
© 2012 Freescale Semiconductor, Inc. All rights reserved.

Freescale Semiconductor
Application Note

Document Number: AN4497

1 Introduction
This document provides the steps to create LCF from
scratch and explains common as well as unique
application requirements handled in LCF using
examples.

For detailed information on the Qorivva/PX
Architectures LCF refer to the CodeWarrior
Development Studio for Power Architecture®
Processors Build Tools Reference Manual. You can find
this document in {MCU10.xinstallation
path}\MCU\Help\PDF\MCU_Power-
Architecture_Compiler.pdf

2 Preliminary Background
The LCF along with other compiler directives, places
pieces of code and data into ROM and RAM. You can do
this by creating specific sections in the LCF and then
matching them to the source code using pragma
directives.

LCF consists of three kinds of segments, which must be
in this order:

CodeWarrior Linker Command File (LCF) for
Qorivva/PX

Contents
1 Introduction . 1
2 Preliminary Background 1
3 Creating an LCF from Scratch 2
4 Relocating Code in ROM 4
5 Relocating Code and Data in Internal RAM . 6
6 Relocating Code and Data in External MRAM 7
7 Unique LCF Examples 8

Creating an LCF from Scratch

CodeWarrior Linker Command File (LCF) for Qorivva/PX Application Note

2 Freescale Semiconductor

• A memory segment, which begins with the MEMORY{} directive,

• An optional closure segment, which begins with the FORCE_ACTIVE{}, KEEP_SECTION{},
or REF_INCLUDE{} directives, and

• A sections segment, which begins with the SECTIONS{} directive.

3 Creating an LCF from Scratch
Consider creating a LCF for a sample BOOKE ROM project.

First add the memory area for vectors (interrupts), exception tables, code, data, heap and stack.

Listing 1. Adding memory area

MEMORY
{
 resetvector: org = 0x00000000, len = 0x00000008
 exception_handlers_p0: org = 0x00001000, len = 0x00001000
 internal_flash: org = 0x00003000, len = 0x001FD000

 internal_ram: org = 0x40000000, len = 0x0007C000
 heap : org = 0x4007C000, len = 0x00002000 /* Heap start location */
 stack : org = 0x4007E000, len = 0x00002000 /* Start location for Stack */
}

Place the sections to the above memory areas in LCF in the SECTIONS { } block.

 .__bam_bootarea LOAD (0x00000000): {} > resetvector

The code to handle exceptions are grouped and placed in memory area exception_handlers_p0.

Listing 2. Grouping exceptions code

 GROUP : {
 .ivor_branch_table_p0 LOAD (0x00001000) : {}
 .intc_hw_branch_table_p0 LOAD (0x00001800): {}
 .__exception_handlers_p0 LOAD (0x00001100) : {}
 } > exception_handlers_p0

The hardware initialization routines, application code, constants, code for constructors/destructors, and
C++ exception tables are grouped together and placed in Flash.

Listing 3. Grouping initialization routines

 GROUP : {
 .intc_sw_isr_vector_table_p0 ALIGN (2048) : {}

 .init : {}
 .text : {}
 .rodata (CONST) : {
 *(.rdata)
 *(.rodata)
 }
 .ctors : {}
 .dtors : {}
 extab : {}

Creating an LCF from Scratch

CodeWarrior Linker Command File (LCF) for Qorivva/PX Application Note

Freescale Semiconductor 3

 extabindex : {}
 } > internal_flash

The uninitialized and initialized data are placed in RAM.

Listing 4. Placing data in RAM

 GROUP : {
 .__uninitialized_intc_handlertable ALIGN(2048) : {}
 .data : {}
 .sdata : {}
 .sbss : {}
 .sdata2 : {}
 .sbss2 : {}
 .bss : {}
 } > internal_ram

NOTE For more information on placing data in RAM refer to
MCU_Power_Architecture_Compiler.pdf.

The sections are allocated to segments in the order given in SECTIONS/GROUP block of lcf file.

For internal_flash segment, following is the order of section allocation: .init, .text, .rodata, .ctors,
.dtors, extab and extabindex.

Variables are added in LCF and these can be used in application as well as internally in linker tool for
computation.

Listing 5. Adding variables in LCF

_stack_addr = ADDR(stack)+SIZEOF(stack);
_stack_end = ADDR(stack);
_heap_addr = ADDR(heap);
_heap_end = ADDR(heap)+SIZEOF(heap);
EXCEPTION_HANDLERS = ADDR(exception_handlers_p0);
L2SRAM_LOCATION = 0x40000000;

Let us take a simple example to see how the allocation of variables to the respective sections take place.

Listing 6. C Source file

#include "MPC5675K.h"

int sdata_i = 10;
int sbss_i;
const char sdata2_array[] = "Hello";

__declspec(section ".rodata") const char rodata_array[40]="CodeWarior";
__declspec(section ".data") long bss_i;
__declspec(section ".data") long data_i = 10;

int main(void) {
 return sdata_i + sbss_i + sdata2_array[3] + data_i + bss_i + rodata_array[5];
}

Relocating Code in ROM

CodeWarrior Linker Command File (LCF) for Qorivva/PX Application Note

4 Freescale Semiconductor

NOTE Above is a hypothetical example built to provide clarity on variables and
their allocation to sections. __declspec is used to forcefully place the
variables into sections.

The objects are allocated to the sections as in the following table.

4 Relocating Code in ROM
To place data and code in a specific memory location there are two general steps that must be performed.

• Use pragma compiler directives to tell the compiler which part of the code is going to be relocated.

• Tell the linker where the code will be placed within the memory map using LCF definitions.

4.1 Relocating Function in ROM
To put code in a specific memory section it is needed first to create the section using the section pragma
directive. In the following listing a new section called .romsymbols is created.

All the content in this section is going to be referenced in the LCF with the name .romsymbols. After
defining a new section you can place code in this section by using the __declspec() directive.

In the following listing, __declspec() directive is used to tell the compiler that function
funcInROM() is going to be placed in section romsymbols.

Create a stationary project for any target and add the following code to your main.c file before the main()
function and have a call to this function.

Listing 7. Code to add in the main.c

#pragma section RX ".romsymbols" data_mode=far_abs
__declspec(section ".romsymbols") void funcInROM(int flag); //Function Prototype
 void funcInROM(int flag){
if (flag > 0)
{
flag ++;
}
}

Table 1. Allocating Objects

Variable Section Address

sdata_i .sdata 0x400004d8

sbss_i .sbss 0x400004e8

sdata2_array .sdata2 0x40000500

rodata_array .rodata 0x00003938

bss_i .bss 0x40000508

data_i .data 0x400004d0

Relocating Code in ROM

CodeWarrior Linker Command File (LCF) for Qorivva/PX Application Note

Freescale Semiconductor 5

4.2 Placing Code in ROM
You have just edited a source file to tell the compiler which code will be relocated. Next, the LCF needs
to be edited to tell the linker the memory addresses where these sections are going to be allocated.

First you need to define a new Microcontroller memory segment where new sections will be allocated.

You can have just one memory segment for all the new sections or one segment for each section.

4.2.1 Create New ROM Segment

Below you can find the memory segment of a LCF. Notice that the segment internal_flash has been
edited and its length has been reduced by 0x10000 from its original size. This memory space is taken to
create the new segment. In the following listing the new segment is called myrom, it will be located next
to segment internal_flash and its length is going to be 0x10000. You can calculate the address
where segment code ends by adding its length plus the origin address.

Edit your LCF as shown in the following listing. Ensure you edit ROM target lcf.

Listing 8. Memory Segment of LCF

MEMORY
{
 resetvector: org = 0x00000000, len = 0x00000008
 init: org = 0x00000010, len = 0x0000FFF0
 exception_handlers_p0: org = 0x00010000, len = 0x00010000
 internal_flash: org = 0x00030000, len = 0x001C0000
 myrom: org = 0x00220000, len = 0x00010000

 internal_ram: org = 0x40000000, len = 0x0007C000
 heap : org = 0x4007C000, len = 0x00002000 /* z7_0 Heap start location */
 stack : org = 0x4007E000, len = 0x00002000 /* z7_0 Start location for
Stack */
}

4.2.2 Create New ROM Section

The next step is to add the content of the new section into the Microcontroller memory segment you have
reserved. This is done in the sections segment of the LCF.

The code below creates a new section called .rom_symbols, then the label __ROM_SYMBOLS points
to the address where the section begins. Then *(.romsymbols) instruction is used to tell the linker that
all the code referenced with this word is going to be placed in section .rom_symbols.

Finally you close the section telling the linker that this content is going to be located in segment myrom.

Edit your LCF as shown below.

Listing 9. Code to add your LCF.

.rom_symbols :
{
__ROM_SYMBOLS = . ; #start address of the new symbol area
. = ALIGN (0x4);

Relocating Code and Data in Internal RAM

CodeWarrior Linker Command File (LCF) for Qorivva/PX Application Note

6 Freescale Semiconductor

*(.romsymbols) #actual data matching pragma directives.
. = ALIGN (0x4);
} > myrom

Please note that in the MAP file you can notice newly created ROM section.

5 Relocating Code and Data in Internal RAM
Since it is not possible to write a variable in ROM, data must be relocated in RAM. Code can be also
relocated in RAM. Another reason to relocate code in RAM is that it is twice as fast as in Flash.

5.1 Relocating Code and Data in Internal RAM
Create a new section using section pragma directive and __declspec directives as shown in the listing
below.

Listing 10. Using pragma Directives to Define a Section

#pragma section ".myCodeInRAM" data_mode=far_abs
__declspec(section ".myCodeInRAM")
struct {
unsigned char data0;
unsigned char data1;
unsigned char data2;
unsigned char data3;
unsigned char data4;
unsigned char data5;
unsigned char data6;
unsigned char data7;
} CTMData = { 0x82, 0x65, 0x77, 0x32, 0x84, 0x69, 0x83, 0x84 };

__declspec(section ".myCodeInRAM") void funcInROM(int flag);
 void funcInROM(int flag){
if (flag > 0)
{
flag++;
}
}

5.2 Placing Code and Data in RAM
Placing code and data into RAM is more complicated. As the content in RAM cannot be saved when
turning power off, you first need to save the code and data in flash and then make a copy to RAM in
runtime.

Following are the steps to relocate code and data in a new RAM segment.

1. Create New RAM Segment

2. Placing Code and Data in RAM

Relocating Code and Data in External MRAM

CodeWarrior Linker Command File (LCF) for Qorivva/PX Application Note

Freescale Semiconductor 7

5.2.1 Create New RAM Segment

As it was made for the new ROM segment, a piece of the user ram memory segment is taken to create a
new memory segment called myram.

Edit your LCF as shown in Listing 5.

Listing 11. Memory Segment of LCF

MEMORY
{
 exception_handlers_p0: org = 0x40000000, len = 0x00001000
 pseudo_rom: org = 0x40001000, len = 0x00006800
 init: org = 0x40007800, len = 0x00000800
 internal_ram: org = 0x40008000, len = 0x00070000
 myram: org = 0x40078000, len = 0x00004000
 heap : org = 0x4007c000, len = 0x00002000 /* Heap start location */
 stack : org = 0x4007e000, len = 0x00002000 /* Start location for
Stack */
}

5.2.2 Create New RAM Section

The memory segment specifies the intended location in RAM. The code below shows a new section called
.my_ram which is going to be linked in segment .myram but is going to be resident in the Flash memory
address calculated by label ___CodeStart. This label is intended to find the first address available in
flash.

 In the listing section .app_text the linker places in the segment code all the code and then the read only
data. After this it sets a label called __ROM_AT. Section .data is allocated in the address pointed by this
label.

Add the following code to LCF. You can put this code just after Placing data in RAM. The uninitialized
and initialized data are placed in RAM.

Listing 12. Add this Code to LCF after Listing D.

___CodeStart = ___RAM_end;
.my_ram :
{
. = ALIGN (0x4);
___myRAMStart = .;
*(.myCodeInRAM)
___myRAMEnd = .;
. = ALIGN (0x4);
} > myram

6 Relocating Code and Data in External MRAM
Many times the internal RAM in the Microcontroller you are using is not enough for the application. For
this reason it is needed to use external memories as part of the solution. The process to relocate code and

Unique LCF Examples

CodeWarrior Linker Command File (LCF) for Qorivva/PX Application Note

8 Freescale Semiconductor

data in external memories is exactly the same as you did for internal RAM. The only difference is that the
external device needs to be communicated by an interface controller.

7 Unique LCF Examples
This topic describes the following LCF examples.

• Configuring Linker File to Several ROM Blocks

• Place the library file in the LCF

• Place Symbols in Specific Memory Location

7.1 Configuring Linker File to Several ROM Blocks
The following listing is an example to congiure linker file to several ROM blocks.

Listing 13. ROM IMAGE address = 0x3000

MEMORY{
 internal_flash: org = 0x00003000, len = 0x0010000
MyFlash: org = 0x00041000, len = 0x00000008

//org should match the LOAD address
}
SECTIONS{
.text {} > internal_flash
.my_flash ALIGN(0x08) LOAD(0x00041000) : {} > MyFlash
}

7.2 Place the library file in the LCF
The following listing is an example to place the library file in the LCF.

Listing 14. Placing library file in LCF

GROUP : {
 .libcode (VLECODE) LOAD (0x00004000) : {
 Runtime.PPCEABI.VS.UC.a (.text)
 }
 .libconst:
 {
 Runtime.PPCEABI.VS.UC.a (.rodata)
 }
 } > lib_flash

NOTE For small data sections, ctors, dtors section it's not allowed to have
different output section name.

Unique LCF Examples

CodeWarrior Linker Command File (LCF) for Qorivva/PX Application Note

Freescale Semiconductor 9

7.3 Place Symbols in Specific Memory Location
For placing the symbols in specific memory location, user has to define the memory region (say
Memory_to_store) in the lcf file and also define a new section (say .user_defined_section) then use the
same section in the source file to place the symbol.

Listing 15. Example for initialized variable

In the source file:
#pragma section <section_qualifier(R,RW)> ".user_defined_section"
__declspec(section ".user_defined_section") int temp = 5;
In the LCF file:
 GROUP : {
.user_defined_section :{}
 } > Memory_to_store // Memory_to_store is the memory area where user want to
store

Listing 16. Example for uninitialized variable

In the source file:
#pragma section ".user_defined_section"".data"
 __declspec(section ".user_defined_section") /* We cannot have an uninitialized section name
in The //uninitialized section must be paired with initialized section. */
__declspec(section ".user_defined_section") int temp;
In the LCF file:
 GROUP : {
.user_defined_section :{}
 } > Memory_to_store

Document Number: AN4497

12 April 2013

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical experts.
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior and ColdFire are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Flexis and Processor Expert are trademarks of
Freescale Semiconductor, Inc. All other product or service names are the property of their respective
owners.

© 2012 Freescale Semiconductor, Inc. All rights reserved.

