Freescale Semiconductor

Relocating Code and Data Using the CW
GCC Linker File (.Id) for Kinetis

By: Carlos Musich

1) Introduction

This document provides guidance for
relocating Code and Data within the MCU
memory map. As part of this process it
explains how create new memory segments
and sections by editing the GCC Linker File
(.1d) for Kinetis Architectures.

For detailed information on the GCC Linker
please refer to “The GNU Linker’ by Steve
Chamberlain and lan Lance Taylor.

You can see Porting Freescale ARM
Compiler-based Projects to use ARM
GCC - Porting ARM_GCC.pdf for
information about the main differences
between Freescale ARM and GCC linker
files. You can find it in {CW10.x installation
path}\MCU\Help\PDF

2) Preliminary Background

A linker or link editor is a program that takes
one or more objects generated by the
compiler to combine them, relocate their
data and tie up symbol references to
generate an executable file. This is usually
the last step in compiling a program, to do it
the linker uses a linker file or linker script. In
order to relocate code and data in a specific
memory area it is necessary to edit the
linker file.

The following chapters explain how the
linker place functions in the memory and
how to relocate them in flash, internal RAM,
and external RAM using K60 or K70 Kinetis
devices with CodeWarrior and GCC
toolchain.

Contents

1 Introduction

2 Preliminary Backgrounds

3 Linker File (.Id) Overview

4 Relocating Code

4.1 Prerequisites

4.2 Relocating Code in ROM

4.3 Relocating Code in RAM

4.4 Relocating Code in a Specific RAM address
4.5 Relocating Code in External RAM
5 Relocating Data

6 Linker File for RAM Project

7 Debugging out of External RAM

3) Linker File (.Id) Overview

Freescale linker files are divided in 2 main parts.

3.1) Memory Segment

The memory segment is used to divide the Microcontroller memory into segments. Each segment can
have read, write and execute attributes. The address and the length of each segment are defined as well.
An example is shown in listing 1.

MEMORY

{
m_interrupts (rx) : ORIGIN = Ox00000000, LENGTH = OXx1ES8
m_cfmprotrom (rx) : ORIGIN = ©x00000400, LENGTH = 0x10
m_text (rx) : ORIGIN = Ox00000800, LENGTH = 1M - 0Ox800
m_data (rwx) : ORIGIN = Ox1FFF0000, LENGTH = 64K
m_data2 (rwx) : ORIGIN = Ox20000000, LENGTH = 64K

)
Listing 1 — K70 Memory segment

3.2) Sections Segment

In sections segment are defined the contents of target-memory sections. In other words, a section
indicates which parts of your application will be allocated in each memory segment. Main sections are
“.text which contains all the code and the constants of an application, ‘.data’ which contains all initialized
data, and ‘.bss’ which contains all non-initialized data.

Below you can see section “.text of an application using K70. As you can notice it is contained in segment
‘m_text.

.text
{

. = ALIGN(4);
(.text) / .text sections (code) */
(.text) /* .text* sections (code) */
(.rodata) / .rodata sections (constants, strings, etc.) */
(.rodata) /* .rodata* sections (constants, strings, etc.) */
(.glue_7) / glue arm to thumb code */
(.glue_7t) / glue thumb to arm code */

*(.eh_frame)

KEEP (*(.init))
KEEP (*(.fini))

. = ALIGN(4);
_etext = .; /* define a global symbols at end of code */
} > m_text
Listing 2 — K70 section .text

4) Relocating Code

The code generated by the compiler is usually placed in section ‘.fext’. Sometimes, however it is
necessary to have certain particular functions to appear in special sections or in a specific address. The
‘section’ attribute specifies that a function lives in a particular section. e.g.

void vfnDummy (void) __ attribute__ ((section ("mySec")));

The example above places function ‘vinDummy’ in section ‘mySec’.

In this application note we are going to write 6 functions that toggle the TWR-K60 or TWR-K70 on board
LEDs when pushing an onboard switch (SW2). Such functions are going to be allocated/relocated in
different memory areas.

4.1) Prerequisites

e Create a new bareboard project using K60 or K70 and be sure you select GCC toolchain in the
New Project wizard.

e Before using the GPIOs you need to initialize them, use function init_gpio() shown in listing 3 for
this purpose. You will also need function delay() shown in listing 4 to provide a short delay. The
following defines are necessary as well.

Listing 3 — Function init_gpio

Listing 4 — Function delay

Call function init_gpio from function main, then enter in and endless loop calling function delay inside
the loop. Function main must look as shown in listing 5.

Listing 5 — Function main

Go to menu Project > Build Configurations > Set Active > FLASH to select flash configuration. Then go to
menu Project > Build Project to build the project. You can alternately click the hammer button.

4.2) Relocating Code in ROM

Listing 6 shows function toggle_LED_allocated_in_Flash which toggles blue LED 3 times. Copy this
function into your project and call it each time SW2 is pressed. Function main must look as shown in
listing 7.

Listing 6 — Function toggle_LED_allocated_in_Flash

Listing 7 — Function main

Go to menu Project > Build Project and then search for the *.map file inside {Project_path}/FLASH. Here
you can see that function toggle_LED _allocated_in_Flash is placed in a flash address. This is shown in
listing 8.

Listing 8 — Function toggle_LED_allocated_in_Flash in map file

Now we are going to use attribute ‘section’ to create a section. This time the section is caled *.myROM
and use it to relocate a function that toggles on-board green LED in address 0x000FF00O. Listing 9
shows how this function should see.

Listing 9 — Function toggle_LED_relocated_in_Flash_address_0x000FF000

Now we need to edit linker file (.Id) to create a new segment where this function is going to be relocated.
Compare listing 10 with listing 1 and notice that 0x1000 bytes were subtracted from segment ‘m_text’to
create segment ‘my_text.

Listing 10 — Memory segment edited to create segment ‘my_text’

Now create a new section in linker file to place ‘.myROM content. You can call this section *.my_ROM
and write it just before section ‘.data’.

Listing 11 — Section .my_ROM

Finally, write a call to function toggle_LED_relocated_in_Flash_address_0x000FF000 after SW2 is
pressed in function main.

Listing 12 — Section .my_ROM
Go to menu Project > Build Project and then search for the *.map file inside {Project_path}/FLASH. Here

you can see that function toggle_LED_relocated_in_Flash_address_0x000FF000 is placed exactly
where it is expected and it is 40 bytes long. This is shown on listing 13.

Listing 13 — Function toggle_LED_relocated_in_Flash_address_0x000FF000 in map file

4.3) Relocating Code in RAM

Sometimes it is required to copy code to RAM for faster execution. The easiest way to do this is to add
the function to section ‘.data’. Doing this the linker will place the function in the first address available in
RAM and the startup code will copy the function form Flash to RAM automatically. Please notice that this
approach only works if you don’t need to place the function in any specific RAM address. Next chapter
discusses how to relocate a function in a specific RAM location.

There are just 2 steps:

e Use attribute ‘section’ to place the function in a new section. In this case it is called ‘.mydata’ as
shown in listing 14.
e Add content of .mydata’ in ‘.data’ section as shown on listing 15.

Listing 14 — Function toggle_LED_relocated_in_any_RAM_address

Listing 15 — Adding content of ‘.mydata’ in ‘.data’ section

Write a call to function toggle_LED_relocated_in_any RAM_address after SW2 is pressed in function
main.

Listing 16 — Function main

Go to menu Project > Build Project and then search for the *.map file inside {Project_path}/FLASH. Here
you can see that function toggle_LED_relocated_in_any RAM_address is placed in RAM and it is 40
bytes long. This is shown on listing 17.

.data ox1fffo000 0x50 load address 0x00001c2c
ox1fffo000 . = ALIGN (ox4)
ox1fffo000 _sdata = .
*(.data)
(.data)
*(.mydata)
.mydata ox1fffo000 0x40 ./Sources/main.o
ox1fffo000 toggle_ LED_relocated_in_any_RAM_address

Listing 17 — Function toggle_LED_relocated_in_any RAM_address in map file

4.4) Relocating Code in a specific RAM address

To relocate a function in a specific RAM section it is necessary to create a new memory segment and a
new section in the linker file. Be aware that you must save this function in Flash and then it must be
copied to RAM. The startup code can do this copy for us if we edit section ‘.romp’ in the linker file with the
correct information.

The first step is to write the function using attribute ‘section’. In this example the section is called
‘myRAM .

/*Toggle LEDs - This functions toggles red LED and is relocated in RAM address Ox1FFFEQ@0*/
__attribute__ ((section(".myRAM"))) void toggle_LED_relocated_in_RAM_address_0x1FFFE@0O()
{

unsigned int x;

for(x = 0; X < 6; X++)

{
GPIOA_PTOR|=GPIO_PDOR_PDO(GPIO_PIN(11));
delay();

Listing 18 — Function toggle_LED_relocated_in_RAM_address_0x1FFFE000

Next step is to create a segment in the linker file. This segment must start in the address where the
function needs to be relocated; in this case it is address 0x1FFFEQO.
Notice that 0x2000 bytes are subtracted from segment ‘m_data’ to create segment ‘my_data'.

MEMORY
{
m_interrupts (rx) : ORIGIN = ©x00000000, LENGTH = Ox1E8
m_cfmprotrom (rx) : ORIGIN = ©x00000400, LENGTH = 0x10
m_text (rx) : ORIGIN = Ox00000800, LENGTH = Ox1M - 0Ox800
m_data (rwx) : ORIGIN = Ox1FFF0000, LENGTH = OxE000
my_data (rwx) : ORIGIN = Ox1FFFE@0O, LENGTH = ©x2000 /* New RAM Segment */
m_data2 (rwx) : ORIGIN = 0x20000000, LENGTH = 64K

}

Listing 19 — Memory segment edited to add segment my_data

Then a section must be created in the linker file, this section must be contained in segment ‘my_data’, let
us call it *.my_ram’. As it was mentioned before, the function must be saved in flash and copied to RAM in
run time. The instruction ‘AT indicates the flash address where the function will be resident before being
copied.

If you search the for label *_ ROM_AT in the linker file you will find that it points to the first available
address in flash, here is where section ‘.data’ is resident, therefore, the address where section .my_ram’
must reside is after section ‘.data’. To calculate this address the instruction ‘SIZEOF is used. This is
shown in listing 20.

Listing 20 — Section .my_ram

As we inserted a new RAM section that was not considered by the linker we must make a couple of
adjustments.

At this moment label ___m_data2_ROMStart overlaps with the address where section ‘.my_ram’ resides.
This label must be edited to skip section .my_ram'.

Label _romp_at must also be edited to consider section ‘.my_ram’.

The last step is to copy the code from flash to RAM. To do this it is necessary to edit section ‘.romp’. This
section indicates to the startup code what is going to be copied from ROM to RAM. This copy table, which
the symbol __S_romp identifies, contains a sequence of three word values per entry:

e ROM start address

e RAM start address

e Size
The last entry in this table must be all zeros, this is the reason for the three lines, LONG(0) before the
table closing brace character.

For the new section to be copied, one new entry must be added to the table. The new entry indicates
___ROM_AT + SIZEOF(.data) as the source flash address, label _mySection as the destiny RAM
address and SIZEOF(.my_ram) as the size of the section to be copied.

Listing 21 — Section .romp

In function main write a call to function toggle_LED_relocated_in_RAM_address_0x1FFFEQ00 after
SW2 is pressed.

If you have added the functions in previous chapters, function main should look as follows.

int main (void)

{
init_gpio();
while(1)
{
//Look at status of SW2 on PTE26
if((GPIOE_PDIR & GPIO PDIR PDI(GPIO PIN(26)))==0) //If pressed...
{
toggle LED_allocated_in_Flash();
toggle_LED_relocated_in_Flash_address_0x0000FF00() ;
toggle_LED_relocated_in_any_ RAM_address();
toggle_LED_relocated_in_RAM_address_@x1FFFEQ@O();
¥
delay();
}
return 0;
)

Listing 22 — Function main

Go to menu Project > Build Project and then search for the *.map file inside {Project_path}/FLASH. Here
you can see that function toggle_LED_relocated_in_RAM_address_0x1FFFEOQOO is placed exactly
where it is expected and it is 40 bytes long. This is shown on listing 23.

.my_ram Ox1fffe000 0x50 load address 0x00001c94
ox1fffe000 . = ALIGN (ox4)
ox1fffe000 _mySection = .
*(.myRAM)
.myRAM Ox1fffe000 0x40 ./Sources/main.o
ox1fffe000 toggle LED_relocated_in_RAM_address_Ox1FFFE@00O

Listing 23 — Function toggle_LED_relocated_in_RAM_address_0x1FFFEO000 in map file

4.5) Relocating Code in external RAM

When the internal RAM of the Microcontroller is not enough for our application it is necessary the use
external memories as part of the solution. The process to relocate code in external memories is almost
the same as it is for internal RAM. The main difference is that the external memory needs to communicate
with the Microcontroller through an interface controller.

K60 and K70 devices provide Flexbus interface which can be used to communicate with external
memories, K70 provides also DDR controller. This chapter explains how to relocate a function using such
modules in TWR-K60 or TWR-K70.

First write the function using attribute ‘sectior’. This time the section is called ‘myExtRAM .

/*Toggle LEDs - This functions is relocated in external RAM*/
__attribute__ ((section(".myExtRAM"))) void toggle_LED_relocated_in_external_RAM()

{
unsigned int x;
for(x = 0; X < 6; X++)
{
GPIOA_PTOR|=GPIO_PDOR_PDO(GPIO_PIN(10));
GPIOA_PTOR|=GPIO_PDOR_PDO(GPIO_PIN(11));
GPIOA_PTOR|=GPIO_PDOR_PDO(GPIO_PIN(28));
GPIOA_PTOR|=GPIO_PDOR_PDO(GPIO_PIN(29));
delay();
}
}

Listing 24 — Function toggle_LED_relocated_in_external_RAM

Then create a memory segment for external memory. For Flexbus you can use address 0x60000000, for
DDR controller you can use 0x08000000. The segments will be called ‘extmran?” and ‘extddr.

MEMORY
{
m_interrupts (rx) : ORIGIN = Ox00000000, LENGTH = OXx1E8
m_cfmprotrom (rx) : ORIGIN = ©x00000400, LENGTH = 0x10
m_text (rx) : ORIGIN = Ox00000800, LENGTH = Ox1M - Ox800
m_data (rwx) : ORIGIN = Ox1FFF0000, LENGTH = 64K
m_data2 (rwx) : ORIGIN = Ox20000000, LENGTH = 64K
extmram (rxw) : ORIGIN = Ox60000000, LENGTH = 0x00080000 /* MRAM Address*/
extddr (rxw) : ORIGIN = Ox08000000, LENGTH = 0x00080000 /* DDR Address*/

}
Listing 25 — Linker file edited to add external MRAM and external DDR segments

As it was explained in the previous chapter, a new section must be created in the linker file, this section
must be contained in one of the segments created for external RAM (MRAM or DDR). The new section
created for this purpose is called “.ext_ram’ and the segments where it may be contained are called
‘extmram’ or ‘extdadr’.

As it was mentioned before, the function must be saved in flash and copied to RAM in runtime. The
instruction ‘AT indicates the flash address where the function will be resident before being copied.

If you search the for label *__ ROM_AT in the linker file you will find that it points to the first available
address in flash, here is where section ‘.data’ is resident, therefore, the address where section ‘.ext_ram’
must reside is after section ‘.data’. To calculate this address the instruction ‘SIZEOF is used.

The listing below shows a new section contained in segment ‘mram’ to use TWR-MEM through Flexbus
module.

/* Calculating the address where code to be copied to External RAM starts*/
___ ExtRAMCodeStart = __ ROM_AT + SIZEOF(.data);

/* Section created to relocate code in External RAM */
.ext_ram : AT(___ExtRAMCodeStart)

{
. = ALIGN(4);
__ ExtRAMStart = .;
*(.myExtRAM)
. = ALIGN(4);
} > extmram

/* Getting the size of the code to be copied to External RAM */
___ExtRAMCodeSize = SIZEOF(.ext_ram);
Listing 26 — Section .ext_ram

Use segment ‘extddr instead of ‘extmram’ to use onboard DDR2 on TWR-K70 through the DDR
Controller module.

} > extddr
As we inserted a new RAM section that was not considered by the linker we must make a couple of
adjustments.

At this moment label ___m_data2_ROMStart overlaps with the address where section .my_ram’ resides.
This label must be edited to skip section ‘.ext_ran?.

___m_data2 ROMStart = __ ROM_AT + SIZEOF(.data) + SIZEOF(.ext_ram);
Label _romp_at must also be edited to consider section ‘.ext_ram’.
_romp_at = ROM AT + SIZEOF(.data) + SIZEOF(.user_data2) + SIZEOF(.ext _ram);

Next write a call to function toggle_LED_relocated_in_external_RAM after SW2 is pressed. Function
main should look as shown below.

int main (void)

¢ init_gpio();
while(1)
{
//Look at status of SW2 on PTE26
if((GPIOE_PDIR & GPIO_PDIR_PDI(GPIO_PIN(26)))==0) //If pressed...
¢ toggle_LED_relocated_in_external_ RAM();
gelay();
)
return 0;
)

Listing 27 — Function main

At this point you must be able to build the application. Go to menu Project > Build Project and then search
for the *.map file inside {Project_path}/FLASH. Here you can see that function

toggle LED relocated_in_ext_ RAM is placed in 0x60000000 if you are using MRAM through Flexbus
or 0x08000000 if you are using DDR controller.

.ext_mram 0x60000000 0x98 load address ©x0000259c
0x60000000 . = ALIGN (ox4)
0x60000000 ___ExtRAMStart = .
*(.myExtRAM)
.myExtRAM 0x60000000 0x88 ./Sources/GPIOs.o
0x60000000 toggle_ LED_relocated_in_external_RAM

Listing 28 — Function toggle_LED_relocated_in_ext_ RAM

The last step is to copy the code from flash to RAM. As we need Flexbus or DDR controller module to
communicate with the external RAM we need to initialize them before copying the code to the external
memory. There are 2 ways to do this.

e Editinit_kinetis.tcl file to add Flexbus or DDR controller initialization, then edit *.mem file to permit
the debugger to write to the external memory address range and finally edit section .romp’ as it
was made in previous chapter. In this appnote we are not getting deep into this approach.

e Initialize Flexbus or DDR controller in your application and copy the code manually. You can find
the initialization code of these modules in Appendix A and Appendix B.

The next listing shows the code you need to copy from flash to RAM. As you may notice in listing 26 there
are some labels used to determine the address where the section starts and its size. This labels are used
by the function that makes the copy.

extern unsigned long __ ExtRAMCodeStart[];
#define ExtRAMCodeStart (unsigned long) _ ExtRAMCodeStart

extern unsigned long __ ExtRAMCodeSize[];
#define ExtRAMCodeSize (unsigned long) ExtRAMCodeSize

extern unsigned long __ ExtRAMStart[];
#define ExtRAMStartAddr (unsigned long) ExtRAMStart

unsigned char *Source;
unsigned char *Destiny;
unsigned int Size;

Listing 29 — Function copyToExtRAM

Finally, listing 30 shows function main initializing both, Flexbus and DDR controller. Then the copy from
flash to external RAM is executed.

Listing 30 — Function main

5) Relocating Data

Kinetis K family devices provide 2 RAM blocks, any access below 0x2000_0000 will run on the CODE
bus, and most accesses at 0x2000_0000 or above will run on the system bus (PPB accesses being the
exception).

The default linker file is configured to place all data in ‘m_data’ segment which is connected to the code
bus. Unfortunately GNU linker is not smart enough to automatically distribute the RAM objects between
the sections, so as user you need to manually distribute things.

Relocate data in RAM is a very similar process to relocate a function. First you need to use attribute
‘section’ in the variables you wish to relocate as shown in listing 31.

Listing 31 — Relocating data

Then add a new section in the linker file contained in segment ‘m_data2’ which is accessed by the system
bus.

Listing 32 — Creating new linker section to relocate data

As you can see on listing 33, ‘my_data[]’ has been relocated to address 0x20000000.

Listing 33 — Memory map showing main.c data relocated

This could be complicated if there are a big amount of variables which you want to relocate, in this case
you can relocate all the variables of a whole source file using the default section COMMON for that
specific file. Please note that in this case attribute ‘section’ is not necessary. Listings 34 and 35 show an
example.

Listing 34 — Relocating data

Listing 35 — Relocate data of main.c file

As you can see in listing 36, all data in main.c was relocated to address 0x20000000.

Listing 35 — Memory map showing main.c data relocated

Note
To an application, there isn't much distinction between the CODE and system buses; however, there is a difference
in the performance of the two buses. CODE bus cycles have no delay added at the core. System bus cycle timing
depends on the type of access. System bus data accesses have no delay added at the core, but instruction accesses
add one wait state at the core.

6) Linker File for RAM Project

The difference between a ROM project and a RAM project is that in the RAM project, the code and data reside in
RAM, therefore there is no need to copy from ROM to RAM, so sections ‘.romp’ and ‘.cfmprotect’ are not required
in the linker file. This is used to download all the application and be able to debug out of RAM.

The following listing shows an example of the memory distribution.

MEMORY
{
m_interrupts (rx) : ORIGIN = Ox1FFF@000, LENGTH = Ox1E8
m_text (rx) : ORIGIN = Ox1FFFO1E8, LENGTH = 64K-Ox1E8 /* Lower SRAM */
m_data (rw) : ORIGIN = ©x20000000, LENGTH = 64K /* Upper SRAM */
}

Listing 36 — Memory Segment in a RAM Project

7) Debugging out of External RAM

It is easier to debug an application from RAM as you can skip the flashing process each time you make
edits in your application. If internal RAM is not big enough for your application you can configure your
project to debug out of external RAM. You can follow the next steps to create a new external RAM
configuration and debug session.

1) Click menu Project > Build Configurations > Manage and click ‘New’ button.

- —
K70_GCC: Manage Configurations L&Ju
g g -

Configuration Description Status
FLASH ' Active
RAM

Set Active ’ Mew... [Delete ” Rename...]

ok || cance |

Image 1 — Manage Configurations

2) In the window prompted write a name for your new Build Configuration, e.g. MRAM’ or ‘DDR’.
Then select ‘Copy Settings from Existing Configuration’, choose ‘RAM’ and click ‘OK’ button.

T

Note: The configuration name will be used as a directory name in the file
system. Please ensure that it is valid for your platform.,

Marne: DDR

Description:

Copy settings from

@ Existing configuration |RAM

() Default configuration | Debug

(©) Import from projects | -- not selected --

) Impert predefined -- not selected --

Image 2 — Create new Configuration

3) Set your new configuration as active using ‘Set Active’ button.

rﬁi K70_GCC: Manage Configurations |E| | % .|1
Configuration Description Status
FLASH
RAM
Set Active ’ New...] ’ Delete] [Rename...]
[OK] ’ Cancel]

Image 3 — New DDR Configuration

4) Right click on ‘Linker_Files’ folder which is located in {Project_path}/Project_Settings and select

New > Other...
L KJ0_GCC : DDR -
‘ IT 4 Binaries v Mal.<efile Project with Existing Code
> &= FLASH Go Into [Project...
> = Project_Headers ; ; |£{|> Source File
4 [= Project_Settings Open in New Window . _
[> = Debugger . |h] Header File
4 [~ Linker_Files reprocess |_{|> File from Template
=l B4 RAM.IM Disassemble &% Source Folder
ﬁ METOFNLMO flash.Id Tndex | c% Folder
5|_| MK?téFI:lMU_ram.ld Make Targets v & Class
b = Startup_Code Resource Configurations 3
(= RAM 9 Other.. | Ctrl+ N
[Sources [E Copy Ctrl+C T

Image 4 — Creating New File

5) Inthe new window select General > File and click ‘Next’, then write a name for your new *.Id file,
e.g. ‘Ext RAM.Id’, then click ‘Finish’.

-l T v e I oo

Select a wizard — File A
Create a new file resource [Create a new file resource. |

Wizards: Enter or select the parent folder:

| type filter text 1 K70_GCC/Project_Settings/Linker_Files

»

& Bareboard Project
ﬁl Linux/uClinux Application Project

MQX 3.8 Project

J;

MQX 4.0 Project
B j

MQX-Lite Project Wizard

il

= o2
== K70_GCC -
= .settings
(= FLASH
(== Project_Headers
(= Project_Settings

m

= Debugger
= Linker_Files
5 Group
Startup_Code
MNew External File BﬁM B
[{% bigject A &= Sources

|4

[Show All Wizards.

File name: | Ext_RAM.Id|

@ [ot [t o) (e

?) e e

Image 5 — New File Wizard

6) Copy the content of the ram linker file (xxxx_ram.ld) located in
{Project_path}/Project_Settings/Linker_Files and paste it into the new .Id file that has been
created.

a == K70_GCC : DDR
[ﬁ'? Binaries
[(= DDR
[(= FLASH
[> [~ Project_Headers
4 [~ Project_Settings
i (= Debugger
a [~ Linker Files
= Ext RAM.IM
2| METOFMNIMO_flash.ld
(= MKZ0FNIMO_ramm.id |
> [= Startup_Code
= RAM
|=| SahnalysispointsManager.apconfig
I [Sources
Image 6 — Project Source tree

7) The only difference between a RAM linker file and an external RAM linker file is the memory

segment. Listing 37 and 38 show DDR and MRAM examples, as you can see interrupts are kept
in internal RAM while the rest of the segments are allocated in external memory addresses.

MEMORY

{
m_interrupts
m_text
m_data

}

MEMORY

{
m_interrupts
m_text
m_data

}

(rx) : ORIGIN = Ox1FFFO000, LENGTH
(rx) : ORIGIN = 0x08000000, LENGTH
(rw) : ORIGIN = Ox080F8000, LENGTH
(rx) : ORIGIN = Ox1FFFO000, LENGTH
(rx) : ORIGIN = ©x60000000, LENGTH
(rw) : ORIGIN = Ox60070000, LENGTH

= OX1E8 /* Internal SRAM */
= OxE0000 /* DDR2 */
= 0x20000 /* DDR2 */

Listing 37 — Memory Segment in a K70 External DDR Project

= Ox1E0 /* Internal SRAM */
= OXx70000 /* MRAM */
= 0x10000 /* MRAM */

Listing 38 — Memory Segment in a K60 External MRAM Project

8) Go to menu Project > Properties > C/C++ Build > Settings > ARM Ltd Windows GCC C Linker >
General > script file (-T) and browse for your new *.Id file, then click ‘OK’.

¥ Properties for K70_GCC -

type filter text

Resource

Builders

C/C++ Build
Build Variables
Discovery Options
Environment

Logging
ool Chain Editor

C/C++ General
Run/Debug Settings

Settings - K70 GCC

(2 Target Processor
(2 Debugging
@ Additional Tools
(22 Librarian
4 33 ARM Ltd Windows GCC Assembler
@ Preprocessor
@ Directories
2 Warnings
(2 Miscellaneous
4 B3 ARM Ltd Windows GCC C Compiler
@ Preprocessor
(2 Directories
(# Optimization
@ Warnings
@ Miscellaneous
a4 3 ARM Ltd Windows GCC C Linker
IBraries
@ Miscellaneous

Script file (-T) 5{ProjDirPath}/Project_Settings/Linker_Files/Ext_ram.|d I [Browsze...]

[De not use standard start files (-nostartfiles)

[7] Do not use default libraries (-nodefaultlibs)

[No startup or default libs (-nostdlib)

Remove unused sections (-Xlinker --gc-sections)

[Print removed sections (-Xlinker --print-gc-sections)

[7] Omit all symbol information (-5)

m

T

Cancel

Image 7 - Linker Input

9) Build your application. Notice that a folder with the name of the new Build Configuration is

created.

4 2= K70_GCC

[> 11-? Binaries

» = DDR
p (= FLASH

[» [= Project_ Headers
[Project_Settings

= RAM

4 [~ Sources
3 El main.c
Image 8 — External RAM Build Configuration

10) Inside ‘Debugger’ folder which default location is {Project_path}/Projects_Settings you will find a
*.mem file and init_kinetis.tcl.

4 |.° KT0_GCC : DDR
: #,ff Binaries
. = DDR
. [= FLASH
- [~ Project_Headers
4 [= Project_Settings
a [= Debugger
| @ init kinetis.tcl |
[mass erase kinetis.tcl
|= MEFOFM1MO.mem
- [= Linker_Files
. [= Startup_Code
= RAM
4 [~ Sources
. @ main.c

Image 9 — Initialization files

11) You must edit init_kinetis.tcl to allow the Debugger to configure FlexBus module or DDR
controller in order to communicate with external MRAM or DDR2 to start a external RAM debug
sesion. Then edit .mem file to let the BDM know where to find external RAM addresses.

a.

b.

In Appendix C you can find the content of init_kinetis.tcl file to initialize DDR controller in
K70.

In Appendix D you can find the content of ‘K70FN1M0.mem’ including the memory
ranges used by DDR.

In Appendix E you can find the content of init_kinetis.tcl file to initialize Flexbus. Don’t
forget to call the Flexbus routine from main as highlighted below.

In Appendix F you can find the content of MK60ON512.mem file which includes MRAM
Flexbus address range used by MRAM.

12) So far we have configured the project to create an external RAM executable file. Now you need to
create a debug session to be able to debug out of External RAM. Select menu Run > Debug
Configurations. Right click on Internal RAM debug configuration and select ‘Duplicate’.

Create, manage, and run configurations

Download an application te a target, then debug or run the application.

TERX| E X
type filter text

[t] CodeWarrior Attach
[©] CodeWarrior Connect
a [t] CodeWarrior Download

[C] K70_GCC_FLASH_OSITAG
E K70_GCC_FLASH_Segger J-Link_Trace
[t] KI0_GCC_RAM_OSITAG
[C] K70_GCC_RAM Segger)| [MNew

[Launch Group =| Duplicate

W Delete

Image 10 — New Debug Configuration

13) A new Debug Configuration will be created. In the Application box select the .elf file created

inside the folder with the same name of the Build Configuration you created. In the image below it
is DDR/K70_GCC.

Create, manage, and run configurations

Download an application to a target, then debug or run the application.

W

X| 5~
type filter text

MName:

K70_GCC_RAM_OSITAG (1)
[E] CodeWarrior Attach
[€] CodeWarrior Connect
4 [c] CodeWarrior Download
[T] K70_GCC_FLASH_QSITAG
E K70_GCC_FLASH_Segger J-Link_Trace

Main > 69- Argument.s..'_ I Debugge;'_ B, Sourc;'_ <) Environmen.i.:.'_ = Qommon-. & Traceand Profile
C/C++ application

Project: K70_GCC

K70_GCC_RAM_OSITAG
[] K70_GCC_RAM_OSJTAG (1) I

K70_GCC_RAM_Segger J-Link_Trace

| Application: DDR/KT0_GCC.elf |

Build (if required) before launching

@ Launch Group

Filter matched 9 of 23 items

Filter by Project:

Build configuration:

(71 Enable auto build
@ Use workspace settings
Connection

Connection: | -4 KJ0_GCC_RAM_OSITAG

1=-52259_MQx4.0

<[Edite | New. |
52259 tests . [apply || Revet |
@:‘ [Debug] [Close]
Image 11 — Debug Configuration Settings

|_EDR |

’Searchproject...” Browsze... ” Variables...]

[] Select configuration using 'C/C++ Application'
() Disable auto build

Configure Workspace Settings...

14) Finally click ‘Apply’ button and then ‘Debug’ button. Now you are debugging from external RAM.

Appendix A

Appendix B

Appendix C

this method initializes debug modules which are not affected by software reset
register names should be referenced including the register group name to improve performance

proc init_debug_modules {} {
clear DWT function registers

reg "Core Debug Registers/DEMCR" = 0x1000001
reg "Data Watchpoint and Trace Unit Registers/DWT_FUNCTION@" = ©x©
reg "Data Watchpoint and Trace Unit Registers/DWT_FUNCTION1" = ©x©
reg "Data Watchpoint and Trace Unit Registers/DWT_FUNCTION2" = ©x©
reg "Data Watchpoint and Trace Unit Registers/DWT_FUNCTION3" = ©x©
clear FPB comparators
reg "Flash Patch and Breakpoint Unit Registers/FP_COMP@" = 0x0
reg "Flash Patch and Breakpoint Unit Registers/FP_COMP1" = ©x0
reg "Flash Patch and Breakpoint Unit Registers/FP_COMP2" = 0x0
reg "Flash Patch and Breakpoint Unit Registers/FP_COMP3" = 0x0
reg "Flash Patch and Breakpoint Unit Registers/FP_COMP4" = 0x0
reg "Flash Patch and Breakpoint Unit Registers/FP_COMP5" = 0x0

}

proc init_trace_modules {} {
clear DWT registers
reg "Data Watchpoint and Trace Unit Registers/DWT_CTRL" =0x40000000
reg "Data Watchpoint and Trace Unit Registers/DWT_CYCCNT" =0x0
reg "Data Watchpoint and Trace Unit Registers/DWT_CPICNT" =0x0
reg "Data Watchpoint and Trace Unit Registers/DWT_EXCCNT" =0x0
reg "Data Watchpoint and Trace Unit Registers/DWT_SLEEPCNT" =0x0@
reg "Data Watchpoint and Trace Unit Registers/DWT_LSUCNT" =0x0
reg "Data Watchpoint and Trace Unit Registers/DWT_FOLDCNT" =0x0
reg "Data Watchpoint and Trace Unit Registers/DWT_COMP@" =0x0
reg "Data Watchpoint and Trace Unit Registers/DWT_COMP1" =0x0
reg "Data Watchpoint and Trace Unit Registers/DWT_COMP2" =0x0
reg "Data Watchpoint and Trace Unit Registers/DWT_COMP3" =0x0
reg "Data Watchpoint and Trace Unit Registers/DWT_MASK@" =0x0
reg "Data Watchpoint and Trace Unit Registers/DWT_MASK1" =0x0
reg "Data Watchpoint and Trace Unit Registers/DWT_MASK2" =0x0
reg "Data Watchpoint and Trace Unit Registers/DWT_MASK3" =0x0
clear ITM registers
reg "Instrumentation Trace Macrocell Registers/ITM_LAR" =@xc5acce55
reg "Instrumentation Trace Macrocell Registers/ITM_TER" =0x0
reg "Instrumentation Trace Macrocell Registers/ITM_TPR" =0x0
reg "Instrumentation Trace Macrocell Registers/ITM_TCR" =0x0@
reg "Instrumentation Trace Macrocell Registers/ITM_LAR" =0x1
reset Funnel registers
reg "Embedded Trace Funnel Registers/ETF_FCR" =0x300
clear MCM registers
reg "Core Platform Miscellaneous Control Module (MCM) Registers/MCM_ETBCC" =0x®©
reg "Core Platform Miscellaneous Control Module (MCM) Registers/MCM_ETBRL" =0x®©
set SCB_VTOR register for RAM
reg "System Control Registers/SCB_VTOR" =0x20000000

}

proc envsetup {} {

Environment Setup
radix x

config hexprefix Ox
config MemIdentifier p
config MemWidth 32
config MemAccess 32
config MemSwap off

}

proc init_stack_pointer {} {
reg SP = Ox2000FFF8
}

proc disable wdt {} {
First unlock the watchdog so that we can write to registers */

Appendix D

Appendix E

this method initializes debug modules which are not affected by software reset
register names should be referenced including the register group name to improve performance

proc init_debug_modules {} {
clear DWT function registers

reg "Core Debug Registers/DEMCR" = 0x1000001
reg "Data Watchpoint and Trace Unit Registers/DWT_FUNCTION®" = 0©x0
reg "Data Watchpoint and Trace Unit Registers/DWT_FUNCTION1" = ©x@
reg "Data Watchpoint and Trace Unit Registers/DWT_FUNCTION2" = ©Ox@
reg "Data Watchpoint and Trace Unit Registers/DWT_FUNCTION3" = 0x0@
clear FPB comparators
reg "Flash Patch and Breakpoint Unit Registers/FP_COMP@" = 0x0
reg "Flash Patch and Breakpoint Unit Registers/FP_COMP1" = 0x0
reg "Flash Patch and Breakpoint Unit Registers/FP_COMP2" = 0x0
reg "Flash Patch and Breakpoint Unit Registers/FP_COMP3" = 0x0
reg "Flash Patch and Breakpoint Unit Registers/FP_COMP4" = 0x@
reg "Flash Patch and Breakpoint Unit Registers/FP_COMP5" = 0x@

}

proc init_trace_modules {} {
clear DWT registers
reg "Data Watchpoint and Trace Unit Registers/DWT_CTRL" =0x40000000
reg "Data Watchpoint and Trace Unit Registers/DWT_CYCCNT" =0x0
reg "Data Watchpoint and Trace Unit Registers/DWT_CPICNT" =0x0
reg "Data Watchpoint and Trace Unit Registers/DWT_EXCCNT" =0x0
reg "Data Watchpoint and Trace Unit Registers/DWT_SLEEPCNT" =0x0
reg "Data Watchpoint and Trace Unit Registers/DWT_LSUCNT" =0x0
reg "Data Watchpoint and Trace Unit Registers/DWT_FOLDCNT" =0x0@
reg "Data Watchpoint and Trace Unit Registers/DWT_COMP@" =0x0@
reg "Data Watchpoint and Trace Unit Registers/DWT_COMP1" =0x0@
reg "Data Watchpoint and Trace Unit Registers/DWT_COMP2" =0x0@
reg "Data Watchpoint and Trace Unit Registers/DWT_COMP3" =0x0@
reg "Data Watchpoint and Trace Unit Registers/DWT_MASK@" =0x0
reg "Data Watchpoint and Trace Unit Registers/DWT_MASK1" =0x0
reg "Data Watchpoint and Trace Unit Registers/DWT_MASK2" =0x0
reg "Data Watchpoint and Trace Unit Registers/DWT_MASK3" =0x0
clear ITM registers
reg "Instrumentation Trace Macrocell Registers/ITM_LAR" =0Oxc5acce55
reg "Instrumentation Trace Macrocell Registers/ITM_TER" =0x0
reg "Instrumentation Trace Macrocell Registers/ITM_TPR" =0x0
reg "Instrumentation Trace Macrocell Registers/ITM TCR" =0x0@
reg "Instrumentation Trace Macrocell Registers/ITM LAR" =0x1
reset Funnel registers
reg "Embedded Trace Funnel Registers/ETF_FCR" =0x300
clear MCM registers
reg "Core Platform Miscellaneous Control Module (MCM) Registers/MCM_ETBCC" =0x0
reg "Core Platform Miscellaneous Control Module (MCM) Registers/MCM_ETBRL" =0x0
set SCB_VTOR register for RAM
reg "System Control Registers/SCB_VTOR" =0x20000000

}

proc flexbus {} {
reg FB_CSARG=0x60000000
reg FB_CSCRO=0x100540
reg FB_CSMRO=0x70001
reg SIM_CLKDIV1=0x310000
reg SIM_SCGC5=0x43180
reg PORTB_PCR11 = 0x500

reg PORTB_PCR16 = 0x500
reg PORTB_PCR17 = 0x500
reg PORTB_PCR18 = 0x500
reg PORTC_PCR@ = 0x500
reg PORTC_PCR1 = 0x500
reg PORTC_PCR2 = 0x500
reg PORTC_PCR4 = 0x500

Appendix F

