

Freescale Semiconductor

Relocating Code and Data Using the CW
GCC Linker File (.ld) for Kinetis

By: Carlos Musich

1) Introduction

This document provides guidance for
relocating Code and Data within the MCU
memory map. As part of this process it
explains how create new memory segments
and sections by editing the GCC Linker File
(.ld) for Kinetis Architectures.

For detailed information on the GCC Linker
please refer to “The GNU Linker” by Steve
Chamberlain and Ian Lance Taylor.

You can see Porting Freescale ARM
Compiler-based Projects to use ARM
GCC - Porting_ARM_GCC.pdf for
information about the main differences
between Freescale ARM and GCC linker
files. You can find it in {CW10.x installation
path}\MCU\Help\PDF

2) Preliminary Background

A linker or link editor is a program that takes
one or more objects generated by the
compiler to combine them, relocate their
data and tie up symbol references to
generate an executable file. This is usually
the last step in compiling a program, to do it
the linker uses a linker file or linker script. In
order to relocate code and data in a specific
memory area it is necessary to edit the
linker file.

The following chapters explain how the
linker place functions in the memory and
how to relocate them in flash, internal RAM,
and external RAM using K60 or K70 Kinetis
devices with CodeWarrior and GCC
toolchain.

Contents

1 Introduction
2 Preliminary Backgrounds
3 Linker File (.ld) Overview
4 Relocating Code
4.1 Prerequisites
4.2 Relocating Code in ROM
4.3 Relocating Code in RAM
4.4 Relocating Code in a Specific RAM address
4.5 Relocating Code in External RAM
5 Relocating Data
6 Linker File for RAM Project
7 Debugging out of External RAM

3) Linker File (.ld) Overview

Freescale linker files are divided in 2 main parts.

3.1) Memory Segment

The memory segment is used to divide the Microcontroller memory into segments. Each segment can
have read, write and execute attributes. The address and the length of each segment are defined as well.
An example is shown in listing 1.

MEMORY
{
 m_interrupts (rx) : ORIGIN = 0x00000000, LENGTH = 0x1E8
 m_cfmprotrom (rx) : ORIGIN = 0x00000400, LENGTH = 0x10
 m_text (rx) : ORIGIN = 0x00000800, LENGTH = 1M - 0x800
 m_data (rwx) : ORIGIN = 0x1FFF0000, LENGTH = 64K
 m_data2 (rwx) : ORIGIN = 0x20000000, LENGTH = 64K
}

Listing 1 – K70 Memory segment

3.2) Sections Segment

In sections segment are defined the contents of target-memory sections. In other words, a section
indicates which parts of your application will be allocated in each memory segment. Main sections are
‘.text’ which contains all the code and the constants of an application, ‘.data’ which contains all initialized
data, and ‘.bss’ which contains all non-initialized data.

Below you can see section ‘.text’ of an application using K70. As you can notice it is contained in segment
‘m_text’.

.text :
 {
 . = ALIGN(4);
 (.text) / .text sections (code) */
 (.text) /* .text* sections (code) */
 (.rodata) / .rodata sections (constants, strings, etc.) */
 (.rodata) /* .rodata* sections (constants, strings, etc.) */
 (.glue_7) / glue arm to thumb code */
 (.glue_7t) / glue thumb to arm code */
 *(.eh_frame)

 KEEP (*(.init))
 KEEP (*(.fini))

 . = ALIGN(4);
 _etext = .; /* define a global symbols at end of code */
 } > m_text

Listing 2 – K70 section .text

4) Relocating Code

The code generated by the compiler is usually placed in section ‘.text’. Sometimes, however it is
necessary to have certain particular functions to appear in special sections or in a specific address. The
‘section’ attribute specifies that a function lives in a particular section. e.g.

void vfnDummy (void) __attribute__ ((section ("mySec")));

The example above places function ‘vfnDummy’ in section ‘mySec’.

In this application note we are going to write 6 functions that toggle the TWR-K60 or TWR-K70 on board
LEDs when pushing an onboard switch (SW2). Such functions are going to be allocated/relocated in
different memory areas.

4.1) Prerequisites

• Create a new bareboard project using K60 or K70 and be sure you select GCC toolchain in the
New Project wizard.

• Before using the GPIOs you need to initialize them, use function init_gpio() shown in listing 3 for
this purpose. You will also need function delay() shown in listing 4 to provide a short delay. The
following defines are necessary as well.

#define GPIO_PIN_MASK 0x1Fu
#define GPIO_PIN(x) (((1)<<(x & GPIO_PIN_MASK)))

void init_gpio()
{
 /* Enable all of the port clocks */
 SIM_SCGC5 |= (SIM_SCGC5_PORTA_MASK | SIM_SCGC5_PORTB_MASK | SIM_SCGC5_PORTC_MASK |

SIM_SCGC5_PORTD_MASK | SIM_SCGC5_PORTE_MASK | SIM_SCGC5_PORTF_MASK);
 // Set PTD0 and PTE26 (connected to SW1 and SW2) for GPIO functionality, falling IRQ,
 // and to use internal pull-ups. (pin defaults to input state)
 PORTD_PCR0=PORT_PCR_MUX(1)|PORT_PCR_IRQC(0xA)|PORT_PCR_PE_MASK|PORT_PCR_PS_MASK;
 PORTE_PCR26=PORT_PCR_MUX(1)|PORT_PCR_IRQC(0xA)|PORT_PCR_PE_MASK|PORT_PCR_PS_MASK;

 // Set PTA10, PTA11, PTA28, and PTA29 (connected to LED's) for GPIO functionality
 PORTA_PCR10=(0|PORT_PCR_MUX(1));
 PORTA_PCR11=(0|PORT_PCR_MUX(1));
 PORTA_PCR28=(0|PORT_PCR_MUX(1));
 PORTA_PCR29=(0|PORT_PCR_MUX(1));

 // Change PTA10, PTA11, PTA28, PTA29 to outputs */
 GPIOA_PDDR=GPIO_PDDR_PDD(GPIO_PIN(10) | GPIO_PIN(11) | GPIO_PIN(28) | GPIO_PIN(29));
}

Listing 3 – Function init_gpio

void delay()
{
 unsigned int i, n;
 for(i=0;i<3000;i++)
 {
 for(n=0;n<1000;n++)
 {
 asm("nop");
 }
 }
}

Listing 4 – Function delay

Call function init_gpio from function main, then enter in and endless loop calling function delay inside
the loop. Function main must look as shown in listing 5.

int main (void)
{
 init_gpio();
 while(1)
 {
 delay();
 }
 return 0;
}

Listing 5 – Function main

Go to menu Project > Build Configurations > Set Active > FLASH to select flash configuration. Then go to

menu Project > Build Project to build the project. You can alternately click the hammer button.

4.2) Relocating Code in ROM

Listing 6 shows function toggle_LED_allocated_in_Flash which toggles blue LED 3 times. Copy this
function into your project and call it each time SW2 is pressed. Function main must look as shown in
listing 7.

/*Toggle LEDs - This functions toggles blue LED*/
void toggle_LED_allocated_in_Flash()
{
 unsigned int x;
 for(x = 0; x < 6; x++)
 {
 GPIOA_PTOR|=GPIO_PDOR_PDO(GPIO_PIN(10));
 delay();
 }
}

Listing 6 – Function toggle_LED_allocated_in_Flash

int main (void)
{
 init_gpio();
 while(1)
 {
 //Look at status of SW2 on PTE26
 if((GPIOE_PDIR & GPIO_PDIR_PDI(GPIO_PIN(26)))==0) //If pressed...
 {
 toggle_LED_allocated_in_Flash();
 }
 delay();
 }
 return 0;
}

Listing 7 – Function main

Go to menu Project > Build Project and then search for the *.map file inside {Project_path}/FLASH. Here
you can see that function toggle_LED_allocated_in_Flash is placed in a flash address. This is shown in
listing 8.

.text.toggle_LED_allocated_in_Flash
 0x000009a0 0x40 ./Sources/main.o
 0x000009a0 toggle_LED_allocated_in_Flash

Listing 8 – Function toggle_LED_allocated_in_Flash in map file

Now we are going to use attribute ‘section’ to create a section. This time the section is caled ‘.myROM’
and use it to relocate a function that toggles on-board green LED in address 0x000FF000. Listing 9
shows how this function should see.

/*Toggle LEDs - This functions toggles green LED and is relocated in Flash address 0x00007F00*/
__attribute__ ((section(".myROM"))) void toggle_LED_relocated_in_Flash_address_0x000FF000()
{
 unsigned int x;
 for(x = 0; x < 6; x++)
 {
 GPIOA_PTOR|=GPIO_PDOR_PDO(GPIO_PIN(29));
 delay();
 }
}

Listing 9 – Function toggle_LED_relocated_in_Flash_address_0x000FF000

Now we need to edit linker file (.ld) to create a new segment where this function is going to be relocated.
Compare listing 10 with listing 1 and notice that 0x1000 bytes were subtracted from segment ‘m_text’ to
create segment ‘my_text’.

MEMORY
{
 m_interrupts (rx) : ORIGIN = 0x00000000, LENGTH = 0x1E8
 m_cfmprotrom (rx) : ORIGIN = 0x00000400, LENGTH = 0x10
 m_text (rx) : ORIGIN = 0x00000800, LENGTH = 0x1M - 0x1800
 my_text (rx) : ORIGIN = 0x000FF000, LENGTH = 0x1000 /* New ROM Segment */
 m_data (rwx) : ORIGIN = 0x1FFF0000, LENGTH = 64K
 m_data2 (rwx) : ORIGIN = 0x20000000, LENGTH = 64K
}

Listing 10 – Memory segment edited to create segment ‘my_text’

Now create a new section in linker file to place ‘.myROM’ content. You can call this section ‘.my_ROM’
and write it just before section ‘.data’.

/* Section created to relocate code in specific Flash address */
 .my_ROM :
 {
 . = ALIGN(4);
 *(.myROM)
 . = ALIGN(4);

 } > my_text

Listing 11 – Section .my_ROM

Finally, write a call to function toggle_LED_relocated_in_Flash_address_0x000FF000 after SW2 is
pressed in function main.

int main (void)
{
 init_gpio();
 while(1)
 {
 //Look at status of SW2 on PTE26
 if((GPIOE_PDIR & GPIO_PDIR_PDI(GPIO_PIN(26)))==0) //If pressed...
 {
 toggle_LED_allocated_in_Flash();
 toggle_LED_relocated_in_Flash_address_0x000FF000();
 }
 delay();
 }
 return 0;
}

Listing 12 – Section .my_ROM

Go to menu Project > Build Project and then search for the *.map file inside {Project_path}/FLASH. Here
you can see that function toggle_LED_relocated_in_Flash_address_0x000FF000 is placed exactly
where it is expected and it is 40 bytes long. This is shown on listing 13.

.my_ROM 0x000ff000 0x40
 0x000ff000 . = ALIGN (0x4)
 *(.myROM)
 .myROM 0x000ff000 0x40 ./Sources/main.o
 0x000ff000 toggle_LED_relocated_in_Flash_address_0x000FF000
 0x000ff040 . = ALIGN (0x4)

Listing 13 – Function toggle_LED_relocated_in_Flash_address_0x000FF000 in map file

4.3) Relocating Code in RAM

Sometimes it is required to copy code to RAM for faster execution. The easiest way to do this is to add
the function to section ‘.data’. Doing this the linker will place the function in the first address available in
RAM and the startup code will copy the function form Flash to RAM automatically. Please notice that this
approach only works if you don’t need to place the function in any specific RAM address. Next chapter
discusses how to relocate a function in a specific RAM location.

There are just 2 steps:

• Use attribute ‘section’ to place the function in a new section. In this case it is called ‘.mydata’ as
shown in listing 14.

• Add content of ‘.mydata’ in ‘.data’ section as shown on listing 15.

/*Toggle LEDs - This functions toggles orange and is relocated in RAM*/
__attribute__ ((section(".mydata"))) void toggle_LED_relocated_in_any_RAM_address()
{
 int x;
 for(x = 0; x < 6; x++)
 {
 GPIOA_PTOR|=GPIO_PDOR_PDO(GPIO_PIN(28));
 delay();
 }
}

Listing 14 – Function toggle_LED_relocated_in_any_RAM_address

/* Initialized data sections goes into RAM, load LMA copy after code */
 .data : AT(___ROM_AT)
 {
 . = ALIGN(4);
 _sdata = .; /* create a global symbol at data start */
 (.data) / .data sections */
 (.data) /* .data* sections */
 (.mydata) / .mydata relocates a function on any RAM address */
 . = ALIGN(4);
 _edata = .; /* define a global symbol at data end */
 } > m_data

Listing 15 – Adding content of ‘.mydata’ in ‘.data’ section

Write a call to function toggle_LED_relocated_in_any_RAM_address after SW2 is pressed in function
main.

int main (void)
{
 init_gpio();
 while(1)
 {
 //Look at status of SW2 on PTE26
 if((GPIOE_PDIR & GPIO_PDIR_PDI(GPIO_PIN(26)))==0) //If pressed...
 {
 toggle_LED_allocated_in_Flash();
 toggle_LED_relocated_in_Flash_address_0x0000FF00();
 toggle_LED_relocated_in_any_RAM_address();
 }
 delay();
 }
 return 0;
}

Listing 16 – Function main

Go to menu Project > Build Project and then search for the *.map file inside {Project_path}/FLASH. Here
you can see that function toggle_LED_relocated_in_any_RAM_address is placed in RAM and it is 40
bytes long. This is shown on listing 17.

.data 0x1fff0000 0x50 load address 0x00001c2c
 0x1fff0000 . = ALIGN (0x4)
 0x1fff0000 _sdata = .
 *(.data)
 (.data)
 *(.mydata)
 .mydata 0x1fff0000 0x40 ./Sources/main.o
 0x1fff0000 toggle_LED_relocated_in_any_RAM_address

Listing 17 – Function toggle_LED_relocated_in_any_RAM_address in map file

4.4) Relocating Code in a specific RAM address

To relocate a function in a specific RAM section it is necessary to create a new memory segment and a
new section in the linker file. Be aware that you must save this function in Flash and then it must be
copied to RAM. The startup code can do this copy for us if we edit section ‘.romp’ in the linker file with the
correct information.

The first step is to write the function using attribute ‘section’. In this example the section is called
‘myRAM’.

/*Toggle LEDs - This functions toggles red LED and is relocated in RAM address 0x1FFFE000*/
__attribute__ ((section(".myRAM"))) void toggle_LED_relocated_in_RAM_address_0x1FFFE000()
{
 unsigned int x;
 for(x = 0; x < 6; x++)
 {
 GPIOA_PTOR|=GPIO_PDOR_PDO(GPIO_PIN(11));
 delay();
 }
}

Listing 18 – Function toggle_LED_relocated_in_RAM_address_0x1FFFE000

Next step is to create a segment in the linker file. This segment must start in the address where the
function needs to be relocated; in this case it is address 0x1FFFE00.
Notice that 0x2000 bytes are subtracted from segment ‘m_data’ to create segment ‘my_data’.

MEMORY
{
 m_interrupts (rx) : ORIGIN = 0x00000000, LENGTH = 0x1E8
 m_cfmprotrom (rx) : ORIGIN = 0x00000400, LENGTH = 0x10
 m_text (rx) : ORIGIN = 0x00000800, LENGTH = 0x1M - 0x800
 m_data (rwx) : ORIGIN = 0x1FFF0000, LENGTH = 0xE000
 my_data (rwx) : ORIGIN = 0x1FFFE000, LENGTH = 0x2000 /* New RAM Segment */
 m_data2 (rwx) : ORIGIN = 0x20000000, LENGTH = 64K
}

Listing 19 – Memory segment edited to add segment my_data

Then a section must be created in the linker file, this section must be contained in segment ‘my_data’, let
us call it ‘.my_ram’. As it was mentioned before, the function must be saved in flash and copied to RAM in
run time. The instruction ‘AT’ indicates the flash address where the function will be resident before being
copied.

If you search the for label ‘___ROM_AT’ in the linker file you will find that it points to the first available
address in flash, here is where section ‘.data’ is resident, therefore, the address where section ‘.my_ram’
must reside is after section ‘.data’. To calculate this address the instruction ‘SIZEOF’ is used. This is
shown in listing 20.

 /* Section created to relocate code in specific RAM address */
 .my_ram : AT(___ROM_AT + SIZEOF(.data))
 {
 . = ALIGN(4);
 _mySection = .; /* create a global symbol at myRAM */
 *(.myRAM)
 . = ALIGN(4);

 } > my_data

Listing 20 – Section .my_ram

As we inserted a new RAM section that was not considered by the linker we must make a couple of
adjustments.

At this moment label ___m_data2_ROMStart overlaps with the address where section ‘.my_ram’ resides.
This label must be edited to skip section ‘.my_ram’.

___m_data2_ROMStart = ___ROM_AT + SIZEOF(.data) + SIZEOF(.my_ram);

Label _romp_at must also be edited to consider section ‘.my_ram’.

 _romp_at = ___ROM_AT + SIZEOF(.data) + SIZEOF(.user_data2) + SIZEOF(.my_ram);

The last step is to copy the code from flash to RAM. To do this it is necessary to edit section ‘.romp’. This
section indicates to the startup code what is going to be copied from ROM to RAM. This copy table, which
the symbol __S_romp identifies, contains a sequence of three word values per entry:

• ROM start address

• RAM start address

• Size
The last entry in this table must be all zeros, this is the reason for the three lines, LONG(0) before the
table closing brace character.

For the new section to be copied, one new entry must be added to the table. The new entry indicates
___ROM_AT + SIZEOF(.data) as the source flash address, label _mySection as the destiny RAM
address and SIZEOF(.my_ram) as the size of the section to be copied.

 _romp_at = ___ROM_AT + SIZEOF(.data) + SIZEOF(.user_data2) + SIZEOF(.my_ram);
 .romp : AT(_romp_at)
 {
 __S_romp = _romp_at;
 LONG(___ROM_AT);
 LONG(_sdata);
 LONG(___data_size);
 LONG(___m_data2_ROMStart);
 LONG(___m_data2_RAMStart);
 LONG(___m_data2_ROMSize);
 LONG(___ROM_AT + SIZEOF(.data));
 LONG(_mySection);
 LONG(SIZEOF(.my_ram));
 LONG(0);
 LONG(0);
 LONG(0);
 } > m_data2

Listing 21 – Section .romp

In function main write a call to function toggle_LED_relocated_in_RAM_address_0x1FFFE000 after
SW2 is pressed.

If you have added the functions in previous chapters, function main should look as follows.

int main (void)
{
 init_gpio();
 while(1)
 {
 //Look at status of SW2 on PTE26
 if((GPIOE_PDIR & GPIO_PDIR_PDI(GPIO_PIN(26)))==0) //If pressed...
 {
 toggle_LED_allocated_in_Flash();
 toggle_LED_relocated_in_Flash_address_0x0000FF00();
 toggle_LED_relocated_in_any_RAM_address();
 toggle_LED_relocated_in_RAM_address_0x1FFFE000();
 }
 delay();
 }
 return 0;
}

Listing 22 – Function main

Go to menu Project > Build Project and then search for the *.map file inside {Project_path}/FLASH. Here
you can see that function toggle_LED_relocated_in_RAM_address_0x1FFFE000 is placed exactly
where it is expected and it is 40 bytes long. This is shown on listing 23.

.my_ram 0x1fffe000 0x50 load address 0x00001c94
 0x1fffe000 . = ALIGN (0x4)
 0x1fffe000 _mySection = .
 *(.myRAM)
 .myRAM 0x1fffe000 0x40 ./Sources/main.o
 0x1fffe000 toggle_LED_relocated_in_RAM_address_0x1FFFE000

Listing 23 – Function toggle_LED_relocated_in_RAM_address_0x1FFFE000 in map file

4.5) Relocating Code in external RAM

When the internal RAM of the Microcontroller is not enough for our application it is necessary the use
external memories as part of the solution. The process to relocate code in external memories is almost
the same as it is for internal RAM. The main difference is that the external memory needs to communicate
with the Microcontroller through an interface controller.

K60 and K70 devices provide Flexbus interface which can be used to communicate with external
memories, K70 provides also DDR controller. This chapter explains how to relocate a function using such
modules in TWR-K60 or TWR-K70.

First write the function using attribute ‘section’. This time the section is called ‘myExtRAM’.

/*Toggle LEDs - This functions is relocated in external RAM*/
__attribute__ ((section(".myExtRAM"))) void toggle_LED_relocated_in_external_RAM()
{
 unsigned int x;
 for(x = 0; x < 6; x++)
 {
 GPIOA_PTOR|=GPIO_PDOR_PDO(GPIO_PIN(10));
 GPIOA_PTOR|=GPIO_PDOR_PDO(GPIO_PIN(11));
 GPIOA_PTOR|=GPIO_PDOR_PDO(GPIO_PIN(28));
 GPIOA_PTOR|=GPIO_PDOR_PDO(GPIO_PIN(29));
 delay();
 }
}

Listing 24 – Function toggle_LED_relocated_in_external_RAM

Then create a memory segment for external memory. For Flexbus you can use address 0x60000000, for
DDR controller you can use 0x08000000. The segments will be called ‘extmram’ and ‘extddr’.

MEMORY
{
 m_interrupts (rx) : ORIGIN = 0x00000000, LENGTH = 0x1E8
 m_cfmprotrom (rx) : ORIGIN = 0x00000400, LENGTH = 0x10
 m_text (rx) : ORIGIN = 0x00000800, LENGTH = 0x1M - 0x800
 m_data (rwx) : ORIGIN = 0x1FFF0000, LENGTH = 64K
 m_data2 (rwx) : ORIGIN = 0x20000000, LENGTH = 64K
 extmram (rxw) : ORIGIN = 0x60000000, LENGTH = 0x00080000 /* MRAM Address*/
 extddr (rxw) : ORIGIN = 0x08000000, LENGTH = 0x00080000 /* DDR Address*/
}

Listing 25 – Linker file edited to add external MRAM and external DDR segments

As it was explained in the previous chapter, a new section must be created in the linker file, this section
must be contained in one of the segments created for external RAM (MRAM or DDR). The new section
created for this purpose is called ‘.ext_ram’ and the segments where it may be contained are called
‘extmram’ or ‘extddr’.

As it was mentioned before, the function must be saved in flash and copied to RAM in runtime. The
instruction ‘AT’ indicates the flash address where the function will be resident before being copied.

If you search the for label ‘___ROM_AT’ in the linker file you will find that it points to the first available
address in flash, here is where section ‘.data’ is resident, therefore, the address where section ‘.ext_ram’
must reside is after section ‘.data’. To calculate this address the instruction ‘SIZEOF’ is used.

The listing below shows a new section contained in segment ‘mram’ to use TWR-MEM through Flexbus
module.

 /* Calculating the address where code to be copied to External RAM starts*/
 ___ExtRAMCodeStart = ___ROM_AT + SIZEOF(.data);

 /* Section created to relocate code in External RAM */
 .ext_ram : AT(___ExtRAMCodeStart)
 {
 . = ALIGN(4);
 ___ExtRAMStart = .;
 *(.myExtRAM)
 . = ALIGN(4);

 } > extmram

 /* Getting the size of the code to be copied to External RAM */
 ___ExtRAMCodeSize = SIZEOF(.ext_ram);

Listing 26 – Section .ext_ram

Use segment ‘extddr’ instead of ‘extmram’ to use onboard DDR2 on TWR-K70 through the DDR
Controller module.

 } > extddr

As we inserted a new RAM section that was not considered by the linker we must make a couple of
adjustments.

At this moment label ___m_data2_ROMStart overlaps with the address where section ‘.my_ram’ resides.
This label must be edited to skip section ‘.ext_ram’.

___m_data2_ROMStart = ___ROM_AT + SIZEOF(.data) + SIZEOF(.ext_ram);

Label _romp_at must also be edited to consider section ‘.ext_ram’.

 _romp_at = ___ROM_AT + SIZEOF(.data) + SIZEOF(.user_data2) + SIZEOF(.ext_ram);

Next write a call to function toggle_LED_relocated_in_external_RAM after SW2 is pressed. Function
main should look as shown below.

int main (void)
{
 init_gpio();
 while(1)
 {
 //Look at status of SW2 on PTE26
 if((GPIOE_PDIR & GPIO_PDIR_PDI(GPIO_PIN(26)))==0) //If pressed...
 {
 toggle_LED_relocated_in_external_RAM();
 }
 delay();
 }
 return 0;
}

Listing 27 – Function main

At this point you must be able to build the application. Go to menu Project > Build Project and then search
for the *.map file inside {Project_path}/FLASH. Here you can see that function
toggle_LED_relocated_in_ext_RAM is placed in 0x60000000 if you are using MRAM through Flexbus
or 0x08000000 if you are using DDR controller.

.ext_mram 0x60000000 0x98 load address 0x0000259c
 0x60000000 . = ALIGN (0x4)
 0x60000000 ___ExtRAMStart = .
 *(.myExtRAM)
 .myExtRAM 0x60000000 0x88 ./Sources/GPIOs.o
 0x60000000 toggle_LED_relocated_in_external_RAM

Listing 28 – Function toggle_LED_relocated_in_ext_RAM

The last step is to copy the code from flash to RAM. As we need Flexbus or DDR controller module to
communicate with the external RAM we need to initialize them before copying the code to the external
memory. There are 2 ways to do this.

• Edit init_kinetis.tcl file to add Flexbus or DDR controller initialization, then edit *.mem file to permit
the debugger to write to the external memory address range and finally edit section ‘.romp’ as it
was made in previous chapter. In this appnote we are not getting deep into this approach.

• Initialize Flexbus or DDR controller in your application and copy the code manually. You can find
the initialization code of these modules in Appendix A and Appendix B.

The next listing shows the code you need to copy from flash to RAM. As you may notice in listing 26 there
are some labels used to determine the address where the section starts and its size. This labels are used
by the function that makes the copy.

extern unsigned long ___ExtRAMCodeStart[];
#define ExtRAMCodeStart (unsigned long)___ExtRAMCodeStart

extern unsigned long ___ExtRAMCodeSize[];
#define ExtRAMCodeSize (unsigned long)___ExtRAMCodeSize

extern unsigned long ___ExtRAMStart[];
#define ExtRAMStartAddr (unsigned long)___ExtRAMStart

unsigned char *Source;
unsigned char *Destiny;
unsigned int Size;

void copyToExtRAM(void)
{
 /* Initialize the pointers to start the copy from Flash to RAM */
 Source = (unsigned char *)(ExtRAMCodeStart);
 Destiny = (unsigned char *)(ExtRAMStartAddr);
 Size = (unsigned long)(ExtRAMCodeSize);

 /* Copying the code from Flash to External RAM */
 while(Size--)
 {
 *Destiny++ = *Source++;
 }
}

Listing 29 – Function copyToExtRAM

Finally, listing 30 shows function main initializing both, Flexbus and DDR controller. Then the copy from
flash to external RAM is executed.

int main (void)
{
 /* Initialize GPIO on TWR-K70F120M */
 init_gpio();

 /* Initialize Flexbus on TWR-K70F120M */
 TWRK70_flexbus_init();

 /* Initialize DDR on TWR-K70F120M */
 disable_wdt();
 init_pll();
 init_ddr();

 /* Copy code to external DDR */
 copyToExtRAM();
 while(1)
 {
 //Look at status of SW2 on PTE26
 if((GPIOE_PDIR & GPIO_PDIR_PDI(GPIO_PIN(26)))==0) //If pressed...
 {
 toggle_LED_relocated_in_external_RAM();
 }
 delay();
 }
 return 0;
}

Listing 30 – Function main

5) Relocating Data

Kinetis K family devices provide 2 RAM blocks, any access below 0x2000_0000 will run on the CODE
bus, and most accesses at 0x2000_0000 or above will run on the system bus (PPB accesses being the
exception).

The default linker file is configured to place all data in ‘m_data’ segment which is connected to the code
bus. Unfortunately GNU linker is not smart enough to automatically distribute the RAM objects between
the sections, so as user you need to manually distribute things.

Relocate data in RAM is a very similar process to relocate a function. First you need to use attribute
‘section’ in the variables you wish to relocate as shown in listing 31.

__attribute__ ((section(".myRAM"))) int my_data[10000];

int main(void)
{
 int i = 0;
 int counter = 0;

 for(i = 0; i < 10000; i++) {
 counter++;
 my_data[i] = counter;
 }

 return 0;
}

Listing 31 – Relocating data

Then add a new section in the linker file contained in segment ‘m_data2’ which is accessed by the system

bus.

.mySection :
{
 *(.myRAM)
} > m_data2

Listing 32 – Creating new linker section to relocate data

As you can see on listing 33, ‘my_data[]’ has been relocated to address 0x20000000.

.mySection 0x20000000 0x4e20
 *(.myRAM)
 .myRAM 0x20000000 0x4e20 ./Sources/main.o
 0x20000000 my_data

Listing 33 – Memory map showing main.c data relocated

This could be complicated if there are a big amount of variables which you want to relocate, in this case
you can relocate all the variables of a whole source file using the default section COMMON for that
specific file. Please note that in this case attribute ‘section’ is not necessary. Listings 34 and 35 show an
example.

int my_data[5000];
int my_data1[5000];

int main(void)
{
 int i = 0;
 int counter = 0;

 for(i = 0; i < 10000; i++) {
 counter++;
 my_data[i] = counter;
 my_data1[i] = counter + 1;
 }

 return 0;
}

 Listing 34 – Relocating data

.mySection :
 {
 *main.o(COMMON)
 } > m_data2

Listing 35 – Relocate data of main.c file

As you can see in listing 36, all data in main.c was relocated to address 0x20000000.

.mySection 0x20000000 0x9c40
 *main.o(COMMON)
 COMMON 0x20000000 0x9c40 ./Sources/main.o
 0x20000000 my_data
 0x20004e20 my_data1

Listing 35 – Memory map showing main.c data relocated

Note

To an application, there isn't much distinction between the CODE and system buses; however, there is a difference

in the performance of the two buses. CODE bus cycles have no delay added at the core. System bus cycle timing

depends on the type of access. System bus data accesses have no delay added at the core, but instruction accesses

add one wait state at the core.

6) Linker File for RAM Project

The difference between a ROM project and a RAM project is that in the RAM project, the code and data reside in

RAM, therefore there is no need to copy from ROM to RAM, so sections ‘.romp’ and ‘.cfmprotect’ are not required

in the linker file. This is used to download all the application and be able to debug out of RAM.

The following listing shows an example of the memory distribution.

 MEMORY
{
 m_interrupts (rx) : ORIGIN = 0x1FFF0000, LENGTH = 0x1E8
 m_text (rx) : ORIGIN = 0x1FFF01E8, LENGTH = 64K-0x1E8 /* Lower SRAM */
 m_data (rw) : ORIGIN = 0x20000000, LENGTH = 64K /* Upper SRAM */
}

Listing 36 – Memory Segment in a RAM Project

7) Debugging out of External RAM

It is easier to debug an application from RAM as you can skip the flashing process each time you make
edits in your application. If internal RAM is not big enough
project to debug out of external RAM.
configuration and debug session.

1) Click menu Project > Build Configurations > Manage

2) In the window prompted write a name for your new Build Configuration
Then select ‘Copy Settings from Existing Configuration

Debugging out of External RAM

It is easier to debug an application from RAM as you can skip the flashing process each time you make
edits in your application. If internal RAM is not big enough for your application you can conf

external RAM. You can follow the next steps to create a new external RAM

Click menu Project > Build Configurations > Manage and click ‘New’ button.

Image 1 – Manage Configurations

In the window prompted write a name for your new Build Configuration, e.g. MRAM
ttings from Existing Configuration’, choose ‘RAM’ and click

Image 2 – Create new Configuration

It is easier to debug an application from RAM as you can skip the flashing process each time you make
for your application you can configure your

You can follow the next steps to create a new external RAM

MRAM’ or ‘DDR’.
lick ‘OK’ button.

3) Set your new configuration as active using ‘Set Active’ button.

4) Right click on ‘Linker_Files’ folder which is located in {Project_path}/Project_Settings and s
New > Other…

Set your new configuration as active using ‘Set Active’ button.

Image 3 – New DDR Configuration

’ folder which is located in {Project_path}/Project_Settings and s

Image 4 – Creating New File

’ folder which is located in {Project_path}/Project_Settings and select

5) In the new window select General > File
e.g. ‘Ext_RAM.ld’, then click ‘Finish’.

6) Copy the content of the ram linker file (xxxx_ram.ld) located in

{Project_path}/Project_Settings/Linker_Files and paste it into the new .ld file that has been
created.

General > File and click ‘Next’, then write a name for your new *.ld
e.g. ‘Ext_RAM.ld’, then click ‘Finish’.

Image 5 – New File Wizard

Copy the content of the ram linker file (xxxx_ram.ld) located in
Project_Settings/Linker_Files and paste it into the new .ld file that has been

Image 6 – Project Source tree

write a name for your new *.ld file,

Project_Settings/Linker_Files and paste it into the new .ld file that has been

7) The only difference between a RAM linker file and an external RAM linker file is the memory
segment. Listing 37 and 38
in internal RAM while the rest of the segments are allocated in external memory addresses.

MEMORY
{
 m_interrupts (rx) : ORIGIN = 0x1FFF0000,
 m_text (rx) : ORIGIN = 0x08000000,
 m_data (rw) : ORIGIN = 0x080F8000,
}

MEMORY
{
 m_interrupts (rx) : ORIGIN = 0x1FFF0000,
 m_text (rx) : ORIGIN = 0x60000000,
 m_data (rw) : ORIGIN = 0x60070000,

}

8) Go to menu Project > Properties >

General > script file (-T) and bro

9) Build your application. Notice that a folder with the name of the new Build Configuration is

created.

Image 8

The only difference between a RAM linker file and an external RAM linker file is the memory
 show DDR and MRAM examples, as you can see interrupts are kept

in internal RAM while the rest of the segments are allocated in external memory addresses.

= 0x1FFF0000, LENGTH = 0x1E8 /* Internal SRAM
= 0x08000000, LENGTH = 0xE0000 /* DDR2 */
= 0x080F8000, LENGTH = 0x20000 /* DDR2 */

Listing 37 – Memory Segment in a K70 External DDR Project

= 0x1FFF0000, LENGTH = 0x1E0 /* Internal SRAM
= 0x60000000, LENGTH = 0x70000 /* MRAM */
= 0x60070000, LENGTH = 0x10000 /* MRAM */

Listing 38 – Memory Segment in a K60 External MRAM Project

menu Project > Properties > C/C++ Build > Settings > ARM Ltd Windows GCC C Linker
and browse for your new *.ld file, then click ‘OK’.

Image 7 – Linker Input

Notice that a folder with the name of the new Build Configuration is

Image 8 – External RAM Build Configuration

The only difference between a RAM linker file and an external RAM linker file is the memory
show DDR and MRAM examples, as you can see interrupts are kept

in internal RAM while the rest of the segments are allocated in external memory addresses.

/* Internal SRAM */

Memory Segment in a K70 External DDR Project

Internal SRAM */

Memory Segment in a K60 External MRAM Project

ARM Ltd Windows GCC C Linker >

Notice that a folder with the name of the new Build Configuration is

10) Inside ‘Debugger’ folder which default location is {Project_path}/Projects_Settings you will find a
*.mem file and init_kinetis.tcl.

11) You must edit init_kinetis.tcl
controller in order to communicate with external MRAM
sesion. Then edit .mem file to

a. In Appendix C you ca
K70.

b. In Appendix D you can find the content of
ranges used by DDR.

c. In Appendix E you can find the content of init_kinetis.tcl file to initialize
forget to call the Flexbus routine from main as highlighted below.

d. In Appendix F you can find the content of MK60N512.mem file which includes MRAM
Flexbus address range used by MRAM.

12) So far we have configured the
create a debug session to be able to debug out of External
Configurations. Right click on Internal RAM de

Inside ‘Debugger’ folder which default location is {Project_path}/Projects_Settings you will find a
inetis.tcl.

Image 9 – Initialization files

init_kinetis.tcl to allow the Debugger to configure FlexBus module or DDR

in order to communicate with external MRAM or DDR2 to start a external RAM
file to let the BDM know where to find external RAM addresses.

you can find the content of init_kinetis.tcl file to initialize DDR controller in

you can find the content of ‘K70FN1M0.mem’ including
ranges used by DDR.

you can find the content of init_kinetis.tcl file to initialize
forget to call the Flexbus routine from main as highlighted below.

you can find the content of MK60N512.mem file which includes MRAM
Flexbus address range used by MRAM.

So far we have configured the project to create an external RAM executable file. Now you need to
ion to be able to debug out of External RAM. Select menu Run > Debug

Configurations. Right click on Internal RAM debug configuration and select ‘Duplicate’

Image 10 – New Debug Configuration

Inside ‘Debugger’ folder which default location is {Project_path}/Projects_Settings you will find a

configure FlexBus module or DDR
external RAM debug

RAM addresses.

content of init_kinetis.tcl file to initialize DDR controller in

 the memory

 Flexbus. Don’t

you can find the content of MK60N512.mem file which includes MRAM

RAM executable file. Now you need to
Select menu Run > Debug

bug configuration and select ‘Duplicate’.

13) A new Debug Configuration will be created.
inside the folder with the same name of
is DDR/K70_GCC.

14) Finally click ‘Apply’ button and then ‘

A new Debug Configuration will be created. In the Application box select the .elf
with the same name of the Build Configuration you created. In the image below

Image 11 – Debug Configuration Settings

‘Apply’ button and then ‘Debug’ button. Now you are debugging from external

Application box select the .elf file created
u created. In the image below it

om external RAM.

Appendix A

#define MRAM_START_ADDRESS (*(volatile unsigned char*)(0x60000000))

void TWRK70_flexbus_init(void)
{
/* Enable the FlexBus
 * Configure the FlexBus Registers for 8-bit port size with separate address and data using chip select 0
 * These configurations are specific to communicating with the MRAM used in this example
 * For K60 tower module - do not set byte lane shift so that data comes out on AD[31:24]
*/
 //Set Base address
 FB_CSAR0 = (unsigned int)&MRAM_START_ADDRESS;

 FB_CSCR0 = FB_CSCR_PS(1) // 8-bit port
 // | FB_CSCR_BSTR_MASK // Burst read enable
 | FB_CSCR_AA_MASK // auto-acknowledge
 | FB_CSCR_ASET(0x1) // assert chip select on second clock edge after address is
asserted
 | FB_CSCR_WS(0x1) // 1 wait state
 ;

 FB_CSMR0 = FB_CSMR_BAM(0x7) //Set base address mask for 512K address space
 | FB_CSMR_V_MASK //Enable cs signal
 ;

 //fb clock divider 3
 SIM_CLKDIV1 |= SIM_CLKDIV1_OUTDIV3(0x3);

 /* Configure the pins needed to FlexBus Function (Alt 5) */
 //address
 PORTB_PCR11 = PORT_PCR_MUX(5); // fb_ad[18]
 PORTB_PCR16 = PORT_PCR_MUX(5); // fb_ad[17]
 PORTB_PCR17 = PORT_PCR_MUX(5); // fb_ad[16]
 PORTB_PCR18 = PORT_PCR_MUX(5); // fb_ad[15]
 PORTC_PCR0 = PORT_PCR_MUX(5); // fb_ad[14]
 PORTC_PCR1 = PORT_PCR_MUX(5); // fb_ad[13]
 PORTC_PCR2 = PORT_PCR_MUX(5); // fb_ad[12]
 PORTC_PCR4 = PORT_PCR_MUX(5); // fb_ad[11]
 PORTC_PCR5 = PORT_PCR_MUX(5); // fb_ad[10]
 PORTC_PCR6 = PORT_PCR_MUX(5); // fb_ad[9]
 PORTC_PCR7 = PORT_PCR_MUX(5); // fb_ad[8]
 PORTC_PCR8 = PORT_PCR_MUX(5); // fb_ad[7]
 PORTC_PCR9 = PORT_PCR_MUX(5); // fb_ad[6]
 PORTC_PCR10 = PORT_PCR_MUX(5); // fb_ad[5]
 PORTD_PCR2 = PORT_PCR_MUX(5); // fb_ad[4]
 PORTD_PCR3 = PORT_PCR_MUX(5); // fb_ad[3]
 PORTD_PCR4 = PORT_PCR_MUX(5); // fb_ad[2]
 PORTD_PCR5 = PORT_PCR_MUX(5); // fb_ad[1]
 PORTD_PCR6 = PORT_PCR_MUX(5); // fb_ad[0]

 //data
 PORTB_PCR20 = PORT_PCR_MUX(5); // fb_ad[31] used as d[7]
 PORTB_PCR21 = PORT_PCR_MUX(5); // fb_ad[30] used as d[6]
 PORTB_PCR22 = PORT_PCR_MUX(5); // fb_ad[29] used as d[5]
 PORTB_PCR23 = PORT_PCR_MUX(5); // fb_ad[28] used as d[4]
 PORTC_PCR12 = PORT_PCR_MUX(5); // fb_ad[27] used as d[3]
 PORTC_PCR13 = PORT_PCR_MUX(5); // fb_ad[26] used as d[2]
 PORTC_PCR14 = PORT_PCR_MUX(5); // fb_ad[25] used as d[1]
 PORTC_PCR15 = PORT_PCR_MUX(5); // fb_ad[24] used as d[0]

 //control signals
 PORTB_PCR19 = PORT_PCR_MUX(5); // fb_oe_b
 PORTC_PCR11 = PORT_PCR_MUX(5); // fb_rw_b

 PORTD_PCR1 = PORT_PCR_MUX(5); // fb_cs0_b
 PORTD_PCR0 = PORT_PCR_MUX(5); // fb_ale
}

Appendix B

void disable_wdt(void)
{
 // First unlock the watchdog so that we can write to registers */
 // Write 0xC520 to the unlock register WDOG_UNLOCK*/
 WDOG_UNLOCK = 0xC520;

 // Followed by 0xD928 to complete the unlock */
 WDOG_UNLOCK = 0xD928;

 // Clear the WDOGEN bit to disable the watchdog */
 WDOG_STCTRLH = 0x01D2;
}

void init_pll(void)
{
 // Initialize SIM dividers
 SIM_SCGC5 = 0x00047F82;
 SIM_CLKDIV1 = 0x01250000;

 // Initialize PLL1
 MCG_C2 = 0x10;
 MCG_C1 = 0xA8;
 MCG_C5 = 0x04;
 MCG_C6 = 0x68;
 MCG_C5 = 0x44;
 MCG_C1 = 0x28;

 // Initialize PLL1
 MCG_C10 = 0x14;
 MCG_C12 = 0x0E;
 MCG_C11 = 0x44;

 // Delay to allow the PLL time to lock
 delay_ddr();
}

void init_ddr(void)
{

 // Enable DDR controller clock
 SIM_SCGC3 = 0x00004000;

 // Enable DDR pads and set slew rate
 SIM_MCR = 0x1C4;

 delay_ddr();

 SIM_MCR = 0x0C4;

 // I/O Pad Control (PAD_CTRL) register.*/
 * (volatile unsigned int *)(0x400ae1ac) = 0x01030203;

 // Initialize the DDR controller
 DDR_CR00 = 0x00000400;
 DDR_CR01 = 0x01000000;
 DDR_CR02 = 0x02000031;
 DDR_CR03 = 0x02020506;
 DDR_CR04 = 0x06090202;
 DDR_CR05 = 0x02020302;
 DDR_CR06 = 0x02904002;
 DDR_CR07 = 0x01000303;
 DDR_CR08 = 0x05030201;

 DDR_CR09 = 0x020000c8;
 DDR_CR10 = 0x03003207;
 DDR_CR11 = 0x01000000;
 DDR_CR12 = 0x04920031;
 DDR_CR13 = 0x00000005;
 DDR_CR14 = 0x00C80002;
 DDR_CR15 = 0x00000032;
 DDR_CR16 = 0x00000001;
 DDR_CR20 = 0x00030300;
 DDR_CR21 = 0x00040232;
 DDR_CR22 = 0x00000000;
 DDR_CR23 = 0x00040302;
 DDR_CR25 = 0x0A010201;
 DDR_CR26 = 0x0101FFFF;
 DDR_CR27 = 0x01010101;
 DDR_CR28 = 0x00000003;
 DDR_CR29 = 0x00000000;
 DDR_CR30 = 0x00000001;
 DDR_CR34 = 0x02020101;
 DDR_CR36 = 0x01010201;
 DDR_CR37 = 0x00000200;
 DDR_CR38 = 0x00200000;
 DDR_CR39 = 0x01010020;
 DDR_CR40 = 0x00002000;
 DDR_CR41 = 0x01010020;
 DDR_CR42 = 0x00002000;
 DDR_CR43 = 0x01010020;
 DDR_CR44 = 0x00000000;
 DDR_CR45 = 0x03030303;
 DDR_CR46 = 0x02006401;
 DDR_CR47 = 0x01020202;
 DDR_CR48 = 0x01010064;
 DDR_CR49 = 0x00020101;
 DDR_CR50 = 0x00000064;
 DDR_CR52 = 0x02000602;
 DDR_CR53 = 0x03c80000;
 DDR_CR54 = 0x03c803c8;
 DDR_CR55 = 0x03c803c8;
 DDR_CR56 = 0x020303c8;
 DDR_CR57 = 0x01010002;

 // Set the START bit
 DDR_CR00 = 0x00000401;

 // Set the SDRAM size in the MCM
 MCM_CR = 0x00100000;
}

void delay_ddr(void)
{
 unsigned int i, n;
 for(i=0;i<1000;i++)
 {
 for(n=0;n<1000;n++)
 {
 asm("nop");
 }
 }
}

Appendix C
this method initializes debug modules which are not affected by software reset
register names should be referenced including the register group name to improve performance

proc init_debug_modules {} {
 # clear DWT function registers
 reg "Core Debug Registers/DEMCR" = 0x1000001
 reg "Data Watchpoint and Trace Unit Registers/DWT_FUNCTION0" = 0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_FUNCTION1" = 0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_FUNCTION2" = 0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_FUNCTION3" = 0x0
 # clear FPB comparators
 reg "Flash Patch and Breakpoint Unit Registers/FP_COMP0" = 0x0
 reg "Flash Patch and Breakpoint Unit Registers/FP_COMP1" = 0x0
 reg "Flash Patch and Breakpoint Unit Registers/FP_COMP2" = 0x0
 reg "Flash Patch and Breakpoint Unit Registers/FP_COMP3" = 0x0
 reg "Flash Patch and Breakpoint Unit Registers/FP_COMP4" = 0x0
 reg "Flash Patch and Breakpoint Unit Registers/FP_COMP5" = 0x0
}

proc init_trace_modules {} {
 # clear DWT registers
 reg "Data Watchpoint and Trace Unit Registers/DWT_CTRL" =0x40000000
 reg "Data Watchpoint and Trace Unit Registers/DWT_CYCCNT" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_CPICNT" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_EXCCNT" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_SLEEPCNT" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_LSUCNT" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_FOLDCNT" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_COMP0" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_COMP1" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_COMP2" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_COMP3" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_MASK0" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_MASK1" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_MASK2" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_MASK3" =0x0
 # clear ITM registers
 reg "Instrumentation Trace Macrocell Registers/ITM_LAR" =0xc5acce55
 reg "Instrumentation Trace Macrocell Registers/ITM_TER" =0x0
 reg "Instrumentation Trace Macrocell Registers/ITM_TPR" =0x0
 reg "Instrumentation Trace Macrocell Registers/ITM_TCR" =0x0
 reg "Instrumentation Trace Macrocell Registers/ITM_LAR" =0x1
 # reset Funnel registers
 reg "Embedded Trace Funnel Registers/ETF_FCR" =0x300
 # clear MCM registers
 reg "Core Platform Miscellaneous Control Module (MCM) Registers/MCM_ETBCC" =0x0
 reg "Core Platform Miscellaneous Control Module (MCM) Registers/MCM_ETBRL" =0x0
 # set SCB_VTOR register for RAM
 reg "System Control Registers/SCB_VTOR" =0x20000000
}

proc envsetup {} {
 # Environment Setup
 radix x
 config hexprefix 0x
 config MemIdentifier p
 config MemWidth 32
 config MemAccess 32
 config MemSwap off
}

proc init_stack_pointer {} {
 reg SP = 0x2000FFF8
}

proc disable_wdt {} {
 # First unlock the watchdog so that we can write to registers */

 # Write 0xC520 to the unlock register WDOG_UNLOCK*/
 reg "Generation 2008 Watchdog Timer (WDOG)/WDOG_UNLOCK" =0xC520

 # Followed by 0xD928 to complete the unlock */
 reg "Generation 2008 Watchdog Timer (WDOG)/WDOG_UNLOCK" =0xD928

 # Clear the WDOGEN bit to disable the watchdog */
 reg "Generation 2008 Watchdog Timer (WDOG)/WDOG_STCTRLH" =0x01D2
}

proc init_pll {} {
 # Initialize SIM dividers
 reg "System Integration Module (SIM)/SIM_SCGC5" = 0x00047F82
 reg "System Integration Module (SIM)/SIM_CLKDIV1" = 0x01250000

 # Initialize PLL1
 reg "Multipurpose Clock Generator module (MCG)/MCG_C2" = 0x10
 reg "Multipurpose Clock Generator module (MCG)/MCG_C1" = 0xA8
 reg "Multipurpose Clock Generator module (MCG)/MCG_C5" = 0x04
 reg "Multipurpose Clock Generator module (MCG)/MCG_C6" = 0x68
 reg "Multipurpose Clock Generator module (MCG)/MCG_C5" = 0x44
 reg "Multipurpose Clock Generator module (MCG)/MCG_C1" = 0x28

 # Initialize PLL1
 reg "Multipurpose Clock Generator module (MCG)/MCG_C10" = 0x14
 reg "Multipurpose Clock Generator module (MCG)/MCG_C12" = 0x0E
 reg "Multipurpose Clock Generator module (MCG)/MCG_C11" = 0x44

 # Delay to allow the PLL time to lock
 wait (100)
}

proc init_ddr {} {

 # Enable DDR controller clock
 reg "System Integration Module (SIM)/SIM_SCGC3" = 0x00004000

 # Enable DDR pads and set slew rate
 reg "System Integration Module (SIM)/SIM_MCR" = 0x1C4

 wait (10)

 reg "System Integration Module (SIM)/SIM_MCR" = 0x0C4

 # I/O Pad Control (PAD_CTRL) register.*/
 mem 0x400Ae1ac = 0x01030203

 # Initialize the DDR controller
 reg "DRAM Controller (DDR)/DDR_CR00" = 0x00000400
 reg "DRAM Controller (DDR)/DDR_CR01" = 0x01000000
 reg "DRAM Controller (DDR)/DDR_CR02" = 0x02000031
 reg "DRAM Controller (DDR)/DDR_CR03" = 0x02020506
 reg "DRAM Controller (DDR)/DDR_CR04" = 0x06090202
 reg "DRAM Controller (DDR)/DDR_CR05" = 0x02020302
 reg "DRAM Controller (DDR)/DDR_CR06" = 0x02904002
 reg "DRAM Controller (DDR)/DDR_CR07" = 0x01000303
 reg "DRAM Controller (DDR)/DDR_CR08" = 0x05030201
 reg "DRAM Controller (DDR)/DDR_CR09" = 0x020000c8
 reg "DRAM Controller (DDR)/DDR_CR10" = 0x03003207
 reg "DRAM Controller (DDR)/DDR_CR11" = 0x01000000
 reg "DRAM Controller (DDR)/DDR_CR12" = 0x04920031
 reg "DRAM Controller (DDR)/DDR_CR13" = 0x00000005
 reg "DRAM Controller (DDR)/DDR_CR14" = 0x00C80002
 reg "DRAM Controller (DDR)/DDR_CR15" = 0x00000032
 reg "DRAM Controller (DDR)/DDR_CR16" = 0x00000001
 reg "DRAM Controller (DDR)/DDR_CR20" = 0x00030300
 reg "DRAM Controller (DDR)/DDR_CR21" = 0x00040232
 reg "DRAM Controller (DDR)/DDR_CR22" = 0x00000000
 reg "DRAM Controller (DDR)/DDR_CR23" = 0x00040302

 reg "DRAM Controller (DDR)/DDR_CR25" = 0x0A010201
 reg "DRAM Controller (DDR)/DDR_CR26" = 0x0101FFFF
 reg "DRAM Controller (DDR)/DDR_CR27" = 0x01010101
 reg "DRAM Controller (DDR)/DDR_CR28" = 0x00000003
 reg "DRAM Controller (DDR)/DDR_CR29" = 0x00000000
 reg "DRAM Controller (DDR)/DDR_CR30" = 0x00000001
 reg "DRAM Controller (DDR)/DDR_CR34" = 0x02020101
 reg "DRAM Controller (DDR)/DDR_CR36" = 0x01010201
 reg "DRAM Controller (DDR)/DDR_CR37" = 0x00000200
 reg "DRAM Controller (DDR)/DDR_CR38" = 0x00200000
 reg "DRAM Controller (DDR)/DDR_CR39" = 0x01010020
 reg "DRAM Controller (DDR)/DDR_CR40" = 0x00002000
 reg "DRAM Controller (DDR)/DDR_CR41" = 0x01010020
 reg "DRAM Controller (DDR)/DDR_CR42" = 0x00002000
 reg "DRAM Controller (DDR)/DDR_CR43" = 0x01010020
 reg "DRAM Controller (DDR)/DDR_CR44" = 0x00000000
 reg "DRAM Controller (DDR)/DDR_CR45" = 0x03030303
 reg "DRAM Controller (DDR)/DDR_CR46" = 0x02006401
 reg "DRAM Controller (DDR)/DDR_CR47" = 0x01020202
 reg "DRAM Controller (DDR)/DDR_CR48" = 0x01010064
 reg "DRAM Controller (DDR)/DDR_CR49" = 0x00020101
 reg "DRAM Controller (DDR)/DDR_CR50" = 0x00000064
 reg "DRAM Controller (DDR)/DDR_CR52" = 0x02000602
 reg "DRAM Controller (DDR)/DDR_CR53" = 0x03c80000
 reg "DRAM Controller (DDR)/DDR_CR54" = 0x03c803c8
 reg "DRAM Controller (DDR)/DDR_CR55" = 0x03c803c8
 reg "DRAM Controller (DDR)/DDR_CR56" = 0x020303c8
 reg "DRAM Controller (DDR)/DDR_CR57" = 0x01010002

 # Set the START bit
 reg "DRAM Controller (DDR)/DDR_CR00" = 0x00000401

 # Set the SDRAM size in the MCM
 reg "Core Platform Miscellaneous Control Module (MCM) Registers/MCM_CR" = 0x00100000
}
#---
Main
#---

 envsetup
 init_debug_modules
 init_trace_modules
 init_stack_pointer
 disable_wdt
 init_pll
 init_ddr

Appendix D

// Board:
// Kinetis K70FN1M0

// All reserved ranges read back 0xBABA...
reservedchar 0xBA

usederivative "MK70F15"

// Memory Map:
// --

range 0x00000000 0x000FFFFF 4 ReadWrite // 1024KB Code Flash
reserved 0x00100000 0x07FFFFFF
range 0x08000000 0x0FFFFFFF 4 ReadWrite // DDR aliased area for core access
reserved 0x10000000 0x13FFFFFF
range 0x14000000 0x14003FFF 4 ReadWrite // 16KB Programming accelleration RAM
reserved 0x14004000 0x1FFEFFFF
range 0x1FFF0000 0x1FFFFFFF 4 ReadWrite // 64KB On chip SRAM (TCML)
range 0x20000000 0x2000FFFF 4 ReadWrite // 64KB On chip SRAM (TCMU)
reserved 0x20010000 0x21FFFFFF
range 0x22000000 0x221FFFFF 4 ReadWrite // Aliased to TCMU SRAM bitband
reserved 0x22200000 0x3FFFFFFF
//range 0x40000000 0x400FFFFF 4 ReadWrite // Bitnad regions
reserved 0x40100000 0x41FFFFFF
range 0x42000000 0x43FFFFFF 4 ReadWrite // AIPS and GPIO bitband
reserved 0x44000000 0x5FFFFFFF
range 0x60000000 0x6FFFFFFF 4 ReadWrite // Flexbus for external memory
range 0x70000000 0x7FFFFFFF 4 ReadWrite // DDR Write-back region
range 0x80000000 0x8FFFFFFF 4 ReadWrite // DDR Write-through region
range 0x90000000 0x9FFFFFFF 4 ReadWrite // FlexBus write-through region
range 0xA0000000 0xDFFFFFFF 4 ReadWrite // FlexBus peripheral (not executable)
//range 0xE0000000 0xE00FFFFF 4 ReadWrite // Private peripherals
reserved 0xE0100000 0xFFFFFFFF

Appendix E

this method initializes debug modules which are not affected by software reset
register names should be referenced including the register group name to improve performance

proc init_debug_modules {} {
 # clear DWT function registers
 reg "Core Debug Registers/DEMCR" = 0x1000001
 reg "Data Watchpoint and Trace Unit Registers/DWT_FUNCTION0" = 0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_FUNCTION1" = 0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_FUNCTION2" = 0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_FUNCTION3" = 0x0
 # clear FPB comparators
 reg "Flash Patch and Breakpoint Unit Registers/FP_COMP0" = 0x0
 reg "Flash Patch and Breakpoint Unit Registers/FP_COMP1" = 0x0
 reg "Flash Patch and Breakpoint Unit Registers/FP_COMP2" = 0x0
 reg "Flash Patch and Breakpoint Unit Registers/FP_COMP3" = 0x0
 reg "Flash Patch and Breakpoint Unit Registers/FP_COMP4" = 0x0
 reg "Flash Patch and Breakpoint Unit Registers/FP_COMP5" = 0x0
}

proc init_trace_modules {} {
 # clear DWT registers
 reg "Data Watchpoint and Trace Unit Registers/DWT_CTRL" =0x40000000
 reg "Data Watchpoint and Trace Unit Registers/DWT_CYCCNT" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_CPICNT" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_EXCCNT" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_SLEEPCNT" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_LSUCNT" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_FOLDCNT" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_COMP0" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_COMP1" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_COMP2" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_COMP3" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_MASK0" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_MASK1" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_MASK2" =0x0
 reg "Data Watchpoint and Trace Unit Registers/DWT_MASK3" =0x0
 # clear ITM registers
 reg "Instrumentation Trace Macrocell Registers/ITM_LAR" =0xc5acce55
 reg "Instrumentation Trace Macrocell Registers/ITM_TER" =0x0
 reg "Instrumentation Trace Macrocell Registers/ITM_TPR" =0x0
 reg "Instrumentation Trace Macrocell Registers/ITM_TCR" =0x0
 reg "Instrumentation Trace Macrocell Registers/ITM_LAR" =0x1
 # reset Funnel registers
 reg "Embedded Trace Funnel Registers/ETF_FCR" =0x300
 # clear MCM registers
 reg "Core Platform Miscellaneous Control Module (MCM) Registers/MCM_ETBCC" =0x0
 reg "Core Platform Miscellaneous Control Module (MCM) Registers/MCM_ETBRL" =0x0
 # set SCB_VTOR register for RAM
 reg "System Control Registers/SCB_VTOR" =0x20000000
}

proc flexbus {} {
 reg FB_CSAR0=0x60000000
 reg FB_CSCR0=0x100540
 reg FB_CSMR0=0x70001
 reg SIM_CLKDIV1=0x310000
 reg SIM_SCGC5=0x43f80
 reg PORTB_PCR11 = 0x500
 reg PORTB_PCR16 = 0x500
 reg PORTB_PCR17 = 0x500
 reg PORTB_PCR18 = 0x500
 reg PORTC_PCR0 = 0x500
 reg PORTC_PCR1 = 0x500
 reg PORTC_PCR2 = 0x500
 reg PORTC_PCR4 = 0x500

 reg PORTC_PCR5 = 0x500
 reg PORTC_PCR6 = 0x500
 reg PORTC_PCR7 = 0x500
 reg PORTC_PCR8 = 0x500
 reg PORTC_PCR9 = 0x500
 reg PORTC_PCR10 = 0x500
 reg PORTD_PCR2 = 0x500
 reg PORTD_PCR3 = 0x500
 reg PORTD_PCR4 = 0x500
 reg PORTD_PCR5 = 0x500
 reg PORTD_PCR6 = 0x500

 reg PORTB_PCR20 = 0x500
 reg PORTB_PCR21 = 0x500
 reg PORTB_PCR22 = 0x500
 reg PORTB_PCR23 = 0x500
 reg PORTC_PCR12 = 0x500
 reg PORTC_PCR13 = 0x500
 reg PORTC_PCR14 = 0x500
 reg PORTC_PCR15 = 0x500

 reg PORTB_PCR19 = 0x500
 reg PORTC_PCR11 = 0x500
 reg PORTD_PCR1 = 0x500
 reg PORTD_PCR0 = 0x500

 #reg WDOG_UNLOCK = 0xC520
 #reg WDOG_UNLOCK = 0xD928
 #reg WDOG_STCTRLH = 0xD2

}

proc envsetup {} {
 # Environment Setup
 radix x
 config hexprefix 0x
 config MemIdentifier p
 config MemWidth 32
 config MemAccess 32
 config MemSwap off
}

#---
Main
#---

 envsetup
 init_debug_modules
 init_trace_modules
 flexbus

Appendix F

// Board:
// Kinetis MK60N512VMD100

// All reserved ranges read back 0xBABA...
reservedchar 0xBA

usederivative "MK60N512VMD100"

// Memory Map:
// --

range 0x00000000 0x0007FFFF 4 ReadWrite // 512KB Code Flash
reserved 0x00080000 0x13FFFFFF
range 0x14000000 0x14000FFF 4 ReadWrite // 4KB Programming accelleration RAM
reserved 0x14001000 0x1FFEFFFF
range 0x1FFF0000 0x1FFFFFFF 4 ReadWrite // 64KB On chip SRAM (TCML)
range 0x20000000 0x2000FFFF 4 ReadWrite // 64KB On chip SRAM (TCMU)
reserved 0x20010000 0x21FFFFFF
range 0x22000000 0x221FFFFF 4 ReadWrite // Aliased to TCMU SRAM bitband
reserved 0x22200000 0x3FFFFFFF
range 0x60000000 0xDFFFFFFF 4 ReadWrite // Flexbus for external memory
reserved 0xE0100000 0xFFFFFFFF

