Writing you First MQX-Lite Application

by: Luis Garabito
Applications Engineer
TICS, Mexico

1 Introduction

The time invested to develop applications for the first time in a new environment can be
significant. It is necessary to understand how the environment works and then be able to
generate applications for this environment.

The purpose of this application note is to provide the knowledge that enables developers to start
quickly and easily with the development of their first application on Freescale MQX-Lite RTOS.

This document provides the bases that developers will need to understand to create basic
Freescale MQX-Lite applications.

This Application Note is based on the KL2: Kinetis KL2 USB MCUs Family, specifically, the
KL25Z7128VLK4 micro controller. The Freescale Freedom development platform board
(FREEDOM — KL25Z) is also used for this example.

2 CodeWarrior 10.3 Start up

Once the CodeWarrior 10.3 is installed and started it is necessary to define a workspace where
all the projects are allocated and administrated by CodeWatrrior. In Figure 1 the workspace
“D:\workspace_MQXLite” is configured.

¥ Workspace Launcher

Select a workspace

Codedyarrior Development Studio stores yvour projects in a folder called a workspace.,
Choose a workspace Folder bo use For this session,

Workspace: D:\workspace MOXLite|]

F Copy Settings

®

(] 4] [Cancel

Figure 1. Setup workspace for CodeWarrior 10.3

Figure 2 shows CodeWarrior appearance when it finishes the start up. One of the new features in
CodeWarrior 10.3 version is the Commander window located in the bottom right of the screen.

|ﬁ' C/C++ - CodeWarrior Development Studio u@]i\j
File Edit Search Project Run - Processor Expert Window Help
D I ARE AN A (e B %5 Debug | B oo+
1 Codewarrior Projects 52 = %Cumponents Library %Cumponent Inspeckar &% Basic |Advanced Expert m]h ¥ =0
2218, | @ 5 | Fie hame =
File Name Build
%5 Components 52 g% ¥ =8
=08
£ Commander &2 =0
~ Project Creation Build/Debug + N2 [[2 problems | B console 52 [Project Explorer | 4 Search| &) Target Tasks X% wbhiEE #B-r5-70
£y Import project @] <terminaked> ARM Processors, PwM_RGE.elF
4 Import example project F
{1y Import MCU executable file
4 hew MCU project + Settings
=
< >

@ | & W

Figure 2. CodeWarrior 10.3

3 Creating projects

There are two possible paths to follow. The first path is to create an MQX-Lite project and the
second is to create from zero. Both options are described in this document. The first option is
using the wizard to create an MQX-Lite project.

3.1 Creating a MQXLite base project

The next steps are used to create and configure a MQX-Lite project for the MKL252128 (48 MHz)

derivative:
1. The Commander window includes an option to create a new project for MQX-Lite. Figure

3 shows this option.

[_:.

£ Commander 2
v Project Creation + Build/Debug v Miscellaneous
gy Import project %I Welcome screen
™ Import example project ;,- Flash programmer

gxy Import MCU executable file

BESSepian w Settings

Figure 3. Commander window

2. The “New MQX-Lite Project” wizard starts and requests for a name for the project and a
location. In this case the name “MQX-Lite_Freedom” and “D:\workspace_MQXLite” are
used respectively. To finish this step click in the “Next >” button at the bottom of the

window. Figure 4 demonstrates this.

5 New MOX-Lite Project =15

Create an M0OQX-Lite Project

Choose the location For the new project

Project name: | MQk-Like_Freedom

[] Use default location

Location: | Diworkspace MOxLike]

Y
@

Figure 4. New MQX-Lite project wizard — Name and Location

3. The next window in the wizard allows selecting the desired MCU. For this case the
MKL25Z2128 (48 MHz) derivative is selected. To perform this selection go and navigate in
the tree as Figure 5 shows. Once the MKL25Z128 option is selected click the “Next >”

button.

=I- Kinetis L Series
+- KL1x Farnily
=+ KLZx Farnily
+- KLZ4Z (45 MHz) Family
= KLZ5Z (48 MHz) Family
MKkL25232
MKL25Z64

Figure 5. Kinetis L family tree

4. The following step lets you choose the connection to be used. The Freedom — KL25Z
board uses the Open source SDA connection and this must be selected as Figure 6
explains. Click “Next >" to go on.

{?} Mewy Svskem

Connection to be used:
[]P&E USE MulkiLink Uriversal [Fx]{ USE MulkiLink,

[]P&E Cyclone Max LISE

[]PaE Cyveclone Max Ethernet
[]PaE Cyvclone MAaY Serial

[]P&E TraceLink USE

[]P&E TraceLink Ethernet

Figure 6. Selecting connection

5. The next window has the options set by default. For this window we just need to click in
the “Finish” button as Figure 7 illustrates.

¥ New MOX-Lite Project =3

Language and Build Tools Options

Language:

[O]=

Floating Poink:
(&) Scftware

ARM Build Toals:

@ acc

C language support will be included in the project.
Software floating point support will be included in the project.

GCC build tools will be used for the project,

[Finish H Cancel]

Figure 7. Programming language and build options selection

When the wizard finishes CodeWarrior has a new appearance that looks like figure 8.
There are two main changes. The “CodeWarrior Projects” window has a hew project
included and the “Components” window shows the Processor Expert added components.

-5 MQK-Lite_Freedom : FLASH

'T7. Components - MOk-Lite_Freedom &5

= E;-EGeneratDr_CDnFiguratiu:uns

3 FLASH
== 035s

+- 8| M1 MGRLite

[= Processors

+ Q CpuiMEL2EZ128V0ES
+-[=% Components

Figure 8. “CodeWatrrior Projects” and “Components” windows

3.2 Creating a empty base project

The next steps are used to create and configure a project for the MKL252128 (48 MHZz)
derivative:

7. The Commander window includes an option to create a new project for MCU. Figure 9
shows this option.

£ Commander £ ¥ =0
v Project Creation + Build/Debug v Miscellaneous
gy Import project ‘ % Welcome screen
% Import example project :‘}‘ Flash programmer

: = ecutable file
™% New MCU project

w Settings

Figure 9. Commander window

8. The “New Bareboard Project” wizard starts and requests for a name for the project and a
location. In this case the name “MQXLite_Freedom” and “D:\workspace_MQXLite” are
used respectively. To finish this step click in the “Next >" button at the bottom of the
window. Figure 10 demonstrates this.

10.

:ﬁ* Mew Bareboard Project @

Create an MCU Bareboard Project
Choose the location for the new project

Project name: MQULite_Freedom

Location: | D:\workspace_MQXLite

i

Figure 10. New project wizard — Name and Location

The next window in the wizard allows selecting the desired MCU. For this case the
MKL25Z2128 (48 Mhz) derivative is selected. To perform this selection go and navigate in
the tree as Figure 11 shows. Once the MKL25Z128 option is selected click the “Next >"
button.

=l Kinetis L Series
kL Farmily
kL1 Family
(=)~ KLZx Family
KLZ4T (48 MHz) Family
(= KLZ5Z {48 MHz) Famiky
MKL25232
MKL25264

Figu?e 11. Kinetis L family tree

The following step lets you choose the connection to be used. The Freedom — KL25Z
board uses the Open source SDA connection and this must be selected as Figure 12
explains. Click “Next >" to go on.

11.

12.

{3_} Mewy Svskem

Connection to be used:
[]P&E USE MulkiLink Uriversal [Fx]{ USE MulkiLink,

[]P&E Cyclone Max LISE

[]PaE Cyveclone Max Ethernet
[]PaE Cyvclone MAaY Serial

[]P&E TraceLink USE

[]P&E TraceLink Ethernet

[15egger I-Link | 1-Trace | W (SWD based)
Figure 12. Selecting connection

The next window has the option to select the programming language to be used. The C
language must be selected as Figure 13 illustrates.

Language:
(Os
O+
) asm

Figure 13. Programming language selection

The final step is to choose the rapid application development to be used. In this case the
option “Processor Expert” should be selected. Processor Expert can generate for you all
the device initialization code. It includes many low-level drivers. The rest of the options
should remain with the default settings. To end the wizard go and click the “Finish”
button.

Rapid Application Development
O Nane
() Device Initialization

(%) Processor Expert

Start with perspective designed for
() Hardware configuration {pin muxing and device initialization)

(3) Use current perspective

':?: N [Finish]L Cancel J

Figure 14. Selecting Rapid Application Development

13. When the wizard finishes CodeWarrior has a new appearance that looks like figure 15.
There are two main changes. The “CodeWarrior Projects” window has a hew project
included and the “Components” window shows the Processor Expert added components.

[CodeWarrior Projects 2 =le
B 1% | D B)] Fie hamo .

File Name Build
+ -5 MQKLite_Freedom : FLASH

. Components - MQKLite_Freedom 22 e e Y — O

= = Generator_Configurations
¥ FLASH

(= 0Ss

= = Processors

+ -_@ Cpu:MKLZ25Z128V1LK4

= Components

+

Figure 15. “CodeWarrior Projects” and “Components” windows

4 Configure the project

First, it is necessary to setup the right configurations for the hardware used in the Freedom —
KL25Z board. Figure 16 has all the needed steps to configure the clock settings and
configurations.

1. Double click in the “ProcessorExpert.pe” item under the “CodeWarrior” project window.
This will update the content of the “Components” window where “Cpu: MKL25Z2128VLK4"
component must be selected to enable the content in the “Component Inspector,” right of
the windows mentioned above. There are 5 things that need to be modified. Figure 16
shows, in detail, the options and the right values to be modified.

[;13 CIC++ - CodeWarrior Development Studio

File Edt Search Project Run Processor Expert Window Help
& G- i -
] codewarrior Projects £2

2118, | B B L File name

CJ &

Properties

=l ’% Components Library w’% *Component Inspector - Cpu. &%
Methods | Events | Build options Used

File Name =~ Guid A Name
= =% MQXLite_Freedom : FLASH CPUtype
= Documentation = Clock settings
(= FLASH i= Internal oscillator

(= Generated_Code Slow internal reference clock [kHz]
% ProcessorExpert.pe Fast internal reference clock [MHz]
(&> Project_Headers

#+ RTC clock input
(= Project_Settings = System oscillator 0

= Clock source

(= Sources ™~
= = Clock frequency [MHz]
5. Components - MQXLite_Freedom 1 == = Clock source settings
= = = Clock source setting 0
SRR 5 MCG settings
= (= Generator_Configurations MCG mode
B FLasH MCG output [MHz]
+ :‘ 0Ss MCG external ref, clock [MHz] &
= (= Processors = FLL settings
B .@ H@Tm] @ FLL module
¥ (7 Components FLL output [MHz]
= PLL O settings
PLL module
PLL output [MHz]
Initislization priority
Watchdog disable
g = '+ CPUinterrupts/resets
£ Commander 53 v =08 = Clock configurations

= Clock configuration 0

= ~
~ Build/Deb— = Clock source setting

* Project Creation

g2y Import project % (A MCG mode
[Import example project L 4 (A = System clocks
g2y Import MCU executable file 5 Core clock
[New MCU project Bus clock .
= TPM clock selection

v Settings

= Clock frequency [MHz]
u =

) >l E_ Problems | B Console 5%

@ Cpu:MKL25Z128YLK4
Figure 16. Clock settings and configurations

L{) Project Explorer

value
MKL25Z128YLK4

32.768

4.0
Dlsabled
Enabled
External crystal
8.0

1

Enabled
96. D
interrupts enah\ed
yes

1

configuration 0
PEE

48.0
24.0
Auto select

48.0

®
el O
yom (5
- (®)
—_—

4’ search | “{@) Target Tasks

Details

32,768 kHz
4 MHz

8 MHz

96 MHz

§MHz

0 MHz; FLL is disabled.

96 MHz

48 MHz
24 MHz
PLLIFLL clock
48 MHz

After the changes it is possible to generate code using Processor Expert. To do this click
in the generate code button located in the up right corner of the “Components” window.

Figure 17 illustrates this.

=

't5. Components - MQXLite_Freedom :13

== Generatnr_Cmfiguratians

% FLASH
&= OSs
= =% Processors
+) Cpu:MKLZ5Z128V1K4
+ = Components

Figure 17. Generating Processor Expert code

Wﬁ%_@

It is necessary to compile the project to verify that there are no errors while using the
generated code. To compile the project go to the “CodeWarrior Projects” window. Click in
the Project name and then click in the compile button. Figure 18 shows the steps.

3 C/C++ - CodeWarrior Development Studio
File Edit Search Project Run Processor Expert ‘“Window He

o %ﬁ—;:;@v v

L) CodeWarrior Projedguild 'FLASH' for project 'MQXLite_Freedom' P

ot 1% | B B & | File Name o Propertie
File Name Build Marme
- 15 MQXLite_Freedom : FLASH — @ CPU
+ [~ Documentation + Cloc
= FLASH Initic
+ (= Generated_Code Wab
'% ProcessorExpert.pe + CPU
(= Project_Headers = Cloc
(= Project_Settings 21
+ | = Sources ™

Figure 18. Compiling the project

4. Validate that the “Problems” tab has no errors listed to ensure a success compilation.
Figure 19 shows a “problems” tab with 0 error or warnings.

(% problems &2 El conscle | [Project Explorer | <7 Search | &) Target Tasks
0 items
Descripkion Fesource Path

Figure 19. Problems tab with O errors

5 Your first Freescale MQX-Lite Application

The architecture of the application is to configure three PWM timers for the RGB LED and the
communication using 12C to read data from the inertial sensor, MMA8451Q. Each one of the
PWNMs will control each one of the LEDs in the RGB LED. The 12C is used to read the data
coming from the inertial sensor. The RGB LED color changes while the board is moving. If the
board stops moving the RGB LED holds the current color.

The Stationery project is now ready to add the MQX-Lite application. The first step is to add a
console that can help to debug and output data from the MCU using the UART port. To add and
configure the Processor Expert component is necessary to follow these steps.

1. Click in the “Components Library” tab as figure 20 shows. Then click in Alphabetical tab
and look for the “ConsolelO” component. Double clicking in the “ConsolelO” component

includes it in the project. This is illustrated in Figure 21.

% Components Library hc@ Inspector - Cpu-

“ Alphabetical . Assistant | Processors |

Component Compone
| Qmas 4
}ﬁ] DacC_LDD Logical Dev ver
& pma_LDD Logical Device Driver
@ DMATransfer_LDD Logical Device Driver
@'] FLASH_LDD Logical Device Driver
88 cpro_LoD Logical Device Driver
i 12c_LoD Logical Device Driver
{5 mit_aDC Peripheral Initislization
fj;l Init_COP Peripheral Initialization
s[ﬂ Init_DAC Peripheral Initialization

Filker on for MKL25Z128LK4 (MQ¥xLite_Freedom)
Figure 20. Components Library

'tS. Components - MQXLite_Freedom &2 =0

= (= Generator_Configurations
&% FLasH
#-(= 055
= (= Processors
+ 4P Cpu:MKL25Z128VLK4
= (= Components

s @ Cs101:Consolero (N

Figure 21. New component added to Processor Expert project: ConsolelO

It is necessary to configure the new added component. To do this expand the
“CslO1:ConsolelO” component just added in the step before. By clicking in the
“l01:Serial_LDD[ConsolelO\ConsolelO_Serial_LDD]” option from the “CslO1:ConsolelO”
component (look figure 22) the Component Inspector tap is updated and the values there
will be updated as Figure 23 shows.

5. Components - MQXLite_Freedom 52 _ =0

-~

|
&
H
@

= [=> Generator_Configurations

& FLasH
B 0Ss
=l = Processors
® 4P Cpu:MKL252128YLK4
=l =% Components

= @ CsIO1:ConsolelO
73 101:Serial_LDD[ConsoleIO\ConsolelO_Serial_LOD) | S

Figure 22. Subcomponents expand

% Components Library 5'% Component Inspector - 101 m

Properties _Methods | Events

Mame Value Details
Device UARTO — UARTO

+ Interrupt service/event Disabled
-/ Settings
Data width & bits
Parity None
Stop bits 1
Loop mode Normal
Baud rate 38400baud <N @ 38461.538 baud
Stop in wait mode no
Idle line mode Starts after start bit
= Receiver Enabled
RxD TSI0 cnzrpmuh TS10_CHZ/PTA1JUARTO_RY/TPMZ_CHO
= Transmitter Enabl
<D TSIO CH3.|'PT#.2 TSI0_CH3[PTAZ/UARTO_TX/TPMZ2_CHI
- Initialization
Enabled in init. code ves
Auto initialization ves
= Event mask
OnBlockSent
OnBlockReceived
OnTxComplete
OnError
OnBreak

Figure 23. ConsolelO component settlngs

After the modifications it is ready to generate updated code using Processor Expert. To
do this click in the generate code button located in the up right corner of the
“Components” window.

It is necessary to compile the project to verify that there are no errors while using the
generated code. To compile the project go to the “CodeWarrior Projects” window. Click in
the Project name and then click in the compile button. In Figure 24 are the steps.

5 CIC++ - CodeWarrior Development Studio
File Edit Search Project Run Processor Expert Window He

i S qimmmi{ 2 - V-

] CodeWarrior Projedguild FLASH for project MQXLite_Freedom P

|:-laz F B &2 | File Name = ‘ Propertie
File Name =~ Build » Name
=1 S MQXLite_Freedom : FLASH < =
+ [~ Documentation = % Cloc
(= FLASH ‘ Initic
[= Generated_Code Wab
% ProcessorExpert.pe + CPU
[~ Project_Headers E = Cloc
¥ (= Project_Settings . =8
+ (= Sources ;|

Figure 24. Compiling the project

Validate that the “Problems” tab has no errors listed to ensure a success compilation.

It is time now to add the MQXLite component. Click in the “Components Library” tab as
figure 25 shows. Then click in the Alphabetical tab and look for the “MQXLite” component.
Double clicking in the “MQXLite” component makes it to be included in the project. This is
illustrated in Figure 26. NOTE: Skip this step if you used the wizard to create an MQX-
Lite project.

%) Components Library ﬂ@ Inspector - 101 |
@ S |iohabetical - Assistant | Processors |

Component Compone

08 poitice | Lo—]

Q RTC_LDD Logical Dew er
@ Serial_LDD Logical Device Driver
@ SPIMaster _LDD Logical Device Driver
@ SPISlave_LDD Logical Device Driver
Q TimerInt_LDD Logical Device Driver
Q TimerUnit_LDD Logical Device Driver
@ TSS_Library High

@ TwoKeys High

%] TWR_KL25Z48M_LED_GR High

R P RPN

Figure 25. Components Library

‘L5, Components - MQXLite_Freedom 5 L
=R-0= R T
= (= Generator_Configurations
FLaSH
= B oss
+ iﬁ
=I-[= Processors
+ 4P Cpu:MKLZSZ128VLK4
= (= Components
= @ CsIO1:ConsolelO
@ 101:Serial_LDD[ConsoleIO\ConsolelO_Serial_LDD]

Figure 26. New component added to Processor Expert project: MQXLite

The MQXLite default configuration includes 2 basic subcomponents; a system tick and at
least one task. By expanding the “MQX1:MQXLite" it is possible to see that the two first
subcomponents are the ones mentioned before. Figure 27 testifies these facts.

=

5. Components - MQKLite_Freedom 2
S
== Generator_Configurations

¥ FLasH

= E O5s

@ SystemTimer 1: TimerUnit_LDD[MQ¥Lite) SystemTimer]
+ 08 Taski:MQXLite_task{MQxLite| Task]
E_ _int_default_ist
H _int_disable
i _int_enable
M _int_exception_isr

Lol

Figure 27. MQXLite subcomponents

The first MQXLIte subcomponent is the “SystemTimerl:TimerUnit_LDD”. This is the heart
of the system. The system tick is being generated with the
“SystemTimerl:TimerUnit_LDD". Figure 27 shows that the
“SystemTimerl:TimerUnit_LDD” subcomponent is marked with errors. This is because it
is necessary to provide configure information for the clocks. This way the timer can
configure the module correctly. Figure 28 shows the values to be updated in the
“Component Inspector” tab when a click is given in the “SystemTimer1l:TimerUnit_LDD”
subcomponent.

'% Components Library % *Component Inspector - SystemTimerl &2

Properties . Methods Events
Mame Walue Details
Module name SysTick SysTick
Counter SYST_CWR SYST_CVR
Counter direction Down
Counter width 24 bits
Walue type Optimal uint32_t
- Input clock source Internal
Counter frequency 48 MHz — @ 48 MHz
= Counter restart On-match
Period device SYST_RVR SYST_RVR
Period 5ms 5ms
= Interrupt Enabled
Interrupt priority medium priority 2
Chaninel list 0
= Initialization
Enabled in init, code no
Auto initialization no

[+ Event mask

Figure 28. Configuring System Tick for MQXLite

9. Atthis point it is possible to re-generate code and re-compile to ensure that everything is
configured correctly. Repeat the steps 3, 4 and 5 to perform these operations.

10. By default, when the MQXLite component is added a task is also included in this
component. Take a look to figure 29 to identify where the default task is located.

| [Codewarrior Projects ©2

File Name » Build

= =% MQXLite_Freedom : FLASH
=] %,‘;b Binaries

(= Documentation

(= FLASH

(= Generated_Code

(= MQX_sources

‘% ProcessorExpert.pe

(= Project_Headers

+ (= Project_Settings

+ (= Sources

H &

| &5. Components - MQXLite_Freedom 2

= 08| MQX1:MQXLite

ﬁ SystemTimer 1 : TimerUnit_LDD[MK

= 08 Taski:MQxLite_task[M0x
Bl Taski_task
B _int_default_jsr
B _int_disable
B _int_enable
a _ink_exception_isr
W _int_get_default_isr
B _int_get_exception_handler

£ Commander 2

=0 ’% Components Library % Component Inspector - Taskl 27

= S _— =
g 18, | B 5 &2 | File Name

~

%

==

o2

Properties Methods Events

Name Value
MName Taskl
Entry point function Taskl_task
Stack size 1024
Priority 9
Creation parameter 1]

+ Attributes

||| [€] max_tasks.c £3 \€] ProcessorExpert.c

e NAME ~ DESCRIPTION
i task_init_data -
LA Returns : Nothing

NG 7|

|~

™

vr:a.

Figure 29. Default first MQXLite task

®/
void Taskl_task(uint3z_t cuk_inic_&a:a]l
{

int counter = 0;

while {1} ¢
councer++;

/* Write your code here ... */

In order to access the source code of this default task it is necessary to double click in
the name of the task component. In this case it is “Taskl_task”. The code will be opened
at the right side of the CodeWarrior screen showing the definition of the task source code.

Controlling the RGB LED

The Freedom — KL25Z board includes a RGB LED that is connected to 3 PWMs from the
MCU. Figure 30 shows these connections.

RGB LED FEATURE P14

TP13

® D3
PTB1S g@/\!\ LEDRGB _RED 1 4 |LEDRGB GREEN R7 PTB19
20 Pava R 20
T 2] # | 3 LEDRGB BLUE 1 NN013 pg(35)
20 =
TP17

CLV1A-FKB-CJIM1F1BBTR4S3

Figure 30. RGB LED schematics connections in the Freedom — KL25Z

The schematic above shows that the RGB LED is connected to PTB18, PTB19 and D13.
This information is used to configure the 3 PWMs. The board also includes an 12C Inertial
sensor. The data from this sensor is used to control the RGB LED.

The first step is to create 2 timer components. The first timer is controlling the R (red) G
(green) and the second timer controls the B (blue)

Look for the “TimerUnit_LDD” in the component library and add it to the Processor Expert
window with a simple double click.

It is necessary to change the name to standardize the source code. To modify the name
of the component give a right click on it and then give the “PWMTimerRG” name. This
name means that this PWM controls the Red and Green LED inside the RGB LED.
Figure 31 shows the details.

E=. Components - MQULite_Freedom 3 S 0|l g
SR =3
» U [Rename component }
== Generator_Configurations
ﬁ FLASH Component name

-l 055 PWMTimerRG| (G

+ 08| MQR1:MQRLite
=i = Processors

+ '23 Cpu:MKLZ5Z128YLK4

B,
= &= Components

@ cslotconsoelo ok | (4

View Source

& Commander 53 | v Component Enabled

Inspector

Inspector - Pinned

g4y Import project Code Generation >
[Import example project
g2y Import MCU executable f
5 New MCU project

« Project Creation

Remove Componernt from Project
Help on Component
Save Component Settings As Template

Figure 31. Modify component name.

4. By clicking in the new component the Component Inspector appears allowing the
configuration for this. The configuration shall be the same as Figure 32.

MName Value Details

Module name TPM2 TPM2
Counter TPM2_CNT TPM2_CNT
Counter direction Up
Counter width 16 bits
Walue type Optimal uint32_t
= Input clock source Internal
Counter frequency 24 MHz 24 MHz
= Counter restart On-overrun
COverrun period 2. 730667 ms 2.731 ms
= Interrupt Enabled
Interrupt priority medium priority 2
= Channel list 2
= Channel 0
- Mode Compare
Compare TPM2_Cov TPM2_COY
Offset 0 timer-ticks 0 timer-ticks
=/ Output on compare Set
Output on overrun Clear
Initial state Low
Cutput pin TSIO_CH11JPTBLS/TPMZ_CHO TSIO_CH11/PTELS{TPMZ_CHO
- Interrupt Enabled
Interrupt priority medium priority 2
- Channel 1
-1 Mode Compare
Compare TPMZ_C1Y TPMZ_C1Y
Offset 21845 timer-ticks 21845 timer-ticks
= Output on compare Set
Output on overrun Clear
Initial state Lo
Output pin TSI0_CH12{PTB19{TPMZ_CH1 TSI0_CH12{PTB19{TPMZ_CH1
+ Interrupt Disabled
= Initialization
Enabled in init. code yes
Auto initialization no

+ Event mask

Figure 32. Configuring the “PWMTimerRG” component

5. Look for the “TimerUnit_LDD” in the component library and add it to the Processor Expert
window with a simple double click.

6. Itis necessary to change the name to standardize the source code. To modify the name
of the component give a right click on it and then type the “PWMTimerB” name. This
name means that this PWM controls the Blue LED inside the RGB LED. Figure 33 shows
the details.

‘B3 Components - MQXLite_Freedom 5

= (= Generator_Configurations
FLasH
=& 0ss
+ M8 MQx1:MQXLite
= (= Processors
+ 4P Cpu:MKLZSZ128VLKe
= E*- Components
@ Cs101:Consolel
+ €1 PWMTimerRG: TimerUnit_LDD
% §0) [TUL:TimerUnit_LDDA

£ Commander =

w Project Creation Inspector

g2y Import project

[Import example project
g2y Import MCU executable f
9 New MCU project

'3

View Source
v Component Enabled

|

H5 0%

=i

=
¥ Rename component

Component name

PMTimere] <

Inspector - Pinned
Code Generation

Remove Component From Project:
Help on Component
Save Component Settings As Template

Rename Component —O

Figure 33. Modlfy component hame.

By clicking in the new component the Component Inspector window appears to do the
configuration. The configuration shall be the same as Figure 34.

Name
Module name
Counter
Counter direction
Counter width
Yalue type
= Input clock source
Cournter Frequency
= Counter restart
Overrun period
Interrupt
= Channel list
= Channel 0
= Mode
Compare
Offset
(= Output on compare
QOutput on overrun
Initial state
Qutput pin
+ Interrupt
= Initialization
Enabled in init. code
Auto initialization
+ Event mask

Yalue
TPMO
TPMO_CNT
Up
16 bits
Optimal
Internal
24 MHz
On-overrun
2.730667 ms
Disabled
1

Compare

TPMO_C1V

43690 timer-ticks

Set

Clear

Low
ADCO_SESb/PTD1/SPI0_SCK/TPMO_CH1
Disabled

yes
no

Figure 34. Configuring the “PWMTimerB” component

Details
TPMO
TPMO_CNT
uint32_t

24 MHz

2.731 ms

TPMO_C1V
43690 timer-ticks

ADCO_SESh/PTD1/SPI0_SCK/TPMO_C...

For the “TimerUnit_LDD"” components it is hecessary to define the functions to be added
by the auto-generated code. To do this, click in the “Methods” tab under the Component
Inspector. These settings shall apply for the “PWMTimerRG” and the “PWMTimerB”.
Figure 35 illustrates the right configuration for the methods creation.

T CodeWarrior Projects | . Components - 12C_RGB_ &2

SR-A-K Properties | Methods . Events
= [= Generator_Configurations ==
& FLasH =
= (= 0Ss Deinit
+- 08 mox1:MQrLite Enable
= (= Processors Disable
+ '5 Cpu:MKL25Z128YLK4[FRDM_KLZSZ_CPU_48MHz] GetInputFrequencyReal
= (= Components GetInputFrequency
+ @ PWMTimerB: TimerUnit_LDD[PWMTimerB] SetPeriodTicks
@ 6D PWMTimerRG: TimerUnit_LDD[PWMTimerRG) GetPeriodTicks
x !',ﬂ 12C:12C_LDD ResetCounter
6 Cs101:Consolel0 GetCounterValue
SetOffsetTicks
GetOffsetTicks
GetCaptureValue
SelectOutputaction
SelectCaptureEdge

=0 % Components Library % Component Inspector - PWMTimerB 3

Yalue
generate code
generate code
generate code
generate code
don't generate code
don't generate code

don't general
don't generate code
generate code
generate code
generate code
don't generate code
don't generate code
don't generate code

10.

11.

Figure 35. “PWMTimerRG” and the “PWMTimerB” methods creation definition

Look for the “I2C_LDD” in the component library and add it to the Processor Expert

window with a simple double click.

It is necessary to change the name to standardize the source code. To modify the name

of the component give a right click on it and give the “I2C” name.

By clicking in the new component the Component Inspector appears allowing the
configuration for this. The configuration shall be the same as Figure 36.

Name
12C channel
= Interrupt service
Interrupt priority
- Settings
Mode selection
= MASTER mode
= Initialization
Address mode
Target slave address init
+ SLAYE mode
- Pins
=/ SDA pin
SDA pin
= SCL pin
SCL pin
Internal frequency (multiplier Factor)
Bits 0-2 of Frequency divider register
Bits 3-S of Frequency divider register
SCL Frequency
SDA Hold
SCL start Hold
SCL stop Hold
= Initialization
Enabled in init code
Auto initialization

Value

12C0
Enabled
medium priority

MASTER

Enabler
7-bit addressing

1D
Disabled

PTE2S{TPMO_CH1/I2C0_SDA

PTE24/TPMO_CHOJ12C0_SCL
24 MHz

101

100

75 kHz

yes
no

Figure 36. Configuring the “I2C” component

Details
12C0

PTE2S/TPMO_CH1/I12C0O_SDA

PTE24/TPMO_CHOJ12C0_SCL
24 MHz

Clock conf, 0: 75 kHz

Clock conf. 0: 2.042 us
Clock conf. 0: 6.583 us
Clock conf. 0; 6,708 us

12. For the “I2C_LDD” components it is necessary to define the functions to be added by the
auto-generated code. To do this click in the “Methods” tab under the Component
Inspector. Figure 37 illustrates the right configuration for the methods creation.

5

] CodeWarrior Projects | 5. Components - I2C_RGE_ &3 —m ’% Components Library 5% Component Inspector - 12C &2

=] 5 CF 8 7 || properties | Methods “_Events
= (= Generator_Configurations Mame Yalue
i FLasH Init
= = 058 Deinit generate code
08 MQx1:MQXLite Enable don't generate code
= = Processors Disable don't generate code
4F) Cpu:MKLZSZ128YLK4[FRI MasterSendBlock generate code
=/ (= Components MasterGetBlockSentStatus don't generate code
+ @ PWMTimerB: TimerUnit _LDD[P/ MasterReceiveBlock generate code
+ gﬁ PWMTimerRG: TimerUnit_LDD[F MasterGetBlockReceivedStatus don't generate code

+ 89 [12C;12¢_LOD | Slavesendblock do de

0 Cs01:Consolelo SlaveGetBlockSentStatus !
SlaveGetSentDatalum
SlaveCancelTransmissionBlock
SlaveReceiveBlock
SlaveGetBlockReceivedsStatus
SlaveGetReceivedDatallum
SlaveCancelReceptionBlock ste code
SelectSlaveDevice don't generate code

GetError don't generate code
CheckBus generate code

GetStats don't generate code
ClearStats jon't

Main
Figure 37. The “I2C” methods creation definition

13. All the needed components were added at this point. To validate that everything is
correct it re-generate and compile the code. Check that the “Problems” tab for no errors
listed to ensure a successful compilation.

6.1 Adding the source code

The source code to develop this application is divided in 2 sections; the code for the 12C and the
code for the PWMs. The first code enables the communication with the inertial sensor through
I2C. Then the PWM code is added. The full source code can be found in the appendix. The
following steps make emphasis in the key sections of the source code.

1. All this should happen in the MQXLite task. Expand the MQXLite component until you
reach the “Task1_task” subcomponent. Double click on it to make the source code
appear at the right hand of the screen. Figure 38 is an example of how it looks.

T Components - MOELite_Freedam &8 =0 @ mepe_tasks.c 32

Sl =S - I e
= 8] Mw1:MOsLite ry void Taskl task(uint3Z_t task init data)
0 SystemTimert: TimerUnit_LDDIMORLibe)SystemTimer] — {
= EJ Taskl:MQuLite_task[MoxLite) Task]
B Taski_task

Figure 38. Accessing the MQXLike task source code

2. The Taskl_task holds the source code for the only MQXLite task that we have configured.
The following code initializes the 12C and is added at the beginning of the Taskl _task()
function.

I2C Devicelata = IZC Init (&Dataltate);

Error = !ReadldecPRegs (I2C DevieeData, &Datastate, CTRL REG 1, ACC REG 3IZE, &Data):;

if ('Error) |
Data = (ACTIVE BEIT MASE | F_READ EIT MAZE): f£* Set active mode bit and fast read mode hitc *
Error = !WritelcoRegs (IZC_DeviceDats, &Data3tate, CTRL_REG 1, ACC_REG SIZE, &Data);

i
if (!'Error) |

Data = 0O;
Error = !ReadAccRegs (I2C Devicelata, &Datastate, CTRL REG 1, ACC REG 3IZE, &Data):
if ['Error) {

if (Data != (ACTIVE BIT MASE | F_READ BIT MASE)) |

Error = TRUE;

H
Figure 39. 12C initialization source code

The function 12C_lInit() starts the low level driver. The function ReadAccRegs() is
ensuring that we have communication with the device (in this case, the inertial sensor).
We need to activate the device and set the fast read mode and validate that these values
were written correctly in the device register.

The 12C driver is configured as an interrupt. It is necessary to open the Event.c file to add
the source code of the 12C interrupt service routine. Figure 40 shows the source code of
the interrupt routines that need to be modified. The function declarations are already in
the Event.c file. It is necessary to add only the body of the function.

[Codeiwarrior Projects 5 =0 %Cnmpnnents Library %Cnmpnnent Inspectar - Cpu &2
=1 | o = O -
2% S &2 | File Name \€] mogx_tasks.c |.€] Events.c &2
File Name Bliid s void I2C_OnMasterBlockSent (LDD_TUserDats *UserDataPtr)
= =% MQ¥Lite_Freedom : FLASH ¢
| F
® 3%, Binaries /% Write your code here ... #/
* (= Documentation ThataState *DataState = (TDhataState*)UserDataPtr:
=~ FLASH DataState—-»>Sent = TRUE:

= Generated_Code 1

3 F

= MQK_sources
% ProcessorExpert.pe rvoid I2C OnMasterBlockReceived (LDD TUserData *UserDataPtr)
= Project_Headers I

* (= Project_Settings /% Write wyour code here ... */

Thataitate *Datal3tate = ([(ThataZtate®) UserDataPtr:
Dataitate-»>Received = TRUE:
¥

= [= Sources
+ || Events.c
+ |h| Events.h
* |Lg| mgx_tasks.c
F k| mgx_tasks.h
+ |c| ProcessorExpert.c b

AU SR

Figure 40. ISR Source code

The function I12C_OnMasterBlockSent() is called when I2C is in master mode and
finishes the transmission of the data successfully. The function
I2C_OnMasterBlockReceived() is called when 12C is in master mode and finishes the
reception of the data successfully. Then both functions update the state and data to be
sent to the application.

Now the PWMs are initialized.

PWMTimerRG DeviceData = PWHTimerRG_Init (NULL) :
PWHTimerE_DewviceData = PWHTimerE Init (NULL) ;

Figure 41. PWM initialization source code

Then the code enters into an infinite loop where it reads for any update from the 12C
device. This data is then used to modify the ticks in the PWM and give a different color in
the RGB LED. Figure 42 is the view of this part of the code.

while (1)
{
Error = !ReadiccRegs (IZC Devicelatsa,

if [!'Error) {

&Dataltace, OUT_X M3B, 3 % ACC REG 3IZE, (uintd t¥) Color):

PWNTimerRG Ensble (PUMTimerRG Devicelata)

PUNTimerE_Enable (PWHTimerE DeviceData) ;
PUHTimerRG_SetOffsetTicks(PUHTimerRG_DeviceData, 0,1000% {1<< {abs (Color[0]/10))))

PUMTimerRG_SetOffsetTicks (FUNTimerRG DeviceData, 1, 10007 (1<<(abs(Color[1] F100000:
FPWHTimerE_SetOffsetTicks (PUMTimerE DevieceData, 0, 1000%*(1l<<{abs(Color[Z] A10111)

H
_time delay ticks(1);
i

Figure 42. Main infinite loop

5. Once all the code changes were done it is necessary to recompile the project and
validate that there are no errors. A strong suggestion is to replace the content of the files
max_tasks.c, mgx_tasks.h and Events.c from the appendixes into the CW project. This

ensures that no code is missing.

6.2 Debugging the source code
The source code is ready for debugging. The following steps explain how to perform this
operation.

1. Go to the debug button (bug icon) in the tools bar and expand the debugging menu just
like Figure 43 demonstrates it. Then click in “Debug Configurations...” option to enter into

the available debug settings for the project.

¥ CIC++ - MOXLite_Freedom/Sources/mqx_tasks.h - CodeWarrior Developn
File Edit Search Project Run Processor Expert Window Help

[t] 1 MQXLite_Freedom_FLASH_OpenSDA

-

™} CodeWarrior Projects £2
Y B B Debug As

File Name gy Debug Configurations... (S

- L’__(’,, mm_ﬁ,m : FLASH Organize Favorites...
Figure 43. Entering into Debug Configurations.

2. Select the options “MQXLite_Freedom_Flash_OpenSDA” and then click “Debug”.

| Name: | MQXLRe_Freedom_FLASH_OpenS0A

type Fter text [[5) Main = Arguments | %5 Debugger | . Source | g Environment |] Common | ™1
[€] Codewarrior attach C{C++ application
[€] Codewarrior Connect |
el Project: MQXLite_Freedom —WOwse.. .
= |C | Codewarrior Download
(€] MQULite_Freedom_FLASH_OpensD| ASH/MQXLIte_Freedom.elf (searchProject... | [Browse... | [variables... |

Launch Group
Build (if required) before launching

Build configuration: [FLasH v
[select configuration using 'C/C++ Application’

(O Enable auto buid

(%) Use workspace settings

Connection

e [———— -

Filter matched 5 of S items

Filter by Project:

[@12¢_res _max
= MQ¥Lite_Freedom

@ (2) m—oes]
Figure 44. Starting debugging session

3. At this point the CodeWarrior perspective view changes and after the source code is
downloaded to the board we are able to start the debugging. Figure 45 illustrates a
debugging session.

¥4 pebug - MOXLite_Freedom/Sources/ProcessorExpert.c - CodeWarrior Development Studio [._HE]E
File Edit Search Project Run - Window Help
] il 7 R-% P F- i PR e B | %5 Debug | B clct+
%5 Debug 52 = O || 9= varisbles &2 oo Registers | 99 Breakpnints} a Memorﬂ ﬂModu\esw =0
- - 8T X % |05~
i B e S| 2T | Marne Value
r.;_JIJ__I B @ o 4ET’ %
= E MQ¥Lite_Freedom_FLASH_OpensDA [Codeiwarrior Download] H
B 5? ARM Processars, MOwLite_Freedom. elf (Suspended) [<_] 1) [l]
=g Thread [ID: 0x0] (Suspended: Signal 'Halt' received. Descript
L= 2 maind BracessarEynart o0 NNNNNNANS M
[il 1l | m
[£] ProcessorExpert.c 52 = O |22 Disassembly &2 =08
/% User includes (#include below this line is not maintained by Im =
| Enter location here M
int main{void)
£ _ _ @ (18 (SR 5 e
/% Write your local warisble definition here */ S
33 { E’
#*** Processor Expert internal initialization. DON'T REMOWE THI » D000B60S: il {7, il
PE low lewel init(i: [v] 0000080a: add r7,sp, #0 [v]
< | B | D)
£3 Commander &3 7 = B[4 problems (E Console &2 x 5 | G 5@|@|@‘ = B-r45- =0
ARM Py MQiLite_Freedom. elf
= Project Creation w Build/Det | EEETE, (T Hest e
£g Import project Q I
[“j Import example project (It
£g Import MCU executable file -2
% Mew MCU project
2 —— B

| | |
. u

Figure 45. CodeWarrior debugging perspective view

4. At this point it is possible to let the code free run by pressing the “F8” key or debug it
step-by-step by pressing the “F6” key.

7 Conclusion

This document describes the steps needed to start a simple MQXLite project and make usage of
the 12C and PWM module from the KL257128VLK4 micro controller (found in the FREEDOM —

KL25Z board).

The addition of new components and source code using Processor Expert and MQXLite is simple
and fast. This helps to spend less time in the environment tools which gives more time to develop
the application architecture.

The introduction of MQXLite + Processor Expert + KL25Z board is a key combination for
prototyping new products.

Appendix A

/**

el Filename : mgx_tasks.c

rx Project : ProcessorExpert

el Processor : MKL25Z128VLK4

*x Component : Events

*x Version : Driver 01.00

*x Compiler : GNU C Compiler

*x Date/Time : 2012-09-12, 23:41, # CodeGen: 3
*x Abstract

*x This is user"s event module.

*x Put your event handler code here.

el Settings

e Contents

*x Taskl_task - void Taskl_task(uint32_t task_init_data);

*x

RSP AP P I T R R PP I I
/* MODULE mqgx_tasks */

#include ""Cpu.h"
#include "Events.h"
#include "mgx_tasks.h"

/* User includes (#include below this line is not maintained by Processor Expert) */
/* MMA8451Q IOMap */

/* External 3-axis accelerometer data register addresses */
#define OUT_X_MSB 0x01

#define OUT_X_LSB 0x02

#define OUT_Y_MSB 0x03

#define OUT_Y_LSB 0x04

#define OUT_Z_MSB 0x05

#define OUT_Z_LSB 0x06

/* External 3-axis accelerometer control register addresses */
#define CTRL_REG_1 Ox2A

/* External 3-axis accelerometer control register bit masks */
#define ACTIVE_BIT_MASK 0x01

#define F_READ_BIT_MASK 0x02

#define ACC_REG_SIZE 1U
#define READ_COUNT 5U

LDD_TDeviceData *12C_DeviceData = NULL;
TDhataState DataState;

LDD_TDeviceData *PWMTimerRG_DeviceData = NULL;
LDD_TDeviceData *PWMTimerB_DeviceData = NULL;

bool ReadAccRegs(LDD_TDeviceData *I12CPtr,
TDataState *DataState, uint8_t Address, uint8_t RegCount, uint8_t *Buffer)
{

LDD_12C_TBusState BusState;
DataState->Sent = FALSE;
12C_MasterSendBlock(12CPtr, &Address, sizeof(Address), LDD_12C_NO_SEND_STOP);
while (!DataState->Sent) {}
ifT (IDataState->Sent) {
return FALSE;

}
DataState->Received = FALSE;
12C_MasterReceiveBlock(12CPtr, Buffer, RegCount, LDD_12C_SEND_STOP);
while (!DataState->Received) {}
do {12C_CheckBus(I12CPtr, &BusState);}
while (BusState != LDD_I2C_IDLE);
iT (IDataState->Received) {
return FALSE;

¥
return TRUE;
}

bool WriteAccRegs(LDD_TDeviceData *12CPtr,
TDataState *DataState, uint8_t Address, uint8_t RegCount, uint8_t *Data)
{

LDD_12C_TBusState BusState;
const uint8_t MAX_REG_COUNT = 16;
uint8_t SendBuffer[MAX_REG_COUNT];

SendBuffer[0] = Address;

memcpy(&SendBuffer[1], Data, RegCount);

DataState->Sent = FALSE;

12C_MasterSendBlock(12CPtr, &SendBuffer, RegCount + 1, LDD_12C_SEND_STOP);
while (!DataState->Sent) {}

do {12C_CheckBus(I12CPtr, &BusState);}
while(BusState != LDD_12C_IDLE);
if (!DataState->Sent) {

return FALSE;

¥
return TRUE;

}
/*
*k
el Event : Taskl_task (module mgx_tasks)
*x Component : Taskl [MQXLite_task]
*x Description :
rx MQX task routine. The routine is generated into mgx_tasks.c
e file.
o Parameters
i NAME - DESCRIPTION
wx task_init_data -
* Returns : Nothing
*/
void Taskl_task(uint32_t task_init_data)
{
byte Data;

LDD_TError Error = 0O;
signed char Color[3] = {0,127,127}; // initialize to turqoise

printf(""Project description:\n");

printf(*"'12C example of communication with external accelerometer.\n");

printf("PWM is used for dimming the RGB LED in dependence on tilt of the board.\n");
printf(’'\n"");

// Initialize Accelerometer

12C_DeviceData = 12C_Init(&DataState);

Error = !IReadAccRegs(12C_DeviceData, &DataState, CTRL_REG_1, ACC_REG_SIZE, &Data);

if (YError) {
Data = (ACTIVE_BIT_MASK | F_READ_BIT_MASK); /* Set active mode bit and fast read mode bit */
Error = IWriteAccRegs(12C_DeviceData, &DataState, CTRL_REG_1, ACC_REG_SIZE, &Data);

}
if (YError) {
Data = 0;
Error = !'ReadAccRegs(12C_DeviceData, &DataState, CTRL_REG_1, ACC_REG_SIZE, &Data);
if (YError) {
if (Data = (ACTIVE_BIT_MASK | F_READ BIT MASK)) {
Error = TRUE;
}
}

/* Initialization passed? */
iT (YError) {
printf(""PASSED.\n"");
} else {
printf("FAILED.\n"");

iT (YError) {
printf("'Tilt your Freedom Board to change the RGB LED colors.\n");

PWMTimerRG_DeviceData = PWMTimerRG_Init(NULL);
PWMTimerB_DeviceData = PWMTimerB_Init(NULL);
while(l)

{

Error = IReadAccRegs(12C_DeviceData, &DataState, OUT_X MSB, 3 * ACC_REG_SIZE, (uint8_t*) Color);

// Read x,y,z acceleration data.

if (YError) {

PWMTimerRG_Enable(PWMTimerRG_DeviceData);
PWMTimerB_Enable(PWMTimerB_DeviceData);
PWMTimerRG_SetOffsetTicks(PWMTimerRG_DeviceData, 0,1000*(1<<(abs(Color[0]/10)))); // x axis -

red LED

PWMTimerRG_SetOffsetTicks(PWMTimerRG_DeviceData, 1, 1000*(1<<(abs(Color[1]/10)))); // y axis -

green LED

PWMTimerB_SetOffsetTicks(PWMTimerB_DeviceData, 0, 1000*(1<<(abs(Color[2]/10)))); // z axis -

blue LED

T
_time_delay_ticks(1);

}

/* END mgx_tasks */

/*

*k ""H ""H ""H ”'” ”'” ”"" ”"" ”"" ”"" ”"" ”"" ”"" ”"" ”"" ”"" ”"" ”"" ”"" = "" = "" = "" = "" = "" = "" 1 "" 1 "" 1 "" 1 "" = "" = "" = "" = "" 1 "" 1 +
*k

e This file was created by Processor Expert 10.0 [05.02]

e for the Freescale Kinetis series of microcontrollers.

*k

** 4

*/

Appendix B
S AP R
el Filename : Events.c

il Project : ProcessorExpert

el Processor : MKL25Z128VLK4

ol Component : Events

rx Version : Driver 01.00

*x Compiler : GNU C Compiler

ol Date/Time : 2012-09-11, 22:14, # CodeGen: 0O
e Abstract

il This is user”s event module.

e Put your event handler code here.

e Settings

*x Contents .

o Cpu_OnNMIINT - void Cpu_OnNMIINT(void);

*k

*k

/* MODULE Events */

</

#include "Cpu.h™
#include "Events._h"
#include "mgx_tasks.h"

/* User includes (#include below this line is not maintained by Processor Expert) */

/*
Kk
*x Event : Cpu_OnNMIINT (module Events)
Kk
*x Component : Cpu [MKL25Z128LK4]
Fx Description :
el This event is called when the Non maskable interrupt had
o occurred. This event is automatically enabled when the <NMI
o interrrupt> property is set to "Enabled”.
e Parameters : None
Fx Returns : Nothing
*k
*/
void Cpu_OnNMIINT(void)
/* Write your code here ... */
3
/*
*k
o Event : 101_OnBlockReceived (module Events)
*k
o Component : 101 [Serial_LDD]
e Description :
*x This event is called when the requested number of data is
*x moved to the input buffer.
el Parameters :
el NAME - DESCRIPTION
e * UserDataPtr - Pointer to the user or
*x RTOS specific data. This pointer is passed
*x as the parameter of Init method.
Fx Returns : Nothing
*k
*/
void 101_OnBlockReceived(LDD_TUserData *UserDataPtr)
/* Write your code here ... */
}

/*

*x

*x

*x

*x

*k

*x

*x

Event : 101_OnBlockSent (module Events)

Component : 101 [Serial_LDD]

Description :
This event is called after the last character from the
output buffer is moved to the transmitter.

e Parameters :
rx NAME - DESCRIPTION
Fx * UserDataPtr - Pointer to the user or
e RTOS specific data. This pointer is passed
e as the parameter of Init method.
o Returns : Nothing
*k
*/
void 101_OnBlockSent(LDD_TUserData *UserDataPtr)
/* Write your code here ... */
}
/*
*k
*x Event : PWMTimerRG_OnCounterRestart (module Events)
Kk
*x Component : PWMTimerRG [TimerUnit_LDD]
*x Description :
*x Called if counter overflow/underflow or counter is
*x reinitialized by modulo or compare register matching.
e OnCounterRestart event and Timer unit must be enabled. See
e <SetEventMask> and <GetEventMask> methods. This event is
e available only if a <Interrupt> is enabled.
e Parameters :
el NAME - DESCRIPTION
e * UserDataPtr - Pointer to the user or
kel RTOS specific data. The pointer passed as
o the parameter of Init method.
e Returns : Nothing
*k
*/
void PWMTimerRG_OnCounterRestart(LDD_TUserData *UserDataPtr)
/* Write your code here ... */
/*
*k
o Event : PWMTimerRG_OnChannelO0 (module Events)
Kk
*x Component : PWMTimerRG [TimerUnit_LDD]
*x Description :

*x

*x

*x

*x

*x

Called if compare register match the counter registers or
capture register has a new content. OnChannelO event and
Timer unit must be enabled. See <SetEventMask> and
<GetEventMask> methods. This event is available only if a
<Interrupt> is enabled.

el Parameters :
ol NAME - DESCRIPTION
Fx * UserDataPtr - Pointer to the user or
kel RTOS specific data. The pointer passed as
e the parameter of Init method.
e Returns : Nothing
*k
*/
void PWMTimerRG_OnChannelO(LDD_TUserData *UserDataPtr)
/* Write your code here ... */
}
/*
*x
o Event : 12C_OnMasterBlockSent (module Events)
*k
e Component : 12C [12C_LDD]
e Description :

*x

*x

*x

*x

*x

*x

*x

This event is called when 12C in master mode finishes the
transmission of the data successfully. This event is not
available for the SLAVE mode and if MasterSendBlock is
disabled.
Parameters :
NAME - DESCRIPTION
* UserDataPtr - Pointer to the user or

*x

*x

*x

*x

RTOS specific data. This pointer is passed
as the parameter of Init method.
Returns : Nothing

*/

void 12C_OnMasterBlockSent(LDD_TUserData *UserDataPtr)

/* Write your code here ... */
TDataState *DataState = (TDataState*)UserDataPtr;
DataState->Sent = TRUE;

}

void 12C_OnMasterBlockReceived(LDD_TUserData *UserDataPtr)

/* Write your code here ... */
TDataState *DataState = (TDataState*)UserDataPtr;
DataState->Received = TRUE;

¥
/*
*k
*x Event > 12C_OnError (module Events)
Kk
*x Component : 12C [12C_LDD]
el Description :
*x This event is called when an error (e.g. Arbitration lost)
e occurs. The errors can be read with GetError method.
il Parameters
ol NAME - DESCRIPTION
el * UserDataPtr - Pointer to the user or
e RTOS specific data. This pointer is passed
*E as the parameter of Init method.
el Returns : Nothing
*k
*/
void 12C_OnError(LDD_TUserData *UserDataPtr)
/* Write your code here ... */
}

/* END Events */

/>

Kok oy

*k

*k

*k

*x

*x

This file was created by Processor Expert 10.0 [05.02]
for the Freescale Kinetis series of microcontrollers.

R

*/

Appendix C

/**

el Filename : mgx_tasks.h

rx Project : ProcessorExpert
*x Processor : MKL25Z128VLK4
rx Component : Events

*x Version : Driver 01.00

*x Compiler > GNU C Compiler
*x Date/Time : 2012-09-12, 23:41, # CodeGen: 3
*x Abstract

*k

*k

*k

*x

*x

*x

This is user®s event module.
Put your event handler code here.
Settings
Contents :
Taskl_task - void Taskl_task(uint32_t task_init_data);

xR

#ifndef _ mgx_tasks_H
#define __mgx_tasks_H
/* MODULE mqgx_tasks */

#include "PE_Types.h"
#include "PE_Error.h"
#include "PE_Const.h"
#include "10_Map.h"
#include ""Csl01.h"
#include "101.h"
#include "MQX1.h"

#include "SystemTimerl._h"
#include "PWMTimerRG.h"
#include "PWMTimerB.h"
#include "12C.h"
#include "PE_LDD.h"

typedef struct {
volatile bool Sent;
volatile bool Received;
} TDataState;

void Taskl_task(uint32_t task_init_data);

/*

*k

e Event : Taskl_task (module mgx_tasks)
*x

*x Component : Taskl [MQXLite_task]

o Description :

o MQX task routine. The routine is generated into mgx_tasks.c
il file.

il Parameters

*x NAME - DESCRIPTION

*x task_init_data -

*x Returns : Nothing

Kk

*/

/* END mgx_tasks */
#endif /* __mqgx_tasks H*/

/*

*k "","",""”"'”'"”"'”"'”"'”'"”"'”'"”"'”"'”"'”'"”"'”'"”"'”"'”"'”""”""”""”""”""”"””'””'””"” "” "” "” "”
*k

e This file was created by Processor Expert 10.0 [05.02]

e for the Freescale Kinetis series of microcontrollers.

*k

** 4

*/

