
CodeWarrior™
Development Tools

MSL Reference

 Revised: 16 January 2009

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. CodeWarrior is a trademark or reg-
istered trademark of Freescale Semiconductor, Inc. in the United States and/or other countries. All other product or ser-
vice names are the property of their respective owners.

Copyright © 1993–2008 by Freescale Semiconductor, Inc. All rights reserved.

Information in this document is provided solely to enable system and software implementers to use Freescale Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental dam-
ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typ-
icals”, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.

6501 William Cannon Drive West

Austin, TX 78735

U.S.A.

World Wide Web http://www.freescale.com/codewarrior

Technical Support http://www.freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

CodeWarrior Implementation of the C Standard Library 3

Table of Contents

1 Introduction 19

2 Configuring MSL 21

Configuring Memory Management .. 21

Configuring Time and Date .. 26

Configuring Input and Output .. 28

Configuring Threads ... 32

Configuring Assertions ... 35

Configuring Complex Number Facilities .. 35

Configuring C99 Features ... 36

Configuring Locale Features ... 36

Configuring Floating-Point Math Features ... 36

Configuring the MSL Extras Library ... 37

Configuring Wide-Character Facilities ... 37

Porting MSL to an Embedded OS .. 38

3 assert.h 41

assert() ... 41

4 complex.h 43

Hyperbolic Trigonometry .. 43

cacos() .. 43

cacosh() .. 44

casin() ... 44

casinh() ... 45

catan() .. 45

catanh() .. 46

ccos() .. 46

ccosh() .. 47

csin() .. 47

Contents

4 CodeWarrior Implementation of the C Standard Library

csinh() .. 48

ctan() .. 48

Exponents and Logarithms ... 48

cexp() ... 49

clog() .. 49

Powers and Absolute Values .. 49

cabs() .. 50

cpow() .. 50

csqrt() ... 51

Manipulation ... 51

carg() .. 51

cimag() ... 51

conj() .. 52

cproj() ... 52

creal() ... 53

5 ctype.h 55

isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(),
isprint(), ispunct(), isspace(), isupper(), isxdigit() ... 55

tolower(), toupper() ... 58

6 errno.h 61

errno ... 61

7 fenv.h 63

fenv_t, fexecpt_t .. 63

FENV_ACCESS .. 63

fegetenv ... 64

Exceptions for the Floating-Point Environment ... 65

feclearexcept() ... 66

fegetexceptflag() .. 66

feraiseexcept() .. 68

fesetexceptflag() ... 69

fetestexcept() .. 70

Contents

CodeWarrior Implementation of the C Standard Library 5

Rounding Modes for the Floating-Point Environment 70

fegetround() ... 71

fesetround() .. 72

8 float.h 73

9 inttypes.h 75

Integer Input Scanning .. 75

Integer Output Formatting .. 79

imaxabs(), imaxdiv(), strtoimax(), strtoumax(), wcstoimax(), wcstoumax() 84

10 iso646.h 87

11 locale.h 89

lconv .. 89

localeconv() ... 92

setlocale() .. 92

12 limits.h 95

13 math.h 97

Predefined Values ... 97

Floating Point Math Errors ... 98

NaN ... 99

Floating-Point Classification ... 99

fpclassify() ... 99

isfinite() .. 100

isnan() .. 101

isnormal() ... 101

signbit() .. 102

Trigonometry ... 102

acos() .. 102

asin() .. 103

Contents

6 CodeWarrior Implementation of the C Standard Library

atan() .. 103

atan2() .. 103

cos() ... 104

sin() .. 105

tan() .. 106

Hyperbolic Trigonometry .. 107

acosh() .. 107

asinh() .. 108

atanh() .. 108

cosh() ... 109

sinh() .. 110

tanh() .. 110

Exponents and Logarithms ... 111

exp() ... 111

exp2() ... 112

expm1() .. 113

frexp() .. 114

ilogb() ... 114

ldexp() .. 115

log() .. 116

log10() .. 117

log1p() .. 117

log2() .. 118

logb() .. 119

scalbn(), scalbln() .. 120

Powers and Absolute Values .. 121

cbrt() ... 121

fabs() .. 121

hypot() .. 122

pow() .. 123

sqrt() ... 124

Statistical Errors and Gamma ... 125

erf() .. 125

erfc() ... 125

gamma() ... 126

Contents

CodeWarrior Implementation of the C Standard Library 7

lgamma() .. 127

Rounding ... 127

ceil() ... 127

floor() ... 128

lrint(), llrint() ... 129

lround(), llround() .. 130

nearbyint() .. 130

rint() ... 131

round() ... 132

trunc() ... 133

Remainders .. 134

fmod() .. 134

modf() .. 135

remainder() ... 136

remquo() ... 137

Manipulation ... 137

copysign() .. 137

nan() ... 138

isgreater(), isgreaterequal(), isless(), islessequal(), islessgreater(),
isunordered() ... 139

nextafter() ... 140

nexttoward() ... 141

Maximum and Minimum .. 141

fdim() ... 141

fmax() ... 142

fmin() ... 143

Multiply-Addition .. 144

fma() ... 144

14 setjmp.h 147

longjmp() ... 147

setjmp() .. 148

Contents

8 CodeWarrior Implementation of the C Standard Library

15 signal.h 151

raise() ... 151

signal() ... 152

16 stdarg.h 157

va_arg .. 157

va_copy ... 158

va_end ... 158

va_start .. 158

17 stdbool.h 161

18 stddef.h 163

19 stdint.h 165

Integer Types ... 165

Integer Limits .. 166

Integer Types ... 167

20 stdio.h 169

Streams .. 169

File Operations .. 172

remove() ... 172

rename() ... 173

tmpfile() ... 174

tmpnam() .. 175

File Access .. 176

fclose() ... 176

fdopen() .. 177

fflush() ... 178

fopen() .. 180

freopen() ... 183

Contents

CodeWarrior Implementation of the C Standard Library 9

setbuf() ... 184

setvbuf() ... 185

Formatted Input/Output ... 187

Reading Formatted Input ... 187

Formatting Text for Output ... 191

fprintf() ... 196

fscanf() ... 198

printf() .. 199

scanf() .. 202

sscanf() ... 204

snprintf() .. 205

sprintf() .. 206

vfprintf() ... 207

vfscanf() ... 208

vprintf() .. 210

vscanf() .. 212

vsnprintf() .. 212

vsprintf() .. 214

vsscanf() ... 215

Character Input/Output .. 217

fgetc() ... 217

fgets() ... 218

fputc() ... 219

fputs() ... 220

getc() .. 222

getchar() ... 223

gets() .. 224

putc() .. 225

putchar() ... 226

puts() .. 227

ungetc() .. 228

Binary Input/Output .. 229

fread() ... 229

fwrite() ... 231

Contents

10 CodeWarrior Implementation of the C Standard Library

File Positioning ... 232

fgetpos() ... 232

fseek() .. 233

fsetpos() ... 235

ftell() .. 236

rewind() .. 237

File Error Handling ... 238

clearerr() ... 238

feof() .. 239

ferror() .. 241

perror() ... 242

Input and Output for Wide Characters and Multibyte Characters 243

fwide() .. 243

_wfopen() ... 245

_wfreopen() .. 245

_wremove() .. 245

_wrename() .. 246

_wtmpnam() ... 246

21 stdlib.h 247

Numeric Conversion ... 247

atof() ... 247

atoi() ... 248

atol() ... 248

atoll() .. 249

strtod() .. 249

strtof() .. 251

strtol() ... 252

strtoll() ... 254

strtoull() ... 255

Pseudo-Random Number Generation ... 256

rand() .. 256

srand ... 257

Contents

CodeWarrior Implementation of the C Standard Library 11

Memory Management ... 257

calloc() ... 257

free() ... 259

malloc() .. 260

realloc() .. 260

vec_calloc() .. 261

vec_free() ... 262

vec_malloc() .. 262

vec_realloc() .. 263

Environment Communication ... 263

abort() ... 263

atexit() .. 264

_Exit() .. 266

exit() ... 266

getenv() .. 267

_putenv() .. 268

system() .. 269

Searching and Sorting ... 269

bsearch() ... 269

qsort() ... 273

Integer Arithmetic ... 274

abs() ... 274

div() .. 275

labs() .. 276

ldiv() ... 276

llabs() ... 277

lldiv() ... 277

Wide-Character and Multibyte Character Conversion 278

mblen() ... 278

mbtowc() .. 278

wctomb() .. 279

mbstowcs() ... 280

wcstombs() ... 280

Contents

12 CodeWarrior Implementation of the C Standard Library

22 string.h 283

Copying Characters ... 283

memcpy() ... 283

memmove() .. 284

strcpy() ... 284

strncpy .. 286

Concatenating Characters .. 287

strcat() .. 287

strncat() .. 288

Comparing Characters ... 289

memcmp() .. 289

strcmp() .. 290

strcoll() ... 291

strncmp() .. 292

strxfrm() ... 293

Searching Characters ... 294

memchr() .. 294

strchr() .. 296

strcspn() ... 297

strpbrk() ... 298

strrchr() .. 299

strspn() ... 300

strstr() ... 301

strtok() .. 302

memset() .. 303

strerror() ... 304

strlen() ... 305

23 time.h 307

time_t, clock_t, tm .. 307

Date and Time Manipulation .. 308

clock() .. 308

difftime() .. 310

Contents

CodeWarrior Implementation of the C Standard Library 13

mktime() ... 310

time() .. 311

tzname .. 312

tzset() ... 312

Date and Time Conversion ... 312

asctime() ... 312

ctime() .. 313

gmtime() ... 314

localtime() .. 315

strftime() .. 316

24 tgmath.h 321

25 wchar.h 325

Wide-Character Formatted Input and Output ... 325

Wide-Character Input and Output .. 327

Wide-Character Utilities ... 328

Wide-Character Numerical Conversion .. 328

Wide-Character String Manipulation .. 329

Wide-Character Date and Time Manipulation .. 332

Wide-Character Conversion .. 333

btowc() ... 333

mbrlen() ... 333

mbrtowc() ... 334

mbsinit() ... 335

mbsrtowcs() ... 335

wcrtomb() ... 336

wctob() ... 337

26 wctype.h 339

iswalnum(), iswalpha(), iswblank(), iswcntrl(), iswdigit(), iswgraph(),
iswlower(), iswprint(), iswpunct(), iswspace(), iswupper(), iswxdigit() 339

towlower(), towupper() ... 340

wctrans() .. 341

Contents

14 CodeWarrior Implementation of the C Standard Library

towctrans() ... 341

27 MSL Extras Library 343

Multithreading ... 343

dirent.h ... 345

closedir() .. 346

dirent .. 346

opendir() ... 346

readdir() ... 347

readdir_r() .. 347

rewinddir() ... 349

extras_io.h ... 349

chsize() ... 349

filelength() ... 350

tell() .. 350

extras_malloc.h .. 351

heapmin() ... 351

extras_stdlib.h .. 352

gcvt() .. 352

itoa() ... 352

ltoa() ... 353

rand_r() .. 353

ultoa() ... 354

extras_string.h ... 354

strcmpi() ... 354

strdup() ... 355

strerror_r() .. 355

stricmp() ... 356

stricoll() .. 356

strlwr() ... 357

strncasecmp() ... 357

strncmpi() ... 358

strncoll() ... 359

strnicmp() ... 359

Contents

CodeWarrior Implementation of the C Standard Library 15

strnicoll() .. 360

strnset() .. 360

strrev() .. 361

strset() .. 361

strspnp() ... 362

strupr() ... 362

strtok_r() .. 363

extras_time.h ... 364

asctime_r() ... 364

ctime_r() ... 365

gmtime_r() ... 365

localtime_r() ... 366

strdate() .. 367

extras_wchar.h ... 367

fcntl.h ... 369

creat(), _creat(), _wcreat() ... 369

fcntl(), _fcntl() ... 370

open(), _wopen() ... 371

stat.h .. 372

Data Types in stat.h .. 372

chmod() .. 375

fstat() .. 375

mkdir() ... 377

stat() ... 377

umask() .. 379

Index 381

Contents

16 CodeWarrior Implementation of the C Standard Library

CodeWarrior Implementation of the C Standard Library 17

CodeWarrior™ Development
Tools MSL C Reference

Revised: 16 January 2009

www.freescale.com/codewarrior

Copyright Information

http://www.freescale.com/codewarrior

CodeWarrior™ Development Tools MSL C Reference

18 CodeWarrior Implementation of the C Standard Library

CodeWarrior Implementation of the C Standard Library 19

1
Introduction

The CodeWarrior C and C++ compilers use the Main Standard Library for C to provide
and extend the libraries documented in the ISO/IEC standards for C. MSL C also
offers facilities described in the POSIX specification and some common application
programming iwnterfaces (APIs) from UNIX operating systems.

ISO/IEC Standards

The Main Standard Library for C conforms to the library described in the ISO/IEC
9899:1999 (“C99”) standard. The MSL also conforms to the previous standard, ISO/IEC
9899-1990 (“C90”). MSL uses a macro, MSL_C99, to separate C90 features from C99
features. If MSL_C99 is defined to have the value 0 before building the MSL C library,
only those parts of the library that were defined in C90 are compiled, yielding a smaller
library. If MSL_C99 is defined to have a non-zero value before building the library the
full MSL C library is compiled to conform to C99.

Intrinsic Functions

Intrinsic functions generate in-line assembly instead of making a call to a library
function. Intrinsic functions generate less object code and perform faster than their
regular counterparts. In some cases these functions generate just a single assembly
instruction.
For example, for target processors that have built-in floating-point
facilities, the compiler generates a single assembly instruction when it
encounters this intrinsic function:

long __labs(long);

The compiler generates a sequence of instructions that are highly
optimized for the target processor when it encounters this intrinsic
function:

void *__memcpy(void *, const void *, size_t);

Because an intrinsic function is not a real function, a program cannot use
a pointer to an intrinsic function. These statements give an example:

#include <math.h>

typedef long (*functype)(long);

Introduction

20 CodeWarrior Implementation of the C Standard Library

functype f1 = labs; /* OK: non-intrinsic function in MSL. */

functype f2 = __labs; /* Error: intrinsic function. */

CodeWarrior Implementation of the C Standard Library 21

2
Configuring MSL

MSL uses the definitions of preprocessor macros to specify the capabilities of the
platform on which MSL runs and to choose the policies that MSL uses to manage its
resources. MSL provides a prefix file for each build target that MSL runs on. An MSL
prefix file is a C header file that contains a list of macro definitions. To compile a
customized version of MSL for your build target, copy your build target's prefix file then
customize its macro definitions.

For example, to compile a custom version of MSL C for the SockSort build target, find
and copy the header file named ansi_prefix.SockSort.h. Edit the contents of
your copy of this prefix file, then add this customized file to your project to build a new,
custom MSL C library. Add this customized library and your prefix file to your projects
to use your custom standard library.

Configuring Memory Management
MSL has a flexible memory management system. In most cases, the default configuration
should be sufficient. If the operating system of the build target has its own memory
management, simply complete the sys_alloc(), sys_free(), and sys_
pointer_size() routines in the pool_alloc_target.c file, where target
represents the build target on which MSL runs.

MSL calls sys_alloc() with the size of a desired memory block whenever MSL
needs more heap memory from the system to satisfy calls from malloc(). If the request
succeeds, the sys_alloc() routine must return a pointer to a block of memory of
the requested size. MSL calls the sys_free() routine to release a block of memory
allocated with sys_alloc(). An implementation of sys_free() should be return
the memory block to the operating system.

MSL calls the sys_pointer_size() routine with a pointer to a previously allocated
memory block obtained from sys_alloc() when MSL needs to determine the size of
the memory block (the value of the size spassed to the sys_alloc() call that obtained
the memory).

Configuring MSL
Configuring Memory Management

22 CodeWarrior Implementation of the C Standard Library

If the build target does not have an operating system, or the system does not support its
own memory management, MSL can still provide the malloc() routine by using a
block of RAM in the program heap as a memory pool. The MSL_OS_ALLOC_SUPPORT
macro must be turned off in the platform prefix file. The MSL_HEAP_EXTERN_
PROTOTYPES, MSL_HEAP_START, and MSL_HEAP_SIZE macros must also be
defined in order for MSL to find the heap block to use as a memory pool. Generally, the
linker sets aside a block of memory for this pool. But the user program can also set aside
a memory pool in the form of a large array.

MSL provides an alternate memory allocation system for build targets with no operating
system. This allocation system may perform better for small heaps of about 4Kb. It also
works with arbitrary pointer sizes and alignments. To use this alternative, define MSL_
BAREBOARD_MALLOC. If you need alignment for this version of malloc() to be
different than the value returned by sizeof(void*), then define MSL_ALIGNMENT
to whatever multiple of sizeof(void*) you need.
These macros configure the MSL memory management system:
Table 2.1: Macros for MSL Memory Management

This macro... has this effect on
MSL source code

MSL_BAREBOARD_MALLOC Defined if the alternative small-memory
allocator is to be used. Available only for
bareboard systems. This allocator allows
arbitrary pointer sizes and alignments.

MSL_MALLOC_0_RETURNS_NON_NULL Defined as 1 if MSL returns a non-NULL
value for zero-sized malloc()requests.
Defined as 0 if MSL returns NULLfor zero-
sized malloc()requests.

MSL_OS_DIRECT_MALLOC Defined as 1 if MSL should make oper-
ating system requests for memory
every time the user program calls
malloc(). Defined as 0 if MSL uses
its internal memory pools to satisfy
malloc()requests. Generally, MSL
memory pools give better performance
than most operating system memory
allocators. Using MSL_OS_DIRECT_
MALLOCcan sometimes provide some
help for debugging. MSL_OS_ALLOC_
SUPPORTmust be defined as 1 for MSL_
OS_DIRECT_MALLOCto take effect.

Configuring MSL
 Configuring Memory Management

CodeWarrior Implementation of the C Standard Library 23

This macro... has this effect on
MSL source code

MSL_CLASSIC_MALLOC(old name: MSL_
PRO4_MALLOC)

Defined if MSL is to use the original MSL
memory pool scheme. Undefined if MSL
uses its more modern pooling scheme.

MSL_ALLOCATE_SIZE Defined to the routine name that returns
the size of an allocated memory block.
Default routine name is allocate_size

MSL_ALLOCATE Defined to the internal MSL routine name
that allocates a memory block. Used
only with the modern memory pooling
scheme. Default routine name is allo-
cate.

MSL_ALLOCATE_RESIZE Defined to the internal MSL routine
name that changes the size of an allo-
cated memory block. Used only with the
modern memory pooling scheme. Default
routine name is allocate_resize

MSL_ALLOCATE_EXPAND Defined to the internal MSL routine name
that tries to expand the size of an allo-
cated memory block. Used only with the
modern memory pooling scheme. Default
routine name is allocate_resize.

MSL_OS_ALLOC_SUPPORT(old name:
No_Alloc_OS_Support)

Defined to 1 if the target operating
system provides memory allocation.
Defined to 0 if the operating system
does not support memory allocation.
When defined to 1, the programmer must
supply sys_alloc(), sys_free(),
and sys_pointer_size()functions
in the pool_alloc_target.cfile.
When defined to 0, the programmer must
define the MSL_HEAP_EXTERN_PROTO-
TYPES, MSL_HEAP_START, and MSL_
HEAP_SIZEmacros. There must also be
writable space provided at link time for
MSL to use as a memory pool.

MSL_HEAP_EXTERN_PROTOTYPES When MSL_OS_ALLOC_SUPPORTis off,
the MSL alloc.cfile must be able to
access external symbols in order to

Configuring MSL
Configuring Memory Management

24 CodeWarrior Implementation of the C Standard Library

This macro... has this effect on
MSL source code

get access to the start of the writable
memory pool area and determine the
memory pool size. The platform prefix
file must define MSL_HEAP_EXTERN_
PROTOTYPESso it expands to appropriate
external prototypes.

MSL_POOL_ALIGNMENT Specifies the alignment requirements of
malloc()and free()only when using
the original allocator. The alignment
is a mask used to ensure that blocks
allocated always have sizes that are
multiples of a given power-of-two. This
exponent is 4. The alignment factor must
be a multiple of four and must also be a
multiple of sizeof(long).

MSL_USE_FIX_MALLOC_POOLS For tiny allocations, fixed sized pools
help significantly speed allocation and
deallocation. Used only with the modern
memory pooling scheme. You can
reserve a pool for a small range of sizes.
Disable fixed-size pools by setting MSL_
USE_FIX_MALLOC_POOLSto 0. The
default value is 1. Use of fixed size
pools requires further configuration.
With the default configuration, each pool
will handle approximately 4000 bytes
worth of requests before asking for more
memory. There are 4 pool types. Each
type is responsible for a different range
of requests: 0-12 bytes, 13-20 bytes,
21-36 bytes, and 37-68 bytes. Requests
for greater than 68 bytes go to the vari-
able size pools. The number of types of
pools is configurable below. The range
of requests for each type is also config-
urable.

MSL_HEAP_EXTERN_PROTOTYPES When MSL_OS_ALLOC_SUPPORTis off,
the MSL alloc.cfile must be able to
access external symbols in order to
get access to the start of the writable
memory pool area and determine the

Configuring MSL
 Configuring Memory Management

CodeWarrior Implementation of the C Standard Library 25

This macro... has this effect on
MSL source code

memory pool size. The platform prefix
file must define MSL_HEAP_EXTERN_
PROTOTYPESso it expands to appropriate
external prototypes.

MSL_HEAP_START When MSL_OS_ALLOC_SUPPORTis off,
the MSL alloc.cfile must be able to
find the start of the writable memory pool
area. The MSL_HEAP_STARTmacro must
be defined in the platform prefix file to
expand to a memory location signifying
the start of the writable memory pool
area.

MSL_HEAP_SIZE When MSL_OS_ALLOC_SUPPORTis
off, the MSL alloc.cfile must be
able to determine the size of the
writable memory pool. The MSL_HEAP_
SIZEmacro must be defined in the plat-
form prefix file to expand to the size of
the writable memory pool.

CALLOC If CALLOCis undefined, the name of
the MSL calloc()routine is simply
calloc. Otherwise, if CALLOCis defined,
the MSL calloc()routine is named
whatever the CALLOCmacro is defined
to. This is useful in case a target plat-
form has its own implementation of
calloc()and the MSL name conflicts
with the target's name.

FREE If FREEis undefined, the name of the
MSL free()routine is simply free.
Otherwise, if FREEis defined, the MSL
free()routine is named whatever the
FREEmacro is defined to. This is useful
in case a target platform has its own
implementation of free()and the MSL
conflicts with the target's name.

MALLOC If MALLOCis undefined, the name of
the MSL malloc()routine is simply
malloc. Otherwise, if MALLOCis defined,

Configuring MSL
Configuring Time and Date

26 CodeWarrior Implementation of the C Standard Library

This macro... has this effect on
MSL source code

the MSL malloc()routine is named
whatever the MALLOCmacro is defined
to. This is useful in case a target plat-
form has its own implementation of
malloc()and the MSL name conflicts
with the target's name.

REALLOC If REALLOCis undefined, the name of
the MSL realloc()routine is simply
realloc. Otherwise, if REALLOCis
defined, the MSL realloc()routine is
named whatever the REALLOCmacro is
defined to. This is useful in case a target
platform has its own implementation of
realloc()and the MSL name conflicts
with the target's name.

Configuring Time and Date
MSL comes configured by default to take advantage of a build target's features to
determine the time of day and return an internal clock tick. For MSL to provide these
facilities, a build target must provide four simple functions. Time and clock stub
functions are in the time_target.c, where target is the name of the build target.

• For build targets that have an internal clock tick, the get_clock() function
must obtain the current clock tick and return its value to MSL. If the clock tick
information is not obtainable, return the value -1.

• For systems that support the ability to determine the time of day, the get_
time() function must obtain the current time of day and return its time_t
equivalent value to MSL. Depending on the value of MSL_TIME_T_IS_
LOCALTIME, the current time is either the “local time” time of day, or it is
“Universal Time Coordinated” (UTC), which was formerly called “Greenwich
Mean Time” (GMT).

• If the current time of day is not obtainable, return the value -1. The to_gm_
time() function must take a “local time” time of day time_t value and
convert it into a “global mean” time_t value. If the conversion takes place
properly, return 1 to MSL. If the conversion fails, return 0 to MSL.

• The to_local_time() function must take a UTC time of day time_t value and
convert it into a "local time" time_t value. If the conversion takes place properly,

Configuring MSL
 Configuring Time and Date

CodeWarrior Implementation of the C Standard Library 27

return 1 to MSL. If the conversion fails, return 0 to MSL. The to_local_
time() function is only used when MSL_TIME_T_IS_LOCALTIME is off.

• The isdst() function must try to determine whether or not daylight savings time
is in effect. If daylight savings time is not in effect, return 0. If daylight savings
time is in effect, return 1. If daylight savings time information is not obtainable,
return -1.

These macros configure MSL C's time and clock facilities:
Table 2.2: Macros for MSL Date and Time Management

This macro... has this effect on
MSL C source code

MSL_OS_TIME_SUPPORT Defined to 1 if the MSL platform supports
retrieving the time. Defined to 0 if the
MSL platform does not support retrieving
the time.

MSL_CLOCK_T_AVAILABLE Defined to 1 if the MSL platform supports
the clock_ttype. Defined to 0 if the
MSL platform does not support the
clock_ttype. The MSL_OS_TIME_
SUPPORTmacro must be on before the
MSL_CLOCK_T_AVAILABLEmacro is
recognized.

MSL_CLOCK_T_DEFINED Defined to 1 if the MSL platform defined
the clock_ttype. Defined to 0 if the
MSL platform does not define the clock_
ttype.

MSL_CLOCK_T Set to the clock_ttype. Default value is
unsigned long int.

MSL_TIME_T_AVAILABLE Defined to 1 if the MSL platform supports
the time_ttype. Defined to 0 if the MSL
platform does not support the time_
ttype. The MSL_OS_TIME_SUPPORT-
macro must be on before the MSL_TIME_
T_AVAILABLEmacro is recognized.

MSL_TIME_T_DEFINED Defined to 1 if the MSL platform defined
the time_ttype. Defined to 0 if the
MSL platform does not define the time_
ttype.

Configuring MSL
Configuring Input and Output

28 CodeWarrior Implementation of the C Standard Library

This macro... has this effect on
MSL C source code

MSL_TIME_T_IS_LOCALTIME Defined to 1 if the MSL platform value
for time_trepresents local time, pread-
justed for any time zone and offset from
UTC (GMT). Defined to 0 if the MSL
platform value for time_trepresents
Universal Time Coordinated. The default
value is 1.

MSL_CLOCKS_PER_SEC Set to the number of clock ticks per
second. The default value is 60.

MSL_TM_STRUCT_AVAILABLE Defined to 1 if the MSL platform supports
the tmstructure. Defined to 0 if the MSL
platform does not support the tmstruc-
ture.

Configuring Input and Output

Configuring File Input/Output

Setting up MSL to handle file I/O is a fairly intensive task. It requires many platform-
specific routines to be written. The easiest way to configure file I/O is to simply have
MSL not know about it by defining MSL_OS_DISK_FILE_SUPPORT to 0. In that
mode, MSL does not know about any routines requiring file manipulation such as
fopen(), fread(), fwrite(), fclose(), and so on.

When MSL_OS_DISK_FILE_SUPPORT is defined to 1, many low-level file routines
need to be written, and several supporting macros also need to be defined properly. First,
make sure that MSL_FILENAME_MAX properly reflects the maximum length of a file
name. Also, if the default internal MSL file buffer size is not appropriate, choose a new
value for MSL_BUFSIZ. Once all the macros are properly defined, the following routines
in file_io_target.c (where target represents the build target on which MSL will
run) must be completed.

Routines

The open_file() routine is perhaps the most complicated of all the low level file I/O
routines. It takes a filename and some mode flags, opens the file, and returns a handle to
the file. A file handle is a platform-specific identifier uniquely identifying the open file.
The mode flags specify if the file is to be opened in read-only, write-only, or read-write
mode. The flags also specify if the file must previously exist for an open operation to be

Configuring MSL
 Configuring Input and Output

CodeWarrior Implementation of the C Standard Library 29

successful, if the file can be opened whether or not it previously existed, or if the file is
truncated (position and end of file marker set to 0) once it is open. If the file is opened
successfully, return no_io_error. If there was an error opening the file, return io_
error.

The open_temp_file() routine in the file_io_Starter.c file is mostly
platform independent. It may be customized if there are more efficient ways to perform
the task. The open_temp_file() routine is called by tmpfile() to perform the
low level work of creating a new temporary file (which is automatically deleted when
closed).

The read_file() routine takes a file handle, a buffer, and the size of the buffer. This
function must read information from the file described by the file handle into the buffer.
The buffer does not have to be completely filled, but at least one character should be
read. The number of characters successfully read is returned in the count parameter. If
an end of file is reached after more than one character has been read, simply return the
number of characters read. The subsequent call to this function should then store zero in
the count argument and a result code of io_EOF. If the read operation succeeds, return
no_io_error. If the read fails, return io_error.

The write_file() routine takes a file handle, a buffer, and the size of the buffer.
It should then write information to the file described by the file handle from the buffer.
The number of characters successfully written is returned in the count parameter. If the
write was successful, return no_io_error. If the write failed, return io_error.

The position_file() routine takes a file handle, a position displacement, and a
positioning mode and should set the current position in the file described by the file
handle based on the displacement and mode. The displacement value is passed as a
variable of type unsigned long due to certain internal constraints of MSL. The value
should actually be treated as type signed long. The mode specifies if displacement
is an absolute position in the file (treat as position of 0 + displacement), a change from
the current position (treat as current position + displacement), or an offset from the end of
file mark (treat as end-of-file position + displacement). If the positioning was successful,
return no_io_error. If the positioning failed, return io_error.

The close_file() routine closes the specified file. If the file was created by open_
temp_file(), it should additionally be deleted. If the close operation is successful,
return no_io_error. If the close failed, return io_error.

The temp_file_name() routine creates a new unique file name suitable for a
temporary file. Function tmpnam() uses this function to perform the low-level work.

The delete_file() routine deletes an existing file, given its file name. If the delete
operation is successful, return no_io_error. If the delete failed, return io_error.

The rename_file() routine renames an existing file, given its existing file name
and a desired new file name. If the rename is successful, return no_io_error. If the
rename failed, return io_error.

Configuring MSL
Configuring Input and Output

30 CodeWarrior Implementation of the C Standard Library

Finally, if the platform wants to provide some additional nonstandard file I/O routines
that are common to the Windows operating system, make sure MSL_WIDE_CHAR is
defined as 1, then also define MSL_WFILEIO_AVAILABLE as 1. The following stub
routines must also be completed in the file_io_plat.c source file. All routines
take wchar_t* parameters instead of char*: wopen_file() (same function as
open_file()), wtemp_file_name() (same function as temp_file_name()),
wdelete_file() (same function as delete_file()), and wrename_file()
(same function as rename_file).

Table 2.3 lists the macros that configure the MSL file I/O system.
Table 2.3: Macros for MSL Input/Output Management

This macro... has this behavior

MSL_OS_DISK_FILE_SUPPORT Defined to 1 if the MSL platform supports
disk file I/O. Defined to 0 if the MSL plat-
form does not support disk file I/O.

MSL_FILENAME_MAX Set to the maximum number of charac-
ters allowed in a file name. The default
value is 256.

MSL_BUFSIZ Set to the file I/O buffer size in bytes
used to set the BUFSIZ macro. The
default value is 4096.

MSL_WFILEIO_AVAILABLE Defined to 1 if MSL has wchar_texten-
sions for file I/O calls needing filenames,
such as wfopen(). Defined to 0 if MSL
only has traditional C file I/O calls. It is an
error to have MSL_WIDE_CHARdefined
as 0 and MSL_WFILEIO_AVAILABLEde-
fined as 1.

Configuring Console I/O

Console I/O for stdin, stdout, and stderr can be configured in many different
ways. The easiest way to configure console I/O is to have it turned off completely. When
MSL_CONSOLE_SUPPORT is defined as 0, MSL does not generate source code to
construct the stdin, stdout, and stderr streams. Also, calls such as printf() are
not placed in the standard C library.
When MSL_CONSOLE_SUPPORT is 1, there are a few ways in which to
provide console access.

• The first way is to have MSL automatically throw away all items read and written
to the console by defining MSL_NULL_CONSOLE_ROUTINES.

Configuring MSL
 Configuring Input and Output

CodeWarrior Implementation of the C Standard Library 31

• The second way is to have MSL treat all console I/O as if it were file I/O by
defining MSL_FILE_CONSOLE_ROUTINES. Treating the console as file I/
O requires configuring the file I/O portion of MSL as described in the previous
section. Input and output go through the read_file(), write_file(),
and close_file() bottlenecks instead of read_console(), write_
console(), and close_console(), respectively.

• The third way to provide console access is to define MSL_CONSOLE_SUPPORT
as 1 and leave the remainder of the MSL_CONSOLE_FILE_IS_DISK_FILE
and MSL_FILE_CONSOLE_ROUTINES flags in their default state, defined as
0. MSL will then call read_console when it needs input (for example from
scanf()), write_console() when it wants to send output (for example
from printf()), and close_console() when the console is no longer
needed. The three routines should be provided in the console_io_plat.c file.

The macros listed in Table 2.4 configure the MSL console input/output capabilities.
Table 2.4: Macros for MSL Console Input/Output Management

This macro... has this behavior

MSL_CONSOLE_SUPPORT Defined to 1 if the MSL platform supports
console I/O. Defined to 0 if the MSL
platform does not support console I/O.
Default value is 1.

MSL_BUFFERED_CONSOLE Defined to 1 if the MSL platform console I/
O is buffered. Defined to 0 if the MSL plat-
form console I/O is unbuffered. Default
value is 1.

MSL_CONSOLE_FILE_IS_DISK_FILE Defined to 1 if the MSL platform has
console I/O, but it is really in a file.
Defined to 0 if the MSL platform has tradi-
tional console I/O. Default value is 0.

MSL_NULL_CONSOLE_ROUTINES Defined to 1 if the MSL platform does
not perform console I/O. Defined to 0
if the MSL platform performs console I/
O. This flag may be set independently
of MSL_CONSOLE_SUPPORT. However,
when MSL_CONSOLE_SUPPORTis defined
as 0, MSL_NULL_CONSOLE_ROUTI-
NESmust always be defined as 1. When
MSL_CONSOLE_SUPPORTis 1 and MSL_
NULL_CONSOLE_ROUTINESis also 1, all
console I/O is ignored. Default value is 0.

Configuring MSL
Configuring Threads

32 CodeWarrior Implementation of the C Standard Library

This macro... has this behavior

MSL_FILE_CONSOLE_ROUTINES Defined to 1 if the MSL platform uses
the file I/O read/write/close routines for
console I/O instead of using the special
console read/write/close routines. Define
to 0 if the MSL platform uses the special
console read/write/close routines. When
MSL_CONSOLE_FILE_IS_DISK_FILEis
1, MSL_FILE_CONSOLE_ROUTINESmust
always be 1. Default value is 0.

Configuring Threads

Macros for Configuring Threads
MSL is highly adaptive when it comes to multithreading. The C standard
makes no mention of threading. It even has points where global data
is accessed directly, for example errno, asctime(). MSL can be
configured to know about multithreaded systems and be completely
reentrant. There are essentially three ways to configure the MSL thread
support:

• single thread (not reentrant at all)

• multithreaded with global data (mostly reentrant)

• and multithreaded with thread local data (completely reentrant).

With MSL_THREADSAFE defined to 1, MSL is setup to operate in a single thread
environment. There are no critical regions to synchronize operations between threads.
It is sometimes advantageous to configure MSL for a single threaded environment.
Operations such as file input/output and memory allocations will be quicker because
there is no need to ask for or wait for critical regions. Many simple programs do not make
use of threads, thus there may be no need for the additional overhead.

With MSL_THREADSAFE defined to 1, MSL is setup to synchronize operations between
threads properly by the use of critical regions. Critical regions are supplied either by
POSIX pthread functions or by the use of platform specific calls. If the platform has
an underlying POSIX layer supporting pthreads, simply defining MSL_THREADSAFE
and MSL_PTHREADS is enough for MSL to fully operate. No other custom code is
necessary.

With MSL_THREADSAFE defined to 1 and MSL_PTHREADS defined to 0, the platform
must provide its own critical region code. This is generally done by first providing

Configuring MSL
 Configuring Threads

CodeWarrior Implementation of the C Standard Library 33

an array of critical region identifiers in the critical_regions_platform.c
file, and then by completing the four critical region functions in the
critical_regions_platform.h header file (where platform represents the target
platform which MSL runs on). The compiler runtime library must make a call to init_
critical_regions() before calling main().

With MSL_THREADSAFE on, the MSL_LOCALDATA_AVAILABLE flag controls
whether or not the MSL library is completely reentrant or not. When MSL_
LOCALDATA_AVAILABLE is off, the MSL library uses global and static variables, and
is therefore not completely reentrant for such items as errno, the random number seed
used by rand(), strtok() state information, etc. When MSL_LOCALDATA_AVAILABLE is
on, the MSL library uses thread local storage to maintain state information. Each thread
has its own copy of some dynamic memory that gets used.
With MSL_LOCALDATA_AVAILABLE on and MSL_PTHREADS on, simply
adding the following line to the platform prefix file is enough to fully
support complete reentrancy:

#define _MSL_LOCALDATA(_a) __msl_GetThreadLocalData()->_a

With MSL_LOCALDATA_AVAILABLE on and MSL_PTHREADS off,
the platform must completely supply its own routines to maintain
and access thread local storage. The thread_local_data_xxx.h
and thread_local_data_xxx.c files are used to provide the
necessary functionality. Also, the common MSL header
(msl_thread_local_data.h) must be modified to include the
platform header (thread_local_data_platform.h) based on its
dest_os value. The MSL_LOCALDATA macro is used to access items in
thread local storage. So, for example, if the random number seed needs
to be obtained, the MSL code will invoke

_MSL_LOCALDATA(random_next)

to get the random number seed. The macro must expand to an l-value
expression.

At times, it may be easier to turn on MSL_PTHREADS even if the underlying platform
does not have built-in pthread support. Instead of writing custom code to support the
MSL threading model, it may be easier to turn on MSL_PTHREADS and then write
comparable pthread routines. When MSL_PTHREADS is on and _MSL_THREADSAFE
is on, four pthread routines in the pthread_platform.c file are used by MSL to
implement critical regions.

Pthread Functions

The pthread_mutex_init() routine creates a single mutual exclusion lock (mutex).
MSL will always pass NULL as the second attr argument, which means to use default
mutex attributes. Return zero upon success, return an error code upon failure.

Configuring MSL
Configuring Threads

34 CodeWarrior Implementation of the C Standard Library

The pthread_mutex_destroy() routine disposes of a single mutex. Return zero
upon success, return an error code upon failure.

The pthread_mutex_lock() routine acquires a lock on a single mutex. If the
mutex is already locked when pthread_mutex_lock() is called, the routine blocks
execution of the current thread until the mutex is available. Return zero upon success,
return an error code upon failure.

The pthread_mutex_unlock routine releases a lock on a single mutex. Return zero
upon success, return an error code upon failure.
Additionally, when MSL_LOCALDATA_AVAILABLE is on, four more
pthread routines in the pthread_platform.c file are used by MSL to
implement thread local data:

• The pthread_key_create() routine creates a new thread local data
identifier. Each thread can then access its own individual data elements through
the identifier. When a thread terminates, the destructor routine is called with the
single argument of pthread_getspecific() to clean up any necessary
thread local data. Return zero upon success, return an error code upon failure.

• The pthread_key_delete routine disposes of a thread local data identifier.
Return zero upon success, return an error code upon failure.

• The pthread_setspecific() routine associates a value to a previously
created thread local data identifier. The value is specific to the currently executing
thread. Return zero upon success, return an error code upon failure.

• The pthread_getspecific routine retrieves a value associated with a thread
local data identifier. The value is specific to the currently executing thread. If
no value has been associated with the thread local data identifier, return NULL .
Otherwise, return the previously associated value.

The following macros are used to configure and use the MSL threading
support:
Table 2.5: Macros for MSL Thread Management

This macro... has this behavior

MSL_THREADSAFE Defined to 0 if there is no multithread
support in MSL. Defined to 1 if there
should be multitheread support in MSL.
When defined to 1, many internal aspects
of MSL are guarded by critical regions.
Having critical regions inside MSL will
slow down the execution time for the
tradeoff of working correclty on a multi-
threaded system. Also, many MSL func-
tions will use thread local storage for
maintaining state information.

Configuring MSL
 Configuring Assertions

CodeWarrior Implementation of the C Standard Library 35

This macro... has this behavior

MSL_PTHREADS Defined to 1 if the MSL platform supports
the POSIX threading model. Defined to
0 if the MSL platform does not support
the POSIX threading model. It is an error
to define MSL_PTHREADSto 1 and MSL_
THREADSAFEto 0. MSL has generic
support for the POSIX thread model, so
turning on MSL_THREADSAFEand MSL_
THREADSis enough to properly support a
multithreaded system without the need to
write any additional support code.

MSL_LOCALDATA Internal MSL flag for accessing thread
local data when MSL_THREADSAFEis 1.
Accesses static global data when MSL_
THREADSAFEis 0.

MSL_LOCALDATA_AVAILABLE Defined to 1 if the MSL platform supports
thread local data, accessible using the
MSL_LOCALDATAmacro. Defined to 0
if the MSL platform does not support
thread local data.

Configuring Assertions
Use the MSL_ASSERT_DISPLAYS_FUNC macro to specify whether or not the
assert() facility also reports the name of the function in which an assertion
failed. When compiling a custom version of MSL with MSL_ASSERT_DISPLAYS_
FUNC defined as 1, MSL compiles the assert() facility to report the file, line, test
expression, and name of the function in which an active assertion fails. When compiling
MSL with MSL_ASSERT_DISPLAYS_FUNC defined as 0, the assert() facility only
reports the file, line, and test expression.

The MSL_OS_DISK_FILE_SUPPORT and MSL_CONSOLE_SUPPORT macros
determine the assert() macro's ability to report an error.

Configuring Complex Number Facilities

Configuring MSL
Configuring C99 Features

36 CodeWarrior Implementation of the C Standard Library

Use the MSL_COMPLEX macro to specify whether or not MSL provides standard
facilities for complex number manipulation described by the C99 standard (ISO/IEC
9899-1999). When compiling a custom version of MSL with MSL_COMPLEX defined as
1 and the MSL_C99 macro is defined as 1 the library provides the facilities for complex
number manipulation.

Configuring C99 Features
Use the MSL_C99 macro to specify whether or not MSL provides a C library that is
compliant with the C90 (ISO/IEC 9899-1990) standard or the C99 (ISO/IEC 9899-1999)
standard. When compiling a custom version of MSL with MSL_C99 defined as 0,
the library conforms to the C90 specification. If MSL_C99 is defined as 1 the library
conforms to the C99 specification.

Configuring Locale Features
Use the MSL_C_LOCALE_ONLY macro to specify whether or not MSL provides only
the "C" locale or the entire locale mechanism specified in the C99 (ISO/IEC 9899-1999)
standard. When compiling a custom version of MSL with MSL_C_LOCALE_ONLY
defined as 1, the library provides only the "C" locale. This configuration also reduces the
sizes of the library's object code. If MSL_C_LOCALE_ONLY is defined as 0 the library
conforms to the locale facilities described in the C99 specification.

When MSL_C_LOCALE_ONLY is defined as 0, the library uses the MSL_DEFAULT_
LOCALE macro to determine which locale is in effect when target program starts. When
compiling a custom version of MSL with MSL_DEFAULT_LOCALE defined as 0, the
library starts with the "" locale. When defined as 1, the library starts with the "C" locale.
When 2, the library starts with the "C-UTF-8" locale. The library ignores this option
when MSL_C_LOCALE_ONLY is defined as 1.

Configuring Floating-Point Math Features
Use the MSL_FLOATING_POINT macro to specify whether or not MSL provides
floating-point math features. When compiling a custom version of MSL with MSL_
FLOATING_POINT defined as 0, the library does not provide facilities for floating point
operations. This setting also reduces the size of the library's object code.

If MSL_FLOATING_POINT is defined as 1 then the library provides floating point
facilities.

Configuring MSL
 Configuring the MSL Extras Library

CodeWarrior Implementation of the C Standard Library 37

Configuring the MSL Extras Library
Use the MSL_NEEDS_EXTRAS macro to specify whether or not MSL should extend its
standard behavior with the facilities that MSL Extras provides.

When building a custom version of MSL with MSL_NEEDS_EXTRAS defined as 1,
MSL extends its standard library with the features that MSL Extras provides. When using
MSL, MSL Extras features can then be accessed through standard header files. Table
2.6 lists the standard header files that include MSL Extras facilities when MSL_NEEDS_
EXTRAS is defined as 1.

When building MSL with MSL_NEEDS_EXTRAS defined as 0, MSL does not extend its
standard library. MSL Extras facilities must be accessed directly through the MSL Extras
non-standard header files.
Table 2.6: Extending Standard Header Files with MSL Extras

This standard header file... includes this MSL
Extras header file

stdlib.h extras_stdlib.h

string.h extras_string.h

time.h extras_time.h

wchar.h extras_wchar.h

Configuring Wide-Character Facilities
Use the MSL_WIDE_CHAR macro to specify whether or not MSL provides wide-
character facilities. When compiling a custom version of MSL with MSL_WIDE_CHAR
defined as 1 the library provides facilities for wide-character manipulation.

When compiling the library with MSL_WIDE_CHAR is defined as 0, the library does not
provide wide-character facilities. This setting also reduces the size of the library's object
code.

Configuring MSL
Porting MSL to an Embedded OS

38 CodeWarrior Implementation of the C Standard Library

Porting MSL to an Embedded OS
MSL needs to be modified to support an embedded OS. Use the following steps to port
MSL to an embedded OS.

1. Create a copy of MSL_C\PPC_EABI\Project
\MSL_C.PPCEABI.stub.mcp and MSL_C\PPC_EABI\Include
\PREFIX_EPPC_STUB.h. Rename the files to reflect the name of
the OS. For example, if your OS is called MyOS then rename the files to
MSL_C.PPCEABI.MyOS.mcp and PREFIX_EPPC_MyOS.h. Note that it is a
good practice to retain the copy of the original files.

2. Select a particular target among the many targets present in the project.

• In the Target Settings preference panel, rename the Target Name
to reflect the name of the OS. For example if you select the target
MSL_C.PPCEABI.stub.S.UC then rename the selected target to
MSL_C.PPCEABI.MyOS.S.UC.

• In the EPPC Target preference panel, rename the File Name to
reflect the name of the OS. For example, if you select the target
MSL_C.PPCEABI.stub.S.UC then rename the file name to
MSL_C.PPCEABI.MyOS.S.UC.a

3. In the C/C++ Language preference panel of MSL_C.PPCEABI.MyOS.mcp,
replace the prefix file withPREFIX_EPPC_MyOS.h.

4. Replace the definition for PREFIX_EPPC_STUB in PREFIX_EPPC_MyOS.h
with a definition to represent your OS, such as PREFIX_EPPC_MyOS.

5. Read your OS documentation and determine whether it has support for providing
time, memory allocation, and disk files.

6. Adjust the following macros in PREFIX_EPPC_MyOS.h depending on the
services available in your OS.

• MSL_OS_DISK_FILE_SUPPORT

• MSL_OS_ALLOC_SUPPORT

• MSL_OS_TIME_SUPPORT

• MSL_CLOCK_T_AVAILABLE

• MSL_TIME_T_AVAILABLE

The prefix file PREFIX_EPPC_MyOS.h includes the header file
ansi_prefix.PPCEABI.bare.h and the following services:

• MSL_CONSOLE_SUPPORT

• MSL_BUFFERED_CONSOLE

Determine if you want to send any information on the console during
development. If you do not want to send debugging information to a console

Configuring MSL
 Porting MSL to an Embedded OS

CodeWarrior Implementation of the C Standard Library 39

window on the host machine, reset _MSL_CONSOLE_SUPPORT to 0. If you
are using either SMC1_UART_PPCE_24.a or SMC2_UART_PPCE_24.a to
read from or write to the console window, you need to set MSL_BUFFERED_
CONSOLE to 1.

7. Duplicate and rename MSL files based on OS-specific features . The files are
time.stub.c, pool_alloc.stub.c and file_io.stub.c. When you
rename these files, replace stub with MyOS.

8. Insert OS system calls into the stub routines of these files to fetch the relevent
information.

9. Remove the stub files from MSL C.PPCEABI.MyOS.mcp and insert the OS-
specific files, only if support is provided.

10. In the pool_alloc_MyOS.c file replace #ifdef_No_Alloc_OS_Support
with #if !_MSL_OS_ALLOC_SUPPORT.

11. In the prefix file PREFIX_EPPC_MyOS.h, define a macro to represent your OS,
such as MyOS_PPC_EABI.

12. In MSL_C.PPCEABI.MyOS.mcp search for Generic_PPC_EABI_OS. At
all instances, add an #elif_MyOS_PPC_EABI and enter your OS-specific
information.

13. Modify ExitProcess in __ppc_eabi_init.c [pp] to safely return your
application to the OS. __ppc_eabi_init.c[pp] is found in the PowerPC
EABI Support directory.

14. You might need to modify the critical_regions.ppc_eabi.c and
sysenv.c files.

15. Review the other MSL components and identify __va_arg, __mem, runtime
and the OS-specific modifications to be made to them.

Configuring MSL
Porting MSL to an Embedded OS

40 CodeWarrior Implementation of the C Standard Library

CodeWarrior Implementation of the C Standard Library 41

3
assert.h

The assert.h header file provides a debugging macro, assert, that outputs a diagnostic
message and stops the program if a test fails.

assert()
Stops execution if a test fails.

#include <assert.h>

void assert(int expression);

expression

The result of a boolean expression.

Remarks

If expression is false the assert() macro outputs a diagnostic message and calls
abort().

To disable assert() macros, place a #define NDEBUG (no debugging) directive
before the #include <assert.h> directive.

Because calls to assert() may be disabled, make sure that your program does not
depend on the effects of computing the value of expression.

This facility may have limited capability on configurations of the MSL that run on
platforms that do not have console input/output or a file system.

Example of assert()

/* Make sure that assert() is enabled. */

#undef NDEBUG

#include <assert.h>

#include <stdio.h>

assert.h
assert()

42 CodeWarrior Implementation of the C Standard Library

int main(void)

{

 int x = 100, y = 5;

 printf("assert test.\n");

 /* This assert will output a message and abort the program */

 assert(x > 1000);

 printf("This will not execute if NDEBUG is undefined\n");

 return 0;

}

CodeWarrior Implementation of the C Standard Library 43

4
complex.h

Facilities for mathematical functions that operate on complex numbers.

This header file defines some convenient macros for manipulating complex values. Table
4.1 lists these macros.
Table 4.1: Definitions in complex.h

Use this macro... to do this.

complex Define variables of complex type.
Expands to the built-in type, Complex.

Complex_I Expands to the square root of -1, of type
const float_Complex.

imaginary Define variables of imaginary type.
Expands to the built-in type, Imaginary.

Imaginary_I Expands to the square root of -1, of type
const float_Imaginary.

I Expands to Imaginary_I.

The facilities in this header file are only available when the compiler is configured to
compile source code for C99 (ISO/IEC 9899:1999). Refer to the Build Tools Reference
for information on compiling C99 source code.

Hyperbolic Trigonometry
Compute hyperbolic trigonometric values.

cacos()

complex.h
Hyperbolic Trigonometry

44 CodeWarrior Implementation of the C Standard Library

Computes the arc value of cosine.

#include <math.h>

double complex cacos(double complex x);

float complex cacosf(float complex x);

long double complex cacosl(long double complex x);

x

A complex value.

Remarks
These functions return the arccosine of the argument x, in radians. If x is
out of range then these functions set errno to EDOM and

fpclassify(cacos(x))

returns FP_NAN.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

cacosh()

Computes the inverse hyperbolic cosine.

#include <math.h>

double complex cacosh(double complex x);

float complex cacoshf(float complex x);

long double complex cacoshl(long double complex x);

x

A complex value from which to compute the inverse hyperbolic
cosine.

Remarks
These functions return the non-negative inverse hyperbolic cosine of x. If
x is out of range then these functions set errno to EDOM and

fpclassify(cacosh(x))

returns FP_NAN.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

casin()

complex.h
 Hyperbolic Trigonometry

CodeWarrior Implementation of the C Standard Library 45

Computes the arc value of sine.

#include <math.h>

double complex casin(double complex x);

float complex casinf(float complex x);

long double complex casinl(long double complex x);

x

A complex value.

Remarks
These functions return the arcsine of the argument x, in radians. If x is
out of range then these functions set errno to EDOM and

fpclassify(casin(x))

returns FP_NAN.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

casinh()

Computes the arc value of hyperbolic sine.

#include <math.h>

double complex casinh(double complex x);

float complex casinhf(float complex x);

long double complex casinhl(long double complex x);

x

A complex value.

Remarks
These functions return the hyperbolic arcsine of the argument x. If the
result of the computation is out of range, these functions set errno to
EDOM and

fpclassify(casinh(x))

returns FP_NAN.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

catan()

complex.h
Hyperbolic Trigonometry

46 CodeWarrior Implementation of the C Standard Library

Computes the arc value of tangent.

#include <math.h>

double complex catan(double complex x);

float catanf(float complex x);

long double complex catanl(long double complex x);

x

A complex value.

Remarks

These functions return the arctangent of the argument x, in radians.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

catanh()

Computes the arc value of hyperbolic tangent.

#include <math.h>

double complex catanh(double complex x);

float complex catanhf(float complex x);

long double complex catanhl(long double complex x);

x

A complex value.

Remarks
These functions return the hyperbolic arctangent of the argument x. If x
is out of range, these functions set errno to EDOM and

fpclassify(catanh(x))

returns FP_NAN.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

ccos()

Computes the cosine.

#include <math.h>

double ccos(double complex x);

float ccosf(float complex x);

complex.h
 Hyperbolic Trigonometry

CodeWarrior Implementation of the C Standard Library 47

long double ccosl(long double complex x);

x

A complex value.

Remarks

These functions return the cosine of x, which is measured in radians.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

ccosh()

Computes the hyperbolic cosine.

#include <math.h>

double complex ccosh(double complex x);

float complex ccoshf(float complex x);

long double complex ccoshl(long double complex x);

x

A complex value from which to compute.

Remarks

These functions return the hyperbolic cosine of x.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

csin()

Computes the sine.

#include <math.h>

double complex csin(double complex x);

float complex csinf(float complex x);

long double complex csinl(long double complex x);

x

A complex value.

Remarks

These functions compute the sine of x.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

complex.h
Exponents and Logarithms

48 CodeWarrior Implementation of the C Standard Library

csinh()

Computes the hyperbolic sine.

#include <math.h>

double complex csinh(double complex x);

float complex csinhf(float complex x);

long double complex csinhl(long double complex x);

x

A complex value.

Remarks

These functions compute the hyperbolic sine of x. These functions may assign ERANGE
to errno if x is out of range. Use fpclassify() to check the validity of the results
returned by these functions.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

ctan()

Computes the tangent.

#include <math.h>

double complex ctan(double complex x);

float complex ctanf(float complex x);

long double complex ctanl(long double complex x);

x

A complex value.

Remarks

These functions compute the tangent of x.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Exponents and Logarithms
Compute exponential and logarithmic values.

complex.h
 Powers and Absolute Values

CodeWarrior Implementation of the C Standard Library 49

cexp()

Computes a power of e.

#include <math.h>

double complex cexp(double complex x);

float complex cexpf(float complex x);

long double complex cexpl(long double complex x);

x

A complex value.

Remarks

These functions return e X , where e is the natural logarithm base value.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

clog()

Computes natural logarithms.

#include <math.h>

double complex clog(double complex x);

float complex clogf(float complex x);

long double complex clogl(long double complex x);

x

A complex value.

Remarks

These functions return log e x. If x < 0, clog() assigns EDOM to errno. Use
fpclassify() to check the validity of the result returned by clog().

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Powers and Absolute Values
Compute powers, roots, and absolute values.

complex.h
Powers and Absolute Values

50 CodeWarrior Implementation of the C Standard Library

cabs()

Computes an absolute value.

#include <math.h>

double complex cabs(double complex x);

float complex cabsf(float complex x);

long double complex cabsl(long double complex x);

x

A complex value.

Remarks

These functions return the absolute value of X.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

cpow()

Computes the power of a base number.

#include <math.h>

double complex cpow(double complex x, double complex y);

float complex cpowf(float complex x, float complex y);

long double complex cpowl(long double complex x, long double

 complex y);

x

A complex value to use as base.

y

A complex value to use as exponent.

Remarks

These functions compute x y .

These functions assign EDOM to errno if they cannot compute a value. Use
fpclassify() to check the validity of the results returned by these functions.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

complex.h
 Manipulation

CodeWarrior Implementation of the C Standard Library 51

csqrt()

Computes the square root.

#include <math.h>

double complex csqrt(double complex x);

float complex csqrtf(float complex x);

long double complex csqrtl(long double complex x);

x

A complex value.

Remarks

These functions return the square root of x. These functions assign EDOM to errno if x <
0. Use fpclassify() to check the validity of the result returned by these functions.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Manipulation
Change and retrieve the properties of complex values.

carg()

Computes the phase angle.

#include <math.h>

double carg(double complex x);

float cargf(float complex x);

long double cargl(long double complex x);

x

A complex value.

Remarks

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

cimag()

complex.h
Manipulation

52 CodeWarrior Implementation of the C Standard Library

Computes the imaginary part of a complex number.

#include <math.h>

double cimag(double complex x);

float cimagf(float complex x);

long double cimagl(long double complex x);

x

A complex value.

Remarks

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

conj()

Computes the complex conjugate of a complex number.

#include <math.h>

double complex conj(double complex x);

float complex conjf(float complex x);

long double complex conjl(long double complex x);

x

A complex value.

Remarks

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

cproj()

Computes a projection onto the Riemann sphere.

#include <math.h>

double complex cproj(double complex x);

float complex cprojf(float complex x);

long double complex cprojl(long double complex x);

x

A complex value.

Remarks

complex.h
 Manipulation

CodeWarrior Implementation of the C Standard Library 53

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

creal()

Computes the real part of a complex number.

#include <math.h>

double creal(double complex x);

float crealf(float complex x);

long double creall(long double complex x);

x

A complex value.

Remarks

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

complex.h
Manipulation

54 CodeWarrior Implementation of the C Standard Library

CodeWarrior Implementation of the C Standard Library 55

5
ctype.h

Macros for testing the kind of character and for converting alphabetic characters to
uppercase or lowercase.

isalnum(), isalpha(), isblank(), iscntrl(),
isdigit(), isgraph(), islower(), isprint(),
ispunct(), isspace(), isupper(), isxdigit()

Tests for membership in subsets of the character set.

#include <ctype.h>

int isalnum(int c);

int isalpha(int c);

int isblank(int c);

int iscntrl(int c);

int isdigit(int c);

int isgraph(int c);

int islower(int c);

int isprint(int c);

int ispunct(int c);

int isspace(int c);

int isupper(int c);

int isxdigit(int c);

c

A character value to test.

Remarks

These functions test ASCII characters (0x00 to 0x7F) and the EOF value. The results of
these functions are not defined for character values in the range 0x80 to 0xFF.

ctype.h
isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct()...

56 CodeWarrior Implementation of the C Standard Library

The c argument is of type int so that the EOF value, which is outside the range of the
char type, may also be tested.

Table 5.1 lists the behaviors of these functions.
Table 5.1: Character Testing Functions

This function... returns true if cis
one of these values.

isalnum(c) Alphanumeric characters. For the
"C"locale, “a” to “z” , “A” to “Z” , or “0”
to “9” .

isalpha(c) Alphabetic characters. For the "C"locale,
 “a” to “z” or “A” to “Z” .

isblank(c) Word-separating whitespace. For the
"C"locale, the space and tab characters.

iscntrl(c) Non-printing control characters. The
delete character (0x7F) or an ordinary
control character from 0x00 to 0x1F.

isdigit(c) Numeric characters.

isgraph(c) Non-space printing character.

islower(c) A lowercase alphabetic character, from
“a” to “z” .

isprint(c) A printable character, including the space
character. The compliment of the subset
that iscntrl()tests for.

ispunct(c) A punctuation character. A punctua-
tion character is not in the subsets for
which isalnum(), isblank(), or
iscntrl()return true.

isspace(c) A whitespace character. A space, tab,
return, new line, vertical tab, or form
feed.

isupper(c) An uppercase alphabetic character, from
“A” to “Z” .

ctype.h
 isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct()...

CodeWarrior Implementation of the C Standard Library 57

This function... returns true if cis
one of these values.

isxdigit(c) A hexadecimal character. From “0” to “9”
, “a” to “f” , or “A” to “F” .

Character testing function example

#include <stdio.h>

#include <ctype.h>

int main(void)

{

 char *test = "Fb6# 9,";

 isalnum(test[0]) ?

 printf("%c is alphanumerical\n", test[0]) :

 printf("%c is not alphanumerical\n", test[0]);

 isalpha(test[0]) ?

 printf("%c is alphabetical\n", test[0]) :

 printf("%c is not alphabetical\n", test[0]);

 isblank(test[4]) ?

 printf("%c is a blank sapce\n", test[4]) :

 printf("%c is not a blank space\n", test[4]);

 iscntrl(test[0]) ?

 printf("%c is a control character\n", test[0]) :

 printf("%c is not a control character\n", test[0]);

 isdigit(test[2]) ?

 printf("%c is a digit\n", test[2]) :

 printf("%c is not a digit\n", test[2]) ;

 isgraph(test[0]) ?

 printf("%c is graphical \n", test[0]) :

 printf("%c is not graphical\n", test[0]);

 islower(test[1]) ?

 printf("%c is lowercase \n", test[1]) :

 printf("%c is not lowercase\n", test[1]);

 isprint(test[3]) ?

 printf("%c is printable\n", test[3]) :

 printf("%c is not printable\n", test[3]);

 ispunct(test[6]) ?

 printf("%c is a punctuation mark\n", test[6]) :

 printf("%c is not punctuation mark\n", test[6]);

ctype.h
tolower(), toupper()

58 CodeWarrior Implementation of the C Standard Library

 isspace(test[4]) ?

 printf("%c is a space\n", test[4]) :

 printf("%c is not a space\n", test[4]);

 isupper(test[0]) ?

 printf("%c is uppercase \n", test[1]) :

 printf("%c is not uppercase\n", test[1]);

 isxdigit(test[5]) ?

 printf("%c is a hexadecimal digit\n", test[5]) :

 printf("%c is not a hexadecimal digit\n", test[5]);

 return 0;

}

Output:

F is alphanumerical

F is alphabetical

 is a blank sapce

F is not a control character

6 is a digit

F is graphical

b is lower case

is printable

, is a punctuation mark

 is a space

F is uppercase

9 is a hexadecimal digit

tolower(), toupper()
Converts alphabetic characters to lowercase or uppercase.

#include <ctype.h>

int tolower(int c);

int toupper(int c);

c

A character value to convert.

Remarks

The tolower() function converts an uppercase alphabetic character to its equivalent
lowercase character. It returns all other characters unchanged. The toupper() function

ctype.h
 tolower(), toupper()

CodeWarrior Implementation of the C Standard Library 59

converts a lowercase alphabetic character to its uppercase equivalent. It returns all other
characters unchanged.

Character conversion example

#include <stdio.h>

#include <ctype.h>

int main(void)

{

 char s[] ="** DELICIOUS! lovely? delightful **";

 int i;

 for (i = 0; s[i]; i++)

 putchar(tolower(s[i]));

 putchar('\n');

 for (i = 0; s[i]; i++)

 putchar(toupper(s[i]));

 putchar('\n');

return 0;

}

Output:

** delicious! lovely? delightful **

** DELICIOUS! LOVELY? DELIGHTFUL **

ctype.h
tolower(), toupper()

60 CodeWarrior Implementation of the C Standard Library

CodeWarrior Implementation of the C Standard Library 61

6
errno.h

This header file provides the global error code which some functions in the library use to
store the status of their computations.

errno
A global variable for storing an error result.

#include <errno.h>

extern int errno;

Remarks

Many functions in the standard library return a special value when an error occurs. Often
the programmer needs to know about the nature of the error. Some functions provide
more detailed error information by assigning a value to the global variable errno. A
value of zero specifies that there is no error. A non-zero value specifies that a function
encountered an error.

Table 6.1 lists the values that MSL functions use to report an error condition.

An MSL function only assigns a value to errno when an error occurs. It is the
programmer's responsibility to assign 0 to errno before calling a function that uses it.
Table 6.1: Macros for MSL Date and Time Management

errnocontains this value... when this error has occurred

EDOM A numerical argument is not within the
acceptable range of values that a func-
tion requires.

EILSEQ An operation to convert to or from a multi-
byte character sequence could not be
completed.

errno.h
errno

62 CodeWarrior Implementation of the C Standard Library

errnocontains this value... when this error has occurred

ERANGE A result could not be computed because
it would be beyond the range of values
that can be stored in its data type.

Example of errno() usage

#include <errno.h>

#include <stdio.h>

#include <extras.h>

int main(void)

{

 char *num = "999999999999999999999999999999999";

 long result;

 errno = 0; /* Assume no error. */

 result = strtol(num, 0, 10);

 if (errno == 0)

 printf("The string as a long is %ld", result);

 else

 printf("Conversion error\n");

 return 0;

}

Output:

Conversion error

CodeWarrior Implementation of the C Standard Library 63

7
fenv.h

This header file declares data types, macros, and functions for querying and modifying
the behavior of the floating-point environment.

The floating-point environment comprises these aspects:

• Exception flags describe the state of the most recent floating-point operation. This
header file offers facilities to set and retrieve the values of these flags.

• Control modes specify to the environment how to modify the behavior of its
operations. This header file offers facilities for modifying these control modes.

fenv_t, fexecpt_t
Data types for querying and manipulating the floating-point environment.

#include <fenv.h>

typedef /* ... */ fenv_t;

typedef /* ... */ fexcept_t;

Remarks

The fenv_t data type represents the target system's floating point environment.

The fexcept_t data type represents the status flags in the environment.

FENV_ACCESS
Allows access to the floating-point environment.

#pragma STDC FENV_ACCESS on | off | default

Remarks

This pragma must be set to on to specify to the compiler that the program will use the
facilities in the fenv.h header file.

fenv.h
fegetenv

64 CodeWarrior Implementation of the C Standard Library

Place this directive before external declarations to specify that subsequent object
declarations will access the floating-point environment. This placement's effect spans
until the next directive or the end of the source file. Place this directive at the beginning
of compound statement to specify that the statements within the compound statement will
access the environment. This placement's effect lasts until the next directive or the end of
the compound statement.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

fegetenv
Retrieves the current floating-point environment.

#include <fenv.h>

void fegetenv(fenv_t *envp);

envp

Pointer to a floating-point environment object.

Remarks

This function is used when a programmer wants to save the current floating-point
environment, that is the state of all the floating-point exception flags and rounding
direction. In the example that follows the stored environment is used to hide any floating-
point exceptions raised during an interim calculation.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of fegetenv() usage.

#include <fenv.h>

#pragma STDC FENV_ACCESS on

int main(void)

{

 float x = 0.0, y = 0.0;

 fenv_t env1, env2;

 feclearexcept(FE_ALL_EXCEPT);

 fesetenv(FE_DFL_ENV);

 x = x + y; /* Might raise exception. */

fenv.h
 Exceptions for the Floating-Point Environment

CodeWarrior Implementation of the C Standard Library 65

 fegetenv(&env1);

 y = y * x; /* Might raise exception. */

 fegetenv(&env2);

 return 0;

}

Exceptions for the Floating-Point
Environment

Facilities for retrieving and setting the floating-point environment's status flags.

The floating-point environment has exception flags. When a floating-point operation
gives an extraordinary result, the environment raises an exception. Raising a floating-
point exception does not affect a program's execution. Instead, these exceptions act as
status flags. The fenv.h header file offers facilities to clear, set, and test the state of
these exceptions, allowing you to choose how your program manages and reacts to them.

Table 7.1 lists the macros that define the exceptions that affect these flags. To specify
more than one exception, combine these macros with the bitwise-OR operator (|).
Table 7.1: Floating-point exceptions

This macro... specifies this floating-
point status flag.

FE_DIVBYZERO division by zero

FE_INEXACT inexact value

FE_INVALID invalid value

FE_OVERFLOW overflow

FE_UNDERFLOW underflow

FE_ALL_EXCEPT all exceptions combined

fenv.h
Exceptions for the Floating-Point Environment

66 CodeWarrior Implementation of the C Standard Library

feclearexcept()

Clears the specified floating-point environment flags.

#include <fenv.h>

void feclearexcept(int e);

e

Zero or more exceptions to reset.

Remarks

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of feclearexcept() usage

#include <fenv.h>

#include <stdio.h>

#pragma STDC FENV_ACCESS on

int main(void)

{

 double x = 123.0;

 double y = 0.0;

 double result;

 /* Reset flags before starting the calculation. */

 feclearexcept(FE_ALL_EXCEPT);

 result = x / y; /* Should set the FE_DIVBYZERO flag. */

 if (fetestexcept(FE_DIVBYZERO))

 printf("Division by zero.\n");

 return 0;

}

Output:

Division by zero.

fegetexceptflag()

fenv.h
 Exceptions for the Floating-Point Environment

CodeWarrior Implementation of the C Standard Library 67

Stores a representation of the states of the floating-point exception flags.

#include <fenv.h>

void fegetexceptflag(fexcept_t *f, int excepts);

f

A pointer to an exception flag variable.

excepts

Zero or more exceptions to retrieve.

Remarks

This function saves the states of floating-point exception flags to memory.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of fegetexceptflag() usage

#include <fenv.h>

#include <stdio.h>

#pragma STDC FENV_ACCESS on

int main(void)

{

 double x = 123.0;

 double y = 0.0;

 double result;

 fexcept_t flags;

 /* Reset flags before starting the calculation. */

 feclearexcept(FE_ALL_EXCEPT);

 result = x / y; /* Should set the FE_DIVBYZERO flag. */

 fegetexceptflag(&flags, FE_ALL_EXCEPT);

 if (flags & FE_DIVBYZERO)

 printf("Division by zero.\n");

 if (flags & FE_INEXACT)

 printf("Inexact value.\n");

 return 0;

}

Output:

fenv.h
Exceptions for the Floating-Point Environment

68 CodeWarrior Implementation of the C Standard Library

Division by zero.

feraiseexcept()

Sets floating-point environment flags.

#include <fenv.h>

void feraiseexcept(int e);

e

Zero or more exceptions to set.

Remarks

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of feraiseexcept() usage

#include <fenv.h>

#include <stdio.h>

#pragma STDC FENV_ACCESS on

int main(void)

{

 double x = 123.0;

 double y = 3.0;

 double result;

 /* Reset flags before starting the calculation. */

 feclearexcept(FE_ALL_EXCEPT);

 result = x / y; /* Should not set the FE_DIVBYZERO flag. */

 if (fetestexcept(FE_DIVBYZERO | FE_INVALID))

 printf("Division by zero and invalid operation.\n");

 feraiseexcept(FE_DIVBYZERO);

 if (fetestexcept(FE_DIVBYZERO))

 printf("Division by zero.\n");

 return 0;

}

Output:

fenv.h
 Exceptions for the Floating-Point Environment

CodeWarrior Implementation of the C Standard Library 69

Division by zero.

fesetexceptflag()

Sets the floating-point environment's flags to the settings in contained a variable of type
fexcept_t.

#include <fenv.h>

void fesetexceptflag(const fexcept_t *f, int excepts);

f

A pointer to a constant exception flag variable.

excepts

Zero or more exceptions to copy to the floating-point
environment.

Remarks

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of fesetexceptflag() usage

#include <fenv.h>

#include <stdio.h>

#pragma STDC FENV_ACCESS on

int main(void)

{

 double result;

 fexcept_t flags = 0;

 /* Save the divison-by-zero and overflow flags. */

 fegetexceptflag(&flags, FE_DIVBYZERO | FE_OVERFLOW);

 result = 0.0 / 0.0; /* Division by zero! */

 /* Restore our flags. */

 fesetexceptflag(&flags, FE_DIVBYZERO | FE_OVERFLOW);

 return 0;

}

fenv.h
Rounding Modes for the Floating-Point Environment

70 CodeWarrior Implementation of the C Standard Library

fetestexcept()

Test if a floating-point exception has been raised.

#include <fenv.h>

int fetestexcept(int e);

e

Zero or more exceptions to test.

Remarks

This function returns true if one or more of the exceptions specified by e have been
raised.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Rounding Modes for the Floating-Point
Environment

Facilities for retrieving and setting the floating-point environment's modes for rounding
off numbers.

The floating point environment has a control mode to specify how to perform rounding
operations.

Table 7.2 lists the macros that define the modes that specify how to round off numbers.
Table 7.2: Rounding Modes

This macro... specifies this rounding mode.

FE_DOWNWARD to the smallest integer

FE_TONEAREST to the nearest integer

FE_TOWARDZERO to the largest integer when negative, to
the smallest integer when positive

FE_UPWARD to the largset integer

fenv.h
 Rounding Modes for the Floating-Point Environment

CodeWarrior Implementation of the C Standard Library 71

fegetround()

Returns the floating-point environment's current rounding direction.

#include <fenv.h>

int fegetround(void);

Remarks

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of fegetround() usage

#include <fenv.h>

#include <stdio.h>

#pragma STDC FENV_ACCESS on

int main(void)

{

 int direction;

 double x_up = 0.0;

 double a = 5.0;

 double b = 2.0;

 double c = 3.0;

 double d = 6.0;

 double f = 2.5;

 double g = 0.5;

 double ubound = 0.0;

 feclearexcept(FE_ALL_EXCEPT);

 /* Calculate denominator. */

 fesetround(FE_DOWNWARD);

 x_up = f + g;

 direction = fegetround(); /* Save the direction. */

 fesetround(FE_UPWARD);

 ubound = (a * b + c * d) / x_up;

fenv.h
Rounding Modes for the Floating-Point Environment

72 CodeWarrior Implementation of the C Standard Library

 fesetround(direction); /* Restore original direction. */

 printf("(a * b + c * d) / (f + g) = %g\n", ubound);

 return 0;

}

Output:

9.3333

fesetround()

Sets the floating-point environment's rounding direction.

#include <fenv.h>

int fegetround(int direction);

direction

A valid rounding direction.

Remarks

This function returns true if the rounding mode specified by direction is valid, false
otherwise.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

CodeWarrior Implementation of the C Standard Library 73

8
float.h

This header file defines macros that specify the characteristics of the floating point data
types float, double, and long double.

Table 8.1 lists the macros that describe the properties of the floating point types.

The prefix of each macro's name specifies the data type that the macro applies to:

• FLT: the float type

• DBL: the double type

• LDBL: the long double type

Table 8.1: Floating Point Characteristics

This macro... describes this characteristic

FLT_RADIX The base number for floating point char-
acteristics.

FLT_ROUNDS The rounding mode. Defined as -1 for
indeterminable rounding, 0 for rounding
towards 0, 1 for nearest, 2 for +infinity, 3
for -infinity.

FLT_MANT_DIG, DBL_MANT_DIG, LDBL_
MANT_DIG

The number of significant digits, using
base FLT_RADIX.

FLT_DIG, DBL_DIG, LDBL_DIG The decimal digit precision.

FLT_MIN_EXP, DBL_MIN_EXP, LDBL_
MIN_EXP

The smallest negative integer exponent
that FLT_RADIXcan be raised to and still
be expressible.

FLT_MIN_10_EXP, DBL_MIN_10_EXP,
LDBL_MIN_10_EXP

The smallest negative integer expo-
nent that 10 can be raised to and still be
expressible.

float.h

74 CodeWarrior Implementation of the C Standard Library

This macro... describes this characteristic

FLT_MAX_EXP, DBL_MAX_EXP, LDBL_
MAX_EXP

The largest positive integer exponent that
FLT_RADIXcan be raised to and still be
expressible.

FLT_MAX_10_EXP, DBL_MAX_10_EXP,
LDBL_MAX_10_EXP

The largest positive integer exponent that
10 can be raised to and still be express-
ible.

FLT_MIN, DBL_MIN, LDBL_MIN The smallest positive floating point value
expressible in the data type.

FLT_MAX, DBL_MAX, LDBL_MAX The largest floating point value express-
ible in the data type.

FLT_EPSILON, DBL_EPSILON, LDBL_
EPSILON

The smallest fraction expressible in the
data type.

CodeWarrior Implementation of the C Standard Library 75

9
inttypes.h

Defines types, macros, and functions for manipulating integer values.

This header file also includes the stdint.h header file.

Integer Input Scanning
Defines macros for converting formatted text to integer types.

Remarks

The inttypes.h header file defines macros that expand to a literal character string that
forms a conversion specifier suitable for use with formatted input functions.

Table 9.1 lists the macros that expand to conversion specifiers for input.
Table 9.1: Integer Conversion Specifiers for Input

To convert text
in this format...

to this type... use this macro as a
conversion specifier.

decimal int8_t SCNd8

decimal int16_t SCNd16

decimal int32_t SCNd32

decimal int64_t SCNd64

decimal int_least8_t SCNdLEAST8

decimal int_least16_t SCNdLEAST16

decimal int_least32_t SCNdLEAST32

decimal int_least64_t SCNdLEAST64

inttypes.h
Integer Input Scanning

76 CodeWarrior Implementation of the C Standard Library

To convert text
in this format...

to this type... use this macro as a
conversion specifier.

decimal int_fast8_t SCNdFAST8

decimal int_fast16_t SCNdFAST16

decimal int_fast32_t SCNdFAST32

decimal int_fast64_t SCNdFAST64

decimal intmax_t SCNdMAX

decimal intptr_t SCNdPTR

octal, decimal, or hexadec-
imal

int8_t SCNi8

octal, decimal, or hexadec-
imal

int16_t SCNi16

octal, decimal, or hexadec-
imal

int32_t SCNi32

octal, decimal, or hexadec-
imal

int64_t SCNi64

octal, decimal, or hexadec-
imal

int_least8_t SCNiLEAST8

octal, decimal, or hexadec-
imal

int_least16_t SCNiLEAST16

octal, decimal, or hexadec-
imal

int_least32_t SCNiLEAST32

octal, decimal, or hexadec-
imal

int_least64_t SCNiLEAST64

octal, decimal, or hexadec-
imal

int_fast8_t SCNiFAST8

octal, decimal, or hexadec-
imal

int_fast16_t SCNiFAST16

octal, decimal, or hexadec-
imal

int_fast32_t SCNiFAST32

inttypes.h
 Integer Input Scanning

CodeWarrior Implementation of the C Standard Library 77

To convert text
in this format...

to this type... use this macro as a
conversion specifier.

octal, decimal, or hexadec-
imal

int_fast64_t SCNiFAST64

octal, decimal, or hexadec-
imal

intmax_t SCNiMAX

octal, decimal, or hexadec-
imal

intptr_t SCNiPTR

unsigned octal int8_t SCNo8

unsigned octal int16_t SCNo16

unsigned octal int32_t SCNo32

unsigned octal int64_t SCNo64

unsigned octal int_least8_t SCNoLEAST8

unsigned octal int_least16_t SCNoLEAST16

unsigned octal int_least32_t SCNoLEAST32

unsigned octal int_least64_t SCNoLEAST64

unsigned octal int_fast8_t SCNoFAST8

unsigned octal int_fast16_t SCNoFAST16

unsigned octal int_fast32_t SCNoFAST32

unsigned octal int_fast64_t SCNoFAST64

unsigned octal intmax_t SCNoMAX

unsigned octal intptr_t SCNoPTR

unsigned decimal int8_t SCNu8

unsigned decimal int16_t SCNu16

unsigned decimal int32_t SCNu32

unsigned decimal int64_t SCNu64

inttypes.h
Integer Input Scanning

78 CodeWarrior Implementation of the C Standard Library

To convert text
in this format...

to this type... use this macro as a
conversion specifier.

unsigned decimal int_least8_t SCNuLEAST8

unsigned decimal int_least16_t SCNuLEAST16

unsigned decimal int_least32_t SCNuLEAST32

unsigned decimal int_least64_t SCNuLEAST64

unsigned decimal int_fast8_t SCNuFAST8

unsigned decimal int_fast16_t SCNuFAST16

unsigned decimal int_fast32_t SCNuFAST32

unsigned decimal int_fast64_t SCNuFAST64

unsigned decimal intmax_t SCNuMAX

unsigned decimal intptr_t SCNuPTR

unsigned hexadecimal int8_t SCNx8

unsigned hexadecimal int16_t SCNx16

unsigned hexadecimal int32_t SCNx32

unsigned hexadecimal int64_t SCNx64

unsigned hexadecimal int_least8_t SCNxLEAST8

unsigned hexadecimal int_least16_t SCNxLEAST16

unsigned hexadecimal int_least32_t SCNxLEAST32

unsigned hexadecimal int_least64_t SCNxLEAST64

unsigned hexadecimal int_fast8_t SCNxFAST8

unsigned hexadecimal int_fast16_t SCNxFAST16

unsigned hexadecimal int_fast32_t SCNxFAST32

unsigned hexadecimal int_fast64_t SCNxFAST64

inttypes.h
 Integer Output Formatting

CodeWarrior Implementation of the C Standard Library 79

To convert text
in this format...

to this type... use this macro as a
conversion specifier.

unsigned hexadecimal intmax_t SCNxMAX

unsigned hexadecimal intptr_t SCNxPTR

Example of integer input

#include <stdio.h>

#include <inttypes.h>

int main(void)

{

 int8_t i8;

 intmax_t im;

 printf("Enter an integer surrounded by ! marks.\n");

 scanf("!%" SCNd8 "!", &i8);

 printf("Enter a large integer\n");

 printf("in hexadecimal, octal, or decimal.\n");

 scanf("%" SCNiMAX, &im);

 return 0;

}

Output:

Enter an 8-bit integer surrounded by ! marks.

!63!

Enter a large integer

in hexadecimal, octal, or decimal.

175812759

Integer Output Formatting
Defines macros for converting integer types to formatted text.

Remarks

The inttypes.h header file defines macros that expand to a literal character string that
forms a conversion specifier suitable for use with formatted output functions.

Table 9.2 lists the macros that expand to conversion specifiers for output.

inttypes.h
Integer Output Formatting

80 CodeWarrior Implementation of the C Standard Library

Table 9.2: Integer Conversion Specifiers for Output

To convert a value
of this type...

to this textual
format...

use this macro as a
conversion specifier.

int8_t decimal PRId8or PRIi8

int16_t decimal PRId16or PRIi16

int32_t decimal PRId32or PRIi32

int64_t decimal PRId64or PRIi64

int_least8_t decimal PRIdLEAST8or
PRIiLEAST8

int_least16_t decimal PRIdLEAST16or
PRIiLEAST16

int_least32_t decimal PRIdLEAST32or
PRIiLEAST32

int_least64_t decimal PRIdLEAST64or
PRIiLEAST64

int_fast8_t decimal PRIdFAST8or PRIiFAST8

int_fast16_t decimal PRIdFAST16or
PRIiFAST16

int_fast32_t decimal PRIdFAST32or
PRIiFAST32

int_fast64_t decimal PRIdFAST64or
PRIiFAST64

intmax_t decimal PRIdMAXor PRIiMAX

intptr_t decimal PRIdPTRor PRIiPTR

int8_t unsigned octal PRIo8

int16_t unsigned octal PRIo16

int32_t unsigned octal PRIo32

inttypes.h
 Integer Output Formatting

CodeWarrior Implementation of the C Standard Library 81

To convert a value
of this type...

to this textual
format...

use this macro as a
conversion specifier.

int64_t unsigned octal PRIo64

int_least8_t unsigned octal PRIoLEAST8

int_least16_t unsigned octal PRIoLEAST16

int_least32_t unsigned octal PRIoLEAST32

int_least64_t unsigned octal PRIoLEAST64

int_fast8_t unsigned octal PRIoFAST8

int_fast16_t unsigned octal PRIoFAST16

int_fast32_t unsigned octal PRIoFAST32

int_fast64_t unsigned octal PRIoFAST64

intmax_t unsigned octal PRIoMAX

intptr_t unsigned octal PRIoPTR

int8_t unsigned decimal PRIu8

int16_t unsigned decimal PRIu16

int32_t unsigned decimal PRIu32

int64_t unsigned decimal PRIu64

int_least8_t unsigned decimal PRIuLEAST8

int_least16_t unsigned decimal PRIuLEAST16

int_least32_t unsigned decimal PRIuLEAST32

int_least64_t unsigned decimal PRIuLEAST64

int_fast8_t unsigned decimal PRIuFAST8

int_fast16_t unsigned decimal PRIuFAST16

int_fast32_t unsigned decimal PRIuFAST32

inttypes.h
Integer Output Formatting

82 CodeWarrior Implementation of the C Standard Library

To convert a value
of this type...

to this textual
format...

use this macro as a
conversion specifier.

int_fast64_t unsigned decimal PRIuFAST64

intmax_t unsigned decimal PRIuMAX

intptr_t unsigned decimal PRIuPTR

int8_t unsigned hexadecimal PRIx8

int16_t unsigned hexadecimal PRIx16

int32_t unsigned hexadecimal PRIx32

int64_t unsigned hexadecimal PRIx64

int_least8_t unsigned hexadecimal PRIxLEAST8

int_least16_t unsigned hexadecimal PRIxLEAST16

int_least32_t unsigned hexadecimal PRIxLEAST32

int_least64_t unsigned hexadecimal PRIxLEAST64

int_fast8_t unsigned hexadecimal PRIxFAST8

int_fast16_t unsigned hexadecimal PRIxFAST16

int_fast32_t unsigned hexadecimal PRIxFAST32

int_fast64_t unsigned hexadecimal PRIxFAST64

intmax_t unsigned hexadecimal PRIxMAX

intptr_t unsigned hexadecimal PRIxPTR

int8_t unsigned hexadecimal
with uppercase letters

PRIX8

int16_t unsigned hexadecimal
with uppercase letters

PRIX16

int32_t unsigned hexadecimal
with uppercase letters

PRIX32

inttypes.h
 Integer Output Formatting

CodeWarrior Implementation of the C Standard Library 83

To convert a value
of this type...

to this textual
format...

use this macro as a
conversion specifier.

int64_t unsigned hexadecimal
with uppercase letters

PRIX64

int_least8_t unsigned hexadecimal
with uppercase letters

PRIXLEAST8

int_least16_t unsigned hexadecimal
with uppercase letters

PRIXLEAST16

int_least32_t unsigned hexadecimal
with uppercase letters

PRIXLEAST32

int_least64_t unsigned hexadecimal
with uppercase letters

PRIXLEAST64

int_fast8_t unsigned hexadecimal
with uppercase letters

PRIXFAST8

int_fast16_t unsigned hexadecimal
with uppercase letters

PRIXFAST16

int_fast32_t unsigned hexadecimal
with uppercase letters

PRIXFAST32

int_fast64_t unsigned hexadecimal
with uppercase letters

PRIXFAST64

intmax_t unsigned hexadecimal
with uppercase letters

PRIXMAX

intptr_t unsigned hexadecimal
with uppercase letters

PRIXPTR

Example of integer output

#include <stdio.h>

#include <inttypes.h>

int main(void)

{

 intmax_t im = 175812759L;

 printf("%" PRId8 "\n", 63);

inttypes.h
imaxabs(), imaxdiv(), strtoimax(), strtoumax(), wcstoimax(), wcstoumax()

84 CodeWarrior Implementation of the C Standard Library

 printf("%" PRIxMAX, im);

 return 0;

}

Output:

63

0xa7ab097

imaxabs(), imaxdiv(), strtoimax(),
strtoumax(), wcstoimax(), wcstoumax()

These functions operate on the largest integer types, intmax_t and uintmax_t.

#include <inttypes.h>

intmax_t imaxabs(intmax_t j);

typedef struct {

 intmax_t quot;

 intmax_t rem;

} imaxdiv_t;

imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom);

intmax_t strtoimax(const char * restrict nptr,

 char ** restrict endptr, int base);

uintmax_t strtoumax(const char * restrict nptr,

 char ** restrict endptr, int base);

intmax_t wcstoimax(const wchar_t * restrict nptr,

 wchar_t ** restrict endptr, int base);

uintmax_t wcstoumax(const wchar_t * restrict nptr,

 wchar_t ** restrict endptr, int base);

Remarks

Table 9.3 matches these functions to an equivalent integer-based functions in stdlib.h
and wchar.h.

inttypes.h
 imaxabs(), imaxdiv(), strtoimax(), strtoumax(), wcstoimax(), wcstoumax()

CodeWarrior Implementation of the C Standard Library 85

Table 9.3: Greatest-Width Integer Functions

This function... does the greatest-width integer
equivalent of this function.

imaxabs() abs()

imaxdiv() div()

strtoimax() strtol()

strtoumax() strtoul()

wcstoimax() wcstol()

wcstoumax() wcstoul()

inttypes.h
imaxabs(), imaxdiv(), strtoimax(), strtoumax(), wcstoimax(), wcstoumax()

86 CodeWarrior Implementation of the C Standard Library

CodeWarrior Implementation of the C Standard Library 87

10
iso646.h

Defines alternative keywords for operators that use characters that are not available in
some character sets.

The ISO/IEC 646 standard defines character sets based on the ASCII character set that
replaces some punctuation characters with other characters to accommodate regional
requirements. Some of these character sets do not have some of the characters that the C
language uses in its operators and keywords. For example, the bitwise-and operator uses
the ampersand, “&” , which is not available in some character sets. Use the preprocessor
macros defined in iso646.h to use operators which are composed of characters that are
available in all character sets specified by the ISO/IEC 646 standard.

Table 10.1 lists the preprocessor macros that define replacements for operators that use
characters that are not available in some character sets.
Table 10.1: Alternative keywords

This macro... provides this operator

and &&

and_eq &=

bitand &

bitor |

compl ~

not_eq !=

or ||

or_eq |=

xor ^

iso646.h

88 CodeWarrior Implementation of the C Standard Library

This macro... provides this operator

xor_eq ^=

CodeWarrior Implementation of the C Standard Library 89

11
locale.h

Provides facilities for handling different character sets and numeric formats.

lconv
Specifies formatting characteristics.

#include <locale.h>

struct lconv {

 char * decimal_point;

 char * thousands_sep;

 char * grouping;

 char * int_curr_symbol;

 char * currency_symbol;

 char * mon_decimal_point;

 char * mon_thousands_sep;

 char * mon_grouping;

 char * positive_sign;

 char * negative_sign;

 char int_frac_digits;

 char frac_digits;

 char p_cs_precedes;

 char p_sep_by_space;

 char n_cs_precedes;

 char n_sep_by_space;

 char p_sign_posn;

 char n_sign_posn;

 char *int_curr_symbol;

 char int_p_cs_precedes;

 char int_n_cs_precedes;

 char int_p_sep_by_space;

locale.h
lconv

90 CodeWarrior Implementation of the C Standard Library

 char int_n_sep_by_space;

 char int_p_sign_posn;

 char int_n_sign_posn;

};

decimal_point

Character string containing the non-monetary decimal point.

thousands_sep

Character string containing the non-monetary separator for digit
grouping.

grouping

Non-monetary digit grouping sequence, encoded in a character
string. Each character in the sequence is actually a number
specifying the number of digits to group left of the decimal
point. The null character, 0, specifies that the preceding group
should be repeated. The number CHAR_MAX specifies that
grouping is no longer required.

int_curr_symbol

Character string composed of a 3-character international
currency symbol followed by separation character between the
currency symbol and the currency number.

currency_symbol

Character string containing the local currency symbol.

mon_decimal_point

Character string containing the monetary decimal point.

mon_thousands_sep

Character string containing the monetary separator for digit
grouping.

mon_grouping

Monetary digit grouping sequence. Uses same format as
grouping.

positive_sign

Character string containing the sign for positive monetary
numbers.

negative_sign

locale.h
 lconv

CodeWarrior Implementation of the C Standard Library 91

Character string containing the sign for negative monetary
numbers.

int_frac_digits

Number of digits that may appear to the right of the decimal
point for international monetary numbers.

frac_digits

Number of digits that may appear to the right of the decimal
point for non-international monetary numbers.

p_cs_precedes

Contains 1 if currency_symbol should precede positive
monetary numbers, 0 otherwise.

p_sep_by_space

Contains 1 if currency_symbol should be separated from
positive monetary values by a space, 0 otherwise.

n_cs_precedes

Contains 1 if currency_symbol should precede negative
monetary numbers, 0 otherwise.

n_sep_by_space

Contains 1 if currency_symbol should be separated from
negative monetary values by a space, 0 otherwise.

p_sign_posn

Specifies how to use the positive_sign character string.
Contains 0 when parentheses should surround the number
and currency_symbol, 1 when the sign should precede
the number and currency_symbol, 2 when the sign should
follow the number and currency_symbol, 3 when the
sign precedes currency_symbol, 4 when the sign follows
currency_symbol.

n_sign_posn

Specifies how to use the negative_sign character string.
Follows the same convention as p_sign_posn.

Remarks

The lconv structure specifies numeric formatting requirements. Use localeconv()
to retrieve a pointer to an lconv structure for the current locale.

locale.h
localeconv()

92 CodeWarrior Implementation of the C Standard Library

localeconv()
Returns conversion settings for the current locale.

#include <locale.h>

struct lconv* localeconv(void);

Remarks

The ISO/IEC C standard specifies that aspects of the C compiler should be adaptable to
geographic locales. The locale.h header file provides facilities for handling different
character sets and numeric formats. CodeWarrior C compilers and MSL use the "C"
locale by default and a native locale named "" (the empty string).

setlocale()
Queries or sets locale properties.

#include <locale.h>

char* setlocale(int cat, const char* locale);

cat

The property to query or set.

locale

A pointer to the locale.

Remarks

The cat argument specifies the locale property to query or set. Table 11.1 lists the values
recognized by setlocale().

If locale is a null pointer then setlocale() makes a query. It returns a pointer to a
character string that indicates which locale that the cat property is set to. Your program
must not modify this character string. Subsequent calls to the function might alter this
character string.

If locale is not a null pointer then setlocale() modifies the locale property specified
by cat. The character string that locale points to must be a result returned by a previous
query to setlocale(). The function returns a pointer to a character string that
describes the newly-set locale.

CodeWarrior C compilers and MSL use the "C" locale by default and a native locale
named "" (the empty string).

locale.h
 setlocale()

CodeWarrior Implementation of the C Standard Library 93

The function returns NULL if it cannot perform a query or set operation.

This facility may not be available on some configurations of the MSL.
Table 11.1: Locale properties for setlocale()

This value... specifies this locale property

LC_ALL All properties.

LC_COLLATE Behaviors for strcoll()and strxfrm.

LC_CTYPE Character manipulation behaviors of
facilities in ctype.h, wctype.hand
stdlib.h.

LC_MONETARY Monetary formatting properties returned
by localeconv().

LC_NUMERIC Non-monetary numeric formatting proper-
ties returned by localeconv().

LC_TIME Behavior for strftime().

Example of setlocale() usage

#include <locale.h>

#include <stdlib.h>

#include <string.h>

char* copylocale(int cat);

char* copylocale(int cat)

{

 char* loc;

 char* copy;

 /* Make query. */

 if ((loc = setlocale(cat, NULL)) == NULL)

 return NULL; /* Query failure. */

 /* Allocate memory, including null character. */

 copy = (char*)malloc(strlen(loc) + 1);

 if (copy == NULL) /* Memory failure. */

 return NULL;

locale.h
setlocale()

94 CodeWarrior Implementation of the C Standard Library

 return strcpy(copy, loc);

}

int main(void)

{

 char* save;

 if ((save = copylocale(LC_ALL)) == NULL)

 return 1;

 setlocale(LC_ALL, ""); /* Set native locale. */

 /* ... */

 setlocale(LC_ALL, save); /* Restore locale. */

 /* ... */

 free(save);

 return 0;

}

CodeWarrior Implementation of the C Standard Library 95

12
limits.h

Defines maximum and minimum values that integral data types may contain.

This header file defines macros that describe the maximum and minimum values that
objects with integral data types may accurately represent. Assigning values beyond the
range of these limits will give undefined results at runtime.

The limits.h header file does not define macros to describe the minimum values for
unsigned data types. The minimum value of an unsigned data type is always 0.

Table 12.1 lists the preprocessor macros that define replacements for operators that use
characters that are not available in some character sets.
Table 12.1: Integral Limits

The library defines this macro... to contain this value.

CHAR_BIT Number of bits in the smallest data type
that is not a bit field.

CHAR_MAX, CHAR_MIN Maximum and minimum values, respec-
tively, for char.

SCHAR_MAX, SCHAR_MIN Maximum and minimum values, respec-
tively, for signed char.

UCHAR_MAX, Maximum value for unsigned char.

SHRT_MAX, SHRT_MIN Maximum and minimum values, respec-
tively, for short int.

USHRT_MAX, Maximum value for unsigned short
int.

INT_MAX, INT_MIN Maximum and minimum values, respec-
tively, for int.

UINT_MAX, Maximum value for unsigned int.

limits.h

96 CodeWarrior Implementation of the C Standard Library

The library defines this macro... to contain this value.

LONG_MAX, LONG_MIN Maximum and minimum values, respec-
tively, for long int.

ULONG_MAX, Maximum value for unsigned long
int.

MB_LEN_MAX, Maximum number of bytes in a multibyte
character.

LLONG_MAX, LLONG_MIN Maximum and minimum values, respec-
tively, for long long int.

This facility is not part of the ISO/IEC
standard for C. It is an MSL extension of
the C Standard Library.

ULLONG_MAX Maximum value for unsigned long
long int.

This facility is not part of the ISO/IEC
standard for C. It is an MSL extension of
the C Standard Library.

CodeWarrior Implementation of the C Standard Library 97

13
math.h

Provides floating point mathematical and conversion functions.

The functions and data types of the MSL implementation of the math.h header file
follow provide facilities to perform mathematical operations.

Predefined Values
Some useful values that describe properties of the floating point environment.

#include <math.h>

#define HUGE_VAL /*...*/

#define HUGE_VALF /*...*/

#define HUGE_VALL /*...*/

#define NAN /*...*/

#define INFINITY /*...*/

Remarks

If the floating-point result of a function is too large to be represented as a value by the
return type, the function will return HUGE_VAL if the return type is double, HUGE_
VALF if the type is float, or HUGE_VALL if long double.

The NAN macro defines the quiet NaN of type float.

The INFINITY macro defines the value of infinity of type float.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

math.h
Floating Point Math Errors

98 CodeWarrior Implementation of the C Standard Library

Floating Point Math Errors
Mechanism for revealing floating-point math errors.

The functions declared in the math.h header file are not fully compliant with the ISO/
IEC C standard's specifications for reporting errors. The standard requires floating point
functions to set the errno variable to report an error condition. This mechanism is
inefficient and un-informative.

MSL provides fpclassify() to simplify error checking. To check the validity of a
computation returned by a function in math.h, call fpclassify() with the math
function's result.

Using errno for error checking and Using fpclassify() for error checking compare these
two error-checking approaches.

Using errno for error checking

#include <math.h>

#include <errno.h>

#include <stdio.h>

int main(void)

{

 double x;

 errno = 0;

 x = log(0);

 if (errno)

 puts("error");

 return 0;

}

Using fpclassify() for error checking

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x;

 x = log(0);

math.h
 NaN

CodeWarrior Implementation of the C Standard Library 99

 if (fpclassify(x) != FP_NORMAL)

 puts("error");

 return 0;

}

NaN
A floating-point value that represents the result of a uncomputable math operation.

NaN has no relationship with any other number. NaN is neither greater than, less than, or
equal to any other number. There are two types of NaN:

• quiet NaN

• signalling NaN

Quiet NaN

A quiet NaN is the result of an indeterminate calculation. For example, zero divided by
zero and infinity minus infinity are examples of computations that result in NaN.

A quiet NaN's binary representation has a full exponent, its most significant bit is 0, and
its 2nd-most significant bit is 1.

Signalling NaN

A signalling NaN does not occur as a result of an arithmetic computation. A signalling
NaN occurs when you load a bad value from memory into a floating-point register that
happens to has the same bit pattern as a signalling NaN. IEEE 754 requires that in such
a situation the processor should raise an exception. It should then convert the signalling
NaN to a quiet NaN so the lifetime of a signalling NaN will be brief.

A signalling NaN's binary representation has a full exponent and its 2 most significant
bits are 1.

Floating-Point Classification
Facilities to query properties of floating-point values.

fpclassify()

Classifies floating-point numbers.

#include <math.h>

int fpclassify(x);

math.h
Floating-Point Classification

100 CodeWarrior Implementation of the C Standard Library

x

A value of type float, double, or long double.

Remarks

This macro returns the type of a floating-point value as an integral value:

• FP_NAN: NaN (“Not a Number”)

• FP_INFINITE: positive or negative infinity

• FP_ZERO: zero

• FP_NORMAL: a normalized floating point value

• FP_SUBNORMAL: a denormalized floating point value

Use this macro to check for errors in floating point computations.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of fpclassify() usage

#include <math>

#include <stdio.h>

void mypow(double x, double y)

{

 double p;

 p = pow(x, y);

 switch (fpclassify(p))

 {

 case FP_ZERO:

 case FP_NORMAL:

 case FP_SUBNORMAL:

 printf("%f", p);

 break;

 default:

 printf("error in pow()");

 break;

 }

}

isfinite()

Tests if a value is a finite number.

math.h
 Floating-Point Classification

CodeWarrior Implementation of the C Standard Library 101

#include <math.h>

int isfinite(x);

x

A float, double, or long double value to test.

Remarks

The function returns true if the value tested is finite. Otherwise it returns false. A finite
number is not infinite and is not NaN.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

isnan()

Tests if a value is a computable number.

#include <math.h>

int isnan (x);

x

A float, double, or long double value to test.

Remarks

This function returns true if x is not a number.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

isnormal()

Returns true if a number is normalized.

#include <math.h>

int isnormal(x);

x

A float, double, or long double value to test.

Remarks

This macro returns true if the argument is a normalized number. A normalized number is
not zero, not subnormal, not infinite, and not NaN.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

math.h
Trigonometry

102 CodeWarrior Implementation of the C Standard Library

signbit()

Returns the sign bit in the binary representation of a floating-point number.

#include <math.h>

int signbit(x);

x

A float, double, or long double value to test.

Remarks

This macro returns true if x is negative.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Trigonometry
Compute sine, cosine, and other trigonometric values.

acos()

Computes the arc value of cosine.

#include <math.h>

double acos(double x);

float acosf(float x);

long double acosl(long double x);

x

A floating-point value, in the range of -1.0 to 1.0.

Remarks
These functions return the arccosine of the argument x, in radians from 0
to pi. If x is not in the range of -1.0 to 1.0 then these functions set errno
to EDOM and

fpclassify(acos(x))

returns FP_NAN.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

math.h
 Trigonometry

CodeWarrior Implementation of the C Standard Library 103

asin()

Computes the arc value of sine.

#include <math.h>

double asin(double x);

float asinf(float);

long double asinl(long double);

x

A floating-point value, in the range of -1.0 to 1.0.

Remarks
These functions return the arcsine of the argument x, in radians from -pi /
2 to pi / 2. If x is not in the range of -1.0 to 1.0 then these functions set
errno to EDOM and

fpclassify(asin(x))

returns FP_NAN.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

atan()

Computes the arc value of tangent.

#include <math.h>

double atan(double x);

float atanf(float);

long double atanl(long double);

x

A floating-point value.

Remarks

These functions return the arctangent of the argument x, in radians from -pi / 2 to pi / 2.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

atan2()

math.h
Trigonometry

104 CodeWarrior Implementation of the C Standard Library

Computes the value of a tangent.

#include <math.h>

double atan2(double y, double x);

float atan2f(float, float);

long double atan2l(long double, long double);

Remarks
These functions return the arctangent of y / x, in radians from -pi to pi. If
y and x are 0, then these functions set errno to EDOM and

fpclassify(asin(x))

returns FP_NAN.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of acos(), asin(), atan(), atan2() usage.

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x = 0.5, y = -1.0;

 printf("arccos (%f) = %f\n", x, acos(x));

 printf("arcsin (%f) = %f\n", x, asin(x));

 printf("arctan (%f) = %f\n", x, atan(x));

 printf("arctan (%f / %f) = %f\n", y, x, atan2(y, x));

 return 0;

}

Output:

arccos (0.500000) = 1.047198

arcsin (0.500000) = 0.523599

arctan (0.500000) = 0.463648

arctan (-1.000000 / 0.500000) = -1.107149

cos()

Computes the cosine.

#include <math.h>

double cos(double x);

math.h
 Trigonometry

CodeWarrior Implementation of the C Standard Library 105

float cosf(float x);

long double cosl(long double x);

x

A value from which to compute.

Remarks

These functions return the cosine of x, which is measured in radians.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of cos() usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x = 0.0;

 printf("The cosine of %f is %f.\n", x, cos(x));

 return 0;

}

Output:

The cosine of 0.000000 is 1.000000.

sin()

Compute the sine of a radian value.

#include <math.h>

double sin(double x);

float sinf(float x);

long double sinl(long double x);

x

A floating point value, in radians.

Remarks

These functions compute the sine of x.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of sin() usage

#include <math.h>

math.h
Trigonometry

106 CodeWarrior Implementation of the C Standard Library

#include <stdio.h>

#define DegtoRad (2.0*pi/360.0)

int main(void)

{

 double x = 57.0;

 double xRad = x*DegtoRad;

 printf("The sine of %.2f degrees is %.4f.\n",x, sin(xRad));

 return 0;

}

Output:

The sine of 57.00 degrees is 0.8387.

tan()

Compute the tangent of a radian value.

#include <math.h>

double tan(double x);

float tanf(float x);

long double tanl(long double x);

x

A floating point value, in radians.

Remarks

These functions compute the tangent of x. If x is close to an odd multiple of pi divided by
2, these functions assign EDOM to errno. Use fpclassify() to check the validity of
the results returned by these functions.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of tan() usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x = 0.5;

 printf("The tangent of %f is %f.\n", x, tan(x));

math.h
 Hyperbolic Trigonometry

CodeWarrior Implementation of the C Standard Library 107

 return 0;

}

Output:

The tangent of 0.500000 is 0.546302.

Hyperbolic Trigonometry
Compute hyperbolic trigonometric values.

acosh()

Computes the inverse hyperbolic cosine.

#include <math.h>

double acosh(double x);

float acoshf(float x);

long double acoshl(long double x);

x

A value from which to compute the inverse hyperbolic cosine.

Remarks
These functions return the non-negative inverse hyperbolic cosine of x. If
x is not greater than 1 then these functions set errno to EDOM and

fpclassify(acosh(x))

returns FP_NAN.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of acosh() usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double a = 3.14;

 printf("The arc hyperbolic cosine of %f is %f.\n", a, acosh(a));

 return 0;

}

Output:

math.h
Hyperbolic Trigonometry

108 CodeWarrior Implementation of the C Standard Library

The arc hyperbolic cosine of 3.140000 is 1.810991.

asinh()

Computes the arc value of hyperbolic sine.

#include <math.h>

double asinh(double x);

float asinhf(float);

long double asinhl(long double);

x

A floating-point value.

Remarks
These functions return the hyperbolic arcsine of the argument x. If the
result of the computation is out of range, these functions set errno to
EDOM and

fpclassify(asinh(x))

returns FP_NAN.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

atanh()

Computes the arc value of hyperbolic tangent.

#include <math.h>

double atanh(double x);

float atanhf(float);

long double atanhl(long double);

x

A floating-point value.

Remarks
These functions return the hyperbolic arctangent of the argument x. If x
is greater than 1 or less than -1, these functions set errno to EDOM and

fpclassify(atanh(x))

returns FP_NAN.

math.h
 Hyperbolic Trigonometry

CodeWarrior Implementation of the C Standard Library 109

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of atanh()

#include <math.h>

#include <stdio.h>

int main(void)

{

 double c = 0.5;

 printf("The arc hyperbolic tan of %f is %f.\n", c, atanh(c));

 return 0;

}

Output:

The arc hyperbolic tan of 0.500000 is 0.549306.

cosh()

Computes the hyperbolic cosine.

#include <math.h>

double cosh(double x);

float coshf(float x);

long double coshl(long double x);

x

A value from which to compute.

Remarks

These functions return the hyperbolic cosine of x, which is measured in radians.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of cosh() usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x = 0.0;

 printf("Hyperbolic cosine of %f is %f.\n", x, cosh(x));

 return 0;

}

math.h
Hyperbolic Trigonometry

110 CodeWarrior Implementation of the C Standard Library

Output:

Hyperbolic cosine of 0.000000 is 1.000000.

sinh()

Compute the hyperbolic sine.

#include <math.h>

double sinh(double x);

float sinhf(float x);

long double sinhl(long double x);

x

A floating point value.

Remarks

These functions compute the hyperbolic sine of x. These functions may assign ERANGE
to errno if x is out of range. Use fpclassify() to check the validity of the results
returned by these functions.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of sinh() usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x = 0.5;

 printf("Hyperbolic sine of %f is %f.\n", x, sinh(x));

 return 0;

}

Output:

Hyperbolic sine of 0.500000 is 0.521095.

tanh()

Compute the hyperbolic tangent.

#include <math.h>

double tanh(double x);

math.h
 Exponents and Logarithms

CodeWarrior Implementation of the C Standard Library 111

float tanhf(float x);

long double tanhl(long double x);

x

A floating point value.

Remarks

These functions compute the hyperbolic tangent of x.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of tanh() usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x = 0.5;

 printf("The hyperbolic tangent of %f is %f.\n",x, tanh(x));

 return 0;

 }

Output:

The hyperbolic tangent of 0.500000 is 0.462117.

Exponents and Logarithms
Exponential and logarithmic values.

exp()

Computes a power of e.

#include <math.h>

double exp(double x);

float expf(float x);

long double expl(long double x);

x

A value from which to compute.

math.h
Exponents and Logarithms

112 CodeWarrior Implementation of the C Standard Library

Remarks

These functions return e X , where e is the natural logarithm base value.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of exp() usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x = 4.0;

 printf("The natural logarithm base e raised to the\n");

 printf("power of %f is %f.\n", x, exp(x));

 return 0;

}

Output:

The natural logarithm base e raised to the

power of 4.000000 is 54.598150.

exp2()

Computes a power of 2.

#include <math.h>

double exp2(double x);

float exp2f(float x);

long double exp2l(long double x);

x

A value from which to compute.

Remarks

These functions return 2 X .

If x is too large, the function sets errno to ERANGE and fpclassify(exp2(x))
does not return FP_NORMAL.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of exp2() usage

#include <math.h>

#include <stdio.h>

math.h
 Exponents and Logarithms

CodeWarrior Implementation of the C Standard Library 113

int main(void)

{

 double i = 12;

 printf("2^%f = %f.\n",i,i, exp2(i));

 return 0;

}

Output:

2^(12.000000) = 4096.000000.

expm1()

Computes a power of e minus 1.

#include <math.h>

double expm1(double x);

float expm1l(float x);

long double expm1l(long double x);

x

A value from which to compute.

Remarks

This function returns e X - 1. This function may be more accurate than calling exp(x)
and subtracting 1.0 from its result.

If x is too large, The function sets errno to ERANGE and fpclassify(exp2(x))
does not return FP_NORMAL.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of expm1() usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double j = 12;

 printf("e^%f - 1 = %f\n",j,expm1(j));

 return 0;

}

Output:

e^12.000000 - 1 = 162753.791419

math.h
Exponents and Logarithms

114 CodeWarrior Implementation of the C Standard Library

frexp()

Extracts the mantissa and exponent from a floating point number's binary representation.

#include <math.h>

double frexp(double x, int* e);

float frexpf(float x, int* e);

long double frexpl(long double x, int* e);

x

The floating point value to extract from.

e

A pointer to an integer in which to store the exponent.

Remarks

A floating point number's binary representation follows this formula:

m 2 e

where m is the mantissa and e is the exponent, 0.5 < m < 1.0 and e is an integer value.

These functions return, when possible, the value of a floating-point number's exponent in
e and returns the mantissa.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of fabs() usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double m, value = 12.0;

 int e;

 m = frexp(value, &e);

 printf("%f = %f * 2 to the power of %d.\n",value, m, e);

 return 0;

}

Output:

12.000000 = 0.750000 * 2 to the power of 4.

ilogb()

math.h
 Exponents and Logarithms

CodeWarrior Implementation of the C Standard Library 115

Compute the exponent of a value as a signed integer.

#include <math.h>

int ilogb(double x);

int ilogbf(float x);

int double ilogbl(long double x);

x

A floating point value.

Remarks

These functions return the natural exponent of x as a signed int value. If x is zero they
return the value FP_ILOGB0. If x is infinite they return the value INT_MAX. If x is a
NaN they return the value FP_ILOGBNAN. Otherwise, these functions are equivalent
to calling the corresponding logb() functions and casting the returned value to type
int. A range error may occur if x is 0. Use fpclassify() to check the validity of the
result returned by these functions.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

ldexp()

Constructs a floating point value from a mantissa and exponent.

#include <math.h>

double ldexp(double x, int exp);

float ldexpf(float x, int exp);

long double ldexpl(long double x, int exp);

x

A mantissa value.

exp

An exponent value.

Remarks

The ldexp() functions compute x * 2 exp. These functions can be used to construct a
floating point value from the values returned by the frexp() functions.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of ldexp() usage

#include <math.h>

math.h
Exponents and Logarithms

116 CodeWarrior Implementation of the C Standard Library

#include <stdio.h>

int main(void)

{

 double value, x = 0.75;

 int e = 4;

 value = ldexp(x, e);

 printf("%f * 2 to the power of %d is %f.\n",x, e, value);

 return 0;

}

Output:

0.750000 * 2 to the power of 4 is 12.000000.

log()

Compute natural logarithms.

#include <math.h>

double log(double x);

float logf(float x);

long double logl(long double x);

x

A floating point value.

Remarks

These functions return log e x. If x < 0, log() assigns EDOM to errno. Use
fpclassify() to check the validity of the result returned by log().

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of log() usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x = 100.0;

 printf("The natural logarithm of %f is %f\n",x, log(x));

 printf("The base 10 logarithm of %f is %f\n",x, log10(x));

 return 0;

math.h
 Exponents and Logarithms

CodeWarrior Implementation of the C Standard Library 117

}

Output:

The natural logarithm of 100.000000 is 4.605170

The base 10 logarithm of 100.000000 is 2.000000

log10()

Compute base-10 logarithms.

#include <math.h>

double log10(double x);

float log10f(float x);

long double log10l(long double x);

x

A floating point value.

Remarks

These functions return log10 x. If x < 0, these functions assign EDOM to errno. Use
fpclassify() to check the validity of the results returned by these functions.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

log1p()

Compute the base-e logarithm.

#include <math.h>

double log1p(double x);

float log1pf(float x);

long double log1pl(long double x);

x

The value being computed

Remarks

These functions computes the base-e logarithm of x, denoted as loge(1.0 + x).

The value of x must be greater than -1. Use fpclassify() to check the validity of the
result returned by these functions.

For small magnitude x, these functions are more accurate than log(x+1.0).

The functions return base-e logarithm of (1 + x).

math.h
Exponents and Logarithms

118 CodeWarrior Implementation of the C Standard Library

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of log1p() Usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 float u = 5.0;

 printf("log1p(%f) = %f\n", u, log1pf(u));

 return 0;

}

Output:

log1p(5.000000) = 1.791759

log2()

Compute the base-2 logarithm.

#include <math.h>

double log2(double x);

float log2f(float x);

long double log2l(long double x);

x

The value being computed

Remarks

These functions computes the base-2 logarithm of x.

The value of x must be greater than 0. Use fpclassify() to check the validity of the
result returned by these functions.

The functions return base-2 logarithm of x.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

math.h
 Exponents and Logarithms

CodeWarrior Implementation of the C Standard Library 119

Example of log2() Usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 float u = 5.0;

 printf("log2(%f) = %f\n", u, log2f(u));

 return 0;

}

Output:

log2(5.000000) = 2.321928

logb()

Compute a logarithm with the floating-point representation's radix as base.

#include <math.h>

double logb(double x);

float logbf(float x);

long double logbl(long double x);

x

The value being computed

Remarks

These functions compute the exponent of x in the target system's binary representation.

The value of x must be not be 0. Use fpclassify() to check the validity of the result
returned by these functions.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of logb() Usage

#include <math.h>

#include <stdio.h>

math.h
Exponents and Logarithms

120 CodeWarrior Implementation of the C Standard Library

int main(void)

{

 float u = 5.0;

 printf("logb(%f) = %f\n", u, logbf(u));

 return 0;

}

Output:

log2(5.000000) = 2.000000

scalbn(), scalbln()

Computes x * FLT_RADIX^n efficiently.

#include <math.h>

double scalbn(double x, int n);

float scalbnf(float x, int n);

long double scalbnl(long double x, int n);

double scalbln(double x, long int n);

float scalblnf(float x, long int n);

long double scalblnl(long double x, long int n);

x

The original value.

n

Power value.

Remarks

These functions return x * FLT_RADIXn.

A range error may occur. Use fpclassify() to check the validity of the result
returned by these functions.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

math.h
 Powers and Absolute Values

CodeWarrior Implementation of the C Standard Library 121

Powers and Absolute Values
Compute powers, roots, and absolute values.

cbrt()

Computes the cube root.

#include <math.h>

double cbrt(double x);

float cbrtf(float fx);

long double cbrtl(long double lx);

x

A value from which to compute a cube root.

Remarks

This function computes the cube root of its argument.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

fabs()

Computes an absolute value.

#include <math.h>

double fabs(double x);

float fabsf(float x);

long double fabsl(long double x);

x

A value from which to compute.

Remarks

These functions return the absolute value of X.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of fabs() usage

#include <math.h>

math.h
Powers and Absolute Values

122 CodeWarrior Implementation of the C Standard Library

#include <stdio.h>

int main(void)

{

 double s = -5.0, t = 5.0;

 printf("Absolute value of %f is %f.\n", s, fabs(s));

 printf("Absolute value of %f is %f.\n", t, fabs(t));

 return 0;

}

Output:

Absolute value of -5.000000 is 5.000000.

Absolute value of 5.000000 is 5.000000.

hypot()

Computes the length of a hypotenuse in a right-angle triangle.

#include <math.h>

double hypot(double x, double y);

float hypotf(float x, float y);

long double hypotl(long double x, long double y);

x

A value representing the length of one side that is not the
hypotenuse.

y

A value representing the length of the other side that is not the
hypotenuse.

Remarks

These functions compute the square root of the sum of the squares of x and y. These
functions may be more accurate than the expression sqrt(pow(x) + pow(y)).

If these functions cannot compute a value they set errno to ERANGE. Use
fpclassify() to check the validity of the result returned by these functions.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of hypot() usage

#include <math.h>

#include <stdio.h>

int main(void)

math.h
 Powers and Absolute Values

CodeWarrior Implementation of the C Standard Library 123

{

 double r = 3.0;

 double s = 4.0;

 printf("(%f^2 + %f^2)^(.5) = %f\n",r,s,hypot(r,s));

 return 0;

}

Output:

(3.000000^2 + 4.000000^2)^(.5) = 5.000000

pow()

Compute the power of a base number.

#include <math.h>

double pow(double x, double y);

float powf(float x, float y);

long double powl(long double x, long double y);

x

A floating point value to use as base.

y

A floating point value to use as exponent.

Remarks

These functions compute x y .

These functions assign EDOM to errno if x is 0.0 and y is less than or equal to zero or if
x is less than zero and y is not an integer. Use fpclassify() to check the validity of
the results returned by these functions.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of pow() usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x;

 printf("Powers of 2:\n");

 for (x = 1.0; x <= 10.0; x += 1.0)

 printf("2 to the %4.0f is %4.0f.\n", x, pow(2, x));

math.h
Powers and Absolute Values

124 CodeWarrior Implementation of the C Standard Library

 return 0;

}

Output:

Powers of 2:

2 to the 1 is 2.

2 to the 2 is 4.

2 to the 3 is 8.

2 to the 4 is 16.

2 to the 5 is 32.

2 to the 6 is 64.

2 to the 7 is 128.

2 to the 8 is 256.

2 to the 9 is 512.

2 to the 10 is 1024.

sqrt()

Compute square root.

#include <math.h>

double sqrt(double x);

float sqrtf(float x);

long double sqrtl(long double x);

x

A floating point value.

Remarks

These functions return the square root of x. These functions assign EDOM to errno if x <
0. Use fpclassify() to check the validity of the result returned by these functions.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of sqrt() usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x = 64.0;

 printf("The square root of %f is %f.\n", x, sqrt(x));

math.h
 Statistical Errors and Gamma

CodeWarrior Implementation of the C Standard Library 125

 return 0;

}

Output:

The square root of 64.000000 is 8.000000.

Statistical Errors and Gamma
Compute statistical and probability values.

erf()

Computes the Gauss error function.

#include <math.h>

double erf(double x);

x

The value to compute.

Remarks

This function is defined as

erf(x) = 2/sqrt(pi) * (integral from 0 to x of exp(pow(-t, 2)) dt)

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of erf() usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double g = +10.0;

 printf("The error function of (%f) = %f.\n", g, erf(g));

 return 0;

}

Output:

The error function of (10.000000) = 1.000000

erfc()

math.h
Statistical Errors and Gamma

126 CodeWarrior Implementation of the C Standard Library

Computes the Gauss complementary error function.

#include <math.h>

double erfc(double x);

x

The value to compute.

Remarks

This function is defined as

erfc(x) = 1 - erf(x)

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of erfc() usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double h = +10.0;

 printf("The inverse error function of (%f) = %f.\n", h, erfc(h));

 return 0;

}

Output:

The inverse error function of (10.000000) = 0.000000

gamma()

Computes logeG(x).

#include <math.h>

double gamma(double x);

extern int signgam;

x

A value from which to compute.

Remarks

This function computes logeG(x), where G(x) is defined as the integral of e-t * t x-1 dt
from 0 to infinity. The function returns the sign of G(x) the external variable signgam.
The argument x need not be a non-positive integer, (G(x) is defined over the real
numbers, except the non-positive integers).

math.h
 Rounding

CodeWarrior Implementation of the C Standard Library 127

If this function cannot compute a value it sets errno to a non-zero value, either EDOM
or ERANGE, and returns either HUGE_VAL or NAN. Use fpclassify() to check the
validity of the result returned by gamma().

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

lgamma()

Computes loge| G(x) |.

#include <math.h>

double lgamma(double x);

float lgammaf(float x);

long double lgammal(long double x);

extern int signgam;

x

A value from which to compute.

Remarks

These functions computes loge of the absolute value of G(x), where G(x) is defined as
the integral of e-t * t x-1 dt from 0 to infinity. The functions return the sign of G(x) the
external variable signgam. The argument x need not be a non-positive integer, (G(x) is
defined over the real numbers, except the non-positive integers).

If these functions cannot compute a value they set errno to a non-zero value, either
EDOM or ERANGE, and returns either HUGE_VAL or NAN. Use fpclassify() to
check the validity of the result returned by the lgamma() functions.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

Rounding
Compute the closest integral values of real numbers.

ceil()

math.h
Rounding

128 CodeWarrior Implementation of the C Standard Library

Rounds a number up to the closest whole number.

#include <math.h>

double ceil(double x);

float ceilf(float x);

long double ceill(long double x);

x

A number to round up.

Remarks

These functions return the smallest integer that is not less than x.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of ceil() usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x = 100.001, y = 9.99;

 printf("The ceiling of %f is %f.\n", x, ceil(x));

 printf("The ceiling of %f is %f.\n", y, ceil(y));

 return 0;

}

Output:

The ceiling of 100.001000 is 101.000000.

The ceiling of 9.990000 is 10.000000.

floor()

Rounds a number up to the closest whole number.

#include <math.h>

double floor(double x);

float floorf(float x);

long double floorl(long double x);

x

A number to round down.

Remarks

math.h
 Rounding

CodeWarrior Implementation of the C Standard Library 129

These functions return the largest integer that is not greater than x.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of floor() usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x = 12.03, y = 10.999;

 printf("Floor value of %f is %f.\n", x, floor(x));

 printf("Floor value of %f is %f.\n", y, floor(y));

 return 0;

}

Output:

Floor value of 12.030000 is 12.000000.

Floor value of 10.999000 is 10.000000.

lrint(), llrint()

Rounds off to an integral value according to the current rounding direction.

#include <math.h>

long int lrint(double x);

long int lrintf(float x);

long int lrint(long double x);

long long int llrint(double x);

long long int llrintf(float x);

long long int llrint(long double x);

x

The value to be computed.

Remarks

These functions round x to an integral value in floating-point format using the current
rounding direction. Unlike the rint() functions, these functions return their results as
integer values.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

math.h
Rounding

130 CodeWarrior Implementation of the C Standard Library

lround(), llround()

Rounds to an integral value.

#include <math.h>

long int lround(double x);

long int lroundf(float x);

long int lroundl(long double x);

long long int llround(double x);

long long int llroundf(float x);

long long int llroundl(long double x);

x

The value to be rounded.

Remarks

These functions round x to the neareset integer value. These functions ignore the current
rounding direction; halfway values are rounded away from zero.

Unlike round(), these functions return their results as values of integer type.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of round() Usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x = 2.4;

 printf("round(%f) = %f\n", x, round(x));

 return 0;

}

Output:

round(2.400000) = 2.000000

nearbyint()

math.h
 Rounding

CodeWarrior Implementation of the C Standard Library 131

Rounds off its argument to an integral value.

#include <math.h>

double nearbyint(double x);

float nearbyintf(float x);

long double nearbyintl(long double x);

x

The value to be computed

Remarks

These functions compute the closest integer value but do not raise an inexact exception.

The argument is returned as an integral value in floating point format.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of nearbyint() Usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x = 5.7;

 printf("nearbyint(%f) = %f\n", x, nearbyint(x));

 return 0;

}

Output:

nearbyint(5.700000) = 6.000000

rint()

Rounds off to an integral value.

#include <math.h>

double rint(double x);

float rintf(float x);

long double rint(long double x);

x

The value to be computed.

math.h
Rounding

132 CodeWarrior Implementation of the C Standard Library

Remarks

These functions round x to an integral value in floating-point format using the current
rounding direction.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of rint() Usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x = 2.5;

 printf("rint(%f) = %f\n", x, rint(x));

 return 0;

}

Output:

rint(2.500000) = 2.000000

round()

Rounds to an integral value, rounding halfway values furthest from zero.

#include <math.h>

double round(double x);

float roundf(float x);

long double roundl(long double x);

x

The value to be rounded.

Remarks

These functions round x to the neareset integer value. These functions ignore the current
rounding direction; halfway values are rounded away from zero.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

math.h
 Rounding

CodeWarrior Implementation of the C Standard Library 133

Example of round() Usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x = 2.5;

 printf("round(%f) = %f\n", x, round(x));

 return 0;

}

Output:

round(2.500000) = 2.000000

trunc()

Rounds to an integral value nearest to but not larger in magnitude than the argument.

#include <math.h>

double trunc(double x);

double truncf(double x);

double truncl(double x);

x

The value to be truncated.

Remarks

The trunc function returns an argument to an integral value in floating-point format.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of trunc() Usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x = 2.4108;

math.h
Remainders

134 CodeWarrior Implementation of the C Standard Library

 printf("trunc(%f) = %f\n", x, trunc(x));

 return 0;

}

Output:

trunc(2.410800) = 2.000000

Remainders
Compute modulo, remainder, and quotient values.

fmod()

Computes a remainder after division.

#include <math.h>

double fmod(double x, double y);

float fmodf(float x, float y);

long double fmodl(long double x, long double y);

x

The dividend.

y

The divisor.

Remarks

These functions return, when possible, the value r, where x = i y + r for some integer i
that allows |r | < |y|. The sign of r matches the sign of x.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of fabs() usage

#include <math.h>

#include <stdio.h>

int main(void)

{

math.h
 Remainders

CodeWarrior Implementation of the C Standard Library 135

 double x = -54.4, y = 10.0;

 printf("Remainder of %f / %f = %f.\n", x, y, fmod(x, y));

 return 0;

}

Output:

Remainder of -54.400000 / 10.000000 = -4.400000.

modf()

Compute the integer and fraction parts of a floating point number.

#include <math.h>

double modf(double x, double* iptr);

float modff(float x, float* iptr);

long double modfl(long double x, long double* iptr);

x

A floating point value.

iptr

A pointer to a floating-point value.

Remarks

These functions separate x into its integer and fractional parts. In other words, these
functions separate x such that x = f + i where 0 < |f| < 1 and i equal or less than |x|.

These functions return the signed fractional part of x and store the integer part in the
value pointed to by iptr.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of mod() usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double i, f, value = 27.04;

 f = modf(value, &i);

 printf("The fractional part of %f is %f.\n", value, f);

 printf("The integer part of %f is %f.\n", value, i);

 return 0;

math.h
Remainders

136 CodeWarrior Implementation of the C Standard Library

}

Output:

The fractional part of 27.040000 is 0.040000.

The integer part of 27.040000 is 27.000000.

remainder()

Computes the remainder of x / y.

#include <math.h>

double remainder(double x, double y);

float remainderf(float x, float y);

long double remainder(long double x, long double y);

x

The dividend.

y

The divisor.

Remarks

These functions return the remainder, r, where r = x - n y , r is greater or equal
to 0 and less than y, and y is non-zero.

The behavior of remainder() is independent of the rounding mode.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of remainder() Usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double var1 = 2.0;

 double var2 = 4.0;

 printf("remainder(%f,%f) = %f\n", var1, var2, remainder(var1,

 var2));

 return 0;

}

math.h
 Manipulation

CodeWarrior Implementation of the C Standard Library 137

Output:

remainder(2.000000, 4.000000) = 2.000000

remquo()

Computes the remainder.

#include <math.h>

double remquo(double x, double y, int *quo);

float remquof(float x, float y, int *quo);

long double remquol(long double x, long double y, int *quo);

x

The dividend.

y

The divisor.

quo

Pointer to an integer in which to store the quotient.

Remarks

The argument quo points to an integer whose sign is the sign of x/y and whose magnitude
is congruent mod 2n to the magnitude of the integral quotient of x/y, where n >= 3.

The value of x may be so large in magnitude relative to y that an exact representation of
the quotient is not practical.

These functions return the remainder of x / y.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Manipulation
Change and retrieve the properties of floating-point values.

copysign()

Copies the sign of a number.

math.h
Manipulation

138 CodeWarrior Implementation of the C Standard Library

#include <math.h>

double copysign (double x, double y);

x

Magnitude.

y

Sign.

Remarks

This function produces a value with the magnitude of x and the sign of y. It regards the
sign of zero to be positive. This function returns a signed NaN value if x is NaN.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of copysign() usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double e = +10.0;

 double f = -3.0;

 printf("Copysign(%f, %f) = %f.\n", e, f, copysign(e,f));

 return 0;

}

Output:

Copysign(10.000000, -3.000000) = -10.000000.

nan()

Converts a character string to not-a-number.

#include <math.h>

double nan(const char *tagp);

float nanf(const char *tagp);

long double nanl(const char *tagp);

tagp

A pointer to a character string.

Remarks

A quiet NAN is returned, if available.

math.h
 Manipulation

CodeWarrior Implementation of the C Standard Library 139

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

isgreater(), isgreaterequal(), isless(),
islessequal(), islessgreater(),
isunordered()

Compare floating point values, including NaN (Not a Number).

#include <math.h>

int isgreater(x, y);

int isgreaterequal(x, y);

int isless(x, y);

int islessequal(x, y);

int islessgreater(x, y);

int isunordered(x, y);

x

A value of type float, double, or long double.

y

A value of type float, double, or long double.

Remarks

These macros compare two floating point numbers and return a boolean value. Unlike
their expression counterparts, these macros accept the NaN value without raising a
floating-point exception.

NaN is not in the range of floating point values from negative infinity to positive infinity,
so it cannot be put in any order when compared to other values. In other words, A NaN
value is not greater than, less than, or equal to any other floating point value.
Table 13.1: Counterparts for isgreater(), isgreaterequal(), isless(),
islessequal(), islessgreater(), isunordered()

This macro... is equivalent to this expression

isgreater(x, y) x > y

isgreaterequal(x, y) x >= y

isless(x, y) x < y

math.h
Manipulation

140 CodeWarrior Implementation of the C Standard Library

This macro... is equivalent to this expression

islessequal(x, y) x <= y

islessgreater(x, y) x < y || x > y

isunordered(x, y) isnan(x) || isnan(y)

nextafter()

Returns the next representable value.

#include <math.h>

double nextafter(double x, double y);

float nextafterf(float x, float y);

long double nextafterl(long double x, long double y);

x

Current representable value.

y

Direction to compute the next representable value.

Remarks

These functions compute the next representable value, after x in the direction of y. Thus,
if y is less than x, nextafter() returns the largest representable floating-point
number that is less than x.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of nextafter() Usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x = 7.0;

 double y;

 y = x + 1.0;

math.h
 Maximum and Minimum

CodeWarrior Implementation of the C Standard Library 141

 printf("nextafter(%f, %f) = %f\n", x, y, nextafter(x,y));

 return 0;

}

Output:

nextafter(7.000000, 8.000000) = 7.000004

nexttoward()

Returns the next representable value.

#include <math.h>

double nexttoward(double x, long double y);

float nexttowardf(float x, long double y);

long double nexttowardl(long double x, long double y);

x

Current representable value.

y

Direction to compute the next representable value.

Remarks

These functions perform identically to their nextafter counterparts but has these
differences:

• The y argument is always of type long double.

• If x equals y, these functions return y converted to x's type.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Maximum and Minimum
Compute maximum and minimum values.

fdim()

Computes the positive difference of two numbers.

#include <math.h>

math.h
Maximum and Minimum

142 CodeWarrior Implementation of the C Standard Library

double fdim(double x, double y);

float fdimf(float x, float y);

long double fdiml(long double x, long double y);

x

The minuend.

y

The subtrahend.

Remarks

If x is greater or equal to y, the functions returns x - y.

If x is less than y, the functions set errno to ERANGE and fpclassify(fdim(x,
x)) does not return FP_NORMAL.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of fdim() usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double k = 12;

 double l = 4;

 printf("|(%f - %f)| = %f\n", k, l, fdim(k,l));

 return 0;

}

Output:

| (12.000000 - 4.0000000) | = 8.0000000

fmax()

Return the maximum of two values.

#include <math.h>

double fmax(double x, double y);

double fmaxf(float x, float y);

double fmaxl(long double x, long double y);

x

First argument.

x

math.h
 Maximum and Minimum

CodeWarrior Implementation of the C Standard Library 143

Second argument.

Remarks

These functions return x if x is greater or equal to y. Otherwise, they return y.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of fmax() usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double m = 4;

 double n = 6;

 printf("fmax(%f, %f)=%f.\n",m,n,fmax(m,n));

 return 0;

}

Output:

fmax(4.000000, 6.000000) = 6.000000.

fmin()

Return the minimum of two values.

#include <math.h>

double fmin(double x, double y);

double fminf(float x, float y);

double fminl(long double x, long double y);

x

First argument.

x

Second argument.

Remarks

These functions return x if x is less than or equal to y. Otherwise, they return y.

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of fmin() usage

#include <math.h>

math.h
Multiply-Addition

144 CodeWarrior Implementation of the C Standard Library

#include <stdio.h>

int main(void)

{

 double m = 4;

 double n = 6;

 printf("fmin(%f, %f)=%f.\n",m,n,fmin(m,n));

 return 0;

}

Output:

fmin(4.000000, 6.000000) = 4.000000.

Multiply-Addition
An optimized combination of multiplication and addition.

fma()

Computes a multiplication and addition.

#include <math.h>

double fma(double x, double y, double z);

float fmaf(float x, float y, float z);

long double fmal(long double x, long double y, long double z);

x

The first multiplication value.

y

The second multiplication value.

z

The addition value.

Remarks

These functions compute and return (x * y) + z. These functions may be more accurate
than using the compiler's regular multiplication (*) and addition (+) operators.

The functions compute this value to virtually infinite precision and apply rounding once
to the result type according to the rounding mode specified by the FLT_ROUNDS.

If the result cannot be properly expressed in the result type, the functions set errno to
EDOM and fpclassify(fdim(x, x)) does not return FP_NORMAL.

math.h
 Multiply-Addition

CodeWarrior Implementation of the C Standard Library 145

This facility may not be available on configurations of the MSL that run on platforms that
do not have floating-point math capabilities.

Example of fdim() usage

#include <math.h>

#include <stdio.h>

int main(void)

{

 double k = 12;

 double l = 4;

 printf("|(%f - %f)| = %f\n", k, l, fdim(k,l));

 return 0;

}

Output:

| (12.000000 - 4.0000000) | = 8.0000000

math.h
Multiply-Addition

146 CodeWarrior Implementation of the C Standard Library

CodeWarrior Implementation of the C Standard Library 147

14
setjmp.h

Provides a means of saving and restoring a processor state.

The setjmp.h functions are typically used for programming error and low-level
interrupt handling. The setjmp() function saves the current processor state in its jmp_
buf argument. The jmp_buf type holds the processor program counter, stack pointer,
and registers. The longjmp() function restores the processor to the state recorded in a
variable of type jmp_buf. In other words, longjmp() returns program execution to a
point in the program where setjmp() was called. Because the jmp_buf variable can
be global, the setjmp() and longjmp() calls do not have to be in the same function
body.

Variables assigned to registers through compiler optimization may be corrupted during
execution between setjmp() and longjmp() calls. Avoid this situation by declaring
affected variables as volatile.

longjmp()
Restores processor state saved by setjmp().

#include <setjmp.h>

void longjmp(jmp_buf env, int val);

env

A processor state initialized by a call to setjmp()

val

A non-zero value that setjmp() will return.

Remarks

This function restores the calling environment (in other words, it returns program
execution) to the state saved by the last call to setjmp() that used the env variable.
Program execution continues from the call to setjmp(), which returns the argument
val.

setjmp.h
setjmp()

148 CodeWarrior Implementation of the C Standard Library

MSL redefines longjmp() for AltiVec® support. To avoid an undefined result, make
sure that both the “to” compilation unit (the source file that calls setjmp()) and
“from” compilation unit (the source file that calls longjmp()) have AltiVec code
generation enabled.

After a program invokes longjmp(), execution continues as if the corresponding
call to the setjmp() function had just returned the value specified by val. The
longjmp() function cannot cause the setjmp() function to return the value 0. If val
is 0, the setjmp() function returns 1.

The env variable must be initialized by a previous call to setjmp() before being used
by longjmp() to avoid undefined results in program execution.

This facility may not be available on some configurations of the MSL.

setjmp()
Saves processor state.

#include <setjmp.h>

int setjmp(jmp_buf env);

env

The current processor state

Remarks

The setjmp() function saves the calling environment in the env argument. The
argument must be initialized by setjmp() before being passed as an argument to
longjmp().

When it is first called, setjmp() saves the processor state and returns 0. When
longjmp() is called program execution jumps to the setjmp() that saved the
processor state in env. When activated through a call to longjmp(), setjmp()
returns longjmp()'s val argument.

This facility may not be available on some configurations of the MSL.

Example of setjmp() and longjmp() usage

#include <setjmp.h>

#include <stdio.h>

#include <stdlib.h>

/* Let main() and doerr() both have

 * access to env.

 */

setjmp.h
 setjmp()

CodeWarrior Implementation of the C Standard Library 149

volatile jmp_buf env;

void doerr(void);

int main(void)

{

 int i, j, k;

 printf("Enter 3 integers that total less than 100.\n");

 printf("A zero sum will quit.\n\n");

 /* If the total of entered numbers is not less than 100,

 * program execution is restarted from this point.

 */

 if (setjmp(env) != 0)

 printf("Try again, please.\n");

 do {

 scanf("%d %d %d", &i, &j, &k);

 if ((i + j + k) == 0)

 break;

 printf("%d + %d + %d = %d\n\n", i, j, k, i+j+k);

 if ((i + j + k) >= 100)

 doerr(); /* Error! */

 } while (1); /* loop forever */

 return 0;

}

void doerr(void)

{

 printf("The total is >= 100!\n");

 longjmp(env, 1);

}

Output:

Enter 3 integers that total less than 100.

A zero sum will quit.

10 20 30

10 + 20 + 30 = 60

-4 5 1000

-4 + 5 + 1000 = 1001

setjmp.h
setjmp()

150 CodeWarrior Implementation of the C Standard Library

The total is >= 100!

Try again, please.

0 0 0

CodeWarrior Implementation of the C Standard Library 151

15
signal.h

This header file declares data types, macros, and functions sending and receiving
software interrupts.

Signals are invoked, or raised, using the raise() function. When a signal is raised its
associated function is executed.

In the MSL implementation a signal can only be invoked through the raise() function
and, in the case of the SIGABRT abort() function. When a signal is raised, its signal
handling function is executed as a normal function call.

The default signal handler for all signals except SIGTERM is SIG_DFL. The SIG_DFL
function aborts a program with the abort() function, while the SIGTERM signal calls
the exit() function.

The ISO/IEC standard specifies that the SIG prefix used by the signal.h macros is
reserved for future use. You should avoid using the prefix to prevent conflicts with future
specifications of the Standard Library.

The type sig_atomic_t can be accessed as an incorruptible, atomic entity during an
asynchronous interrupt. The number of signals is defined by __signal_max, defined in
signal.h.
CAUTION: Using non-reentrant functions from within a signal handler
is not recommended in any system that can throw signals in hardware.
Signals are interrupts, and can be invoked at any point during a
program's execution. Also, even functions designed to be re-entrant can
fail if you re-enter them from a signal handler.

raise()
Raises a signal.

 #include <signal.h>

int raise(int sig);

signal.h
signal()

152 CodeWarrior Implementation of the C Standard Library

sig

A signal to raise.

Remarks

The raise() function calls the signal handling function associated with signal sig.

The function returns a zero if the signal invocation is successful, it returns a nonzero
value if it is unsuccessful.

This facility may not be available on some configurations of the MSL.

signal()
Associates a signal handler with a signal.

#include <signal.h>

void (*signal(int sig, void (*func)(int)))(int);

sig

A signal number.

func

A pointer to a signal handling function.

Remarks

The signal() function returns a pointer to a signal handling routine that takes an int
value argument.

The sig argument is the signal number associated with the signal handling function. The
signals defined in signal.h are listed in Table 15.1.
Table 15.1: Signal descriptions

This macro... represents this signal

SIGABRT Abort signal. Defined as a positive
integer value. This signal is called by the
abort()function.

SIGBREAK Terminates the calling program.

SIGFPE Floating point exception signal. Defined
as a positive integer value.

signal.h
 signal()

CodeWarrior Implementation of the C Standard Library 153

This macro... represents this signal

SIGILL Illegal instruction signal. Defined as a
positive integer value.

SIGINT Interactive user interrupt signal. Defined
as a positive integer value.

SIGSEGV Segment violation signal. Defined as a
positive integer value.

SIGTERM Terminal signal. Defined as a positive
integer value. When raised this signal
terminates the calling program by calling
the exit()function.

The func argument is the signal handling function. This function is either programmer-
supplied or one of the pre-defined signal handlers listed in Table 15.2.
Table 15.2: Signal-handling functions

This signal-handling function... performs this action.

SIG_IGN Nothing. It is used as a function argu-
ment in signal()to designate that a
signal be ignored.

SIG_DFL Aborts the program by calling abort().

SIG_ERR Returned by signal()when it cannot
honor a request passed to it.

When it is raised, a signal handler's execution is preceded by the invocation of
signal(sig, SIG_DFL). This call to signal() disables the user's handler. It
can be reinstalled by placing a call within the user handler to signal() with the user's
handler as its function argument.

This function returns a pointer to the signal handling function set by the last call to
signal() for signal sig. If the request cannot be honored, signal() returns SIG_
ERR.

This facility may not be available on some configurations of the MSL.

Example of signal() usage

#include <signal.h>

signal.h
signal()

154 CodeWarrior Implementation of the C Standard Library

#include <stdio.h>

#include <stdlib.h>

void userhandler(int);

void userhandler(int sig)

{

 char c;

 printf("userhandler!\nPress return.\n");

 /* wait for the return key to be pressed */

 c = getchar();

}

int main(void)

{

 void (*handlerptr)(int);

 int i;

 handlerptr = signal(SIGINT, userhandler);

 if (handlerptr == SIG_ERR)

 printf("Can't assign signal handler.\n");

 for (i = 0; i < 10; i++) {

 printf("%d\n", i);

 if (i == 5)

 raise(SIGINT);

 }

 return 0;

}

Output:

0

1

2

3

4

signal.h
 signal()

CodeWarrior Implementation of the C Standard Library 155

5

userhandler!

Press return.

6

7

8

9

signal.h
signal()

156 CodeWarrior Implementation of the C Standard Library

CodeWarrior Implementation of the C Standard Library 157

16
stdarg.h

Facilities for defining functions that accept a variable number of arguments.

The stdarg.h header file allows the creation of functions that accept a variable number
of arguments. A variable-length argument function is defined with an ellipsis (...) as its
last argument. For example:

int funnyfunc(int a, char c, ...);

The function uses the va_list type and the macros va_start(), va_arg (), and
va_end(). The function uses a variable of type va_list to hold the list of function
arguments. The macro va_start() initializes the va_list variable. Invoke this
macro before accessing the function's arguments. The macro va_arg() retrieves each
of the arguments in the argument list. Finally, use va_end to allow a normal return from
the function.

va_arg
Macro to return an argument value.

#include <stdarg.h>

type va_arg(va_list ap, type);

ap

A variable list

type

The type of the argument value to be obtained

Remarks

The va_arg() macro returns the next argument on the function's argument list. The
argument returned has the type defined by type. The ap argument must first be initialized
by the va_start() macro.

The va_arg() macro returns the next argument on the function's argument list of type.

stdarg.h
va_copy

158 CodeWarrior Implementation of the C Standard Library

va_copy
Copies and initializes a variable argument list.

#include <stdarg.h>

void va_copy(va_list dest, va_list src);

dest

The destination for the copied variable argument list.

src

The argument list to copy.

Remarks

The va_copy() macro makes a copy of the variable list src in a state as if the va_
start macro had been applied to it followed by the same sequence of va_arg macros
as had been applied to src to bring it into its present state

va_end
Prepare to exit the function normally.

#include <stdarg.h>

void va_end(va_list ap);

ap

A variable argument list.

Remarks

The va_end() macro cleans the stack to allow a proper function return. Invoke this
macro at the end of a void function or before the function's return statement.

va_start
Initialize the variable-length argument list.

#include <stdarg.h>

void va_start(va_list ap, lastparm);

stdarg.h
 va_start

CodeWarrior Implementation of the C Standard Library 159

ap

A variable list.

lastparm

The last named parameter.

Remarks

The va_start() macro initializes and assigns the argument list to ap. The lastparm
parameter is the last named parameter before the ellipsis (...) in the function prototype.

Example of va_start() usage.

#include <stdarg.h>

#include <stdio.h>

void multisum(int *dest, ...);

void multisum(int *dest, ...)

{

 va_list ap;

 int n;

 int sum = 0;

 va_start(ap, dest);

 while ((n = va_arg(ap, int)) != 0)

 sum += n; /* Add next argument to dest */

 *dest = sum;

 va_end(ap); /* Clean things up before leaving. */

}

int main(void)

{

 int all;

 all = 0;

 multisum(&all, 13, 1, 18, 3, 0);

 printf("%d\n", all);

 return 0;

stdarg.h
va_start

160 CodeWarrior Implementation of the C Standard Library

}

Output:

35

CodeWarrior Implementation of the C Standard Library 161

17
stdbool.h

Facilities for boolean integral values.

This header file defines some convenient macros for manipulating boolean values. Table
17.1 lists these macros.
Table 17.1: Definitions in stdbool.h

Use this macro... to do this.

bool Define variables of boolean type.
Expands to the built-in boolean type,
Bool.

true Represent a logical true value. Expands
to 1.

false Represent a logical false value. Expands
to 0.

bool_true_false_are_defined Check for availability of
stdbool.hfacilities. When defined,
expands to 1.

The facilities in this header file are only available when the compiler is configured to
compile source code for C99 (ISO/IEC 9899:1999). Refer to the Build Tools Reference
for information on compiling C99 source code.

stdbool.h

162 CodeWarrior Implementation of the C Standard Library

CodeWarrior Implementation of the C Standard Library 163

18
stddef.h

Commonly used macros and types that are used throughout the Main Standard Library.

Table 18.1 lists the facilities that this header file provides.
Table 18.1: Facilities in stddef.h

This facility... provides this feature.

NULL Expands to a value that represents the
null pointer constant.

offsetof(structure, member) Computes a value of type size_t that is
the offset, in bytes, of a member from the
base of its structure. If the member is a
bit field the result is undefined.

ptrdiff_t A data type that the compiler uses to hold
the result of subtracting one pointer's
value from another.

size_t The unsigned type returned by the
sizeof()operator.

wchar_t A data type that is large enough to hold
all character representations in the wide
character set.

stddef.h

164 CodeWarrior Implementation of the C Standard Library

CodeWarrior Implementation of the C Standard Library 165

19
stdint.h

Defines integer types that are suitable for specific uses and defines macros to describe
their properties and manipulate literal values.

Integer Types
Defines integer types with specific properties.

Remarks

The stdint.h header file defines several types of integer based on variations of the
compiler's built-in integer types (unsigned int, int, long int, and so on).
Unlike the general properties of the compiler's integer types, these type definitions
have specific properties. The type names describe the integer's properties. Type names
beginning with int represent types for signed integers in two's-complement form. Type
names beginning with uint are unsigned integer types.

These integer types are:

• Exact-width integers.

These types occupy the exact number of bits specified by their type names. The
names of these types take the form intN_t and uintN_t, where N represents
the exact number of bits in values of these types.

The names of these types are int8_t, uint8_t, int16_t, uint16_t,
int32_t, uint32_t, int64_t, and uint64_t.

• Minimum-width integers.

These types occupy at least the number of bits specified by their type names. For
each of these integer types, the library guarantees that there is no integer type that
has a smaller size.

The names of these types take the form int_leastN_t and uint_least_
N_t. The N specifies that the integer type has N or more bits and that no smaller
integer type holds this number of bits.

stdint.h
Integer Limits

166 CodeWarrior Implementation of the C Standard Library

The names of these types are int_least8_t, uint_least8_t, int_
least16_t, uint_least16_t, int_least32_t, uint_least32_t,
int_least64_t, and uint_least64_t.

• Fastest integers.

These integer types represent the optimal size for the target processor. These types
are closest to the native numeric types that the target processor uses.

The names of these types take the form int_fastN_t and uint_fast_N_t.
The N specifies that the integer type has N or more bits and that no smaller integer
type holds this number of bits.

The names of these types are int_fast8_t, uint_fast8_t, int_fast16_
t, uint_fast16_t, int_fast32_t, uint_fast32_t, int_fast64_t,
and uint_fast64_t.

• Pointer-width integers.

These types are large enough to hold a pointer value. Converting a void pointer
value to this integer type then converting this integer value to a pointer again will
result in the original pointer value.

The names of these types are intptr_t, uintptr_t.
• Greatest-width integers.

These integer types are large enough to contain any integer value. Converting any
integer value to this integer type then converting this integer value to the original
integer type will result in the original integer value. Values of type intmax_t
can contain any signed integer value. Values of type uintmax_t can contain any
unsigned integer.

Integer Limits
Defines macros that describe the numeric properties of the types defined in stdint.h
and other files in the standard library.

Remarks

Macro names beginning with INT specify properties for signed integer types and names
beginning with UINT specify properties for unsigned integers. A macro name ending
with MIN specifies the minimum value that its corresponding signed integer type may
represent. An unsigned integer type's minimum value is always 0. A macro name ending
with MAX defines the maximum value that its corresponding integer value can represent.

These limit values are:

• Exact-width integer limits.

These macros describe the limits of the exact-width integer types defined in file
stddint.h. The names of these macros are INTn_MIN, INTn_MAX, and

stdint.h
 Integer Types

CodeWarrior Implementation of the C Standard Library 167

UINTn_MAX, where n represents the number of bits in the corresponding exact-
width integer type.

• Minimum-width integer limits.

These macros describe the limits of the minimum-width integer types defined in
file stddint.h. The names of these macros are INT_LEASTn_MIN, INT_
LEASTn_MAX, and UINT_LEASTn_MAX, where n represents the number of bits
in the corresponding minimum-width integer type.

• Fastest integers.

These macros describe the limits of the fastest-width integer types defined in
file stddint.h. The names of these macros are INT_FASTn_MIN, INT_
FASTn_MAX, and UINT_FASTn_MAX, where n represents the number of bits in
the corresponding fastest-width integer type.

• Pointer-width integer limits.

These macros describe the limits of the pointer-width integer types defined in file
stddint.h. The names of these macros are INTPTR_MIN, INTPTR_MAX, and
UINTPTR_MAX.

• Greatest-width integer limits.

These macros describe the limits of the greatest-width integer types defined in file
stddint.h. The names of these macros are INTMAX_MIN, INTMAX_MAX, and
UINTMAX_MAX.

• Pointer difference limits.

These macros describe the limits of the ptrdiff_t type defined in file
stddef.h. The names of these macros are PTRDIFF_MIN, PTRDIFF_MAX.

• Atomic signal value limits.

These macros describe the limits of the sig_atomic_t type defined in
file signal.h. The names of these macros are SIG_ATOMIC_MIN, SIG_
ATOMIC_MAX.

• Operator sizeof() value limits.

This macro describe the limit of the size_t type defined in file stddef.h. The
name of this macros is SIZE_MAX.

• Wide character value limits.

These macros describe the limits of the wchar_t type defined in file stddef.h.
The names of these macros are WCHAR_MIN, WCHAR_MAX.

• Wide character integer value limits.

These macros describe the limits of the wint_t type defined in file wchar.h.
The names of these macros are WINT_MIN, WINT_MAX.

Integer Types

stdint.h
Integer Types

168 CodeWarrior Implementation of the C Standard Library

Defines macros for specifying integer literal values.

Remarks

These macros are defined in file stdint.h. They accept a numeric literal value and
convert the value to generate a numeric constant for the types defined in file stdint.h.
These macros follow the same naming convention of these types. Use macros beginning
with INT to specify signed integer constants and macros beginning with UINT to specify
unsigned integer constants.

These macros are:

• Exact-width, minimum-width, and fastest-width integer constants.

These macros take the form INTn_C(and UINTn_C(, where n represents the
exact or minimum width of the integer type and x represents a numeric literal
value.

• Maximum-width integer constants.

These macros take the form INTMAX_C(and UINTMAX_C(, where x represents
a numeric literal value.

Example of integer constant usage

#include <stdint.h>

#include <inttypes.h>

#include <stdio.h>

int main(void)

{

 uint32_t i = UINT32_C(371932);

 printf("%" PRId32 " %" PRIdMAX "\n", i, INTMAX_C(INTMAX_MAX));

 return 0;

}

CodeWarrior Implementation of the C Standard Library 169

20
stdio.h

The stdio.h header file provides functions for input/output control.

There are functions for creating, deleting, and renaming files, functions to allow random
access, as well as to write and read text and binary data.

Streams
A stream is a logical abstraction that isolates input and output operations from the
physical characteristics of terminals and structured storage devices.

Streams map a program's data and the data that is actually stored on the external devices.
Two forms of mapping are supported, for text streams and for binary streams. Streams
also provide buffering, which is a memory management technique that reads and
writes large blocks of data. This technique reduces hardware I/O requests by . Without
buffering, data on an I/O device must be accessed one item at a time. This inefficient I/O
processing slows program execution considerably. The stdio.h functions use buffers
in primary storage to intercept and collect data as it is written to or read from a file. When
a buffer is full its contents are actually written to or read from the file, thereby reducing
the number of I/O accesses. A buffer's contents can be sent to the file prematurely by
using the fflush() function.

The stdio.h header offers three buffering schemes: unbuffered, block buffered, and
line buffered. The setvbuf() function is used to change the buffering scheme of any
output stream. When an output stream is unbuffered, data sent to it are immediately read
from or written to the file. When an output stream is block buffered, data are accumulated
in a buffer in primary storage. When full, the buffer's contents are sent to the destination
file, the buffer is cleared, and the process is repeated until the stream is closed. Output
streams are block buffered by default if the output refers to a file. A line buffered output
stream operates similarly to a block buffered output stream. Data are collected in the
buffer, but are sent to the file when the line is completed with a newline character
('\n').

A stream is declared using a pointer to a FILE. There are three FILE pointers that are
automatically opened for a program: FILE *stdin, FILE *stdout, and FILE

stdio.h
Streams

170 CodeWarrior Implementation of the C Standard Library

*stderr. The FILE pointers stdin and stdout are the standard input and output
files, respectively, for interactive console I/O. The stderr file pointer is the standard
error output file, where error messages are written to. The stderr stream is written to
the console. The stdin and stdout streams are line buffered while the stderr s
tream is unbuffered.

If a of the standard input/output stream is closed it is not possible to reopen and reconnect
that stream to the console. However, it is possible to reopen and connect the stream to a
named file.

The C and C++ input/output facilities share the same stdin, stdout, and stderr
streams.

Text Streams and Binary Streams

In a binary stream, there is no transformation of the characters during input or output
and what is recorded on the physical device is identical to the program's internal data
representation.

A text stream consists of sequence of characters organized into lines, each line terminated
by a newline character. To conform to the host system's convention for representing text
on physical devices, characters may have to be added altered or deleted during input and
output. Thus, there may not be a one-to-one correspondence between the characters in
a stream and those in the external representation. These changes occur automatically
as part of the mapping associated with text streams. Of course, the input mapping is
the inverse of the output mapping and data that are output and then input through text
streams will compare equal with the original data.

In MSL, the text stream mapping affects only the linefeed (LF) character, ‘\n' and the
carriage return (CR) character, ‘\r'. The semantics of these two control characters are:
\n

Moves the current print location to the start of the next line.
\r

Moves the current print location to the start of the current line.

where “current print location” is defined as “ that location on a display device where
the next character output by the fputc() function would appear” .

File Position Indicator

The file position indicator is another concept introduced by the stdio.h header. Each
opened stream has a file position indicator acting as a cursor within a file. The file
position indicator marks the character position of the next read or write operation. A read
or write operation advances the file position indicator. Other functions are available to
adjust the indicator without reading or writing, thus providing random access to a file.

Note that console streams, stdin, stdout, and stderr in particular, do not have file
position indicators.

End-of-file and Errors

stdio.h
 Streams

CodeWarrior Implementation of the C Standard Library 171

Many functions that read from a stream return the EOF value, defined in stdio.h. The
EOF value is a nonzero value indicating that the end-of-file has been reached during the
last read or write.

Some stdio.h functions also use the errno global variable. Refer to the errno.h
header section. The use of errno is described in the relevant function descriptions
below.

Wide Character and Byte Character Stream Orientation

There are two types of stream orientation for input and output:

• wide character (wchar_t) orientation

• byte (char) orientation

A stream is without orientation when that stream has been associated with a file but
before an operation occurs on the stream.

Once any operation is performed on that stream, that stream is first assigned its
orientation by that operation. The stream's orientation remains that way until the file has
been closed and reopened.

After a stream orientation is established, any call to a function of the other orientation is
not applied. For example, a byte-oriented input/output function does not have an effect on
a wide-oriented stream.

The predefined console streams, stdin, stdout, and stderr have no orientation at
program startup.

Unicode, Wide Characters, and Multibyte Encoding

The Unicode character set known as UCS-2 (Universal Character Set containing 2
bytes) is a fixed width encoding scheme that uses 16 bits per character. Characters are
represented and manipulated in MSL as wide characters of type wchar_t and can be
manipulated with the wide character functions defined in the library.

To reduce the size of a file that contains wide character text, the library offers functions
to read and write wide characters using multibyte encoding. Instead of storing wide
characters in a file as a sequence of wide characters, multibyte encoding takes advantage
of each wide character's bit patterns to store it in one or more sequential bytes.

There are two types of multibyte encoding, modal and non-modal. With modal encoding,
a conversion state is associated with a multibyte string. This state is akin to the shift state
of a keyboard. The library uses the mbstate_t type to record a shift state. With non-
modal encoding, no such state is involved and the first character of a multibyte sequence
contains information about the number of characters in the sequence. The actual encoding
scheme is defined in the LC_CTYPE component of the current locale.

In MSL, two encoding schemes are available, a direct encoding where only a single byte
is used and the non-modal UTF-8 (UCS Transformation Format 8) encoding scheme is
used where each Unicode character is represented by one to three 8-bit characters. For

stdio.h
File Operations

172 CodeWarrior Implementation of the C Standard Library

Unicode characters in the range 0x00 to 0x7F the encoding is direct and only a single
byte is used.

File Operations
Facilities for deleting and renaming files, and managing temporary files.

remove()
Deletes a file.

#include <stdio.h>

int remove(const char *filename);

filename

A pointer to a character string containing the name of a file.

Remarks

The remove() function deletes the named file specified by filename.

remove() returns 0 if the file deletion is successful, and returns a nonzero value if it
fails.

Example of remove() usage

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 char filename[40];

 // get a filename from the user

 printf("Enter the name of the file to delete.\n");

 gets(filename);

 // delete the file

 if (remove(filename) != 0) {

 printf("Can't remove %s.\n", filename);

 exit(1);

 }

 return 0;

}

stdio.h
 File Operations

CodeWarrior Implementation of the C Standard Library 173

rename()
Changes the name of a file.

#include <stdio.h>

int rename(const char *old, const char *new);

old

The old file name.

new

The new file name.

Remarks

The rename() function changes the name of a file, specified by old to the name
specified by new.

rename() returns a nonzero if it fails and returns zero if successful

Example of rename() usage.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 char oldname[50];

 char newname[50];

 // get the current filename from the user

 printf("Please enter the current file name.\n");

 gets(oldname);

 // get the new filename from the user

 printf("Please enter the new file name.\n");

 gets(newname);

 // rename oldname to newname

 if (rename(oldname, newname) != 0) {

 printf("Can't rename %s to %s.\n", oldname,

 newname);

 exit(1);

 }

 return 0;

}

stdio.h
File Operations

174 CodeWarrior Implementation of the C Standard Library

Output:

Please enter the current file name.

boots.txt

Please enter the new file name.

sandals.txt

tmpfile()
Opens a temporary file.

#include <stdio.h>

FILE *tmpfile(void);

Remarks

The tmpfile() function creates and opens a binary file for output that is automatically
removed when it is closed or when the program terminates.

tmpfile() returns a pointer to the FILE variable of the temporary file if it is
successful. If it fails, tmpfile() returns a null pointer (NULL).

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

Example of tmpfile() usage.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *f;

 // Create a new temporary file for output

 if ((f = tmpfile()) == NULL) {

 printf("Can't open temporary file.\n");

 exit(1);

 }

 // Output text to the temporary file

 fprintf(f, "watch clock timer glue\n");

 // Close and delete the temporary file.

 fclose(f);

 return 0;

}

stdio.h
 File Operations

CodeWarrior Implementation of the C Standard Library 175

tmpnam()
Creates a unique temporary file name.

 #include <stdio.h>

char *tmpnam(char *s);

s

A temporary file name.

Remarks

The tmpnam() functions creates a valid filename character string that will not conflict
with any existing filename. A program can call the function up to TMP_MAX times before
exhausting the unique filenames that tmpnam() generates. The TMP_MAX macro is
defined in stdio.h.

The s argument can either be a null pointer or pointer to a character array. The character
array must be at least L_tmpnam characters long. The new temporary filename is placed
in this array. The L_tmpnam macro is defined in stdio.h.

If s is NULL, tmpnam() returns with a pointer to an internal static object that can be
modified by the calling program.

Unlike tmpfile(), a file created using a filename generated by the tmpnam()
function is not automatically removed when it is closed.

tmpnam() returns a pointer to a character array containing a unique, non-conflicting
filename. If s is a null pointer (NULL), the pointer refers to an internal static object. If s
points to a character array, tmpnam() returns the same pointer.

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

Example of tmpnam() usage.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *f;

 char *tempname;

 int c;

 // get a unique filename

stdio.h
File Access

176 CodeWarrior Implementation of the C Standard Library

 tempname = tmpnam("tempwerks");

 // create a new file for output

 if ((f = fopen(tempname, "w")) == NULL) {

 printf("Can't open temporary file %s.\n", tempname);

 exit(1);

 }

 // output text to the file

 fprintf(f, "shoe shirt tie trousers\n");

 fprintf(f, "province\n");

 // Close then delete the file.

 fclose(f);

 remove(tempname);

 return 0;

}

File Access
Facilities for opening and closing files and managing file buffers.

fclose()

Close an open file.

#include <stdio.h>

int fclose(FILE *stream);

stream

A pointer to a FILE stream

Remarks

The fclose() function closes a file created by fopen(), freopen(), or
tmpfile(). The function flushes any buffered data to its file and closes the stream.
After calling fclose(), stream is no longer valid and cannot be used with file
functions unless it is reassigned using fopen(), freopen(), or tmpfile().

All of a program's open streams are flushed and closed when a program terminates
normally.

fclose() closes then deletes a file created by tmpfile().

On embedded and real-time operating systems this function may only be applied to the
stdin, stdout, and stderr files.

stdio.h
 File Access

CodeWarrior Implementation of the C Standard Library 177

fclose() returns a zero if it is successful and returns an EOF if it fails to close a file.

Example of fclose() usage

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *f;

 static char name[] = "myfoo";

 // create a new file for output

 if ((f = fopen(name, "w")) == NULL) {

 printf("Can't open %s.\n", name);

 exit(1);

 }

 // output text to the file

 fprintf(f, "pizza sushi falafel\n");

 fprintf(f, "escargot sprocket\n");

 // close the file

 if (fclose(f) == -1) {

 printf("Can't close %s.\n", name);

 exit(1);

 }

 return 0;

}

Output to file myfoo:

pizza sushi falafel

escargot sprocket

fdopen()

Converts a file descriptor to a stream.

#include <stdio.h>

FILE *fdopen(int fildes, char *mode);

FILE *_fdopen(int fildes, char *mode);

fildes

A file descriptor, obtained from fileno().

mode

stdio.h
File Access

178 CodeWarrior Implementation of the C Standard Library

The file opening mode.

Remarks

This function creates a stream for the file descriptor fildes. You can use the stream
with such standard I/O functions as fprintf() and getchar().

If it is successful, fdopen() returns a stream. If it encounters an error, fdopen()
returns NULL.

Example of fdopen() usage

#include <stdio.h>

#include <unix.h>

int main(void)

{

 int fd;

 FILE *str;

 fd = open("mytest", O_WRONLY | O_CREAT);

 /* Write to the file descriptor */

 write(fd, "Hello world!\n", 13);

 /* Convert the file descriptor to a stream */

 str = fdopen(fd,"w");

 /* Write to the stream */

 fprintf(str, "My name is %s.\n", getlogin());

 /* Close the stream. */

 fclose(str);

 /* Close the file descriptor */

 close(fd);

 return 0;

}

fflush()

Empties a stream's buffer to the storage device.

#include <stdio.h>

int fflush(FILE *stream);

stream

A pointer to a file stream.

Remarks

stdio.h
 File Access

CodeWarrior Implementation of the C Standard Library 179

The fflush() function empties stream's buffer to the file associated with stream.
If the stream points to an output stream or an update stream in which the most recent
operation was not input, the fflush function causes any unwritten data for that stream to
be delivered to the host environment to be written to the file; otherwise the behavior is
undefined.

The fflush() function should not be used after an input operation. Using fflush()
for input streams especially the standard input stream (stdin) is undefined and is not
supported and will not flush the input buffer.

This facility may have limited capability on configurations of the MSL that run on
platforms that do not have console input/output or a file system.

The function fflush() returns EOF if a write error occurs, otherwise it returns zero.

Example of fflush() usage

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *f;

 int count;

 // create a new file for output

 if ((f = fopen("foofoo", "w")) == NULL) {

 printf("Can't open file.\n");

 exit(1);

 }

 for (count = 0; count < 100; count++) {

 fprintf(f, "%5d", count);

 if((count % 10) == 9)

 {

 fprintf(f, "\n");

 fflush(f); /* flush buffer every 10 numbers */

 }

 }

 fclose(f);

 return 0;

}

Output to file foofoo:

 0 1 2 3 4 5 6 7 8 9

 10 11 12 13 14 15 16 17 18 19

 20 21 22 23 24 25 26 27 28 29

 30 31 32 33 34 35 36 37 38 39

stdio.h
File Access

180 CodeWarrior Implementation of the C Standard Library

 40 41 42 43 44 45 46 47 48 49

 50 51 52 53 54 55 56 57 58 59

 60 61 62 63 64 65 66 67 68 69

 70 71 72 73 74 75 76 77 78 79

 80 81 82 83 84 85 86 87 88 89

 90 91 92 93 94 95 96 97 98 99

fopen()

Opens a file as a stream.

#include <stdio.h>

FILE *fopen(const char *filename, const char *mode);

filename

A pointer to a character string containing the name of the file to
open.

mode

A pointer to a character string specifying the operations be
performed.

Remarks

The fopen() function opens a file specified by filename, and associates a stream
with it. The fopen() function returns a pointer to a FILE. This pointer is used to refer
to the file when performing I/O operations.

The mode argument specifies how the file is to be used. Table 20.1 describes the values
for mode.

A file opened with an update mode (“+”) is buffered. The file cannot be written to
and then read from unless the write operation and read operation are separated by an
operation that flushes the stream's buffer. This can be done with the fflush() function
or one of the file positioning operations (fseek(), fsetpos(), or rewind()).
Similarly, a file cannot be read from and then written to without repositioning the file
using one of the file positioning functions unless the last read or write reached the end-of-
file.

All file modes, except the append modes (“a”, “a+”, “ab”, “ab+”) set the file
position indicator to the beginning of the file. The append modes set the file position
indicator to the end-of-file.
Note: All write modes, including update mode ("w+") and write/read
update mode ("wb+"), delete data in a file when an existing file is
opened.

stdio.h
 File Access

CodeWarrior Implementation of the C Standard Library 181

Table 20.1: Modes for fopen()

This mode... specifies these operations.

"r" Read mode. Opens an existing text file
for reading only.

"w" Write mode. Creates a new text file
for writing, or opens then truncates an
existing file. Writing starts at the begin-
ning of the file.

"a" Append mode. Creates a new text file
for writing, or opens then truncates an
existing file. Writing starts at the end-of-
file position.

"r+" Update mode. Opens an existing text file
for reading and writing.

"w+" Update mode. Creates a new text file
for reading and writing, or opens then
truncates an existing file for reading and
writing. The file position is at the begin-
ning of the file.

"a+" Update mode. Creates a new text file
for reading and writing, or opens then
truncates an existing file for reading and
writing. The file position is at the end of
file.

"rb" Binary read mode. Opens an existing file
for binary reading only.

"wb" Binary write mode. Creates a new file for
binary writing, or opens then truncates
an existing file for binary writing. Writing
starts at the beginning of the file.

"ab" Binary append mode. Creates a new file
for binary writing, or opens then truncates
an existing file for binary writing. Writing
starts at the end-of-file position.

"r+b"or "rb+" Binary update mode. Opens an existing
file for reading and writing binary data.

stdio.h
File Access

182 CodeWarrior Implementation of the C Standard Library

This mode... specifies these operations.

"w+b"or "wb+" Binary update mode. Creates a new file
for reading and writing binary data, or
opens then truncates an existing file for
reading and writing. The file position is at
the beginning of the file.

"a+b"or "ab+" Binary update mode. Creates a new file
for reading and writing binary data, or
opens then truncates an existing file for
reading and writing. The file position is at
the end of the file.

fopen() returns a pointer to a FILE if it successfully opens the specified file for the
specified operation. fopen() returns a null pointer (NULL) when it is not successful.

Example of fopen() usage

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *f;

 int count;

 // create a new file for output

 if ((f = fopen("count.txt", "w")) == NULL) {

 printf("Can't create file.\n");

 exit(1);

 }

 // output numbers 0 to 9

 for (count = 0; count < 10; count++)

 fprintf(f, "%5d", count);

 // close the file

 fclose(f);

 // open the file to append

 if ((f = fopen("count.txt", "a")) == NULL) {

 printf("Can't append to file.\n");

 exit(1);

 }

 // output numbers 10 to 19

 for (; count <20; count++)

stdio.h
 File Access

CodeWarrior Implementation of the C Standard Library 183

 fprintf(f, "%5d\n", count);

 // close file

 fclose(f);

 return 0;

}

Output to file count.txt:

0 1 2 3 4 5 6 7 8 9 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

freopen()

Re-directs a stream to another file.

#include <stdio.h>

FILE *freopen(const char *filename, const char *mode, FILE

 *stream);

filename

A pointer to a character string containing the name of the file to
open.

mode

A pointer to a character string specifying the operations be
performed.

stream

A pointer to a file stream.

Remarks

The freopen() function changes the file that stream is associated with to another
file. The function first closes the file the stream is associated with, and opens the new
file, filename, with the specified mode, using the same stream.

stdio.h
File Access

184 CodeWarrior Implementation of the C Standard Library

fopen() returns the value of stream, if it is successful. If fopen() fails it returns a
null pointer (NULL).

Example of freopen() usage

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *f;

 // re-direct output from the console to a new file

 if ((f = freopen("newstdout", "w+", stdout)) == NULL) {

 printf("Can't create new stdout file.\n");

 exit(1);

 }

 printf("If all goes well, this text should be in\n");

 printf("a text file, not on the screen via stdout.\n");

 fclose(f);

 return 0;

}

setbuf()
Changes a stream's buffer.

#include <stdio.h>

void setbuf(FILE *stream, char *buf);

stream

A pointer to a file stream.

buf

A pointer to a new buffer.

Remarks

The setbuf() function allows the programmer to set the buffer for stream. It should
be called after stream is opened, but before it is read from or written to.

The function makes the array pointed to by buf the buffer used by stream. The buf
argument can either be a null pointer or point to an array of size BUFSIZ defined in
stdio.h.

If buf is a null pointer, the stream becomes unbuffered.

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

stdio.h
 File Access

CodeWarrior Implementation of the C Standard Library 185

Example of setbuf() usage.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *f;

 char name[80];

 // Get a file name from the user

 printf("Enter the name of the file to write to.\n");

 gets(name);

 // Create a new file for output

 if ((f = fopen(name, "w")) == NULL) {

 printf("Can't open file %s.\n", name);

 exit(1);

 }

 setbuf(f, NULL); // turn off buffering

 // This text is sent directly to the file without

 // buffering

 fprintf(f, "Buffering is now off\n");

 fprintf(f, "for this file.\n");

 // close the file

 fclose(f);

 return 0;

}

Output:

Enter the name of the file to write to.

bufftest

setvbuf()

Change the buffering scheme for a stream.

#include <stdio.h>

int setvbuf(FILE *stream, char *buf, int mode, size_t size);

stream

A pointer to a FILE stream.

buf

A buffer for input and output.

stdio.h
File Access

186 CodeWarrior Implementation of the C Standard Library

mode

A buffering mode.

size

The size of the buffer.

Remarks

The setvbuf() function allows the manipulation of the buffering scheme as well as
the size of the buffer that the stream uses. Call this function after opening the stream but
before reading from or writing to it.

The buf argument is a pointer to a character array. The size argument specifies the size
of the character array pointed to by buf. The most efficient buffer size is a multiple of
BUFSIZ, defined in stdio.h.

If buf is a null pointer, then the library creates its own buffer of size bytes.

The mode argument specifies the buffering scheme to use:

• IOFBF: flush the buffer when it is full.

• IOLBF: flush the buffer when reading or writing an end-of-line character or when
the buffer is full.

• IONBF: write or read directly to the file with no buffering.

This function returns zero if it is successful and returns a nonzero value if it fails.

This facility may not be available on some configurations of the MSL.

Example of setvbuf() usage.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *f;

 char name[80];

 printf("Enter the name of the file to write to.\n");

 fgets(name, 80, stdin);

 if ((f = fopen(name, "w")) == NULL) {

 printf("Can't open file %s.\n", name);

 exit(1);

 }

stdio.h
 Formatted Input/Output

CodeWarrior Implementation of the C Standard Library 187

 setvbuf(f, NULL, _IOLBF, BUFSIZ);

 fprintf(f, "This file is now\n");

 fprintf(f, "line buffered.\n");

 fclose(f);

 return 0;

}

Formatted Input/Output
Facilities for reading and writing textual representations of binary data.

Reading Formatted Input

Describes conversion specifiers used for reading text.

Functions that read formatted input, fscanf() and its related functions, accept an
argument that specifies the format of the input text that the function should expect. This
argument is a pointer to a character string containing normal text, whitespace (space,
tab, newline characters), and conversion specifications. The normal text specifies literal
characters that must be matched in the input stream. A whitespace character tells the
function to skip whitespace characters until a non-whitespace character is encountered. A
conversion specification tells the function which characters in the input stream should be
converted to binary values and stored.

The conversion specifications must have matching arguments in the order they appear
in the formatting argument. The arguments matching the conversion specification
arguments must be pointers to objects of the relevant types.

A conversion specification describes the format of a character representation and how
it should be converted to a binary value. A conversion specification contains these
characters, in order from left to right:

• a percent sign (%)

• optional maximum field width specification or assignment suppression

• optional argument size or type specification

• the type of conversion to perform

A conversion specification's characters must not be separated by white space. Doubling
the percent sign (%%) results in the output of a single %.

After the initial percent sign (%), a conversion specification contains an optional
maximum width, specified in decimal digits. This width specifies the maximum number
of characters to read for the conversion.

stdio.h
Formatted Input/Output

188 CodeWarrior Implementation of the C Standard Library

Instead of specifying width, use the optional assignment suppression character (*) to
read an item without assigniing it to an argument. A conversion specification with an
assignment suppression must not have a corresponding argument.

The next part of a conversion specification is optional. It specifies additional type or size
information about the argument in which the conversion's result will be stored. Table
20.2 lists these optional items.

The last character of a conversion specification denotes the type of conversion to perform
and the type of the argument in which the value of the conversion will be stored. Table
20.3 lists the types of conversion.

The conversion specifier %[begins a scanset. A scanset specifies which characters to
accept. A scanset ends with a] character. The characters read from input that match
a scanset are stored in the character string pointed to by the scanset's corresponding
argument.

Input stream characters are read until a character is found that is not in the scanset. If the
first character of scanset is a circumflex (^) then input stream characters are read until a
character from the scanset is read. A nul character is appended to the end of the stored
character array.

For example, the conversion specifier %[abcdef] specifies that the scanset is abcdef
and any of the characters “a” through “f” are to be accepted and stored. When a
character outside this set is encountered, the function will stop reading and storing the
scanset conversion and continue with the rest of the conversion specifiers.

For example, assuming the declaration:

char str[20];

the execution of

sscanf("acdfxbe", "%[abcdef]", str);

will store acdf in str. The text “xbe” will not be stored because the “x” is not in the
scanset.

If the first character of the scanset is the circumflex, ^, then the following characters
define an exclusionary scanset. This kind of scanset specifies that any character outside a
scanset will be accepted.

For example, the statement

sscanf("stuvawxyz", "%[^abcdef]", str);

will store “stuv” in str. If you want ^ to be part of the scanset, you cannot list it
as the first character because it will be interpreted as introducing the members of an
exclusionary scanset. For example, %[^abc] defines the exclusionary scanset “abc”
but %[a^bc] defines the scanset “abc^” . %[^a^bc] and %[^^abc] both define a scanset
equivalent to “abc^” .

If you want “]” to be in the scanset, it must be the first character of the scanset,
immediately following the %[or, to be in an exclusionary scanset, immediately after

stdio.h
 Formatted Input/Output

CodeWarrior Implementation of the C Standard Library 189

the ^. For example, %[]abc] specifies the scanset “]abc” and %[^]abc] defines
the exclusionary scanset “^]abc” . In any other position, the] will be interpreted as
terminating the scanset. For example, %[ab]cd] specifies a scanset “ab” followed by
the character c and d.
MSL adds an extension to the scanset interpretation rules specified in
the ISO/IEC standards. MSL interprets such a use of - in a scanlist as
defining a range of characters. For example, the convesion specification
%[a-z]

is the same as the
%[abcdefghijklmnopqrstuvwxyz]

To include the - character in the scanset, it must be either listed first (possibly after an
initial ^) or last. Examples: %[-abc], %[abc-], %[^-abc], or %[^abc-]. Note also that it is
assumed that the numeric value of the character before the - is less than that of the one
after. If this relationship does not hold the result is undefined.
Table 20.2: Specifying additional size or type information about an
argument

These characters... specify the size or type
of the argument this way.

h The following d, i, o, u, x, X or n conver-
sion will be stored in an object of type
short intor unsigned short int.

hh The following d, i, o, u, x, X or n conver-
sion will be stored in an object of type
charor unsigned char.

l When used with integer conversion speci-
fier, the l flag indicates that the argument
points to an object of type long intor
unsigned long int. When used with
floating point conversion specifier, the l
flag that the argument points to an object
of type double. When used with a c or s
conversion specifier, the l flag indicates
that the corresponding argument is a
pointer to an object of type wchar_t.

ll The following integer conversion specifier
has an argument that points to an object
of type long longor unsigned long
long.

stdio.h
Formatted Input/Output

190 CodeWarrior Implementation of the C Standard Library

These characters... specify the size or type
of the argument this way.

L The following floating-point conversion
specifier has an argument that points to
an object of type long double.

v The argument points to an object

containing an AltiVec™vector of
type bool char, signed char, or
unsigned charwhen followed by c, d,
i, o, u, x, or X. A vector of type float,
when followed by f.

vhor hv The argument points to an object
containing an AltiVecvector of type
short, short bool, bool short, or
pixelwhen followed by c, d, i, o, u, x, or
X.

vlor lv The argument points to an object
containing an AltiVecvector of type int,
unsigned in, or bool intwhen
followed by c, d, i, o, u, x, or X.

Table 20.3: Specifying the type of conversion

These characters... convert its argument from
this character representation.

c A character. Whitespace characters are
not skipped.

d A signed decimal number.

i A signed decimal, octal, or hexadecimal
number. The character representation
can be prefixed by a plus (+) or minus
(-) sign. Octal numbers begin with the
zero (0) character. Hexadecimal numbers
begin with 0x or 0X.

e, E, f, F, g, or G A floating point number in scientific nota-
tion.

stdio.h
 Formatted Input/Output

CodeWarrior Implementation of the C Standard Library 191

These characters... convert its argument from
this character representation.

n Stores the number of characters read
by the function so far. Its corresponding
argument must be a pointer to an int.

o An unsigned octal.

p A memory address. The input text must
be the same as the format used by the
poutput format.

s A character string. The function termi-
nates the string with a nul-character
when it encounters a whitespace char-
acter or the maximum number of charac-
ters has been read.

#s A character string. The corresponding
argument is a pointer to Pascal character
string. A Pascal string is a length byte
followed by the number of characters
specified by the length byte. This conver-
sion type is an extension to the ISO/IEC
standards.

u An unsigned decimal.

xor X An unsigned hexadecimal.

[scanset] A scanset specification.

Formatting Text for Output

Describes conversion specifiers used for formatting text for output.

The printf() function and its related functions accept a formatting argument. This
argument specifies how to format the arguments that follow it. The formatting argument
points to a character string containing normal text and conversion specifications.
The formatting functions send normal text directly to output. The functions replace
conversion specifications with formatted text based on matching arguments passed to the
functions. Conversion specifications must have matching arguments in the same order in
which they occur in the formatting string.

stdio.h
Formatted Input/Output

192 CodeWarrior Implementation of the C Standard Library

A conversion specification describes type of character representation its associated
argument is to be converted to. A conversion specification contains these characters, in
order from left to right:

• a percent sign (%)

• optional flags to modify the argument's format

• optional minimum field width specification

• optional precision specification

• optional argument size or type specification

• the type of conversion to perform

A conversion specification's characters must not be separated by white space. Doubling
the percent sign (%%) results in the output of a single %.

After the initial percent sign, optional flags modify the formatting of the argument; the
argument can be left- or right-justified, and numerical values can be padded with zeroes
or output in alternate forms. More than one flag character may appear in a conversion
specification. Table 20.4 describes the flag characters.

The optional minimum width is a decimal digit string. If the converted value has more
characters that the minimum width, it is expanded as required. If the converted value has
fewer characters than the minimum width, it is, by default, right justified (padded on the
left). If the - flag character is used, the converted value is left justified (padded on the
right). The maximum value that MSL allows is 509.

The optional precision width is a period character (.) followed by decimal digit string.
The default precision is 6 digits after the decimal point. For floating point values, the
precision width specifies the number of digits to print after the decimal point. For
integer values, the precision width works the same as, and cancels, the minimum width
specification. When used with a character array, the precision width indicates the
maximum width of the output.

A minimum width and a precision width can also be specified with an asterisk (*)
instead of a decimal digit string. An asterisk indicates that there is a matching argument,
preceding the conversion argument, specifying the minimum width or precision width.

An optional conversion modifier specifies additional information about the corresponding
argument's type or size. These characters appear before the conversion specifier. Table
20.5 describes these conversion modifiers.

The terminating characters, the conversion type, specify the conversion to apply to the
matching argument. Table 20.6 describes the conversion types.

stdio.h
 Formatted Input/Output

CodeWarrior Implementation of the C Standard Library 193

Table 20.4: Flags for modifying conversion specifiers

This character... modifies the argument's
formatting this way.

- The conversion will be left-justified. By
default, arguments are right-justified.

+ The conversion, if numeric, will be
prefixed with a sign (+ or -). By default,
only negative numeric values are
prefixed with a minus sign (-).

space If the first character of the conversion is
not a sign character, it is prefixed with a
space. Because the plus sign flag char-
acter (+) always prefixes a numeric value
with a sign, the space flag has no effect
when combined with the plus (+) flag.

For c, d, i, and u conversion types, this
flag has no effect. For s conversion
types, the matching argument is consid-
ered to be a pointer to a Pascal string
and is output as a character string. For
o conversion types, this flag prefixes the
conversion with a 0. For x conversion
types, the conversion is prefixed with a
0x. For e, E, f, g, and G conversions, this
flag forces a decimal point in the output.
For g and G conversions, trailing zeroes
after the decimal point are not removed.

0 This flag pads zeroes on the left of the
conversion. It applies to d, i, o, u, x, X,
e, E, f, g, and G conversion types. The
leading zeroes follow sign and base indi-
cation characters, replacing what would
normally be space characters. The minus
sign flag character overrides the 0 flag
character. The 0 flag is ignored when
used with a precision width for d, i , o, u,
x, and X conversion types.

@ AltiVec: This flag indicates a pointer to
a string specified by an argument. This

stdio.h
Formatted Input/Output

194 CodeWarrior Implementation of the C Standard Library

This character... modifies the argument's
formatting this way.

string will be used as a separator for
vector elements.

Table 20.5: Specifying the size or type of an argument

These characters... specify the size or type
of the argument this way.

h The h flag followed by d, i, o, u, x, or
X conversion specifier indicates that
the corresponding argument is a short
intor unsigned short int.

l The lower case l followed by d, i, o, u, x,
or X conversion specifier indicates the
argument is a long intor unsigned
long int. The lower case L followed
by a c conversion specifier, indicates that
the argument is of type wint_t. The
lower case L followed by an s conversion
specifier, indicates that the argument is
of type wchar_t.

ll The double l followed by d, i, o, u, x, or
X conversion specifier indicates the argu-
ment is a long longor unsigned long
long.

L The upper case L followed by e, E, f,
g, or G conversion specifier indicates a
long double.

v An AltiVecvector of type bool char,
signed char, or unsigned char-
when followed by c, d, i, o, u, x, or X. A
vector of type float, when followed by f.

vhor hv An AltiVecvector of type short, short
bool, bool short, or pixelwhen
followed by c, d, i, o, u, x, or X.

stdio.h
 Formatted Input/Output

CodeWarrior Implementation of the C Standard Library 195

These characters... specify the size or type
of the argument this way.

vlor lv An AltiVecvector of type int, unsigned
in, or bool intwhen followed by c, d, i,
o, u, x, or X.

Table 20.6: Specifying the type of conversion

These characters... convert its argument to this
character representation.

c A character.

dor i A signed decimal number.

eor E The floating point argument (of type
floator double)is output in scientific
notation. This specifier places one digit
before the decimal point and appends a
representation of a base-10 exponent. If
the precision width is 0, no decimal point
is output. The exponent value is at least
2 digits long. The e conversion type uses
lowercase e as the exponent prefix. The
E conversion type uses uppercase E as
the exponent prefix.

for F The corresponding floating point argu-
ment (of type floator double)is printed
in decimal notation. If the precision width
is 0, the decimal point is not printed.
For the f conversion specifier, an argu-
ment of type doublethat contains infinity
produces inf. A doubleargument repre-
senting the not-a-number value produces
nan. The F conversion specifier uses
uppercase letters, producing INFand
NANinstead.

gor G The g conversion type uses the f or e
conversion types and the G conversion
type uses the F or E conversion types.
Conversion type e (or E) is used only if
the converted exponent is less than -4

stdio.h
Formatted Input/Output

196 CodeWarrior Implementation of the C Standard Library

These characters... convert its argument to this
character representation.

or greater than the precision width. The
precision width indicates the number
of significant digits. No decimal point is
output if there are no digits following it.

n Stores the number of items output by the
function so far. Its corresponding argu-
ment must be a pointer to an int.

o An unsigned octal.

p A pointer. The argument is output using
the X conversion type format.

s A character string. The corresponding
argument must be a pointer to a nul-termi-
nated character string. The nul character
is not ouptut.

#s A character string. The corresponding
argument is a pointer to Pascal character
string. A Pascal string is a length byte
followed by the number of characters
specified by the length byte. This conver-
sion type is an extension to the ISO/IEC
standards.

u An unsigned decimal.

xor X An unsigned hexadecimal. The lower-
case x uses lowercase letters (abcdef)
while uppercase X uses uppercase
letters (ABCDEF).

fprintf()

Formats then writes text to a stream.

#include <stdio.h>

int fprintf(FILE *stream,

 const char *format, ...);

stdio.h
 Formatted Input/Output

CodeWarrior Implementation of the C Standard Library 197

stream

A pointer to a file stream.

format

A pointer to a character string containing format information.

Remarks

The fprintf() function writes formatted text to stream and advances the file
position indicator. Its operation is the same as printf() with the addition of the
stream argument.

If the file is opened in update mode (+) the file cannot be written to and then read
from unless the write operation and read operation are separated by an operation that
flushes the stream's buffer. To flush a stream's buffer, use fflush() or one of the file
positioning operations (fseek(), fsetpos(), or rewind()).

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

The function returns the number of arguments written or a negative number if an error
occurs.

Example of fprintf() usage

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *f;

 static char filename[] = "myfoo";

 int a = 56;

 char c = 'M';

 double x = 483.582;

 // create a new file for output

 if ((f = fopen(filename, "w")) == NULL) {

 printf("Can't open %s.\n", filename);

 exit(1);

 }

 // output formatted text to the file

 fprintf(f, "%10s %4.4f %-10d\n%10c", filename, x, a, c);

 // close the file

 fclose(f);

stdio.h
Formatted Input/Output

198 CodeWarrior Implementation of the C Standard Library

 return 0;

}

Output to file foo:

myfoo 483.5820 56

 M

fscanf()

Read formatted text from a stream.

#include <stdio.h>

int fscanf(FILE *stream, const char *format, ...);

stream

A pointer to a file stream.

format

A pointer to a character string containing format information.

Remarks

The fscanf() function reads programmer-defined, formatted text from stream. The
function operates identically to the scanf() function with the addition of the stream
argument indicating the stream to read from.

If the file is opened in update mode (+) a file cannot be read from and then written to
without repositioning the file using one of the file positioning functions (fseek(),
fsetpos(), or rewind()) unless the last read or write reached the end-of-file.

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

Example of fscanf() usage

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *f;

 int i;

 double x;

 char c;

 // create a new file for output and input

stdio.h
 Formatted Input/Output

CodeWarrior Implementation of the C Standard Library 199

 if ((f = fopen("foobar", "w+")) == NULL) {

 printf("Can't create new file.\n");

 exit(1);

 }

 // output formatted text to the file

 fprintf(f, "%d\n%f\n%c\n", 45, 983.3923, 'M');

 // go to the beginning of the file

 rewind(f);

 // read from the stream using fscanf()

 fscanf(f, "%d %lf %c", &i, &x, &c);

 // close the file

 fclose(f);

 printf("The integer read is %d.\n", i);

 printf("The floating point value is %f.\n", x);

 printf("The character is %c.\n", c);

 return 0;

}

Output:

The integer read is 45.

The floating point value is 983.392300.

The character is M.

printf()
Output formatted text.

#include <stdio.h>

int printf(const char *format, ...);

format

A pointer to a character string containing format information.

Remarks

The printf() function outputs formatted text. The function takes one or more
arguments, the first being format, a character array pointer. The optional arguments
following format are items (integers, characters, floating point values, etc.) that are to be
converted to character strings and inserted into the output of format at specified points.

stdio.h
Formatted Input/Output

200 CodeWarrior Implementation of the C Standard Library

The printf() function sends its output to stdout.

printf() returns the number of arguments that were successfully output or returns a
negative value if it fails.

Example of printf() usage.

#include <stdio.h>

int main(void)

{

 int i = 25;

 char c = 'M';

 short int d = 'm';

 static char s[] = "woodworking!";

 static char pas[] = "\pwoodworking again!";

 float f = 49.95;

 double x = 1038.11005;

 int count;

 printf("%s printf() demonstration:\n%n", s, &count);

 printf("The last line contained %d characters\n",count);

 printf("Pascal string output: %#20s\n", pas);

 printf("%-4d %x %06x %-5o\n", i, i, i, i);

 printf("%*d\n", 5, i);

 printf("%4c %4u %4.10d\n", c, c, c);

 printf("%4c %4hu %3.10hd\n", d, d, d);

 printf("$%5.2f\n", f);

 printf("%5.2f\n%6.3f\n%7.4f\n", x, x, x);

 printf("%*.*f\n", 8, 5, x);

 return 0;

}

The output is:

woodworking! printf() demonstration:

The last line contained 37 characters

Pascal string output: woodworking again!

25 19 000019 31

 25

 M 77 0000000077

 m 109 0000000109

$49.95

1038.11

stdio.h
 Formatted Input/Output

CodeWarrior Implementation of the C Standard Library 201

1038.110

1038.1101

1038.11005

Example of AltiVec Printf Extensions

#include <stdio.h>

int main(void)

{

 vector signed char s =

 (vector signed char)(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16);

 vector unsigned short us16 =

 (vector unsigned short)('a','b','c','d','e','f','g','h');

 vector signed int sv32 =

 (vector signed int)(100, 2000, 30000, 4);

 vector signed int vs32 =

 (vector signed int)(0, -1, 2, 3);

 vector float flt32 =

 (vector float)(1.1, 2.22, 3.3, 4.444);

 printf("s = %vd\n", s);

 printf("s = %,vd\n", s);

 printf("vector=%@vd\n", "\nvector=", s);

 // c specifier so no space is added.

 printf("us16 = %vhc\n", us16);

 printf("sv32 = %,5lvd\n", sv32);

 printf("vs32 = 0x%@.8lvX\n", ", 0x", vs32);

 printf("flt32 = %,5.2vf\n", flt32);

 return 0;

}

The output is:

s = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

s = 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

vector=1

vector=2

vector=3

vector=4

vector=5

vector=6

stdio.h
Formatted Input/Output

202 CodeWarrior Implementation of the C Standard Library

vector=7

vector=8

vector=9

vector=10

vector=11

vector=12

vector=13

vector=14

vector=15

vector=16

us16 = abcdefgh

sv32 = 100, 2000,30000, 4

vs32 = 0x00000000, 0xFFFFFFFF, 0x00000002, 0x00000003

flt32 = 1.10, 2.22, 3.30, 4.44

scanf()
Converts formatted text from stdin to binary data.

#include <stdio.h>

int scanf(const char *format, ...);

format

The format string.

Remarks

The scanf() function reads text and converts the text read to programmer specified
types.

scanf() returns the number of items successfully read and returns EOF if a conversion
type does not match its argument or and end-of-file is reached.

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

Example of scanf() usage.

#include <stdio.h>

int main(void)

{

 int i;

 unsigned int j;

 char c;

 char s[40];

stdio.h
 Formatted Input/Output

CodeWarrior Implementation of the C Standard Library 203

 double x;

 printf("Enter an integer surrounded by ! marks\n");

 scanf("!%d!", &i);

 printf("Enter three integers\n");

 printf("in hexadecimal, octal, or decimal.\n");

 // Note that 3 integers are read, but only the last two

 // are assigned to i and j.

 scanf("%*i %i %ui", &i, &j);

 printf("Enter a character and a character string.\n");

 scanf("%c %10s", &c, s);

 printf("Enter a floating point value.\n");

 scanf("%lf", &x);

 return 0;

}

Output:

Enter an integer surrounded by ! marks

!94!

Enter three integers

in hexadecimal, octal, or decimal.

1A 6 24

Enter a character and a character string.

Enter a floating point value.

A

Sounds like 'works'!

3.4

Example of AltiVec Scanf Extensions

#include <stdio.h>

int main(void)

{

 vector signed char v8, vs8;

 vector unsigned short v16;

 vector signed long v32;

 vector float vf32;

 sscanf("1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16", "%vd", &v8);

 sscanf("1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16", "%,vd", &vs8);

 sscanf("abcdefgh", "%vhc", &v16);

 sscanf("1, 4, 300, 400", "%,3lvd", &v32);

 sscanf("1.10, 2.22, 3.333, 4.4444", "%,5vf", &vf32);

stdio.h
Formatted Input/Output

204 CodeWarrior Implementation of the C Standard Library

 return 0;

}

The Result is:

v8 = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;

vs8 = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;

v16 = 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'

v32 = 1, 4, 300, 400

vf32 = 1.1000, 2.2200, 3.3330, 4.4444

sscanf()
Converts formatted text in a character string to binary data.

#include <stdio.h>

int sscanf(char *s, const char *format, ...);

s

A pointer to the character string from which to convert text to
binary data.

format

The format string.

Remarks

The sscanf() operates identically to scanf() but reads its input from the character
array pointed to by s instead of stdin. The character array pointed to s must be null
terminated.

scanf() returns the number of items successfully read and converted and returns
EOF if it reaches the end of the string or a conversion specification does not match its
argument.

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

Example of sscanf() usage.

#include <stdio.h>

int main(void)

{

 char in[] = "figs cat pear 394 road 16!";

 char s1[20], s2[20], s3[20];

 int i;

 // get the words figs, cat, road,

stdio.h
 Formatted Input/Output

CodeWarrior Implementation of the C Standard Library 205

 // and the integer 16

 // from in and store them in s1, s2, s3, and i,

 // respectively

 sscanf(in, "%s %s pear 394 %s %d!", s1, s2, s3, &i);

 printf("%s %s %s %d\n", s1, s2, s3, i);

 return 0;

}

Output:

figs cat road 16

snprintf()
Formats a character string array.

#include <stdio.h>

int snprintf(char * s, size_t n, const char * format, ...);

s

A pointer to a character string in which to store the formatted
text.

n

Maximum number of characters to store in s.

format

A pointer to a format string.

Remarks

The snprintf() function works identically to fprintf() except that the output is
written into the array s instead of to a stream. If n is zero nothing is written; otherwise,
any characters beyond the n-1st are discarded rather than being written to the array and
a null character is appended at the end.

snprintf() returns the number of characters that would have been assigned to s,
had n been sufficiently large, not including the nul character or a negative value if an
encoding error occurred. Thus, the nul-terminated output will have been completely
written if and only if the returned value is nonnegative and less than n.

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

snprintf() example

#include <stdio.h>

int main()

stdio.h
Formatted Input/Output

206 CodeWarrior Implementation of the C Standard Library

{

 int i = 1;

 static char s[] = "Programmer";

 char dest[50];

 int retval;

 retval = snprintf(dest, 5, "%s is number %d!", s, i);

 printf("n too small, dest = |%s|, retval = %i\n", dest, retval);

 retval = snprintf(dest, retval, "%s is number %d!", s, i);

 printf("n right size, dest = |%s|, retval = %i\n", dest,

 retval);

 return 0;

}

Output:

n too small, dest = |Prog|, retval = 23

n right size, dest = |Programmer is number 1|, retval = 23

sprintf()
Formats a character string array.

#include <stdio.h>

int sprintf(char *s, const char *format, ...);

s

A pointer to a character string to write to.

format

A pointer to a format string.

Remarks

The sprintf() function works identically to printf() with the addition of the s
parameter. Output is stored in the character array pointed to by s instead of being sent to
stdout. The function terminates the output character string with a null character.

sprintf() returns the number of characters assigned to s, not including the nul
character.

Be careful when using this function. It can be a source for serious buffer overflow
bugs. Unlike snprintf(), the programmer cannot specify a limit on the number of
characters to store in s.

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

Example of sprintf() usage

stdio.h
 Formatted Input/Output

CodeWarrior Implementation of the C Standard Library 207

#include <stdio.h>

int main(void)

{

 int i = 1;

 char s[] = "woodworking";

 char dest[50];

 sprintf(dest, "%s is number %d!", s, i);

 puts(dest);

 return 0;

}

Output:

woodworking is number 1!

vfprintf()
Writes formatted output to a stream.

#include <stdarg.h>

#include <stdio.h>

int vfprintf(FILE *stream, const char *format, va_list arg);

stream

A pointer to a file stream.

format

A format string.

arg

An argument list.

Remarks

The vfprintf() function works identically to the fprintf() function. Instead of
the variable list of arguments that can be passed to fprintf(), vfprintf() accepts
its arguments in the array arg of type va_list which must have been initialized by
the va_start() macro from the stdarg.h header file. The vfprintf() does not
invoke the va_end macro.

vfprintf() returns the number of characters written or EOF if it failed.

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

Example of vfprintf() usage.

#include <stdio.h>

stdio.h
Formatted Input/Output

208 CodeWarrior Implementation of the C Standard Library

#include <stdlib.h>

#include <stdarg.h>

int fpr(FILE *, char *, ...);

int main(void)

{

 FILE *f;

 static char name[] = "foo";

 int a = 56, result;

 double x = 483.582;

 // create a new file for output

 if ((f = fopen(name, "w")) == NULL) {

 printf("Can't open %s.\n", name);

 exit(1);

 }

 // format and output a variable number of arguments

 // to the file

 result = fpr(f, "%10s %4.4f %-10d\n", name, x, a);

 // close the file

 fclose(f);

 return 0;

}

// fpr() formats and outputs a variable

// number of arguments to a stream using

// the vfprintf() function

int fpr(FILE *stream, char *format, ...)

{

 va_list args;

 int retval;

 va_start(args, format); // prepare the arguments

 retval = vfprintf(stream, format, args);

 // output them

 va_end(args); // clean the stack

 return retval;

}

Output to file foo:

foo 483.5820 56

vfscanf()
Converts formatted text from a stream.

stdio.h
 Formatted Input/Output

CodeWarrior Implementation of the C Standard Library 209

#include <stdarg.h>

#include <stdio.h>

int vfscanf(FILE *stream, const char *format, va_list arg);

stream

A pointer to a file stream.

format

A format string.

arg

An argument list.

Remarks

The vfscantf() function works identically to the fscanf() function. Instead of
the variable list of arguments that can be passed to fscanf(), vfscanf() accepts
its arguments in the array arg of type va_list, which must have been initialized by
the va_start() macro from the stdarg.h header file. The vfscanf() does not
invoke the va_end macro.

This facility may have limited capability on configurations of the MSL that run on
platforms that do not have console input/output or a file system.

vfscanf() returns the number of items assigned, which can be fewer than provided for
in the case of an early matching failure. If an input failure occurs before any conversion,
vfscanf() returns EOF.

Example Of vfscanf() Usage

#include <stdio.h>

#include <stdlib.h>

#include <stdarg.h>

int fsc(FILE *, char *, ...);

int main(void)

{

 FILE *f;

 int i;

 double x;

 char c;

 int numassigned;

 // create a new file for output and input

 if ((f = fopen("foobar", "w+")) == NULL) {

 printf("Can't create new file.\n");

 exit(1);

 }

 // output formatted text to the file

stdio.h
Formatted Input/Output

210 CodeWarrior Implementation of the C Standard Library

 fprintf(f, "%d\n%f\n%c\n", 45, 983.3923, 'M');

 // go to the beginning of the file

 rewind(f);

 // read from the stream using fscanf()

 numassigned = fsc(f, "%d %lf %c", &i, &x, &c);

 // close the file

 fclose(f);

 printf("The number of asssignments is %d.\n", numassigned);

 printf("The integer read is %d.\n", i);

 printf("The floating point value is %f.\n", x);

 printf("The character is %c.\n", c);

 return 0;

}

// fsc() scans an input stream and inputs

// a variable number of arguments using

// the vfscanf() function

int fsc(FILE *stream, char *format, ...)

{

 va_list args;

 int retval;

 va_start(args, format); // prepare the arguments

 retval = vfscanf(stream, format, args);

 va_end(args); // clean the stack

 return retval;

}

Output:

The number of asssignments is 3.

The integer read is 45.

The floating point value is 983.392300.

The character is M.

vprintf()
Writes formatted output to stdout.

#include <stdio.h>

int vprintf(const char *format, va_list arg);

format

A pointer to a format string.

arg

stdio.h
 Formatted Input/Output

CodeWarrior Implementation of the C Standard Library 211

An argument list.

Remarks

The vprintf() function works identically to the printf() function. Instead of the
variable list of arguments that can be passed to printf(), vprintf() accepts its
arguments in the array of type va_list processed by the va_start() macro from
the stdarg.h header file.

vprintf() returns the number of characters written or a negative value if it failed.

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

Example of vprintf() usage.

#include <stdio.h>

#include <stdarg.h>

int pr(char *, ...);

int main(void)

{

 int a = 56;

 double f = 483.582;

 static char s[] = "Valerie";

 // output a variable number of arguments to stdout

 pr("%15s %4.4f %-10d*\n", s, f, a);

 return 0;

}

// pr() formats and outputs a variable number of arguments

// to stdout using the vprintf() function

int pr(char *format, ...)

{

 va_list args;

 int retval;

 va_start(args, format); // prepare the arguments

 retval = vprintf(format, args);

 va_end(args); // clean the stack

 return retval;

}

Output:

Valerie 483.5820 56 *

stdio.h
Formatted Input/Output

212 CodeWarrior Implementation of the C Standard Library

vscanf()
Converts formatted text read from stdin into binary data.

#include <stdio.h>

int vscanf(const char *format, va_list arg);

format

A pointer to a format string.

arg

An argument list.

Remarks

The scanf() function works identically to the scanf() function. Instead of the
variable list of arguments that can be passed to scanf(), vscanf() accepts its
arguments in an array of type va_list processed by the va_start() macro from the
stdarg.h header file.

vscanf() returns the number items converted successfully or EOF if it failed before it
could process the first conversion.

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

vsnprintf()
Formats a character string.

#include <stdarg.h>

#include <stdio.h>

int vsnprintf(char * s, size_t n,

 const char * format, va_list arg);

s

A pointer to a character string in which to store the formatted
text.

n

Maximum number of characters to store in s.

format

A pointer to a format string.

arg

stdio.h
 Formatted Input/Output

CodeWarrior Implementation of the C Standard Library 213

An argument list.

Remarks

The vsnprintf() function works identically to snprintf(), except that the
variable list of arguments that can be passed to snprintf() is replaced by an array
arg of type va_list, which must have been initialized by the va_start() macro
from the stdarg.h header file. The vsnprintf() d oes not invoke the va_end
macro. If n is zero nothing is written; otherwise, any characters beyond the n-1st are
discarded rather than being written to the array and a null character is appended at the
end.

Vsnprintf() returns the number of characters that would have been assigned to s,
had n been sufficiently large, not including the null character or a negative value if an
encoding error occurred. Thus, the null-terminated output will have been completely
written if and only if the returned value is nonnegative and less than n.

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

Example Of Vsnprintf() Usage.

#include <stdarg.h>

#include <stdio.h>

int sp(char *, size_t, char *, ...);

int main()

{

 int i = 1;

 static char s[] = "Isabelle";

 char dest[50];

 int retval;

 retval = sp(dest, 5, "%s is number %d!", s, i);

 printf("n too small, dest = |%s|, retval = %i\n", dest, retval);

 retval = sp(dest, retval, "%s is number %d!", s, i);

 printf("n right size, dest = |%s|, retval = %i\n", dest,

 retval);

 return 0;

}

// sp() formats and outputs a variable number of arguments

// to a character string using the vsnprintf() function

int sp(char * s, size_t n, char *format,...)

{

 va_list args;

 int retval;

stdio.h
Formatted Input/Output

214 CodeWarrior Implementation of the C Standard Library

 va_start(args, format); // prepare the arguments

 retval = vsnprintf(s, n, format, args);

 va_end(args); // clean the stack

 return retval;

}

Output:

n too small, dest = |Isab|, retval = 21

n right size, dest = |Isabelle is number 1|, retval = 21

vsprintf()
Writes formatted output to a string.

#include <stdio.h>

int vsprintf(char *s, const char *format, va_list arg);

s

A pointer to a character string in which to store the formatted
text.

format

A pointer to a format string.

arg

An argument list.

Remarks

The vsprintf() function works identically to the sprintf() function. Instead of
the variable list of arguments that can be passed to sprintf(), vsprintf() accepts
its arguments in the array of type va_list processed by the va_start() macro from
the stdarg.h header file.

Be careful when using this function. It can be a source for serious buffer overflow
bugs. Unlike vsnprintf(), the programmer cannot specify a limit on the number of
characters to store in s.

vsprintf() returns the number of characters written to s not counting the terminating
null character. Otherwise, EOF on failure.

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

Example of vsprintf() usage.

#include <stdio.h>

#include <stdarg.h>

stdio.h
 Formatted Input/Output

CodeWarrior Implementation of the C Standard Library 215

int spr(char *, char *, ...);

int main(void)

{

 int a = 56;

 double x = 1.003;

 static char name[] = "Charlie";

 char s[50];

 // format and send a variable number of arguments

 // to character array s

 spr(s, "%10s\n %f\n %-10d\n", name, x, a);

 puts(s);

 return 0;

}

// spr() formats and sends a variable number of

// arguments to a character array using the sprintf()

// function

int spr(char *s, char *format, ...)

{

 va_list args;

 int retval;

 va_start(args, format); // prepare the arguments

 retval = vsprintf(s, format, args);

 va_end(args); // clean the stack

 return retval;

}

Output:

Charlie

 1.003000

 56

vsscanf()
Reads formatted text from a character string.

 #include <stdarg.h>

#include <stdio.h>

int vsscanf(const char * s,

 const char * format, va_list arg);

s

stdio.h
Formatted Input/Output

216 CodeWarrior Implementation of the C Standard Library

A pointer to a character string from which to read formatted
text.

format

A format string.

arg

An argument list.

Remarks

The vsscantf() function works identically to the sscanf() function. Instead of the
variable list of arguments that can be passed to sscanf(), vsscanf() accepts its
arguments in the array arg of type va_list, w hich must have been initialized by
the va_start() macro from the stdarg.h h eader file. The vfscanf() does not
invoke the va_end macro.

vfscanf() returns the number of items assigned, which can be fewer than provided for in
the case of an early matching failure. If an input failure occurs before any conversion,
vfscanf() returns EOF.

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

Example Of Vsscanf() Usage

#include <stdio.h>

#include <stdarg.h>

int ssc(char *, char *, ...);

int main(void)

{

 static char in[] = "figs cat pear 394 road 16!";

 char s1[20], s2[20], s3[20];

 int i;

 // Get the words figs, cat, road,

 // and the integer 16

 // from in and store them in s1, s2, s3, and i,

 // respectively.

 ssc(in, "%s %s pear 394 %s %d!", s1, s2, s3, &i);

 printf("%s %s %s %d\n", s1, s2, s3, i);

 return 0;

}

// ssc() scans a character string and inputs

// a variable number of arguments using

// the vsscanf() function

int ssc(char * s, char *format, ...)

stdio.h
 Character Input/Output

CodeWarrior Implementation of the C Standard Library 217

{

 va_list args;

 int retval;

 va_start(args, format); // prepare the arguments

 retval = vsscanf(s, format, args);

 va_end(args); // clean the stack

 return retval;

}

Output:

figs cat road 16

Character Input/Output
Facilities for reading and writing character data.

fgetc()

Read the next character from a stream.

#include <stdio.h>

int fgetc(FILE *stream);

stream

A pointer to a file stream.

Remarks

The fgetc() function reads the next character from stream and advances its file
position indicator.

This facility may have limited capability on configurations of the MSL that run on
platforms that do not have console input/output or a file system.

fgetc() returns the character as an unsigned char converted to an int . If the end-of-
file has been reached or a read error is detected, fgetc() returns EOF. The difference
between a read error and end-of-file can be determined by the use of feof().

If the file is opened in update mode (+) a file cannot be read from and then written to
without repositioning the file using one of the file positioning functions (fseek(),
fsetpos(), or rewind()) unless the last read or write reached the end-of-file.

Example of fgetc() usage

#include <stdio.h>

#include <stdlib.h>

stdio.h
Character Input/Output

218 CodeWarrior Implementation of the C Standard Library

int main(void)

{

 FILE *f;

 char filename[80], c;

 // get a filename from the user

 printf("Enter a filename to read.\n");

 gets(filename);

 // open the file for input

 if ((f = fopen(filename, "r")) == NULL) {

 printf("Can't open %s.\n", filename);

 exit(1);

 }

 // read the file one character at a time until

 // end-of-file is reached

 while ((c = fgetc(f)) != EOF)

 putchar(c); // print the character

 // close the file

 fclose(f);

 return 0;

}

Output:

Enter a filename to read.

foofoo

 0 1 2 3 4 5 6 7 8 9

 10 11 12 13 14 15 16 17 18 19

 20 21 22 23 24 25 26 27 28 29

 30 31 32 33 34 35 36 37 38 39

 40 41 42 43 44 45 46 47 48 49

 50 51 52 53 54 55 56 57 58 59

 60 61 62 63 64 65 66 67 68 69

 70 71 72 73 74 75 76 77 78 79

 80 81 82 83 84 85 86 87 88 89

 90 91 92 93 94 95 96 97 98 99

fgets()

Reads a character string from a stream.

#include <stdio.h>

char *fgets(char *s, int n, FILE *stream);

stdio.h
 Character Input/Output

CodeWarrior Implementation of the C Standard Library 219

s

A pointer to an array that will contain the string.

n

The maximum number of characters to read.

stream

A pointer to a file stream.

Remarks

The fgets() function reads characters sequentially from stream beginning at the
current file position, and assembles them into s as a character array. The function stops
reading characters when n - 1 characters have been read. The fgets() function
finishes reading prematurely if it reaches a newline ('\n') character or the end-of-file.

If the file is opened in update mode (+) a file cannot be read from and then written to
without repositioning the file using one of the file positioning functions (fseek(),
fsetpos(), or rewind()) unless the last read or write reached the end-of-file.

Unlike the gets() function, fgets() appends the newline character ('\n') to s. It
also null terminates the characters written into the character array.

This facility may have limited capability on configurations of the MSL that run on
platforms that do not have console input/output or a file system.

fgets() returns a pointer to s if it is successful. If it reaches the end-of-file before
reading any characters, s is untouched and fgets() returns a null pointer (NULL). If an
error occurs fgets() returns a null pointer and the contents of s may be corrupted.

fputc()

Writes a character to a stream.

#include <stdio.h>

int fputc(int c, FILE *stream);

c

The character to write.

stream

A pointer to a file stream.

Remarks

The fputc() function writes the character c to stream and advances stream's file
position indicator. Although the c argument is an unsigned int, it is converted to

stdio.h
Character Input/Output

220 CodeWarrior Implementation of the C Standard Library

a char before being written to stream. fputc() is written as a function, not as a
macro.

If the file is opened in update mode (+) the file cannot be written to and then read
from unless the write operation and read operation are separated by an operation that
flushes the stream's buffer. This can be done with the fflush() function or one of the file
positioning operations (fseek(), fsetpos(), or rewind()).

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

fputc() returns the character written if it is successful, and returns EOF if it fails.

Example of fputc() usage

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *f;

 int letter;

 // create a new file for output

 if ((f = fopen("foofoo", "w")) == NULL) {

 printf("Can't create file.\n");

 exit(1);

 }

 // output the alphabet to the file one letter

 // at a time

 for (letter = 'A'; letter <= 'Z'; letter++)

 fputc(letter, f);

 fclose(f);

 return 0;

}

Output to file foofoo:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

fputs()

Writes a character array to a stream.

#include <stdio.h>

int fputs(const char *s, FILE *stream);

s

stdio.h
 Character Input/Output

CodeWarrior Implementation of the C Standard Library 221

A pointer to the character string to output.

stream

A pointer to a file stream.

Remarks

The fputs() function writes the array pointed to by s to stream and advances the
file position indicator. The function writes all characters in s up to, but not including, the
terminating null character. Unlike puts(), fputs() does not terminate the output of s
with a newline ('\n').

If the file is opened in update mode (+) the file cannot be written to and then read from
unless the write operation and read operation are separated by an operation that flushes
the stream's buffer. This can be done with the fflush() function or one of the file
positioning operations (fseek(), fsetpos(), or rewind()).

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

fputs() returns a zero if successful, and returns a nonzero value when it fails.

Example of fputs() usage

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *f;

 // create a new file for output

 if ((f = fopen("foofoo", "w")) == NULL) {

 printf("Can't create file.\n");

 exit(1);

 }

 // output character strings to the file

 fputs("undo\n", f);

 fputs("copy\n", f);

 fputs("cut\n", f);

 fputs("rickshaw\n", f);

 // close the file

 fclose(f);

 return 0;

}

Output to file foofoo:

undo

stdio.h
Character Input/Output

222 CodeWarrior Implementation of the C Standard Library

copy

cut

rickshaw

getc()
Reads the next character from a stream.

#include <stdio.h>

int getc(FILE *stream);

stream

A pointer to a file stream.

Remarks

The getc() function reads the next character from stream, advances the file position
indicator, and returns the character as an int value. Unlike the fgetc() function,
getc() is implemented as a macro.

If the file is opened in update mode (+) it cannot be read from and then written to without
being repositioned using one of the file positioning functions (fseek(), fsetpos(),
or rewind()) unless the last read or write reached the end-of-file.

getc() returns the next character from the stream or returns EOF if the end-of-file has
been reached or a read error has occurred.

Example of getc() usage.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *f;

 char filename[80], c;

 // get a filename from the user

 printf("Enter a filename to read.\n");

 scanf("%s", filename);

 // open a file for input

 if ((f = fopen(filename, "r")) == NULL) {

 printf("Can't open %s.\n", filename);

 exit(1);

 }

 // read one character at a time until end-of-file

 while ((c = getc(f)) != EOF)

stdio.h
 Character Input/Output

CodeWarrior Implementation of the C Standard Library 223

 putchar(c);

 // close the file

 fclose(f);

 return 0;

}

Output

Enter a filename to read.

foofoo

 0 1 2 3 4 5 6 7 8 9

 10 11 12 13 14 15 16 17 18 19

 20 21 22 23 24 25 26 27 28 29

 30 31 32 33 34 35 36 37 38 39

 40 41 42 43 44 45 46 47 48 49

 50 51 52 53 54 55 56 57 58 59

 60 61 62 63 64 65 66 67 68 69

 70 71 72 73 74 75 76 77 78 79

 80 81 82 83 84 85 86 87 88 89

 90 91 92 93 94 95 96 97 98 99

getchar()
Get the next character from stdin.

#include <stdio.h>

int getchar(void);

Remarks

The getchar() function reads a character from the stdin stream.

The function getchar() is implemented as getc(stdin) and as such getchar's
return may be delayed or optimized out of program order if stdin is buffered. For most
implementations stdin is line buffered.

getchar() returns the value of the next character from stdin as an int if it is
successful. getchar() returns EOF if it reaches an end-of-file or an error occurs.

Example of getchar() usage

#include <stdio.h>

int main(void)

{

 // We use int, not char, because EOF value is outside

 // of char's range.

 int c;

stdio.h
Character Input/Output

224 CodeWarrior Implementation of the C Standard Library

 printf("Enter characters to echo, * to quit.\n");

 // characters entered from the console are echoed

 // to it until a * character is read

 while ((c = getchar()) != '*')

 putchar(c);

 printf("\nDone!\n");

 return 0;

}

Output:

Enter characters to echo, * to quit.

I'm experiencing deja-vu *

I'm experiencing deja-vu

Done!

gets()
Read a character array from stdin.

#include <stdio.h>

char *gets(char *s);

s

The string being written to.

Remarks

The gets() function reads characters from stdin and stores them sequentially in the
character array pointed to by s. Characters are read until either a newline or an end-of-
file is reached.

This function reads and ignores the newline character ('\n'). The newline character is
not stored s. The function terminates the character string with a null character.

This function can be the cause of buffer overflow bugs because it does not limit the
number of characters that it stores in s. use the function fgets() instead, which allows
the programmer to specify the length of the character string where input will be stored.

If an end-of-file is reached before any characters are read, gets() returns a null pointer
(NULL) without affecting the character array at s. If a read error occurs, the contents of s
may be corrupted.

gets() returns s if it is successful and returns a null pointer if it fails.

stdio.h
 Character Input/Output

CodeWarrior Implementation of the C Standard Library 225

putc()
Write a character to a stream.

#include <stdio.h>

int putc(int c, FILE *stream);

c

The character to write to a file.

stream

A pointer to a stream.

Remarks

The putc() function outputs c to stream and advances stream's file position
indicator.

The putc() works identically to the fputc() function, except that it is written as a
macro.

If the file is opened in update mode (+) the file cannot be written to and then read
from unless the write operation and read operation are separated by an operation that
flushes the stream's buffer. This can be done with the fflush() function or one of the file
positioning operations (fseek(), fsetpos() or rewind()).

putc() returns the character written when successful and return EOF when it fails.

Example of putc() usage.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *f;

 static char filename[] = "checkputc";

 static char test[] = "flying fish and quail eggs";

 int i;

 // create a new file for output

 if ((f = fopen(filename, "w")) == NULL) {

 printf("Can't open %s.\n", filename);

 exit(1);

 }

 // output the test character array

stdio.h
Character Input/Output

226 CodeWarrior Implementation of the C Standard Library

 // one character at a time using putc()

 for (i = 0; test[i] > 0; i++)

 putc(test[i], f);

 // close the file

 fclose(f);

 return 0;

}

Output to file checkputc

flying fish and quail eggs

putchar()
Write a character to stdout.

#include <stdio.h>

int putchar(int c);

c

The character to write to the stdout file.

Remarks

The putchar() function outputs c to stdout and advances the stream's file position
indicator.

The putc() works identically to the fputc() function, except that it is written as a
macro.

This function returns the character written when successful and returns EOF when it fails.

Example of putchar() usage.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 static char test[] = "flying fish and quail eggs\n";

 int i;

 /* Output the test character array. */

 for (i = 0; test[i] > 0; i++)

 {

 if (putchar(test[i]) == EOF)

 break;

 }

stdio.h
 Character Input/Output

CodeWarrior Implementation of the C Standard Library 227

 return 0;

}

Output:

flying fish and quail eggs

puts()
Write a character string to stdout.

#include <stdio.h>

int puts(const char *s);

s

A pointer to a nul-terminated character string.

Remarks

The puts() function writes a character string array to stdout, stopping at, but not
including the terminating null character. The function also appends a newline ('\n') to
the output.

puts() returns zero if successful and returns a nonzero value if it fails.

Example of puts() usage.

#include <stdio.h>

int main(void)

{

 static char s[] = "car bus metro werks";

 int i;

 // output the string 10 times

 for (i = 0; i < 10; i++)

 puts(s);

 return 0;

}

Output:

car bus metro werks

car bus metro werks

car bus metro werks

car bus metro werks

car bus metro werks

car bus metro werks

car bus metro werks

car bus metro werks

stdio.h
Character Input/Output

228 CodeWarrior Implementation of the C Standard Library

car bus metro werks

car bus metro werks

ungetc()
Places a character back into a stream.

#include <stdio.h>

int ungetc(int c, FILE *stream);

c

The character to return to a stream.

stream

A pointer to a file stream.

Remarks

The ungetc() function places character c back into stream's buffer. The next read
operation will read the character placed by ungetc(). Only one character can be
pushed back into a buffer until a read operation is performed.

The function's effect is ignored when an fseek(), fsetpos(), or rewind()
operation is performed.

ungetc() returns c if it is successful and returns EOF if it fails.

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

Example of ungetc() usage.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *f;

 int c;

 // create a new file for output and input

 if ((f = fopen("double.txt", "w+")) == NULL) {

 printf("Can't open.\n");

 exit(1);

 }

 // output text to the file

 fprintf(f, "The quick brown fox\n");

 fprintf(f, "jumped over the moon.\n");

 // move the file position indicator

stdio.h
 Binary Input/Output

CodeWarrior Implementation of the C Standard Library 229

 // to the beginning of the file

 rewind(f);

 printf("Reading each character twice.\n");

 // read a character

 while ((c = fgetc(f)) != EOF) {

 putchar(c);

 // Put the character back into the stream

 ungetc(c, f);

 c = fgetc(f);// read the same character again

 putchar(c);

 }

 fclose(f);

 return 0;

}

Output

Reading each character twice.

TThhee qquuiicckk bbrroowwnn ffooxx

jjuummppeedd oovveerr tthhee mmoooonn..

Binary Input/Output
Facilities for reading and writing raw data.

fread()

Reads binary data from a stream.

#include <stdio.h>

size_t fread(void *ptr, size_t size,

 size_t nmemb, FILE *stream);

ptr

A pointer to the array in which the data will be stored.

size

The size of an array element, in characters.

nmemb

The maximum number of elements to read.

stream

stdio.h
Binary Input/Output

230 CodeWarrior Implementation of the C Standard Library

A pointer to a file stream.

Remarks

The fread() function reads a block of binary or text data and updates the file position
indicator. The data read from stream are stored in the array pointed to by ptr. The
size and nmemb arguments describe the size of each item and the number of items to
read, respectively.

The fread() function reads nmemb items unless it reaches the end-of-file or a read
error occurs.

If the file is opened in update mode (+) a file cannot be read from and then written to
without repositioning the file using one of the file positioning functions (fseek(),
fsetpos(), or rewind()) unless the last read or write reached the end-of-file.

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

fread() returns the number of items read successfully.

Example of fread() usage

#include <stdio.h>

#include <stdlib.h>

// define the item size in bytes

#define BUFSIZE 40

int main(void)

{

 FILE *f;

 static char s[BUFSIZE] = "The quick brown fox";

 char target[BUFSIZE];

 // create a new file for output and input

 if ((f = fopen("foo", "w+")) == NULL) {

 printf("Can't create file.\n");

 exit(1);

 }

 // output to the stream using fwrite()

 fwrite(s, sizeof(char), BUFSIZE, f);

 // move to the beginning of the file

 rewind(f);

 // now read from the stream using fread()

 fread(target, sizeof(char), BUFSIZE, f);

 // output the results to the console

stdio.h
 Binary Input/Output

CodeWarrior Implementation of the C Standard Library 231

 puts(s);

 puts(target);

 // close the file

 fclose(f);

 return 0;

}

Output:

The quick brown fox

The quick brown fox

fwrite()
Writes binary data to a stream.

#include <stdio.h>

size_t fwrite(const void *ptr, size_t size,

 size_t nmemb, FILE *stream);

ptr

A pointer to the array to write to the stream.

size

The size of an array element, in characters.

nmemb

The maximum number of elements to write.

stream

A pointer to a file stream.

Remarks

The fwrite() function writes nmemb items of size bytes each to stream. The
items are contained in the array pointed to by ptr. After writing the array to stream,
fwrite() advances the file position indicator accordingly.

If the file is opened in update mode (+) the file cannot be written to and then read
from unless the write operation and read operation are separated by an operation that
flushes the stream's buffer. This can be done with the fflush() function or one of the file
positioning operations (fseek(), fsetpos(), or rewind()).

This facility may have limited capability on configurations of the MSL that run on
platforms that do not have console input/output or a file system.

fwrite() returns the number of items successfully written to stream.

stdio.h
File Positioning

232 CodeWarrior Implementation of the C Standard Library

File Positioning
Facilities for getting and setting the position in the file for the next read or write
operation.

fgetpos()

Gets a stream's current file position indicator value.

#include <stdio.h>

int fgetpos(FILE *stream, fpos_t *pos);

stream

A pointer to a file stream.

pos

A pointer to a file position.

Remarks

The fgetpos() function is used in conjunction with the fsetpos() function to
allow random access to a file. The fgetpos() function gives unreliable results when
used with streams associated with a console (stdin, stderr, stdout).

While the fseek() and ftell() functions use long integers to read and set the file
position indicator, fgetpos() and fsetpos() use fpos_t values to operate on
larger files. The fpos_t type, defined in stdio.h, can hold file position indicator
values that do not fit in a long int.

The fgetpos() function stores the current value of the file position indicator for
stream in the fpos_t variable pos points to.

This facility may have limited capability on configurations of the MSL that run on
platforms that do not have console input/output or a file system.

fgetpos() returns zero when successful and returns a nonzero value when it fails.

Example of fgetpos() usage

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *f;

 fpos_t pos;

stdio.h
 File Positioning

CodeWarrior Implementation of the C Standard Library 233

 char filename[80], buf[80];

 // get a filename from the user

 printf("Enter a filename to read.\n");

 gets(filename);

 // open the file for input

 if ((f = fopen(filename, "r")) == NULL) {

 printf("Can't open %s.\n", filename);

 exit(1);

 }

 printf("Reading each line twice.\n");

 // get the initial file position indicator value

 // (which is at the beginning of the file)

 fgetpos(f, &pos);

 // read each line until end-of-file is reached

 while (fgets(buf, 80, f) != NULL) {

 printf("Once: %s", buf);

 // move to the beginning of the line to read it again

 fsetpos(f, &pos);

 fgets(buf, 80, f);

 printf("Twice: %s", buf);

 // get the file position of the next line

 fgetpos(f, &pos);

 }

 // close the file

 fclose(f);

 return 0;

}

Output:

Enter a filename to read.

myfoo

Reading each line twice.

Once: chair table chest

Twice: chair table chest

Once: desk raccoon

Twice: desk raccoon

fseek()

Move the file position indicator.

stdio.h
File Positioning

234 CodeWarrior Implementation of the C Standard Library

#include <stdio.h>

int fseek(FILE *stream, long offset, int whence);

stream

A pointer to a file stream.

offset

The number of characters to move.

whence

The starting position to move from.

Remarks

The fseek() function moves the file position indicator to allow random access to a file.
The function moves the file position indicator either absolutely or relatively. The whence
argument can be one of three values defined in stdio.h:

• SEEK_SET sets the file position indicator to offset bytes from the beginning of the
file. In this case offset must be equal or greater than zero.

• SEEK_CUR sets the file position indicator to offset bytes from its current position.
The offset argument can be a negative or positive value.

• SEEK_END moves the file position indicator to offset bytes from the end of the
file. The offset argument must be equal or less than zero.

The fseek() function undoes the last ungetc() call and clears the end-of-file status
of stream.

The function has limited use when used with MS-DOS text files opened in text mode
because of carriage return/line feed translations. The seek operations may be incorrect
near the end of the file due to end-of-file translations.

The only operations guaranteed to work in MS-DOS text files opened in text mode are:

• Using the offset returned from ftell() and seeking from the beginning of the
file.

• Seeking with an offset of zero from SEEK_SET, SEEK_CUR and SEEK_END.

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

fseek() returns zero if it is successful and returns a nonzero value if it fails.

Example of fseek() usage

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *f;

 long int pos1, pos2, newpos;

stdio.h
 File Positioning

CodeWarrior Implementation of the C Standard Library 235

 char filename[80], buf[80];

 // get a filename from the user

 printf("Enter a filename to read.\n");

 gets(filename);

 // open a file for input

 if ((f = fopen(filename, "r")) == NULL) {

 printf("Can't open %s.\n", filename);

 exit(1);

 }

 printf("Reading last half of first line.\n");

 // get the file position indicator before and after

 // reading the first line

 pos1 = ftell(f);

 fgets(buf, 80, f);

 pos2 = ftell(f);

 printf("Whole line: %s\n", buf);

 // calculate the middle of the line

 newpos = (pos2 - pos1) / 2;

 fseek(f, newpos, SEEK_SET);

 fgets(buf, 80, f);

 printf("Last half: %s\n", buf);

 fclose(f);

 return 0;

}

Output:

Enter a filename to read.

itwerks

Reading last half of first line.

Whole line: The quick brown fox

Last half: brown fox

fsetpos()
Set the file position indicator.

stdio.h
File Positioning

236 CodeWarrior Implementation of the C Standard Library

#include <stdio.h>

int fsetpos(FILE *stream, const fpos_t *pos);

stream

A pointer to a stream.

pos

A pointer to a file-positioning type.

Remarks

The fsetpos() function sets the file position indicator for stream using the value
pointed to by pos. The function is used in conjunction with fgetpos() when dealing
with files having sizes greater than what can be represented by the long int argument
used by fseek().

fsetpos() undoes the previous call to ungetc() and clears the end-of-file status.

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

fsetpos() returns zero if it is successful and returns a nonzero value if it fails.

ftell()
Returns the value of the file position indicator.

#include <stdio.h>

long int ftell(FILE *stream);

stream

A pointer to a FILE stream.

Remarks

The ftell() function returns the current value of stream's file position indicator. It is
used in conjunction with fseek() to provide random access to a file.

The function will not work correctly when it is given a stream associated to a console
file, such as stdin, stdout, or stderr, where a file indicator position is not
applicable. Also, ftell() cannot handle files with sizes larger than what can be
represented with a long int. In such a case, use the fgetpos() and fsetpos()
functions.

This facility may have limited capability on configurations of the MSL that run on
platforms that do not have console input/output or a file system.

ftell(), when successful, returns the current file position indicator value. If it fails,
ftell() returns -1L and sets the global variable errno to a nonzero value.

stdio.h
 File Positioning

CodeWarrior Implementation of the C Standard Library 237

rewind()
Resets the file position indicator to the beginning of the file.

#include <stdio.h>

void rewind(FILE *stream);

stream

A pointer for a file stream.

Remarks

The rewind() function sets the file indicator position of stream such that the next write
or read operation will be from the beginning of the file. It also undoes any previous call
to ungetc() and clears stream's end-of-file and error status.

This facility may have limited capability on configurations of the MSL that run on
platforms that do not have console input/output or a file system.

Example of rewind() usage.

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *f;

 char filename[80], buf[80];

 // get a file name from the user

 printf("Enter a file name to read.\n");

 gets(filename);

 // open a file for input

 if ((f = fopen(filename, "r")) == NULL) {

 printf("Can't open %s.\n", filename);

 exit(1);

 }

 printf("Reading first line twice.\n");

 // move the file position indicator to the beginning

 // of the file

 rewind(f);

 // read the first line

 fgets(buf, 80, f);

 printf("Once: %s\n", buf);

 // move the file position indicator to the

 //beginning of the file

stdio.h
File Error Handling

238 CodeWarrior Implementation of the C Standard Library

 rewind(f);

 // read the first line again

 fgets(buf, 80, f);

 printf("Twice: %s\n", buf);

 // close the file

 fclose(f);

 return 0;

}

Output:

Enter a file name to read.

itwerks

Reading first line twice.

Once: flying fish and quail eggs

Twice: flying fish and quail eggs

File Error Handling
Facilities for checking for and reporting error conditions for files.

clearerr()

Clears a stream's end-of-file and error status.

#include <stdio.h>

void clearerr(FILE *stream);

stream

A pointer to a FILE stream

Remarks

The clearerr() function resets the end-of-file status and error status for stream.
The end-of-file status and error status are also reset when a stream is opened.

Example of clearerr() usage

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *f;

 static char name[] = "myfoo";

stdio.h
 File Error Handling

CodeWarrior Implementation of the C Standard Library 239

 char buf[80];

 // create a file for output

 if ((f = fopen(name, "w")) == NULL) {

 printf("Can't open %s.\n", name);

 exit(1);

 }

 // output text to the file

 fprintf(f, "chair table chest\n");

 fprintf(f, "desk raccoon\n");

 // close the file

 fclose(f);

 // open the same file again for input

 if ((f = fopen(name, "r")) == NULL) {

 printf("Can't open %s.\n", name);

 exit(1);

 }

 // read all the text until end-of-file

 for (; feof(f) == 0; fgets(buf, 80, f))

 fputs(buf, stdout);

 printf("feof() for file %s is %d.\n", name, feof(f));

 printf("Clearing end-of-file status. . .\n");

 clearerr(f);

 printf("feof() for file %s is %d.\n", name, feof(f));

 // close the file

 fclose(f);

 return 0;

}

Output

chair table chest

desk raccoon

feof() for file myfoo is 256.

Clearing end-of-file status. . .

feof() for file myfoo is 0.

feof()

Checks the end-of-file status of a stream.

stdio.h
File Error Handling

240 CodeWarrior Implementation of the C Standard Library

#include <stdio.h>

int feof(FILE *stream);

stream

A pointer to a file stream.

Remarks

The feof() function checks the end-of-file status of the last read operation on
stream. The function does not reset the end-of-file status.

This facility may have limited capability on configurations of the MSL that run on
platforms that do not have console input/output or a file system.

feof() returns a nonzero value if the stream is at the end-of-file and returns zero if the
stream is not at the end-of-file.

Example of feof() usage

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *f;

 static char filename[80], buf[80] = "";

 // get a filename from the user

 printf("Enter a filename to read.\n");

 gets(filename);

 // open the file for input

 if ((f = fopen(filename, "r")) == NULL) {

 printf("Can't open %s.\n", filename);

 exit(1);

 }

 // read text lines from the file until

 // feof() indicates the end-of-file

 for (; feof(f) == 0 ; fgets(buf, 80, f))

 printf(buf);

 // close the file

 fclose(f);

 return 0;

}

Output:

Enter a filename to read. itwerks

The quick brown fox jumped over the moon.

stdio.h
 File Error Handling

CodeWarrior Implementation of the C Standard Library 241

ferror()

Check the error status of a stream.

#include <stdio.h>

int ferror (FILE *stream);

stream

A pointer to a file stream.

Remarks

The ferror() function returns the error status of the last read or write operation on
stream. The function does not reset its error status.

This facility may have limited capability on configurations of the MSL that run on
platforms that do not have console input/output or a file system.

ferror() returns a nonzero value if stream's error status is on, and returns zero if
stream's error status is off.

Example of ferror() usage

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *f;

 char filename[80], buf[80];

 int ln = 0;

 // get a filename from the user

 printf("Enter a filename to read.\n");

 gets(filename);

 // open the file for input

 if ((f = fopen(filename, "r")) == NULL) {

 printf("Can't open %s.\n", filename);

 exit(1);

 }

 // read the file one line at a time until end-of-file

 do {

 fgets(buf, 80, f);

 printf("Status for line %d: %d.\n", ln++, ferror(f));

 } while (feof(f) == 0);

stdio.h
File Error Handling

242 CodeWarrior Implementation of the C Standard Library

 // close the file

 fclose(f);

 return 0;

}

Output:

Enter a filename to read.

itwerks

Status for line 0: 0.

Status for line 1: 0.

Status for line 2: 0.

perror()
Output an error message to stderr.

#include <stdio.h>

void perror(const char *s);

s

Error message to print.

Remarks

If s is not NULL or a pointer to a null string the perror() function outputs to stderr
t he character array pointed to by s followed by a colon and a space “: ” . Then, the
error message that would be returned by strerror() for the current value of the
global variable errno.

Example of perror() usage.

#include <errno.h>

#include <stdio.h>

int main()

{

 perror("No error reported as");

 errno = EDOM;

 perror("Domain error reported as");

 errno = ERANGE;

 perror("Range error reported as");

 return 0;

}

stdio.h
 Input and Output for Wide Characters and Multibyte Characters

CodeWarrior Implementation of the C Standard Library 243

Output

No error reported as: No Error

Domain error reported as: Domain Error

Range error reported as: Range Error

Input and Output for Wide Characters and
Multibyte Characters

Facilities for reading and writing wide and multibyte characters.

fwide()
Determines the orientation of a stream.

#include <stdio.h>

int fwide(FILE *stream, int orientation);

stream

A pointer to a stream.

orientation

The desired orientation.

Remarks

The fwide() function determines the orientation of the stream pointed to by stream.
If the value of orientation is greater than zero and stream has no orientation, stream is
made to be wide-oriented. If the value of orientation is less than zero and stream has no
orientation, stream is made to be byte-oriented. Otherwise, if value of orientation is
zero then the function does not alter the orientation of the stream. In all cases, if stream
already has an orientation, it will not be changed.

The fwide() function returns a value greater than zero if, after the call, the stream has
wide orientation, a value less than zero if the stream has byte orientation, or zero if the
stream has no orientation.

Example of fwide() usage.

#include <stdio.h>

int main()

{

 FILE * fp;

 char filename[FILENAME_MAX];

 int orientation;

stdio.h
Input and Output for Wide Characters and Multibyte Characters

244 CodeWarrior Implementation of the C Standard Library

 char * cptr;

 cptr = tmpnam(filename);

 fp = fopen(filename, "w");

 orientation = fwide(fp, 0);

 // A newly opened file has no orientation

 printf("Initial orientation = %i\n", orientation);

 fprintf(fp, "abcdefghijklmnopqrstuvwxyz\n");

 // A byte oriented output operation will set the orientation

 // to byte oriented

 orientation = fwide(fp, 0);

 printf("Orientation after fprintf = %i\n", orientation);

 fclose(fp);

 fp = fopen(filename, "r");

 orientation = fwide(fp, 0);

 printf("Orientation after reopening = %i\n", orientation);

 orientation = fwide(fp, -1);

 // fwide with a non-zero orientation argument will set an

 // unoriented file's orientation

 printf("Orientation after fwide = %i\n", orientation);

 orientation = fwide(fp, 1);

 // but will not change the file's orientation if it

 // already has an orientation

 printf("Orientation after second fwide = %i\n",orientation);

 fclose(fp);

 remove(filename);

 return 0;

}

Output:

Initial orientation = 0

Orientation after fprintf = -1

Orientation after reopening = 0

Orientation after fwide = -1

Orientation after second fwide = -1

stdio.h
 Input and Output for Wide Characters and Multibyte Characters

CodeWarrior Implementation of the C Standard Library 245

_wfopen()
Opens a file with a wide character file name as a stream.

#include <stdio.h>

FILE *_wfopen(const wchar_t *wfilename, const wchar_t *wmode);

wfilename

A pointer to a wide-character file name.

wmode

A pointer to a wide-character-encoded opening mode.

Remarks

The wfopen() function is a wide character implementation of fopen()

_wfreopen()
Re-direct a stream to another file as a wide character version.

#include <stdio.h>

FILE *_wfreopen(const wchar_t *wfilename,

 const wchar_t *wmode, FILE *stream);

wfilename

A pointer to a wide-character file name.

wmode

A pointer to a wide-character opening mode.

stream

A pointer to a file stream.

Remarks

The wfreopen() function is a wide character implementation of freopen().

_wremove()
Deletes a file.

#include <stdio.h>

int remove(const wchar_t *wfilename);

stdio.h
Input and Output for Wide Characters and Multibyte Characters

246 CodeWarrior Implementation of the C Standard Library

wfilename

A pointer to a wide-character file name.

Remarks

The fremove() function is a wide character variation of remove()

_wrename()
Changes the name of a file.

#include <stdio.h>

int rename(const char *wold, const wchar_t *wnew);

old

A pointer to a wide-character string containing the old file
name.

new

A pointer to a wide-character string containing the new file
name.

Remarks

The wrename() function implements a wide character variation of rename().

_wtmpnam()
Creates a unique temporary file name using wide characters.

#include <stdio.h>

wchar_t *_wtmpnam(wchar_t *ws);

wfilename

A pointer to a wide-character file name.

Remarks

The wtmpnam() functions creates a valid filename wide character string that will not
conflict with any existing filename. It is implemented for a wide character array in the
same manner as tmpnam()

CodeWarrior Implementation of the C Standard Library 247

21
stdlib.h

The stdlib.h header file provides groups of functions for string conversion, pseudo-
random number generation, memory management, environment communication,
searching and sorting, multibyte character conversion, and integer arithmetic.

Numeric Conversion
Converting numeric values to and from textual representations.

atof()

Converts a character string to a numeric value of type double.

#include <stdlib.h>

double atof(const char *nptr);

nptr

A pointer to the string to convert.

Remarks

The atof() function converts the character array pointed to by nptr to a floating
point value of type double. Except for its behavior on error, this function is the
equivalent of the call strtod(nptr, NULL);

This function sets the global variable errno to ERANGE if the converted value cannot be
expressed as a floating point value of type double.

atof() returns a floating point value of type double.

Example of atof(), atoi(), atol() usage

#include <stdlib.h>

#include <stdio.h>

int main(void)

stdlib.h
Numeric Conversion

248 CodeWarrior Implementation of the C Standard Library

{

 int i;

 long int j;

 float f;

 static char si[] = "-493", sli[] = "63870";

 static char sf[] = "1823.4034";

 f = atof(sf);

 i = atoi(si);

 j = atol(sli);

 printf("%f %d %ld\n", f, i, j);

 return 0;

}

Output:

1823.403400 -493 63870

atoi()

Converts a character string to a value of type int.

#include <stdlib.h>

int atoi(const char *nptr);

nptr

A pointer to the string to be converted.

Remarks

The atoi() function converts the character array pointed to by nptr to an integer
value. Except for its behavior on error, this function is the equivalent of the call
(int)strtol(nptr, (char **)NULL, 10);

This function sets the global variable errno to ERANGE if the converted value cannot be
expressed as a value of type int.

atoi() returns an integer value of type int.

atol()

Converts a character string to a value of type long.

#include <stdlib.h>

long int atol(const char *nptr);

nptr

stdlib.h
 Numeric Conversion

CodeWarrior Implementation of the C Standard Library 249

A pointer to the string to be converted.

Remarks

The atol() function converts the character array pointed to by nptr to an integer of
type long int . Except for its behavior on error, this function is the equivalent of the
call strtol(nptr, (char **)NULL, 10);

This function sets the global variable errno to ERANGE if the converted value cannot be
expressed as a value of type long int.

atol() returns an integer value of type long int.

atoll()

Converts a character string to a value of type long long.

#include <stdlib.h>

long long atoll(const char *nptr);

nptr

A pointer to the string to be converted.

Remarks

The atoll() function converts the character array pointed to by nptr to an
integer of type long long. Except for its behavior on error, this function is the
equivalent of the call strtoll(nptr, (char **)NULL, 10);

This function sets the global variable errno to ERANGE if the converted value cannot be
expressed as a value of type long int.

atoll() returns an integer value of type long long.

This function is not specified in the ISO/IEC standards. It is an extension of the standard
library.

strtod()

Converts a character array to a floating point value of type double.

#include <stdlib.h>

double strtod(const char *nptr, char **endptr);

nptr

A pointer to a nul-terminated character string to convert.

endptr

A pointer to a character pointer or a null pointer.

stdlib.h
Numeric Conversion

250 CodeWarrior Implementation of the C Standard Library

Remarks

The strtod() function converts a character array, pointed to by nptr, to a
floating point value of type double. The character array can be in either decimal or
hexadecimal floating point constant notation (examples: 103.578, 1.03578e+02, or
0x1.9efef9p+6).

If the endptr argument is not a null pointer, then strtod() assigns a pointer to a
position within the character array pointed to by nptr . This position marks the first
character that is not convertible to a value of type double.

In other than the "C" locale, additional locale-specific subject sequence forms may be
accepted.

This function skips leading white space.

strtod() returns a floating point value of type double. If nptr cannot be converted
to an expressible double value, strtod() returns HUGE_VAL, defined in math.h, and
sets errno to ERANGE.

Example of strtod() and strtold() usage

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 double f;

 long double lf;

 static char sf1[] = "103.578 777";

 static char sf2[] = "1.03578e+02 777";

 static char sf3[] = "0x1.9efef9p+6777";

 char *endptr;

 f = strtod(sf1, &endptr);

 printf("Value = %f remainder of string = |%s|\n", f, endptr);

 f = strtod(sf2, &endptr);

 printf("Value = %f remainder of string = |%s|\n", f, endptr);

 f = strtod(sf3, &endptr);

 printf("Value = %f remainder of string = |%s|\n", f, endptr);

 lf = strtold(sf1, &endptr);

 printf("Value = %lf remainder of string = |%s|\n", lf, endptr);

 lf = strtold(sf2, &endptr);

 printf("Value = %lf remainder of string = |%s|\n", lf, endptr);

 lf = strtold(sf3, &endptr);

stdlib.h
 Numeric Conversion

CodeWarrior Implementation of the C Standard Library 251

 printf("Value = %lf remainder of string = |%s|\n", lf, endptr);

 return 0;

}

Output:

Value = 103.578000 remainder of string = |777|

Value = 103.578000 remainder of string = | 777|

Value = 103.748997 remainder of string = | 777|

Value = 103.578000 remainder of string = | 777|

Value = 103.578000 remainder of string = | 777|

Value = 103.748997 remainder of string = | 777|

strtof()

Character array conversion to floating point value of type float.

#include <stdlib.h>

float strtof(const char *nptr, char **endptr);

nptr

A pointer to a nul-terminated character string to convert.

endptr

A pointer to a position in nptr that follows the converted part.

Remarks

The strtof() function converts a character array, pointed to by nptr, to a floating point
value of type float. The character array can be in either decimal or hexadecimal floating
point constant notation (examples: 103.578, 1.03578e+02, or 0x1.9efef9p+6).

If the endptr argument is not a null pointer, it is assigned a pointer to a position within
the character array pointed to by nptr. This position marks the first character that is not
convertible to a value of type float.

In other than the "C" locale, additional locale-specific subject sequence forms may be
accepted.

This function skips leading white space.

strtof() returns a floating point value of type float. If nptr cannot be converted
to an expressible float value, strtof() returns HUGE_VAL, defined in math.h, and
sets errno to ERANGE.

stdlib.h
Numeric Conversion

252 CodeWarrior Implementation of the C Standard Library

strtol()
Character array conversion to an integral value of type long int.

#include <stdlib.h>

long int strtol(const char *nptr,char **endptr, int base);

nptr

A pointer to a nul-terminated character string to convert.

endptr

A pointer to the position in nptr that could not be converted.

base

A numberic base between 2 and 36.

Remarks

The strtol() function converts a character array, pointed to by nptr, expected to
represent an integer expressed in radix base, to an integer value of type long int. If
the sequence pointed to by nptr is a minus sign, the value resulting from the conversion is
negated in the return value.

The base argument in strtol() specifies the base used for conversion. It must have a
value between 2 and 36, or 0. The letters a (or A) through z (or Z) are used for the values
10 through 35; only letters and digits representing values less than base are permitted. If
base is 0, then strtol() converts the character array based on its format. Character
arrays beginning with '0' are assumed to be octal, number strings beginning with '0x'
or '0X' are assumed to be hexadecimal. All other number strings are assumed to be
decimal.

If the endptr argument is not a null pointer, it is assigned a pointer to a position within
the character array pointed to by nptr . This position marks the first character that is not
convertible to a long int value.

In other than the "C" locale, additional locale-specific subject sequence forms may be
accepted.

This function skips leading white space.

strtol() returns an integer value of type long int. If the converted value is less
than LONG_MIN, strtol() returns LONG_MIN and sets errno to ERANGE. If the
converted value is greater than LONG_MAX, strtol() returns LONG_MAX and sets
errno to ERANGE. The LONG_MIN and LONG_MAX macros are defined in limits.h.

Example of strtol(), strtoul(), strtoll(), and strtoull()
usage

#include <stdlib.h>

stdlib.h
 Numeric Conversion

CodeWarrior Implementation of the C Standard Library 253

#include <stdio.h>

int main(void) {

 long int i;

 unsigned long int j;

 long long int lli;

 unsigned long long ull;

 static char si[] = "4733777";

 static char sb[] = "0x10*****";

 static char sc[] = "66E00M???";

 static char sd[] = "Q0N50Mabcd";

 char *endptr;

 i = strtol(si, &endptr, 10);

 printf("%ld remainder of string = |%s|\n", i, endptr);

 i = strtol(si, &endptr, 8);

 printf("%ld remainder of string = |%s|\n", i, endptr);

 j = strtoul(sb, &endptr, 0);

 printf("%lu remainder of string = |%s|\n", j, endptr);

 j = strtoul(sb, &endptr, 16);

 printf("%lu remainder of string = |%s|\n", j, endptr);

 lli = strtoll(sc, &endptr, 36);

 printf("%lld remainder of string = |%s|\n", lli, endptr);

 ull = strtoull(sd, &endptr, 27);

 printf("%llu remainder of string = |%s|\n", ull, endptr);

 return 0;

}

Output:

4733 remainder of string = | 777|

2523 remainder of string = | 777|

16 remainder of string = |*****|

16 remainder of string = |*****|

373527958 remainder of string = |???|

stdlib.h
Numeric Conversion

254 CodeWarrior Implementation of the C Standard Library

373527958 remainder of string = | abcd|

strtoll()

Character array conversion to integer value of type long long int.

#include <stdlib.h>

unsigned long int strtoul(const char *nptr, char **endptr, int

 base);

nptr

A pointer to a nul-terminated character string to convert.

endptr

A pointer to the position in nptr that could not be converted.

base

A numberic base between 2 and 36.

Remarks

The strtoll() function converts a character array, pointed to by nptr, e xpected
to represent an integer expressed in radix base to an integer value of type long long int. If
the sequence pointed to by nptr is a minus sign, the value resulting from the conversion is
negated in the return value.

The base argument in strtoll() specifies the base used for conversion. It must have a
value between 2 and 36, or 0. The letters a (or A) through z (or Z) are used for the values
10 through 35; only letters and digits representing values less than base are permitted. If
base is 0, then strtoll() converts the character array based on its format. Character
arrays beginning with'0' are assumed to be octal, number strings beginning with'0x' or'0X'
are assumed to be hexadecimal. All other number strings are assumed to be decimal.

If the endptr argument is not a null pointer, it is assigned a pointer to a position within
the character array pointed to by nptr. This position marks the first character that is not
convertible to a long int value.

In other than the "C" locale, additional locale-specific subject sequence forms may be
accepted.

This function skips leading white space.

strtoll() returns an unsigned integer value of type long long int. If the
converted value is less than LLONG_MIN, strtoll() returns LLONG_MIN and sets
errno to ERANGE. If the converted value is greater than LLONG_MAX, strtoll()
returns LLONG_MAX and sets errno to ERANGE. The LLONG_MIN and LLONG_MAX
macros are defined in limits.h

stdlib.h
 Numeric Conversion

CodeWarrior Implementation of the C Standard Library 255

This function is not specified in the ISO/IEC standards. It is an extension of the standard
library.

strtoull()

Character array conversion to integer value of type unsigned long long int.

#include <stdlib.h>

unsigned long int strtoul(const char *nptr, char **endptr, int

 base);

nptr

A pointer to a nul-terminated character string to convert.

endptr

A pointer to the position in nptr that could not be converted.

base

A numberic base between 2 and 36.

Remarks

The strtoull() function converts a character array, pointed to by nptr, e xpected
to represent an integer expressed in radix base to an integer value of type unsigned
long long int. If the sequence pointed to by nptr is a minus sign, the value resulting
from the conversion is negated in the return value.

The base argument in strtoull() specifies the base used for conversion. It must
have a value between 2 and 36, or 0. The letters a (or A) through z (or Z) are used for
the values 10 through 35; only letters and digits representing values less than base are
permitted. If base is 0, then strtoull() converts the character array based on its
format. Character arrays beginning with'0' are assumed to be octal, number strings
beginning with'0x' or'0X' are assumed to be hexadecimal. All other number strings are
assumed to be decimal.

If the endptr argument is not a null pointer, it is assigned a pointer to a position
within the character array pointed to by nptr. This position marks the first character
that is not convertible to a long int value.

In other than the "C" l ocale, additional locale-specific subject sequence forms may be
accepted.

This function skips leading white space.

The function strtoull() returns an unsigned integer value of type
unsigned long long int (which may have a negative sign if the original string
was negative.) If the converted value is greater than ULLONG_MAX, strtoull()

stdlib.h
Pseudo-Random Number Generation

256 CodeWarrior Implementation of the C Standard Library

returns ULLONG_MAX and sets errno to ERANGE. The ULLONG_MAX macro is
defined in limits.h

This function is not specified in the ISO/IEC standards. It is an extension of the standard
library.

Pseudo-Random Number Generation
Generating and managing pseudo-random numbers.

rand()

Generates a pseudo-random integer value.

#include <stdlib.h>

int rand(void);

Remarks

A sequence of calls to the rand() function generates and returns a sequence of pseudo-
random integer values from 0 to RAND_MAX. The RAND_MAX macro is defined in
stdlib.h.

By seeding the random number generator using srand(), different random number
sequences can be generated with rand().

rand() returns a pseudo-random integer value between 0 and RAND_MAX.

Example of rand() usage

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 int i;

 unsigned int seed;

 for (seed = 1; seed = 5; seed++) {

 srand(seed);

 printf("First five random numbers for seed %d:\n", seed);

 for (i = 0; i < 5; i++)

 printf("%10d", rand());

 printf("\n\n");

stdlib.h
 Memory Management

CodeWarrior Implementation of the C Standard Library 257

 }

 return 0;

}

Output:

First five random numbers for seed 1:

 16838 5758 10113 17515 31051

First five random numbers for seed 2:

 908 22817 10239 12914 25837

First five random numbers for seed 3:

 17747 7107 10365 8312 20622

First five random numbers for seed 4:

 1817 24166 10491 3711 15407

First five random numbers for seed 5:

 18655 8457 10616 31877 10193

srand

Sets the seed for the pseudo-random number generator.

#include <stdlib.h>

void srand(unsigned int start);

seed

An initial value.

Remarks

The srand() function sets the seed for the pseudo-random number generator to
start. Further calls of srand() with the same seed value produces the same sequence
of random numbers.

Memory Management
Reserving and releasing heap memory.

calloc()

Allocates space for a group of objects.

#include <stdlib.h>

stdlib.h
Memory Management

258 CodeWarrior Implementation of the C Standard Library

void *calloc(size_t nmemb, size_t elemsize);

nmemb

number of elements to allocate

elemsize

size of an element

Remarks

The calloc() function allocates contiguous space for nmemb elements of size
elemsize. The space is initialized with all bits zero.

calloc() returns a pointer to the first byte of the memory area allocated. calloc()
returns a null pointer (NULL) if no space could be allocated.

Example of calloc() usage

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

int main(void)

{

 static char s[] = "woodworking compilers";

 char *sptr1, *sptr2, *sptr3;

 /* Allocate the memory three different ways... */

 /* One: allocate a 30-character block of */

 /* uninitialized memory. */

 sptr1 = (char *) malloc(30);

 strcpy(sptr1, s);

 printf("Address of sptr1: %p\n", sptr1);

 /* Two: allocate 20 characters of unitialized memory. */

 sptr2 = (char *) malloc(20);

 printf("sptr2 before reallocation: %p\n", sptr2);

 strcpy(sptr2, s);

 /* Re-allocate 10 extra characters */

 /* (for a total of 30 characters). */

 /* Note that the memory block pointed to by sptr2 is */

 /* still contiguous after the call to realloc(). */

 sptr2 = (char *) realloc(sptr2, 30);

stdlib.h
 Memory Management

CodeWarrior Implementation of the C Standard Library 259

 printf("sptr2 after reallocation: %p\n", sptr2);

 /* Three: allocate thirty bytes of initialized memory. */

 sptr3 = (char *) calloc(strlen(s), sizeof(char));

 strcpy(sptr3, s);

 printf("Address of sptr3: %p\n", sptr3);

 puts(sptr1);

 puts(sptr2);

 puts(sptr3);

 /* Release the allocated memory to the heap. */

 free(sptr1);

 free(sptr2);

 free(sptr3);

 return 0;

}

Output:

Address of sptr1: 5e5432

sptr2 before reallocation: 5e5452

sptr2 after reallocation: 5e5468

Address of sptr3: 5e5488

woodworking compilers

woodworking compilers

woodworking compilers

free()

Releases previously allocated memory to heap.

#include <stdlib.h>

void free(void *ptr);

ptr

a pointer to allocated memory

Remarks

The free() function releases a previously allocated memory block. The ptr argument
should hold an address returned by the memory allocation functions calloc(),

stdlib.h
Memory Management

260 CodeWarrior Implementation of the C Standard Library

malloc(), or realloc(). Once the memory block pointed to by ptr has been
released, it is no longer valid. The ptr variable should not be used to reference memory
again until it is assigned a value from the memory allocation functions. A pointer must
only be deallocated once.

malloc()

Allocates a block of heap memory.

#include <stdlib.h>

void *malloc(size_t size);

size

The number of contiguous characters to allocate.

Remarks

The malloc() function allocates a block of contiguous heap memory size bytes
large. If the argumetn for malloc() is zero the behavior is unspecified. Dependent
upon the system, either a null pointer is returned, or the behavior is as if the size was not
zero, except that the returned pointer can not be used to access an object.

malloc() returns a pointer to the first byte of the allocated block if it is successful and
return a null pointer if it fails.

realloc()

Changes the size of an allocated block of heap memory.

#include <stdlib.h>

void *realloc(void *ptr, size_t size);

ptr

A pointer to an allocated block of memory.

size

The new size to allocate.

Remarks

The realloc() function changes the size of the memory block pointed to by ptr to
size bytes. The size argument can have a value smaller or larger than the current size
of the block ptr points to. The ptr argument should be a value assigned by the memory
allocation functions calloc() and malloc().

If size is 0, the memory block pointed to by ptr is released. If ptr is a null pointer,
realloc() allocates size bytes.

stdlib.h
 Memory Management

CodeWarrior Implementation of the C Standard Library 261

The old contents of the memory block are preserved in the new block if the new block is
larger than the old. If the new block is smaller, the extra bytes are cut from the end of the
old block.

realloc() returns a pointer to the new block if it is successful and size is greater
than 0. realloc() returns a null pointer if it fails or size is 0.

realloc() example

#include <stdlib.h>

int main(void

{

 int* vec;

 int* newvec

 int count;

 count = 3;

 vec = calloc(count, sizeof(int));

 if (vec == NULL) {

 printf("Could not allocate.\n");

 exit(1);

 }

 vec[0] = 32;

 vec[1] = 39;

 vec[2] = 41;

 /* Assign realloc()'s result to newvec to preserve

 vec's value if the call to realloc() fails. */

 count = 5;

 newvec = realloc(vec, count * sizeof(int));

 if (newvec != NULL)

 {

 vec = newvec;

 vec[3] = 58;

 vec[4] = 82;

 }

 return 0;

}

vec_calloc()

stdlib.h
Memory Management

262 CodeWarrior Implementation of the C Standard Library

Clears and allocates memory on a 16 byte alignment.

#include <stdlib.h>

void *vec_calloc(size_t nmemb, size_t size);

nmemb

number of elements to allocate

elemsize

size of an element

Remarks

The vec_calloc() function allocates contiguous space for nmemb elements of size.
The space is initialized with zeroes.

vec_calloc() returns a pointer to the first byte of the memory area allocated. vec_
calloc() returns a null pointer (NULL) if no space could be allocated.

This function is not specified in the ISO/IEC standards. It is an extension of the standard
library.

vec_free()

Frees memory allocated by vec_malloc, vec_calloc and vec_realloc

#include <stdlib.h>

void vec_free(void *ptr);

ptr

a pointer to allocated memory

Remarks

The vec_free() function releases a previously allocated memory block, pointed to
by ptr, to the heap. The ptr argument should hold an address returned by the memory
allocation functions vec_calloc(), vec_malloc(), or vec_realloc().
Once the memory block ptr points to has been released, it is no longer valid. The ptr
variable should not be used to reference memory again until it is assigned a value from
the memory allocation functions.

vec_malloc()

Allocates memory on a 16 byte alignment.

#include <stdlib.h>

stdlib.h
 Environment Communication

CodeWarrior Implementation of the C Standard Library 263

void *vec_malloc(size_t size);

size

The size, in characters, of the allocation.

Remarks

The vec_malloc() function allocates a block of contiguous heap memory size bytes
large.

vec_malloc() returns a pointer to the first byte of the allocated block if it is
successful and return a null pointer if it fails.

This function is not specified in the ISO/IEC standards. It is an extension of the standard
library.

vec_realloc()

Reallocates memory on a 16 byte alignment.

#include <stdlib.h>

void *vec_realloc(void * ptr, size_t size);

ptr

A pointer to an allocated block of memory.

size

The new size to allocate.

Remarks

vec_realloc() returns a pointer to the new block if it is successful and size is
greater than 0. realloc() returns a null pointer if it fails or size is 0.

This function is not specified in the ISO/IEC standards. It is an extension of the standard
library.

Environment Communication
Interacting with the operating system.

abort()

Abnormallly terminates program.

stdlib.h
Environment Communication

264 CodeWarrior Implementation of the C Standard Library

#include <stdlib.h>

void abort(void)

Remarks

The abort() function raises the SIGABRT signal and quits the program to return
to the operating system.

The abort() function will not terminate the program if a programmer-installed signal
handler uses longjmp() instead of returning normally.

Example of abort() usage.

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 char c;

 printf("Aborting the program.\n");

 printf("Press Return.\n");

 /* Wait for the Return key to be pressed. */

 c = getchar();

 /* Abort the program. */

 abort();

 return 0;

}

Output:

Aborting the program.

Press Return.

atexit()

Install a function to be executed at a program's exit.

#include <stdlib.h>

int atexit(void (*func)(void));

func

The function to execute at exit.

stdlib.h
 Environment Communication

CodeWarrior Implementation of the C Standard Library 265

Remarks

The atexit() function adds the function pointed to by func to a list. When exit()
is called, each function on the list is called in the reverse order in which they were
installed with atexit() . After all the functions on the list have been called, exit()
terminates the program.

The stdio.h library, for example, installs its own exit function using atexit() .
This function flushes all buffers and closes all open streams.

atexit() returns a zero when it succeeds in installing a new exit function and returns a
nonzero value when it fails.

Example of atexit() usage.

#include <stdlib.h>

#include <stdio.h>

/* Prototypes */

void prompt(void);

void first(void);

void second(void);

void third(void);

int main(void)

{

 atexit(first);

 atexit(second);

 atexit(third);

 printf("exiting program\n\n");

 return 0;

}

void prompt(void)

{

 int c;

 printf("Press Return.");

 c = getchar();

}

void first(void)

{

 printf("First exit function.\n");

 prompt();

stdlib.h
Environment Communication

266 CodeWarrior Implementation of the C Standard Library

}

void second(void)

{

 printf("Second exit function.\n");

 prompt();

}

void third(void)

{

 printf("Third exit function.\n");

 prompt();

}

Output:

Third exit function.

Press Return.

Second exit function.

Press Return.

First exit function.

Press Return.

_Exit()

Terminates program normally.

#include <stdlib.h>

void _Exit(int status);

status

The exit error value.

Remarks

This function does not return to the caller. Instead, it passes a status value to the host
operating system, like the function exit().

The effects on open stream buffers is implementation defined.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

exit()

stdlib.h
 Environment Communication

CodeWarrior Implementation of the C Standard Library 267

Terminates a program normally.

#include <stdlib.h>

void exit(int status);

status

The exit error value.

Remarks

The exit() function calls every function installed with atexit() in the reverse order
of their installation, flushes the buffers and closes all open streams, then returns to the
operating system with the value in status .

Example of exit() usage

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *f;

 int count;

 /* Create a new file for output, exit on failure. */

 if ((f = fopen("foofoo", "w")) == NULL) {

 printf("Can't create file.\n");

 exit(1);

 }

 /* Output numbers 0 to 9. */

 for (count = 0; count < 10; count++)

 fprintf(f, "%5d", count);

 /* Close the file. */

 fclose(f);

 return 0;

}

getenv()

Accesses the environment list.

#include <stdlib.h>

stdlib.h
Environment Communication

268 CodeWarrior Implementation of the C Standard Library

char *getenv(const char *name);

name

A pointer to a character string containing the variable to search
for.

Remarks

getenv() returns a pointer to the value of the environment value, encoded as a
character string. It returns NULL on failure.

Example of getenv() usage

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 char *value;

 char *var = "path";

 if((value = getenv(var)) == NULL)

 printf("%s is not a environmental variable", var);

 else

 printf("%s = %s \n", var, value);

 return 0;

}

Output:

path = c:\Program Files\Freescale\codewarrior;c:\WINNT\system32

_putenv()

Enters an item into the environment list.

#include <stdlib.h>

char *_putenv(const char *name);

name

A pointer to the item to add to the list.

Remarks

The function putenv() returns NULL on success or minus one on failure to enter the
environmental variable.

This function is not specified in the ISO/IEC standards. It is an extension of the standard
library.

stdlib.h
 Searching and Sorting

CodeWarrior Implementation of the C Standard Library 269

system()

Environment list assignment.

#include <stdlib.h>

int system(const char *string);

string

A pointer to a character string containing a command for the
host operating system.

Remarks

The system() function returns zero if successful or minus one on failure.

Searching and Sorting
Searching and sorting array elements.

bsearch()

Uses the binary search algorithm to make an efficient search for an item in a sorted array.

#include <stdlib.h>

void *bsearch(

 const void *key,

 const void *base,

 size_t num,

 size_t size,

 int (*compare) (const void *, const void *));

key

Search criteria.

base

The array to be searched.

num

The number of elements in the array.

size

The size of each element in the array.

stdlib.h
Searching and Sorting

270 CodeWarrior Implementation of the C Standard Library

compare

A pointer to a comparison function.

Remarks

The key argument points to the item you want to search for.

The base argument points to the first element of the array to search. This array must
already be sorted in ascending order, based on the comparison requirements of the
function pointed to by the compare argument.

The compare argument is a pointer to a programmer-supplied function that
bsearch() calls to compare two elements of the array. This comparison function takes
two element pointers as arguments. If the element that the first argument points is equal
to the element that the second argument points to, the comparison function must return
0 . If the first argument is less than the second, the comparison function must return a
negative number. If the first argument is greater than the second argument, the function
must return a positive number.

bsearch() returns a pointer to the element in the array matching the item pointed to by
key . If no match was found, bsearch() returns a null pointer (NULL).

Example of bsearch usage

/* A simple telephone directory manager.

 This program accepts a list of names and

 telephone numbers, sorts the list, then

 searches for specified names.

*/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

/* Maximum number of records in the directory. */

#define MAXDIR 40

/* Telephone directory record */

typedef struct direntry{

 char lname[15]; /* Key field, see comp(). */

 char fname[15];

 char phone[15];

} direntry;

int comp(const direntry *, const direntry *);

stdlib.h
 Searching and Sorting

CodeWarrior Implementation of the C Standard Library 271

direntry *look(char *);

direntry directory[MAXDIR];

int reccount = 0;

int main(void)

{

 direntry *next = directory;

 direntry *ptr = NULL;

 char lookstr[15];

 printf("Telephone directory program.\n");

 printf("Enter blank last name when done.\n");

 do {

 printf("\nLast name: ");

 gets(next->lname);

 if (strlen(next->lname) == 0)

 break;

 printf("First name: ");

 gets(next->fname);

 printf("Phone number: ");

 gets(next->phone);

 ++reccount;

 } while (reccount < MAXDIR));

 printf("Thank you. Now sorting. . .\n");

 /* Sort the array using qsort(). */

 qsort(directory, reccount, sizeof(direntry), comp);

 printf("Enter last name to search for,\n");

 printf("blank to quit.\n");

 printf("\nLast name: ");

 gets(lookstr);

 while (strlen(lookstr) > 0) {

 ptr = look(lookstr);

 if (ptr != NULL)

 printf(

 "%s, %s: %s\n",

 ptr->lname,

 ptr->fname,

stdlib.h
Searching and Sorting

272 CodeWarrior Implementation of the C Standard Library

 ptr->phone);

 else

 printf("Can't find %s.\n", lookstr);

 printf("\nLast name: ");

 gets(lookstr);

 }

 printf("Done.\n");

 return 0;

}

int comp(const direntry *rec1, const direntry *rec2)

{

 return (strcmp((char *)rec1->lname, (char *)rec2->lname));

}

/* Search through the array using bsearch() */

direntry *look(char k[])

{

 return (direntry *) bsearch(k, directory, reccount,

 sizeof(direntry), comp);

}

Output

Telephone directory program.

Enter blank last name when done.

Last name: Mation

First name: Infor

Phone number: 555-1212

Last name: Bell

First name: Alexander

Phone number: 555-1111

Last name: Johnson

First name: Betty

Phone number: 555-1010

Last name:

Thank you. Now sorting. . .

Enter last name to search for,

blank to quit.

Last name: Mation

Infor, Mation: 555-1212

stdlib.h
 Searching and Sorting

CodeWarrior Implementation of the C Standard Library 273

Last name: Johnson

Johnson, Betty: 555-1010

Last name:

Done.

qsort()

Sorts an array.

#include <stdlib.h>

void qsort(void *base,size_t nmemb, size_t size,

 int (*compare) (const void *, const void *))

base

A pointer to the array to be sorted.

nmemb

The number of elements.

size

The size of a single element, expressed as a number of
characters.

compare

A pointer to a comparison function.

Remarks

The qsort() function sorts an array using the Quicksort algorithm. It sorts the array
without displacing it; the array occupies the same memory it had before the call to
qsort().

The base argument is a pointer to the base of the array to be sorted.

The nmemb argument specifies the number of array elements to sort.

The size argument specifies the size of an array element.

The compare argument is a pointer to a programmer-supplied compare function. The
function takes two pointers to different array elements and compares them based on the
key. If the two elements are equal, compare must return a zero. The compare function
must return a negative number if the first element is less than the second. Likewise, the
function must return a positive number if the first argument is greater than the second.

stdlib.h
Integer Arithmetic

274 CodeWarrior Implementation of the C Standard Library

Integer Arithmetic
Absolute value and division operations for integer values.

abs()

Computes the absolute value of an integer.

#include <stdlib.h>

int abs(int i);

i

Value from which to compute the absolute value.

Remarks

abs() returns the absolute value of its argument. Note that the two's complement
representation of the smallest negative number has no matching absolute integer
representation.

abs() example

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 int i = -20;

 long int j = -48323;

 long long k = -9223372036854773307;

 printf("Absolute value of %d is %d.\n", i, abs(i));

 printf("Absolute value of %ld is %ld.\n", j, labs(j));

 printf("Absolute value of %lld is %lld.\n", k, llabs(k));

 return 0;

}

Output:

Absolute value of -20 is 20.

Absolute value of -48323 is 48323.

Absolute value of -9223372036854773307 is 9223372036854773307.

stdlib.h
 Integer Arithmetic

CodeWarrior Implementation of the C Standard Library 275

div()

Computes the integer quotient and remainder.

#include <stdlib.h>

div_t div(int numer, int denom);

numer

The numerator.

denom

The denominator.

Remarks
The div_t type is defined in div_t.h as

typedef struct { int quot, rem; } div_t;

div() divides denom into numer and returns the quotient and remainder as a div_t
type.

Example of div() usage.

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 div_t result;

 ldiv_t lresult;

 int d = 10, n = 103;

 long int ld = 1000L, ln = 1000005L;

 result = div(n, d);

 lresult = ldiv(ln, ld);

 printf("%d / %d has a quotient of %d\n",

 n, d, result.quot);

 printf("and a remainder of %d\n", result.rem);

 printf("%ld / %ld has a quotient of %ld\n",

 ln, ld, lresult.quot);

 printf("and a remainder of %ld\n", lresult.rem);

stdlib.h
Integer Arithmetic

276 CodeWarrior Implementation of the C Standard Library

 return 0;

}

Output:

103 / 10 has a quotient of 10

and a remainder of 3

1000005 / 1000 has a quotient of 1000

and a remainder of 5

labs()

Computes long integer absolute value.

#include <stdlib.h>

long int labs(long int j);

j

The value to be computed.

Remarks

This function returns the absolute value of its argument as a value of type long int.

ldiv()

Computes the long integer quotient and remainder.

#include <stdlib.h>

ldiv_t ldiv(long int numer, long int denom);

numer

The numerator.

denom

The denominator.

Remarks
The ldiv_t type is defined in div_t.h as

typedef struct { long int quot, rem; } ldiv_t;

ldiv() divides denom into numer and returns the quotient and remainder as a ldiv_t
type.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

stdlib.h
 Integer Arithmetic

CodeWarrior Implementation of the C Standard Library 277

llabs()

Computes long long integer absolute value.

#include <stdlib.h>

long long llabs(long long j);

j

Value from which to compute the absolute value.

Remarks

llabs() returns the absolute value of its argument. Note that the two's complement
representation of the smallest negative number has no matching absolute integer
representation.

This function is not specified in the ISO/IEC standards. It is an extension of the standard
library.

lldiv()

Computes the long long integer quotient and remainder.

#include <stdlib.h>

lldiv_t lldiv(long long numer, long long denom);

numer

The numerator.

denom

The denominator.

Remarks
The lldiv_t type is defined in div_t.h as

typedef struct { long long quot, rem; } lldiv_t;

lldiv() divides denom into numer and returns the quotient and remainder as a
lldiv_t type.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

stdlib.h
Wide-Character and Multibyte Character Conversion

278 CodeWarrior Implementation of the C Standard Library

Wide-Character and Multibyte Character
Conversion

Converting between wide and multibyte characters and character strings.

mblen()

Computes the length of an encoded multibyte character string, encoded as defined by the
LC_CTYPE category of the current locale.

#include <stdlib.h>

int mblen(const char *s, size_t n);

s

A pointer to the multibyte character string to measure.

n

The maximum size of the multibyte character string.

Remarks

The mblen() function returns the length of the multibyte character pointed to by s . It
examines a maximum of n characters.

If s is a null pointer, the mblen() function returns a nonzero or zero value signifying
whether multibyte encoding does or does not have state-dependent encoding. If s is not a
null pointer, the mblen() function either returns 0 (if s points to the null character), or
returns the number of bytes that are contained in the multibyte.

mbtowc()

Translatse a multibyte character to a wchar_t type.

#include <stdlib.h>

int mbtowc(wchar_t *pwc, const char *s, size_t n);

pwc

The wide-character destination.

s

The string to convert.

stdlib.h
 Wide-Character and Multibyte Character Conversion

CodeWarrior Implementation of the C Standard Library 279

n

The number of wide characters in pwc.

Remarks

If s is not a null pointer, the mbtowc() function examines at most n bytes starting with
the byte pointed to by s to determine whether the next multibyte character is a complete
and valid encoding of a Unicode character encoded as defined by the LC_CTYPE
category of the current locale. If so, and pwc is not a null pointer, it converts the
multibyte character, pointed to by s, to a character of type wchar_t, pointed to by pwc.

mbtowc() returns -1 if n is zero and s is not a null pointer or if s points to an
incomplete or invalid multibyte encoding.

mbtowc() returns 0 if s is a null pointer or s points to a null character ('\0').

mbtowc() returns the number of bytes of s required to form a complete and valid
multibyte encoding of the Unicode character.

In no case will the value returned be greater than n or the value of the macro MB_CUR_
MAX.

wctomb()

Translate a wchar_t type to a multibyte character encoded as defined by the
LC_CTYPE category of the current locale.

#include <stdlib.h>

int wctomb(char *s, wchar_t wchar);

s

A pointer to a multibyte character string.

wchar

A wide character to convert.

Remarks

The MSL implementation of the wctomb() function converts a wchar_t type Unicode
character to a multibyte character encoded as defined by the LC_CTYPE category of
the current locale. If s is not a null pointer, the encoded multibyte character is stored in
the array whose first element is pointed to by s. At most MB_CUR_MAX characters are
stored. If wchar is a null wide character, a null byte is stored.

wctomb() returns 1 if s is not null and returns 0, otherwise it returns the number of
bytes that are contained in the multibyte character stored in the array whose first element
is pointed to by s.

stdlib.h
Wide-Character and Multibyte Character Conversion

280 CodeWarrior Implementation of the C Standard Library

mbstowcs()

Converts a multibyte character array encoded as defined by the LC_CTYPE category of
the current locale to a wchar_t array.

#include <stddlib.h>

size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);

pwcs

A pointer to the wide-character destination of the conversion.

s

A pointer to the multibyte character string to convert.

n

The number of wide characters in pwc.

Remarks

This function converts a sequence of multibyte characters encoded as defined by the
LC_CTYPE category of the current locale from the character array pointed to by s and
stores not more than n of the corresponding Unicode characters into the wide character
array pointed to by pwcs. No multibyte characters that follow a null character (which
is converted into a null wide character) will be examined or converted.

If it encounters an invalidly encoded character, mbstowcs() returns the value (size_
t)(-1). Otherwise mbstowcs returns the number of elements of the array pointed to
by pwcs modified, not including any terminating null wide character.

wcstombs()

Translate a wchar_t type character array to a multibyte character array encoded as
defined by the LC_CTYPE category of the current locale.

#include <stdlib.h>

size_t wcstombs(char *s, const wchar_t *pwcs, size_t n);

s

A pointer to a multibyte character string destination for the
conversion.

pwcs

A pointer to the wide-character string to convert.

stdlib.h
 Wide-Character and Multibyte Character Conversion

CodeWarrior Implementation of the C Standard Library 281

n

The maximum number of wide characters in pwcs to convert.

Remarks

The MSL implementation of the wcstombs() function converts a character array
containing wchar_t type Unicode characters to a character array containing multibyte
characters encoded as defined by the LC_CTYPE category of the current locale. The
wchar_t type is defined in stddef.h. Each wide character is converted as if by a call
to the wctomb() function. No more than n bytes will be modified in the array pointed
to by s.

The function terminates prematurely if a nul character is reached.

wcstombs() returns the number of bytes modified in the character array pointed to by
s, not including a terminating null character, if any.

stdlib.h
Wide-Character and Multibyte Character Conversion

282 CodeWarrior Implementation of the C Standard Library

CodeWarrior Implementation of the C Standard Library 283

22
string.h

This header file declares functions for comparing, copying, concatenating, and searching
character strings and memory.

The functions in this header file follow a naming convention that describes how the
function varies its operation and on what kind of data it operates on. Each function begins
with one of these prefixes:
str

Operates on nul-terminated character strings.
strn

Accepts a parameter that specifies the maximum length of the string
to operate on.

stri
Ignores letter case. These functions are non-standard.

mem
Operates on a char-based block of memory.

Copying Characters
Copying characters between memory areas and null-terminated strings.

memcpy()

Copies a contiguous memory block.

#include <string.h>

void *memcpy(void *dest, const void *source, size_t n);

dest

A pointer to an area of memory to copy to.

source

A pointer to an area of memory to copy.

string.h
Copying Characters

284 CodeWarrior Implementation of the C Standard Library

n

The maximum number of characters to copy from source wto
dest.

Remarks

This function copies the first n characters from the item pointed to by source to the item
pointed to by dest. The function has undefined behavior if the areas pointed to by dest
and source overlap. Use the memmove() function to reliably copy overlapping memory
blocks.

The function returns the value of dest.

This facility may not be available on some configurations of the MSL.

memmove()

Copy an overlapping contiguous memory block.

#include <string.h>

void *memmove(void *dest, const void *source, size_t n);

dest

A pointer to an area of memory to copy to.

source

A pointer to an area of memory to copy.

n

The maximum number of characters to copy from source to
dest.

Remarks

This function copies the first n characters of the item pointed to by source to the
item pointed to by dest. Unlike memcpy(), the memmove() function safely copies
overlapping memory blocks.

This function returns the value of dest.

This facility may not be available on some configurations of the MSL.

strcpy()

Copies one character array to another.

string.h
 Copying Characters

CodeWarrior Implementation of the C Standard Library 285

#include <string.h>

char *strcpy(char *dest, const char *source);

dest

A pointer to a memory area to copy the character string to.

source

A pointer to the character string to copy.

Remarks

This function function copies the character array pointed to by source to the character
array pointed to dest. The source argument must point to a null-terminated character
array. The resulting character array at dest will be null-terminated.

This function has undefined behavior if the arrays pointed to by dest and source overlap.

This function can be the cause of buffer overflow bugs in your program if the
memory area pointed to by dest is not large enough to contain source. Consider using
strncpy() instead.

The function returns the value of dest.

This facility may not be available on some configurations of the MSL.

Example of strcpy() usage.

#include <string.h>

#include <stdio.h>

int main(void)

{

 char s[] = "woodworking";

 /* String d must be large enough to contain string s. */

 char d[30] = "";

 printf(" s=%s\n d=%s\n", s, d);

 strcpy(d, s);

 printf(" s=%s\n d=%s\n", s, d);

 return 0;

}

Output:

 s=woodworking

string.h
Copying Characters

286 CodeWarrior Implementation of the C Standard Library

 d=

 s=woodworking

 d=woodworking

strncpy

Copies a specified number of characters.

#include <string.h>

char *strncpy(char *dest, const char *source, size_t n);

dest

A pointer to a memory to copy the character string to.

source

A pointer to the character string to copy to dest.

n

The maximum number of characters to copy.

Remarks

The strncpy() function copies a maximum of n characters from the character array
pointed to by source to the character array pointed to by dest. Neither dest nor source
need necessarily point to null-terminated character arrays. This function has undefined
behavior if dest and source overlap.

If a null character ('\0') is reached in source before n characters have been copied, the
function continues padding dest with null characters until n characters have been copied
to dest.

The function does not terminate dest with a null character if n characters are copied from
source before reaching a null character.

The function returns the value of dest.

This facility may not be available on some configurations of the MSL.

Example of strncpy usage.

#include <string.h>

#include <stdio.h>

#define MAX 50

int main(void)

string.h
 Concatenating Characters

CodeWarrior Implementation of the C Standard Library 287

{

 char d[MAX];

 char s[] = "123456789ABCDEFG";

 strncpy(d, s, 9);

 /* Terminate d explicitly in case strncpy() did not. */

 d[MAX] = '\0';

 puts(d);

 return 0;

}

Output:

123456789

Concatenating Characters
Appending characters to null-terminated strings.

strcat()

Concatenates two character arrays.

#include <string.h>

char *strcat(char *dest, const char *source);

dest

The destination string.

source

The source string to append to dest.

Remarks

This function appends a copy of the character array pointed to by source to the end of the
character array pointed to by dest. The dest and source arguments must both point to null
terminated character arrays. The function terminates the resulting character array with a
null character.

The function returns the value of dest.

string.h
Concatenating Characters

288 CodeWarrior Implementation of the C Standard Library

This facility may not be available on some configurations of the MSL.

Example of strcat() usage.

#include <string.h>

#include <stdio.h>

int main(void)

{

 /* Specify a destination string that has enough room to append

 s2. */

 char s1[100] = "The quick brown fox ";

 char s2[] = "jumped over the lazy dog.";

 strcat(s1, s2);

 puts(s1);

 return 0;

}

Output:

The quick brown fox jumped over the lazy dog.

strncat()

Appends up to a maximum of a specified number of characters to a character array.

#include <string.h>

char *strncat(char *dest, const char *source, size_t n);

dest

A pointer to a character to append to.

source

A pointer to the character string to append to dest.

n

The maximum number of characters to append from source.

Remarks

string.h
 Comparing Characters

CodeWarrior Implementation of the C Standard Library 289

This function appends up to a maximum of n characters from the character array pointed
to by source and an extra null character ('\0'). to the character array pointed to by dest.
The dest argument must point to a null-terminated character array. The source argument
does not necessarily have to point to a null-terminated character array.

If the function encounters a null character in source before n characters have been
appended, the function appends a null character to dest and stops.

The function returns the value of dest.

This facility may not be available on some configurations of the MSL.

Example of strncat() usage.

#include <string.h>

#include <stdio.h>

int main(void)

{

 char s1[100] = "abcdefghijklmnopqrstuv";

 char s2[] = "wxyz0123456789";

 strncat(s1, s2, 4);

 puts(s1);

 return 0;

}

Output:

abcdefghijklmnopqrstuvwxyz

Comparing Characters
Comparing characters in memory areas and null-terminated strings.

memcmp()

Compare two blocks of memory.

#include <string.h>

int memcmp(const void *s1, const void *s2, size_t n);

s1

string.h
Comparing Characters

290 CodeWarrior Implementation of the C Standard Library

The memory to compare.

s2

The comparison memory.

n

The maximum length to compare.

Remarks

Thi function compares the first n characters of s1 to s2, one character at a time.

The function returns a zero if all n characters pointed to by s1 and s2 are equal. The
function returns a negative value if the first non-matching character pointed to by s1 is
less than the character pointed to by s2. The function returns a positive value if the first
non-matching character pointed to by s1 is greater than the character pointed to by s2.

This facility may not be available on some configurations of the MSL.

strcmp()

Compares two character strings.

#include <string.h>

int strcmp(const char *s1, const char *s2);

s1

The string to compare.

s2

The comparison string.

Remarks

This function compares the character array pointed to by s1 to the character array pointed
to by s2. The function starts at the beginning of each and stops the comparison when it
reaches a null character in s1 or s2. Both strings must be null terminated character arrays.

The function returns:

• zero if all characters in s1 are identical to and appear in the same order as the
characters in s2

• a negative value if the numeric value of first non-matching character in s1 is less
than its counterpart in s2

• a positive value if the numeric value of first non-matching character in s1 is greater
than its counterpart in s2

This facility may not be available on some configurations of the MSL.

Example of strcmp() usage.

string.h
 Comparing Characters

CodeWarrior Implementation of the C Standard Library 291

#include <string.h>

#include <stdio.h>

#define MAX 20

int main (void)

{

 char s1[] = "butter";

 char s2[] = "olive oil";

 char dest[MAX];

 if (strcmp(s1, s2) < 0)

 strcpy(dest, s2);

 else

 strcpy(dest, s1);

 printf(" s1=%s\n s2=%s\n dest=%s\n", s1, s2, dest);

 return 0;

}

Output:

 s1=butter

 s2=olive oil

 dest=olive oil

strcoll()

Compare two character arrays according to locale.

#include <string.h>

int strcoll(const char *s1, const char *s2);

s1

The string to compare.

s2

The comparison string.

Remarks

string.h
Comparing Characters

292 CodeWarrior Implementation of the C Standard Library

The ISO/IEC standards specify that this function compares two character arrays based on
the LC_COLLATE component of the current locale.

However, the MSL implementation of strcoll() ignores the current locale. Instead,
it compares two character arrays using strcmp(). It is included in the string library to
conform to the ISO/IEC C Standard Library specification.

The function returns the same values that strcmp() returns.

This facility may not be available on some configurations of the MSL.

strncmp()

Compares up to a maximum number of characters.

#include <string.h>

int strncmp(const char *s1, const char *s2, size_t n);

s1

A pointer to the character string to compare.

s2

A pointer to the comparison string.

n

The maximum number of characters to compare.

Remarks

This function compares n characters of the character array pointed to by s1 to n
characters of the character array pointed to by s2. Neither s1 nor s2 needs to be null-
terminated character arrays.

The function stops if it reaches a null character before n characters have been compared.

The function returns:

• zero if all characters in s1 are identical to and appear in the same order as the
characters in s2

• a negative value if the numeric value of first non-matching character in s1 is less
than its counterpart in s2

• a positive value if the numeric value of first non-matching character in s1 is greater
than its counterpart in s2

This facility may not be available on some configurations of the MSL.

Example of strncmp() usage.

#include <string.h>

string.h
 Comparing Characters

CodeWarrior Implementation of the C Standard Library 293

#include <stdio.h>

int main(void)

{

 char s1[] = "12345anchor";

 char s2[] = "12345zebra";

 if (strncmp(s1, s2, 5) == 0)

 printf("%s is equal to %s\n", s1, s2);

 else

 printf("%s is not equal to %s\n", s1, s2);

 return 0;

}

Output:

12345anchor is equal to 12345zebra

strxfrm()

Transforms a locale-specific character array.

#include <string.h>

size_t strxfrm(char *dest, const char *source, size_t n);

dest

A pointer to a memory area to copy the transformed string to.

source

A pointer to the character string to transform.

n

The maximum number of characters in source to transform.

Remarks

This function copies characters from the character array pointed to by source to the
character array pointed to by dest, transforming each character as specified by the LC_
COLLATE component of the current locale. The transformation creates a string in dest so
that applying the strcmp() function to two transformed strings returns a value greater
than, equal to, or less than zero, corresponding to the result of the strcoll() function
applied to the same two original strings.

string.h
Searching Characters

294 CodeWarrior Implementation of the C Standard Library

The MSL implementation of this function ignores the current locale. Instead, this
function copies a maximum of n characters from the character array pointed to by source
to the character array pointed to by dest using the strncpy() function. It is included in
the string library to conform to the ISO/IEC C Standard Library specification.

The function returns the length of dest after it has received source.

This facility may not be available on some configurations of the MSL.

Searching Characters
Searching for characters in memory areas and null-terminated strings.

memchr()

Searches for an occurrence of a character.

#include <string.h>

void *memchr(const void *s, int c, size_t n);

s

The memory to search

c

The character to search for.

n

The maximum length to search.

Remarks

This function looks for the first occurrence of c in the first n characters of the memory
area pointed to by s.

The function returns a pointer to the found character, or a null pointer (NULL) if c cannot
be found.

This facility may not be available on some configurations of the MSL.

Example of memchr() usage.

#include <string.h>

#include <stdio.h>

#define ARRAYSIZE 100

string.h
 Searching Characters

CodeWarrior Implementation of the C Standard Library 295

int main(void)

{

 /* s1 must by same length as s2 for this example! */

 char s1[ARRAYSIZE] = "laugh* giggle 231!";

 char s2[ARRAYSIZE] = "grunt sigh# snort!";

 char dest[ARRAYSIZE];

 char *strptr;

 int len1, len2, lendest;

 /* Clear destination string using memset(). */

 memset(dest, '\0', ARRAYSIZE);

 /* String lengths are needed by the mem functions. */

 /* Add 1 to include the terminating '\0' character. */

 len1 = strlen(s1) + 1;

 len2 = strlen(s2) + 1;

 lendest = strlen(dest) + 1;

 printf(" s1=%s\n s2=%s\n dest=%s\n\n", s1, s2, dest);

 if (memcmp(s1, s2, len1) > 0)

 memcpy(dest, s1, len1);

 else

 memcpy(dest, s2, len2);

 printf(" s1=%s\n s2=%s\n dest=%s\n\n", s1, s2, dest);

 /* Copy s1 onto itself using memchr() and memmove(). */

 strptr = (char *)memchr(s1, '*', len1);

 memmove(strptr, s1, len1);

 printf(" s1=%s\n s2=%s\n dest=%s\n\n", s1, s2, dest);

 return 0;

}

Output:

string.h
Searching Characters

296 CodeWarrior Implementation of the C Standard Library

 s1=laugh* giggle 231!

 s2=grunt sigh# snort!

 dest=

 s1=laugh* giggle 231!

 s2=grunt sigh# snort!

 dest=laugh* giggle 231!

 s1=laughlaugh* giggle 231!

 s2=grunt sigh# snort!

 dest=laugh* giggle 231!

strchr()

Searches for an occurrence of a character in a character string.

#include <string.h>

char *strchr(const char *s, int c);

s

The string to search.

c

The character to search for.

Remarks

This function searches for the first occurrence of the character c in the character array
pointed to by s. The function stops when it finds c or when it reaches the null character.
The s argument must point to a null-terminated character array.

The function returns a pointer to the successfully located character. If it fails it returns a
null pointer (NULL).

This facility may not be available on some configurations of the MSL.

Example of strchr() usage.

#include <string.h>

#include <stdio.h>

int main(void)

{

 char s[] = "tree * tomato eggplant garlic";

 char *strptr;

string.h
 Searching Characters

CodeWarrior Implementation of the C Standard Library 297

 strptr = strchr(s, '*');

 if (strptr != NULL)

 puts(strptr);

 return 0;

}

Output:

* tomato eggplant garlic

strcspn()

Find the first character of one string that is in another string.

#include <string.h>

size_t strcspn(const char *s1, const char *s2);

s1

The string to search.

s2

A string containing a list of characters to search for.

Remarks

This function finds the first occurrence in the string pointed to by s1 of any character in
the string pointed to by s2. These strings must be null-terminated. The function starts
examining characters at the beginning of s1 and continues searching until a character in
s1 matches a character in s2.

The function returns the index of the first character in s1 that matches a character in s2.
The function considers the null characters that terminate the strings.

This facility may not be available on some configurations of the MSL.

Example of strcspn() usage.

#include <string.h>

#include <stdio.h>

int main(void)

{

 char s1[] = "chocolate *cinnamon* 2 ginger";

 char s2[] = "1234*";

string.h
Searching Characters

298 CodeWarrior Implementation of the C Standard Library

 size_t i;

 printf(" s1 = %s\n s2 = %s\n", s1, s2);

 i = strcspn(s1, s2);

 printf("Index returned by strcspn() is %d.\n", i);

 printf("Indexed character is %c.\n", s1[i]);

 return 0;

}

Output:

s1 = chocolate *cinnamon* 2 ginger

s2 = 1234*

Index returned by strcspn() is 10.

Indexed character is *.

strpbrk()

Look for the first occurrence of any one of an array of characters in another.

#include <string.h>

char *strpbrk(const char *s1, const char *s2);

s1

A pointer to the string to search.

s2

A pointer to a list of characters to search for.

Remarks

This function searches the character array pointed to by s1 for the first occurrence of a
character in the character array pointed to by s2.

Both s1 and s2 must point to null-terminated character arrays.

The function returns a pointer to the first character in s1 that matches any character in s2,
and returns a null pointer (NULL) if no match was found.

This facility may not be available on some configurations of the MSL.

Example of strpbrk usage.

#include <string.h>

#include <stdio.h>

string.h
 Searching Characters

CodeWarrior Implementation of the C Standard Library 299

int main(void)

{

 char s1[] = "orange banana pineapple *plum";

 char s2[] = "*%#$";

 puts(strpbrk(s1, s2));

 return 0;

}

Output:

*plum

strrchr()

Searches a string for the last occurrence of a character.

#include <string.h>

char *strrchr(const char *s, int c);

s

The string to search.

c

A character to search for.

Remarks

The strrchr() function searches for the last occurrence of c in the character array
pointed to by s. The s argument must point to a null-terminated character array.

The function returns a pointer to the character found or returns a null pointer (NULL) if it
fails.

This facility may not be available on some configurations of the MSL.

Example of strrchr() usage.

#include <string.h>

#include <stdio.h>

int main(void)

{

 const char *lastptr;

string.h
Searching Characters

300 CodeWarrior Implementation of the C Standard Library

 char s[] = "Carly Chuck";

 lastptr = strrchr(s, 'C');

 if (lastptr != NULL)

 puts(lastptr);

 return 0;

}

Output:

Chuck

strspn()

Find the first character in one string that is not in another.

#include <string.h>

size_t strspn(const char *s1, const char *s2);

s1

A pointer to a character string to search.

s2

A pointer to a list of characters to search for.

Remarks

This function finds the first character in the character string s1 that is not in the string
pointed to by s2. The function starts examining characters at the beginning of s1 and
continues searching until a character in s1 does not match any character in s2.

Both s1 and s2 must point to null-terminated character arrays.

The function returns the index of the first character in s1 that does not match a character
in s2.

This facility may not be available on some configurations of the MSL.

Example of strspn() usage.

#include <string.h>

#include <stdio.h>

int main(void)

{

string.h
 Searching Characters

CodeWarrior Implementation of the C Standard Library 301

 char s1[] = "create *build* construct";

 char s2[] = "create *";

 printf(" s1 = %s\n s2 = %s\n", s1, s2);

 printf(" %d\n", strspn(s1, s2));

 return 0;

}

Output:

 s1 = create *build* construct

 s2 = create *

 8

strstr()

Searches for a character array within another.

#include <string.h>

char *strstr(const char *s1, const char *s2);

s1

A pointer to the string to search in.

s2

A pointer to the string to search for.

Remarks

This function searches the character array pointed to by s1 for the first occurrence of the
character array pointed to by s2.

Both s1 and s2 must point to null-terminated character arrays.

The function returns a pointer to the first occurrence of s2 in s1 and returns a null pointer
(NULL) if s2 cannot be found.

This facility may not be available on some configurations of the MSL.

Example of strstr() usage.

#include <string.h>

#include <stdio.h>

int main(void)

{

string.h
Searching Characters

302 CodeWarrior Implementation of the C Standard Library

 char s1[] = "tomato carrot onion";

 char s2[] = "on";

 const char* found;

 found = strstr(s1, s2);

 if (found != NULL)

 puts(found);

 return 0;

}

Output:

onion

strtok()

Extract tokens within a character array.

#include <string.h>

char *strtok(char *str, const char *sep);

str

A pointer to a character string to separate into tokens.

sep

A pointer to a character string containing separator characters.

Remarks

This function divides a character array pointed to by str into separate tokens. The sep
argument points to a character array containing one or more separator characters. The
tokens in str are extracted by successive calls to strtok().

The function works by a sequence of calls. The first call is made with the string to be
divided into tokens as the first argument. Subsequent calls use NULL as the first argument
and returns pointers to successive tokens of the separated string.

The first call to strtok() causes it to search for the first character in str that does not
occur in sep. If no character other than those in the separator string can be found, the
function returns a null pointer (NULL). If no characters from the separator string are
found, the function returns a pointer to the original string. Otherwise the function returns
a pointer to the beginning of this first token.

string.h
 memset()

CodeWarrior Implementation of the C Standard Library 303

Make subsequent calls to strtok() with a NULL str argument, causing it to return
pointers to successive tokens in the original str character array. If no further tokens
exist, strtok() returns a null pointer.

Both str and sep must be null terminated character arrays.

The sep argument can be different for each call to strtok(). The function modifies the
character array pointed to by str.

This facility may not be available on some configurations of the MSL.

Example of strtok() usage

#include <string.h>

#include <stdio.h>

int main(void)

{

 char s[50] = "(ape+bear)*(cat+dog)";

 char *token;

 char *separator = "()+*";

 /* First call to strtok(). */

 token = strtok(s, separator);

 while(token != NULL)

 {

 puts(token);

 token = strtok(NULL, separator);

 }

 return 0;

}

Output:

ape

bear

cat

dog

memset()

string.h
strerror()

304 CodeWarrior Implementation of the C Standard Library

Sets the contents of a block of memory to the value of a single character.

#include <string.h>

void *memset(void *dest, int c, size_t n);

dest

A pointer to an area of memory to set.

c

The character to store in dest.

n

The number of characters to set.

Remarks

This function assigns c to the first n characters of the item pointed to by dest.

The function returns the value of dest.

This facility may not be available on some configurations of the MSL.

strerror()
Translate an error number into an error message.

#include <string.h>

char *strerror(int errnum);

errnum

The error number to translate.

Remarks

This function returns a pointer to a null-terminated character array that contains an error
message that corresponds to the error code in errnum. The character strings must not
be modified by the program because it may be overwritten by a subsequent calls to the
strerror() function.

Typically the value in errnum will come from the global variable errno, but
strerror() will provide a message translation for any value of type int.

This facility may not be available on some configurations of the MSL.

Example of strerror() usage.

#include <string.h>

#include <stdio.h>

string.h
 strlen()

CodeWarrior Implementation of the C Standard Library 305

int main(void)

{

 puts(strerror(8));

 puts(strerror(ESIGPARM));

 return 0;

}

Output:

unknown error (8)

Signal Error

strlen()
Computes the length of a character array.

#include <string.h>

size_t strlen(const char *s);

s

A pointer to the string to evaluate.

Remark

This function computes the number of characters in a null-terminated character array
pointed to by s. The null character ('\0') is not added to the character count.

This function's behavior is undefined if the character string pointed to by s is not null-
terminated.

The function returns the number of characters in a character array not including the
terminating null character.

This facility may not be available on some configurations of the MSL.

Example of strlen() usage.

#include <string.h>

#include <stdio.h>

int main(void)

{

 char s[] = "antidisestablishmentarianism";

string.h
strlen()

306 CodeWarrior Implementation of the C Standard Library

 printf("The length of %s is %ld.\n", s, strlen(s));

 return 0;

}

Output:

The length of antidisestablishmentarianism is 28.

CodeWarrior Implementation of the C Standard Library 307

23
time.h

This header file provides functions for reading the system clock and for manipulating
date and time values.

time_t, clock_t, tm
Data types for manipulating date and time values.

#include <time.h>

typedef clock_t /* ... */ ;

typedef time_t /* ... */ ;

struct tm {

 int tm_sec;

 int tm_min;

 int tm_hour;

 int tm_hour;

 int tm_mday;

 int tm_mon;

 int tm_year;

 int tm_wday;

 int tm_wday;

 int tm_yday;

 int tm_isdst;

};

tm_sec

Seconds, from 0 to 59.

tm_min

Minutes, from 0 to 59.

time.h
Date and Time Manipulation

308 CodeWarrior Implementation of the C Standard Library

tm_hour

Hours, from 0 to 23.

tm_mday

Day of the month, from 1 to 31.

tm_mon

Month of the year, from 0 to 11. January is month 0.

tm_year

Year, beginning at 1900.

tm_wday

Day of the week, from 0 to 6. Sunday is day 0.

tm_yday

Day of the year, from 0 to 365. January 1 is day 0.

tm_isdst

Daylight savings time. Positive if daylight savings time is in
effect, zero if it is not, and negative if such information is not
available.

Remarks

The clock_t type is a numeric, system-dependent type returned by the clock()
function.

The time_t type is a system-dependent type used to represent a calendar date and time
as seconds elapsed since a fixed date. A value of type time_t represents the number of
UTC seconds since 1970 January 1.

The type’s range and precision are defined in the ISO/IEC C standard as implementation-
defined. The MSL implementation uses an unsigned long int for time_t. Note
that this type cannot represent dates or times that exceed the size of the maximum value
of time_t (ULONG_MAX). Similarly, since time_t is unsigned, negative values are
also out of range.

Date and Time Manipulation
Retrieving, constructing, and operating on time and date values.

clock()

time.h
 Date and Time Manipulation

CodeWarrior Implementation of the C Standard Library 309

A program relative invocation of the system time.

#include <time.h>

clock_t clock(void);

Remarks

Use this function to obtain values of type clock_t, which may be used to calculate
elapsed times during the execution of a program. To compute the elapsed time in
seconds, divide the clock_t value by CLOCKS_PER_SEC, a macro defined in
time.h.

The programmer should be aware that clock_t, defined in time.h, has a finite size
that varies depending upon the target system.

The function returns a value of type clock_t representing the approximation of time
since the system was started. The function does not return an error value if an error
occurs.

This facility may not be available on some configurations of the MSL.

Example of clock() usage

#include <time.h>

#include <stdio.h>

#define MAXLOOP 100000

int main()

{

 clock_t start;

 clock_t end;

 double secs = 0;

 int i;

 start = clock();

 end = clock();

 for (i = 0; i < MAXLOOP; ++i)

 {

 ; /* Do nothing. */

 }

 secs = (double)(end - start) / (double)CLOCKS_PER_SEC;

time.h
Date and Time Manipulation

310 CodeWarrior Implementation of the C Standard Library

 printf("Elapsed seconds = %f \n", secs);

 return 0;

}

Output:

Elapsed seconds = 0.033333

difftime()

Computes the difference between two time values.

#include <time.h>

double difftime(time_t t1, time_t t2);

t1

A time value.

t2

A time value.

Remarks

This function returns the difference of t1 minus t2, expressed in seconds.

This facility may not be available on some configurations of the MSL.

mktime()

Converts a structure of type tm to a value of type time_t.

#include <time.h>

time_t mktime(struct tm *ts);

ts

A pointer to a time structure to convert.

Remarks

This function converts ts to a value of type time_t. The function returns this converted
value.

The function also adjusts the fields in ts if necessary. The tm_sec, tm_min, tm_
hour, and tm_day are processed such that if they are greater than their maximum, the

time.h
 Date and Time Manipulation

CodeWarrior Implementation of the C Standard Library 311

appropriate carry-overs are computed. For example, if ts->tm_min is 65, then the
function will set ts->tm_min to 5 and increment ts->tm_hour by 1.

The function also corrects the values in ts->tm_wday and ts->tm_yday.

This facility may not be available on some configurations of the MSL.

time()

Returns the current system calendar time.

#include <time.h>

time_t time(time_t *t);

t

A pointer to time value or NULL.

Remarks

This function returns the computer system's calendar time. If t is not a null pointer, the
calendar time is also assigned to the item it points to.

The function returns the system current calendar time.

This facility may not be available on some configurations of the MSL.

Example of time() usage.

#include <time.h>

#include <stdio.h>

int main(void)

{

 time_t systime;

 systime = time(NULL);

 puts(ctime(&systime));

 return 0;

}

Output:

Tue Nov 30 13:06:47 1993

time.h
Date and Time Conversion

312 CodeWarrior Implementation of the C Standard Library

tzname

Contains the abbreviated names of the time zones for local standard time and daylight
standard time.

#include <time.h>

extern char *tzname[2];

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

This facility may not be available on some configurations of the MSL.

tzset()

Synchronizes the library's internal data with the operating system's time zone
information.

#include <time.h>

void tzset(void);

Remarks

This function reads the value of the TZ environment variable to initialize Main Standard
Library's internal time zone information.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

This facility may not be available on some configurations of the MSL.

Date and Time Conversion
Converting date and time values to and from character strings.

asctime()

Convert a tm structure to a character array.

#include <time.h>

char *asctime(const struct tm *t);

t

time.h
 Date and Time Conversion

CodeWarrior Implementation of the C Standard Library 313

A pointer to a tm structure describing the time and date to
convert.

Remarks

This function converts a tm structure, pointed to by t, to a character array. The
asctime() and ctime() functions use the same calendar time format. This format,
expressed as a strftime() format string is "%a %b %e %H:%M: %S %Y".

The function returns a null-terminated character array pointer containing the textual
representation of the date and time described by t.

This facility may not be available on some configurations of the MSL.

Example of asctime() usage.

#include <time.h>

#include <stdio.h>

int main(void)

{

 time_t systime;

 struct tm *currtime;

 systime = time(NULL);

 currtime = localtime(&systime);

 puts(asctime(currtime));

 return 0;

}

Output:

Tue Nov 30 12:56:05 1993

ctime()

Convert a time_t type to a character array.

#include <time.h>

char *ctime(const time_t *timer);

timer

A pointer to a value of type time_t to convert.

time.h
Date and Time Conversion

314 CodeWarrior Implementation of the C Standard Library

Remarks

This function converts a time_t type to a character array with the same format as
generated by asctime().

The function returns a null-terminated character array pointer containing the converted
time_t value.

This facility may not be available on some configurations of the MSL.

Example of ctime() usage.

#include <time.h>

#include <stdio.h>

int main(void)

{

 time_t systime;

 systime = time(NULL);

 puts(ctime(&systime));

 return 0;

}

Output:

Wed Jul 20 13:32:17 1994

gmtime()

Converts a time_t value to Coordinated Universal Time (UTC).

#include <time.h>

struct tm *gmtime(const time_t *time);

time

A pointer to a time value.

Remarks

This function converts the calendar time pointed to by time into a broken-down time,
expressed as UTC. The function function returns a pointer to that object.

This facility may not be available on some configurations of the MSL.

time.h
 Date and Time Conversion

CodeWarrior Implementation of the C Standard Library 315

Example of gmtime() usage

#include <time.h>

#include <stdio.h>

int main(void)

{

 time_t systime;

 struct tm *utc;

 systime = time(NULL);

 utc = gmtime(&systime);

 printf("Universal Coordinated Time:\n");

 puts(asctime(utc));

 return 0;

}

Output:

Universal Coordinated Time:

Thu Feb 24 18:06:10 1994

localtime()

Converts a value of type time_t to a structure of type tm.

#include <time.h>

struct tm *localtime(const time_t *time);

time

A pointer to a time value to convert.

Remarks

This function function converts a value of type time_t, pointed to by timer, and
converts it to a structure of type tm. The function returns this pointer. The pointer is
static; it is overwritten each time localtime() is called.

This facility may not be available on some configurations of the MSL.

time.h
Date and Time Conversion

316 CodeWarrior Implementation of the C Standard Library

strftime()

Formats a tm structure.

#include <time.h>

size_t strftime(char *s, size_t max, const char *format, const

 struct tm *ts);

s

A pointer to a character string in which to store the formatted
text.

max

The maximum number of characters that may be stored at s.

format

A pointer to a character string that describes how to format the
text.

ts

A pointer to time structure to convert to text.

Remarks

This function converts ts to a null-terminated character array, s, using the format
specified by format. The number of characters stored in the formatted string will not
exceed the number specified by max.

The format argument points to a character array containing normal text and conversion
specifications similar to the format string used by the snprintf() function.
Conversion specifiers for date and time values are prefixed with a percent sign (%).
Doubling the percent sign (%%) will output a single %.

If any of the specified values are outside the normal range, the characters stored are
unspecified.

A conversion specifier that has a E prefix specifies that the resulting text should use
the locale's alternate textual representation. The O prefix specifies the locale's alternate
numeric symbols. In the "C" locale, the E and O modifiers are ignored. Also, some of the
formats are dependent on the LC_TIME component of the current locale.

The strftime() function returns the total number of characters that were stored in s if
the total number of characters, including the null character, is less than the value of max.
If the formatted string cannot fit in s, strftime() returns 0.

Table 23.1 lists the conversion specifies recognized by strftime().

time.h
 Date and Time Conversion

CodeWarrior Implementation of the C Standard Library 317

Table 23.1: Conversion specifies for time and date values.

This conversion specifier... produces this text.

a Locale's abbreviated weekday name.

A Locale's full weekday name.

b Locale's abbreviated month name.

B Locale's full month name.

c Equivalent to "%A %B %d %T %Y".

C The year divided by 100 and truncated to
an integer, as a two-digit decimal number
from 00 to 99.

d Day of the month as a 2-digit decimal
number from 01 to 31.

D Equivalent to "%m/%d/%y".

e The day of the month as a decimal
number. Single digit values are preceded
by a space character.

F Equivalent to "%Y-%m-%d".

g The last 2 digits of the week-based year
(as described by the ISO/IEC 8601 stan-
dard).

G The week-based year (as described by
the ISO/IEC 8601 standard).

h Equivalent to "%b".

H The hour of the 24-hour clock as a 2-digit
decimal number from 00 to 23.

I The hour of the 12-hour clock as a 2-digit
decimal number from 01 to 12.

j The day of the year as a 3-digit decimal
number from 001 to 366.

time.h
Date and Time Conversion

318 CodeWarrior Implementation of the C Standard Library

This conversion specifier... produces this text.

m The month as a 2-digit decimal number
from 01 to 12.

M The minute as a 2-digit decimal number
from 00 to 59.

n Newline character.

p Locale's representation of the AM or PM
designation for a 12-hour clock.

r Locale's 12-hour clock time.

R Equivalent to "%H:%M".

S The second as a 2-digit decimal number
from 00 to 60.

t Horizontal tab.

T Equivalent to "%H:%M:%S".

u The weekday as a single-digit decimal
number from 1 to 7

U The week number of the year as a 2-digit
decimal number from 00 to 53. Sunday is
considered the first day of the week.

w The weekday as a single-digit decimal
number from 0 to 6. Sunday is the first
day of the week.

W The week of the year as a 2-digit decimal
number from 00 to 51. Monday is the first
day of the week.

x "%A %B %d %Y"

X "%T"

y The last two digits of the year as a
decimal number.

Y The year as a 4-digit number.

time.h
 Date and Time Conversion

CodeWarrior Implementation of the C Standard Library 319

This conversion specifier... produces this text.

z The time zone offset from UTC or the
empty string if the time zone is unknown.

Z The locale's time zone name, its abbrevi-
ation, or the empty string if the time zone
is unknown.

This facility may not be available on some configurations of the MSL.

Example of strftime() usage.

#include <time.h>

#include <stdio.h>

#include <string.h>

#define MAXTS 1000

int main(void)

{

 time_t lclTime;

 struct tm *now;

 char ts[MAXTS];

 size_t result;

 lclTime = time(NULL);

 now = localtime(&lclTime);

 result = strftime(ts, MAXTS, "Today's abbreviated name is %a",

 now);

 if (result == 0)

 exit(1);

 puts(ts);

 result = strftime(ts, MAXTS, "Today's full name is %A", now);

 if (result == 0)

 exit(1);

 puts(ts);

time.h
Date and Time Conversion

320 CodeWarrior Implementation of the C Standard Library

 return 0;

}

Output:

Today's abbreviated name is Wed

Today's full name is Wednesday

CodeWarrior Implementation of the C Standard Library 321

24
tgmath.h

Type-generic macros for invoking functions declared in math.h and complex.h.

The math.h and complex.h header files declare many functions in variants to accept
arguments and return values in each of the floating-point types, double, float, and
long double. A function typically uses the double type. A function of the same
name with a suffix of “f” uses the float type and a function with a suffix of “l” uses
the long double type. For example, math.h declares the cos(), cosf(), and
cosl() functions. These functions all behave similarly but accept and return values of
type double, float, and long double, respectively.

The macros defined in the tgmath.h header file choose and invoke a corresponding
function in math.h or complex.h based on the types of the arguments passed to the
macro.

The header file follows these rules, in this order, to choose a function to invoke:

• if any of the macro's arguments has a complex type, use the complex variant of the
macro's corresponding function

• if any of the macro's arguments has a type of long double then use a long
double variant

• if any of the macro arguments has type double or an integer type then use a
double variant

• otherwise, use the float variant

Table 24.1 table lists the macros in tgmath.h and the corresponding function variants
in math.h and complex.h.
Table 24.1: Macros in tgmath.h

This macro in
tgmath.h...

invokes a
variant of this

function in math.h

or a variant of
this function
in complex.h

acos() acos cacos

asin() asin casin

tgmath.h

322 CodeWarrior Implementation of the C Standard Library

This macro in
tgmath.h...

invokes a
variant of this

function in math.h

or a variant of
this function
in complex.h

atan() atan catan

acosh() acosh cacosh

asinh() asinh casinh

atanh() atanh catanh

cos() cos ccos

sin() sin csin

tan() tan ctan

cosh() cosh ccosh

sinh() sinh csinh

tanh() tanh ctanh

exp() exp cexp

log() pow cpow

sqrt() sqrt csqrt

fabs() fabs cabs

log() log clog

atan2() atan2

cbrt() cbrt

ceil() ceil

copysign() copysign

erf() erf

erfc() erfc

exp2() exp2

tgmath.h

CodeWarrior Implementation of the C Standard Library 323

This macro in
tgmath.h...

invokes a
variant of this

function in math.h

or a variant of
this function
in complex.h

expm1() expm1

fdim() fdim

floor() floor

fma() fma

fmax() fmax

fmin() fmin

fmod() fmod

frexp() frexp

hypot() hypot

ilogb() ilogb

ldexp() ldexp

lgamma() lgamma

llrint() llrint

llround() llround

log10() log10

log1p() log1p

log2() log2

logb() logb

lrint() lrint

lround() lround

nearbyint() nearbyint

nextafter() nextafter

tgmath.h

324 CodeWarrior Implementation of the C Standard Library

This macro in
tgmath.h...

invokes a
variant of this

function in math.h

or a variant of
this function
in complex.h

nexttoward() nexttoward

remainder() remainder

remquo() remquo

rint() rint

round() round

scalbn() scalbn

scalbln() scalbln

tgamma() tgamma

trunc() trunc

carg() carg

cimag() cimag

conj() conj

cproj() cproj

creal() creal

CodeWarrior Implementation of the C Standard Library 325

25
wchar.h

This header file declares functions and data types for manipulating wide characters and
multibyte strings.

Wide-Character Formatted Input and Output
Input and output functions for formatting wide character strings.

#include <wchar.h>

int fwprintf(FILE * file, const wchar_t * format, ...);

int fwscanf(FILE * file, const wchar_t * format, ...);

int swprintf(wchar_t * S, size_t N, const wchar_t * format, ...);

int vfwprintf(FILE * file, const wchar_t * format_str, va_list

 arg);

int vswprintf(wchar_t * restrict s, size_t n,

 const wchar_t * restrict format, va_list arg);

int vwprintf(const wchar_t * format, va_list arg);

int wprintf(const wchar_t * format, ...);

int swscanf(const wchar_t * s, const wchar_t * format, ...);

int vfwscanf(FILE * file,

 const wchar_t * format_str, va_list arg);

wchar.h
Wide-Character Formatted Input and Output

326 CodeWarrior Implementation of the C Standard Library

int vswscanf(const wchar_t * s,

 const wchar_t * format, va_list arg);

int vwscanf(const wchar_t * format, va_list arg);

int wscanf(const wchar_t * format, ...);

Remarks

These functions operate identically to their counterpart functions in stdio.h. But
instead of operating on character strings, these functions operate on wide character
strings.

Table 25.1 matches these wide character functions to their equivalent char-based
functions in stdio.h.
Table 25.1: Wide Character Formatting Functions

This function... does the wide character
equivalent of this function.

fwprintf() fprintf()

swprintf() sprintf()

vfwprintf() vfprintf()

vswprintf() vsprintf()

vwprintf() vprintf()

wprintf() printf()

fwscanf() fscanf()

swscanf() sscanf()

vfwscanf() vfscanf()

vswscanf() vsscanf()

vscanf() vscanf()

wscanf() scanf()

wchar.h
 Wide-Character Input and Output

CodeWarrior Implementation of the C Standard Library 327

Wide-Character Input and Output
Character input and output functions for wide characters.

#include <wchar.h>

wchar_t fgetwc(FILE * file);

wchar_t *fgetws(wchar_t * s, int n, FILE * file);

wchar_t getwc(FILE * file);

wchar_t getwchar(void);

wchar_t fputwc(wchar_t c, FILE * file);

int fputws(const wchar_t * s, FILE * file);

wchar_t putwc(wchar_t c, FILE * file);

wchar_t putwchar(wchar_t c);

Remarks

These functions operate identically to their counterpart functions in stdio.h. But
instead of operating on character strings, these functions operate on wide character
strings.

Table 25.2 matches these wide character functions to their equivalent char-based
functions in stdio.h.
Table 25.2: Wide Character Input and Output Functions

This function... does the wide character
equivalent of this function.

fgetwc() fgetc()

fgetws() fgets()

wchar.h
Wide-Character Utilities

328 CodeWarrior Implementation of the C Standard Library

This function... does the wide character
equivalent of this function.

fputwc() fputc()

fputwc() fputc()

getwc() getc()

getwchar() getchar()

putwc() putc()

putwc() putc()

putwchar() putchar()

Wide-Character Utilities
Manipulating and converting wide-wharacter strings.

Wide-Character Numerical Conversion

Convert among numerical types and wide-character strings.

#include <wchar.h>

double wcstod(wchar_t * str, char ** end);

float wcstof(const wchar_t * restrict nptr,

 wchar_t ** restrict endptr);

long int wcstol(const wchar_t * restrict nptr,

 wchar_t ** restrict endptr, int base);

long double wcstold(const wchar_t * restrict nptr,

 wchar_t ** restrict endptr);

long long int wcstoll(const wchar_t * restrict nptr,

 wchar_t ** restrict endptr,

wchar.h
 Wide-Character Utilities

CodeWarrior Implementation of the C Standard Library 329

 int base);

unsigned long int wcstoul(const wchar_t * restrict nptr,

 wchar_t ** restrict endptr,

 int base);

unsigned long long int wcstoull(

 const wchar_t * restrict nptr,

 wchar_t ** restrict endptr, int base);

Remarks

These functions operate identically to their counterpart functions in stdlib.h. But
instead of operating on character strings, these functions operate on wide character
strings.

Table 25.3 matches these wide character functions to their equivalent char-based
functions in stdlib.h.
Table 25.3: Wide Character Numerical Conversion Functions

This function... does the wide character
equivalent of this function.

wcstod() strtod()

wcstof() strtof()

wcstol() strtol()

wcstoll() strtoll()

wcstoul() strtoul()

wcstoull() strtoull()

Wide-Character String Manipulation

Manipulate wide character strings.

#include <wchar.h>

wchar_t * wcscat(wchar_t * dst, const wchar_t * src);

wchar.h
Wide-Character Utilities

330 CodeWarrior Implementation of the C Standard Library

wchar_t * wcschr(const wchar_t * str, const wchar_t chr);

int wcscmp(const wchar_t * str1, const wchar_t * str2);

int wcscoll(const wchar_t *str1, const wchar_t * str2);

wchar_t * wcscpy(wchar_t * dst, const wchar_t * src);

size_t wcscspn(const wchar_t * str, const wchar_t * set);

size_t wcslen(const wchar_t * str);

wchar_t * wcsncat(wchar_t * dst,

 const wchar_t * src, size_t n);

int wcsncmp(const wchar_t * str1,

 const wchar_t * str2, size_t n);

wchar_t * wcsncpy(wchar_t * dst,

 const wchar_t * src, size_t n);

wchar_t * wcspbrk(const wchar_t * str, const wchar_t * set);

wchar_t * wcsrchr(const wchar_t * str, wchar_t chr);

size_t wcsspn(const wchar_t * str, const wchar_t * set);

wchar_t * wcsstr(const wchar_t * str, const wchar_t * pat);

wchar_t * wcstok(wchar_t * str,

 const wchar_t * set, wchar_t ** ptr););

size_t wcsxfrm(wchar_t * str1, const wchar_t * str2,

 size_t n);

void * wmemchr(const void * src, int val, size_t n);

int wmemcmp(const void * src1, const void * src2, size_t n);

void * wmemcpy(void * dst, const void * src, size_t n);

wchar.h
 Wide-Character Utilities

CodeWarrior Implementation of the C Standard Library 331

void * wmemmove(void * dst, const void * src, size_t n);

void * wmemset(void * dst, int val, size_t n);

Remarks

These functions operate identically to their counterpart functions in string.h. But
instead of operating on character strings, these functions operate on wide character
strings.

Table 25.4 matches these wide character functions to their equivalent char-based
functions in string.h.
Table 25.4: Wide Character String Functions

This function... does the wide character
equivalent of this function.

wcscat() strcat()

wcschr() strchr()

wcscmp() strcmp()

wcscoll() strcoll()

wcscpy() strcpy()

wcscspn() strcspn()

wcslen() strlen()

wcsncat() strncat()

wcsncmp() strncmp()

wcsncpy() strncpy()

wcspbrk() strpbrk()

wcsrchr() strrchr()

wcsspn() strspn()

wcsstr() strstr()

wcstok() strtok()

wchar.h
Wide-Character Date and Time Manipulation

332 CodeWarrior Implementation of the C Standard Library

This function... does the wide character
equivalent of this function.

wcsxfrm() strxfrm()

wmemcmp() memcmp()

wmemchr() memchr()

wmemcpy() memcpy()

wmemmove() memmove()

wmemset() memset()

Wide-Character Date and Time Manipulation
Convert time and date to wide character strings.

#include <wchar.h>

size_t wcsftime(wchar_t * str, size_t max_size,

 const wchar_t * format_str,

 const struct tm * timeptr);

wchar_t * wctime(const time_t * timer);

Remarks

These functions operate identically to their counterpart functions in stdio.h. But
instead of operating on character strings, these functions operate on wide character
strings.

Table 25.5 matches these wide character functions to their equivalent char-based
functions in stdio.h.
Table 25.5: Wide Character Time and Date Functions

This function... does the wide character
equivalent of this function.

wcsftime() csftime()

wchar.h
 Wide-Character Conversion

CodeWarrior Implementation of the C Standard Library 333

This function... does the wide character
equivalent of this function.

wctime() ctime()

Wide-Character Conversion
Converting between wide and multibyte characters and character strings.

btowc()

Converts a character to a wide character.

#include <wchar.h>

wint_t btowc(int c);

c

The character to be converted.

Remarks

This returns the wide character representation of the argument. The function returns
WEOF if c has the value EOF or if the current locale specifies that UTF-8 encoding is to
be used and unsigned char c does not constitute a valid single-byte UTF-8 encoded
character.

mbrlen()

Computes the length of a multibyte-encoded character string.

#include <stdlib.h>

int mbrlen(const char *s, size_t n, mbstate_t * ps);

s

A pointer to a multibyte-encoded character string.

n

The maximum size.

ps

wchar.h
Wide-Character Conversion

334 CodeWarrior Implementation of the C Standard Library

The current state of translation between multibyte and wide
character. Ignored if the encoding scheme is non-modal.

Remarks

This function returns the length of the multibyte character pointed to by s. It examines a
maximum of n characters. This function operates similarly to mblen() except that it has
an additional parameter of type mbstate_t*, which is ignored if the encoding scheme
is non-modal.
MSL supports the "C" locale with UTF-8 encoding only. It returns the
value of

mbrtowc(NULL, s, n, ps)

mbrtowc()

Converts a multibyte-encoded character to a wide character.

#include <wchar.h>

int mbrtowc(wchar_t *pwc,

 const char *s, size_t n, mbstate_t * ps);

pwc

A pointer to a wide character in which to store the result.

s

A pointer to the multibyte string to convert.

n

The maximum number of bytes at s with which to form a
multibyte character.

ps

The current state of conversion. Ignored if the encoding
scheme is non-modal.

Remarks

This function translates a multibyte character to a wchar_t character according to the
encoding specified in the LC_CTYPE component of the current locale. This function
operates identically to mbtowcs() except that it has an additional parameter of type
mbstate_t*, which is ignored if the multibyte encoding scheme is non-modal.
If s is a null pointer, this call is equivalent to

mbrtowc(NULL, "", 1, ps);

wchar.h
 Wide-Character Conversion

CodeWarrior Implementation of the C Standard Library 335

In other words, the function treats s as an empty multibyte string and
ignores the pwc and n arguments. Such a call also has the effect of
resetting the conversion state.

If s is not a null pointer, the function examines at most n bytes starting with the byte
pointed to by s to determine how many bytes are needed to complete a valid encoding of
a Unicode character. If the number of bytes that make up a complete, valid character is
less than or equal to n and pwc is not a null pointer, the function converts the multibyte
character, pointed to by s to a character of type wchar_t using the encoding scheme
specified in the LC_CTYPE component of the current locale. It stores this wide character
at the location pointed to by pwc.

The function returns one of these values:

• Zero if s points to a nul character.

• The number of bytes in the complete multibyte character that was converted to a
wide character if s points to a complete, valid multibyte character of n or fewer
bytes. The wide character is stored in the location referred to by pwc if it is not
NULL.

• -2 if the next n bytes pointed to by s constitute an incomplete but potentially valid
multibyte character. No wide character is stored at the location referred to by pwc.

• -1 if the next n bytes pointed to by s do not constitute a complete, valid multibyte
character. The function stores EILSEQ in errno. No wide character is stored at
the location referred to by pwc.

mbsinit()

Returns the state of a multibyte conversion state.

#include <wchar.h>

int mbsinit(const mbstate_t *ps);

ps

A pointer to a multibyte conversion state.

Remarks

This function returns true if ps is a null pointer or it points to a conversion state that is at
the first position of a multibyte-encoded character. The function returns false otherwise.

mbsrtowcs()

Converts a multibyte character string to a wide character string.

#include <stddlib.h>

wchar.h
Wide-Character Conversion

336 CodeWarrior Implementation of the C Standard Library

size_t mbsrtowcs(wchar_t *pwcs,

 const char **s, size_t n, mbstate_t * ps);

pwcs

A pointer to a wide character string in which to store the
converted string.

s

A pointer to a pointer to the multibyte string to convert.

n

The maximum number of wide characters to store at pwcs.

ps

The current state of conversion. Ignored if the encoding
scheme is non-modal.

Remarks

This function operates identically to the same as mbstowcs() except that it has an
additional parameter of type mbstate_t*, which is ignored if the encoding scheme is
non-modal. Also, this function returns extra information about the conversion in the s
argument.

The MSL implementation of mbsrtowcs() converts a sequence of multibyte
characters encoded according to the scheme specified in the LC_CTYPE component of
the current locale, indirectly pointed to by s. If pwcs is not a null pointer, the function
stores not more than n of the corresponding Unicode characters. The function stops if it
reaches a null character or an invalid multibyte character and stores a null wide character
to terminate the wide character string at pwcs.

If conversion stops because of a terminating null character, the function stores a null
pointer in the object pointed to by s. Otherwise, the function stores a pointer to the
address just beyond the last multibyte character converted, if any.

The function returns the number of multibyte characters successfully converts, not
including the terminating null character. If the function encounters an invalidly encoded
multibyte character, it stores the value of EILSEQ in errno and returns the value
(size_t)(-1).

wcrtomb()

Converts a wide character to a multibyte character.

#include <wchar.h>

int wcrtomb(char *s, wchar_t wchar, mbstate_t * ps);

s

wchar.h
 Wide-Character Conversion

CodeWarrior Implementation of the C Standard Library 337

A pointer to a multibyte character buffer of at least MB_CUR_
MAX characters long.

wchar

A wide character to convert.

ps

A pointer to a multibyte conversion state. Ignored if the
encoding scheme is non-modal.

Remarks

This function ranslates a wchar_t type to a multibyte character according to the
encoding scheme specified in the LC_CTYPE component of the current locale. This
function operates identically to wctomb() except that it has an additional parameter of
type mbstate_t*, which is ignored if the encoding scheme is non-modal.
If s a null pointer, this call is equivalent to

wcrtomb(buf, L'\0', ps)

where buf is an internal buffer.

If s is not a null pointer, the function determines the length of the UTF-8 multibyte
encoding that corresponds to the wide character wchar and stores that sequence in the
multibyte string pointed to by s. At most MB_CUR_MAX bytes are stored. The function
returns the number of bytes stored in the string s.

wctob()

Converts a wide character to a character.

#include <wchar.h>

int wctob(wint_t wc);

wc

The wide character to be converted.

Remarks

The function wctob() returns the single byte representation of the argument wc as an
unsigned character value. If wc does not contain a wide character that can be translated to
a regular character, this function returns EOF.

The function returns its result as a value of type int to accommodate values of type
unsigned char and the value EOF.

wchar.h
Wide-Character Conversion

338 CodeWarrior Implementation of the C Standard Library

CodeWarrior Implementation of the C Standard Library 339

26
wctype.h

Macros for testing the kind of wide-character and for converting alphabetic wide-
characters to uppercase or lowercase.

iswalnum(), iswalpha(), iswblank(),
iswcntrl(), iswdigit(), iswgraph(), iswlower(),
iswprint(), iswpunct(), iswspace(),
iswupper(), iswxdigit()

Tests for membership in subsets of the wide-character set.

#include <wctype.h>

int iswalnum(wint_t c);

int iswalpha(wint_t c);

int iswblank(wint_t c);

int iswcntrl(wint_t c);

int iswdigit(wint_t c);

int iswgraph(wint_t c);

int iswlower(wint_t c);

int iswprint(wint_t c);

int iswpunct(wint_t c);

int iswspace(wint_t c);

int iswupper(wint_t c);

int iswxdigit(wint_t c);

c

A wide-character value to test.

Remarks

wctype.h
towlower(), towupper()

340 CodeWarrior Implementation of the C Standard Library

These functions provide the same facilities as their counterparts in the ctype.h header
file. However, these functions test wide characters and the EOF value.

The c argument is of type wint_t so that the EOF value, which is outside the range of
the wchar_t type, may also be tested.

Table 26.1 lists these functions and their counterparts in ctype.h.
Table 26.1: Wide-Character Testing Functions

This wide-character
testing function...

has this counterpart in ctype.h

iswalnum(c) isalnum(c)

iswalpha(c) isalpha(c)

iswblank(c) isblank(c)

iswcntrl(c) iscntrl(c)

iswdigit(c) isdigit(c)

iswgraph(c) isgraph(c)

iswlower(c) islower(c)

iswprint(c) isprint(c)

iswpunct(c) ispunct(c)

iswspace(c) isspace(c)

iswupper(c) isupper(c)

iswxdigit(c) isxdigit(c)

towlower(), towupper()
Converts alphabetic wide characters to lowercase or uppercase.

#include <ctype.h>

wint_t towlower(wint_t c);

wctype.h
 wctrans()

CodeWarrior Implementation of the C Standard Library 341

wint_t towupper(wint_t c);

c

A wide-character value to convert.

Remarks

The towlower() function converts an uppercase alphabetic character to its equivalent
lowercase character. It returns all other characters unchanged. The towupper()
function converts a lowercase alphabetic character to its uppercase equivalent. It returns
all other characters unchanged.

wctrans()
Constructs a property value for character remapping.

#include <wchar.h>

wctrans_t wctrans(const char *name);

name

A pointer to a character string containing a description of the
remapping.

Remarks

Constructs a value that represents a mapping between wide characters. The value of name
can be either "toupper" or "tolower".

This facility may not be available on some configurations of the MSL.

towctrans()
Maps a wide-character value to another wide-character value.

#include <wchar.h>

wint_t towctrans(wint_t c, wctrans_t value);

c

The character to remap.

value

A value retuned by wctrans().

Remarks

wctype.h
towctrans()

342 CodeWarrior Implementation of the C Standard Library

Maps the first argument to an upper or lower value as specified by value.

Returns the remapped character.

This facility may not be available on some configurations of the MSL.

CodeWarrior Implementation of the C Standard Library 343

27
MSL Extras Library

Useful, non-standard facilities.

The MSL Extras Library is a companion library to MSL. It contains useful functions,
macros, and types that are not specified in the ISO/IEC Standards. This library also has
facilities for UNIX and POSIX.1 compatibility.

Multithreading
The Main Standard Library (MSL) has non-standard features for multithreaded systems.

Introduction to Multithreading

Most modern operating systems are said to be multithreaded because they allow the
creation of additional threads within a process beyond the one that begins the execution
of the process. In a multithreaded operating system, a process may consist of more than
one thread, all of them executing simultaneously from the user's point of view.

Of course, unless there is more than one processor, the threads are not really executing
simultaneously. Instead, the operating system gives the impression of simultaneity by
multiplexing among the threads. The operating system determines which thread gets
control of the processor at any particular time. There are two models for operating a
multithreaded process:

• In the cooperative model, the threads signal their willingness to relinquish their
control of the processor through a system call and the operating system then allows
the next thread to gain control. In this model, the execution of a thread can only be
interrupted at points explicitly under the thread's control.

• In the preemptive model, the operating system switches between the threads at the
operating system's discretion. These switches occur at arbitrary and unpredictable
times and points in the code being executed. The thread usually does not need to
be aware of when these switches occur.

In the rest of this section we will assume a preemptive model of multithreading.

We use the term thread to refer to the smallest amount of processor context state
necessary to encapsulate a computation. Practically speaking, a thread typically consists

MSL Extras Library
Multithreading

344 CodeWarrior Implementation of the C Standard Library

of a register set, a stack, a reference to the executable code's address space, and a
references to the data address space.. Some parts of the data space are private to the
thread while other parts may be shared with other threads in the same process. Variables
that belong to the storage class auto and that are instantiated by the thread are private to
the thread and cannot be accessed by other threads. Variables that belong to the storage
class static outside of functions may be accessed by other threads in the same process.
All threads also have access to the standard files, stdin, stdout, and stderr. In
addition, a multithreading implementation may provide for data with the same kind of
lifetime as data in the static storage class but where access is restricted to the thread
that owns it. Such data uses the thread-local storage class.

A preemptive thread switch may occur between any two machine instructions, which
might not coincide with a boundary between two source code statements. A thread
switch can also occur part-way through the evaluation of a source code expression.
One important consequence of this possibility is that, since switching between threads
happens unpredictably, if more than one thread is changing the value of a shared variable,
the results of an execution are likely to differ from one run to another. This lack of
repeatability, called a race condition, makes debugging and validation difficult.

Multithreading requires mechanisms to protect against race conditions. Various methods
exist for protecting segments of code from being executed by two or more threads at
the same time. A program that is suitably protected against errors in the presence of
multithreading is said to be thread-safe.

Definitions
There are no standards for implementing multithreading. In particular,
neither the C99 Standard nor the POSIX Standard makes reference to
threads. For the MSL library, we define thread-safety as:

• An MSL Library function will be said to be “thread-safe” if two or more
simultaneously executing threads in a single process can all call the function
without danger of mutual interference.

For most functions in the library, the meaning of thread safety is clear. Some functions,
such as rand() or strtok() are allowed to maintain internal state variables and
would appear, by definition, to be not thread-safe.

The MSL library functions listed in the following table have special precautions to make
them thread-safe.

The remaining MSL functions are intrinsically thread-safe.
Table 27.1: Functions that are not thread-safe

asctime() atexit() calloc() ctime() exit()

fgetc() fgetpos() fgets() fgetwc() fgetws()

MSL Extras Library
 dirent.h

CodeWarrior Implementation of the C Standard Library 345

fopen() fprintf() fputc() fputs() fputwc()

fputws() fread() free() fscanf() fwscanf()

gmtime() putchar() realloc() srand() vfprintf()

vwprintf() wscanf()

Reentrant Functions
All functions in MSL are thread-safe by defining the MSL_THREADSAFE
macro as 1 when compiling MSL itself. When the MSL_THREADSAFE
macro is 0, many of the MSL functions lose their thread safe attributes.
It may be useful to leave the MSL_THREADSAFE macro as 0 even on a
multithreaded system to improve execution speed. The library functions
will be faster if they do not have to wait for thread synchronization.
Since many programs are written using only a single thread, it is often
advantageous to provide an efficient single threaded library. The
GNU Compiler Collection (GCC) and other library vendors provide
an assortment of helper functions, all with a r suffix, to indicate they
are naturally thread safe. Following this convention, the MSL offers
variations of some standard functions that are reentrant.
Table 27.2: Reentrant Functions in Standard Headers

This header file... has these reentrant functions

dirent.h readdir_r()

stdlib.h rand_r()

string.h strerror_r()

time.h asctime_r(), ctime_r(),
gmtime_r(), localtime_r()

dirent.h
This header file defines functions for reading directories.

MSL Extras Library
dirent.h

346 CodeWarrior Implementation of the C Standard Library

closedir()

Closes a directory stream and releases its resources.

#include <dirent.h>

int closedir(DIR *dp);

dp

A pointer to a directory stream.

Remarks

This function closes a directory that was previously opened with opendir(). This
function returns 0 on success or -1 on failure.

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

dirent

Contains information about a directory entry.

#include <dirent.h>

struct dirent

{

 char d_name[NAME_MAX];

};

opendir()

Opens a directory for reading its entries.

#include <dirent.h>

DIR * opendir(const char *path);

path

A pointer to a character string containing the path of the
directory to open.

Remarks

MSL Extras Library
 dirent.h

CodeWarrior Implementation of the C Standard Library 347

This function returns NULL if the directory can not be opened. If successful a directory
stream pointer of type DIR * is returned. After reading, use closedir() to close the
directory.

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

readdir()

Reads an entry from an open directory.

#include <dirent.h>

struct dirent* readdir(DIR *dp);

dp

A pointer to a directory stream.

Remarks

This function returns the current directory entry from the stream dp as a pointer of
struct dirent then advances the position in the directory stream. This function
returns NULL if the stream has reached the end of the directory.

This function is not reentrant; the data pointed to by readdir() may be overwritten by
another call to readdir().

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

readdir_r()

Reads an entry from an open directory with reentrancy.

#include <dirent.h>

int readdir_r(DIR *dp, struct dirent* entry, struct dirent

 **result);

dp

A pointer to a directory stream.

entry

A pointer to a directory entry structure.

MSL Extras Library
dirent.h

348 CodeWarrior Implementation of the C Standard Library

result

A pointer to a pointer to a directory entry structure.

Remarks

This function performs the same service as the readdir() function. However, this
function is thread-safe because it requires the caller to provide storage for a directory
entry, pointed to by entry.

On a successful call to readdir_r(), the function result is 0, the storage pointed to
by entry contains the current directory entry, result contains a pointer to entry, and the
directory stream advances to the next directory entry.

If the stream reaches the end of the directory then the function returns 0 and result
contains NULL.

If an error occurs, the function returns an error code, the storage pointed to by entry
contains undefined data, and result contains an undefined value.

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

Example of readdir_r() usage

#include <dirent.h>

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 struct dirent entry;

 struct dirent *result;

 DIR *dp;

 dp = opendir(".");

 if (dp == NULL) {

 printf("Could not open directory.\n");

 exit(1);

 }

 while (readdir_r(dp, &entry, &result)

 && result != NULL) {

 puts(entry.d_name);

 }

MSL Extras Library
 extras_io.h

CodeWarrior Implementation of the C Standard Library 349

 closedir(dp);

 return 0;

}

rewinddir()

Resets the directory stream to the first position.

#include <dirent.h>

struct dirent* readdir(DIR *dp);

dp

A pointer to a directory stream.

Remarks

This facility may not be available on configurations of the MSL that run on platforms
without file systems.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

extras_io.h
Extra file and input/output facilities.

chsize()

Changes a file's size.

#include <extras_io.h>

int chsize(int handle, long size);

handle

The handle of the file being changed.

size

The size to change to.

Remarks

MSL Extras Library
extras_io.h

350 CodeWarrior Implementation of the C Standard Library

If a file is truncated all data beyond the new end of file is lost. If a file is extended, the
function fills the extended area of the file with null characters ('\0'). This function
returns zero on success and -1 if a failure occurs.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

This facility may not be available on some configurations of the MSL.

filelength()

Retrieves the file length based on a file handle.

#include <extras_io.h>

int filelength(int fileno);

fileno

A file handle.

If successful, this function returns a file's length. If it fails, the function returns -1.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

This facility may not be available on some configurations of the MSL.

tell()

Returns the current offset for a file.

#include <extras_io.h>

long int tell(int fildes);

fildes

The file descriptor.

Remarks

This function returns the current offset for the file associated with the file descriptor
fildes. The value is the number of bytes from the file's beginning.

If it is successful, tell() returns the offset. If it encounters an error, tell() returns
-1L

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

This facility may not be available on some configurations of the MSL.

Example of tell() usage

MSL Extras Library
 extras_malloc.h

CodeWarrior Implementation of the C Standard Library 351

#include <stdio.h>

#include <extras_io.h>

int main(void)

{

 int fd;

 long int pos;

 char hello[] = "je me souviens";

 fd = open("mytest", O_RDWR | O_CREAT | O_TRUNC);

 write(fd, hello, sizeof(hello));

 pos = tell(fd);

 if (pos < 0)

 exit(1);

 printf("%ld.", pos);

 close(fd);

 return 0;

}

Output:

14

extras_malloc.h
Extra memory management facilities.

heapmin()

Releases the heap memory back to the system.

#include <extras_malloc.h>

int heapmin(void);

Remarks

This function releases your program's heap memory to the system. After calling this
function, a program's behavior is undefined if it refers to memory allocated with heap

MSL Extras Library
extras_stdlib.h

352 CodeWarrior Implementation of the C Standard Library

allocation functions like malloc() and realloc(). The function returns zero if
successful. If it fails, the function returns -1 and sets errno.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

extras_stdlib.h
Extra facilities for numeric conversion and pseudo-random number generation.

gcvt()

Converts a floating point value to a null terminated character string.

#include <extras_stdlib.h>

char *gcvt(double value, int digits, char *buffer);

value

A floating point value to convert.

digits

The number of significant digits to convert.

buffer

The string to hold the converted floating point value.

Remarks

The character string stored at buffer includes the decimal point and sign of value.

This function returns a pointer to the buffer argument.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

This facility may not be available on some configurations of the MSL.

itoa()

This function converts an int value to a null-terminated character array.

#include <extras_stdlib.h>

char * itoa(int val, char *str, int radix);

val

An integer value to convert.

MSL Extras Library
 extras_stdlib.h

CodeWarrior Implementation of the C Standard Library 353

str

A pointer to the string to store the converted value.

radix

The numeric base of the number to be converted.

Remarks

The radix is the base of the number in a range of 2 to 36.

The function returns a pointer to the converted string.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

ltoa()

Converts an long integer value to a null-terminated character string.

#include <extras_stdlib.h>

char * ltoa(long int val, char *str, int radix);

val

The long integer value to convert.

str

A pointer to an array in which to store the converted value.

radix

The numeric base to convert the number to.

Remarks

The radix is the base of the number in a range of 2 to 36.

The function returns a pointer to the converted string, str.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

rand_r()

Reentrant function to generate a pseudo-random integer value.

#include <extras_stdlib.h>

int rand_r(unsigned int *context);

context

MSL Extras Library
extras_string.h

354 CodeWarrior Implementation of the C Standard Library

The seed value.

Remarks

The rand_r() function provides the same service as rand(), yet it also combines
the functionality of srand() as well. The result of rand_r() is equivalent to calling
srand() with a context seed value, then calling rand(). The difference is that for
rand_r(), the caller provides the storage for the context seed value.

This function may require extra library support.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

ultoa()

Converts an unsigned long value to a null terminated character string.

#include <extras_stdlib.h>

char * ultoa(unsigned long val, char *str, int radix);

val

The integer value to convert

str

A pointer to the string to store the converted value.

radix

The numeric base to convert the number to.

Remarks

The radix is the base of the number in a range of 2 to 36. This function is the converse of
strtoul()

The function returns a pointer to the converted string, str.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

extras_string.h
Extra character string manipulation.

strcmpi()

MSL Extras Library
 extras_string.h

CodeWarrior Implementation of the C Standard Library 355

String comparison that ignores letter case.

#include <extras_string.h>

int strcmpi(const char *s1,const char *s2);

s1

A pointer to a null-terminated character string.

s2

A pointer to a null-terminated character string.

Remarks

This function operates identically to stricmp().

This facility may not be available on some configurations of the MSL.

strdup()

Creates a duplicate string in heap memory.

#include <extras_string.h>

char * strdup(const char *str);

str

A pointer to a null-terminated character string to copy.

Remarks

This function returns a pointer to a newly-allocated, duplicated string or NULL if
unsuccessful. This duplicated string may be released from heap memory with the
free() function.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

strerror_r()

Translates an error number into an error message in a thread-safe manner.

#include <extras_string.h>

int strerror_r(int errnum, char *str, size_t bufflen);

errnum

The error number to translate.

str

A pointer to a memory area to copy the error message string to.

MSL Extras Library
extras_string.h

356 CodeWarrior Implementation of the C Standard Library

bufflen

The size of the storage buffer pointed to by str.

Remarks

This function provides the same service as strerror() but is reentrant because the
caller to strerror_r() provides the storage, str, for the error message string.

The function returns zero if it succeeds. If it fails, the function returns a non-zero value.

This facility may not be available on some configurations of the MSL.

stricmp()

String comparison that ignores letter case.

#include <extras_string.h>

int stricmp(const char *s1,const char *s2);

s1

A pointer to a null-terminated character string.

s2

A pointer to a null-terminated character string.

Remarks

This function returns one of these values:

• zero if all characters in s1 are identical to and appear in the same order as the
characters in s2

• a negative value if the numeric value of first non-matching character in s1 is less
than its counterpart in s2

• a positive value if the numeric value of first non-matching character in s1 is greater
than its counterpart in s2

This facility may not be available on some configurations of the MSL.

stricoll()

Locale-aware collating string comparison that ignores letter case.

#include <extras_string.h>

int stricoll(const char *s1, const char *s2);

s1

A pointer to a null-terminated character string.

MSL Extras Library
 extras_string.h

CodeWarrior Implementation of the C Standard Library 357

s2

A pointer to a null-terminated character string.

Remarks

This function compares each character at s1 and s2 using the collating sequence specified
by the LC_COLLATE component of the current locale.

This function returns one of these values:

• zero if all characters in s1 are identical to and appear in the same order as the
characters in s2

• a negative value if the numeric value of first non-matching character in s1 is less
than its counterpart in s2

• a positive value if the numeric value of first non-matching character in s1 is greater
than its counterpart in s2

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

strlwr()

Converts a character string to lowercase.

#include <extras_string.h>

char * strlwr(char *str);

str

A pointer to a null-terminated character string.

Remarks

This function converts all uppercase alphabetic characters at str to their lowercase
counterparts. The function does not modify any other characters. The function returns a
pointer to str.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

strncasecmp()

Character string comparison with length specified and ignored letter case.

#include <extras_string.h>

int strncasecmp(const char *s1, const char *s2, size_t max);

str1

MSL Extras Library
extras_string.h

358 CodeWarrior Implementation of the C Standard Library

A pointer to a character string.

str2

A pointer to a character string.

max

The maximum number of characters to compare.

Remarks

This function compares the characters at s1 and s2, ignoring letter case. It stops when it
reaches the null character or when it has compared max characters.

This function returns one of these values:

• zero if all characters in s1 are identical to and appear in the same order as the
characters in s2

• a negative value if the numeric value of first non-matching character in s1 is less
than its counterpart in s2

• a positive value if the numeric value of first non-matching character in s1 is greater
than its counterpart in s2

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

strncmpi()

Character string comparison with length specified and ignored letter case.

#include <extras_string.h>

int strncmpi(const char *s1, const char *s2, size_t n);

str1

A pointer to a character string.

str2

A pointer to a character string.

max

The maximum number of characters to compare.

Remarks

This function operates identically to the strncasecmp() function.

This facility may not be available on some configurations of the MSL.

MSL Extras Library
 extras_string.h

CodeWarrior Implementation of the C Standard Library 359

strncoll()

Locale-aware collating string comparison with limited length.

#include <extras_string.h>

int strncoll(const char *s1, const char *s2, size_t max);

str1

A pointer to a character string.

str2

A pointer to a character string.

max

The maximum number of characters to compare.

Remarks

The function performs the comparison according to the collating sequence specified
by the LC_COLLATE component of the current locale. The function stops when it has
reached a null character in one of the strings or when it has compared max characters.

This function returns one of these values:

• zero if all characters in s1 are identical to and appear in the same order as the
characters in s2

• a negative value if the numeric value of first non-matching character in s1 is less
than its counterpart in s2

• a positive value if the numeric value of first non-matching character in s1 is greater
than its counterpart in s2

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

strnicmp()

Character string comparison with length specified and ignored letter case.

#include <extras_string.h>

int strnicmp(const char *s1, const char *s2, size_t n);

str1

A pointer to a character string.

str2

A pointer to a character string.

MSL Extras Library
extras_string.h

360 CodeWarrior Implementation of the C Standard Library

max

The maximum number of characters to compare.

Remarks

This function operates identically to the strncasecmp() function.

This facility may not be available on some configurations of the MSL.

strnicoll()

Locale-aware collating string comparison that ignores letter case and limits length.

#include <extras_string.h>

int stricoll(const char *s1, const char *s2, size_t max);

s1

A pointer to a null-terminated character string.

s2

A pointer to a null-terminated character string.

max

The maximum number of characters to compare.

Remarks

This function compares each character at s1 and s2 using the collating sequence specified
by the LC_COLLATE component of the current locale. It ignores the case of alphabetic
characters. The function stops when it reaches a null character or when it has compared
max characters.

This function returns one of these values:

• zero if all characters in s1 are identical to and appear in the same order as the
characters in s2

• a negative value if the numeric value of first non-matching character in s1 is less
than its counterpart in s2

• a positive value if the numeric value of first non-matching character in s1 is greater
than its counterpart in s2

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

strnset()

Fills a character string with a character, limiting length.

MSL Extras Library
 extras_string.h

CodeWarrior Implementation of the C Standard Library 361

#include <extras_string.h>

char * strnset(char *str, int c, size_t max);

str

A pointer to a character string.

c

The character to fill with.

max

The maximum number of characters to fill.

Remarks

This function stores c in the string pointed to by str. The function stops filling the
string when it reaches a null character (which it leaves intact) or when it has filled max
characters. The function always ensures that the character string is null-terminated.

The function returns str.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

strrev()

Reverses a null-terminated string.

#include <extras_string.h>

char * strrev(char *str);

str

A pointer to the null-terminated string to reverse.

Remarks

This function reverses the null-terminated string at str and returns a pointer to it.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

strset()

Fills a character string with a character.

#include <extras_string.h>

char * strset(char *str, int c);

str

MSL Extras Library
extras_string.h

362 CodeWarrior Implementation of the C Standard Library

A pointer to a character string.

c

The character to fill with.

Remarks

This function stores c in the string pointed to by str. The function always ensures that the
character string is null-terminated.

The function returns str.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

strspnp()

Returns pointer to first character in a string that is not in another.

#include <extras_string.h>

char * strspnp(char *s1, const char *s2);

s1

A pointer to a null-terminated character string to search.

s2

A pointer to a null-terminated character string containing
characters to search for.

Remarks

This function determines the first position in the string at s1 that does not have a
character in s2.

The function returns a pointer to a position in s1 or NULL.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

strupr()

Converts a character string to uppercase.

#include <extras_string.h>

char * strupr(char *str);

str

A pointer to a null-terminated character string.

MSL Extras Library
 extras_string.h

CodeWarrior Implementation of the C Standard Library 363

Remarks

This function converts all lowercase alphabetic characters at str to their uppercase
counterparts. The function does not modify any other characters. The function returns a
pointer to str.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

strtok_r()

Thread-safe extraction of tokens within a character array.

#include <extras_string.h>

char *strtok_r(char *str, const char *sep, char** tmp);

str

A pointer to a character string to separate into tokens.

sep

A pointer to a character string containing separator characters.

tmp

A pointer to a character pointer.

Remarks

This function performs a thread-safe operation of its counterpart, strtok(). Unlike
strtok(), this function takes an extra argument, tmp, which the function uses to store
its progress.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

This facility may not be available on some configurations of the MSL.

Example of strtok_r() usage

#include <extras_string.h>

#include <stdio.h>

int main(void)

{

 char s1[] = "(a+b)*(c+d)";

 char s2[] = "(e*f)+(g*h)";

 char *token;

 char *separator = "()+*";

MSL Extras Library
extras_time.h

364 CodeWarrior Implementation of the C Standard Library

 char *tmp1;

 char *tmp2;

 /* First calls to strtok_r(). */

 token = strtok_r(s1, separator, &tmp1);

 puts(token);

 token = strtok_r(s2, separator, &tmp2);

 puts(token);

 /* Subsequent calls to strtok_r(). */

 token = strtok_r(NULL, separator, &tmp1);

 puts(token);

 token = strtok_r(NULL, separator, &tmp2);

 puts(token);

 return 0;

}

Output:

a

e

b

f

extras_time.h
Extra date and time facilities.

asctime_r()

Thread-safe conversion of a tm structure to a character array.

#include <extras_time.h>

char * asctime_r(const struct tm * t, char * s);

t

A pointer to a tm structure describing the time and date to
convert.

s

MSL Extras Library
 extras_time.h

CodeWarrior Implementation of the C Standard Library 365

A pointer to a character string array in which to store the result.

Remarks

This function provides a reentrant version of the asctime() function. Unlike
asctime(), this function requires that the caller provides storage for the string in
which to store the textual representation of the date described by t. The size of this
character array must be at least 26 characters.

The asctime_r() function always returns the value of s.

This function may require extra library support.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

This facility may not be available on some configurations of the MSL.

ctime_r()

Thread-safe conversion of a value of type time_t to a null-terminated character array.

#include <extras_time.h>

char* ctime_r(const time_t * timer, char* s);

timer

A pointer to a value of type time_t to convert.

s

A pointer to a character string array in which to store the result.

Remarks

This function provides the same service as ctime(). Unlike ctime(), this function
requires that the caller provides the storage for string s and the size of the storage must be
at least 26 characters long.

The function always returns the value of s.

This function may require extra library support.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

This facility may not be available on some configurations of the MSL.

gmtime_r()

Thread-safe conversion of a time_t value to Coordinated Universal Time (UTC).

MSL Extras Library
extras_time.h

366 CodeWarrior Implementation of the C Standard Library

#include <extras_time.h>

struct tm * gmtime_r(const time_t *time, struct tm * st);

time

A pointer to a time value.

st

A pointer to a time structure.

Remarks

This function provides the same service as gmtime(). Unlike gmtime(), this function
requires that the caller provides the storage for the tm structure.

The gmtime_r() function always returns the value of st.

This function may require extra library support.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

This facility may not be available on some configurations of the MSL.

localtime_r()

Thread-safe conversion of a value of type time_t to a structure of type tm.

#include <extras_time.h>

struct tm * localtime_r(const time_t * time, struct tm * ts);

time

A pointer to a time value to convert.

ts

A pointer to a time structure in which to store the converted
time information.

Remarks

This function provides the same service as localtime(), but is reentrant. Unlike
localtime() this function requires that the caller provides the storage for the tm
structure.

The function always returns the value of ts.

This function may require extra library support.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

MSL Extras Library
 extras_wchar.h

CodeWarrior Implementation of the C Standard Library 367

This facility may not be available on some configurations of the MSL.

strdate()

Stores a textual representation of the current date in a character string.

#include <extras_time.h>

char * strdate(char *str);

str

A pointer to a character string in which to store the current date.

Remarks

This function stores a null-terminated character string of the date in the buffer pointed to
by str. The format of this string is mm/dd/yy. The buffer must be at least 9 characters
long.

This function returns a pointer to the str argument.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

extras_wchar.h
Non-standard facilities for wide characters.

#include <extras_wchar.h>

wchar_t *itow(int n, wchar_t *str, int radix);

double watof(const wchar_t *str);

wchar_t *wcsdup(const wchar_t *str);

int wcsicmp(const wchar_t *s1, const wchar_t *s2);

int wcsicoll(const wchar_t *s1, const wchar_t *s2);

wchar_t *wcslwr(wchar_t *str);

MSL Extras Library
extras_wchar.h

368 CodeWarrior Implementation of the C Standard Library

int wcsncoll(const wchar_t *s1, const wchar_t *s2, size_t max);

int wcsnicmp(const wchar_t *s1, const wchar_t *s2, size_t n);

int wcsnicoll(const wchar_t *s1, const wchar_t *s2, size_t max);

wchar_t *wcsnset(wchar_t *str, wchar_t wc, size_t n);

wchar_t *wcsrev(wchar_t *str);

wchar_t *wcsset(wchar_t *str, wchar_t wc);

wchar_t *wcsspnp(const wchar_t *s1, const wchar_t *s2);

wchar_t *wcsupr(wchar_t *str);

wchar_t *wstrrev(wchar_t * str);

int wtoi(const wchar_t *a);

Remarks

These non-standard, wide-character functions operate identically to regular-sized
character functions in the rest of the standard library.

Table 27.3 matches these wide character functions to equivalent char-based functions.
Table 27.3: Extra Wide-Character Functions

This function... does the wide
character equivalent

of this function

declared in
this header file.

itow() itoa() extras_wchar.h

watof() atof() stdlib.h

wcsdup() strdup() extras_wchar.h

wcsicmp() stricmp() extras_wchar.h

wcsicoll() stricoll() extras_wchar.h

wcslwr() strlwr() extras_wchar.h

MSL Extras Library
 fcntl.h

CodeWarrior Implementation of the C Standard Library 369

This function... does the wide
character equivalent

of this function

declared in
this header file.

wcsncoll() strncoll() extras_wchar.h

wcsnicmp() strnicmp() extras_wchar.h

wcsnicoll() strnicoll() extras_wchar.h

wcsnset() strnset() extras_wchar.h

wcsrev() strrev() extras_wchar.h

wcsset() strset() extras_wchar.h

wcsspnp() strspnp() extras_wchar.h

wcsupr() strupr() extras_wchar.h

wstrrev() strrev() extras_wchar.h

wtoi() atoi() stdlib.h

fcntl.h
Contains file control functions to ease porting source code from UNIX systems.

The header file fcntl.h declares facilities for porting a program's file manipulation
features from UNIX. These facilities are similar to the functions in many UNIX libraries.
Consult the topics in this chapter for differences between these MSL functions and their
UNIX counterparts.

Generally, try to avoid using these functions in new programs. Instead, use the standard
facilities available in MSL. If you are porting a UNIX program, you might also need the
functions in other UNIX compatibility headers.

creat(), _creat(), _wcreat()

Create a new file or overwrite an existing file and open it.

#include <fcntl.h>

MSL Extras Library
fcntl.h

370 CodeWarrior Implementation of the C Standard Library

int creat(const char *filename, int mode);

int _creat(const char *filename, int mode);

int _wcreat(const wchar_t *wfilename, int mode);

filename

A pointer to the name of the file being created.

mode

The function ignores the value of this argument.

Remarks

These functions create a file named filename and opens it for reading or writing. If the
file does not exist, the functions create it. If the file already exists, the functions overwrite
it. The functions ignore the argument mode.

This function call:

creat(path, mode);

is equivalent to this function call:

open(path, O_WRONLY|O_CREAT|O_TRUNC);

When successful, these functions return the file descriptor for the created file. If the
functions encounter an error, it returns -1.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

fcntl(), _fcntl()

Manipulate a file descriptor.

#include <fcntl.h>

int fcntl(int fildes, int cmd, ...);

int _fcntl(int fildes, int cmd, ...);

fildes

A file descriptor.

cmd

A command to apply to the file.

Remarks

This function performs the command specified in cmd on the file descriptor fildes. The
MSL implementation of these functions can perform only one command, F_DUPFD. This
command returns a duplicate file descriptor for the file that fildes refers to.

MSL Extras Library
 fcntl.h

CodeWarrior Implementation of the C Standard Library 371

You must include a 3rd argument when calling these functions. The new file descriptor is
the lowest available file descriptor that is greater or equal than the 3rd argument.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

Example of fcntl() usage

#include <fcntl.h>

int main(void)

{

 int fd1, fd2;

 fd1 = open("mytest", O_WRONLY | O_CREAT);

 fd2 = fcntl(fd1, F_DUPFD, 0);

 close(fd2);

 return 0;

}

open(), _wopen()

Open a file.

#include <fcntl.h>

int open(const char *path, int mode);

int _open(const char *path, int mode);

path

A pointer to the name of the file to open.

mode

Flags requesting how to open the file and how to access it.

Remarks

These functions open a file for low-level input and output. Table 27.4 lists the flags that
may be used with mode. Combine more than one flag with the bitwise-OR operator (|).
Table 27.4: Flags for opening a file.

This flag... requests this action

O_RDWR Open the file for both reading and writing,
starting at the beginning of the file.

MSL Extras Library
stat.h

372 CodeWarrior Implementation of the C Standard Library

This flag... requests this action

O_RDONLY Open the file for reading only, starting at
the beginning of the file.

O_WRONLY Open the file for writing only, starting at
the beginning of the file.

O_APPEND Open the file, starting writing at the end
of the file.

O_CREAT Create the file if it does not exist.

O_EXCL Do not create the file if it already exists.

O_TRUNC Erase the file's contents after opening it.

This facility is not specified in the ISO/IEC standards. It is an MSL extension of the
standard libraries.

stat.h
File manipulation facilities for UNIX compatibility.

Data Types in stat.h

The stat.h header file defines several data types.

Table 27.5 lists the types used to describe a file's properties.

The stat structure contains information about a file. Table 27.6 lists the members in
this structure.

Table 27.7 describes the file attributes that the facilities in stat.h recognize.
Table 27.5: Types in stat.h

This type... represents this
kind of information.

dev_t Device type.

gid_t Group ID.

MSL Extras Library
 stat.h

CodeWarrior Implementation of the C Standard Library 373

This type... represents this
kind of information.

ino_t Serial number.

mode_t File attributes.

nlink_t Number of links to a file.

off_t File size, in bytes.

uid_t User ID.

Table 27.6: Structure members in stat

This structure
member...

has this data type... and contains
this information.

st_mode mode_t File attributes.

st_ino ino_t File serial number.

st_dev dev_t ID of device on which this
file is stored.

st_nlink nlink_t Number of links to the file.

st_uid uid_t The file owner's user ID.

st_gid gid_t The file owner's group ID.

st_size off_t The file's size, in bytes.

st_atime time_t Time of last access to the
file.

st_mtime time_t Time of the last modifica-
tion to the file.

st_ctime time_t Time that the file was
created.

st_blksize long Optimal block size.

MSL Extras Library
stat.h

374 CodeWarrior Implementation of the C Standard Library

This structure
member...

has this data type... and contains
this information.

st_blocks long Number of blocks allo-
cated to the file.

Table 27.7: File modes

This mode... describes this file property.

S_IFMT File type.

S_IFIFO FIFO queue.

S_IFCHR Character special.

S_IFDIR Directory.

S_IFBLK Blocking stream.

S_IFREG Regular file.

S_IFLNK Symbolic link.

S_IFSOCK Socket.

S_IRGRP Read permission, file group class.

S_IROTH Read permission, file other class.

S_IRUSR Read permission, file owner class.

S_IRWXG Permissions, file group class.

S_IRWXO Permissions, file other class.

S_IRWXU Permissions, file owner class.

S_ISGID Set group ID on execution.

S_ISUID Set user ID on execution.

S_IWGRP Write permission, file group class.

S_IWOTH Write permission, file other class.

MSL Extras Library
 stat.h

CodeWarrior Implementation of the C Standard Library 375

This mode... describes this file property.

S_IWUSR Write permission, file owner class.

S_IXGRP Execute permission, file group class.

S_IXOTH Execute permission, file other class.

S_IXUSR Execute permission, file owner class.

chmod()

Sets file attributes.

#include <stat.h>

int chmod(const char *, mode_t mod);

int _chmod(const char *, mode_t mod);

path

The name of the file on which to change modes.

mod

A mask of the file's new attributes.

Remarks

If successful, these functions return 0. If unsuccessful, the functions return -1.

This facility may not be available on some configurations of the MSL.

fstat()

Gets information about an open file.

#include <stat.h>

int fstat(int fildes, struct stat *s);

int _fstat(int fildes, struct stat *s);

fildes

A file descriptor.

s

A pointer to a stat structure in which to store information
about the file.

MSL Extras Library
stat.h

376 CodeWarrior Implementation of the C Standard Library

Remarks

These functions stores information about the file associated with fildes in a structure that
s points to.

If successful, these functions return zero. If unsuccessful, these functions return -1 and
sets errno.

This facility may not be available on some configurations of the MSL.

Example of fstat() usage.

#include <stdio.h>

#include <time.h>

#include <stat.h>

int main(void)

{

 struct stat info;

 int fd;

 fd = open("mytest", O_WRONLY | O_CREAT | O_TRUNC);

 write(fd, "Hello world!\n", 13);

 /* Get information on the open file. */

 if (fstat(fd, &info) != 0)

 exit(1);

 close(fd);

 printf("File mode: 0x%lX\n", info.st_mode);

 printf("File ID: 0x%lX\n", info.st_ino);

 printf("Volume ref. no.: 0x%lX\n", info.st_dev);

 printf("Number of links: %hd\n", info.st_nlink);

 printf("User ID: %lu\n", info.st_uid);

 printf("Group ID: %lu\n", info.st_gid);

 printf("File size: %ld\n", info.st_size);

 printf("Access time: %s", ctime(&info.st_atime));

 printf("Modification time: %s", ctime(&info.st_mtime));

 printf("Creation time: %s", ctime(&info.st_ctime));

 return 0;

}

MSL Extras Library
 stat.h

CodeWarrior Implementation of the C Standard Library 377

mkdir()

Makes a directory.

#include <stat.h>

int mkdir(const char *path, int mode);

int _mkdir(const char *path);

path

The path name, including the new directory name.

mode

The open mode. Ignored.

Remarks

These functions create the new folder specified by path. It ignores the argument mode.

If successful, these functions returns zero. If they encounter an error, these functions
returns -1 and set errno.

This facility may not be available on some configurations of the MSL.

Example for mkdir() usage.

#include <stdio.h>

#include <stat.h>

int main(void)

{

 if (mkdir(":Asok", 0) == 0)

 printf("Directory 'Asok' is created.");

 return 0;

}

stat()

Gets information about a file.

#include <stat.h>

int stat(const char *path, struct stat *buf);

int _stat(const char *path, struct stat *buf);

path

MSL Extras Library
stat.h

378 CodeWarrior Implementation of the C Standard Library

The path name of a file.

s

A pointer to a stat structure in which to store file information.

Remarks

These functions stores information on the file specified by path in the structure that s
points to.

If it is successful, these functions returns zero. They return -1 if they cannot retrieve the
information successfully.

This facility may not be available on some configurations of the MSL.

Example of stat() usage.

#include <stdio.h>

#include <time.h>

#include <stat.h>

int main(void)

{

 struct stat info;

 /* Get information on the System file. */

 if (stat("Akbar/myfile.txt", &info) != 0)

 exit(1);

 printf("File mode: 0x%lX\n", info.st_mode);

 printf("File ID: 0x%lX\n", info.st_ino);

 printf("Volume ref. no.: 0x%lX\n", info.st_dev);

 printf("Number of links: %hd\n", info.st_nlink);

 printf("User ID: %lu\n", info.st_uid);

 printf("Group ID: %lu\n", info.st_gid);

 printf("File size: %ld\n", info.st_size);

 printf("Access time: %s", ctime(&info.st_atime));

 printf("Modification time: %s", ctime(&info.st_mtime));

 printf("Creation time: %s", ctime(&info.st_ctime));

 return 0;

}

MSL Extras Library
 stat.h

CodeWarrior Implementation of the C Standard Library 379

umask()

Sets a UNIX-style file creation mask.

#include <stat.h>

mode_t umask(mode_t cmask);

mode_t _umask(mode_t cmask);

cmask

Permission bit mask.

Remarks

The function umask is used for calls to open(), creat() and mkdir() to turn off
permission bits in the mode argument.

If MSL_POSIX is defined as true these functions return a result of type mode_t and
takes an argument of type mode_t. Otherwise, these functions return and accept the int
type.

This facility may not be available on some configurations of the MSL.

MSL Extras Library
stat.h

380 CodeWarrior Implementation of the C Standard Library

CodeWarrior Implementation of the C Standard Library 381

Index

Symbols
__bool_true_false_are_defined 161

__fpclassifyd 99

__fpclassifyf 99

__fpclassifyl 99

__signbit 102

__signbitd 102

__signbitf 102

__sys_alloc 21

__sys_free 21

__sys_pointer_size 21

_Bool 161

_chmod 375

_Complex 43

_creat 369

_Exit 266, 266

_fcntl 370

_fstat 375

_Imaginary 43

_mkdir 377

_MSL_ASSERT_DISPLAYS_FUNC 35

_MSL_C_LOCALE_ONLY 36

_MSL_C99 36

_MSL_COMPLEX 35

_MSL_CONSOLE_SUPPORT 35

_MSL_DEFAULT_LOCALE 36

_MSL_FLOATING_POINT 36

_MSL_NEEDS_EXTRAS 37

_MSL_OS_DISK_FILE_SUPPORT 35

_MSL_WIDE_CHAR 37

_putenv 268

_stat 377

_umask 379

_wcreat 369

_wopen 371

A
abort 263

abs 274

absolute value 274, 276–277

acos 102

acosf 102

acosh 107

acoshf 107

acoshl 107

acosl 102

allocating array 257, 261

allocating memory 260, 262

ANSI 19

asctime 312

asctime_r 364

asin 103

asinf 103

asinh 108

asinhf 108

asinhl 108

asinl 103

assert 41

assert.h 41

atan 103

atan2 103

atan2f 103

atan2l 103

atanf 103

Index

382 CodeWarrior Implementation of the C Standard Library

atanh 108

atanhf 108

atanhl 108

atanl 103

atexit 264

atof 247

atoi 248

atol 248–249

B
binary search 269

bool 161

bsearch 269

btowc 333

C
cabs 50

cabsf 50

cabsl 50

cacos 43

cacosf 43

cacosh 44

cacoshf 44

cacoshl 44

cacosl 43

calloc 257

carg 51

cargf 51

cargl 51

casin 44

casinf 44

casinh 45

casinhf 45

casinhl 45

casinl 44

catan 45

catanf 45

catanh 46

catanhf 46

catanhl 46

catanl 45

cbrt 121

ccos 46

ccosf 46

ccosh 47

ccoshf 47

ccoshl 47

ccosl 46

ceil 127

ceilf 127

ceill 127

cexp 49

cexpf 49

cexpl 49

character string

converting from 187

length, multibyte character 278

chmod 375

chsize 349

cimag 51

cimagf 51

cimagl 51

clearerr 238

clock 308

clock_t 307

clog 49

clogf 49

clogl 49

closedir 346

command-line 269

Index

CodeWarrior Implementation of the C Standard Library 383

complex 43

complex.h 43

configuration 21

conj 52

conjf 52

conjl 52

conversion specifier 191

converting

from character string 187

to floating point 247, 249, 251

to integer 248–249, 254

to multibyte character 279–280

to unsigned integer 255

to wide character 278, 280

copysign 137

cos 104

cosf 104

cosh 109

coshf 109

coshl 109

cosl 104

cpow 50

cpowf 50

cpowl 50

cproj 52

cprojf 52

cprojl 52

creal 53

crealf 53

creall 53

creat 369

csin 47–48

csinf 47–48

csinl 47–48

csqrt 51

csqrtf 51

csqrtl 51

cstdlib.h 247

ctan 48

ctanf 48

ctanl 48

ctime 313

ctime_r 365

ctype.h 55

D
DBL_DIG 73

DBL_EPSILON 73

DBL_MANT_DIG 73

DBL_MAX 73

DBL_MAX_10_EXP 73

DBL_MAX_EXP 73

DBL_MIN 73

DBL_MIN_10_EXP 73

DBL_MIN_EXP 73

deallocating memory 259, 262

difftime 310

dirent 346

dirent.h 345

div 275

div_t 275

division 275–277

E
environment variable

inserting 268

retrieving 267

erf 125

erfc 125

errno 61

Index

384 CodeWarrior Implementation of the C Standard Library

errno.h 61

exp 111

exp2 112

exp2f 112

exp2l 112

expf 111

expl 111

expm1 113

expm1f 113

expm1l 113

extras_io.h 349

extras_malloc.h 351

extras_stdlib.h 352

extras_string.h 354

extras_time.h 364

extras_wchar.h 367

F
fabs 121

fabsf 121

fabsl 121

false 161

fclose 176

fcntl 370

fcntl.h 369

fdim 141

fdimf 141

fdiml 141

FE_ALL_EXCEPT 65

FE_DIVBYZERO 65

FE_DOWNWARD 70

FE_INEXACT 65

FE_INVALID 65

FE_OVERFLOW 65

FE_TONEAREST 70

FE_TOWARDZERO 70

FE_UNDERFLOW 65

FE_UPWARD 70

feclearexcept 66, 70

fegetenv 64

fegetexceptflag 66

fegetround 71

FENV_ACCESS 63

fenv_t 63

fenv.h 63

feof 239

feraiseexcept 68

ferror 241

fesetexceptflag 69

fesetround 72

fexecpt_t 63

fflush 178

fgetc 217

fgetpos 232

fgets 218

fgetwc 327

fgetws 327

file

reading text 198

redirecting 183

filelength 350

float.h 73

floating point

configuring 36

converting to 247, 249, 251

floor 128

floorf 128

floorl 128

FLT_DIG 73

FLT_EPSILON 73

Index

CodeWarrior Implementation of the C Standard Library 385

FLT_MANT_DIG 73

FLT_MAX 73

FLT_MAX_10_EXP 73

FLT_MAX_EXP 73

FLT_MIN 73

FLT_MIN_10_EXP 73

FLT_MIN_EXP 73

FLT_RADIX 73

FLT_ROUNDS 73

flush buffer 178

fma 144

fmaf 144

fmal 144

fmax 142

fmaxf 142

fmaxl 142

fmin 143

fminf 143

fminl 143

fmod 134

fmodf 134

fmodl 134

fopen 177, 180

formatting text 191, 196

fpclassify 99

fputwc 327

fputws 327

free 259

freeing memory 259, 262

frexp 114

frexpf 114

frexpl 114

fseek 233

fstat 375

fwprintf 325

fwscanf 325

G
gamma 126

gcvt 352

getenv 267

getwc 327

getwchar 327

gmtime 314

gmtime_r 365

H
heapmin 351

HUGE_VAL 97

HUGE_VALF 97

HUGE_VALL 97

hypot 122

hypotf 122

hypotl 122

I
ilogb 114

ilogbf 114

ilogbl 114

imaginary 43

imaxabs 84

imaxdiv 84

imaxdiv_t 84

INFINITY 97

input/output 169

INT_FAST16_MAX 166

INT_FAST16_MIN 166

int_fast16_t 165

INT_FAST32_MAX 166

INT_FAST32_MIN 166

int_fast32_t 165

Index

386 CodeWarrior Implementation of the C Standard Library

INT_FAST64_MAX 166

INT_FAST64_MIN 166

int_fast64_t 165

INT_FAST8_MAX 166

INT_FAST8_MIN 166

int_fast8_t 165

INT_LEAST16_MAX 166

INT_LEAST16_MIN 166

int_least16_t 165

INT_LEAST32_MAX 166

INT_LEAST32_MIN 166

int_least32_t 165

INT_LEAST64_MAX 166

INT_LEAST64_MIN 166

int_least64_t 165

INT_LEAST8_MAX 166

INT_LEAST8_MIN 166

int_least8_t 165

INT16_C 167

INT16_MAX 166

INT16_MIN 166

int16_t 165

INT32_C 167

INT32_MAX 166

INT32_MIN 166

int32_t 165

INT64_C 167

INT64_MAX 166

INT64_MIN 166

int64_t 165

INT8_C 167

INT8_MAX 166

INT8_MIN 166

int8_t 165

integer

absolute value 274, 276–277

converting from text 75

converting to 248–249, 254

converting to text 79

converting to unsigned 255

INTMAX_C 167

INTMAX_MAX 166

INTMAX_MIN 166

intmax_t 84, 165

INTPTR_MAX 166

INTPTR_MIN 166

intptr_t 165

intrinsic functions 19

inttypes.h 75

isalnum 55

isalpha 55

isblank 55

iscntrl 55

isdigit 55

isfinite 100

isgraph 55

isgreater 139

isgreaterequal 139

isless 139

islessequal 139

islessgreater 139

islower 55

isnan 101

isnormal 101

ISO/IEC 19

iso646.h 87

isprint 55

ispunct 55

isspace 55

isunordered 139

Index

CodeWarrior Implementation of the C Standard Library 387

isupper 55

iswalnum 339

iswalpha 339

iswblank 339

iswcntrl 339

iswdigit 339

iswgraph 339

iswlower 339

iswprint 339

iswpunct 339

iswspace 339

iswupper 339

iswxdigit 339

isxdigit 55

itoa 352

itow 367

J
jmp_buf 147

L
labs 276

lconv 89

LDBL_DIG 73

LDBL_EPSILON 73

LDBL_MANT_DIG 73

LDBL_MAX 73

LDBL_MAX_10_EXP 73

LDBL_MAX_EXP 73

LDBL_MIN 73

LDBL_MIN_10_EXP 73

LDBL_MIN_EXP 73

ldexp 115

ldexpf 115

ldexpl 115

ldiv 276

ldiv_t 276

lgamma 127

lgammaf 127

lgammal 127

limits.h 95

llabs 277

lldiv 277

lldiv_t 277

llrint 129

llrintf 129

llrintl 129

llround 130

llroundf 130

llroundl 130

locale

configuring 36

locale.h 89

localeconv 92

localtime 315

localtime_r 366

log 116

log10 117

log10f 117

log10l 117

log1p 117

log1pf 117

log1pl 117

log2 118

log2f 118

log2l 118

logb 119

logbf 119

logbl 119

logf 116

Index

388 CodeWarrior Implementation of the C Standard Library

logl 116

longjmp 147

lrint 129

lrintf 129

lrintl 129

lround 130

lroundf 130

lroundl 130

ltoa 353

M
malloc 260

math.h 97

mblen 278

mbrlen 333

mbrtowc 334

mbsinit 335

mbsrtowcs 335

mbstowcs 280

mbtowc 278

memchr 294

memcmp 289

memcpy 283

memmove 284

memory

deallocating 259, 262

memset 303

mkdir 377

mktime 310

modf 135

modff 135

modfl 135

multibyte character

converting to wide character 278, 280

length, string 278

N
nan 138

NaN 99

NAN 97

nanf 138

nanl 138

nearbyint 130

nearbyintf 130

nearbyintl 130

nextafter 140

nextafterf 140

nextafterl 140

nexttoward 141

nexttowardf 141

nexttowardl 141

Not a Number 99

NULL 163

O
offsetof 163

open 371

opendir 346

P
POSIX 343

pow 123

powf 123

powl 123

program

terminating 266, 266

terminating behavior 264

program:terminating abnormally 263

PTRDIFF_MAX 166

PTRDIFF_MIN 166

ptrdiff_t 163

Index

CodeWarrior Implementation of the C Standard Library 389

putwc 327

putwchar 327

Q
qsort 273

Quicksort 273

quotient 275–277

R
raise 151

rand 256

rand_r 353

random access 233

random number 256

random number, reentrant 353

random number, seeding 257

readdir 347

readdir_r 347

reading

integer 75

realloc 260

reallocating memory 260, 263

redirecting 183

reentrant functions

readdir_r 347

remainder 136, 275–277

remainderf 136

remainderl 136

remquo 137

remquof 137

remquol 137

resizing memory 260, 263

rewinddir 349

Riemann sphere 52

rint 131

rintf 131

rintl 131

round 132

roundf 132

roundl 132

S
scalbln 120

scalblnf 120

scalblnl 120

scalbn 120

scalbnf 120

scalbnl 120

searching 269

seeding random number 257

seeking 233

setjmp 148

setjmp.h 147

setlocale 92

setvbuf 185

shell command 269

SIG_ATOMIC_MAX 166

SIG_ATOMIC_MIN 166

signal 152

signal.h 151

signbit 102

signgam 126–127

sin 105, 110

sinf 105, 110

sinl 105, 110

SIZE_MIN 166

size_t 163

sizeof 163

sorting 273

sqrt 124

Index

390 CodeWarrior Implementation of the C Standard Library

sqrtf 124

sqrtl 124

srand 257

standards

ANSI 19

ISO/IEC 19

POSIX 343

stat 372, 377

stat.h 372

stdarg.h 157

stdbool.h 161

stddef.h 163

stdint.h 165

stdio.h 169

strcat 287

strchr 296

strcmp 290

strcmpi 354

strcoll 291

strcpy 284

strcspn 297

strdate 367

strdup 355

streams 169

strerror 304

strerror_r 355

strftime 316

stricmp 356

stricoll 356, 360

string.h 283

strlen 305

strlwr 357

strncasecmp 357

strncat 288

strncmp 292

strncmpi 358

strncoll 359

strncpy 286

strnicmp 359

strnset 360

strpbrk 298

strrchr 299

strrev 361

strset 361

strspn 300

strspnp 362

strstr 301

strtod 249

strtof 251

strtoimax 84

strtok 302

strtok_r 363

strtoll 254

strtoull 255

strtoumax 84

strupr 362

strxfrm 293

swprintf 325

swscanf 325

system 269

T
tan 106

tanf 106

tanh 110

tanhf 110

tanhl 110

tanl 106

tell 350

terminating program 266, 266

Index

CodeWarrior Implementation of the C Standard Library 391

tgmath.h 321

thread

random number 353

time 311

time_t 307

time.h 307

tm 307

tolower 58

toupper 58

towctrans 341

towlower 340

towupper 340

true 161

trunc 133

truncf 133

truncl 133

tzname 312

tzset 312

U
UINT_FAST16_MAX 166

uint_fast16_t 165

UINT_FAST32_MAX 166

uint_fast32_t 165

UINT_FAST64_MAX 166

uint_fast64_t 165

UINT_FAST8_MAX 166

uint_fast8_t 165

UINT_LEAST16_MAX 166

uint_least16_t 165

UINT_LEAST32_MAX 166

uint_least32_t 165

UINT_LEAST64_MAX 166

uint_least64_t 165

UINT_LEAST8_MAX 166

uint_least8_t 165

UINT16_C 167

UINT16_MAX 166

uint16_t 165

UINT32_C 167

UINT32_MAX 166

uint32_t 165

UINT64_C 167

UINT64_MAX 166

uint64_t 165

UINT8_C 167

UINT8_MAX 166

uint8_t 165

UINTMAX_C 167

UINTMAX_MAX 166

uintmax_t 84, 165

UINTPTR_MAX 166

uintptr_t 165

ultoa 354

umask 379

UNIX 343

V
va_arg 157

va_copy 158

va_end 158

va_list 157

va_start 158

vec_calloc 261

vec_free 262

vec_malloc 262

vec_realloc 263

vector

allocating array memory 261

allocating memory 262

Index

392 CodeWarrior Implementation of the C Standard Library

deallocating memory 262

resizing memory 263

vfwprintf 325

vfwscanf 325

vswprintf 325

vswscanf 325

vwprintf 325

vwscanf 325

W
watof 367

WCHAR_MAX 166

WCHAR_MIN 166

wchar_t 163

wcrtomb 336

wcscat 329

wcschr 329

wcscmp 329

wcscoll 329

wcscpy 329

wcscspn 329

wcsdup 367

wcsftime 332

wcsicmp 367

wcsicoll 367

wcslen 329

wcslwr 367

wcsncat 329

wcsncmp 329

wcsncoll 367

wcsncpy 329

wcsnicmp 367

wcsnicoll 367

wcsnset 367

wcspbrk 329

wcsrchr 329

wcsrev 367

wcsset 367

wcsspn 329

wcsspnp 367

wcsstr 329

wcstod 328

wcstof 328

wcstoimax 84

wcstok 329

wcstol 328

wcstold 328

wcstoll 328

wcstoul 328

wcstoull 328

wcstoumax 84

wcsupr 367

wcsxfrm 329

wctime 332

wctob 337

wctrans 341

wctype.h 339

wide character

converting to multibyte

character 279–280

WINT_MAX 166

WINT_MIN 166

wmemchr 329

wmemcmp 329

wmemcpy 329

wmemmove 329

wmemset 329

wprintf 325

writing

integer 79

Index

CodeWarrior Implementation of the C Standard Library 393

wscanf 325

wstrrev 367

wtoi 367

	CodeWarrior™ Development Tools MSL C Reference
	Introduction
	Configuring MSL
	Configuring Memory Management
	Configuring Time and Date
	Configuring Input and Output
	Configuring Threads
	Configuring Assertions
	Configuring Complex Number
 Facilities
	Configuring C99 Features
	Configuring Locale Features
	Configuring Floating-Point Math Features
	Configuring the MSL Extras Library
	Configuring Wide-Character
 Facilities
	Porting MSL to an Embedded OS

	assert.h
	assert()

	complex.h
	Hyperbolic Trigonometry
	cacos()
	cacosh()
	casin()
	casinh()
	catan()
	catanh()
	ccos()
	ccosh()
	csin()
	csinh()
	ctan()

	Exponents and Logarithms
	cexp()
	clog()

	Powers and Absolute Values
	cabs()
	cpow()
	csqrt()

	Manipulation
	carg()
	cimag()
	conj()
	cproj()
	creal()

	ctype.h
	isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(),
 islower(), isprint(), ispunct(), isspace(), isupper(), isxdigit()
	tolower(), toupper()

	errno.h
	errno

	fenv.h
	fenv_t, fexecpt_t
	FENV_ACCESS
	fegetenv
	Exceptions for the Floating-Point
 Environment
	feclearexcept()
	fegetexceptflag()
	feraiseexcept()
	fesetexceptflag()
	fetestexcept()

	Rounding Modes for the Floating-Point
 Environment
	fegetround()
	fesetround()

	float.h
	inttypes.h
	Integer Input Scanning
	Integer Output Formatting
	imaxabs(), imaxdiv(), strtoimax(), strtoumax(), wcstoimax(),
 wcstoumax()

	iso646.h
	locale.h
	lconv
	localeconv()
	setlocale()

	limits.h
	math.h
	Predefined Values
	Floating Point Math Errors
	NaN
	Floating-Point Classification
	fpclassify()
	isfinite()
	isnan()
	isnormal()
	signbit()

	Trigonometry
	acos()
	asin()
	atan()
	atan2()
	cos()
	sin()
	tan()

	Hyperbolic Trigonometry
	acosh()
	asinh()
	atanh()
	cosh()
	sinh()
	tanh()

	Exponents and Logarithms
	exp()
	exp2()
	expm1()
	frexp()
	ilogb()
	ldexp()
	log()
	log10()
	log1p()
	log2()
	logb()
	scalbn(), scalbln()

	Powers and Absolute Values
	cbrt()
	fabs()
	hypot()
	pow()
	sqrt()

	Statistical Errors and Gamma
	erf()
	erfc()
	gamma()
	lgamma()

	Rounding
	ceil()
	floor()
	lrint(), llrint()
	lround(), llround()
	nearbyint()
	rint()
	round()
	trunc()

	Remainders
	fmod()
	modf()
	remainder()
	remquo()

	Manipulation
	copysign()
	nan()
	isgreater(), isgreaterequal(), isless(), islessequal(),
 islessgreater(), isunordered()
	nextafter()
	nexttoward()

	Maximum and Minimum
	fdim()
	fmax()
	fmin()

	Multiply-Addition
	fma()

	setjmp.h
	longjmp()
	setjmp()

	signal.h
	raise()
	signal()

	stdarg.h
	va_arg
	va_copy
	va_end
	va_start

	stdbool.h
	stddef.h
	stdint.h
	Integer Types
	Integer Limits
	Integer Types

	stdio.h
	Streams
	File Operations
	remove()
	rename()
	tmpfile()
	tmpnam()

	File Access
	fclose()
	fdopen()
	fflush()
	fopen()
	freopen()
	setbuf()
	setvbuf()

	Formatted Input/Output
	Reading Formatted Input
	Formatting Text for Output
	fprintf()
	fscanf()
	printf()
	scanf()
	 sscanf()
	snprintf()
	sprintf()
	vfprintf()
	vfscanf()
	vprintf()
	vscanf()
	vsnprintf()
	vsprintf()
	vsscanf()

	Character Input/Output
	fgetc()
	fgets()
	fputc()
	fputs()
	getc()
	getchar()
	gets()
	putc()
	putchar()
	puts()
	ungetc()

	Binary Input/Output
	 fread()
	fwrite()

	File Positioning
	fgetpos()
	 fseek()
	fsetpos()
	ftell()
	rewind()

	File Error Handling
	clearerr()
	feof()
	ferror()
	perror()

	Input and Output for Wide Characters and Multibyte Characters
	fwide()
	_wfopen()
	_wfreopen()
	_wremove()
	_wrename()
	 _wtmpnam()

	stdlib.h
	Numeric Conversion
	atof()
	atoi()
	atol()
	atoll()
	strtod()
	
		strtof()
	
	strtol()
	strtoll()
	strtoull()

	Pseudo-Random Number Generation
	rand()
	srand

	Memory Management
	calloc()
	free()
	malloc()
	realloc()
	vec_calloc()
	vec_free()
	vec_malloc()
	vec_realloc()

	Environment Communication
	abort()
	atexit()
	_Exit()
	exit()
	getenv()
	_putenv()
	system()

	Searching and Sorting
	bsearch()
	qsort()

	Integer Arithmetic
	abs()
	div()
	labs()
	ldiv()
	llabs()
	lldiv()

	Wide-Character and Multibyte Character Conversion
	mblen()
	mbtowc()
	wctomb()
	mbstowcs()
	wcstombs()

	string.h
	Copying Characters
	memcpy()
	memmove()
	strcpy()
	strncpy

	Concatenating Characters
	strcat()
	strncat()

	Comparing Characters
	memcmp()
	strcmp()
	strcoll()
	strncmp()
	strxfrm()

	Searching Characters
	memchr()
	strchr()
	strcspn()
	strpbrk()
	strrchr()
	strspn()
	strstr()
	strtok()

	memset()
	strerror()
	strlen()

	time.h
	time_t, clock_t, tm
	Date and Time Manipulation
	clock()
	difftime()
	mktime()
	time()
	tzname
	tzset()

	Date and Time Conversion
	asctime()
	ctime()
	gmtime()
	localtime()
	strftime()

	tgmath.h
	wchar.h
	Wide-Character Formatted Input and Output
	Wide-Character Input and Output
	Wide-Character Utilities
	Wide-Character Numerical Conversion
	Wide-Character String Manipulation

	Wide-Character Date and Time Manipulation
	Wide-Character Conversion
	btowc()
	mbrlen()
	mbrtowc()
	mbsinit()
	mbsrtowcs()
	wcrtomb()
	wctob()

	wctype.h
	iswalnum(), iswalpha(), iswblank(), iswcntrl(), iswdigit(),
 iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(), iswupper(),
 iswxdigit()
	towlower(), towupper()
	wctrans()
	towctrans()

	MSL Extras Library
	Multithreading
	dirent.h
	closedir()
	dirent
	opendir()
	readdir()
	readdir_r()
	rewinddir()

	extras_io.h
	chsize()
	filelength()
	tell()

	extras_malloc.h
	heapmin()

	extras_stdlib.h
	gcvt()
	itoa()
	ltoa()
	rand_r()
	ultoa()

	extras_string.h
	strcmpi()
	strdup()
	strerror_r()
	stricmp()
	stricoll()
	strlwr()
	strncasecmp()
	strncmpi()
	strncoll()
	strnicmp()
	strnicoll()
	strnset()
	strrev()
	strset()
	strspnp()
	strupr()
	strtok_r()

	extras_time.h
	asctime_r()
	ctime_r()
	gmtime_r()
	localtime_r()
	strdate()

	extras_wchar.h
	fcntl.h
	creat(), _creat(), _wcreat()
	fcntl(), _fcntl()
	open(), _wopen()

	stat.h
	Data Types in stat.h
	chmod()
	fstat()
	mkdir()
	stat()
	umask()

