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3-Phase PM Synchronous
Motor Vector Control using
DSP56F80x
Design of Motor Control Application Based on 
Motorola Software Development Kit

Libor Prokop, Pavel Grasblum

1.   Introduction of Application 
Benefit

This Application Note describes a design of a 3-phase
Permanent Magnet (PM) synchronous motor drive. It is based
on Motorola’s DSP56F80x dedicated motor control device.
The software design takes advantage of the SDK (Software
Development Kit) developed by Motorola.

The concept of the application is that of a speed closed loop
PM synchronous drive using a Vector Control technique. It
serves as an example of a PM synchronous motor control
design using a Motorola DSP with SDK support. It also
illustrates the usage of dedicated motor control libraries that
are included in the SDK.

This Application Note includes the basic motor theory,
system design concept, hardware implementation and
software design including the PC Master visualization tool.

2.   Motorola DSP Advantages and 
Features

The Motorola DSP56F80x family members are well suited
for digital motor control, combining the DSP’s calculation
capability with the MCU’s controller features on a single
chip. These DSPs offer many dedicated peripherals like Pulse
Width Modulation (PWM) module, Analog-to-Digital
Converter (ADC), Timers, communication peripherals (SCI,
SPI, CAN), on-board Flash and RAM. 
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The typical member of the family, the DSP56F805, provides the following peripheral blocks:

• Two Pulse Width Modulator modules (PWMA & PWMB), each with six PWM outputs, three 
Current Sense inputs, and four Fault inputs, fault tolerant design with deadtime insertion, 
supports both Center- and Edge- aligned modes

• Twelve bit Analog to Digital Convertors (ADCs), supporting two simultaneous conversions 
with dual 4-pin multiplexed inputs; ADC can be synchronized by PWM modules

• Two Quadrature Decoders (Quad Dec0 & Quad Dec1), each with four inputs, or two 
additional Quad Timers A & B

• Two dedicated General Purpose Quad Timers totalling 6 pins: Timer C with 2 pins and Timer 
D with 4 pins

• CAN 2.0 A/B Module with 2-pin ports used to transmit and receive

• Two Serial Communication Interfaces (SCI0 & SCI1), each with two pins, or four additional 
GPIO lines

• Serial Peripheral Interface (SPI), with configurable 4-pin port, or four additional GPIO lines

• Computer Operating Properly (COP) timer

• Two dedicated external interrupt pins

• Fourteen dedicated General Purpose I/O (GPIO) pins, 18 multiplexed GPIO pins

• External reset pin for hardware reset

• JTAG/On-Chip Emulation (OnCE)

• Software-programmable, Phase Lock Loop-based frequency synthesizer for the DSP core 
clock

Table 2-1.   Memory Configuration

DSP56F801 DSP56F803 DSP56F805 DSP56F807

Program Flash 8188 x 16-bit 32252 x 16-bit 32252 x 16-bit 61436 x 16-bit

Data Flash 2K x 16-bit 4K x 16-bit 4K x 16-bit 8K x 16-bit

Program RAM 1K x 16-bit 512 x 16-bit 512 x 16-bit 2K x 16-bit

Data RAM 1K x 16-bit 2K x 16-bit 2K x 16-bit 4K x 16-bit

Boot Flash 2K x 16-bit 2K x 16-bit 2K x16-bit 2K x 16-bit
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3.   Target Motor Theory
The PM synchronous motor is a rotating electric machine where the stator is a classic three phase
stator like that of an induction motor and the rotor has surface-mounted permanent magnets (see
Figure 3-1).

In this respect the PM synchronous motor is equivalent to an induction motor, where the air gap
magnetic field is produced by a permanent magnet. This means that the rotor magnetic field is
constant. PM synchronous motors provide a set of advantages for designing modern motion control
systems. The use of a permanent magnet to generate substantial air gap magnetic flux makes it possible
to design highly efficient PM motors.

For a description of the PM synchronous motor, the symmetrical three-phase smooth-air-gap machine
with sinusoidally distributed windings is considered. Then the voltage equations of stator in the
instantaneous form can be expressed as:

(EQ 3-1.)

(EQ 3-2.)

(EQ 3-3.)

where uSA, uSB and uSC are the instantaneous values of stator voltages, iSA, iSB and iSC are the
instantaneous values of stator currents and ψSA, ψSB, ψSC are instantaneous values of stator flux
linkages in phase SA, SB and SC.

Due large number of equations in the instantaneous form the equations (EQ 3-1.), (EQ 3-2.) and (EQ
3-3.) it is more practical to rewrite the instantaneous equations using two axis theory (Clark
transformation). Then the PM synchronous motor can be expressed as:

(EQ 3-4.)

Figure 3-1.   PM Synchronous Motor - Cross Section

Stator

Stator winding
(in slots)

Shaft

Rotor

Air gap

Permanent magnets

uSA RSiSA td
d ψSA+=

uSB RSiSB td
d ψSB+=

uSC RSiSC td
d ψSC+=

uSα RSiSα td
d ΨSα+=
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(EQ 3-5.)

(EQ 3-6.)

(EQ 3-7.)

(EQ 3-8.)

where: α,β - Stator orthogonal coordinate system
uSα,β - Stator voltages
iSα,β - Stator currents
ΨSα,β - Stator magnetic fluxes
ΨM - Rotor magnetic flux
RS - Stator phase resistance
LS - Stator phase inductance
ω / ωF - Electrical rotor speed / fields speed
p - Number of poles per phase
J - Inertia
TL - Load torque
Θr - rotor position in α,β coordinate system

The equations (EQ 3-4.) ... (EQ 3-8.) represent model of PM synchronous motor in the stationary
frame α, β fixed to the stator. The main idea of the vector control is to decompose the vectors into a
magnetic field generating part and a torque generating part. In order to do it we need to set up the
rotary coordinate system connected to the rotor magnetic field. This coordinate system is generally
called “d,q-coordinate system” (Park transformation). Thus the equations (EQ 3-4.) ... (EQ 3-8.) can
be rewritten as:

(EQ 3-9.)

(EQ 3-10.)

(EQ 3-11.)

(EQ 3-12.)

(EQ 3-13.)

By considering that below base speed isd=0 the equation (EQ 3-13.) can be reduced to following form:

(EQ 3-14.)

From the equation (EQ 3-14.) it can be seen that the torque is dependent and can be directly controlled
by the current isq only.

uSβ RSiSβ td
d ΨSβ+=

ΨSα LSiSα ΨM Θr( )cos+=

ΨSβ LSiSβ ΨM Θr( )sin+=

td
dω p

J
--- 3

2
---p ΨSαiSβ ΨSβiSα–( ) TL–=

uSd RSiSd td
d ΨSd ωFΨSq–+=

uSq RSiSq td
d ΨSq ωFΨSd+ +=

ΨSd LSiSd ΨM+=

ΨSq LSiSq=

td
dω p

J
--- 3

2
---p ΨSdiSq ΨSqiSd–( ) TL–=

td
dω p

J
--- 3

2
---p ΨMiSq( ) TL–=
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4.   System Concept

4.1   System Specification
The system is designed to drive a 3-phase PM synchronous motor. The application meets the following
performance specifications:

• Vector control of PM motor using the Quadrature encoder as a position sensor

• Targeted for DSP56F80xEVM

• Running on 3-phase PM synchronous Motor Control Development Platform at variable line 
voltage 110 - 230V AC

• Control technique incorporates 

— vector control with speed closed loop and field weakening

— rotation in both directions

— motoring and generator mode

— start from any motor position with rotor alignment

— minimal speed 50 rpm

— maximal speed 3000 rpm at input power line 230V AC

— maximal speed 1500 rpm at input power line 115V AC

• Manual Interface (Start/Stop switch, Up/Down push button control, Led indication)

• PCMaster Interface (motor start/stop, speed set-up)

• Power Stage Identification

• Overvoltage, Undervoltage, Overcurrent, Position sensing and Overheating Fault protection

The introduced PM synchronous drive is designed to power the high voltage PM synchronous motor
with a quadrature encoder. It has the following specifications:

Figure 4-2.   High Voltage Hardware Set Specifications

Motor Characteristics: Motor Type 6 poles, three phase, star 
connected, BLDC motor

Speed Range:  2500 rpm (at 310V)

Max. Electrical Power: 150 W

Phase Voltage: 3*220V

Phase Current 0.55A

Drive Characteristics: Speed Range < 2500 rpm

Input Voltage: 310V DC

Max DC Bus Voltage 380 V

Control Algorithm Speed Closed Loop Control

Optoisolation Required
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4.2   Vector Control Drive Concept
For the drive a standard system concept is chosen (see Figure 4-3). The system incorporates the
following hardware parts:

• three-phase PM synchronous motor high voltage development platform 

• feedback sensors: position (quadrature encoder), DC-Bus voltage, phase currents, DC-Bus 
overcurrent detection, DC-Bus overcurrent detection, temperature

• DSP56F803EVM / DSP56F805EVM / DSP56F807EVM

The drive can be basically controlled in two different ways (or operational modes) 

In the Manual operational mode the required speed is set by Start/Stop switch and Up and Down push
buttons.

In the PC Master operational mode, the required speed and Start/Stop switch are set by PC Master.

Figure 4-3.   Drive Concept

The control process is as follows:

When the Start command is accepted (using Start/Stop Switch or PC Master command) the required
speed is calculated according to Up/Down push buttons or PC Master commands (in the case of PC
Master control). The required speed goes through an acceleration/deceleration ramp and a reference
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command is put to the speed controller. The comparison between the actual speed command and the
measured speed generates a speed error. Based on the error, the speed controller generates a current
Is_qReq which corresponds to torque. A second part of stator current Is_dReq which correspond to
flux is given by Field Weakening Controller. Simultaneously the stator currents Is_a, Is_b and Is_c are
measured and transformed from instantaneous values to the stationary reference frame α, β and
consecutively to the rotary reference frame d, q (Park - Clark transformation). Based on the errors
between required and actual currents in the rotary reference frame, the current controllers generate
output voltages Us_q and Us_d (in the rotary reference frame d, q). The voltages Us_q and Us_d are
transformed back to the stationary reference frame α, β and after DC-bus ripple elimination are
recalculated to the three phase voltage system which is applied on the motor.

Except for the main control loop, the DC Bus voltage, DC Bus current and power stage temperature
are measured during the control process. They are used for overvoltage, undervoltage, overcurrent and
overheating protection of the drive. The undervoltage and overheating protection is performed by
software while the overcurrent and overvoltage fault signal utilizes a Fault input of the DSP.

If any of the above mentioned faults occurs, the motor control PWM outputs are disabled in order to
protect the drive and the fault state of the system is displayed.

Also, ahardware error is detected if the wrong power stage is used. Each power stage contains a simple
module generating logic sequence unique for that type of power stage. During the chip initialization
this sequence is read and evaluated according to the decoding table. If the correct power stage is
identified, the program can continue. In case of wrong hardware the program stays in the infinite loop
displaying the fault conditions.

4.3   Control Technique

4.3.1 Vector Control

Vector Control is an elegant control method of controllong the PM synchronous motor where field
oriented theory is used to control space vectors of magnetic flux, current and voltage. It is possible to
set up the coordinate system to decompose the vectors into a magnetic field generating part and a
torque generating part. Then the structure of the motor controller (Vector Control controller) is almost
the same as for a separately excited DC motor which simplifies the control of PM synchronous motor.
This Vector Control technique was developed in the past especially to achieve similar good dynamic
performance of PM synchronous motors.

As we explained in Section 4.2, Vector Control Drive Concept, we chose a widely used speed
control with inner current closed loop where the rotor flux is controlled by a field weakening
controller.

In this method we need to decompose the field generating part and the torque generating part of the
stator current to be able to separately control the magnetic flux and the torque. In order to do so we
need to set up the rotary coordinate system connected to the rotor magnetic field. This coordinate
system is generally called “d,q-coordinate system”. Very high CPU performance is needed to perform
the transformation between rotary to stationary coordinate systems. Therefore the Motorola DSP’s
56F80x is very suited for vector control algorithm. All trasformations which are needed for vector
control will be described in the next section. 

4.3.2 Vector Control Transformations

The whole trick of transforming the PM synchronous motor into a DC motor is based on points of
view. As shown in Section 4.3.1, we need a coordinate transformation to do this trick.
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The following transformations are involved in Vector Control:

• transformations from 3-phase to 2-phase system (Clarke transformation)

• rotation of orthogonal system

— α,β to d,q (Park transformation)

— d,q to α,β (Inverse Park transformation)

4.3.2.1. Clarke Transformation

Figure 4-4. shows how the three-phase system is transformed into a two-phase system.

Figure 4-4.   Clarke Transformation

Let us transfer the graphical representation into mathematical language:

(EQ 4-1.)

In most cases the three-phase system is symmetrical. It means that the sum of the phase quantities is
always zero.

(EQ 4-2.)

α, phase-a

β

iSα

iSβ

iS

iSa - measurediSb - measured

iSc - calculated

phase- b

phase- c

α
β
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---–

1
2
---–
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3

2
------- 3

2
-------–
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b

c
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α K a
1
2
---b–
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The constant “K” can be freely chosen. It is apparent that a good choice would be to equalize the
α-quantity and a-phase quantity. Then:

(EQ 4-3.)

Now we can fully define the Park-Clarke transformation:

(EQ 4-4.)

4.3.2.2. Transformation from α,β to d,q Coordinates and Backward

The whole Vector Control is performed in the d,q-coordinate system in order to make the control of
synchronous PM motors elegant and easy (see 4.3.1 Vector Control).

Of course this involves the transformation in both directions (the control action has to be transformed
back to the motor side).

First we must to establish the d,q-coordinate system:

(EQ 4-5.)

(EQ 4-6.)

Then the transformation from α,β to d,q coordinates is:

(EQ 4-7.)

Figure 4-5. illustrates this transformation.

α a= K
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α
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ΨM ΨMα ΨMβ+=
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-----------=
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-----------=
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q
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Figure 4-5.   Establishing of the d,q-coordinate System (Park transformation)

The backward (Inverse Park) transformation (from d,q to α,β) is:

(EQ 4-8.)

4.3.3 Position and speed sensing

All members of Motorola DSP family 56F80x except 56F801 have a quadrature decoder. This
peripheral is commonly used for position and speed sensing. The quadrature decoder position counter
counts up/down each edge of Phase A and Phase B signals according to their order. Each revolution
the position counter is cleared by an Index pulse (see Section 4-6).

Figure 4-6.   Quadrature Encoder Signals

It means that the zero position is put together with index pulse. But the vector control requires the zero
position there in where the rotor is aligned to d axis (see Section 4.3.2.2.). Therefore using a
quadrature decoder to decode the encoder’s signal requires a calculation of an offset which aligns the
position counter of the quadrature decoder with aligned rotor position (zero position). To avoid to
calculation of rotor position offset ,the quadrature decoder is not used in this application. Thus the
quadrature decoder is available for another purpose and the presented application is able to run on the
DSP56F801 which does not have a quadrature decoder.

βMΨ ϑField

αMΨ

MΨ

α

βq
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In addition to the quadrature decoder the input signals (Phase A, Phase B and Index) are connected to
quad timer module A. The quad timer module consists of four quadrature timers. Due to the wide
variability of quad timer modules it is possible to use this module to decode quadrature encoder signals
and to sense position and speed. A configuration of the quad timer module is shown in Figure 4-7.

Figure 4-7.   Quad Timer Module A Configuration

4.3.3.1. Position Sensing

The position and speed sensing algorithm uses all timers in module A and one other timer as time base.
The timers A0 and A1 are used for position sensing. The timer A0 permits connection of three input
signals to a quadrature timer even if the quadrature timer has only two inputs (primary and secondary).
The timer A0 is set to count in the quadrature mode, count to zero and then reinitialize. That set timer
decodes quadrature signals only. Timer A1 is connected to timer A0 in the cascade mode. In this mode
the information about counting up/down is connected internally to timer A1. Thus the secondary input
of the timer A1 is free to be used for index pulse counting. The counter A1 is set to count to +/-
((4*number of pulses per revolution) - 1) and reinitialize after compare. A value of the timer A1
corresponds to rotor position. A position of index pulse is sensed to avoid the loss of some pulses
under the influence of noise during extended motor operation which can result in incorrect rotor
position sensing. If some pulses are lost a different position of the index pulses is detected and position
sensing error is signalized. If the checking of index pulse is not required the timer A1 can be removed
and the timer A0 is set as position counter A1. The resulting value of timer A1 is scaled to range <-1;
1) which corresponds to <-π; π) (see Figure 4-8).
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Figure 4-8.   Position Scaling

4.3.3.2. Speed Sensing

There are two common ways of measuring speed. The first method measures time between two
following edges of quadrature encoder and the second method measures the position difference per
constant period. The first method is used at low speed. At the moment when the measured period is
very short, the speed calculation algorithm switces to the second method.

The proposed algorithm combines both above mentioned methods. The algorithm measures
simultaneously the number of quadrature encoder pulses per constant period and their accurate time
period. Then the speed can be expressed as:

(EQ 4-9.)

where

speed calculated speed

k scaling constant

N number of pulses per constant period

T accurate period of N pulses

speed
k N⋅

T
-----------=
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The algorithm requires two timers for counting of pulses and their period and another timer as time
base (see Figure 4-7). The timer A2 counts the pulses of the quadrature encoder and the timer A3
counts a system clock divided by 2. The values in both timers can be captured by each edge of the
Phase A signal. The time base is provided by timer D0 which is set to call speed processing algorithm
each 900 µs. The speed processing algorithm works in the following way:

At first the new captured values of both timers are read. The number of pulses difference and their
accurate period is calculated from actual and previous values. Then the new values are saved for the
next period and the capture register is enabled. From this time the first edge of Phase A signal captures
the values of both timers (A2, A3) and the capture register is disabled. This process is repeated each
calling of the speed processing algorithm (see Figure 4-9).

Figure 4-9.   Speed Processing

4.3.3.2.1 Minimal and Maximal Speed Calculation

The minimal speed is given by following equation:

(EQ 4-10.)

where:

vmin minimal obtainable speed [rpm]

N number of pulses per revolution [-]

Tcalc period of speed measuring (calculation period) [s]

In that application the quadrature encoder has 1024 pulses per revolution and calculation period 900 µs
was chosen on the basis of a motor mechanical constant. Thus the equation (EQ 4-10.) gives the
minimal speed 16.3 rpm.

vmin
60

4NTcalc
-------------------=
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The maximal speed can be expressed as:

(EQ 4-11.)

where:

vmax maximal obtainable speed [rpm]

N number of pulses per revolution [-]

TclkT2 period of input clock to timer A2 [s]

After substitution in equation (EQ 4-11.) for N and TclkT2 (timer A2 input clock = system clock
36 MHz/2) we get the maximal speed 263672 rpm. As can be seen the presented algorithm is able to
measure speed within wide speed range. Because such high speed is not practical, the maximum speed
can be reduced to a required range by the constant k in equation (EQ 4-9.). The constant k can be
calculated as:

(EQ 4-12.)

where:

k scaling constant in the equation (EQ 4-9.)

vmax maximal required speed [rpm]

N number of pulses per revolution [-]

TclkT2 period of input clock to timer A2 [s]

In the presented application the maximal measurable speed is limited to 6000 rpm.

Notes: To ensure a correct speed calculation, the input clock of the timer A2 must be chosen so that 
the calculation period of speed processing (in our case 900 µs) is represented in the timer A2 
as a value lower than 0x7FFFH (900.10-6/TclkT2<=0x7FFFH).

4.3.4 Current Sensing

Phase currents are measured by a shunt resistor in a each phase. A voltage drop on the shunt resistor is
amplified by a operational amplifier and shifted up by 1.65V. The resultant voltage is converted by
a A/D converter (see Figure 4-10. and Figure 4-11.).

vmax
60

4NTclkT2
----------------------=

k
60

4NTclkT2vmax
---------------------------------=
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Figure 4-11.   Current Amplifier

As can be seen in Figure 4-10., the currents cannot be measured at any moment. For example, the
current flows through phase A (and shunt resistor R1) only if the transistor Q2 is switched on.
Correspondingly the current in phase B can be measured if the transistor Q4 is switched on and current
in phase C can be measured if the transistor Q6 is switched on. In order to get a moment of current
sensing a voltage shapes analysis must be done.

The voltage shapes of two different PWM periods are shown in Figure 4-12. The voltage shapes
correspond to center aligned PWM sinewave modulation. As can be seen, the best moment of current
sampling is in the middle of the PWM period where the all bottom transistors are switched on.
Regardless all three currents cannot be measured at any voltage shape. The PWM period II in
Figure 4-12 shows a moment when the bottom transistor of phase A is on for a very short time. If the
on time is shorter than a critical time the current can not be correctly measured. The critical time is
given by hardware configuration (transistor commutation times, response delays of the processing
electronics, etc.). Therefore, only two currents are measured only and third current is calculated from
equation:

(EQ 4-13.)
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(EQ 4-14.)

Figure 4-12.   The Voltage Shapes of Two Different PWM Periods

Figure 4-13.   3-phase Sinewave Voltages and Corresponding Sector Value

Now we have to decide which current is calculated. The simplest technique is to calculate the current
of the most positive voltage phase. For example, phase A generates the most positive voltage within
section 0 - 60°, phase B within section 60° - 120°, etc. (see Figure 4-13).
In our case the output voltages are divided into six sectors (see Figure 4-13). Then the current
calculation is done according to the actual sector value:
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for sector 1, 6: 

(EQ 4-15.)

for sector 2, 3:

(EQ 4-16.)

for sector 4, 5:

(EQ 4-17.)

Notes: The sector value is used for current calculation only and has no other meaning at the sinewave 
modulation. But if we use any type of space vector modulation we can get the sector value as 
part of space vector calculation.

4.3.5  Voltage Sensing

The DC-Bus voltage sensor is represented by a simple voltage divider. The DC-Bus voltage does not
change rapidly. It is nearly constant with the ripple given by the power supply structure. If a bridge
rectifier is used for rectification of the AC line voltage, the ripple frequency is twice the AC line
frequency. If the power stage is designed correctly, The ripple amplitude should not exceed 10% of the
nominal DC-Bus value.

The measured DC-Bus voltage needs to be filtered in order to eliminate noise. One of the easiest (and
fastest) techniques is the 1st order filter, that calculates the average filtered value recursively from the
last two samples and coefficient C:

(EQ 4-18.)

In order to speed up the initialization of the voltage sensing (filter has exponential dependency with
constant of 1/N samples), the moving average filter that calculates the average value from the last N
samples can be used for initialization:

(EQ 4-19.)

4.3.6  Power Module Temperature Sensing

The measured power module temperature is used for thermal protection The hardware realization is
shown in Figure 4-14. The circuit consists of four diodes connected in series, a bias resistor, and a
noise suppression capacitor. The four diodes have a combined temperature coefficient of 8.8 mV/οC.
The resulting signal, Temp_sense, is fed back to an A/D input where software can be used to set safe
operating limits. In the presented application the temperature in degrees Celsius is calculated
according to conversion equation:

(EQ 4-20.)

where:

iA iB– iC–=

iB iA– iC–=

iC iB– iA–=

uDCBusFilt n 1+( ) CuDCBusFilt n 1+( ) CuDCBusFilt n( )–( ) u– DCBusFilt n( )=

uDCBusFilt uDCBus n( )
n 1=

N–∑=

temp
Temp_sense - b

a
--------------------------------------=



18 3-Phase PM Synchronous Motor Control with Quadrature Encoder �

System Concept

P
re

lim
in

ar
y 

C
o

p
y

temp - power module temperature in Celsius deg.

Temp_sense - voltage drop on the diodes which is measured by ADC [V]

a - diodes dependent conversion constant (a = -0.0073738)

b - diodes dependent conversion constant (b = 2.4596)

Figure 4-14.   Temperature Sensing

4.3.7 RUN/STOP Switch and Button Control

The RUN/STOP switch is connected to a GPIO pin in the case of the 56F805/7EVM. The state of
RUN/STOP switch can be read directly from GPIO Data Register. In the case of the 56F803EVM
there are not that many free GPIO pins so the switch is connected to ADC input AN7. Therefore the
switch status is obtained with AD Convertor. The switch logical status is obtained by comparison of
measured value with threshold value.

Also the buttons are usually connected to GPIO pins. But in the presented application the buttons are
connected to IQRA and IRQB interrupts. A reason for this solution is to be able to run same code on
all EVM boards (56F803/5/7EVM). Since the 56F803 has no free GPIO pins for user buttons the
application uses buttons connected to IRQA/B pins. The EVM boards do not solve the button contact
bounces, which may occur during pushing and releasing of button. Therefore this issue has to be
solved by software. 

The IRQA and IRQB interrupts are maskable interrupts connected directly to the DSP’s core. The
IRQA and IRQB lines are internally synchronized with the processor’s internal clock and can be
programmed as level sensitive or edge sensitive. The IRQA and IRQB interrupts have no interrupt
flag; therefore this flag is replaced by a software flag. The following algorithm is used to check the
state of the IRQ line. The algorithm is described for one interrupt.

The IRQ interrupt is set to be negative level sensitive. When the button is pressed, the logical level 0 is
applied on the IRQ line and the interrupt occurs (see Figure 4-15). To avoid multiple calls of ISR due
to contact bounces, the ISR disables the IRQ interrupt, sets the debounce counter to predefined value
and sets the variable buttonStatus to 1. The variable buttonStatus represents the interrupt flag. Using
the DSP56F80x’s software timer, the ButtonProcessing function is periodically called (see
Figure 4-15). The function ButtonProcessing decrements the debounce counter and if the counter is
zero the IRQ interrupt is again enabled. The button press is checked by ButtonEdge function
Figure 4-16. When variable buttonStatus is set the ButtonEdge function returns 1 and clears
buttonStatus. When the variable buttonStatus is not set, the ButtonEdge function returns 0.
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According to the ButtonProcessing calling period, the value of the debounce counter should be set
close to 180 ms. This value is sufficient to prevent multiple IRQ ISR calls due to contact bounces.

Figure 4-15.   Button Control - IRQ ISR and ButtonProcessing
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Figure 4-16.   Button Control - ButtonEdge

4.3.8 RotorAlignment

After reset, the rotor position is unknown, because a quadrature encoder does not give absolute
position till INDEX pulse comes. As can be seen in Figure 4-5. the rotor position has to be aligned
with d axis of the d,q-coordinate system before a motor begins running. The alignment algorithm is
shown in Figure 4-18. At first the position is set to zero independently of the actual rotor position.
Then the Id current is set to alignment current. Now the rotor is aligned to the required position. After
rotor stabilization the encoder is reset in order to give zero position after that the Id current is set back
to zero and alignment is finished. The alignment is executed during the first transition from STOP to
RUN state of RUN/STOP switch only.
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Figure 4-17.   Rotor Alignment

Figure 4-18.   Rotor Alignment Flow Chart

5.   Hardware Design

5.1   System Concept
The motor control system is designed to drive a 3-phase PM synchronous motor in a speed-closed
loop.
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The application can run on Motorola motor control DSPs using the DSP EVM Board DSP56F803/5/7,
the Motorola’s 3-Phase AC/BLDC high voltage power stage and the BLDC high voltage motor with a
quadrature encoder and an integrated brake. All parts are an integral part of Motorola’s embedded
motion control development tools. The hardware setup is shown in Figure 5-19. 

Figure 5-19.   High Voltage Hardware System Configuration

All the system parts are supplied and documented according the following references:

• U1 - Controller Board for DSP56F803:

— supplied as: DSP56803EVM

— described in: DSP56F805EVMUM/D DSP Evaluation Module Hardware User’s 
Manual

•  or U1 - Controller Board for DSP56F805:

— supplied as: DSP56803EVM

— described in: DSP56F805EVMUM/D DSP Evaluation Module Hardware User’s 
Manual

• or U1 - Controller Board for DSP56F807:

— supplied as: DSP56807EVM

— described in: DSP56F803EVMUM/D DSP Evaluation Module Hardware User’s 
Manual

• U2 - 3-phase AC/BLDC High Voltage Power Stage 
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— supplied in kit with In-Line Optoisolation Box as: ECINLHIVACBLDC

— described in: MEMC3BLDCPSUM/D - 3-phase Brushless DC High Voltage Power 
Stage

• U3 - In-Line Optoisolation Box

— supplied in kit with 3-phase AC/BLDC High Voltage Power Stage as: 
ECINLHIVACBLDC or solo as ECOPTINL

— described in: MEMCILOBUM/D - In-Line Optoisolation Box

Warning: It is strongly recommended to use In-line Optoisolation Box during the development time to 
avoid any damage to the development equipment.

• MB1 Motor-Brake SM40V + SG40N 

— supplied as: ECMTRHIVBLDC

Notes: The application SW is targeted for PM Synchronous motor with sinewave Back-EMF shape. 
In this particular demo application the BLDC motor is used instead. This is due to the 
availability of the BLDC motor - Brake SM40V+SG40N supplied as ECMTRHIVBLDC. 
Although the Back-EMF shape of this motor is not ideally sinewave, it can be controlled by 
the application SW. The drive parameters will be the best with a PMSM motor with exactly 
sinewave Back-EMF shape.

A detailed description of individual boards can be found in the comprehensive User’s Manuals
belonging to each dedicated board or at http://mot-sps.com/motor/devtools/index.html. The user’s
manual incorporates the schematic of the board, description of individual function blocks and bill of
materials. The individual boards can be ordered from Motorola as a standard products.

6.   Software Design
This section describes the design of the software blocks of the drive. The software is described in the
following terms:

• Main Software Flow Chart

• Data Flow

• State Diagram

For more information on the control technique used, refer to Section 4.3.

6.1   Main Software Flow Chart
The main software flow chart incorporates the Main routine entered from Reset and interrupt states.
The Main routine includes the initialization of the DSP and the main loop shown in Figure 6-20,
Figure 6-21, Figure 6-22.

The SW consist of processes: Application Control, PM Synchronous Motor (PMSM) Control, Analog
sensing, Position and Speed Measurement, Fault Control, Brake Control. 

The Application Control process is the highest SW level which precedes settings for other SW levels.
The Input of this level is Run/Stop switch, Up/Down buttons for manual control and PC Master (via
the registers (see 6.2 Data Flow)). This process is handled by Application Control Processing called
from Main (see Figure 6-20).
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Figure 6-20.   SW Flow Chart - General Overview I

The PMSM (PM Synchronous Motor) Control process provides most of motor control functionality. It
is divided into Current Processing and speed processing parts. The current processing part is called
from ADC Complete Interrupt (see Figure 6-21) once per 2 PWM reloads with the period 125µs (it
can also be set to each PWM reload - 62.5µs, but the PC Master recorder pcmasterdrvRecorder() needs
to be removed from the code). The Speed Processing part is called from Quadrature Timer D0
Interrupt (see Figure 6-22) with the period PER_TMR_POS_SPEED_US (900µs). The advantage of
dividing the current and the speed control process is that current control can be executed with low
period of calls, because the execution of the speed control is not that prioritized.

Reset

DSP Initialization

Application Control - Processing:
according to appOpMode:

{control/check switch
set omega_required_mech}

according to appState:
{trigger appState Run/Stop/Init/
set PMSM Control Run/Stop
set Fault Control status
set Brake Control Run/Stop
set LED Indication}

Fault Control - Background part:
if faultCtrlStatus - AnalogFaultEnbl

{check Undervoltage, Overheating 
faults}

if Positionsensing,Overvoltage,Overcur-
rent faults

{set appFaultStatus
trigger begin of Fault State}

Brake Control - Processing:
if u_dc_bus_filt > U_DCB_ON_BRAKE_SYSU

{Brake On}
if u_dc_bus_filt < U_DCB_OFF_BRAKE_SYSU

{Brake Off}
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The Analog sensing process handles sensing, filtering and correction of analog variables (phase
currents, temperature, dc bus voltage). It is provided by Analog Sensing Processing (see Figure 6-21)
and also by Analog Sensing ADC Phase Set. Analog Sensing ADC Phase Set is split from Analog
Sensing Processing because it sets ADC according to the svmSector variable calculated in after PMSM
Control-Current Processing.

Position and Speed Measurement processes are provided by HW Timer modules and the functions
giving the actual speed and position (see Figure 4.3.3).

The LED Indication process is provided by LED Indication Processing. It is called from Quadrature
Timer D0 Interrupt, which provides the time base for the LED flashing.

The Fault Control process is split into Background part and PWM Fault ISR part. The Background part
(see Figure 6-20) checks the Overheating, Undervoltage and Positionsensing faults. The PWM Fault
ISR part (see Figure 6-21) takes care of Overvoltage and Overcurrent faults which causes the PWM A
Fault interrupt.

Brake Control process is dedicated for the brake transistor control, which maintains DC Bus voltage
level. It is called from Main (see Figure 6-20).

The Up/Down Button and Switch Control processes are subprocesses of Application Control. They are
described in Section 4.3.7.

The Up/Down Button processes are split into Button Processing Interrupt part called from Quadrature
Timer D0 Interrupt (see Figure 6-22), Button Processing BackGround part (inside of Analog Sensing),
Interrupt Up Button and Interrupt Down Button (see Figure 6-21).

The Switch process is split into Switch Filter Processing called from Quadrature Timer D0 Interrupt
(see Figure 6-22) and Switch Get State called from Application Control processing which handles
manual switch control and Switch Get State PC Master which handles switch control in case of PC
Master application operating mode.
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Figure 6-21.   SW Flow Chart - General Overview II

Interrupt
ADC Complete

Return

Analog Sensing- Processing
according to anSensingCtrlStatus
sensing/initialization:

{sense Temperature
calculate Filtered Temperature
sense, correct 2 Phase Currents
calculate 3 Phase Currents
sense Voltage
correct Voltage
calculate Filtered Voltage}

sin cos generation:
get position from Position Mea-
surement
sin (theta_actual_el)
cos (theta_actual_el)

Current Control:
Currents Transformation (a,b,c to d,q)
(Field Weakening Controller)
Current d Regulator
Current q Regulator
Voltages Transformation (d,q to α,β)
DC-bus Ripple Compensation
Space Vector Modul. sets pwmABC

PMSM Control
-Current Processing part:
proceeds according to pmsmCtrlStatus

Analog Sensing-ADC Phase Set
set ADC converter phase current
samples - two (easy measurable)
phases

PWM:
set duty cycles to pwmABC

Interrupt
PWM A Fault

Return

Fault Control - PWM Fault ISR part:
if Overcurrent or Overvoltage:

{set appFaultStatus = Overvoltage / 
Overcurrent

triggers begin of Fault State (disable PWM...)}

Interrupt
Down Button

Down Button - ISR part:
if debounceCounterDown = 0:

set UP_BUTTON, buttonStatus
debounceCounterDown = 
= DEBOUNCE_VALUE

Return

Interrupt
Up Button

Up Button - ISR part:
if debounceCounterUp = 0:

set UP_BUTTON, buttonStatus
debounceCounterUp = 
= DEBOUNCE_VALUE

Return
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Figure 6-22.   SW Flow Chart - General Overview III

Speed Control:
SW Timer
if Time-out:

{Field Weakening Controller
Speed Regulator
Speed Ramp}

Interrupt
D0 QTimer

Return

Alignment:
SW Timer
if Time-out

{PMSM Control - End Alignment}

Speed Measurement Processing

pmsmCtrlStatus?

AlignFlag RunFlag
others

PMSM Control
-Speed, Alignment Processing part:
proceeds according to its status

get speed from Speed Measurement

LED Indication Processing

Switch Filter Processing

Button Processing - Interrupt part
decrements debounceCounterUp(Down)
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6.2   Data Flow
The PM Synchronous motor Vector Control drive control algorithm is described with the data flow
shown in Figure 6-23. and Figure 6-24. The variables and constants description should be clear from
their naming, but are also listed in Section 8.1.

Figure 6-23.   Data Flow - Part 1

PHASEA,PHASEB,INDEX

theta_actual_el

Position, Speed
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omega_actual_mech
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reloadSWtmrAlignment
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(Temperature, DC Bus volt.

i_Sa, i_Sb, i_Sc
u_dc_bus

Phase Currents a,b,c)

temperature

i_Sabc_comp 

temperature_filt

u_dc_bus

 u_dc_bus_filt
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Green LED

brakeCtrlStatusfaultCtrlStatus

theta_align_el_C
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reloadSWtmrSpeedControl
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LED
Indication
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PC
Master 
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Figure 6-24.   Data Flow - Part 2 

The data flows consists of processes described in following sections.

6.2.1 Application Control Process

The Application Control process is the highest SW level which precedes settings for other SW levels. 

The process state is determined by the variable appState.

The application can be controlled as follows:

• Manually

• From PC Master

The Manual/PC Master application operating mode is determined by setting of appOpMode.

For Manual control the input of this process is RUN/STOP switch and UP/DOWN buttons.

The PC Master communicates via omega_reqPCM_mech which is the required angular speed from PC
Master, appPcmCtrlStatus which consists of flags StartStopCtrl for Start/Stop, RequestCtrl for
changing of application operating mode appOpMode to Manual or PC Master Control. The
appFaultStatus 

The other processes are controlled by setting of pmsmCtrlStatus, omega_required_mech,
appPcmCtrlStatus, brakeCtrlStatus, faultCtrlStatus, 

PWMEN bit

PWM Faults
(OverVoltage/OverCurrent)

Brake
Control

IO_BRAKE

u_dc_bus_on_brake
Fault Control

temperature_filt

u_dc_bus_filt

u_dc_bus_off_brake

Pwm_AT Pwm_AB Pwm_BT Pwm_BB Pwm_CT Pwm_CB

PWM Generation
PWM Outputs

i_Sabc_comp 

appFaultStatus

u_dc_bus_min_fault_C

TEMPERATURE_MAX_F16

faultCtrlStatus

pmsmCtrlStatus

brakeCtrlStatus

PC
Master 

Check Index
Position
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6.2.2 LED Indication Process

This process controls the LED flashing according to appState.

6.2.3 Analog Sensing Process

The Analog sensing process handles sensing, filtering and correction of analog variables (phase
currents, temperature, DC Bus voltage).

6.2.4 Position and Speed Measurement Process
The Position and Speed Measurement process gives mechanical angular speed omega_actual_mech
and electrical position theta_actual_el.

6.2.5 PMSM (PM Synchronous Motor) Control Process

The PMSM (PM Synchronous Motor) Control process provides most of motor control functionality. 

The Figure 6-25 shows the data flow inside of the process PMSM Control. It shows essential
subprocesses of the process. They are Sine, Cosine Transformations, Current Control, Speed,
Alignment Control and Field Weakening.

The Sine and Cosine Transformations generates sinCos_theta_el with the components sine, cosine
according to electrical position theta_actual_el. It is provided in the look-up table.



Software Design

� 3-Phase PM Synchronous Motor Control with Quadrature Encoder 31

P
re

lim
in

ar
y 

C
o

p
y

 

Figure 6-25.   Data Flow - PMSM Control

6.2.5.1. Current Control Process

The data flow inside of the process Current Control is shown in detail in Figure 6-26. The measured
phase currents i_Sabc_comp are transformed to i_SDQ_lin using sinCos_theta_el (see 4.3.2 Vector
Control Transformations). Both d and q components are regulated in independent PI regulators to
i_SDQ_desired values. The outputs of the regulators are u_SDQ_lin. 

theta_actual_el

omega_desired_mech

pmsmCtrlStatus

Speed, Align
Control

Current
Control

svmSector
i_Sabc_comp 

i_SDQ_desired.

I_SDQ_MAX_F16

Sin, Cos

omega_actual_mech

sinCos_theta_el

pwmABC

q_axis
i_SDQ_desired.

d_axis

Field Weakening
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Figure 6-26.   Data Flow - PMSM Control - Current Control

The Feed Forward process provides following calculation:
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The u_SDQ voltages are transformed to u_SAlphaBeta (see Section 4.3.2) by Voltage Transformation
process. The Scaling DC-bus Ripple Compensation block scales u_SAlphaBeta according
u_dc_bus_filt to u_Salpha_RipElim ( described in the SDK doc for svmElimDcBusRip function). The
Space Vector modulation process generates duty cycle pwmABC and svmSector according to
u_Salpha_RipElim. 

u_LimitF16 is a voltage limit for current controllers. The u_OverMax constant is used to increase the
limitation of u_SDQ voltages over maximum SVM_INV_INDEX/2*u_dc_bus_filt determined by DC Bus
voltage and space vector modulation. Although the pwmABC will be limited by Space Vector
Modulation process functions, the reserve is used for Field Weakening controller dynamics (in the
stable state the u_SDQ voltages vector will not exceed u_S_max_FWLimit (see Section 6.2.5.4.)).

6.2.5.2. Speed Ramp

The process generates angular speed omega_desired_mech from angular speed omega_required_mech l
with a linear ramp. The speed ramp is implemented in order not to saturate speed regulator during
acceleration.

6.2.5.3. Speed, Alignment Control Process

The process controls i_SDQ_desired.q_axis current according to PMSM Control Process Status. 

In case of alignment status, it sets i_SDQ_desired.d_axis to i_Sd_Alignment and i_SDQ_desired.q_axis
to 0.

In case of run status, it controls the omega_actual_mech speed to omega_desired_mech by calculation
of PI regulator with i_SDQ_desired.q_axis output.

6.2.5.4. Field Weakening Process

Figure 6-27.   Field Weakening Controller

The Field Weakening process provides control of i_SDQ_desired.q_axis in order to get higher motor
speed by field weakening technique. The control algorithm is shown in Figure 6-27. The
u_S_max_FWLimit is computed from u_dc_bus_filt. The u_Reserve_FW is subtracted in order to have
some voltage reserve to the maximum SVM_INV_INDEX/2*u_dc_bus_filt determined by DC Bus voltage
and space vector modulation. The reserve is used for Field Weakening controller dynamics (in the
stable state the u_SDQ voltages vector will not exceed u_S_max_FWLimit (see Section 6.2.5.4.).
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This process also provides voltage limitation i_SDQ_desired.d_axis2 + i_SDQ_desired.q_axis2 <
(I_SDQ_MAX_F16)2 by setting of:

PIRegParams_omega_mech.PositivePILimit = (I_SDQ_MAX_F162 - i_SDQ_desired.d_axis2)1/2

PIRegParams_omega_mech.NegativePILimit = -(I_SDQ_MAX_F162 - i_SDQ_desired.d_axis2)1/2

6.2.6 Brake Control Process

The brake control process maintains DC Bus voltage level via IO_BRAKE driver (which controls the
brake switch). The voltage comparison levels are u_dc_bus_on_brake which is initialized with
U_DCB_ON_BRAKE_MAINS230_F16 or (U_DCB_ON_BRAKE_MAINS115_F16) constant according to
mains voltage and u_dc_bus_off_brake initialized with U_DCB_OFF_BRAKE_MAINS230_F16
(U_DCB_OFF_BRAKE_MAINS115_F16).

6.2.7 PWM Generation Process

The PWM generation process controls the generation of PWM signals, driving the 3-phase invertor.

The input is pwmABC, with 3 PWM components scaled to the range <0,1> of type Frac16. The scaling
(according to PWM module setting) and the PWM module control (on the DSP) is provided by PWM
driver.

6.2.8 Fault Control Process

The Fault Control process checks the Overheating, Undervoltage Overvoltage, Overcurrent and
Positionsensing faults.

Overheating and Undervoltage are checked by comparisons temperature_filt <
TEMPERATURE_MAX_F16 and u_dc_bus_filt < u_dc_bus_min_fault_C, where u_dc_bus_min_fault_C is
initialized with U_DCB_MIN_FAULT_MAINS230_F16 or U_DCB_MIN_FAULT_MAINS115_F16. The
Positionsensing fault is checked with the Check Index Position process. 

The Overvoltage and Overcurrent faults are set in the PWM A Fault interrupt.

6.3   State Diagram 
The software can be split into the processes shown in Section 6.2.

The state diagrams of the following processes are described below:

• Application Control State Diagram

• PMSM Control State Diagram

• Fault Control State Diagram

• Analog Sensing State Diagram

6.3.1 DSP Initialization
• PWM: DSP initialization

• Application Control: DSP initialization

• PM Synchronous Motor Control: DSP initialization

• Analog Sensing: DSP initialization

• Brake Control: DSP initialization
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• Fault Control: DSP initialization

• LED Indication: DSP initialization

• Button Control Initialization

• set manual application operating mode

• enable masked interrupts

• Application Control: Initialization Triggers, which sets all affected processes to Begin App. 
Initialization state

6.3.2 Application Control State Diagram

The process Application Control is displayed in Figure 6-28. 

Figure 6-28.   State Diagram - Application Control
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After reset the DSP Initialization state is entered. The peripheral and variables initialization is provided
in this state and the application operating mode appOpMode is set to Manual Control. 

When the state is finished, Application Control Init state follows.As shown in Figure 6-28 appState =
APP_INIT, all subprocesses required initializations are proceeding, pcb identification is provided, the
PWM is disabled, so there is no voltage applied on motor phases. Whenever
appPcmCtrlStatus.RequestCtrl flag is set (from PC Master) the application operating mode
appOpMode is toggled (the application operating mode can only be changed in this state). If the
switchState = Stop the Application Control entries the Stop state.

The switchState is set according to manual switch on evm board or PC Master register
AppPcmCtrlStatus.StartStopCtrl depending on application operating mode.

In the Stop state appState = APP_STOP, the PWM is disabled, so there is no voltage applied on motor
phases. When switchState = Run the Begin Running state is processed. If there is a request for changing
of application operating mode appPcmCtrlStatus.RequestCtrl = 1, the application Init is entered (the
application operating mode request can only be accepted in the Init state or Stop state by transition to
the Init state).

In the Begin Running state, all the processes provide settings to the Running state.

In the Running state the PWM is enabled, so voltage is applied on motor phases. The motor is running
according to the state of all subprocesses. If switchState = Stop, the Stop state is entered.

If Fault Control subprocess Begin Fault state (any fault is detected), the Begin Fault state is entered. It
sets appState = APP_FAULT, the PWM is disabled and the subprocess PMSM Control is set to Stop.
The Fault state can only transit to the Init state, when switchState = Stop, and Fault Control subprocess
has successfully cleared all faults.
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6.3.3 PMSM Control State Diagram

A State Diagram of the Commutation Control process is illustrated in Figure 6-29.

Figure 6-29.   State Diagram - PMSM Control

When Application Control initializes, the PMSM Control subprocess initialization state is entered. The
AlignInitDoneFlag is cleared which means that Alignment needs to proceed. The next PMSM Control
state is Begin Stop or Fault. The RunFlag and AlignFlag are cleared and Stop or Fault state is entered.
When Application Control: Begin Run the PMSM Control subprocess enters Begin Alignment or
Begin Run state. It depends on if alignment initialization has already proceeded or not (flagged by
AlignInitDoneFlag). The Alignment state is necessary for setting of zero position of position sensing.
(see Section 4.3.8). In the state Begin Alignment, the Alignment current and duration are set (the
Alignment is provided by setting of desired current for d_axis to i_Sd_Alignment and q_axis to 0). The
Alignment state provides current control and time-out search. When Alignment Time-out occurs, the
End Alignment is entered. In that state The Position Sensing Zero Position is set, so the position sensor
is aligned with the real vector of the rotor flux. When the End Alignment state is done, the PMSM
Control goes to a regular Run state, where the motor is running according to required speed. If
Application Control state is set to Begin Stop or Begin Fault, the PMSM Control goes to the Begin
Stop or Fault and then to the Stop or Fault.
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6.3.4 Fault Control State Diagram

The State Diagram of the Fault Control subprocess is displayed in Figure 6-30. After the initialization
the fault conditions are searched. If any fault occurs the appFaultStatus variable is set according to
detected error and PWM is switched on (PWMEN bit = 0). Then the Fault state is entered (this state also
causes Application Control: Fault state). If the faults are successfully cleared, this is signalled to the
Application Control process. The Fault state is left when Application Control Init state is entered.

Figure 6-30.   State Diagram Fault Control

6.3.5 Analog Sensing State Diagram

The State Diagram of the Analog Sensing subprocess is displayed in Figure 6-31. The DSP
Initialization state initializes HW modules like ADC, synchronization with PWM, etc. In the Begin Init
the Initialization is started, so the variables for initialization sum and InitDoneFlag are cleared. In the
Init Proceed state the temperature, DC Bus voltage and phase current samples are sensed and summed.
After required analog sensing, init samples are sensed, and the Init Finished state is entered. There the
samples average is calculated from the sum (divided by number of analog sensing init samples).
According to the phase currents average value the phase current offsets are initialized.
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Then all variables sensing is initialized and the state Init Done is entered, so the variables from analog
sensing are valid for other processes. In this state temperature and DC Bus voltage are filtered in first
order filters. 

Figure 6-31.   State Diagram - Analog Sensing

7.   SDK Implementation
The Motorola Embedded SDK is a collection of APIs, libraries, services, rules and guidelines. This
software infrastructure is designed to let DSP5680x software developers create high-level, efficient,
portable code. This chapter describes how the PM Synchronous motor vector control application is
written under SDK.

7.1   Drivers and Library Function
The PM Synchronous motor vector control application uses the following drivers:

• ADC driver

• Quadrature Timer driver

• Quadrature Decoder driver

• PWM driver

• LED driver

• SCI driver

• PC Master driver

• Switch driver (only for DSP56F805EVM &DSP56F807EVM)

• Brake driver

All drivers are included in bsp.lib library. 

Analog Sensing:
Begin Init.

Analog Sensing
Init Done:

Analog Sensing
Init. Proceed:

Analog Sensing
DSP Initialization

Reset

clear variables

App. Control: Begin Init
samples counter = 

App. Control: Begin Init

clear InitDoneFlag

Analog Sensing
Init Finished:

samples average

done

done

set current offsets

 
sens and sum samples

count samples

= analog sensing init samples

set InitDoneFlag



40 3-Phase PM Synchronous Motor Control with Quadrature Encoder �

SDK Implementation

P
re

lim
in

ar
y 

C
o

p
y

The PM motor control application uses the following library functions:

• cptrfmClarke (Clark transformation, mcfunc.lib library)

• cptrfmPark (Park transformation, mcfunc.lib library)

• cptrfmParkInv (Inverse Park transformation, mcfunc.lib library)

• mcElimDcBusRip (DC bus ripple elimination, mcfunc.lib library)

• mcPwmIct (3-ph sinewave modulation, mcfunc.lib library)

• rampGetValue (ramp generation, mcfunc.lib library)

• switchcontrol (switch control, mcfunc.lib library)

• boardId (board identification,bsp.lib library)

7.2   Appconfig.h File
The purpose of the appconfig.h file is to provide a mechanism for overwriting default configuration
settings which are defined in the config.h file.

There are two appconfig.h files The first appconfig.h file is dedicated for External RAM
(..\ConfigExtRam directory) and second one is dedicated for FLASH memory (..\ConfigFlash
directory). In case of PM Synchronous motor vector control application both files are identical with the
following exceptions:

• The appconfig.h for ExtRAM target contains PC Master Recorder buffer 25000 samples long, 
while appconfig.h for Flash target contains PC Master Recorder buffer only 100 samples long. 
This is due to the limited Flash memory size.

• The appconfig.h for DSP56F805EVM and DSP56F807EVM contains the definition of a 
switch driver, while the appconfig.h for DSP56F803EVM does not.

The appconfig.h file can be divided into two sections. The first section defines which components of
SDK libraries are included to application, the second part of overwrites standard setting of components
during their initialization.

7.3   Drivers Initialization
Each peripheral on the DSP chip or on the EVM board is accessible through a driver. The driver
initialization of all used peripherals is described in this chapter. For detailed description of drivers see
the document Embedded SDK Targeting Motorola DSP5680x Platform

To use the driver the following step must be done:

• include the driver support to the appconfig.h

• fill configuration structure in the application code for specific drivers (depends on driver type)

• initialize the configuration setting in appconfig.h for specific drivers (depends on driver type)

• call the open (create) function

Access to individual driver functions is provided by the ioctl function call.
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7.4   Interrupts
The SDK serves the interrupt routines calls and automatically clears interrupt flags. The user defines
the callback functions called during interrupts. The callback functions are assigned during the drivers
initialization - open(). The callback function assignment is defined as one item of initialization
structure which is used as a parameter of function open(). Some drivers define the callback function
in appconfig.h file.

7.5   PC Master
PC Master was designed to provide the debugging, diagnostic and demonstration tool for development
of algorithms and applications. It consists of components running on PCs and parts running on the
target DSP, connected by an RS232 serial port. A small program is resident in the DSP that
communicates with the PC-Master software to parse commands, return status information to the PC,
and process control information from the PC. The PC-Master software executing on a PC uses
Microsoft Internet Explorer as a user interface to the PC.

The PC Master application is part of the Motorola Embedded SDK and may be selectively installed
during SDK installation.

To enable the PC Master operation on the DSP target board application, the following lines must be
added to the appconfig.h file: 

#define INCLUDE_SCI          /* SCI support */
#define INCLUDE_PCMASTER     /* PC Master support */

It automatically includes the SCI driver and installs all necessary services. 

The baud rate of the SCI communication is 9600Bd. It is set automatically by the PC Master driver.

A detailed PC Master description is provided by the PC Master User Manual.

The actions controlled by the PC-Master are:

• Set PC Master Mode of the motor control system

• Set Manual Mode of the motor control system

• Start the motor

• Stop the motor

• Set the Required Speed of the motor

Variables read by the PC-Master software as a default and displayed to the user are:

• Required Speed of the motor

• Actual Speed of the motor

• Application status - Init/Stop/Run/Fault

• DC Bus voltage level

• Identified line voltage

• Fault Status - No_Fault/Overvoltage/Overcurrent/Undervoltage/Overheating

• Identified Power Stage

The profiles of required and actual speeds together with the desired Id, Iq currents can be seen at a
Speed Scope window.



42 3-Phase PM Synchronous Motor Control with Quadrature Encoder �

Implementation Notes

P
re

lim
in

ar
y 

C
o

p
y

The Speed Scope PC Master displays Recorders windows. Due to the limited on-chip memory, the
Recorder can be used ONLY when the application is running from External RAM. The length of the
recorded window may be set in “Recorder Properties” => bookmark “Main” => “Recorded Samples”.
The dedicated memory space is defined in appconfig.h file of the ExtRAM target. The recorder
samples are taken each 125 µsec in rate of PWM frequency.

The following speed recorder can be captured:

• Required Speed

• Actual Speed

• Desired Id Current

• Desired Iq Current

8.   Implementation Notes
Described here are any noteworthy pieces of information related to the final implementation of the
preceding design. Noted here are the actual design files used, any deviations from the design
requirements, special tricks used in the coding, optimizations performed etc.

8.1   Analogue Value Scaling
The PM synchronous motor vector control application uses a fractional representation for all real
quantities except time. 

The C-language standard does not have any fractional variable type defined. Therefore fractional
operations are provided by Code Warrior intrinsics functions (e.g. mult_r() ). As a substitution of the
fractional type variables, the application uses types Frac16, resp. Frac32. These are in fact defined as
integer 16-bit signed variables, resp. integer 32-bit signed variables. The difference between Frac16
and pure integer variables is that Frac16 and Frac32 declared variables should only be used with
fractional operations (intrinsics functions). 

A recalculation from real to a fractional form and Frac16, Frac32 value is given by following
equations:

(EQ 8-1.)

in case of Frac16 16-bit signed value and

(EQ 8-2.)

in case of Frac32 32-bit signed value.

(EQ 8-3.)

in case of fractional form.

Frac16 Value 32768
Real Value

Real quantity range
-----------------------------------------------⋅=

Frac32 Value 2147483648
Real Value

Real quantity range
-----------------------------------------------⋅=

Fractional Value
Real Value

Real quantity range
-----------------------------------------------=
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8.1.1 Voltage Scaling

The voltage scaling results from sensing circuit of used hardware (for details see
MEMC3BLDCPSUM/D - 3-phase Brushless DC High Voltage Power Stage manual). The
following table shows all voltage variables and constants.

Table 8-2.   Voltage Variables and Constants with their Scaling

Name Type Real/
Fract

Value Range Note

VOLT_RANGE_MAX C R 407 V - max. measurable voltage 
(given by HW)

VOLT_RANGE_MIN C R -407 V - min. measurable voltage 
(given by HW)

U_DC_BUS_NET230 C R 310 V <-407;407) nominal DC Bus voltage at 
230 V

U_DC_BUS_NET230_F16 C F FRAC1
6

<-1;1) nominal DC Bus voltage at 
230 V

U_DCB_MIN_FAULT_NET230 C R 210 V <-407;407) under voltage fault limit at 
230 V

U_DCB_MIN_FAULT_NET230_F32 C F FRAC3
2

<-1;1) under voltage fault limit at 
230 V

U_DC_BUS_NET115 C R 115 V <-407;407) nominal DC Bus voltage at 
115 V

U_DC_BUS_NET115_F16 C F FRAC1
6

<-1;1) nominal DC Bus voltage at 
115 V

U_DC_BUS_NET115 C R 160 V <-407;407) nominal DC Bus voltage at 
115 V

U_DC_BUS_NET115_F16 C F FRAC1
6

<-1;1) nominal DC Bus voltage at 
115 V

U_DCB_MIN_FAULT_NET115 C R 105 V <-407;407) under voltage fault limit at 
115 V

U_DCB_MIN_FAULT_NET115_F32 C F FRAC3
2

<-1;1) under voltage fault limit at 
115 V

U_DC_BUS_MAX_NET115 C R 220 V <-407;407) max. DC Bus voltage at 
115 V

U_DCB_THRESHOLD_NET115 C R 220 V <-407;407) threshold DC Bus voltage 
for 115 V

U_DCB_THRESHOLD_NET115_F32 C F FRAC3
2

<-1;1) threshold DC Bus voltage 
for 115 V

U_DCB_ON_BRAKE_NET230 C R 385 V <-407;407) DC Bus voltage upper limit 
for brake at 230 V
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U_DCB_ON_BRAKE_NET230_F16 C F FRAC1
6

<-1;1) DC Bus voltage upper limit 
for brake at 230 V

U_DCB_OFF_BRAKE_NET230 C R 370 V <-407;407) DC Bus voltage lower limit 
for brake at 230 V

U_DCB_OFF_BRAKE_NET230_F16 C F FRAC1
6

<-1;1) DC Bus voltage lower limit 
for brake at 230 V

U_DCB_ON_BRAKE_NET115 C R 200 V <-407;407) DC Bus voltage upper limit 
for brake at 115 V

U_DCB_ON_BRAKE_NET115_F16 C F FRAC1
6

<-1;1) DC Bus voltage upper limit 
for brake at 115 V

U_DCB_OFF_BRAKE_NET115 C R 190 V <-407;407) DC Bus voltage lower limit 
for brake at 115 V

U_DCB_OFF_BRAKE_NET115_F16 C F FRAC1
6

<-1;1) DC Bus voltage lower limit 
for brake at 115 V

U_S_MAX_FW_LIMIT_NET230 C R 130 V <-407;407) voltage limit for field 
weakening at 230 V

U_S_MAX_FW_LIMIT_NET230_F16 C F FRAC1
6

<-1;1) voltage limit for field 
weakening at 230 V

U_S_MAX_FW_LIMIT_NET115 C R 65 V <-407;407) voltage limit for field 
weakening at 115 V

U_S_MAX_FW_LIMIT_NET115_F16 C F FRAC1
6

<-1;1) voltage limit for field 
weakening at 115 V

u_dc_bus V F - <-1;1) DC Bus voltage

u_dc_bus_nominal_C V F - <-1;1) nominal DC Bus voltage

u_dc_bus_filt V F - <-1;1) filtered DC Bus voltage

u_SDQ V F - <-1;1) stator voltage in DQ 
coordinates

u_SDQ_lin V F - <-1;1) linear portion of stator 
voltage in DQ

u_SDQ_FeedForw V F - <-1;1) feed forward portion of 
stator voltage in DQ

u_SAlphaBeta V F - <-1;1) stator voltage in α,β

u_S_max_FWLimit V F - <-1;1) max. voltage for field 
weakening

u_Reserve_FW V F - <-1;1) vector reserve for field 
weakening

Table 8-2.   Voltage Variables and Constants with their Scaling

Name Type Real/
Fract

Value Range Note
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Notes: Type: C - constant, V - variable; Real/Fract: R - real quantity, F - fractional quantity; Value: real 
value, FRAC16 - equation (EQ 8-1.), FRAC32 - equation (EQ 8-2.)

8.1.2 Current Scaling

The current scaling also results from sensing circuit of used hardware (for details see
MEMC3BLDCPSUM/D - 3-phase Brushless DC High Voltage Power Stage manual). The
following table shows all current variables and constants.

u_OverMax V F - <-1;1) voltage reserve over 
maximal

u_dc_bus_min_fault_C V F - <-1;1) under voltage

u_dc_bus_on_brake V F - <-1;1) DC Bus voltage brake on

u_dc_bus_off_brake V F - <-1;1) DC Bus voltage brake off

Table 8-3.   Current Variables and Constants with Their Scaling

Name Type Real/
Fract

Value Range Note

CURR_MAX C R 2.93 A - max. measurable current (given by 
HW)

CURR_MIN C R -2.93 A - min. measurable current (given by 
HW)

CURR_RANGE_MAX C R 5.86 A - max. current range limit

CURR_RANGE_MIN C R -5.86 A - min. current range limit

I_S_MAX_EFFECTIVE C R 0.55 A <-2.93;2.93> max. stator current effective value

I_SDQ_MAX C R 0.78 A <-2.93;2.93> max. stator current amplitude

I_SDQ_MAX_F16 C F FRAC16 <-1;1) max. stator current amplitude

I_SD_ALIGNMENT C R 0.55 A <-2.93;2.93> alignment current

I_SD_ALIGNMENT_F16 C F FRAC16 <-1;1) alignment current

i_Sabc_comp V F - <-1;1) 3-phase stator currents 
compensated

i_SAlphaBeta_comp V F - <-1;1) stator current in 2-phase system 
α,β

i_SDQ V F - <-1;1) actual stator current in DQ 
coordinates

i_SDQ_desired V F - <-1;1) desired stator current in DQ 
coordinates

Table 8-2.   Voltage Variables and Constants with their Scaling

Name Type Real/
Fract

Value Range Note



Notes: Type: C - constant, V - variable; Real/Fract: R - real quantity, F - fractional quantity; Value: real 
value, FRAC16 - equation (EQ 8-1.), FRAC32 - equation (EQ 8-2.)

8.1.2.1. Temperature Scaling

As shown in Section 8.1.2.1., the temperature variable doesn’t have a linear dependency. 

8.2   Other quantities

8.2.1 Position Scaling

Position scaling is described in Section 4.3.3.1. 

Table 8-4.   Position Variables and Constants with Their Scaling

Type: C - constant, V - variable; Real/Fract: R - real quantity, F - fractional quantity; Value: real
value, FRAC16 - equation (EQ 8-1.), FRAC32 - equation (EQ 8-2.)

8.2.2 Speed Scaling

Position scaling is described in section Section 4.3.3.2..

i_Sd_Alignment V F - <-1;1) required alignment current

Name Type Real/
Fract

Value Range Note

THETA_ALIGNMENT_EL C R 0° <-180°;180°> alignment angle

THETA_ALIGNMENT_EL_F16 C F FRAC
16

<-1;1) alignment angle

PULSES_PER_REVOLUTION C R 1024 - encoder pulses per 
revolution

MOTOR_POLE_PAIRS C R 3 - motor pole pairs

PULSES_THETA_COEF_SCALE_
W16

C F see 
code

<-32768;32767> position scale constant

PULSES_THETA_COEF_UF16 C F see 
code

<0;2) position scale constant

theta_actual_el V F - <-1;1) electrical rotor position

theta_align_el_C V F - <-1;1) alignment angle

Table 8-3.   Current Variables and Constants with Their Scaling (Continued)

Name Type Real/
Fract

Value Range Note
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Table 8-5.   Speed Variables and Constants with Their Scaling

Name Type Real/
Fract

Value Range Note

OMEGA_RANGE_MAX C R 6000 rpm - max. angular speed range 
limit (chosen)

OMEGA_RANGE_MIN C R - 6000 
rpm

- min. angular speed range 
limit (chosen)

OMEGA_MAX_MAINS230 C R 3000 rpm <-6000;6000> max. allowed angular speed 
at 230 V

OMEGA_MAX_MAINS230_F16 C F FRAC16 <-1;1) max. allowed angular speed 
at 230 V

OMEGA_INCREMENT_MAINS2
30

C R 100 rpm <-6000;6000> angular speed increment for 
button at 230 V

OMEGA_INCREMENT_MAINS2
30_F16

C F FRAC16 <-1;1) angular speed increment for 
button at 230 V

OMEGA_MIN C R 50 rpm <-6000;6000> min. allowed speed

OMEGA_MIN_F16 C F FRAC16 <-1;1) min. allowed angular speed

OMEGA_MAX_MAINS115 C R 1100 rpm <-6000;6000> max. allowed angular speed 
at 115 V

OMEGA_MAX_MAINS115_F16 C F FRAC16 <-1;1) max. allowed angular speed 
at 115 V

OMEGA_INCREMENT_MAINS1
15

C R 50 rpm <-6000;6000> angular speed increment for 
button at 115 V

OMEGA_INCREMENT_MAINS1
15_F16

C F FRAC16 <-1;1) angular speed increment for 
button at 115 V

OMEGA_RAMP C R 12000 
rpm/s

- angular speed ramp

OMEGA_RAMP_F16 C F see code <-1;1) angular speed ramp

omega_reqMAX_mech V F - <-1;1) max. required speed 
(absolute value)

omega_reqMIN_mech V F - <-1;1) min. required speed 
(absolute value)

omega_reqPCM_mech V F - <-1;1) required speed from 
PCMaster

omega_increment_mech V F - <-1;1) speed increment

omega_required_mech V F - <-1;1) required speed set by 
buttons
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Notes: Type: C - constant, V - variable; Real/Fract: R - real quantity, F - fractional quantity; Value: real 
value, FRAC16 - equation (EQ 8-1.), FRAC32 - equation (EQ 8-2.)

8.3   PI Controller Tuning
The application consists of four PI controllers. Two controllers are used for Id, Iq currents, one for
speed control and the last for field weakening. The controller’s constants are given by simulation in
Mathlab and were experimentally specified. The detailed description of controllers tuning is over this
application note.

8.4   Subprocesses Relation and State Transitions
As shown in Section 6.2 and Section 6.3, the SW is split into subprocesses according to their
functionality. The code of the application is designed in order to be able to extract individual processes
(e.g. Analog Sensing) and use them for customer applications. The C language function names
dedicated to each process usually start with the name of the process (e.g AnalogSensingInitProceed()
). They are also located in one place in the SW, so they can be easily used for other applications.

As can be seen in Section 6.3, the processes (subprocesses) state transients have some mutual relations
(e.g., Application Control: Begin Initialization is a condition for transient of Analog Sensing process:
Init Done to Begin Init state). In the code, the interface between processes is provided via “trigger”
functions. This functions name convention is: <ProcessName><State>Trig().

The functionality will be explained on following example. The “trigger” function Process1StateTrig()
is called from process1. The transient functions of process2, process3 etc., which need to be triggered
by Process1State, are put inside of the Process1StateTrig(). 

9.   DSP Usage
Table 9-6 shows how much memory is needed to run the 3-phase PM Synchronous Vector Control
drive in using quadrature encoder. A part of the DSP memory is still available for other tasks.

omega_desired_mech V F - <-1;1) desired speed

omega_actual_mech V F - <-1;1) actual speed

Table 9-6.   RAM and FLASH Memory Usage for SDK2.4 and CW4.1

Memory
(in 16 bit Words)

Available
DSP56F803
DSP56F805

Available
DSP56F807

Used
Application + Stack

Used
Application without 

PC Master, SCI

Program FLASH 32K 60K 11520 7740

Data FLASH 4k 8K 617 617

Program RAM 512 2K 36 36

Data RAM 2K 4K 745 + 352 stack  452 + 352 stack

Table 8-5.   Speed Variables and Constants with Their Scaling (Continued)

Name Type Real/
Fract

Value Range Note
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