
MQX™ Lite Real-Time Operating
System User Guide

Document Number: MQXLITEUG
Rev 1.1, 02/2014



MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

2 Freescale Semiconductor, Inc.



Contents

Section number Title Page

Chapter 1
Introduction

1.1 Overview of MQX Lite.....................................................................................................................................................5

1.1.1 Comparison Between MQX Lite and MQX........................................................................................................6

1.2 MQX Lite Components.....................................................................................................................................................7

1.2.1 Initialization.........................................................................................................................................................7

1.2.1.1 MQX Lite Initialization Structure..........................................................................................................8

1.2.1.2 Task Template List.................................................................................................................................9

1.2.2 Task Management................................................................................................................................................10

1.2.3 Scheduler..............................................................................................................................................................11

1.2.4 Lightweight Semaphores......................................................................................................................................12

1.2.5 Lightweight Events..............................................................................................................................................12

1.2.6 Mutex...................................................................................................................................................................13

1.2.7 Lightweight Message Queue................................................................................................................................13

1.2.8 Interrupts..............................................................................................................................................................14

1.2.9 Lightweight Timer...............................................................................................................................................15

1.2.10 Kernel Log...........................................................................................................................................................15

1.2.11 Lightweight Memory Allocation.........................................................................................................................16

Chapter 2
Integration with Processor Expert

2.1 MQX Lite Component Interface.......................................................................................................................................17

2.2 MQX Lite Generated Files................................................................................................................................................17

2.3 Vector Table Management ...............................................................................................................................................18

2.4 Interrupt Service Routines Installation Mechanism..........................................................................................................19

2.5 MQX Lite Component Interface.......................................................................................................................................19

2.5.1 Properties.............................................................................................................................................................20

2.5.2 Methods................................................................................................................................................................22

2.5.3 Events...................................................................................................................................................................22

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

Freescale Semiconductor, Inc. 3



Section number Title Page

2.6 MQXLite_task Component Interface...............................................................................................................................23

2.6.1 Properties.............................................................................................................................................................23

2.6.2 Methods................................................................................................................................................................24

2.6.3 Events...................................................................................................................................................................24

2.7 Initialization of MQX Lite RTOS in an Application........................................................................................................25

Chapter 3
Creating MQX Lite Application

3.1 Creating a New MQX Lite Application............................................................................................................................27

3.2 Adding MQX Lite into an Existing Project......................................................................................................................31

3.3 Define Task Routines in your Application.......................................................................................................................32

3.4 MQX Lite Demo Applications..........................................................................................................................................33

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

4 Freescale Semiconductor, Inc.



Chapter 1
Introduction
MQX Lite is a version of the MQX™ Real-Time Operating System (RTOS) kernel
targeted specifically for Microcontrollers (MCUs) either with limited RAM or limited
FLASH memory size. Because this product is not a standalone package, such as the
MQX RTOS, it is integrated into the Processor Expert (PEx) technology as a PEx
component.

This document describes main features, integration into the PEx technology, and how to
use MQX Lite to create custom applications.

Supplement this document with:

• Freescale MQX™ Lite RTOS Reference Manual - contains alphabetically-ordered
listings of MQX Lite function prototypes and MQX Lite data types. This document is
part of the PEx installation.

• Freescale MQX™ Real-Time Operating System User's Guide - contains detailed
description of MQX components that are also used in the MQX Lite version. This
document is part of the standard MQX RTOS installation.

This chapter gives an Overview of MQX Lite and describes MQX Lite Components.

1.1 Overview of MQX Lite
MQX Lite is an RTOS that manages the time of a microprocessor or microcontroller and
allows:

• Multi-tasking
• Scheduling tasks with priorities
• Synchronization of the resource access
• Inter-task communication
• Interrupt handling

MQX Lite provides a run-time library of functions designed for real-time multitasking
applications.

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

Freescale Semiconductor, Inc. 5



MQX consists of core (non-optional) and optional components. Functions, which are
called either by MQX or an application, are the only functions included in the application
image for core components. To match application requirements, an application can be
extended by adding optional components.

Because MQX Lite is integrated with Processor Expert installation, it is easily
configurable through GUI, which is the dedicated MQX Lite PEx component. The
integration to PEx technology allows the usage of a wide range of Logical Device Drivers
(LDD) that can be generated for different modules and different devices.

MQX Lite integration with PEx also allows an easy migration of the user application
code across different Freescale platforms. There is no need for a Board Support Package
(BSP) which is necessary for a standard MQX version. Instead, the set of PEx
components and LDDs can be used to generate source code similar to the classic MQX
BSP code. The generated code contains board-specific low-level startup code, processor,
and board initialization code.

The user runs the PEx and creates a new bareboard project by using the New Project
Wizard. This adds the MQX Lite PEx component into the created project. Adding MQX
Lite into an existing project is also possible. Both ways of creating an MQX Lite
application are described in this document. PEx GUI allows configuring the MQX Lite
RTOS and defining application tasks and their parameters. When all required PEx
components are added into the project and the entire configuration is complete, the source
code for the selected compiler is generated. You can write the application by
implementing already defined MQX Lite tasks, build, run and debug the application.

1.1.1 Comparison Between MQX Lite and MQX

These are the main differences between MQX Lite and standard MQX RTOS:

• MQX Lite does not use dynamic memory allocation. All kernel resources are
allocated statically. However, the user application can still use the dynamic memory
allocation offered by the optional lightweight memory allocation component.

• MQX Lite only supports priority based pre-emptive scheduler.
• MQX Lite does not allow dynamic task creation, all tasks resources are pre-allocated

at compile time.
• MQX Lite supports "lightweight" subset of the MQX components: LW semaphore,

LW event, Mutex, LW message, LW timer, and LW memory allocator.
• MQX Lite includes standard MQX interrupt handling.
• MQX Lite does not include a BSP nor any peripheral drivers. Instead, the PEx LDD

drivers can be used in the end application.

These are the results of MQX Lite features and resource limitations:

Overview of MQX Lite

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

6 Freescale Semiconductor, Inc.



• RTCS (Real-Time Communication Suite) is not supported in MQX Lite.
• MFS (Freescale MQX™ MFS™ Embedded File System) is not supported in MQX

Lite.
• USB functionality is available using Freescale bare-metal USB stack (also a PEx

component).
• MQX Shell library is not supported.

1.2 MQX Lite Components
The following table summarizes MQX Lite core and optional components. Each
component is described in terms of MQX Lite specifics and differences when compared
to the standard MQX.

Table 1-1. MQX Components

MQX Lite Component Include Type Function Prefix

Initialization Initialization and automatic
task creation.

Core _mqxlite_

Task management Task creation, management,
and termination.

Core _task_

Scheduling FIFO (also called priority-
based preemptive)
scheduling.

Core _sched_

Lightweight semaphores LW Semaphore
synchronization mechanism.

Core _lwsem_

Lightweight events LW Events synchronization
mechanism.

Optional _lwevent_

Mutex Mutual exclusion
synchronization mechanism.

Optional _mutatr_, _mutex_

Lightweight message queue Inter-task communication. Optional _lwmsgq_

Interrupt and exception
handling

Servicing all hw interrupts. Core _int_

Lightweight timer Mechanism for calling
application functions at
periodic intervals.

Optional _lwtimer_

Kernel log MQX Lite activity recording. Optional _klog_

Lightweight memory allocation Dynamic memory allocation Optional _lwmem_

1.2.1 Initialization

Initialization is a core component. It differs from the initialization component of the
standard MQX. The _mqx() function of the standard MQX is split into two functions in
MQXLite:

Chapter 1 Introduction

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

Freescale Semiconductor, Inc. 7



• _mqxlite_init() - This function is called during the Processor Expert internal
initialization. Based on the values in MQX Lite initialization structure that is passed
as _mqxlite() function argument, MQX Lite does the following:

• It sets up and initializes the data that MQX Lite uses internally, including MQX
Lite kernel data structure, ready queues, and the interrupt stack.

• It creates lightweight semaphore for internal synchronization needs.
• It starts the tick timer.

• _mqxlite() - This function starts MQX Lite and should be called from the user
application, typically in main(), after the Processor Expert internal initialization code
(PE_low_level_init() function). The _mqxlite() function:

• Creates the idle task, which is active if no other task is ready.
• Creates tasks that the task template list defines as autostart tasks.
• Starts the task scheduler.

1.2.1.1 MQX Lite Initialization Structure

The MQX Lite initialization structure defines parameters of the application and target
hardware.

typedef struct mqxlite_initialization_struct
{
    _mqx_uint           PROCESSOR_NUMBER;
    pointer             START_OF_KERNEL_MEMORY;
    pointer             END_OF_KERNEL_MEMORY;
    _mqx_uint           MQX_HARDWARE_INTERRUPT_LEVEL_MAX;
    _mem_size           INTERRUPT_STACK_SIZE;
    pointer             INTERRUPT_STACK_LOCATION;
    _mem_size           IDLE_TASK_STACK_SIZE;
    pointer             IDLE_TASK_STACK_LOCATION;
    TASK_TEMPLATE_STRUCT_PTR    TASK_TEMPLATE_LIST;
} MQXLITE_INITIALIZATION_STRUCT, * MQXLITE_INITIALIZATION_STRUCT_PTR;

For a description of each field, see the Freescale MQX™ Lite RTOS Reference Manual
(MQXLITERM).

MQX Lite Components

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

8 Freescale Semiconductor, Inc.



The MQX Lite initialization structure is generated automatically by the PEx based on the
MQX Lite component settings and can be found in the Generated_Code
\<MQXLiteComponentName>.c (for example, MQX1.c) file. This is an example of the initialization
structure:

/* MQX Lite initialization structure */
const MQXLITE_INITIALIZATION_STRUCT  MQX_init_struct =
{
/* PROCESSOR NUMBER                 */  1,
/* START OF KERNEL MEMORY           */  __KERNEL_DATA_START,
/* END OF KERNEL MEMORY             */  __KERNEL_DATA_END,
/* MQX_HARDWARE_INTERRUPT_LEVEL_MAX */  1,
/* INTERRUPT STACK SIZE             */  sizeof(mqx_interrupt_stack),
/* INTERRUPT STACK LOCATION         */  mqx_interrupt_stack,
/* IDLE_TASK STACK SIZE             */  sizeof(mqx_idle_task_stack),
/* IDLE_TASK STACK_LOCATION         */  mqx_idle_task_stack,
/* TASK TEMPLATE LIST               */  (TASK_TEMPLATE_STRUCT_PTR)&MQX_template_list[0]
};

1.2.1.2 Task Template List

The task template list, which is a list of task templates ( TASK_TEMPLATE_STRUCT), defines an
initial set of templates. Tasks can be created on the processor by using this list. At
initialization, MQX Lite creates one instance of each task, whose template defines it as an
autostart task. In addition, while an application is running, it can create other tasks using
a task template that the task template list defines. Dynamic task creation is not allowed in
MQX Lite. All task resources must be pre-allocated statically at compile time. The end of
the task template list is marked by a zero-filled task template.

typedef struct task_template_struct
{
    _mqx_uint           TASK_TEMPLATE_INDEX;
    TASK_FPTR           TASK_ADDRESS;
    _mem_size           TASK_STACKSIZE;
    _mqx_uint           TASK_PRIORITY;
    char               *TASK_NAME;
    _mqx_uint           TASK_ATTRIBUTES;
    uint32_t            CREATION_PARAMETER;
} TASK_TEMPLATE_STRUCT, * TASK_TEMPLATE_STRUCT_PTR;

Chapter 1 Introduction

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

Freescale Semiconductor, Inc. 9



/* MQX task template list */
const TASK_TEMPLATE_STRUCT MQX_template_list[] =
{
  /* Task: Task1 */
  {
  /* Task number                      */  TASK1_TASK,
  /* Entry point                      */  (TASK_FPTR)Task1_task,
  /* Stack size                       */  TASK1_TASK_STACK_SIZE,
  /* Task priority                    */  9U,
  /* Task name                        */  "task1",
  /* Task attributes                  */  (MQX_AUTO_START_TASK),
  /* Task parameter                   */  (uint32_t)(0)
  },
  /* Task: Task2 */
  {
  /* Task number                      */  TASK2_TASK,
  /* Entry point                      */  (TASK_FPTR)Task2_task,
  /* Stack size                       */  TASK2_TASK_STACK_SIZE,
  /* Task priority                    */  8U,
  /* Task name                        */  "task2",
  /* Task attributes                  */  (0),
  /* Task parameter                   */  (uint32_t)(0)
  },
  TASK_TEMPLATE_LIST_END
};

1.2.2 Task Management

MQX Lite does not support dynamic task creation, which is one of main differences
when compared to the Task Management component of the standard MQX. All tasks
resources must be pre-allocated at compile time. The number of tasks is limited to one
task activation at one time, either when MQX Lite starts, or at a designated moment in
the user application. Usage of the _task_create() and _task_create_blocked() functions is
disabled in MQX Lite. Instead, _task_create_at() function must be used.

Multiple tasks cannot be created from the same task template in MQX Lite, unless all
tasks stacks are allocated statically and _task_create_at() function is correctly called in the
application.

The application can dynamically change any task attribute. Only one task is active (has
the processor) at any given time.

An exit function can be specified for each task, which MQX Lite calls when it terminates
the task, and an exception handler, which MQX Lite calls when an exception occurs
during task execution.

The list of MQX Lite Task Managements API functions (_task_ prefix) is provided
together with detailed description of each function in MQX Lite Reference Manual
(MQXLITERM).

MQX Lite Components

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

10 Freescale Semiconductor, Inc.



See the LED MQX Lite example code for the demonstration of the correct task creation.
See MQX Lite Demo Applications for information about the location of MQX Lite
examples.

1.2.3 Scheduler

MQX Lite manages the way tasks share the processor runtime (context switching) by
using the Scheduler. Only one task is active (owns the processor) at any given time. The
only scheduling policy that MQX Lite offers is FIFO, which is the priority based pre-
emptive scheduler. The active task is the highest-priority task that is in "ready state". The
active task runs until any of the following occurs:

• The active task voluntarily relinquishes the processor because it calls a blocking
MQX Lite function.

• An interrupt occurs that has higher priority than the active task.
• A task that has priority higher than the active task becomes ready.

Scheduling is controlled by the task state and the position of the task in the ready queue.
Each task is in one of the following logical states:

• Blocked - task is not ready to become active because it is waiting for a condition to
occur; when the condition occurs, the task becomes ready.

• Ready - task is ready to become active, but it is not active because it is of the same
priority as, or lower priority than, the active task.

• Active - task is running.
• Terminated - task has been destroyed/aborted.

Each task priority level has a ready queue. The active task is the first in the highest-
priority ready queue. Tasks in each ready queue are in the FIFO order.

The list of MQX Lite Scheduler component API functions (_sched_ prefix) is provided
together with detailed description of each function in the MQX Lite Reference Manual
( MQXLITERM).

Chapter 1 Introduction

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

Freescale Semiconductor, Inc. 11



Figure 1-1. MQX Lite Task Logical States

1.2.4 Lightweight Semaphores

Lightweight semaphores support low-overhead synchronization of task accesses and
shared resources. Lightweight semaphores require a minimal amount of memory and run
quickly. They are used to:

• Control access to a shared resource (mutual exclusion).
• Signal the occurrence of an event.
• Allow two tasks to synchronize their activities.

There is no difference between lightweight semaphores in the standard MQX and the
MQX Lite. The list of lightweight semaphore component API functions (_lwsem_ prefix) is
provided together with detailed description of each function in the Freescale MQX™ Lite
RTOS Reference Manual (MQXLITERM).

See the LWSEM or LWDEMO MQX Lite example code for the demonstration of the
correct Lightweight Semaphore usage. See MQX Lite Demo Applications for
information about location of MQX Lite examples.

1.2.5 Lightweight Events

Lightweight events can be used either to synchronize two tasks or to synchronize a task
and an ISR (Interrupt Service Routine). The lightweight event component consists of
lightweight event groups, which are groupings of event bits. Any task can wait for event
bits in a lightweight event group. If the event bits are not set, the task blocks. Any other

MQX Lite Components

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

12 Freescale Semiconductor, Inc.



task or ISR can set the event bits. When the event bits are set, MQX puts all waiting
tasks, whose waiting condition is met, into the task's ready queue. If the lightweight event
group has autoclearing event bits, MQX Lite clears the event bits as soon as they are set
and makes one task ready.

There is no difference between Lightweight Events in the standard MQX and the MQX
Lite. This is the list of Lightweight Event component API functions:

(_lwevent_ prefix) is stated together with detailed description of each function in the
Freesale MQX™ Lite RTOS Reference Manual (MQXLITERM).

See the LWEVENT or LWDEMO MQX Lite example code for the demonstration of the
correct LW Event usage. See MQX Lite Demo Applications for information about the
location of MQX Lite examples.

1.2.6 Mutex

A mutex provides mutual exclusion between tasks when they access a shared resource
such as data or a device. Mutexes provide polling, FIFO queuing, priority queuing, spin-
only and limited-spin queuing, priority inheritance, and priority protection. Mutexes are
strict, which means that, unless a task had locked a mutex, it cannot unlock it.

The difference between the Mutex component in the standard MQX and the MQX Lite is
minimal and involves statistical allocation of certain internal resources in MQX Lite. The
list of Mutex component API functions ( _mutex_ , _mutatr_ prefixes) is provided together
with detailed description of each function in the Freescale MQX™ Lite RTOS Reference
Manual (MQXLITERM).

See the MUTEX MQX Lite example code for the demonstration of the correct Mutex
component usage. See MQX Lite Demo Applications for information about location of
MQX Lite examples.

1.2.7 Lightweight Message Queue

The way that tasks communicate with each other is by exchanging messages. Lightweight
message queues are a simpler, low-overhead, implementation of standard MQX
messages. Tasks send messages to lightweight message queues and receive messages
from lightweight message queues. A message in the message pool has a fixed size, which
is a multiple of 32 bits. Blocking reads and blocking writes are provided.

To use a lightweight message queue, a task executes the following steps:

Chapter 1 Introduction

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

Freescale Semiconductor, Inc. 13



• Initializing a lightweight message queue. Message pool has to be allocated statically
before the initialization of this component. When the task initializes the lightweight
message queue, it also specifies the number of messages to be created and the size of
each message.

• Sending messages to the lightweight message queue. If the queue is full, the task
either blocks and waits, or fails sending. Task can be blocked after the message is
sent.

• Receiving messages from the lightweight message queue. If the queue is empty, the
reading task performs timeout. If the lightweight message queue is empty, the
reading task can be blocked.

There is no difference between the Lightweight Message Queue in the standard MQX
and the MQX Lite. The list of Lightweight Message Queue component API functions
( _lwmsgq_ prefix) is provided together with detailed description of each function in the
Freescale MQX™ Lite RTOS Reference Manual (MQXLITERM).

See the LWDEMO MQX Lite example code for the demonstration of the correct
Lightweight Message Queue component usage. See MQX Lite Demo Applications for
information about location of MQX Lite examples.

1.2.8 Interrupts

MQX Lite handles all hardware interrupts as defined in the Interrupt Vector Table
generated by PEx (see vector.c). Similarly to standard MQX, MQX Lite provides a first-
level ISR (kernel ISR), which is written in assembly language. The first-level ISR runs
before any other ISR, and performs these tasks:

• It saves the context of the active task.
• It switches to the interrupt stack.
• It calls the appropriate, second-level, (application) ISR.
• After the ISR has returned, it restores the context of the highest-priority ready task

(context switch may occur).

First-level ISR can be replaced by the user-specific ISR on a per-vector basis.

MQX Lite provides second-level application ISRs that are coded as regular functions and
are installed into into MQX Lite Interrupt Table through the Interrupt component API.
Default second-level ISR for all possible interrupt sources is installed when MQX Lite
starts. MQX Lite also supports the installation of the user-specific, default, second-level
ISR. When a second-level ISR is called, the parameter, which the application defines
when the application installs the ISR, is passed to the ISR.

Each entry of the MQX Lite Interrupt Table consists of:

MQX Lite Components

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

14 Freescale Semiconductor, Inc.



• A pointer to the ISR to call.
• Data to pass as a parameter to the ISR.
• A pointer to an exception handler for that ISR.

MQX Lite supports installing an exception handler and enabling and disabling the
Hardware interrupts.

The difference between the Interrupt component in the standard MQX and the MQX Lite
is minimal and involves statistical allocation of certain internal resources. The list of
Interrupt component API functions ( _int_ prefix) is stated together with detailed
description of each function in the Freescale MQX™ Lite RTOS Reference Manual
(MQXLITERM).

1.2.9 Lightweight Timer

Lightweight timer is an optional component that provides periodic notification to the
application. An application creates a lightweight timer queue and adds timers to it. The
timers expire at the same rate as the queue's period, but offset from the queue expiration
time.

Lightweight timer is installed by creating a periodic queue, then adding a timer to expire
at some offset from the start of the period. When adding a lightweight timer to the queue,
a notification function is specified that is called by the MQX Lite tick ISR when the timer
expires.

There is no difference between the Lightweight Timer component in the standard MQX
and the MQX Lite. The list of Lightweight Timer component API functions ( _lwtimer_
prefix) is provided together with detailed description of each function in the Freescale
MQX™ Lite RTOS Reference Manual (MQXLITERM).

1.2.10 Kernel Log

Kernel Log allows recording MQX Lite activity, which means that it is configurable to
record all MQX Lite function calls, context switches, and interrupt servicing.

Because of the MQX Lite restriction in dynamic memory allocations, _klog_create()
functions cannot be used in MQX Lite. However, the _klog_create_at() function, which
creates the kernel log at the specified location (statically allocated), is available.

The list of Kernel Log component API functions ( _klog_ prefix) is provided together with
detailed description of each function in the Freescale MQX™ Lite RTOS Reference
Manual (MQXLITERM).

Chapter 1 Introduction

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

Freescale Semiconductor, Inc. 15



1.2.11 Lightweight Memory Allocation

To allow the use of the dynamic memory allocation in target application, MQX Lite
provides Lightweight Memory Allocation component. Allocation process is similar to
using standard malloc() and free() functions available in most C run-time libraries. The
difference is that MQX Lightweight Memory Allocation component provides a task safe
mechanism to alloc/free memory from concurrently running tasks. MQX Lightweight
Memory Allocators are also supported by the MQX Task Aware Debugging plug-in
providing detailed information about allocated memory.

MQX Lite allocates memory blocks from its default memory pool, which is mapped to a
standard application heap. Tasks can also create memory pools outside the default
memory pool and allocate memory blocks from there.

When MQX Lite allocates a memory block, it allocates a block which is the requested
size or larger (the block might be slightly larger to avoid memory fragmentation).

By default the Lightweight Memory Allocation feature is turned off.

To enable its usage in an application the user should perform these steps:

• Set Lightweight Memory Allocation option to “yes” in MQX Lite component
properties.

• Set a heap size of the default memory pool.
• Right click on the CPU component -> Build options -> Heap size

Figure 1-2. MQX Lite Heap Size Setting

MQX Lite Components

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

16 Freescale Semiconductor, Inc.



Chapter 2
Integration with Processor Expert
MQX Lite is integrated with Processor Expert in both products: Microcontrollers Driver
Suite V10.x and CodeWarrior V10.x.

This chapter describes:

• MQX Lite Component Interface
• MQX Lite Generated Files
• Vector Table Management
• Interrupt Service Routines Installation Mechanism
• MQX Lite Component Interface
• MQXLite_task Component Interface
• Initialization of MQX Lite RTOS in an Application

2.1 MQX Lite Component Interface
The MQX Lite component is used to configure the MQX Lite core and define the
interface between MQX Lite and Processor Expert.

Main features of MQX Lite component are:

• MQX Lite core configuration
• Interrupt service routines installation mechanism
• Vector table management

2.2 MQX Lite Generated Files
Processor Expert MQX Lite component generates following files to the project directory
in a user Eclipse workspace:

• Generated_Code\<MQXLiteComponentName>.c and .h (for example, MQX1.c, MQX1.h) -
Implementation of MQX Lite interface, time notification of MQX Lite scheduler,

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

Freescale Semiconductor, Inc. 17



definition of MQX Lite initialization structure, definition of task stacks, definition of
PEX_RTOS_INIT() and PEX_RTOS_START() macros.

• Generated_Code\task_template_list.c and .h - definition of task template list based on
MQX Lite component configuration.

• Generated_Code\user_config.h - MQX Lite configuration file based on MQX Lite
component configuration.

• Sources\mqx_task.c and .h - Processor Expert user module containing implementation/
definition of task routines. The user can add custom code to this module and
implement the body of a task function here. A content of this file is not regenerated
by Processor Expert and all user changes are kept. When a new task is specified in
the MQX Lite component properties tab, a default MQX Lite task routine is created.
The user can modify an implementation of this function according to the application
needs.

Figure 2-1. MQX Lite Task Routine

2.3 Vector Table Management
Interrupt vector table is generated by Processor Expert into the Vectors.c file. Because
MQX Lite implements its own interrupt management, _int_kernel_isr() the interrupt
routine is installed to the interrupt vector table by default. On Kinetis platforms with

Vector Table Management

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

18 Freescale Semiconductor, Inc.



ARM® Cortex®-M0+ code, the first fifteen interrupt vectors are not managed by MQX
Lite and Processor Expert installs its own default <CpuComponentName> _Interrupt()
interrupt service routine to these interrupt vectors.

Figure 2-2. Interrupt Vector Table

2.4 Interrupt Service Routines Installation Mechanism
When MQX Lite component is a part of the project, all Processor Expert components
install their interrupt service routines through the MQX Lite interrupt installation
mechanism.

2.5 MQX Lite Component Interface
Similarly to all other Processor Expert components, MQX Lite component also has its
own graphical user interface. The following component properties and methods can be
configured by using the Component Inspector view:

Chapter 2 Integration with Processor Expert

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

Freescale Semiconductor, Inc. 19



2.5.1 Properties

This section describes properties of the MQX Lite component. Properties are parameters
of the component that influence the generated code. See the Processor Expert User Guide
for more details.

Figure 2-3. Properties of the MQX Lite Component

• Component name - Name of the component.
• MQX Lite version - Specifies which MQX Lite version is used. It affects which

MQX Lite source files are copied into the project.
• Copy source files to project - Specifies whether MQX Lite source files are copied

into a project after code generation.
• System timer - System timer is used for kernel notification (for details about settings

see Component Inheritance & Component Sharing).
• Task Template List - The task template list is an array of task template structures

terminated by a zero-filled element. The MQX Lite initialization structure contains a
pointer to this list.

• Configuration parameters - MQX Lite configuration parameters.

MQX Lite Component Interface

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

20 Freescale Semiconductor, Inc.



• Components - MQX Lite components (LW Semaphores, Mutexes, LW Events,
LW Message Queues, Logs, and Memory Allocation) settings.

• Lightweight Semaphores - Specifies whether Lightweight Semaphores are
allowed in an MQX Lite project. As LW Semaphore is a core required
component disabling this option is not recommended.

• Lightweight Events - This property specifies whether Lightweight Events
can be used in an MQX Lite project.

• Lightweight Message Queues - This property specifies whether
Lightweight Message Queue can be used in an MQX Lite project.

• Mutexes - This property specifies whether Mutexes can be used in an MQX
Lite project.

• Lightweight Timer - This property specifies whether Lightweight Timer
can be used in an MQX Lite project.

• Kernel logging - This property specifies whether Kernel Logging is allowed
in an MQX Lite project.

• Lightweight Memory Allocation - This property specifies whether
Lightweight Memory Allocation is allowed in an MQX Lite project.

• Interrupts - Interrupt settings.
• Interrupt stack size - Size of the stack space used by all ISRs.

• Idle Task - Idle Task settings.
• Use Idle Task - When enabled, the kernel creates the idle task; otherwise, if

a task is not ready, it does not run. The use of an idle task is mandatory for
Kinetis platforms.

• Enable sleep in idle - Enables the use of the WFI (wait for interrupt)
instruction in the idle task loop.

• User settings - User settings.
• Definitions - Other user defined values placed into the user_config.h.

• Manage allocated interrupts - This property specifies the range of used interrupt
vectors. The range can be specified automatically or manually by user. This
influences the size of the MQX Lite interrupt table.

The following items are available only if the group is enabled (the value is "By
user"):

• First allocated interrupt - First user allocated interrupt vector can be chosen
from the list.

• Last allocated interrupt - Last user allocated interrupt vector can be chosen
from the list.

• MQX functions - Contains the RTOS specific settings. The settings in this section
are common for all components generally called RTOS Adaptors. The MQX Lite
component is a special kind of RTOS Adaptor, which makes the code generated by
all other PEx components compatible with MQX Lite.

Chapter 2 Integration with Processor Expert

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

Freescale Semiconductor, Inc. 21



• Critical section - Definition of the RTOS API which provides the critical
section handling for HAL driver code.

• User function for entering critical section - The open critical section
function should introduce the code which cannot be interrupted by the ISRs.
This function can be also called from ISRs and/or within a context where
ISRs are already disabled. In this situation the function has no effect (except
that the pair call to critical section close function is also ignored - see
property "User function for exiting critical section"). The function has no
parameters and returns no value.

The following item is available only if the group is enabled (the value is
"yes"):

• User function name - The name of the user function (see above for description).
• User function for exiting critical section - The close critical section function should

terminate the code which cannot be interrupted by the ISRs. This function should
always have a pair call to the open critical section (see property "User function for
entering critical section"). If the call to the pair open critical section was ignored, the
respective close should be also ignored. The function has no parameters and returns
no value.

The following item is available only if the group is enabled (the value is "yes"):

• User function name - The name of the user function (see above for description).

2.5.2 Methods

Component methods are functions/subroutines, which the user can call, intended for the
component runtime control. See the Processor Expert User Guide for more details.

MQX Lite component methods are identical to MQX Lite API functions that are
described in the Freescale MQX™ Lite RTOS Reference Manual.

2.5.3 Events

There are no events defined for the MQX Lite component.

MQX Lite Component Interface

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

22 Freescale Semiconductor, Inc.



Figure 2-4. MQX Lite Component's Methods

2.6 MQXLite_task Component Interface
MQXLite_task components are dynamically created when changing the Task Template
List property of the MQX Lite component. Based on the defined number of application
tasks, the corresponding number of MQXLite_task components are created and assigned
as inherited components (see chapter "Component Inheritance and Component Sharing"
of the Processor Expert User Guide). Use the options in the Component Inspector of the
particular MQXLite_task to set up the tasks.

2.6.1 Properties

This section describes properties of the MQXLite_task component. The MQX Lite task
template list is generated based on the settings in this component.

Chapter 2 Integration with Processor Expert

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

Freescale Semiconductor, Inc. 23



Figure 2-5. Properties of the MQXLite_task Component

• Name - String name for the task.
• Entry point function - Root function name for the task. This function is called when

the task is created. It's up to the user to implement this function (in mqx_task.h/.c by
default).

• Stack size - Size of the stack space required by the task.
• Priority - Software priority of the task. Priorities start at 0, which is the highest

priority. 1, 2, 3, and so on, are progressively lower priorities. Due to mapping of task
priority levels and interrupt levels on some microcontroller platforms, it is
recommended to start assigning the priorities at number 7 for the highest-priority
task.

• Creation parameter - The value stored in this property is the default value that is
passed as the creation parameter to the task when created.

• Attributes - Enables/disables task attributes relevant for the selected platform.
• MQX_AUTO_START_TASK - When MQX Lite starts, it creates one instance

of the task and makes it ready.
• Settings supported for Freescale ColdFire and ColdFire+ derivatives only.

MQX_DSP_TASK - MQX Lite saves the DSP coprocessor registers as part of
the task's context. If the DSP registers are separate from the normal registers,
MQX Lite manages their context independently during task switching. MQX
Lite saves or restores the registers only when a new DSP task is scheduled to
run.

• MQX_FLOATING_POINT_TASK - Task uses the floating point co-
processor. MQX Lite saves floating-point registers as part of the task's context.

2.6.2 Methods

There are no methods defined for the MQXLite_task component.

MQXLite_task Component Interface

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

24 Freescale Semiconductor, Inc.



2.6.3 Events

This section describes MQXLite_task component's events. Events are call-back functions
called when an important event occurs. Refer to the Processor Expert User Guide for
more details.

Figure 2-6. MQXLite_task Component's Properties

• Event module name - Name of the user module (without extension), where the task
from this component is placed.

• Task - MQX Lite task routine. This routine is generated into mqx_tasks.c file and
called when the task is created.

2.7 Initialization of MQX Lite RTOS in an Application
As described in the Initialization section, the MQX Lite initialization is divided into two
steps:

Initialization and start of the MQX Lite core. The MQX Lite core is initialized in the
PE_low_level_init(void) function defined in CPU component's module. The
PEX_RTOS_INIT()macro is used to call _mqxlite_init()function.

Chapter 2 Integration with Processor Expert

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

Freescale Semiconductor, Inc. 25



Figure 2-7. MQXLite Initialization

MQX Lite is stared in the main module. The macro PEX_RTOS_START()is used to call
_mqxlite()function.

Figure 2-8. MQXLite Start

Initialization of MQX Lite RTOS in an Application

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

26 Freescale Semiconductor, Inc.



Chapter 3
Creating MQX Lite Application
This chapter describes:

• Creating New MQX Lite Application
• Adding MQX Lite into an Existing Project
• Define Task Routines in your Application
• MQX Lite Demo Applications

3.1 Creating a New MQX Lite Application
The easiest way to create a new MQX Lite application is to use the MQX Lite Project
Wizard. The following steps describe how to create a new MQX Lite application by
using MQX Lite project wizard.

1. Open the MQX Lite Project Wizard and select File -> New -> Processor Expert
MQX Lite Project, specify a Project name and click Next.

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

Freescale Semiconductor, Inc. 27



Figure 3-1. Create Processor Expert MQX Lite Project
2. Select a target derivative and click Next.

Creating a New MQX Lite Application

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

28 Freescale Semiconductor, Inc.



Figure 3-2. Devices Selection Page
3. Select the default connections and click Next.

Chapter 3 Creating MQX Lite Application

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

Freescale Semiconductor, Inc. 29



Figure 3-3. Connections Page
4. The Language and Build Tools Options page appears. Do not change the default

settings.

Creating a New MQX Lite Application

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

30 Freescale Semiconductor, Inc.



Figure 3-4. Language and Build Tools Options Page
5. Click Finish to create a project.

Chapter 3 Creating MQX Lite Application

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

Freescale Semiconductor, Inc. 31



3.2 Adding MQX Lite into an Existing Project
The Processor Expert technology also enables adding MQX Lite RTOS to existing
applications. The following steps describe how to add MQX Lite RTOS to an existing
application.

1. Double-click on MQX Lite component in the component selector window to add the
component to a project.

Figure 3-5. Components Library View
2. Configure MQX Lite component.

Configure the MQX Lite operating system and define number of application tasks
according to the application needs. For more information, refer to the MQX Lite
Component Interface and MQXLite_task Component Interface sections.

Define Task Routines in your Application

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

32 Freescale Semiconductor, Inc.



3.3 Define Task Routines in your Application
Once MQX Lite components are configured properly, the code has to be generated. This
is initiated by the Generate Processor Expert Code command accessible from the pop-up
menu. For more information, see the Processor Expert User Guide.

If no issue occurs in code generation, all generated source code files are placed in the
destination directory. MQX Lite task routine prototypes are generated into the mqx_tasks.h
header file. Skeletons of all task routines, defined by the MQXLite/MQXLite_task components,
are generated into the mqx_tasks.c source file (unless a different name was specified). The
next step is to implement the functionality of each defined task routine before building
the project.

3.4 MQX Lite Demo Applications
The easiest way how to start with MQX Lite operating system is through example
applications.

CodeWarrior examples are available at: CodeWarrior}\MCU\CodeWarrior_Examples
\Processor_Expert\MQXLite directory.

PEx Driver Suite examples are available at: PExDriverSuite}\eclipse\ProcessorExpert
\Projects\MQXLite directory.

This table summarizes MQX Lite example applications available within the Processor
Expert installation.

Table 3-1. MQX Lite Example Applications

Name Description

I2C_RGB MQXLite-based application that changes the RGB dimming,
blink rate and the color as per the board tilt and the slider
position.

LED Shows how one task creates another one and how the task
creation parameter is passed. Two LEDs are used to reflect
the activity of created MQX Lite tasks (different frequencies of
LED blinking).

LWDEMO Shows MQX Lite multitasking and inter-process
communication using the following lightweight components:
LW Semaphores, LW Events and LW Message Queue.

LWEVENT Simple demonstration of MQX Lite Lightweight Event
component.

LWSEM Simple demonstration of MQX Lite task synchronization using
the Lightweight Semaphore component.

MUTEX Simple demonstration of MQX Lite task synchronization using
the Mutex component.

Chapter 3 Creating MQX Lite Application

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

Freescale Semiconductor, Inc. 33



Note that not all MQX Lite example applications are available for all FSL development
platforms.

MQX Lite Demo Applications

MQX™ Lite Real-Time Operating System User Guide, Rev. 1.1, 02/2014

34 Freescale Semiconductor, Inc.



Document Number: MQXLITEUG
Rev. 1.1
02/2014

Information in this document is provided solely to enable system and software 

implementers to use Freescale products. There are no express or implied copyright 

licenses granted hereunder to design or fabricate any integrated circuits based on the 

information in this document.

Freescale reserves the right to make changes without further notice to any products 

herein. Freescale makes no warranty, representation, or guarantee regarding the 

suitability of its products for any particular purpose, nor does Freescale assume any 

liability arising out of the application or use of any product or circuit, and specifically 

disclaims any and all liability, including without limitation consequential or incidental 

damages. “Typical” parameters that may be provided in Freescale data sheets and/or 

specifications can and do vary in different applications, and actual performance may vary 

over time. All operating parameters, including “typicals,” must be validated for each 

customer application by customer’s technical experts. Freescale does not convey any 

license under its patent rights nor the rights of others. Freescale sells products pursuant 

to standard terms and conditions of sale, which can be found at the following address: 

freescale.com/SalesTermsandConditions.

How to Reach Us:

Home Page: 
freescale.com 

Web Support: 
freescale.com/support

Freescale, the Freescale logo, Kinetis, Processor Expert, ColdFire, ColdFire+, and 

CodeWarrior are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. 

Off. All other product or service names are the property of their respective owners. ARM 

and ARM Cortex-M0+ are registered trademarks of ARM Limited.

© 2013-2014 Freescale Semiconductor, Inc.

  

http://www.freescale.com
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	Chapter 1: Introduction
	Overview of MQX Lite
	Comparison Between MQX Lite and MQX

	MQX Lite Components
	Initialization
	MQX Lite Initialization Structure
	Task Template List

	Task Management
	Scheduler
	Lightweight Semaphores
	Lightweight Events
	Mutex
	Lightweight Message Queue
	Interrupts
	Lightweight Timer
	Kernel Log
	Lightweight Memory Allocation


	Chapter 2: Integration with Processor Expert
	MQX Lite Component Interface
	MQX Lite Generated Files
	Vector Table Management
	Interrupt Service Routines Installation Mechanism
	MQX Lite Component Interface
	Properties
	Methods
	Events

	MQXLite_task Component Interface
	Properties
	Methods
	Events

	Initialization of MQX Lite RTOS in an Application

	Chapter 3: Creating MQX Lite Application
	Creating a New MQX Lite Application
	Adding MQX Lite into an Existing Project
	Define Task Routines in your Application
	MQX Lite Demo Applications


