Variable-Length Encoding (VLE)
Programming Environments Manual:

A Supplement to the EREF

VLEPEM
Rev. 0
07/2007

frees,calpw

semicon ductor

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284
+1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 169 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064

Japan

0120 191014 or

+81 35437 9125

support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 2666 8080

support.asia @freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217

+1-800 441-2447 or

+1-303-675-2140

Fax: +1-303-675-2150

LDCForFreescaleSemiconductor
@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
The Power Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by Power.org. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2007. All rights reserved.

BUILTON |

freescale

semiconductor

Document Number: VLEPEM
Rev. 0, 07/2007

Paragraph
Number

11
12
121
1.3

21
211
212
2121
2122
22
221
222
2221
2222
223
2.3
231
2311
23111
23112
2312
2313
232
233
24
241
242
243
244
245
24.6
247

Contents

Page
Title Number
About This Book
Chapter 1
Introduction
(@7 VT OSSR 1-1
Documentation CONVENTIONS..........ccuiiriiereirie sttt se e et s e es e e s 1-1
Description of INStruction OPErationccevererierenineeeee e 1-2
Instruction MNemonics and OPEraNGS..........ooioeeirreereriere e 1-2
Chapter 2
Instruction Model
VLE SIOrage AQOreSSINGcveiiiieiiirieiiee et sr e sn e 2-1
Data Storage Addressing MOES..........ccviieiriiieie et 2-1
Instruction Storage Addressing MOES.........ccccueririeiireeiere e 2-2
Misaligned, Mismatched, and Byte-Ordering I nstruction Storage Exceptions....... 2-2
VLE EXCeption Syndrome BitScccieiiriieree e e 2-3
VLE Compatibility with the Standard ArchiteCture..............coeveoerinenine e 2-3
(@Y= VT SO 2-3
VLE Processor and Storage Control EXtENSIONScccereeirreeieneine e 2-3
INSEIUCLION EXTENSIONS ...ttt e 2-4
MMU EXEENSIONS.eiitieiieieieeeie et steesae st e st e s e e e enaeesaesseeseesee e enaeeseesseensesneennean 2-4
VLE LIMITAHONSeeiiieieie ettt ettt sne e e e e e enseenaeeneeneens 2-4
Branch Operation INSITUCHIONS........c..oiiiiiiere et 2-4
Branch ProCeSsor REQISIEN'Souiiiiiiiiireeieiir et st 2-4
Condition REGISIEN (CR) ...cueiuiieeiieieeie sttt ettt 2-5
Condition Register Setting for Compare INStructionsccceeeeveeveseeereeeeee 2-6
Condition Register Setting for the Bit Test INStruction ... veveciniecienns 2-6
LiNK REGISIEN (LR) ..ottt et e s e 2-6
Count REGISLEN (CTR)vieeieiieeiireeeee ettt e sr e sr e sr e ene e 2-6
BranCh INSLIUCLIONS........couiiie ettt s e e eneesreesee e e enneas 2-6
System LinKage INStIUCHIONS........cc.ciiiiieieiie et 2-7
INtEJEN INSEIUCTIONS ...ttt et r e eb e 2-8
INteger LOAd INSIIUCTIONS........ccueetiiieiieieeee et ee et 2-8
Integer Load and Store with Byte Reversal INSIruCtions..........ooccovvveeeeeeseeseenieenees 2-8
Integer Load and Store Multiple INSIrUCtIONS...........ooiiiieneeieee e 2-8
Integer Arithmetic INSIIUCTIONS.........ccuoiii e 2-8
INteger Trap INSITUCTIONS.ooeeeieeeiie ettt e 2-9
INteger SElECE INSIIUCTION ..ottt e 2-9
Integer Logical, Bit, and MOVE INSIIUCLIONS.........ccueiiiiineeie e 2-9

BookTitle, Rev. 1

Freescale Semiconductor iii

Contents

Paragraph Page
Number Title Number
25 Storage Control INSIFUCTIONSouiieieeieeee et e e 2-10
251 Storage Synchronization INSEIUCHIONS..........ooeeeiereiie e e e 2-10
252 Cache Management INSITUCHIONS...........ooiiirereniire e 2-10
253 Cache LocKing INSITUCLIONScoueiiiecie et 2-11
254 TLB Management INSITUCTIONS........cccoueiiie ettt e s 2-11
255 Instruction Alignment and Byte Orderingcooeeeeereeerieeieneee e 2-11
2.6 Additional Categories Avalablein VLE ... 2-11
Chapter 3
VLE Instruction Set

31 Supported POWEr ISA INSITUCTIONSoiuiiiiieieieeie ettt 31
3.2 Immediate Field and Displacement Field ENCOdiNgS..........covvveiineeienine e 34

Appendix A

VLE Instruction Formats

Al OVBIVIBIV ...ttt ettt ea e et e st e et e st e e e e seen e es e eseens e e e enseenseeneeeseesseeneenneensas A-1
A2 VLE INSITUCHION FOMMEES ...ttt e s s A-1
A21 INSEIUCION FIEIAS ... e e s A-1
A22 BD8 Form (16-Bit Branch INSIrUCLIONS)c.coeeirieiiereiie s A-3
A3 C Form (16-Bit Control INSIIUCLIONS)cc.ooiririeiiere et A-3
A4 IM5 Form (16-Bit register + immediate INSIrUCtioNS)cc.oveiererenineeineciereeie s A-4
A5 OIM5 Form (16-Bit Register + Offset Immediate INStructions)...........ccoeceveeeeeeieseeneens A-4
A.6 IM7 Form (16-Bit Load immediate INSIrUCLIONS)cccueveiiieriineiineeie e A-4
A7 R Form (16-Bit MoNadiC INSITUCLIONS)coueeiiriiicciiieeie et A-4
A8 RR Form (16-Bit DyadiC INSITUCLIONS)coueeiiriiiieiieieeie et A-4
A9 SD4 Form (16-Bit Load/Store INSIrUCLIONS)ccceveriirieeiireeiereeie e e A-5
A.10 BDL5 FOIM <.ttt e e et ne e nr e en e eneas A-5
All BD 24 FOIM <.ttt e e bt h et e nn et e e eneas A-5
A2 12 0 o o SRR PRR AR A-5
A.13 [LOA FFOIMN.c. ettt ettt ekt et se et st s e e e en e e en e neereas A-5
A.14 LLOL FFOIMN ..ttt et bbb se et bt eb e e en e e e eneas A-6
A.15 I 0] 1 ISP RR TP PR PORRTPRI A-6
A.16 SCIB FOIMMN. ...ttt sttt st s e e e e s e e e sa e e ehbeenseea e e e seeessaeenneens A-6
A.l7 I 20 o 1 o TSR P PP A-6

Appendix B

VLE Instruction Set Tables

BookTitle, Rev. 1

iv Freescale Semiconductor

Contents
Paragraph Page
Number Title Number
B.1 VLE Instruction Set Sorted by MNEeMONICcoiiiiiiiiicieece e B-1
B.2 VLE Instruction Set Sorted by OpCOdeocoooiiiiiiiieie e B-27

BookTitle, Rev. 1

Freescale Semiconductor %

Contents

Paragraph Page
Number Title Number

BookTitle, Rev. 1

vi Freescale Semiconductor

Figure
Number

A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10
A-11
A-12
A-13
A-14
A-15
A-16

Page

Title Number

BD8 INSIFUCLION FOIMEL ...ttt ettt eat e e e stae e e e bbe e e s e saseeeeesaasaeessesaneesaans A-3
(O 1S {8 (o1 0 T 01 2= SR A-3
[M5 INSETUCLTION FOIMEL...... oottt e et ee e s s e e s saa e e e e e sbaeee e s saseeeessanres A-4
OIMS INSITUCLTION FOIMMEL ...ttt e e e e st ee e e saae e e e saae e e s e ssbeeesssnnneaeas A-4
IM7 INSETUCLION FOIMNEL ...ttt et e et ee e s e ee s s saa b e e e s sbaeee e s saseaeeesanneas A-4
R INSEFUCLION FOMMEL ... vttt et e e et e e e st e e e e bbeee s e saseeeeesaasaeeesebaeeesasns A-4
RR INSIIUCLION FOIMMIEE ...ttt ettt e e e st ee s s ee b e e e s e sabeee s s saseaeessnraeeesaans A-4
D A LS (T o] 0] 11 A-5
BD15 INSETUCLION FOIMELeveiiiitieie ettt ee e et ee e et ae e s e abe e e s s saseeeeesaasaeessenraeeesanns A-5
BD24 INSLTUCLION FOIMELeeeiiiciieie ettt e etar e e e st ae s e et ae e e s e saseee e e ssasaeessebaeeesaans A-5
D8 INSIFUCHION FOIMIAL ...ttt ee et e s et eee et be e e e s sabeee e s saseeeeesabbeeesssrsreeeeeasns A-5
[16A INSETUCLION FOMM@E........eeiiiieiiee ettt e e ee e s s e e s e b be e e e saaeee e e sasraeeesanneas A-5
[16L INSIFUCHION FOIMIAE eeeeeieceeeie ettt s et e e b e s s ease e e e s sarae e e s bbeeeessaaneas A-6
Y IS U T o N o 7= AR A-6
SC18 INSIFUCTION FOIMIAL ... ittt e et ee e st ae e s e s e e s e sbseee e e sasaaeeeeessbeeeesssnneeeas A-6
LI20 INSEIUCLION FOMMELE........eeeeeeeceeeee ettt ettt ee e e et ee e e et e e e s e saaeee e e saaeaeesseraeeeeaans A-6

BookTitle, Rev. 1

Freescale Semiconductor vii

Figures

Figure Page
Number Title Number

BookTitle, Rev. 1

viii Freescale Semiconductor

Table
Number

2-1
2-2
2-3
2-4
2-5
2-6
3-1
3-2
A-1
B-1
B-2
B-3

Page

Title Number

Data Storage AdAresSSiNg MOES.........ccueiieiiieeie ittt s sr e 2-1
Instruction Storage AddresSSiNg MOOES............coviieieieiee et 2-2
CRO Field DESCIIPLIONS......cueieeeieeeiie ettt es et e sr e sb et eae e es e e e nesre e e 2-5
Condition Register Settings for Compare INSIrUCHIONScoviieiirieiereere e 2-6
BOSB2 FIeld ENCOAINGS......ceeieieiieitiie ettt ettt see e 2-7
BOL6 FIeld ENCOAINGS......ceeieieiieetieie ettt ettt e s e eb e 2-7
Non-VLE Instructions Listed by MNEMONICcccoueiiiiiiie e 31
Immediate Field and Displacement Field ENCOAINGScovviiiiiiiiicerce e 34
INSEIUCTION FTEIAS.......eceeei ettt e st se e A-1
Mode Dependency and Privilege ABDreviations ..o B-1
VLE Instruction Set Sorted by MNEeMONIC..........ooviieiiieiie e B-1
VLE Instruction Set Sorted Dy OPCOTE..........coiiiiiiiiiee e B-27

BookTitle, Rev. 1

Freescale Semiconductor ix

Tables

Table Page
Number Title Number

BookTitle, Rev. 1

X Freescale Semiconductor

About This Book

The primary objective of thismanual isto help programmers provide software that is compatible with
processors that implement the VLE category.

To locate any published errata or updates for this document, refer to the web at http://www.freescale.com.

This book is used as areference guide for assembler programmers. It uses a standardized format
instruction to describe each instruction, showing syntax, instruction format, register translation language
(RTL) code that describes how the instruction works, and alisting of which, if any, registers are affected.
At the bottom of each instruction entry is afigure that shows the operations on elements within source
operands and where the results of those operations are placed in the destination operand.

TheVLE Programming Interface Manual (VLE PIM) isareference guidefor high-level programmers. The
VLE PIM describes how programmers can access VLE functionality from programming languages such
as C and C++. It defines a programming model for use with the VLE instruction set. Processors that
implement the Power | SA usethe VLE instruction set as an extension to the base and embedded categories
of the Power |SA.

Because it isimportant to distinguish between the categories of the Power 1SA to ensure compatibility
across multiple platforms, those distinctions are shown clearly throughout this book. This document stays
consistent with the Power 1SA in referring to three levels, or programming environments, which are as
follows:

» User instruction set architecture (UISA)—The UISA definesthe level of the architecture to which
user-level software should conform. The Ul SA definesthebase user-level instruction set, user-level
registers, data types, memory conventions, and the memory and programming models seen by
application programmers.

* Virtual environment architecture (VEA)—TheVEA, whichisthe smallest component of the Power
architecture, definesadditional user-level functionality that fallsoutsidetypical user-level software
requirements. The VEA describes the memory model for an environment in which multiple
processors or other devices can access external memory and defines aspects of the cache model and
cache control instructions from a user-level perspective. VEA resources are particularly useful for
optimizing memory accesses and for managing resources in an environment in which other
processors and other devices can access external memory.

Implementations that conform to the VEA also conform to the UISA but may not necessarily
adhere to the OEA.

* Operating environment architecture (OEA)—The OEA defines supervisor-level resources
typically required by an operating system. It defines the memory management model,
supervisor-level registers, and the exception model.

Implementations that conform to the OEA aso conform to the UISA and VEA.

Variable-Length Encoding (VLE) Programming Environments Manual, Rev. 0

Freescale Semiconductor Xi

Most of thediscussionsonthe VLE areat the UISA level. For easein reference, thisbook and the processor
reference manuals have arranged the architecture information into topics that build on one another,
beginning with a description and complete summary of registers and instructions (for all three
environments) and progressing to more specialized topics such as the cache, exception, and memory
management models. As such, chapters may include information from multiple levels of the architecture,
but when discussing OEA and VEA, the level is noted in the text.

It is beyond the scope of this manual to describe individual devices that implement VLE. It must be kept
in mind that each processor that implements the Power ISA is unique in its implementation.

Theinformation in thisbook is subject to change without notice, asdescribed in the disclaimerson thetitle
page of thisbook. Aswith any technical documentation, it isthe readers’ responsibility to be surethey are
using the most recent version of the documentation. For more information, contact your sales
representative or visit our web site at http://www.freescale.com.

Audience

This manual isintended for system software and hardware devel opers, and for application programmers
who want to develop productsusing the VLE. It is assumed that the reader understands operating systems,
microprocessor system design, and the basic principles of RISC processing and details of the Power ISA.

This book describes how VLE interacts with the other components of the Power architecture.

Organization

Following is a summary and a brief description of the major sections of this manual:

» Chapter 1, “Introduction,” isuseful for those who want a general understanding of the features and
functions of the VLE. This chapter provides an overview of how the VLE definesthe register set,
operand conventions, addressing modes, instruction set, and interrupt model.

» Chapter 2, “Instruction Model,” describesthe VLE instruction set, including operand conventions,
addressing modes, and instruction syntax. It also provides a brief description of the VLE
instructions organized by function.

» Chapter 3,“VLE Instruction Set,” functionsasahandbook for the VLE instruction set. Instructions
are sorted by mnemonic. Each instruction description includes the instruction formats and figures
where it helps in understanding what the instruction does.

» Appendix A, “VLE Instruction Formats,” lists all of the VLE formats, grouped according to
mnemonic, opcode, and form, in both decimal and binary order.

» Appendix B, “VLE Instruction Set Tables,” listsal VLE instructions, grouped according to
mnemonic and opcode.

e Thismanua also includes an index.

Suggested Reading

This section listsadditional reading that provides background for the information in this manual aswell as
genera information about the VLE and the Power 1SA.

Variable-Length Encoding (VLE) Programming Environments Manual, Rev. 0

Xii Freescale Semiconductor

General Information

The following documentation provides useful information about the PowerPC architecture and computer
architecture in general:

» Computer Architecture: A Quantitative Approach, Third Edition, by John L. Hennessy and
David A. Patterson.

» Computer Organization and Design: The Hardware/Software Interface, Third Edition,
David A. Patterson and John L. Hennessy.

Related Documentation

Freescale documentation is available from the sources listed on the back of the title page; the document
order numbers, when applicable, are included in parentheses for ease in ordering:

* EREF: A Programmer's Reference Manual for Freescale Embedded Processors (EREFRM).
Describes the programming, memory management, cache, and interrupt models defined by the
Power |SA for embedded environment processors.

* Power ISA™, The latest version of the Power instruction set architecture can be downloaded from
the website www.power.org.

* VLE Programming Interface Manual (VLEPIM). Provides the VL E-specific extensionsto the
€500 application binary interface.

» €500 Application Binary Interface User's Guide (ES00ABIUG). Establishes a standard binary
interface for application programs on systems that implement the interfaces defined in the System
V Interface Definition, Issue 3. Thisincludes systems that have implemented UNIX System V
Release 4.

» Reference manuals. The following reference manuals provide details information about processor
cores and integrated devices:

— Corereference manual s—T hese books describe the features and behavior of individual
microprocessor coresand provide specific information about how functionality describedinthe
EREF isimplemented by aparticul ar core. They also describeimplementation-specific features
and microarchitectural details, such asinstruction timing and cache hardware details, that lie
outside the architecture specification.

— Integrated device reference manuals—These manual s describe the features and behavior of
integrated devices that implement a Power | SA processor core. It is important to understand
that some features defined for a core may not be supported on all devices that implement that
core.

Also, somefeatures are defined in ageneral way at the core level and have meaning only in the
context of how the coreisimplemented. For example, any implementation-specific behavior of
register fields can be described only in the reference manual for the integrated device.

Each of these documents include the following two chapters that are pertinent to the core:

— A coreoverview. This chapter provides a general overview of how the core works and
indicates which of acore's features are implemented on the integrated device.

— A register summary chapter. This chapter gives the most specific information about how
register fields can be interpreted in the context of the implementation.

Variable-Length Encoding (VLE) Programming Environments Manual, Rev. 0

Freescale Semiconductor xiii

These reference manuals also describe how the core interacts with other blocks on the integrated
device, especially regarding topics such as reset, interrupt controllers, memory and cache
management, debug, and global utilities.

* Addenda/erratato reference manuals—Errata documents are provided to address errorsin
published documents.
Because some processors have follow-on parts, often an addendum is provided that describes the
additional features and functionality changes. These addenda, which may aso contain errata, are
intended for use with the corresponding reference manuals.

Always check the Freescale website for updates to reference manuals.

» Hardware specifications—Hardware specifications provide specific data regarding bus timing;
signal behavior; AC, DC, and thermal characteristics; and other design considerations.

* Product brief—Each integrated device has aproduct brief that providesan overview of itsfeatures.
This document is roughly the equivalent to the overview (Chapter 1) of the device's reference
manual.

» Application notes—These short documents address specific design issues useful to programmers
and engineers working with Freescale processors.

Additional literatureis published as new processors become available. For current documentation, refer to
http://www.freescale.com.

Conventions

This document uses the following notational conventions:

cleared/set When a bit takes the value zero, it is said to be cleared; when it takes a value of
one, it issaid to be set.

mnemonics Instruction mnemonics are shown in lowercase bold

italics Italics indicate variable command parameters, for example, beetrx
Book titlesin text are set in italics

0x0 Prefix to denote hexadecimal number

Ob0 Prefix to denote binary number

rA,rB Instruction syntax used to identify a source general-purpose register (GPR)

rD Instruction syntax used to identify a destination GPR

frA, frB, frC Instruction syntax used to identify a source floating-point register (FPR)

frD Instruction syntax used to identify a destination FPR

REG[FIELD] Abbreviations for registers are shown in uppercase text. Specific bits, fields, or
ranges appear in brackets.

X In some contexts, such as signal encodings, an unitalicized x indicates adon’'t
care.

Anitalicized x indicates an a phanumeric variable
Anitalicized n indicates an numeric variable

Variable-Length Encoding (VLE) Programming Environments Manual, Rev. 0

Xiv Freescale Semiconductor

0000

NOT logical operator
AND logical operator
OR logical operator

Indicatesreserved bitsor bit fieldsin aregister. Although these bitsmay bewritten

to as ones or zeros, they are a\ways read as zeros.

Additional conventions used with instruction encodings are described in Section A.2, “VLE Instruction

Formats.”

Acronyms and Abbreviations

Tablei contains acronyms and abbreviations that are used in this document. Note that the meanings for
some acronyms (such as XER) are historical, and the words for which an acronym stands may not be

intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term Meaning
CR Condition register
CTR Count register
DEC Decrementer register
EA Effective address
EREF Programmer's Reference Manual for Freescale Embedded Processors
GPR General-purpose register
|IEEE Institute of Electrical and Electronics Engineers
U Integer unit
LR Link register
LRU Least recently used
LSB Least-significant byte
Isb Least-significant bit
LSU Load/store unit
MMU Memory management unit
MSB Most-significant byte
msb Most-significant bit
MSR Machine state register
NaN Not a number
No-op No operation
OEA Operating environment architecture
PMCn Performance monitor counter register
PVR Processor version register
RISC Reduced instruction set computing
RTL Register transfer language

Variable-Length Encoding (VLE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

XV

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning
SIMM Signed immediate value
SPR Special-purpose register
SRRO Machine status save/restore register 0
SRR1 Machine status save/restore register 1
B Time base facility
TBL Time base lower register
TBU Time base upper register
TLB Translation lookaside buffer
UMM Unsigned immediate value
UISA User instruction set architecture
VA Virtual address
VEA Virtual environment architecture
VLEPEM VLE Programming Environments Manual
VLEPIM VLE Technology Programming Interface Manual
XER Register used for indicating conditions such as carries and overflows for integer operations

Terminology Conventions

Tableii lists certain terms used in this manual that differ from the architecture terminology conventions.

Table ii. Terminology Conventions

The Architecture Specification This Manual
Extended mnemonics Simplified mnemonics
Fixed-point unit (FXU) Integer unit (1U)
Privileged mode (or privileged state) Supervisor-level privilege
Problem mode (or problem state) User-level privilege
Real address Physical address
Relocation Translation
Storage (locations) Memory
Storage (the act of) Access
Store in Write back
Store through Write through

Variable-Length Encoding (VLE) Programming Environments Manual, Rev. 0

XVi Freescale Semiconductor

Tableiii describes instruction field notation conventions used in this manual.

Table iii. Instruction Field Conventions

The Architecture Specification Equivalent to:
BA, BB, BT crbA, crbB, crbD (respectively)
BF, BFA crfD, crfS (respectively)
D d
DS ds
11001 0...0 (shaded)
RA, RB, RT, RS rA, rB, rD, rS (respectively)
Si SIMM
U IMM
ul UMM

Variable-Length Encoding (VLE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

Xvii

Variable-Length Encoding (VLE) Programming Environments Manual, Rev. 0

XViii Freescale Semiconductor

Chapter 1
Introduction

This chapter describes computation modes, document conventions, a processor overview, instruction
formats, storage addressing, and instruction addressing for the variable length encoding (VLE)
programming mode!.

1.1 Overview

VLE isare-encoding of much of the Power instruction set using both 16- and 32-bit instruction formats.
VLE isdefined as a supplement to the Power ISA. Code pages using VL E encoding or non-V L E encoding
can be intermingled in a system providing focus on both high performance and code density.

Offering 16-bit versions of Power instructions makes it possible to implement more space-efficient binary
representations of applicationsfor embedded environments where code density may affect overall system
cost and, to a somewhat lesser extent, performance. This set of alternate encodings is selected on a page
basis. A single storage attribute bit selects between standard instruction encodings and VLE instructions
for that page.

Instruction encodings in pages marked as VLE are either 16 or 32 bitslong and are aligned on 16-bit
boundaries; therefore, all instruction pages marked as VLE must use big-endian byte ordering.

The programming model uses the same register set with both instruction set encodings, although some
registersare not accessible by VLE instructions using the 16-bit formats and not all condition register (CR)
fieldsare used by conditional branch instructions or instructions that access the CR executing fromaVLE
instruction page. In addition, due to the more restrictive encodings imposed by VLE instruction formats,
immediate fields and displacements differ in size and use.

VLE additional instruction fields are described in the EREF.

Other than the requirement of big-endian byte ordering for instruction pages and the additional storage
attributeto identify whether the instruction page correspondsto aV L E section of code, VLE complieswith
thememory model, register model, timer facilities, debug facilities, and interrupt/exception model defined
in the user instruction set architecture (UISA), the virtual environment architecture (VEA), and the
operating environment architecture (OEA). VLE instructions therefore execute in the same environment
as non-VLE instructions.

1.2 Documentation Conventions

Book VLE adheres to the documentation conventions defined in the EREF. Note, however, that this book
defines instructions that apply to the UISA, VEA, and OEA.

Variable-Length Encoding (VLE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 1-1

Introduction

1.2.1 Description of Instruction Operation

The RTL (register transfer language) descriptions in Book VLE conform to the conventions described in
the EREF.

1.3 Instruction Mnemonics and Operands

The description of each instruction includes the mnemonic and aformatted list of operands. VLE
instruction semantics are either identical or similar to those of other instructions in the architecture, as
described in the following:

* Wherethe semantics, side-effects, and binary encodings are identical, the standard mnemonicsand
formats are used. Such unchanged instructions are listed (Table B-2 and Table B-3) and
appropriately referenced, but the instruction definitions are not replicated in this book.

* Wherethesemanticsaresimilar but the binary encodingsdiffer, the standard mnemonicistypically
preceded with an e_to denote a VLE instruction. To distinguish between similar instructions
available in both 16- and 32-bit forms under VLE and standard instructions, VLE instructions
encoded with 16 bits have an se_ prefix.

Examples of VLE-supported instructions are shown below:

o stwx rSrA,rB—Standard UISA instruction

* e stwrSD(rA)—32-bit VLE instruction

* s stwrZ,SD4(rX)—16-bit VLE instruction

Variable-Length Encoding (VLE) Programming Environments Manual, Rev. 0

1-2 Freescale Semiconductor

Chapter 2
Instruction Model

This chapter provides an overview of the VLE instruction model, including the following:
* Section 2.1, “VLE Storage Addressing”
» Section 2.2, “VLE Compatibility with the Standard Architecture”
* Section 2.3, “Branch Operation Instructions’
» Section 2.4, “Integer Instructions’
* Section 2.5, “ Storage Control Instructions’
» Section 2.6, “Additional Categories Availablein VLE”

2.1 VLE Storage Addressing

A program references memory using the effective address (EA) the processor computes when it executes
amemory access or branch instruction (or certain other instructions defined in the VEA and OEA) or when
it fetches the next sequential instruction.

2.1.1 Data Storage Addressing Modes

Table 2-1 lists data storage addressing modes supported by VLE. Instruction forms are described in
Appendix A, “VLE Instruction Formats.”

Table 2-1. Data Storage Addressing Modes

Mode Description
Base+16-bit displacement The 16-bit D field is sign-extended and added to the contents of the GPR designated by rA
(D-form, 32-bit format) or to zero if rA = 0 to produce the EA.
Base+8-bit displacement The 8-bit D8 field is sign-extended and added to the contents of the GPR designated by rA
(D8-form,32-bit format) or to zero if rA = 0 to produce the EA.

Base+scaled 4-bit displacement | The 4-bit SD4 field zero-extended, scaled (shifted left) according to the size of the operand,
(SD4-form, 16-bit format) and added to the contents of the GPR designated by rX to produce the EA. (Note thatrX =0
is not a special case.

Base+Index The GPR contents designated by rB are added to the GPR contents designated by rA or to
(X-form, 32-bit format) zero if rA = 0 to produce the EA.

Variable-Length Encoding (VLE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 2-1

Instruction Model

2.1.2 Instruction Storage Addressing Modes
Table 2-2 lists instruction storage addressing modes supported by VLE.

Table 2-2. Instruction Storage Addressing Modes

Mode Description

Taken BD24-form branch instructions | The 24-bit BD24 field is concatenated on the right with 0b0, sign-extended, and then
(32-bit instruction format) added to the address of the branch instruction.

Taken B15-form branch instructions | The 15-bit BD15 field is concatenated on the right with 0b0, sign-extended, and then
(32-bit instruction format) added to the address of the branch instruction to form the EA of the next instruction.

Take BD8-form branch instructions | The 8-bit BD8 field is concatenated on the right with 0b0, sign-extended, and then added
(16-bit instruction format) to the address of the branch instruction to form the EA of the next instruction.

Sequential instruction fetching (or The value 4 [2] is added to the address of the current 32-bit [16-bit] instruction to form
non-taken branch instructions) the EA of the next instruction. If the address of the current instruction is
OxFFFF_FFFF_FFFF_FFFC [OXFFFF_FFFF_FFFF_FFFE] in 64-bit mode or
OxFFFF_FFFC [OxFFFF_FFFE] in 32-bit mode, the address of the next sequential
instruction is undefined.

Any branch instruction with LK = 1 The value 4 is added to the address of the current branch instruction and the result is
(32-bit instruction format) placed into the LR. If the address of the current instruction is
OxFFFF_FFFF_FFFF_FFFC in 64-bit mode o rOXFFFF_FFFC in 32-bit mode, the result
placed into the LR is undefined.

Branch se_bl. se_birl. se_bctrl The value 2 is added to the address of the current branch instruction and the result is
instructions (16-bit instruction placed into the LR. If the address of the current instruction is
format) OxFFFF_FFFF_FFFF_FFFE in 64-bit mode or OXFFFF_FFFE in 32-bit mode, the result

placed into the LR is undefined.

2.1.2.1 Misaligned, Mismatched, and Byte-Ordering Instruction Storage
Exceptions

A misaligned instruction storage exception occurs when an implementation that supports VLE attemptsto
execute an instruction that is not 32-bit aligned and the VLE storage attribute is not set for the page that
corresponds to the effective address of the instruction. The attempted execution can be the result of a
branch instruction that has bit 62 of the target address set or the result of anrfi, se rfi, rfci, se_rfci, rfdi,
se rfdi, rfmci, or se_rfmci instruction that has bit 62 set in the respective savelrestore register. If a
misaligned instruction storage exception is detected and no higher priority exception exists, an instruction
storage interrupt occurs, setting SRRO to the misaligned address for which execution was attempted.

A mismatched instruction storage exception occurs when an implementation that supports VLE attempts
to execute an instruction that crosses a page boundary for which thefirst page hasthe VLE storage attribute
set and the second page has the VLE storage attribute bit cleared. If a mismatched instruction storage
exception isdetected and no higher priority exception exists, aninstruction storageinterrupt occurs, setting
SRRO to the misaligned address for which execution was attempted.

A byte-ordering instruction storage exception occurs when an implementation that supportsV LE attempts
to execute an instruction that has the VLE storage attribute set and the E (Endian) storage attribute set for
the page that corresponds to the effective address of the instruction. If a byte-ordering instruction storage
exception isdetected and no higher priority exception exists, aninstruction storageinterrupt occurs, setting
SRRO to the address for which execution was attempted.

Variable-Length Encoding (VLE) Programming Environments Manual, Rev. 0

2-2 Freescale Semiconductor

Instruction Model

2.1.2.2 VLE Exception Syndrome Bits

VLE defines the following bits to facilitate VL E exception handling, as described in the EREF:

» ESR[VLEMI] is set when an exception and subsequent interrupt is caused by the execution or
attempted execution of an instruction that resides in memory with the VLE storage attribute set.

* ESR[MIF] isset when aninstruction storage interrupt is caused by amisaligned instruction storage
exception, or when aninstruction TLB error interrupt was caused by a TL B misson the second half
of amisaligned 32-bit instruction.

» ESR[BOQ] isset when aninstruction storage interrupt is caused by amismatched instruction storage
exception or a byte-ordering instruction storage exception.

NOTE (Programming)

When an instruction TLB error interrupt occurs as the result of an
instruction TLB miss on the second half of a 32-bit VLE instruction that is
aligned to only 16-bits, SRRO points to the first half of the instruction and
ESR[MIF] is set. Any other status posted as a result of the TLB miss (such
as MAS register updates) reflects the page corresponding to the second half
of theinstruction that caused the instruction TLB miss.

2.2 VLE Compatibility with the Standard Architecture
This chapter addresses the relationship between VLE and the standard architecture.

2.2.1 Overview

VLE uses the same semantics as other Power ISA instructions. Due to the limited instruction encoding
formats, VLE instructions typically support reduced immediate fields and displacements, and not all
operations defined by the standard architecture are encoded in VLE. The design criteriaareto capture al
useful operations, with most frequent operations given priority. Immediate fields and displacements are
provided to cover the majority of ranges encountered in embedded control code. Instructions are encoded
in either a 16- or 32-bit format, and these may be freely intermixed.

VLE instructions cannot access FPRs. VLE instructions use GPRs and SPRs with the following
l[imitations:

* Most VLE instructions using 16-bit formats are limited to addressing GPRO-GPR7 and
GPR24-GPR31. Move ingtructions are provided to transfer register contents between these
registers and GPR8—-GPR23.

* VLE compare and bit test instructions using the 16-bit formats implicitly set their resultsin CRO.

VLE instruction encodings are generally different than instructions defined by the standard architecture,
except that most instructions falling within primary opcode 31 are encoded identically and have identical
semantics unless they affect or access a resource unsupported by VLE.

2.2.2 VLE Processor and Storage Control Extensions
This section describes additional functionality to support VLE.

Variable-Length Encoding (VLE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 2-3

Instruction Model

2.2.2.1 Instruction Extensions

This section describes extensions to support VLE operations. Because instructions may reside on a
half-word boundary, bit 62 is not masked by instructions that read an instruction address from a register,
such asLR, CTR, or asave/restore register O that holds an instruction address:

The instruction set defined by the standard architecture is modified to support halfword instruction
addressing, as follows:

* Returnfrominterruptinstructions(rfi, rfci, rfdi, and rfmci) nolonger mask bit 62 of the respective
save/restore register 0. The destination address is SRRO[0-62] || ObO, CSRRO[0-62] || ObO,
DSRR0[0-62] || 0b0, MCSRRO0[0-62] || ObO, respectively.

* Dbclr, belrl, beetr, and becetrl no longer mask bit 62 of LR or CTR. The destination addressis
LR[0-62] || Ob0 or CTR[0-62] || ObO.

2222 MMU Extensions

VLE operationisindicated by the VLE storage page attribute. When thisattributeis set, instruction fetches
from that page are decoded and processed as VLE instructions. See the EREF.

When instructions execute from a page whose VLE storage attribute is set, the processor isin VLE mode.

2.2.3 VLE Limitations

VLE instruction fetches are valid only when performed in a big-endian mode. Attempting to fetch an
instruction in alittle-endian mode from a page with the VLE storage attribute set causes an instruction
storage byte-ordering exception.

Support for concurrent modification and execution of VLE instructions is implementati on-dependent.

2.3 Branch Operation Instructions

This section describes branch instructions that can be executed when a processor isin VLE mode. It also
describes the registers that support them.

2.3.1 Branch Processor Registers

The following registers support branch operations:
* Section 2.3.1.1, “Condition Register (CR)”
* Section 2.3.1.2, “Link Register (LR)”
» Section 2.3.1.3, “Count Register (CTR)”

Variable-Length Encoding (VLE) Programming Environments Manual, Rev. 0

2-4 Freescale Semiconductor

Instruction Model

2311 Condition Register (CR)
The CR reflects the result of certain operations and provides a mechanism for testing (and branching).

VLE usesthe entire CR, as described in the EREF, but some comparison operations and all branch
instructions are limited to using CRO-CRS3. The full UISA-defined CR field and logical operations are
provided, however.

CR bits are grouped into eight 4-bit fields, CR field 0 (CRO) ... CR field 7 (CR7), which are set by
VLE-defined instructions in one of the following ways:

» Specified CR fields can be set by amove to the CR from a GPR (mtcrf, mtocrf).

» A specified CR field can be set by amove to the CR from another CR field (e_mcrf) or from

XER[32-35] (mcrxr).

» CRfield O can be set asthe implicit result of an integer instruction.

» A specified CR field can be set as the result of an integer compare instruction.

* CRfield 0 can be set asthe result of an integer bit test instruction.

Other instructions from implemented categories may aso set bits in the CR in the same manner that they
would when not in VLE mode.

Instructions are provided to perform logical operationsonindividual CR bitsand totest individual CR bits.

For all integer instructionsin which the Rc bit is defined and set, and for e_add?2i., e and2i., and
e_and2is,, thefirst three bits of CR field 0 (CR3,.34) are set by signed comparison of the result to zero,
and the fourth bit of CR field 0 (CR[39]) is copied from the final state of XER[SO]. “Result” here refers
to theentire 64-bit value placed into the target register in 64-bit mode, and to bits 32—63 of the value placed
into the target register in 32-bit mode.

if (64-bit mode)

then M € 0

else M € 32
if (target register)y.q3 < 0 then c ¢ 0b100
else if (target register)y.s; > 0 then ¢ ¢ 0b010
else c € 0b001
CRO € c Il XERgy

If any portion of the result is undefined, the value placed into the first three bits of CR field 0 is undefined.

The bits of CR field O are interpreted as shown in Table 2-3.
Table 2-3. CRO Field Descriptions

Bits | Name Description

32 LT | Negative—The result is negative.

33 | GT |Positive—The result is positive.

34 EQ |Zero—The resultis 0.

35 | SO | Summary overflow—This is a copy of the contents of XER[SO] at the completion of the instruction.

Variable-Length Encoding (VLE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 2-5

Instruction Model

23.111 Condition Register Setting for Compare Instructions

For compare instructions, a CR field specified by the BF operand for the e_cmph, e cmphl, e_cmpi, and
e_cmpli instructions, or CRO for these_cmpl, e cmpl6i, e cmph16i, e cmphl16i, e cmpl16i, se cmp,
se_cmph, se_cmphl, se_cmpi, and se_cmpli instructions, is set to reflect the result of the comparison. The
CR field bits are interpreted as shown below. A complete description of how the bits are set isgivenin the
instruction descriptions and the EREF.

Condition register bits settings for compare instructions are interpreted as shown in Table 2-4.

Table 2-4. Condition Register Settings for Compare Instructions

CR Bit! Description

4xBF + 32 | Less than (LT). For signed integer compare, (rA) or (rX) < sci8, Sl, (rB), or (rY).
For unsigned integer compare, (rA) or (rX) <" sci8, Ul, UI5, (rB), or (rY).

4xBF + 33 | Greater than (GT). For signed integer compare, (rA) or (rX) > sci8, Sl, (rB), or (rY).
For unsigned integer compare, (rA) or (rX) >* sci8, Ul, UI5, (rB), or (rY).

4xBF + 34 | Equal (EQ). For integer compare, (rA) or (rX) = sci8, Ul, UI5, SI, (rB), or (rY).

4xBF + 35 | Summary overflow (SO). For integer compare, this is a copy of XER[SO] at the completion of the instruction.

1 e_cmpi, and e_cmpli instructions have a BF32 field instead of a BF field; for these instructions, BF32 should be substituted

for BF in the table.

23.1.1.2 Condition Register Setting for the Bit Test Instruction

The Bit Test Immediate instruction, se_btsti, also sets CR field 0. See the instruction description and also
the EREF.

2.3.1.2 Link Register (LR)

VLE instructionsusethe LR asdefined inthe UISA, although V L E defines a subset of the variants defined
for conditional branchesinvolving the LR.

2.3.1.3 Count Register (CTR)

VLE instructions use the CTR as defined in the UISA, although VLE defines a subset of the variants
defined for conditional branchesinvolving the CTR.

2.3.2 Branch Instructions

The sequence of instruction execution can be changed by the branch instructions. Because VLE
instructions must be aligned on half-word boundaries, the low-order bit of the generated branch target
addressisforced to O by the processor in performing the branch.

The branch instructions compute the EA of the target in one of the following ways, as described in
Section 2.1.2, “Instruction Storage Addressing Modes.”

1. Adding adisplacement to the address of the branch instruction.
2. Using the address contained in the LR (Branch to Link Register [and Link]).

Variable-Length Encoding (VLE) Programming Environments Manual, Rev. 0

2-6 Freescale Semiconductor

Instruction Model

3. Using the address contained in the CTR (Branch to Count Register [and Link]).

Branching can be conditiona or unconditional, and the return address can optionally be provided. If the
return addressisto be provided (LK = 1), the EA of the instruction following the branch instruction is
placed into the LR after the branch target address has been computed; thisis done regardless of whether
the branch is taken.

In branch conditional instructions, the BI32 or BI16 instruction field specifiesthe CR bit to be tested. For
32-hit instructions using BI132, CR[32—47] (corresponding to bitsin CR0O:CR3) may be specified. For
16-bit instructions using BI 16, only CR[32-35] (bits within CR0) may be specified.

Inbranch conditional instructions, the BO32 or BO16 field specifiesthe conditions under which the branch
istaken and how the branch is affected by or affectsthe CR and CTR. Notethat VLE instructions also have
different encodings for the BO32 and BO16 fields than in the UISA-defined BO field.

If the BO32 field specifiesthat the CTR isto be decremented, in 64-bit mode CTR[0-63] are decremented,
and in 32-bit mode CTR[32-63] are decremented. If BO16 or BO32 specifies a condition that must be
TRUE or FAL SE, that condition is obtained from the contents of CR[BI32+32] or CR[BI116+32]. (Note
that CR bits are numbered 32—63. BI32 or BI16 refers to the condition register bit field in the branch
instruction encoding. For example, specifying BI32 = 2 refers to CR[34].)

For Table 2-5, let M = 0 in 64-bit mode and M = 32 in 32-bit mode.

Encodings for the BO32 field for VLE are shown in Table 2-5.
Table 2-5. BO32 Field Encodings

BO32 Description

00 Branch if the condition is false.

01 Branch if the condition is true.

10 | Decrement CTR[M-63], then branch if the decremented value i 0

11 Decrement CTR[M-63], then branch if the decremented value = 0.

Encodings for the BO16 field for VLE are shown in Table 2-6.
Table 2-6. BO16 Field Encodings

BO16 Description

0 Branch if the condition is false.

1 Branch if the condition is true.

2.3.3 System Linkage Instructions

The system linkage instructions enabl e the program to call on the system to perform a service and provide
ameans by which the system can return from performing a service or from processing an interrupt. System
linkage instructions defined by VLE are identical in semantics to system linkage instructions defined in
the UISA and OEA, with the exception of the LEV field, but are encoded differently.

Variable-Length Encoding (VLE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 2-7

Instruction Model

se_sc provides the same functionality as sc without the LEV field. se _rfi, se rfci, se rfdi, and se_rfmci
provide the same functionality asrfi, rfci, rfdi, and rfmci, respectively.

2.4 Integer Instructions
This section lists the integer instructions supported by VLE.

241 Integer Load Instructions

Theinteger load instructions compute the EA of the memory to be accessed as described in Section 2.1.1,
“Data Storage Addressing Modes.”

The byte, halfword, word, or doubleword in storage addressed by EA isloaded intorD or rZ.
VLE supports both big- and little-endian byte ordering for data accesses.

Some integer load instructions have an update form in which r A is updated with the EA. For these forms,
if rAj0 andrAjrD, the EA isplaced into r A and the memory element (byte, halfword, word, or
doubleword) addressed by EA isloadedintorD. I1f rA =0orrA =rD, theinstructionformisinvalid. This
is the same behavior as specified for UISA load with update instructions.

Theinteger load instructions, Ibzx, Ibzux, Ihzx, Ihzux, lwzx, and Iwzux, are availablein VLE mode. The
mnemonics, decoding, and semanticsfor theseinstructions areidentical to those defined by the UISA. See
the EREF for the instruction definitions.

The integer load instructions, lwax, lwaux, Idx, and Idux, are available in VLE mode on 64-bit
implementations. The mnemonics, decoding, and semantics for theseinstructions areidentical to those in
the UISA. See the EREF for the instruction definitions.

24.2 Integer Load and Store with Byte Reversal Instructions

The integer load with byte reversal and store with byte reversal instructions, I|hbrx, Iwbrx, sthbrx, and
stwbrx, are available in VLE mode. The mnemonics, decoding, and semantics for these instructions are
identical to thosein the UISA. See the EREF for instruction definitions.

243 Integer Load and Store Multiple Instructions

The load/store multiple instructions have preferred forms; see the EREF. In the preferred forms storage
alignment satisfies the following rule.

* Thecombination of theEA andr D (rS) issuch that thelow-order byte of GPR 31 isloaded (stored)
from (into) the last byte of an aligned quadword in storage.

244 Integer Arithmetic Instructions

The integer arithmetic instructions use the contents of the GPRs as source operands and place results into
GPRs, into status bitsin the XER, and into CRO.

Variable-Length Encoding (VLE) Programming Environments Manual, Rev. 0

2-8 Freescale Semiconductor

Instruction Model

The integer arithmetic instructions treat source operands as signed integers unless an instruction is
explicitly identified as performing an unsigned operation.

The e_add2i. instruction and other arithmetic instructions with Rc=1 set the first three bits of CRO to
characterize the result placed into the target register. In 64-bit mode, these bits are set by signed
comparison of the result to 0. In 32-bit mode, these bits are set by signed comparison of the low-order 32
bits of the result to zero.

e_addic[.] and e_subfic[.] aways set CA to reflect the carry out of bit 0 in 64-bit mode and out of bit 32
in 32-bit mode.

The integer arithmetic instructions, add[.], addo[.], addc][.], addco[.], add€].], addeo[.], addme][.],
addmeo].], addze].], addzeo[.], divw].], divwol.], divwul.], divwuol[.], mulhw[.], mulhwul.], mullwl[.],
mullwo[.] neg[.], nego[.], subf[.], subfo[.] subfe].], subfeo[.], subfme[.], subfmeo[.], subfze].],
subfzeo[.], subfc[.], and subfco[.] are available in VLE mode. The mnemonics, decoding, and semantics
for these instructions are identical to those in the UISA; see the EREF for the instruction definitions.

The integer arithmetic instructions, mulld[.], mulldo[.], mulhd[.], muldul.], divd][.], divdo[.], divdu[.],
and divduo[.] are availablein VLE mode on 64-bit implementations. The mnemonics, decoding, and
semantics for those instructions are identical to these in the UISA; see the EREF for the instruction
definitions.

245 Integer Trap Instructions

The integer trap instruction tw isavailable in VLE mode. The mnemonics, decoding, and semantics for
thisinstruction areidentical to that in the UISA; see the EREF for the instruction definition.

The integer trap instruction td isavailable in VLE mode on 64-bit implementations. The mnemonic,
decoding, and semantics for the td instruction areidentical to those in the UISA; see the EREF for the
instruction definitions.

2.4.6 Integer Select Instruction

The Integer Select instruction isel provides a means to select one of two registers and place theresult in a
destination register under the control of a predicate value supplied by a CR bit.

Theisdl isavailable in VLE mode. The mnemonics, decoding, and semantics for thisinstruction are
identical to that in the UISA; see the EREF for the instruction definition.

24.7 Integer Logical, Bit, and Move Instructions

Thelogical instructions perform bit-parallel operationson 64-bit operands. The bit instructions manipulate
abit, or create abit mask, in aregister. The move instructions move aregister or an immediate value into
aregister.

The X-form logical instructions with Rc=1, the SCI8-form logical instructions with Rc=1, the RR-form
logical instructions with Rc=1, the e_and2i. instruction, and the e_and2is. instruction set the first three
bitsof CR field 0 asthe arithmetic instructions described in Section 2.4.4, “Integer Arithmetic

Variable-Length Encoding (VLE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 2-9

Instruction Model

Instructions.” (Also see Section 2.3.1.1, “Condition Register (CR).”) The logical instructions do not
change the SO, OV, and CA hitsin the XER.

Theinteger logical instructions, and[.], or[.], xor[.], nand[.], nor[.], eqv[.], andc][.], orc][.], extsbl[.],
extsh[.], cntlzw[.], and popcntb, are available in VLE mode. The mnemonics, decoding, and semantics
for these instructions are identical to those in the UISA; see the EREF for instruction definitions.

The integer logical instructions, extsw[.] and cntlzd[.], are available in VLE mode on 64-bit
implementations. The mnemonics, decoding, and semantics for theseinstructions areidentical to those in
the UISA; see the EREF for instruction definitions.

2.5 Storage Control Instructions

2.5.1 Storage Synchronization Instructions

The memory synchronization instructionsimplemented by VL E areidentical in semanticsto those defined
inthe VEA and OEA. The se_isync instruction is defined by VLE but has the same semantics asisync.

The load and reserve instruction Iwar x and the store conditional instruction stwcx are availablein VLE
mode. The mnemonics, decoding, and semantics for those instructions are identical to thosein the VEA,;
see the EREF for instruction definitions.

The load and reserve instruction Idar x and the store conditional instruction stdcx are availablein VLE
mode on 64-bit implementations. The mnemonics, decoding, and semantics for those instructions are
identical to those in the VEA; see the EREF for instruction definitions.

Memory barrier instructions, sync (msync) and mbar are available in VLE mode. The mnemonics,
decoding, and semantics for those instructions are identical to those in the VEA; see the EREF for
instruction definitions.

The wait instruction is available in VLE mode if the category Wait isimplemented. The mnemonics,
decoding, and semantics for wait are identical to those in the VEA; see the EREF for the instruction
definition.

2.5.2 Cache Management Instructions

Cache management instructionsimplemented by VLE areidentical to those defined inthe VEA and OEA.

The cache management instructions, dcba, dcbf, dcbst, dcbt, dcbtst, dcbz, icbi, and icbt, are available
inVVLE mode. The mnemonics, decoding, and semanticsfor theseinstructions areidentical to thosein the
VEA; see the EREF instruction definitions.

dcbi isavailablein VLE mode. The mnemonics, decoding, and semantics for thisinstruction areidentical
to those in the OEA; see the EREF for instruction definition.

Variable-Length Encoding (VLE) Programming Environments Manual, Rev. 0

2-10 Freescale Semiconductor

Instruction Model

2.5.3 Cache Locking Instructions

Cache locking instructions implemented by VLE areidentical to those defined by the OEA. If the cache
locking instructions are implemented in VLE, the embedded cache locking instructions must also be
implemented.

The cache locking instructions defined by the OEA, dcbtls, dcbtstls, dcblc, icbtls, and icblc are available
in VLE mode. The mnemonics, decoding, and semantics for these instructions are identical to those
defined in the OEA; see the EREF for instruction definitions.

254 TLB Management Instructions
The TLB management instructions implemented by VLE are identical to those defined by the OEA.

The OEA-defined TLB management instructions, tlbre, tibwe, tibivax, tlbsync, and tlbsx, are available
inVVLE mode. The mnemonics, decoding, and semanticsfor theseinstructions are identical to thosein the
OEA. See the EREF for instruction definitions.

Instructions and resources from category Embedded.MMU Type FSL are available if that category is
implemented.

2.5.5 Instruction Alignment and Byte Ordering

Only big-endian instruction memory is supported when executing from a page of VLE instructions.
Attempting to fetch VLE instructions from a page marked aslittle-endian generates an instruction storage
interrupt byte-ordering exception.

2.6 Additional Categories Available in VLE

Processors that implement VLE may implement instructions and resources from categories other than
Base and Embedded. User documentation for each processor core indicates which of these may be
implemented. These instructions are described in the EREF.

Such categories include those for which all the instructions in the category use primary opcode 4 or
primary opcode 31, as listed below:

* Move assist. Move assist instructions implemented by VLE are identical to those defined in the
UISA. The mnemonics, decoding, and semanticsfor thoseinstructions areidentical to thosein the
UISA; see the EREF for the instruction definitions.

» Vector. Vector instructions implemented by VLE are identical to those defined in the UISA. The
mnemonics, decoding, and semantics for those instructions are identical to thosein the UISA; see
the EREF for the instruction definitions.

» Signal processing engine (SPE). SPE instructions implemented by VLE are identical to those
defined in the UISA. The mnemonics, decoding, and semantics for those instructions are identical
to those in the UISA; see the EREF for the instruction definitions.

» Embedded floating-point. Embedded floating-point instructionsimplemented by VL E areidentical
to those defined in the UISA.The mnemonics, decoding, and semantics for those instructions are
identical to those in the UISA; see the EREF for the instruction definitions.

Variable-Length Encoding (VLE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 2-11

Instruction Model

Legacy move assist. Legacy move assist instructions implemented by VLE are identical to those
defined in the UISA. The mnemonics, decoding, and semantics for those instructions are identical
to those in the UISA; see the EREF for instruction definitions.

External PID. External process D instructionsimplemented by VLE areidentical to those defined
by the OEA. Semanticsfor thoseinstructions are identical to those in the OEA; see the EREF for
the instruction definitions.

Embedded performance monitor. Embedded performance monitor instructions implemented by
VLE areidentical to those defined by the OEA. The mnemonics, decoding, and semanticsfor those
instructions are identical to those in the OEA; see the EREF for the instruction definitions.

Processor control. Processor control instructions implemented by VLE are identical to those
defined by the OEA. The mnemonics, decoding, and semantics for those instructions are identical
to those in the OEA; see the EREF for the instruction definitions.

Variable-Length Encoding (VLE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

Chapter 3

VLE Instruction Set

The VLE extension ISA isdefined in the instruction pages in this chapter. Because of the various
immediate field and displacement field calculations used in the VLE extension, a description of the less

obvious ones precedes the actual instruction pages, and the instruction descriptions generally assume the
appropriate calculation has been performed.

NOTE

Theinstructionsin this section arelisted in order of the root instruction. For
example, e cmpi and se_cmpi are both listed under cmpi.

3.1 Supported Power ISA Instructions

Table 3-1listsinstructionsthat are used by the VLE extension that are defined by the UISA, VEA, or OEA.
Those instructions are described in the EREF.

Descriptions in this chapter indicate any limitations on the behavior of VLE instructions as compared to
their non-VLE equivalents.

Table 3-1. Non-VLE Instructions Listed by Mnemonic

Mnemonic Instruction

add rD,rA,rB Add
add. rD,rA,rB

addo rD,rA,rB
addo. rD,rA,rB

addc rD,rA,rB Add Carrying
addc. rD,rA,rB

addco rD,rA,rB
addco. rD,rA,rB

adde rD,rA,rB Add Extended
adde. rD,rA,rB

addeo rD,rA,rB
addeo. rD,rA,rB

andc[.]rA,rS,rB | AND with Complement

and[.] rA,rS,rB AND

cmp crD,L,rA,rB | Compare

cmpl crD,L,rA,rB | Compare Logical

cntlzw rA,rS Count Leading Zeros Word
cntlzw. rA,rS

dcba rA,rB Data Cache Block Allocate

Variable-Length Encoding (VLE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 3-1

VLE Instruction Set

Table 3-1. Non-VLE Instructions Listed by Mhemonic (continued)

Mnemonic Instruction
dcbf rA,rB Data Cache Block Flush
dcbi rA,rB Data Cache Block Invalidate
dcbst rA,rB Data Cache Block Store
dcbt CT,rA,rB Data Cache Block Touch

dcbtst CT,rA,rB

Data Cache Block Touch for Store

dcbz rA,rB Data Cache Block set to Zero
divw rD,rA,rB Divide Word
divw. rD,rA,rB

divwo rD,rA,rB
divwo. rD,rA,rB

divwu rD,rA,rB
divwu. rD,rA,rB
divwuo rD,rA,rB
divwuo. rD,rA,rB

Divide Word Unsigned

eqv rA,rS,rB Equivalent

eqv. rA,rS,rB

extsb rA,rS Extend Sign Byte
extsb. rA,rS

extsh rA,rS Extend Sign Halfword
extsh. rA,rS

e_srwirA,rS,SH

Shift Right Word Immediate

icbi rA,rB Instruction Cache Block Invalidate
icbt CT,rA,rB Instruction Cache Block Touch
Ibzx rD,rA,rB Load Byte and Zero Indexed

Ibzux rD,rA,rB

Load Byte and Zero with Update Indexed

Ihax rD,rA,rB
lhaux rD,rA,rB

Load Halfword Algebraic Indexed
Load Halfword Algebraic with Update Indexed

Ihbrx rD,rA,rB

Load Halfword Byte-Reverse Indexed

lhzx rD,rA,rB
lhzux rD,rA,rB

Load Halfword and Zero Indexed
Load Halfword and Zero with Update Indexed

lwarx rD,rA,rB

Load Word And Reserve Indexed

lwbrx rD,rA,rB

Load Word Byte-Reverse Indexed

lwzx rD,rA,rB
lwzux rD,rA,rB

Load Word and Zero Indexed
Load Word and Zero with Update Indexed

mbar Memory Barrier
mcerxr crD Move to Condition Register from Integer Exception Register
mfcr rD Move From condition register

mfdcr rD,DCRN

Move From Device Control Register

Variable-Length Encoding (VLE) Programming Environments Manual, Rev. 0

3-2

Freescale Semiconductor

Table 3-1. Non-VLE Instructions Listed by Mhemonic (continued)

Mnemonic

Instruction

mfmsr rD

Move From Machine State Register

mfspr rD,SPRN

Move From Special Purpose Register

msync

Memory Synchronize

mtcrf FXM,rS

Move to Condition Register Fields

mtdcr DCRN,rS

Move To Device Control Register

mtmsr rS

Move To Machine State Register

mtspr SPRN,rS

Move To Special Purpose Register

mulhw rD,rA,rB
mulhw. rD,rA,rB

Multiply High Word

mulhwu rD,rA,rB
mulhwu. rD,rA,rB

Multiply High Word Unsigned

mullw rD,rA,rB
mullw. rD,rA,rB
mullwo rD,rA,rB
mullwo. rD,rA,rB

Multiply Low Word

nand rA,rS,rB
nand. rA,rS,rB

NAND

neg rD,rA
neg. rD,rA
nego rD,rA
nego. rD,rA

Negate

nor rA,rS,rB
nor. rA,rS,rB

NOR

or rA,rS,rB
or. rA,rS,rB

OR

orc rA,rS,rB
orc. rA,rS,rB

OR with Complement

slw rA,rS,rB
slw. rA,rS,rB

Shift Left Word

sraw rA,rS,rB
sraw. rA,rS,rB

Shift Right Algebraic Word

srawi rA,rS,SH
srawi. rA,rS,SH

Shift Right