
TM

March 2014

TM 2

• StarterTRAK TRK-MPC5604P Evaluation Board

• USB cable

• Installation media

• Instruction pamphlet

TM 3

• The TRK-MPC5604P Fast Start Kit contains Single installer that
installs all software tools, documents and example projects:

1. RAppID init and RAppID pin wizard for MPC560xP with permanent
license

2. Utility to add RAppID generated code to CodeWarrior 10.5 Project

3. CodeWarrior for MPC56xx 10.5 SE

4. Low Level Drivers (LLDs) for MPC5604P

5. High Level Drivers (HLDs) for StarterTRAK TRK-MPC5604P

6. RAppID Bootloader utility

7. FreeMASTER utility

8. Simple LED application examples that demonstrates the usage of
software tools, LLDs and HLDs.

TM 4

Start installation process by executing

setup.exe located in the installation

media.

Click on Next

Accept the License agreement and click

on Next to start installation of

CodeWarrior 10.5

TM 5

Select Install to begin installation of Fast

Start Kit tools.

This will launch FreeMASTER installer.

TM 6

Accept license agreement and default

installation directory by clicking on Next.

Accept default options in the “Select

Components” window by selecting Next.

TM 7

Accept default Program Folder by clicking

on Next.

Select Finish to complete FreeMASTER

installation. This will launch RAppID Init

installer.

TM 8

Start RAppID Init installation by clicking on

Next button

Accept license agreement and default

directory location by clicking on Next

TM 9

Accept default location for destination

folder by clicking on Next

Click On Install button

TM 10

Accept default location for RAppID project

data folder by clicking on Ok

Click On Finish button to complete

RAppID Init installation. This will launch

RAppID Boot loader installer.

TM 11

Click on Next to start RAppID boot loader

installation.

Accept license agreement and click on

Next

TM 12

Accept default destination folder by

accepting by clicking on Next.

Start installation by selecting Install.

After installation is complete, select

Finish to complete installation.

This will start CodeWarrior installation.

TM 13

Start CodeWarrior installation by clicking

on Next

Accept License agreement and Product

Release announcement by clicking on

Next

TM 14

Choose Qorriva component and click on

Next

Accept the default install location by

selecting Next

TM 15

Select Next to begin CodeWarrior

installation.

After installation is complete, select Finish

to complete installation.

TM 16

• Intuitive, easy-to-use graphical user interface (GUI)

• Comprehensive initialization of the CPU, memory and peripherals

• Automatic DMA register setting from peripherals for basic modes

• Built-in consistency checks to minimize incorrect settings

• Automatic report generation of settings

• Efficient C and assembly code generation for compilers such as

Wind River®, Green Hills® and CodeWarrior

• Online documentation and built-in tool tips

• Installation comes with many example projects

• Generates complete infrastructure code for MCU startup

TM 17

• Provisions for revision management

• Automatic date and time stamps on generated code and reports

• Modular code generation—generate code for any or all peripherals

• Option to generate code for RAM or Flash

• Flexible Initialization sequence

• Project import/export capability for distributed development teams

TM 18

Reset Vector Code RCHW, Section Map…

Low Level Setup Code From Reset to Main, crt0, Stack,…

Main Function – System Init Function Example Main, Init Sequence Function…

Device Initialization Device and Peripheral Initialization Code

Interrupt/Exception Infrastructure Interrupt Vector Table, Handler, ISR functions

Driver Utilities Low Functionality Drivers

TM 19

• The Fast Start Kit provides a utility to assist in adding

RAppID generated code to a CodeWarrior project

• After creating a empty CodeWarrior project for the required

microcontroller, the user can invoke the utility

rsp2cw10.exe which will add RAppID generated code and

sets up the CodeWarrior project by adding all the

CodeWarrior setup variables to enable clean build.

TM 20

• In the installation disk, the following low level driver code is

provided

− GPIO

− ADC

− UART

− CAN

TM 21

• uint8_t GPIO_GetState (uint16_t ch)

− This function returns the state of requested GPIO pin

• void GPIO_SetState (uint16_t ch, uint8_t value)

− This function sets the GPIO pin to the specified state

TM 22

• uint16_t A2D_GetSingleCh_ADC0 (uint32_t ch)

− This function sets up, starts, and returns a conversion for a single
ADC0 channel

• uint16_t A2D_GetSingleCh_ADC1 (uint32_t ch)

− This function Sets up, starts, and returns a conversion for a single
ADC1 channel

• uint16_t A2D_GetChResult_ADC0(uint32_t ch)

− This function returns the result for a single ADC0 channel

• uint16_t A2D_GetChResult_ADC1(uint32_t ch)

− This function returns the result for a single ADC1 channel

• void A2D_SetupCh_ADC0(uint32_t ch)

− This function sets up channel for the ADC0 conversion

• void A2D_SetupCh_ADC1(uint32_t ch)

− This function sets up channel for the ADC1 conversion

TM 23

• void UartTxMsg(uint8_t *u8TxData, uint32_t u32Size)

− This function transmits a message in buffer u8TxData of size
u32Size

• uint8_t UartRxDataByte(void)

− This function returns data from UART buffer

• uint32_t UartRxNewDataSize(void)

− This function checks how much new data there is in UART buffer

• uint8_t UartRxBufEmpty(void)

− This function checks if the UART buffer is empty

• void UartBufInit(void)

− This function initializes UART Buffer

• void UartRxFillBuf(void)

− This function fills the UART Buffer from the UART RX peripheral

TM 24

• void SetCanRxFilter(uint32_t id, uint8_t mb, uint8_t
ext)

− This function sets up the mailboxes on the specified CAN
channel and works for standard and extended IDs.

• void CanTxMsg (uint32_t id, uint8_t mb, uint8_t dlc,
uint8_t data[], uint8_t ext)

− This function transmits a CAN message.

• can_msg_struct CanRxMsg (uint8_t mb)

− This function receives a CAN message.

• uint8_t CanRxMbFull (uint8_t mb)

− This function checks if CAN Mail box is full.

• uint8_t CanTxMbEmpty (uint8_t mb)

− This function checks if CAN Mail box is empty.

TM 25

• In the installation disk, the following high level driver code

is provided

− Potentiometer

− Photo Sensor

− SBC

TM 26

• uint16_t Pot_Get_Value(void)

− This function sets up, starts, and returns conversion value for

Potentiometer channel (PE0, ADC1 Channel 5 of TRK-

MPC5604P board).

TM 27

Photo Sensor High Level Driver code

• uint16_t Photo_Sensor_Get_Value (void)

− This function sets up, starts, and returns conversion value for

Photo sensor channel (PE1, ADC0 Channel 4 of TRK-

MPC5604P board).

TM 28

SBC High Level Driver code

• void SBC_Init_DBG(void)

− Sets SBC in TRK-MPC5604P board to enable CAN. It is

assumed that SBC is in Debug mode and watchdog refresh is

required only on initialization.

TM 29

• The RAppID Boot Loader is a tool developed by Freescale to

help with the development of software for Freescale MCUs by

allowing the customer a method to update software of a MCU

through a serial link using CCP.

• The RAppID Boot Loader works with the built in Boot Assist

Module (BAM) included in the Freescale Qorivva & PX series

family of parts.

• The Boot Loader provides a streamlined method for

programming code into FLASH or RAM on either target EVBs or

custom boards.

• The Boot Loader has two modes of operation, for use as a stand-

alone PC desktop GUI utility, or for integration with different user

required tools chains through a command line interface (i.e.

Eclipse Plug-in, MatLab/SimuLink etc.).

TM 30

• FreeMASTER allows users to debug applications in true real-

time through its ability to watch and modify variables.

• Remote control capability allows it to be used as a diagnostic tool

for debugging customer applications remotely across a network.

• It is an outstanding tool for demonstrating algorithm or

application execution and variable outputs.

• It provides monitoring/visualization of application variables in the

same manner as a classical oscilloscope with a CRT.

• Simple RS232 native connection and other options possible on

selected platforms (BDM, JTAG, CAN,...)

• Built-in support for standard variable types (integer, floating

point, bit fields)

TM 31

• The next few slides will demonstrate an example project
that describes steps to configure MPC5604P, generate,
build, flash and test the code using various tools provided
with TRK-MPC5604P Fast Start Kit

• In this example we will use RAppID Init tool to configure
and generate initialization code for MPC5604P

• We will use the GPIO, ADC and CAN driver code supplied
with the installation

• We will use CodeWarrior 10.5 to build the code

• We will use RAppID Boot loader utility to flash the code to
the target

• The example turns on/off LEDs based on Switch input,
Potentiometer input and CAN commands.

TM 32

• LED1 turns on when switch S1 is in pressed state and

turned off when S1 is in released state

• LED2 is turned On/Off based on potentiometer input

• LED3 is turned On/Off based on CAN command input

• PD10 is driven using FlexPWM signal and the duty signal

can be increased by input switch S4 and decreased by

input switch S3.

• PA0 is configured as eTimer input capture function which

is used to calculate duty cycle of PWM output of PD4 by

connecting output PD4 to input PA0.

TM 33

• The next few slides will demonstrate how to create RAppID

project to configure all the pins and peripherals required for

this example and generate code for CodeWarrior compiler.

TM 34

Start a new project by clicking on “New Project Wizard” button

Launch RAppID init by

double clicking on

RAppID init desktop icon

TM 35

Select a Part MPC5604P and

select Start Wizard
Select a Package 144 QFP and

select Next

TM 36

Potentiometer is connected to PE0.

In ADC tab, configure PE0 as ADC input and

add appropriate name in User Assigned Signal

Name edit box.

TM 37

• TRK-MPC5604P contains MCZ3390S5EK system basis

chip (SBC) with integrated CAN transceiver and LIN 2.0

interface.

• DSPI 0 is connected to SBC. We need to configure DSPI 0

as master and SBC as slave so that SBC can be

configured to enable CAN by sending appropriate

commands via DSPI 0.

TM 38

• The connection between DSPI 0 of
microcontroller and SBC is shown in this
picture

• Configure DSPI 0 pins as follows to
enable communication with SBC.

− PC4 is connected to CS pin of SBC.
Configure PC4 as DSPI_0 Chip select 0
output

− PC5 is connected to Clock input pin of
SBC. Configure PC5 as DSPI_0 Clock
output

− PC6 is connected to MOSI pin of SBC.
Configure PC6 as DSPI_0 Data output

− PC7 is connected to MISO pin of SBC.
Configure PC7 as DSPI_0 Data input

Microcontroller pins

SBC pins

TM 39

TM 40

• The CAN TX and CAN RX pins of SBC are connected to

the pins PB0 and PB1 of CAN 0 peripheral of the

microcontroller.

• We need to configure PB0 as CAN 0 TX pin and PB1 as

CAN 0 RX pin.

TM 41

In FlexCAN tab, configure PB0 as CAN_0 Tx and PB01 as CAN_0 Rx pins

and signal names.

TM 42

In this example, we are using PD10 as FlexPWM output. In

FlexPWM tab, select PD10 as output and add user signal name.

TM 43

• In this example, we are using Switch S1, S3

and S4 as input and the LED1, LED2 and

LED3 as outputs.

• Switch S1, S3 and S4 are connected to PD0,

PD2 and PD3. Configure these 3 pins as

inputs.

• LED1, LED2 and LED3 are connected to PD4

PD5 and PD6. Configure these 3 pins as

outputs.

TM 44

TM 45

• In this example, we will use Virtual serial

port of TRK-MPC5604P board for serial

communication.

• The PB2 and PB3 of microcontroller in

TRK-MPC5604P board are connected to

TX and RX pins of virtual serial port.

• We need to configure PB2 as LINFlex0 TX

pin and PB3 as LINFlex0 RX pin.

TM 46

In LINFlex tab, configure PB2 as LINFlex_0 Tx and PB3 as LINFlex_0 Rx pins

and add user signal names.

TM 47

In this example, we are using eTimer Channel 1 as input capture function to

calculate duty signal of PWM signal. In eTimer tab, configure PA0 as eTimer

input pin and add user signal names.

Select Next and skip next window by selecting Next to configure Mode Entry

TM 48

• RAppID tool generates code to set the microcontroller in

DRUN mode at startup.

• In this example, we will use system PLL (PLL0) as system

clock source. Select System PLL from the drop down

under SYSTEM column in DRUN mode.

TM 49

TM 50

Configure the peripherals to

be enabled during different

operational modes.

Select “Normal” configuration

This will enable the

“peripheral run configuration” and

“low power configuration”

across different operational modes

Then it will assign these two

configurations across all peripherals

TM 51

We will configure system clock to 32MHz. The default XOSC frequency in

RAppID is 40MHz but TRK-MPC5604P uses 8 MHz crystal. Change XOSC

value to 8 MHz. Change Input Division factor to 2 to set the system clock at 32

MHz.

TM 52

By default, watchdog is enabled in

MPC5604P. In this example, we

will not use Watchdog feature.

Disable Watchdog Timer in SWT

tab .

TM 53

We will monitor switch inputs

S3 and S4 every 250ms in PIT

Channel 0 interrupt. Select PIT

tab and

-Enable Timer module

-Enable PIT Channel 0 timer

- Set load value to 8000000 to

set the time out value to 250

ms

-Enable PIT Channel 0

interrupt

-Select Next to start peripheral

configuration.

TM 54

In Peripheral Configuration window, select DSPI to configure DSPI peripheral

TM 55

DSPI 0 should be set to master

mode to send commands to

SBC. Select Master mode

DSPI 0 Chip Select 0 is

connected to SBC. Set Chip

select 0 inactive state to High

Disable Halt mode

Select OK to finish DSPI 0

configuration.

In the Peripheral Configuration

window, select LinFlex tile to

start LinFlex configuration.

TM 56

• We will use UART of LINFlex 0 to communicate serially via

virtual serial port of TRK-MPC5604P board

• We will use baud rate of 115,200

• When Baud Rate Factor and Fractional Baud Rate Factor

values are selected, RAppID automatically calculates and

displays the resulting baud rate.

TM 57

Set Baud Rate Factor to 17

Set Fractional Baud Rate

Factor to 6/16

This should set the Baud

rate to approx. 115,200

TM 58

In UART tab, Enable UART

Set Word Length to 8 bit data

Enable Transmitter and

Receiver

Select OK to finish LINFlex 0

configuration

In the Peripheral

Configuration window, select

FlexPWM tile to start

FlexPWM configuration.

TM 59

In this example, we will configure

FlexPWM sub module 0 , PWM

A output to generate center-

aligned PWM signals. The values

of FlexPWM parameters are set

as shown.

The PWM clock source is 16 MHz

IRC clock.

The Period of PWM signal =

(2048 + 2048) * 1/16 = 256 ms

The PWM signal high time =

(1024+1024) * 1/16 = 128 ms.

Duty Cycle = 128/256 = 50%

TM 60

We need to configure PD10

output (PWM A, sub module 0)

for PWM signal

-Enable PWA 0 Output

- Enable PWM Generator for sub

module 0

-Set Load Okay bit

TM 61

In Configuration 1 tab

-Set INIT counter value to -2048

-Set Pair Operation to

Independent PWM

TM 62

In Configuration 2 tab

-Set MAX counter value to 2048

-Set PWM A High to -1024

-Set PWM A Low to 1024

TM 63

In Configuration 4 tab

-Set PWM A Fault Mask to 0

-Set PWM A Dead Count to 0

-Select Ok to finish FlexPWM

configuration.

-In the Peripheral Configuration

window, select FlexCAN tile to

start FlexCAN configuration.

TM 64

In TRK-MPC5604P board, the CAN 0

peripheral is connected to CAN

transceiver in SBC.

In this example, we will use CAN speed

of 500 k bits/sec.

Enable CAN module

Disable Freeze and Halt modes

Set Clock Source to System

Set CAN speed to 500. RAppID will

configure Phase segments and

Propagation segment values

automatically.

Select OK to finish CAN configuration.

In the Peripheral Configuration window,

select ADC tile to start ADC

configuration.

TM 65

In the Device Setup tab,

Disable Power Down option to

put ADC in normal mode

TM 66

The Potentiometer in TRK-

MPC5604P board is

connected to PE0 which is

ADC 1 Channel 5.

In this example we will use

Normal conversion mode.

Enable Channel 5 in Normal

mode

Select OK to finish ADC

peripheral configuration.

In the Peripheral

Configuration window, select

eTimer tile to start eTimer

configuration.

TM 67

In this example, we will use

channel 0 of the eTimer for

measuring the frequency and

duty cycle. The function uses the

capture functionality of the

eTimer.

The capture 1 register is set for

capture the counter value on

rising edge of signal and the

capture 2 register is set for

capture the counter value on

falling edge of input signal.

The capture registers have two-

deep FIFO so they are able to

capture two values.

TM 68

The Motor Control clock is

used as the primary source of

clock and the input signal as

secondary source. The counter

is counting repeatedly the

primary source and captures

its values on edges produced

by the secondary source or

input.

To accomplish this, select

values in eTimer Configuration

1 tab as shown in the picture.

TM 69

The capture 1 register is set

for capture the counter value

on rising edge of signal and

the capture 2 register is set

for capture the counter value

on falling edge of input

signal. The capture registers

have two-deep FIFO so they

are able to capture two

values.

To accomplish this, select

values in eTimer

Configuration 3 tab as

shown in the picture.

TM 70

The frequency of the input PWM signal can be calculated as follows:

f [kHz] = motc_clk [kHz]/(CAPT1.R[1] - CAPT1.R[0])

The duty cycle of the input PWM signal can be calculated as follows:

duty cycle= ((CAPT2.R[0] - CAPT1.R[0])*100)/(CAPT1.R[1] - CAPT1.R[0])

TM 71

This completes Peripheral

configuration.

Select Next to configure PIT

interrupt.

TM 72

In this example, PIT Channel 0

interrupt is used to monitor the state

of input switches S3 and S4.

Configure PIT Ch0 interrupt as

shown.

Click on PIT Channel 0 Edit button

to add code to ISR function.

TM 73

Add the following code to ISR to decrease Flex PWM duty

cycle when S3 is pressed and increase the duty cycle when

S4 is pressed.

/* Enter user code here */

#define MAX_PWM_COUNT 2048

if (!GPIO_GetState(50) && GPIO_GetState(51))

{

 if ((FLEXPWM_0.SUB[0].VAL[3].R - 0x80) > 0)

 {

 FLEXPWM_0.SUB[0].VAL[2].R = FLEXPWM_0.SUB[0].VAL[2].R + 0x80;

 FLEXPWM_0.SUB[0].VAL[3].R = FLEXPWM_0.SUB[0].VAL[3].R - 0x80;

 FLEXPWM_0.MCTRL.B.LDOK = 1;

 }

}

if (GPIO_GetState(50) && !GPIO_GetState(51))

{

 if ((FLEXPWM_0.SUB[0].VAL[3].R + 0x80) < MAX_PWM_COUNT)

 {

 FLEXPWM_0.SUB[0].VAL[2].R = FLEXPWM_0.SUB[0].VAL[2].R - 0x80;

 FLEXPWM_0.SUB[0].VAL[3].R = FLEXPWM_0.SUB[0].VAL[3].R + 0x80;

 FLEXPWM_0.MCTRL.B.LDOK = 1;

 }

}

Select OK to exit from Edit Code window.

TM 74

Select Exit Wizard to exit to main RAppID

window

TM 75

• We have completed all pin and peripheral configurations

required for this example project.

• Now we are ready to generate code. By default, RAppID

generates code for RAM. In this example we will generate

code for Flash.

• By default, RAppID generates code for all peripherals. In

this example, we will select only the peripherals that are

used in the example for code generation.

TM 76

By Default, RAppID is configured to

generate code for RAM. For this

example, we will change the

configuration to generate code for

Flash.

From main RAppID window, select

menu View->View Section Map.

Change Target to FLASH

Select Ok

TM 77

From main RAppID window,

select menu Configuration->Code

Generation.

Unselect code generation option

for unused peripherals as shown.

Check ECC for code generation.

This is required to generate

initialization code for SRAM and

ECC register.

Select CodeWarrior compiler

Select Code for Flash option

Select the directory where code

should be generated

Select Ok

TM 78

Select Code Generation icon

to generate code

Save the project when

prompted

Now we are ready to build

and run the project.

TM 79

• RAppID init tool can generate a comprehensive report on

the project

• Since we have finished with configuration for this example,

we are ready to generate a report for this project.

TM 80

From main RAppID window, select

menu Configuration->Report

Generation.

Unselect report generation option for

unused peripherals

Select the directory where report

should be generated

Select Ok

TM 81

Select Report Generation

icon to generate report

Save the project when

prompted

TM 82

• RAppID tool generates a detailed report of the project that

covers

− Initialization Technique, both system and peripheral

− Detailed Pin Allocation report

− Section Map report

− A detailed report of configuration of each peripheral

TM 83

TM 84

TM 85

TM 86

TM 87

• We will use driver code supplied with the installation media

to perform low level functions. Copy the driver code to the

directory where RAppID code was generated

TM 88

• We will use FreeMASTER utility to monitor global variables. To add this
ability, we have to add FreeMASTER code which is provided with the
installation media.

• Copy all the code from sub-folders src_common and
src_platforms\MPC56xx to the location where RAppID code is generated.

• FreeMASTER can be used in polling or interrupt mode via CAN or SCI. In
this example, you will use FreeMASTER in poll mode via SCI.

• To use FreeMASTER in polling or interrupt mode you will have to make
changes to FreeMASTER configuration header file.

 - Rename freemaster_cfg.h.example file to freemaster_cfg.h. This file
contains all the macro definitions available for the FreeMASTER
configuration.

 - Select poll driven SCI communication and disable TSA by making following
changes to freemaster_cfg.h:

 #define FMSTR_SHORT_INTR 0

 #define FMSTR_POLL_DRIVEN 1

 #define FMSTR_USE_TSA 0

TM 89

• The main.c generated by RAppID initializes peripherals

and includes an empty while loop. We have to add code to

main.c to:

− Turn on LED1 when Switch S1 is pressed and turn off when

S1 is not pressed

− Turn on LED2 when potentiometer input value is <=512

otherwise turn off LED2

− Turn on LED3 when command ‘1’ is sent via CAN and turn off

LED3 when ‘0’ is sent

− Add FreeMASTER supporting code

− Add code to calculate frequency and duty cycle of eTimer

channel 0 PWM input signal

TM 90

Add following global variables to main.c:

 /* CAN messages to transmit */

 unsigned char msgOKCAN[8] = {1,1,0,0,0,0,0,0};

 unsigned char msgErrorCAN[8] = {1,0xFF,0,0,0,0,0,0};

 vuint16_t potValue;/* Potentiometer input value */

 vuint16_t switchState; /* State of input switch S1 */

 vuint32_t PWMDutyCycle; /* Duty cycle of input PWM signal */

 vuint32_t PWMFreq; /* Frequency of input PWM signal */

Note: This example CodeWarrior project along with source
code is provided with the installation disk. You can use
Import project option to create this example project within
CodeWarrior.

TM 91

Add following include files:
 #include "freemaster.h"

 #include "pot_hld.h"

 #include "sbc_hld.h"

 #include "CANapi.h"

 #include "gpio_drv.h"

Add following code to main function:

Add a call to driver to initialize SBC to enable CAN communication:

 SBC_Init_DBG();

The 4 LEDs are active low and they turn on at start up. Turn them off:

 GPIO_SetState(52, 1);

 GPIO_SetState(53, 1);

 GPIO_SetState(54, 1);

 GPIO_SetState(55, 1);

TM 92

 We will receive CAN messages with CAN ID = 1. Add a call to CAN driver to

setup mailbox 0 with Id = 1:

 SetCanRxFilter(1, 0, 0);

Call FreeMASTER internal variables initialization function:

 FMSTR_Init();

TM 93

Within while loop, add function calls to process FreeMASTER, GPIO, ADC,

CAN and duty cycle calculation.

 while(1)

 {

 FMSTR_Poll();

 ProcessGPIO();

 ProcessADC();

 ProcessCAN();

 CalcDC();

 }

TM 94

We will add function ProcessCAN to process messages received via CAN. This

function will call the CAN driver functions to check if any CAN message is received.

If a CAN message is received with first data byte value of 1, it will turn On LED3 and

if the first data byte value is 0, it will turn Off LED3.

If the first data byte is either 0 or 1, it will transmit CAN message msgOKCAN,

other wise it will transmit CAN message msgErrorCAN. The code is shown below:

TM 95

void ProcessCAN(void)

{

 can_msg_struct msgCanRX;

 if (CanRxMbFull(0) == 1) /* Check if CAN message received */

 {

 msgCanRX = CanRxMsg(0);

 if (msgCanRX.data[0] == 0) /* If received data byte is 0, turn off LED3 and send positive response */

 {

 GPIO_SetState(54, 1);

 CanTxMsg (2, 1, 8, (uint8_t *)msgOKCAN, 0);

 }

 else if (msgCanRX.data[0] == 1) /* If received data byte is 1, turn on LED3 and send positive response */

 {

 GPIO_SetState(54, 0);

 CanTxMsg (2, 1, 8, (uint8_t *)msgOKCAN, 0);

 }

TM 96

 else /* If received data byte is not 0 or 1, send a negative response */

 {

 CanTxMsg (2, 1, 8, (uint8_t *)msgErrorCAN, 0);

 }

 }

}

TM 97

We will add function ProcessADC to process potentiometer input. If

potentiometer value is <=512, it will turn on LED2, otherwise turn off LED2.

The code is shown below:

void ProcessADC(void)

{

 potValue = Pot_Get_Value();

 if(potValue <= 512) /* If Potentiometer input is <= 512 turn on LED2, other wise turn off LED2 */

 {

 GPIO_SetState(53, 0);

 }

 else

 {

 GPIO_SetState(53, 1);

 }

}

TM 98

We will add function ProcessGPIO to process input switch S1. If switch S1

is pressed, it will turn On LED1, otherwise turn Off LED1. The code is

shown below:

void ProcessGPIO(void)

{

 switchState = GPIO_GetState(48); /* Check switch S1 state */

 if (!switchState) /* If Switch S1 is pressed, turn on LED1, other wise turn off LED1*/

 {

 GPIO_SetState(52, 0);

 }

 else

 {

 GPIO_SetState(52, 1);

 }

}

TM 99

We will add function CalcDC to calculate duty cycle and frequency of the

PWM signal captured by eTimer channel 0. The code is shown below:

 void CalcDC(void)

 {

 vuint32_t PWMPeriod;

 vuint16_t measure[4];

 ETIMER_0.CHANNEL[0].CCCTRL.B.ARM = 1;

 if (ETIMER_0.CHANNEL[0].STS.B.ICF1 == 0 || ETIMER_0.CHANNEL[0].STS.B.ICF2 == 0)

 {

 return;

 }

 ETIMER_0.CHANNEL[0].CCCTRL.B.ARM = 0;

 ETIMER_0.CHANNEL[0].STS.B.ICF1 = 0x1; //clear capture 1 flag

 ETIMER_0.CHANNEL[0].STS.B.ICF2 = 0x1; //clear capture 2 flag

 measure[0] = ETIMER_0.CHANNEL[0].CAPT1.R; //read first capture1 value

 measure[1] = ETIMER_0.CHANNEL[0].CAPT1.R; //read second capture 1 value

 measure[2] = ETIMER_0.CHANNEL[0].CAPT2.R; //read first capture2 value

 measure[3] = ETIMER_0.CHANNEL[0].CAPT2.R; //read second capture2 value

TM 100

 PWMPeriod = (vuint32_t) (measure[1] - measure[0]);

 if (PWMPeriod != 0)

 {

 PWMDutyCycle = (vuint32_t)((measure[2] - measure[0]))*100/ (vuint32_t) (measure[1] -

measure[0]); //PWMOnTime/PWMPeriod;

 PWMFreq = 16000000/PWMPeriod;

 }

 }

TM 101

• Now we are ready to compile and build the code. To do

this,

− create an empty CodeWarrior project

− add RAppID generated code and driver code to the

CodeWarrior project using CodeWarrior script utility –

rsp2cw10.exe

− Build the code using Codewarrior

• The next few slides explains these steps

TM 102

Launch CodeWarrior 10.5 from

Windows Start menu

Provide a workspace name

Select OK

TM 103

We will first create a

Bareboard project for

MPC5604P

To create a new Bareboard

project, Select “New MCU

project” from Commander

window.

TM 104

Provide a name for the project –

Training_LED_Example

select Next

Select Qorivva->MPC560xP->MPC5604P device from the

list

Select Next

TM 105

Accept the default connection

option and select Next

We will be using C code and VLE instructions for this

example project. Accept the default options and select

Finish

TM 106

• When Finish is selected, CodeWarrior creates a new bareboard
project with CodeWarrior generated code and linker file included
in the project.

• Since we have generated code using RAppID for
Training_LED_Example project, we want to remove all the
CodeWarrior generated code and add RAppID generated code
and linker file along with the driver code to be included in the
CodeWarrior project.

• This can be done using CodeWarrior project maker utility –
rsp2cw10.exe

• First close the Training_LED_Example project by selecting menu
Project->Close Project

• Run rsp2cw10 utility which is provided with the installation disk:
This can be done by selecting the file from the installed directory
or by using the menu in RAppID - External Tools->CWInterface

TM 107

Provide directory path where RAppID code

is generated

Provide directory path where CodeWarrior

project is created

Provide the path of linker file created by

RAppID tool

The script will remove CodeWarrior

generated code from the project and will

add all the code in the directory specified in

the “RAppID Source Configuration” edit

box.

The script will also add/modify all the

CodeWarrior project settings required to

build Training_LED_Example project

Execute rsp2cw10 utility from RAppID menu

TM 108

Now re-open the Training_LED_Example project by selecting menu Project->Open Project

Since we generated code for Flash, we need to change the build configuration to Flash.

Change the build option to Flash as shown.

TM 109

Now the project should

contain:

RAppID generated linker file

RAppID generated source

files and driver code copied

from the installation disk

TM 110

To build Training_LED_Example

project , select Build from

Commander window

TM 111

The build command will

produce 2 executable files:

 Training_LED_Example.elf

(executable with debug

symbols)

Training_LED_Example.mot

(S-record)

TM 112

• Since we are using CAN in this
example, we need to enable
CAN.

• To enable CAN, the board
needs to power SBC using
external 12V supply.

• Connect jumpers across
SBC_5V of J1

• Connect External power to JP1

• Connect your computer to JP2
via USB cable. This
connection provides virtual
serial port. Confirm this by
checking available COM ports
in Windows Device manager.
In the example shown, the
COM port assigned is COM14

TM 113

• In this example, we will

use Virtual serial port for

UART communication.

To enable this, connect

jumper J7 (TXD_EN) and

J8 (RXD_EN) to position

1-2

• To enable CAN

communication, connect

J6 as shown.

TM 114

• To enable LEDs, connect

all 4 jumpers in J27

• To enable input switches,

connect all 4 jumpers in

J26

TM 115

• Before Flashing the code, make

sure the TRK-MPC5604P board

is connected to external power

and to your computer via USB

cable

• Set the jumper of J17 to position

1-2 which pulls FAB high and

jumper J18 and J19 to position 2-

3 to set ABS0 and ABS2 low

• We will use RAppID Bootloader

utility to flash S-record file

Training_LED_Example.mot

using serial port

TM 116

• Launch RAppID bootloader utility from

Windows Start menu

• Select Serial Port as Comm Mode

• Select the correct COM channel

• Select 9600 baud

• Select MPC5604/3P as MCU part number

• Set BAM status as Enabled

• Select default password

• Enter the path for the file to be flashed:

Training_LED_Example.mot

• Select Start Boot Loader button to start the

flash process

NOTE: If boot loader displays error about wrong password, try 0xFFFFFFFFFFFFFFFF

instead of default password option. If your board has microcontroller with previous mask

set, the default password will not work.

TM 117

• When asked to cycle power to
MCU, press the reset button
on the board. Flashing
process should start.

• After Flash is complete, Move
the jumper J17 to position 2-3
to pull FAB low.

• Turn the power off to the
module and re-apply the
power

• The code should be running
now.

TM 118

• Press switch S1 to turn on LED1 and release S1 to turn off

LED1

• Turn the potentiometer halfway to observe LED2 turning

On/Off.

• Send CAN command with first byte = 1 to turn on LED3

and first byte = 0 to turn off LED3

• Connect pin PD10 to a scope and check the duty cycle of

PWM signal is 50%. Press switch S3 to decrease the duty

cycle and S4 to increase the duty cycle.

• Connect PD10 to PA0 and using FreeMASTER, check the

value of duty cycle calculated by eTimer input channel 0

(PA0).

TM 119

Using a CAN communication tool like CANalyzer or IXXAT MiniMon,

Send CAN command ID = 1 and first data byte = 1 to turn on LED3

Send CAN command ID = 1 and first data byte = 0 to turn off LED3

TM 120

Connect PD10 to a scope and check the PWM output signal

TM 121

Launch FreeMASTER utility from

Windows Start menu.

Select Project > Options >Communication

from menu and set the communication

port number and baud rate of 115200.

TM 122

Select the example application MAP file. In this

example, the MAP file is the .elf file generated

during the build process. FreeMASTER uses the

information about the variables, their names, types,

and addresses contained in the .elf file.

From the MAP tab, select the MAP file (.elf file) as

shown.

TM 123

Add the 2 global variables in this example project to monitor in the watch window – potValue

and PWMDutyCycle as follows:

- Right-click on the variable grid

- Select Create New Watched Var… from the menu. This will pop up a variable selection

window.

- Select potValue from the drop down and and select OK.

- Using similar steps, add PWMDutyCycle to watch window.

TM 124

Select the icon Start/Stop communication to start communication and observe the 2 watch

variables getting updated.

- When you rotate the potentiometer, the watch window should get updated.

- When switch S3 is pressed, the duty cycle value should decrease and when switch S4 is

pressed, the duty cycle value should increase.

TM 125

• Overview of tools provided with Fast Start Kit for TRK-

MPC5604P

• Utilized RAppID Init Tools for fast easy infrastructure

configuration and code generation

• Generated comprehensive report on the project using

RAppID Init tool

• Utilized supporting tools provided with the kit to help build

and flash code on to the target

• Described setting up and using the TRK-MPC5604P

evaluation board

TM

