08 Burner > General

	HCS08 Compiler
	HCS08 Compiler > Output
	HCS08 Compiler > Output > Configure Listing File
	HCS08 Compiler > Output > Configuration for list of included files in make format

	HCS08 Compiler > Input
	HCS08 Compiler > Language
	HCS08 Compiler > Language > CompactC++ features

	HCS08 Compiler > Host
	HCS08 Compiler > Code Generation
	HCS08 Compiler > Messages
	HCS08 Compiler > Messages > Disable user messages

	HCS08 Compiler > Preprocessor
	HCS08 Compiler > Type Sizes
	HCS08 Compiler > General
	HCS08 Compiler > Optimization
	HCS08 Compiler > Optimization > Tree optimizer
	HCS08 Compiler > Optimization > Optimize Library Function
	HCS08 Compiler > Optimization > Branch Optimizer
	HCS08 Compiler > Optimization > Peephole Optimization


	HCS08 Assembler
	HCS08 Assembler > Output
	HCS08 Assembler > Output > Configure listing file

	HCS08 Assembler > Input
	HCS08 Assembler > Language
	HCS08 Assembler > Language > Compatibility modes

	HCS08 Assembler > Host
	HCS08 Assembler > Code Generation
	HCS08 Assembler > Messages
	HCS08 Assembler > Messages > Disable user messages

	HCS08 Assembler > General

	HCS08 Preprocessor
	HCS08 Preprocessor > Preprocessor Settings


	Build Properties for RS08
	General
	S08 Disassembler
	S08 Disassembler > Output
	S08 Disassembler > Input
	S08 Disassembler > Host
	S08 Disassembler > Messages
	S08 Disassembler > Messages > Disable user messages


	S08 Linker
	S08 Linker > Optimization
	S08 Linker > Output
	S08 Linker > Input
	S08 Linker > Link Order
	S08 Linker > Host
	S08 Linker > Messages
	S08 Linker > Messages > Disable user messages

	S08 Linker > General

	S08 Burner
	S08 Burner > Output > Configure S-Record
	S08 Burner > Input
	S08 Burner > Host
	S08 Burner > Messages
	S08 Burner > Messages > Disable user messages

	S08 Burner > General

	RS08 Compiler
	RS08 Compiler > Output
	RS08 Compiler > Output > Configure Listing File
	RS08 Compiler > Output > Configuration for list of included files in make format

	RS08 Compiler > Input
	RS08 Compiler > Language
	RS08 Compiler > Language > CompactC++ features

	RS08 Compiler > Host
	RS08 Compiler > Code Generation
	RS08 Compiler > Messages
	RS08 Compiler > Messages > Disable user messages

	RS08 Compiler > Preprocessor
	RS08 Compiler > Type Sizes
	RS08 Compiler > General
	RS08 Compiler > Optimization
	RS08 Compiler > Optimization > Mid level optimizations
	RS08 Compiler > Optimization > Mid level branch optimizations
	RS08 Compiler > Optimization > Tree optimizer
	RS08 Compiler > Optimization > Optimize Library Function


	RS08 Assembler
	RS08 Assembler > Output
	RS08 Assembler > Output > Configure Listing File

	RS08 Assembler > Input
	RS08 Assembler > Language
	RS08 Assembler > Language > Compatibility modes

	RS08 Assembler > Host
	RS08 Assembler > Code Generation
	RS08 Assembler > Messages
	RS08 Assembler > Messages > Disable user messages

	RS08 Assembler > General

	RS08 Preprocessor
	RS08 Preprocessor > Preprocessor Settings


	Build Properties for ColdFire
	ColdFire CPU
	Debugging
	Messages
	Librarian
	Burner
	Burner > General

	ColdFire Linker
	ColdFire Linker > Input
	ColdFire Linker > Link Order
	ColdFire Linker > General
	ColdFire Linker > Output

	ColdFire Compiler
	ColdFire Compiler > Input
	ColdFire Compiler > Preprocessor
	ColdFire Compiler > Warnings
	ColdFire Compiler > Optimization
	ColdFire Compiler > Processor
	ColdFire Compiler > Language Settings

	ColdFire Assembler
	ColdFire Assembler > Input
	ColdFire Assembler > General

	ColdFire Preprocessor
	ColdFire Preprocessor > Preprocessor Settings

	ColdFire Disassembler
	ColdFire Disassembler > Disassembler Settings


	Build Properties for Qorivva
	PowerPC CPU
	Debugging
	Messages
	PowerPC Linker
	PowerPC Linker > Input
	PowerPC Linker > Link Order
	PowerPC Linker > General
	PowerPC Linker > Output

	PowerPC Compiler
	PowerPC Compiler > Preprocessor
	PowerPC Compiler > Input
	PowerPC Compiler > Warnings
	PowerPC Compiler > Optimization
	PowerPC Compiler > Processor
	PowerPC Compiler > C/C++ Language

	PowerPC Assembler
	PowerPC Assembler > Input
	PowerPC Assembler > General

	PowerPC Disassembler
	PowerPC Disassembler > Disassembler Settings

	PowerPC Preprocessor
	PowerPC Preprocessor > Preprocessor Settings


	Build Properties for ARM (Kinetis)
	ARM CPU
	Debugging
	Messages
	Librarian
	ARM Linker
	ARM Linker > Input
	ARM Linker > General
	ARM Linker > Output

	ARM Compiler
	ARM Compiler > Input
	ARM Compiler > Warnings
	ARM Compiler > Optimization
	ARM Compiler > Processor
	ARM Compiler > Language

	ARM Assembler
	ARM Assembler > Input
	ARM Assembler > General
	ARM Assembler > Output

	ARM Preprocessor
	ARM Preprocessor > Preprocessor Settings

	ARM Disassembler
	ARM Disassembler > Disassembler Settings


	Build Properties for ARM Ltd Windows GCC
	Target Processor
	Debugging
	Additional Tools
	Librarian
	ARM Ltd. Windows GCC Assembler
	ARM Ltd. Windows GCC Assembler > Preprocessor
	ARM Ltd. Windows GCC Assembler > Directories
	ARM Ltd. Windows GCC Assembler > Warnings
	ARM Ltd. Windows GCC Assembler > Miscellaneous

	ARM Ltd. Windows GCC Compiler
	ARM Ltd. Windows GCC Compiler > Preprocessor
	ARM Ltd. Windows GCC Compiler > Directories
	ARM Ltd. Windows GCC Compiler > Optimization
	ARM Ltd. Windows GCC Compiler > Warnings
	ARM Ltd. Windows GCC Compiler > Miscellaneous

	ARM Ltd. Windows GCC Linker
	ARM Ltd. Windows GCC Linker > General
	ARM Ltd. Windows GCC Linker > Libraries
	ARM Ltd. Windows GCC Linker > Link Order
	ARM Ltd. Windows GCC Linker > Miscellaneous

	ARM Ltd. Windows GCC Disassembler
	ARM Ltd. Windows GCC Disassembler > Disassembler Settings

	ARM Ltd. Windows GCC C Preprocessor
	ARM Ltd. Windows GCC C Preprocessor > Preprocessor Settings
	ARM Ltd. Windows GCC C Preprocessor > Directories


	Build Properties for DSC
	Global Settings
	DSC Linker
	DSC Linker > Input
	DSC Linker > Link Order
	DSC Linker > General
	DSC Linker > Output

	DSC Compiler
	DSC Compiler > Input
	DSC Compiler > Access Paths
	DSC Compiler > Warnings
	DSC Compiler > Optimization
	DSC Compiler > Processor
	DSC Compiler > Language

	DSC Assembler
	DSC Assembler > Input
	DSC Assembler > General
	DSC Assembler > Output

	DSC Preprocessor
	DSC Preprocessor > Settings

	DSC Disassembler
	DSC Disassembler > Settings


	Build Properties for S12Z
	S12Z Burner
	S12Z Burner > Output > Configure S-Record
	S12Z Burner > Input
	S12Z Burner > Host
	S12Z Burner > Messages
	S12Z Burner > Messages > Disable User Messages

	S12Z Burner > General

	S12Z Linker
	S12Z Linker > Optimization
	S12Z Linker > Output
	S12Z Linker > Input
	S12Z Linker > Link Order
	S12Z Linker > Host
	S12Z Linker > Messages
	S12Z Linker > Messages > Disable User Messages

	S12Z Linker > General

	S12Z Compiler
	S12Z Compiler > Input
	S12Z Compiler > Access Paths
	S12Z Compiler > Warnings
	S12Z Compiler > Code Generation
	S12Z Compiler > Optimization
	S12Z Compiler > Language
	S12Z Compiler > Messages
	S12Z Compiler > General

	S12Z Assembler
	S12Z Assembler > Output
	S12Z Assembler > Output > Configure Listing File

	S12Z Assembler > Input
	S12Z Assembler > Language
	S12Z Assembler > Language > Compatibility modes

	S12Z Assembler > Host
	S12Z Assembler > Code Generation
	S12Z Assembler > Messages
	S12Z Assembler > Messages > Disable User Messages

	S12Z Assembler > General

	S12Z Preprocessor
	S12Z Preprocessor > Settings

	S12Z Disassembler
	S12Z Disassembler > Output
	S12Z Disassembler > Input
	S12Z Disassembler > Host
	S12Z Disassembler > Messages
	S12Z Disassembler > Messages > Disable User Messages




	Chapter 4: Working with Debugger
	Customizing Launch Configuration
	Main
	Editing Connection
	Connection Tab Settings
	Initialization Tab Settings
	System Tab Settings
	Advanced Tab Settings

	Arguments
	Debugger
	Debug
	Download
	PIC
	Other Executables
	Symbolics
	OS Awareness
	Tasks
	Implementation
	Kernel Objects Tree Panel
	Kernel Type Viewer Panel
	Trace

	Exceptions
	Reset
	Interrupts
	Remote
	EPPC Exceptions
	System Call Services

	Source
	Environment
	Common
	Trace and Profile

	Debugging Bareboard Software
	Displaying Register Contents
	Adding Register Group
	Editing Register Group
	Removing Register Group
	Changing Register's Bit Value


	Exporting Registers
	Importing Registers
	Changing Register Data Display Format
	Offline Registers View
	Using Register Details Window
	Bit Fields
	Changing Bit Field

	Description
	Actions
	Register Details Context Menu
	Viewing Register Details

	Viewing and Modifying Cache Contents
	Cache Viewer
	Opening the Cache Viewer

	Cache Viewer Toolbar Menu
	Components of Cache Viewer
	Using the Debugger Shell to View Caches
	Debugger Shell Global Cache Commands
	Debugger Shell Cache Line Commands

	Supported Processor Cache Features

	Setting Stack Crawl Depth
	Changing Program Counter Value
	Viewing Memory
	Adding Memory Monitor
	Adding Memory Rendering
	Removing Memory Rendering
	Resetting to Base Address
	Go to Address

	Hard Resetting

	Debugging Externally Built Executable Files
	Microcontrollers ELF Executable
	Import a MCU Executable File Page
	Select MCU executable file to be imported Page
	Device and Board Page
	Connections Page

	Importing Projects from Command Line
	Debug an Externally Built Microcontrollers Executable File
	Import a MCU Executable File
	Specify Executable File to Import
	Select Derivative or Board
	Select Connection
	Edit Launch Configuration
	Source Lookup Path
	Debug Executable File



	Chapter 5: Kinetis Cache Viewer
	Kinetis Cache
	Write-through
	Write-back
	Non-cacheable

	CodeWarrior Cache View for Kinetis
	Performance Considerations and Kinetis Particularities

	Chapter 6: Multicore Debugging
	Creating DPM/LSM Projects
	Creating LSM Project
	Creating DPM Project

	Debugging DPM/LSM Projects
	Debugging Multicore Project
	Targeting Core
	Starting Debugging Session for Core
	From Debug Configurations Dialog Box
	From Run Menu
	From Toolbar's Debug Icon

	Debugging Specific Core
	Multicore Operations
	Multicore Commands in CodeWarrior IDE
	Multicore Commands in Debugger Shell


	Editing Multicore Groups
	Editing Target Types

	Chapter 7: CodeWarrior Command Line Debugging
	Tcl Support
	Resolution of Conflicting Command Names
	Execution of Script Files
	Tcl Startup Script
	Command-Line Syntax

	Command-Line Debugging Tasks
	Debugger Shell Command List
	cmdwin::eppc::getcoreid
	cmdwin::eppc::setMMRBaseAddr
	cmdwin::eppc::setcoreid
	gdi

	Microcontrollers-Specific HIWARE Commands
	Command List


	Chapter 8: Build Properties for Linux Project
	Changing Build Properties
	Restoring Build Properties
	Build Properties for Linux/uClinux Project
	Architecture
	ColdFire uClinux Linker
	ColdFire uClinux Linker > General
	ColdFire uClinux Linker > Libraries
	ColdFire uClinux Linker > Miscellaneous
	ColdFire uClinux Linker > Shared Library Settings
	ColdFire uClinux Linker > ColdFire Environment

	ColdFire uClinux Compiler
	ColdFire uClinux Compiler > Preprocessor
	ColdFire uClinux Compiler > Symbols
	ColdFire uClinux Compiler > Directories
	ColdFire uClinux Compiler > Optimization
	ColdFire uClinux Compiler > Debugging
	ColdFire uClinux Compiler > Warnings
	ColdFire uClinux Compiler > Miscellaneous

	ColdFire uClinux Assembler
	ColdFire uClinux Assembler > General
	ColdFire uClinux Assembler > Miscellaneous

	ColdFire uClinux Preprocessor
	ColdFire uClinux Preprocessor > Settings

	ColdFire uClinux Disassembler
	ColdFire uClinux Disassembler > Settings



	Chapter 9: Connections - HCS08 Architecture
	P&E Full Chip Simulation
	Create New Connection for Full Chip Simulation
	Module Options
	Analog-to-Digital Converter Module
	ADC Module Commands
	ADDI Command
	ADCLR Command

	16-Bit Analog-to-Digital Converter Module
	ADDI Command
	ADCLR Command
	ADDID Command

	Clock Generation Module
	Clock Generation Module Commands
	XTAL Command
	Syntax


	Digital-to-Analog Converter Module
	Digital-to-Analog User Commands
	SHOWDACO1 Command

	EEPROM Module
	EEPROM User Commands
	EEPROM<x> Command

	Fault Detection and Shutdown Module
	Flash Module
	Flash User Commands
	PPAGE <x> Command

	Flextimer Module
	High-Speed Analog Comparator Module
	High-Speed Analog Comparator User Commands
	HSC<x>INPUT<y> Command
	HSC<x>INPUTS Command

	Inter-Integrated Circuit Module
	Inter-Integrated Circuit Module Commands
	IICDI Command
	IICDO Command

	Interrupt Priority Controller Module
	External Interrupt (IRQ) Module
	IRQ Commands
	INPUTS Command

	Keyboard Interrupt Module
	Keyboard Interrupt Commands
	INPUT<x> Command
	INPUTS Command

	Liquid Crystal Display Driver Module
	Modulo Timer Interrupt Module
	Modulo Timer Interrupt Module User Commands
	TclK Command
	TclK <n> Command

	MSCAN Controller Module
	Programmable Delay Block Module
	Programmable Gain Amplifier Module
	Programmable Gain Amplifier User Commands
	PGAINPUTS Command
	PGAINPLUS <x> Command
	PGAINMINUS <x> Command
	PGAINVDDA <x> Command

	Programmable Reference Analog Comparator Module
	Programmable Reference Analog Comparator User Commands
	PR<x>INPUT<y> Command
	PR<x>INPUTS Command

	Input/Output (I/O) Ports Module
	Input/Output Ports User Commands
	INPUT<x> Command
	INPUTS Command
	DDR<x>OUT Command
	DDR<x>IN Command

	Serial Communications Interface Module
	SCI Commands
	SCCLR Command
	SCDI Command
	SCDO Command

	Slave LIN Interface Controller (SLIC) Module
	Serial Peripheral Interface Module
	SPI Commands
	SPCLR Command
	SPDI Command
	SPDO Command
	SPFREQ Command

	Timer Interface Module
	Timer Module Commands
	CYCLES Command
	GOTOCYCLE Command
	INPUT<x> Command
	INPUTS Command

	Time Of Day Module Option
	Universal Serial Bus (USB) Module
	Voltage Reference Module


	P&E Hardware Interface Connection for HCS08
	New Project Wizard
	Launch Configuration Settings
	Connection Options
	Changing P&E Connections Settings
	P&E Hardware Interface Connection-Specific Options
	P&E USB Multilink Universal [FX]/ USB Multilink
	Debug configurations

	P&E Cyclone Serial
	Debug configurations

	P&E Cyclone USB
	Debug configurations

	P&E Cyclone Ethernet
	Debug configurations

	Open Source BDM
	Debug configurations
	OSBDM Firmware Update


	Advanced Programming/Debug Options
	Enable Flash Programming Dialog
	Trim Options
	Non-Volatile Memory Preservation
	Sync to PLL Change Checkbox
	Calculate and Program Non-Volatile Trim
	Custom Trim
	Alternative Algorithm Functionality


	Socket Programming Options Button

	Connection Assistant

	Active Mode Menu Options


	Chapter 10: Connections - RS08
	P&E Full Chip Simulation
	Create New Connection for Full Chip Simulation
	Module Options
	ADC Module
	ADC Module Commands
	ADDI Command
	ADCLR Command


	Internal Clock Source Module
	Internal Clock Source Commands
	XTAL Command

	Inter-Integrated Circuit Module Option
	Inter-Integrated Circuit Module Commands
	IICDI Command
	IICDO Command
	IICCLR Command

	Keyboard Interrupt Module
	Keyboard Interrupt Commands
	INPUT<x> Command
	INPUTS Command

	Liquid Crystal Display Driver Module Option
	Modulo Timer Interrupt Module
	Modify MTIM TclK
	Modulo Timer Interrupt Module User Commands
	TclK Command
	TclK <n> Command

	Input/Output (I/O) Ports Module
	Input/Output Ports User Commands
	INPUT<x> Command
	INPUTS Command

	Serial Communications Interface Module
	SCI Commands
	SCCLR Command
	SCDI Command
	SCDO Command

	Serial Peripheral Interface Module
	SPI Commands
	SPCLR Command
	SPDI Command
	SPDO Command
	SPFREQ Command

	Timer Interface Module
	Timer Module Commands
	CYCLES Command
	GOTOCYCLE Command
	INPUT<x> Command
	INPUTS Command



	P&E Hardware Interface Connection for RS08
	New Project Wizard
	Launch Configuration Settings
	Connection Options
	Changing P&E Connection Settings
	P&E Hardware Interface Connection-Specific Options
	P&E USB Multilink Universal [FX]/USB Multilink
	Debug configurations

	P&E Cyclone Serial
	Debug configurations

	P&E Cyclone USB
	Debug configurations

	P&E Cyclone Ethernet
	Debug configurations

	Open Source BDM
	Debug configurations
	OSBDM Firmware Update


	Advanced Programming/Debug Options
	Enable Flash Programming Dialog Box
	Trim Options
	Non-Volatile Memory Preservation
	Sync to PLL Change Checkbox
	Calculate and Program Non-Volatile Trim
	Custom Trim
	Alternative Algorithm Functionality


	Socket Programming Options Button

	Connection Assistant

	Active Mode Menu Options


	Chapter 11: Connections - ColdFire V1/ColdFire+ V1
	P&E Hardware Interface Connections for ColdFire V1
	New Project Wizard
	Launch Configurations Settings
	Changing P&E Connection Settings
	P&E Hardware Interface Connection-Specific Options
	P&E USB Multilink Universal [FX]/USB Multilink
	Debug configurations

	P&E Cyclone Serial
	Debug configurations

	P&E Cyclone USB
	Debug configurations

	P&E Cyclone Ethernet
	Debug configurations

	Open Source BDM
	Debug configurations
	OSBDM Firmware Update


	Advanced Programming/Debug Options
	Enable Flash Programming Dialog
	Trim Options
	Non-Volatile Memory Preservation
	Sync to PLL Change Checkbox
	Calculate and Program Non-Volatile Trim
	Custom Trim
	Alternative Algorithm Functionality

	Connection Assistant

	Active Mode Menu Options


	Chapter 12: Connections - ColdFire V2/3/4
	P&E Hardware Interface Connection for ColdFire V234
	New Project Wizard
	Launch Configuration Settings
	Changing P&E Connection Settings
	P&E Hardware Interface Connection- Specific Options
	P&E USB Multilink Universal [FX]/ USB Multilink
	Debug configurations

	P&E Cyclone  Serial
	Debug configurations

	P&E Cyclone  USB
	Debug configurations

	P&E Cyclone  Ethernet
	Debug configurations

	P&E TraceLink USB
	Debug configurations

	P&E TraceLink Ethernet
	Debug configurations

	Open Source BDM
	Debug configurations
	OSBDM Firmware Update

	Trace and Profile

	Advanced Programming/Debug Options
	Enable Flash Programming Dialog
	Non-Volatile Memory Preservation
	Alternative Algorithm Functionality

	Connection Assistant

	Active Mode Menu Options


	Chapter 13: Connections - Qorivva MPC55xx/56xx
	P&E Hardware Interface Connection for Qorivva
	New Project Wizard
	Launch Configurations Settings
	Connection Options
	Changing P&E Connections Settings
	P&E Hardware Interface Connection- Specific Options
	P&E USB Multilink Universal [FX]/USB Multilink
	Debug configurations

	P&E Cyclone  Serial
	Debug configurations

	P&E Cyclone USB
	Debug configurations

	P&E Cyclone Ethernet
	Debug configurations

	Open Source JTAG
	Debug configurations
	OSJTAG Firmware Update


	Advanced Programming/Debug Options
	Enable Flash Programming Dialog
	Non-Volatile Memory Preservation
	Alternative Algorithm Functionality


	Connection Assistant

	Active Mode Menu Options


	Chapter 14: Connections — Kinetis Architecture
	P&E Hardware Interface Connection for Kinetis
	New Project Wizard
	Launch Configurations Settings
	Connection Options
	Changing P&E Connections Settings
	P&E Hardware Interface Connection-Specific Options
	P&E USB MultiLink Universal [FX]
	Debug configurations

	P&E Cyclone Serial
	Debug configurations

	P&E Cyclone USB
	Debug configurations

	P&E Cyclone Ethernet
	Debug configurations

	P&E TraceLink USB
	Debug configurations

	P&E TraceLink Ethernet
	Debug configurations

	Open Source JTAG
	Debug configurations
	OSJTAG Firmware Update

	OpenSDA
	Debug configurations

	Trace and Profile

	Advanced Programming/Debug Options
	Enable Flash Programming Dialog
	Non-Volatile Memory Preservation
	Calculate and Program Non-Volatile Trim
	Custom Trim
	Alternative Algorithm Functionality
	Enable Partitioning


	Connection Assistant

	Active Mode Menu Options


	Chapter 15: Connections - DSC Architecture
	P&E Hardware Interface for DSC
	New Project Wizard
	Launch Configurations Settings
	Connection Options
	Changing P&E Connections Settings
	P&E Hardware Interface Connection- Specific Options
	P&E USB Multilink Universal [FX]
	Debug configurations

	P&E Cyclone Serial
	Debug configurations

	P&E Cyclone USB
	Debug configurations

	P&E Cyclone Ethernet
	Debug configurations

	P&E Cable DSC
	Open Source JTAG
	Debug configurations
	OSJTAG Firmware Update


	Advanced Programming/Debug Options
	Alternative Algorithm Functionality
	Non-Volatile Memory Preservation
	Enable Flash Programming Dialog


	Connection Assistant

	Active Mode Menu Options


	Chapter 16: Connections - S12Z Architecture
	P&E Hardware Interface for S12Z
	New Project Wizard
	Launch Configurations Settings
	Connection Options
	Changing P&E Connection Settings
	P&E Hardware Interface Connection-Specific Options
	P&E USB Multilink Universal [FX]/USB Multilink
	Debug configurations

	P&E Cyclone Serial
	Debug configurations

	P&E Cyclone USB
	Debug configurations

	P&E Cyclone Ethernet
	Debug configurations

	P&E TraceLink USB
	Debug configurations

	P&E TraceLink Ethernet
	Debug configurations

	Open Source BDM
	Debug Configurations
	OSBDM Firmware Update


	Advanced Programming/Debug Options
	Enable Flash Programming Dialog
	Non-Volatile Memory Preservation
	Alternative Algorithm Functionality


	Connection Assistant

	Active Mode Menu Options


	Chapter 17: Common Connection Features
	Working with Flash Programmer
	Use Pre-Defined Programming Task
	Importing Pre-defined Task
	Creating Flash Programmer Target Task
	Configure the Flash Programmer Target Task
	Adding Flash Device
	Specify Target RAM Settings
	Add Flash Programmer Actions
	Add Erase/Blank Check Actions
	Add Program/Verify Actions
	Add Checksum Actions
	Add Diagnostics Actions
	Add Dump Flash Actions
	Add Protect/Unprotect Actions
	Add Secure/Unsecure Actions
	Remove an Action


	Run Flash Programmer Target Task
	Create Flash Programmer Task
	Flash Programmer for MCF5441X

	Flash Programmer Tutorials
	Tutorial A: Import and Execute HCS08 Flash Task
	Import HCS08 Program Flash Task
	Execute MC9S08QG8 Task

	Tutorial B: Import and Execute ColdFire Flash Task
	Import MCF5213 Program Flash Task
	Execute MCF5213_INTFLASH Task

	Tutorial C: Create Erase Memory Task for HCS08
	Set Up HCS08 Erase Task
	Execute HCS08 Erase Task

	Tutorial D: Create Erase Flash Memory Task for ColdFire
	Set Up ColdFire Erase Task
	Execute ColdFire Erase Task

	Tutorial E: Create Download Program Task for ColdFire
	Set Up Download Task
	Execute ColdFire Program Task

	Tutorial F: Import and Execute Power Architecture Flash Task
	Import Power Architecture Program Flash Task
	Execute Predefined Task

	Tutorial G: Switching Between Lock-Step and Decoupled Parallel Modes
	Import DPM Target Task
	Execute Predefined DPM Task
	Hardware Reset
	Import LSM Target Task
	Execute Predefined LSM Task

	Tutorial H: Create and Execute Diagnostics Action Task
	Set Up Diagnostics Action Task
	Execute Diagnostics Action Task

	Tutorial I: Dump Entire Flash
	Tutorial J: Change Protection of Sector
	Tutorial K: Fast Access to Target Tasks Editors
	Editing Tasks in Project
	Editing Tasks Imported in Previous Session
	Storing Task to File

	Tutorial L: Programming with Simple Flash
	Erasing Flash Device
	Programming File

	Tutorial M: Exporting Target Tasks

	Working with Hardware Diagnostics Window
	Manipulating Target Memory
	Creating Target Task to Import Memory
	Creating Target Task to Export Memory
	Fill Memory with Data Pattern


	Chapter 18: CRC Utility for All Architectures
	Using CRCgen on Microcontrollers
	Examples
	ColdFire
	PowerPC
	Freescale ARM
	GCC ARM
	DSC
	8/16 bit
	S12Z

	Application Example

	Chapter 19: How to...
	Switch Between Decoupled Parallel and Lock-Step Modes
	Things to Remember
	Switching from DPM to LSM using VLE
	Import Target Task
	Execute Target Task
	Hardware Reset
	Unprotect Action
	Configure the Build Toolbar



	Chapter 20: S12Z IEEE-754 Floating Point Library
	Usage
	Supported IEEE-754 Features Description
	Format
	Non-numerical Values
	Sub-normal Values
	Unordered Comparisons
	Rounding
	Exception Flags

	Performance
	Code Size
	Stack Consumption


	Index

