
CodeWarrior™
Development Studio for

Freescale™ 56800/E
Digital Signal
Controllers:

MC56F8xxx/DSP5685x
Family Targeting

Manual

 Revised: 11 November 2009

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. CodeWarrior is a trademark or reg-
istered trademark of Freescale Semiconductor, Inc. in the United States and/or other countries. PROCESSOR EXPERT
and EMBEDDED BEANS are trademarks of Freescale Semiconductor, Inc. All other product or service names are the
property of their respective owners.

Copyright © 2006-2009 by Freescale Semiconductor, Inc. All rights reserved.

Information in this document is provided solely to enable system and software implementers to use Freescale Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental dam-
ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typ-
icals”, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.

6501 William Cannon Drive West

Austin, TX 78735

U.S.A.

World Wide Web http://www.freescale.com/codewarrior

Technical Support http://www.freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

Table of Contents

1 Introduction 11
CodeWarrior IDE . 11

Freescale 56800/E Digital Signal Controllers . 12

References. 14

2 Getting Started 17
System Requirements . 17

Creating Project . 17

Creating New Project with DSP56800x New Project Wizard. 18

Creating New Project with DSP56800x EABI Stationery 22

3 Development Studio Overview 27
CodeWarrior IDE . 27

Development Process . 28

Project Files. 30

Editing Code . 31

Building: Compiling and Linking . 31

Debugging . 33

4 Target Settings 35
Target Settings Overview . 35

Target Setting Panels . 35

Changing Target Settings . 37

Exporting and Importing Panel Options to XML Files. 38

Exporting Panel Options to XML File. 38

Importing Panel Options from XML File . 38

Saving New Target Settings in Stationery . 38

Restoring Target Settings . 38

CodeWarrior IDE Target Settings Panels . 39

DSP56800E-Specific Target Settings Panels . 39

Target Settings. 40

M56800E Target . 41
356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Table of Contents
C/C++ Language (C Only) .42

C/C++ Preprocessor. .46

C/C++ Warnings .48

M56800E Assembler .53

M56800E Processor. .55

ELF Disassembler .60

M56800E Linker .63

Remote Debugging .68

M56800E Target (Debugging). .70

Auto-Clear Previous Breakpoint on New Breakpoint Request 71

Remote Debug Options .75

5 C for DSP56800E 79
Number Formats .79

Ordinal Data Types .80

Floating Point Types .80

64-Bit Data Types .81

Calling Conventions and Stack Frames. .81

Passing Values to Functions. .81

Returning Values From Functions .82

Volatile and Non-Volatile Registers. .82

Stack Frame and Alignment .85

User Stack Allocation .86

Data Alignment Requirements .91

Word and Byte Pointers .92

Reordering Data for Optimal Usage .92

Variables in Program Memory .93

Declaring Program Memory Variables .93

Using Variables in Program Memory .94

Linking with Variables in Program Memory. .95

Code and Data Storage .97

Large Data Model Support .98

Extended Data Addressing Example .99

Accessing Data Objects Examples .100

External Library Compatibility .101
4 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Table of Contents
Optimizing Code. 102

 Deadstripping and Link Order . 103

Working with Peripheral Module Registers . 103

Compiler Generates Bit Instructions . 104

Explanation of Undesired Behavior . 105

Recommended Programming Style. 106

Generating MAC Instruction Set . 107

6 High-Speed Simultaneous Transfer 109
Host-Side Client Interface. 109

HSST Host Program Example. 115

Target Library Interface . 116

HSST Target Program Example . 123

7 Data Visualization 125
Starting Data Visualization . 125

Data Target Dialog Boxes . 126

Memory . 126

Data Type. 127

Data Unit . 127

Single Location Changing Over Time . 127

Memory Region Changing Over Time . 127

Registers . 127

Variables . 128

HSST . 129

Channel Name . 130

Data Type. 130

Graph Window Properties. 130

Scaling . 131

Display. 131

8 Debugging for DSP56800E 133
Using Remote Connections . 133

Accessing Remote Connections . 134

Understanding Remote Connections. 135
556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Table of Contents
Editing Remote Connections .136

CCS Remote Connection .137

USBTAP. .139

Simulator .141

FSL OSBDM .142

Target Settings for Debugging. .144

Command Converter Server .146

Essential Target Settings for Command Converter Server 146

Changing Command Converter Server Protocol to Parallel Port 147

Changing Command Converter Server Protocol to HTI148

Changing Command Converter Server Protocol to PCI 149

Setting Up Remote Connection .150

Add New Remote Connection .150

Change Existing Remote Connection .151

Remove Existing Remote Connection .152

Debugging Remote Target Board .152

Launching and Operating Debugger .152

Setting Breakpoints and Watchpoints .155

Viewing and Editing Register Values .156

Viewing X: Memory .157

Viewing P: Memory. .158

Load/Save Memory .161

History Combo Box .161

Radio Buttons. .162

Memory Type Combo Box. .162

Address Text Field .162

Size Text Field .162

Dialog Box Controls .162

Fill Memory. .163

History Combo Box .163

Memory Type Combo Box. .164

Address Text Field .164

Size Text Field .164

Fill Expression Text Field .164

Dialog Box Controls .164
6 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Table of Contents
Save/Restore Registers . 165

History Combo Box. 165

Radio Buttons . 165

Register Group List . 166

Dialog Box Controls . 166

EOnCE Debugger Features. 166

Set Hardware Breakpoint Panel . 167

Special Counters . 167

Trace Buffer. 169

Set Trigger Panel . 171

Using DSP56800E Simulator . 173

Cycle/Instruction Count . 174

Memory Map. 175

Register Details Window . 175

Loading .elf File without Project . 176

Using Command Window. 177

System-Level Connect . 178

Debugging in Flash Memory . 178

Flash Memory Commands . 178

Flash Lock/Unlock . 181

Notes for Debugging on Hardware . 181

9 Profiler 183

10 Inline Assembly Language and Intrinsics 185
Inline Assembly Language . 185

Inline Assembly Overview . 185

Assembly Language Quick Guide. 186

Calling Assembly Language Functions from C Code. 187

Calling Inline Assembly Language Functions. 188

Calling Pure Assembly Language Functions. 188

Calling Functions from Assembly Language . 189

Intrinsic Functions . 190

Implementation . 190

Fractional Arithmetic . 191
756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Table of Contents
Intrinsic Functions for Math Support .192

Absolute/Negate. .194

Addition/Subtraction .198

Control .201

Deposit/Extract. .203

Division .207

Multiplication/MAC. .213

Normalization. .230

Rounding .232

Shifting. .234

Modulo Addressing Intrinsic Functions .243

Modulo Addressing Intrinsic Functions. .244

Modulo Buffer Examples .248

Points to Remember .250

Modulo Addressing Error Codes .251

11 ELF Linker 253
Structure of Linker Command Files .253

Memory Segment. .253

Closure Blocks. .254

Sections Segment. .255

Linker Command File Syntax .256

Alignment .256

Arithmetic Operations .257

Comments .257

Deadstrip Prevention .258

Variables, Expressions, and Integral Types .258

Variables and Symbols .258

Expressions and Assignments .259

Integral Types. .259

File Selection .260

Function Selection .260

ROM to RAM Copying .261

Utilizing Program Flash and Data RAM for Constant Data in C263

Utilizing Program Flash for User-Defined Constant Section in Assembler 263
8 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Table of Contents
Putting Data in pROM Flash at Build-time . 264

Stack and Heap . 265

Writing Data Directly to Memory. 265

Linker Command File Keyword Listing . 265

12 Command-Line Tools 275
Usage . 275

Response File . 276

Sample Build Script . 277

Arguments. 277

13 Libraries and Runtime Code 291
MSL for DSP56800E . 291

Using MSL for DSP56800E . 291

Console and File I/O . 292

Allocating Stacks and Heaps for DSP56800E . 294

Definitions . 294

Runtime Initialization . 295

EOnCE Library . 298

Definitions . 308

Return Codes . 308

Normal Trigger Modes . 309

Counter Trigger Modes . 310

Data Selection Modes . 312

Counter Function Modes . 312

Normal Unit Action Options . 313

Counter Unit Action Options. 313

Accumulating Trigger Options . 314

Miscellaneous Trigger Options . 315

Trace Buffer Capture Options . 315

Trace Buffer Full Options . 316

Miscellaneous Trace Buffer Option. 317

A Porting Issues 319
Converting DSP56800E Projects from Previous Versions 319
956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Table of Contents
Removing illegal object_c on pragma directive Warning.319

B DSP56800x New Project Wizard 321
Overview .321

Page Rules .323

Resulting Target Rules. .325

Rule Notes .326

DSP56800x New Project Wizard Graphical User Interface326

Invoking New Project Wizard .327

New Project Dialog Box .327

Target Pages .328

Program Choice Page .334

Data Memory Model Page. .335

External/Internal Memory Page. .336

Finish Page. .336

Index 339
10 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

1
Introduction

This manual explains how to use the CodeWarrior™ Integrated Development
Environment (IDE) to develop code for the DSP56800E family of processors
(MC56F8xxx and DSP5685x).

This chapter includes the following sections:

• CodeWarrior IDE

• Freescale 56800/E Digital Signal Controllers

• References

CodeWarrior IDE
The CodeWarrior IDE consists of a project manager, a graphical user interface, compilers,
linkers, a debugger, a source-code browser, and editing tools. You can edit, navigate,
examine, compile, link, and debug code, within the one CodeWarrior environment. The
CodeWarrior IDE lets you configure options for code generation, debugging, and
navigation of your project.

Unlike command-line development tools, the CodeWarrior IDE organizes all files related
to your project. You can see your project at a glance, so organization of your source-code
files is easy. Navigation among those files is easy, too.

When you use the CodeWarrior IDE, there is no need for complicated build scripts of
makefiles. To add files to your project or delete files from your project, you use your
mouse and keyboard, instead of tediously editing a build script.

For any project, you can create and manage several configurations for use on different
computer platforms. The platform on which you run the CodeWarrior IDE is called he
host. From the host, you use the CodeWarrior IDE to develop code to target various
platforms.

Note the two meanings of the term target:

• Platform Target — The operating system, processor, or microcontroller from or on
which your code will execute.

• Build Target — The group of settings and files that determine what your code is, as
well as control the process of compiling and linking.

The CodeWarrior IDE lets you specify multiple build targets. For example, a project can
contain one build target for debugging and another build target optimized for a particular
1156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Introduction
Freescale 56800/E Digital Signal Controllers
operating system (platform target). These build targets can share files, even though each
build target uses its own settings. After you debug the program, the only actions necessary
to generate a final version are selecting the project’s optimized build target and using a
single Make command.

The CodeWarrior IDE’s extensible architecture uses plug-in compilers and linkers to
target various operating systems and microprocessors. For example, the IDE uses a GNU
tool adapter for internal calls to DSP56800E development tools.

Most features of the CodeWarrior IDE apply to several hosts, languages, and build targets.
However, each build target has its own unique features. This manual explains the features
unique to the CodeWarrior™ Development Studio for 56800/E Digital Signal Controllers.

For comprehensive information about the CodeWarrior IDE, see the CodeWarrior IDE
User’s Guide.

NOTE For the very latest information on features, fixes, and other matters, see the
CodeWarrior Release Notes, on the CodeWarrior IDE CD.

Freescale 56800/E Digital Signal Controllers
The Freescale 56800/E Digital Signal Controllers consist of two sub-families, which are
named the DSP56F80x/DSP56F82x (DSP56800) and the MC56F8xxx/DSP5685x
(DSP56800E). The DSP56800E is an enhanced version of the DSP56800.

The processors in the DSP56800 and DSP56800E sub-families are shown in Table 1.1.

With this product the following Targeting Manuals are included:

• Code Warrior Development Studio for Freescale 56800/E Digital Signal
Controllers: DSP56F80x/DSP56F82x Family Targeting Manual

• Code Warrior Development Studio for Freescale 56800/E Digital Signal
Controllers: MC56F8xxx/DSP5685x Family Targeting Manual

NOTE Refer to the Targeting Manual specific to your processor.

Table 1.1 Supported DSP56800x Processors for CodeWarrior™ Development Studio for
56800/E Digital Signal Controllers

DSP56800 DSP56800E

DSP56F801 (60 MHz) DSP56852

DSP56F801 (80 MHz) DSP56853
12 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Introduction
Freescale 56800/E Digital Signal Controllers
DSP56F802 DSP56854

DSP56F803 DSP56855

DSP56F805 DSP56857

DSP56F807 DSP56858

DSP56F826 MC56F8006

DSP56F827 MC56F8011

MC56F8013

MC56F8014

MC56F8023

MC56F8025

MC56F8036

MC56F8037

MC56F8122

MC56F8123

MC56F8145

MC56F8146

MC56F8147

MC56F8155

MC56F8156

MC56F8157

MC56F8165

MC56F8166

MC56F8167

MC56F8245

Table 1.1 Supported DSP56800x Processors for CodeWarrior™ Development Studio for
56800/E Digital Signal Controllers (continued)

DSP56800 DSP56800E
1356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Introduction
References
References
• Your CodeWarrior IDE includes these manuals:

– CodeWarrior™ IDE User’s Guide

– CodeWarrior™ Development Studio IDE 5.9 Windows® Automation Guide

– CodeWarrior™ Development Studio for Freescale 56800/E Digital Signal
Controllers: DSP56F80x/DSP56F82x Family Targeting Manual

– CodeWarrior™ Development Studio for Freescale 56800/E Digital Signal
Controllers: MC56F8xxx/DSP5685x Family Targeting Manual

MC56F8246

MC56F8247

MC56F8255

MC56F8256

MC56F8257

MC56F8322

MC56F8323

MC56F8335

MC56F8345

MC56F8347

MC56F8355

MC56F8356

MC56F8357

MC56F8365

MC56F8366

MC56F8367

Table 1.1 Supported DSP56800x Processors for CodeWarrior™ Development Studio for
56800/E Digital Signal Controllers (continued)

DSP56800 DSP56800E
14 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Introduction
References
– CodeWarrior™ Builds Tools Reference for Freescale 56800/E Digital Signal
Controllers

– CodeWarrior™ Development Studio IDE 5.5 User’s Guide Profiler Supplement

– CodeWarrior™ Development Studio for Freescale™ DSP56800x Embedded
Systems Assembler Manual

– Codewarrior™ USB TAP Users Guide

– Freescale™ 56800 Family IEEE - 754 Compliant Floating-Point Library User
Manual

– Freescale™ 56800E Family IEEE - 754 Compliant Floating-Point Library User
Manual

– CodeWarrior™ Development Studio HTI Host Target Interface (for Once™/
JTAG Communication) User’s Manual

– DSP56800 to DSP56800E Porting Guide, Freescale Semiconductors, Inc.

– 56F807 to 56F8300/56F8100 Porting User Guide, Freescale Semiconductors
Inc.

– To learn more about the DSP56800E processor, refer to the Freescale manual,
DSP56800E Family Manual.

• To learn more about the DSP56800 processor, refer to the following manuals:

– DSP56800 Family Manual. Freescale Semiconductors, Inc.

– DSP56F801 Hardware User Manual. Freescale Semiconductors, Inc.

– DSP56F803 Hardware User Manual. Freescale Semiconductors, Inc.

– DSP56F805 Hardware User Manual. Freescale Semiconductors, Inc.

– DSP56F807 Hardware User Manual. Freescale Semiconductors, Inc.

– DSP56F826 Hardware User Manual. Freescale Semiconductors, Inc.

– DSP56F827 Hardware User Manual. Freescale Semiconductors, Inc.

• For more information on the various command converters supported by the
CodeWarrior™ Development Studio for 56800/E Digital Signal Controllers
(DSP56F80x/DSP56F82x), refer to the following manuals:

– Suite56™ Ethernet Command Converter User’s Manual, Freescale
Semiconductors, Inc.

– Suite56™ PCI Command Converter User’s Manual, Freescale Semiconductors,
Inc.

– Suite56™ Parallel Port Command Converter User’s Manual, Freescale
Semiconductors, Inc.

To download electronic copies of these manuals or order printed versions, visit:

http://www.freescale.com/
1556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Introduction
References
16 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

2
Getting Started

This chapter explains the setup and installation for the CodeWarrior™ IDE, including
hardware connections and communications protocols.

This chapter includes these sections:

• System Requirements

• Creating Project

• Creating Project

System Requirements
Table 2.1 lists system requirements for installing and using the CodeWarrior IDE for
DSP56800E.

Creating Project
To test software installation, create a sample project. Follow these steps:

Table 2.1 Requirements for CodeWarrior IDE

Category Requirement

Host Computer
Hardware

PC or compatible host computer with 1.0-GHz Pentium®-
compatible processor, 1 GB RAM, 2 gigabytes RAM minimum
strongly recommended for systems running Windows Vista™
Business operating system, and a CD-ROM drive

Operating
System

Microsoft® Windows® XP, or Windows Vista™ Operating Systems

Hard Drive 2.0 gigabytes of free space, plus space for user projects and source
code

DSP56800E 56800E EVM or custom 56800E development board, with JTAG
header
1756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Creating Project
1. Select Start > Freescale CodeWarrior > CW for DSC56800 R8.x > CodeWarrior
IDE. The IDE starts; the main window appears.

To create a DSP56800x project use either the:

• DSP56800x EABI Stationery

• DSp56800x EVM Examples Stationery

• DSP56800x New Project Wizard

• Processor Expert Examples Stationery

• Processor Expert Stationery

To create a new project with the DSP56800x new project wizard, see the sub-section
Creating New Project with DSP56800x New Project Wizard

To create a new project with the DSP56800x EABI stationery, see the sub-section
Creating New Project with DSP56800x EABI Stationery

Creating New Project with DSP56800x New
Project Wizard
In this section of the tutorial, you work with the CodeWarrior IDE to create a project. with
the DSP56800x New Project Wizard.

To create a project:

1. From the menu bar of the Freescale CodeWarrior window, select File > New.

The New dialog box (Figure 2.1) appears.
18 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Creating Project
Figure 2.1 New Dialog Box

2. Select DSP56800x New Project Wizard.

3. In the Project Name text box, type the project name. For example, the_project.

4. In the Location text box, type the location where you want to save this project or
choose the default location.

5. Click OK. The DSP56800x New Project Wizard — Target dialog box (Figure 2.2)
appears.
1956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Creating Project
Figure 2.2 DSP56800x New Project Wizard — Target Dialog Box

6. Select the family and processor

a. Select the family, such as Simulators, from the DSP56800x Family list.

b. Select the processor or simulator, such as DSP56800E_simulator, from the
Processor list.

7. Click Next. The DSP56800x New Project Wizard — Program Choice dialog box
(Figure 2.3) appears.

Figure 2.3 DSP56800x New Project Wizard — Program Choice Dialog Box

8. Select the example main() program for this project, such as Simple C.
20 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Creating Project
9. Click Next. The DSP56800x New Project Wizard — Finish dialog box (Figure 2.4)
appears.

Figure 2.4 DSP56800x New Project Wizard — Finish Dialog Box

10. Click Finish to create the new project.

NOTE For more details of the DSP56800x new project wizard, see Appendix B.

This completes project creation. You are ready to edit project contents, according to
the optional steps below.

NOTE Stationery projects include source files that are placeholders for your own files.
If a placeholder file has the same name as your file (such as main.c), you
must replace the placeholder file with your source file.

11. (Optional) Remove files from the project.

a. In the project window, select (highlight) the files.

b. Press the Delete key (or right-click the filename, then select Remove from the
context menu). A CodeWarrior dialog box appears. Select OK and the filenames
disappear.

12. (Optional) Add source files to the project.

a. Method 1: From the main-window menu bar, select Project > Add Files. Then use
the Select files to add dialog box to specify the files.

b. Method 2: Drag files from the desktop or Windows Explorer to the project
window.

13. (Optional) Edit code in the source files.
2156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Creating Project
a. Double-click the filename in the project window (or select the filename, then press
the Enter key).

b. The IDE opens the file in the editor window; you are ready to edit file contents.

Creating New Project with DSP56800x EABI
Stationery
To create a sample project, perform these steps:

1. From the menu bar, select File > New. The New window (Figure 2.5) appears.

Figure 2.5 New Window

2. Specify a new DSP56800E project named NewProj1.

a. If necessary, click the Project tab to move the Project page to the front of the
window.

b. From the project list, select DSP56800x EABI Stationery.

NOTE Stationery is a set of project templates, including libraries and place-holders for
source code. Using stationery is the quickest way to create a new project.

c. In the Project name text box, type: NewProj1. (When you save this project, the
IDE automatically will add the .mcp extension to its filename.)

3. In the New window, click the OK button. The New Project window (Figure 2.6)
appears, listing board-specific project stationery.
22 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Creating Project
Figure 2.6 New Project Window

4. Select the simulator C stationery target.

a. Click the expand control (+) for the DSP56800E Simulator. The tree expands to
show stationery selections.

b. Select Simple_C. (Figure 2.7 shows this selection.)

Figure 2.7 Simulator Simple C Selection

NOTE Select a simulator target if your system is not connected to a development
board. If you do have a development board, your target selection must
correspond to the board’s processor.

c. Click OK. A project window opens, listing the folders for project NewProj1.mcp.
Figure 2.8 shows this project window docked in the IDE main window.
2356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Creating Project
Figure 2.8 Project Window (Docked)

NOTE The IDE has the same functionality whether subordinate windows (such as the
project window) are docked, floating, or child.
To undock the project window, right-click its title tab, then select Floating or
Child from the context menu. To dock a floating window, right-click its title
bar, then select Docked from the context menu.

5. This completes project creation. You are ready to edit project contents, according to
the optional steps below.

NOTE Stationery projects include source files that are placeholders for your own files.
If a placeholder file has the same name as your file (such as main.c), you
must remove the placeholder file before adding your source file.

6. (Optional) Remove files from the project.

a. In the project window, select (highlight) the files.

b. Press the Delete key (or right-click the filename, then select Remove from the
context menu). A CodeWarrior dialog box appears. Select OK and the filenames
disappear.

7. (Optional) Add source files to the project.

a. Method 1: From the main-window menu bar, select Project > Add Files. Then use
the Select files to add dialog box to specify the files.

b. Method 2: Drag files from the desktop or Windows Explorer to the project
window.

8. (Optional) Edit code in the source files.
24 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Creating Project
a. Double-click the filename in the project window (or select the filename, then press
the Enter key).

b. The IDE opens the file in the editor window; you are ready to edit file contents.
2556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Creating Project
26 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

3
Development Studio
Overview

This chapter describes the CodeWarrior™ IDE and explains application development
using the IDE. This chapter includes these sections:

• CodeWarrior IDE

• Development Process

If you are an experienced CodeWarrior IDE user, you will recognize the look and feel of
the user interface. However, you must become familiar with the DSP56800E runtime
software environment.

CodeWarrior IDE
The CodeWarrior IDE lets you create software applications. It controls the project
manager, the source-code editor, the class browser, the compiler, linker, and the debugger.

You use the project manager to organize all the files and settings related to your project.
You can see your project at a glance and easily navigate among source-code files. The
CodeWarrior IDE automatically manages build dependencies.

A project can have multiple build targets. A build target is a separate build (with its own
settings) that uses some or all of the files in the project. For example, you can have both a
debug version and a release version of your software as separate build targets within the
same project.

The CodeWarrior IDE has an extensible architecture that uses plug-in compilers and
linkers to target various operating systems and microprocessors. The CodeWarrior CD
includes a C compiler for the DSP56800E family of processors. Other CodeWarrior
software packages include C, C++, and Java compilers for Win32, Mac® OS, Linux, and
other hardware and software combinations.

The IDE includes:

• CodeWarrior Compiler for DSP56800E — an ANSI-compliant C compiler, based
on the same compiler architecture used in all CodeWarrior C compilers. Use this
compiler with the CodeWarrior linker for DSP56800E to generate DSP56800E
applications and libraries.
2756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Development Studio Overview
Development Process
NOTE The CodeWarrior compiler for DSP56800E does not support C++.

• CodeWarrior Assembler for DSP56800E — an assembler that features easy-to-use
syntax. It assembles any project file that has a.asm filename extension. For further
information, refer to the Code Warrior Development Studio Freescale DSP56800x
Embedded Systems Assembler Manual.

• CodeWarrior Linker for DSP56800E — a linker that lets you generate either
Executable and Linker Format (ELF) or S-record output files for your application.

• CodeWarrior Debugger for DSP56800E — a debugger that controls your
program’s execution, letting you see what happens internally as your program runs.
Use this debugger to find problems in your program.

The debugger can execute your program one statement at a time, suspending
execution when control reaches a specified point. When the debugger stops a
program, you can view the chain of function calls, examine and change the values of
variables, inspect processor register contents, and see the contents of memory.

• Main Standard Library (MSL) — a set of ANSI-compliant, standard C libraries
for use in developing DSP56800E applications. Access the library sources for use in
your projects. A subset of those used for all platform targets, these libraries are
customized and the runtime adapted for DSP56800E development.

Development Process
The CodeWarrior IDE helps you manage your development work more effectively than
you can with a traditional command-line environment. Figure 3.1 depicts application
development using the IDE.
28 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Development Studio Overview
Development Process
Figure 3.1 CodeWarrior IDE Application Development

Compile Project

Manage Files (1)

Error-Free?

Create/Manage Project

Specify Target

Success?

(1) Use any combination: stationery

Debug Project

Release

(2) Compiler, linker, debugger

no

yes

Link Project

Edit Files (3)

Start

Settings

Success?

End

no

no

yes

yes

Notes:

(4)

(3) Edit source and resource files.

(4) Possible corrections:

(template) files, library files,
or your own source files.

settings; target specification;
optimizations.

adding a file, changing
settings, or editing a file.

(2)

Build (Make) Project
2956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Development Studio Overview
Development Process
Project Files
A CodeWarrior project consists of source-code, library, and other files. The project
window (Figure 3.2) lists all files of a project, letting you:

• Add files,

• Remove files,

• Specify the link order,

• Assign files to build targets, and

• Direct the IDE to generate debug information for files.

Figure 3.2 Project Window

NOTE Figure 3.2 shows a floating project window. Alternatively, you can dock the
project window in the IDE main window or make it a child window. You can
have multiple project windows open at the same time; if the windows are
docked, their tabs let you control which one is at the front of the main window.

The CodeWarrior IDE automatically handles the dependencies among project files, and
stores compiler and linker settings for each build target. The IDE tracks which files have
changed since your last build, recompiling only those files during your next project build.

A CodeWarrior project is analogous to a collection of makefiles, as the same project can
contain multiple builds. Examples are a debug version and a release version of code, both
part of the same project. As earlier text explained, build targets are such different builds
within a single project.
30 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Development Studio Overview
Development Process
Editing Code
The CodeWarrior text editor handles text files in MS-DOS®, Windows®, UNIX, and
Mac® OS formats.

To edit a source-code file (or any other editable project file), either:

• Double-click its filename in the project window, or

• Select (highlight) the filename, then drag the highlighted filename to the
CodeWarrior main window.

The IDE opens the file in the editor window (Figure 3.3). This window lets you switch
between related files, locate particular functions, mark locations within a file, or go to a
specific line of code.

Figure 3.3 Editor Window

NOTE Figure 3.3 shows a floating editor window. Alternatively, you can dock the
editor window in the IDE main window or make it a child window.

Building: Compiling and Linking
For the CodeWarrior IDE, building includes both compiling and linking. To start building,
you select Project > Make, from the IDE main-window menu bar. The IDE compiler:

• Generates an object-code file from each source-code file of the build target,
incorporating appropriate optimizations.

• Updates other files of the build target, as appropriate.
3156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Development Studio Overview
Development Process
• In case of errors, issues appropriate error messages and halts.

NOTE It is possible to compile a single source file. To do so, highlight its filename in
the project window, then select Project > Compile, from the main-window
menu bar. Another useful option is compiling all modified files of the build
target: select Project > Bring Up to Date from the main-window menu bar.

In UNIX and other command-line environments, the IDE stores object code in a binary
(.o or .obj) file. On Windows targets, the IDE stores and manages object files internally
in the data folder.

A proprietary compiler architecture at the heart of the CodeWarrior IDE handles multiple
languages and platform targets. Front-end language compilers generate an intermediate
representation (IR) of syntactically correct source code. This IR is memory-resident and
language-independent. Back-end compilers generate code from the IR for specific
platform targets. As Figure 3.4 depicts, the CodeWarrior IDE manages this whole process.

Figure 3.4 CodeWarrior Build System

This architecture means that the CodeWarrior IDE uses the same front-end compiler to
support multiple back-end platform targets. In some cases, the same back-end compiler
can generate code from a variety of languages. User benefits of this architecture include:

• An advance in the C/C++ front-end compiler means an immediate advance in all
code generation.

• Optimizations in the IR mean that any new code generator is highly optimized.

• Targeting a new processor does not require compiler-related changes in source code,
simplifying porting.
32 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Development Studio Overview
Development Process
Freescale builds all compilers as plug-in modules. The compiler and linker components
are modular plug-ins. Freescale publishes this API, so that developers can create custom
or proprietary tools. For more information, go to Freescale Support:

http://www.Freescale.com/MW/Support

When compilation succeeds, building moves on to linking. The IDE linker:

• Links the object files into one executable file. (You use the M56800E Target settings
panel to name the executable file.)

• In case of errors, issues appropriate error messages and halts.

The IDE uses linker command files to control the linker, so you do not need to specify a
list of object files. The Project Manager tracks all the object files automatically; it lets you
specify the link order.

When linking succeeds, you are ready to test and debug your application.

Debugging
To debug your application, select Project > Debug from the main-window menu bar. The
debugger window opens, displaying your program code.

Run the application from within the debugger, to observe results. The debugger lets you
set breakpoints, and check register, parameter, and other values at specific points of code
execution.

When your code executes correctly, you are ready to add features, to release the
application to testers, or to release the application to customers.

NOTE Another debugging feature of the CodeWarrior IDE is viewing preprocessor
output. This helps you track down bugs cause by macro expansion or another
subtlety of the preprocessor. To use this feature, specify the output filename in
the project window, then select Project > Preprocess from the main-window
menu bar. A new window opens to show the preprocessed file.
3356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Development Studio Overview
Development Process
34 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

4
Target Settings

Each build target in a CodeWarrior™ project has its own settings. This chapter explains
the target settings panels for DSP56800E software development. The settings that you
select affect the DSP56800E compiler, linker, assembler, and debugger.

This chapter includes the following sections:

• Target Settings Overview

• CodeWarrior IDE Target Settings Panels

• DSP56800E-Specific Target Settings Panels

Target Settings Overview
The target settings control:

• Compiler options

• Linker options

• Assembler options

• Debugger options

• Error and warning messages

When you create a project using stationery, the build targets, which are part of the
stationery, already include default target settings. You can use those default target settings
(if the settings are appropriate), or you can change them.

NOTE Use the DSP56800E project stationery when you create a new project.

Target Setting Panels
Table 4.1 lists the target settings panels:

• Links identify the panels specific to DSP56800E projects. Click the link to go to the
explanation of that panel.

• The Use column explains the purpose of generic IDE panels that also can apply to
DSP56800E projects. For explanations of these panels, see the IDE User Guide.
3556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
Target Settings Overview
Table 4.1 Target Setting Panels

Group Panel Name Use

Target Target Settings

Access Paths Selects the paths that the IDE
searches to find files of your project.
Types include absolute and project-
relative.

Build Extras Sets options for building a project,
including using a third-party
debugger.

File Mappings Associates a filename extension,
such as .c, with a plug-in compiler.

Source Trees Defines project-specific source trees
(root paths) for your project.

M56800E Target

Language Settings C/C++ Language (C
Only)

C/C++ Preprocessor

C/C++ Warnings

M56800E Assembler

Code Generation ELF Disassembler

M56800E Processor

Global Optimizations Configures how the compiler
optimizes code.

Linker M56800E Linker

Editor Custom Keywords Changes colors for different types of
text.
36 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
Target Settings Overview
Changing Target Settings
To change target settings:

1. Select Edit > Target Name Settings.

Target Name is the name of the current build target in the CodeWarrior project.

After you select this menu item, the CodeWarrior IDE displays the Target Settings
window (Figure 4.1).

Figure 4.1 Target Settings Window

Debugger Debugger Settings Specifies settings for the
CodeWarrior debugger.

Remote Debugging

M56800E Target
Settings (Debugging)

Remote Debug Options

Table 4.1 Target Setting Panels (continued)

Group Panel Name Use
3756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
Target Settings Overview
The left side of the Target Settings window contains a list of target settings panels
that apply to the current build target.

2. To view the panel, click on the name of the Target Settings panel.

The CodeWarrior IDE displays the target settings panel that you selected.

3. Change the settings in the panel.

4. Click OK.

Exporting and Importing Panel Options to
XML Files
The CodeWarrior IDE can export options for the current settings panel to an Extensible
Markup Language (XML) file or import options for the current settings panel from a
previously saved XML file.

Exporting Panel Options to XML File
1. Click the Export Panel button.

2. Assign a name to the XML file and save the file in the desired location.

Importing Panel Options from XML File
1. Click the Import Panel button.

2. Locate the XML file to where you saved the options for the current settings panel.

3. Open the file to import the options.

Saving New Target Settings in Stationery
To create stationery files with new target settings:

1. Create your new project from an existing stationery.

2. Change the target settings in your new project for any or all of the build targets in the
project.

3. Save the new project in the Stationery folder.

Restoring Target Settings
After you change settings in an existing project, you can restore the previous settings by
using any of the following methods:
38 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
CodeWarrior IDE Target Settings Panels
• To restore the previous settings, click Revert at the bottom of the Target Settings
window.

• To restore the settings to the factory defaults, click Factory Settings at the bottom of
the window.

CodeWarrior IDE Target Settings Panels
Table 4.2 lists and explains the CodeWarrior IDE target settings panels that can apply to
DSP56800E.

DSP56800E-Specific Target Settings Panels
The rest of this chapter explains the target settings panels specific to DSP56800E
development.

Table 4.2 Code Warrior IDE Target Settings Panels

Target Settings
Panels

Description

Access Paths Use this panel to select the paths that the CodeWarrior IDE
searches to find files in your project. You can add several
kinds of paths including absolute and project-relative. See
IDE User Guide.

Build Extras Use this panel to set options that affect the way the
CodeWarrior IDE builds a project, including the use of a
third-party debugger. See IDE User Guide.

File Mappings Use this panel to associate a file name extension, such
as.c, with a plug-in compiler. See IDE User Guide.

Source Trees Use this panel to define project-specific source trees (root
paths) for use in your projects. See IDE User Guide.

Custom Keywords Use this panel to change the colors that the CodeWarrior
IDE uses for different types of text. See IDE User Guide.

Global Optimizations Use this panel to configure how the compiler optimizes the
object code. See IDE User Guide.

Debugger Settings Use this panel to specify settings for the CodeWarrior
debugger.
3956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Target Settings
Use the Target Settings panel (Figure 4.2) to specify a linker. This selection also specifies
your target. Table 4.3 explains the elements of the Target Settings panel.

The Target Settings window changes its list of panels to reflect your linker choice. As
your linker choice determines which other panels are appropriate, it should be your first
settings action.

Figure 4.2 Target Settings Panel

Table 4.3 Target Settings Panel Elements

Element Purpose Comments

Target Name
text box

Sets or changes the name of a
build target.

For your development convenience,
not the name of the final output file.
(Use the M56800E Target panel to
name the output file.)

Linker list box Specifies the linker. Select M56800E Linker.

Pre-linker list
box

Specifies a pre-linker. Select None.

(No pre-linker is available for the
M56800E linker.)
40 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
M56800E Target
Use the M56800E Target panel (Figure 4.3) to specify the project type and the name of
the output file. Table 4.4 explains the elements of this panel.

Post-linker
list box

Specifies a post-linker. Select None.

(No post-linker is available for the
M56800E linker.)

Output
Directory text
box

Tells the IDE where to save the
executable file. To specify a
different output directory, click
the Choose button, then use
the access-path dialog box to
specify a directory. (To delete
such an alternate directory,
click the Clear button.)

Default: the directory that contains
the project file.

Save Project
Entries Using
Relative
Paths
checkbox

Controls whether multiple
project files can have the same
name:

• Clear — Each project
entry must have a
unique name.

• Checked — The IDE
uses relative paths to
save project entries;
entry names need
not be unique.

Default: Clear — project entries
must have unique names.

Table 4.3 Target Settings Panel Elements (continued)

Element Purpose Comments
4156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Figure 4.3 M56800E Target Panel

NOTE Be sure to name libraries with the extension .lib. It is possible to use a
different extension, but this requires a file-mapping entry in the File Mappings
panel. For more information, see the IDE User Guide.

C/C++ Language (C Only)
Use the C/C++ Language (C Only) panel (Figure 4.4) to specify C language features.
Table 4.5 explains the elements of this panel that apply to the DSP56800E processor,
which supports only the C language.

Table 4.4 M56800E Target Panel Elements

Element Purpose Comments

Project Type
list box

Specifies an Application or Library
project.

Application is the usual
selection.

Output File
Name text
box

Specifies the name of the output file. End application filenames with
the .elf extension; end library
filenames with the .lib
extension.
42 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Figure 4.4 C/C++ Language Panel (C Only)

NOTE Always disable the following options, which do not apply to the DSP56800E
compiler: Legacy for-scoping and Pool Strings.

4356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Table 4.5 C/C++ Language (C Only) Panel Elements

Element Purpose Comments

IPA list box Specifies Interprocedural Analysis
(IPA):

Off — IPA is disabled

File — inlining is deferred to the end
of the file processing

Program — Inlining is deferred until
all files within the program are
processed.

None

Inline Depth
list box

Together with the ANSI Keyword
Only checkbox, specifies whether to
inline functions:

Don’t Inline — do not inline any

Smart — inline small functions to a
depth of 2 to 4

1 to 8 — Always inline functions to
the number’s depth

Always inline — inline all functions,
regardless of depth

If you call an inline function,
the compiler inserts the
function code, instead of
issuing calling instructions.
Inline functions execute faster,
as there is no call. But overall
code may be larger if function
code is repeated in several
places.

Auto-Inline
checkbox

Checked — Compiler selects the
functions to inline

Clear — Compiler does not select
functions for inlining

To check whether automatic
inlining is in effect, use the
__option(auto_inline)
command.

Bottom-up
Inlining
checkbox

Checked — For a chain of function
calls, the compiler begins inlining
with the last function.

Clear — Compiler does not do
bottom-up inlining.

To check whether bottom-up
inlining is in effect, use the
__option(inline_bottom
_up) command.
44 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
ANSI Strict
checkbox

Checked — Disables CodeWarrior
compiler extensions to C

Clear — Permits CodeWarrior
compiler extensions to C

Extensions are C++-style
comments, unnamed
arguments in function
definitions, # not an argument
in macros, identifier after
#endif, typecasted pointers as
lvalues, converting pointers to
same-size types, arrays of
zero length in structures, and
the D constant suffix.

To check whether ANSI
strictness is in effect, use the
__option(ANSI_strict)
command.

ANSI
Keywords
Only
checkbox

Checked — Does not permit
additional keywords of CodeWarrior
C.

Clear — Permits additional
keywords.

Additional keywords are asm
(use the compiler built-in
assembler) and inline (lets you
declare a C function to be
inline).

To check whether this keyword
restriction is in effect, use the
__option(only_std_keyw
ords) command.

Expand
Trigraphs
checkbox

Checked — C Compiler ignores
trigraph characters.

Clear — C Compiler does not allow
trigraph characters, per strict ANSI/
ISO standards.

Many common character
constants resemble trigraph
sequences, especially on the
Mac OS. This extension lets
you use these constants
without including escape
characters.

NOTE: If this option is on, be
careful about initializing strings
or multi-character constants
that include question marks.

To check whether this option is
on, use the
__option(trigraphs)
command.

Table 4.5 C/C++ Language (C Only) Panel Elements (continued)

Element Purpose Comments
4556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
C/C++ Preprocessor
The C/C++ Preprocessor (Figure 4.5) panel controls how the preprocessor interprets
source code. By modifying the settings on this panel, you can control how the
preprocessor translates source code into preprocessed code.

More specifically, the C/C++ Preprocessor panel provides an editable text field that can be
used to #define macros, set #pragmas, or #include prefix files.

Require
Function
Prototypes
checkbox

Checked — Compiler does not allow
functions that do not have
prototypes.

Clear — Compiler allows functions
without prototypes.

This option helps prevent
errors from calling a function
before its declaration or
definition.

To check whether this option is
in effect, use the
__option(require_proto
types) command.

Enums
Always Int
checkbox

Checked — Restricts all
enumerators to the size of a signed
int.

Clear — Compiler converts
unsigned int enumerators to signed
int, then chooses an accommodating
data type, char to long int.

To check whether this
restriction is in effect, use the
__option(enumalwaysint
) command.

Use
Unsigned
Chars
checkbox

Checked — Compiler treats a char
declaration as an unsigned char
declaration.

Clear — Compiler treats char and
unsigned char declarations
differently.

Some libraries were compiled
without this option. Selecting
this option may make your
code incompatible with such
libraries.

To check whether this option is
in effect, use the
__option(unsigned_char
) command.

Reuse
Strings
checkbox

Checked — Compiler stores only
one copy of identical string literals,
saving memory space.

Clear — Compiler stores each string
literal.

If you select this option,
changing one of the strings
affects them all.

Table 4.5 C/C++ Language (C Only) Panel Elements (continued)

Element Purpose Comments
46 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Figure 4.5 C/C++ Preprocessor Panel

Table 4.6 provides information about the options in this panel.

Table 4.6 C/C++ Language Preprocessor Elements

Element Purpose Comments

Source
encoding

Allows you to specify the
default encoding of source
files. Multibyte and Unicode
source text is supported.

To replicate the obsolete option “Multi-
Byte Aware”, set this option to System
or Autodetect. Additionally, options that
affect the “preprocess” request appear
in this panel.

Use prefix
text in
precompiled
header

Controls whether a *.pch or
*.pch++ file incorporates the
prefix text into itself.

This option defaults to “off” to
correspond with previous versions of
the compiler that ignore the prefix file
when building precompiled headers. If
any #pragmas are imported from old C/
C++ Language (C Only) Panel settings,
this option is set to “on”.

Emit file
changes

Controls whether
notification of file changes
(or #line changes) appear in
the output.
4756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
C/C++ Warnings
Use the C/C++ Warnings panel (Figure 4.6) to specify C language features for the
DSP56800E. Table 4.7 explains the elements of this panel.

NOTE The CodeWarrior compiler for DSP56800E does not support C++.

Emit
#pragmas

Controls whether #pragmas
encountered in the source
text appear in the
preprocessor output.

This option is essential for producing
reproducible test cases for bug reports.

Show full
paths

Controls whether file
changes show the full path
or the base filename of the
file.

Keep
comments

Controls whether comments
are emitted in the output.

Use #line Controls whether file
changes appear in
comments (as before) or in
#line directives.

Keep
whitespace

Controls whether
whitespace is stripped out
or copied into the output.

This is useful for keeping the starting
column aligned with the original source,
though we attempt to preserve space
within the line. This doesn’t apply when
macros are expanded.

Table 4.6 C/C++ Language Preprocessor Elements (continued)

Element Purpose Comments
48 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Figure 4.6 C/C++ Warnings Panel
4956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Table 4.7 C/C++ Warnings Panel Elements

Element Purpose Comments

Illegal
Pragmas
checkbox

Checked — Compiler issues
warnings about invalid pragma
statements.

Clear — Compiler does not issue
such warnings.

According to this option, the invalid
statement #pragma near_data off
would prompt the compiler
response WARNING: near data is
not a pragma.

To check whether this option is in
effect, use the
__option(warn_illpragma)
command.

Possible
Errors
checkbox

Checked — Compiler checks for
common typing mistakes, such
as == for =.

Clear — Compiler does not
perform such checks.

If this option is in effect, any of
these conditions triggers a
warning: an assignment in a
logical expression; an assignment
in a while, if, or for expression; an
equal comparison in a statement
that contains a single expression;
a semicolon immediately after a
while, if, or for statement.

To check whether this option is in
effect, use the
__option(warn_possunwant)
command.

Extended
Error
Checking
checkbox

Checked — Compiler issues
warnings in response to specific
syntax problems.

Clear — Compiler does not
perform such checks.

Syntax problems are: a non-void
function without a return
statement, an integer or floating-
point value assigned to an enum
type, or an empty return statement
in a function not declared void.

To check whether this option is in
effect, use the
__option(extended_errorcheck)
command.

Hidden
Virtual
Functions

Leave clear. Does not apply to C.
50 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Implicit
Arithmetic
Conversions
checkbox

Checked — Compiler verifies
that operation destinations are
large enough to hold all possible
results.

Clear — Compiler does not
perform such checks.

If this option is in effect, the
compiler would issue a warning in
response to assigning a long value
to a char variable.

To check whether this option is in
effect, use the
__option(warn_implicitconv)
command.

Pointer/
Integral
Conversions

Checked — Compiler checks for
pointer/integral conversions.

Clear — Compiler does not
perform such checks.

See #pragma
warn_any_ptr_int_conv and
#pragma warn_ptr_int_conv.

Unused
Variables
checkbox

Checked — Compiler checks for
declared, but unused, variables.

Clear — Compiler does not
perform such checks.

The pragma unused overrides this
option.

To check whether this option is in
effect, use the
__option(warn_unusedvar)
command.

Unused
Arguments
checkbox

Checked — Compiler checks for
declared, but unused,
arguments.

Clear — Compiler does not
perform such checks.

The pragma unused overrides this
option.

Another way to override this option
is clearing the ANSI Strict
checkbox of the C/C++ Language
(C Only) panel, then not assigning
a name to the unused argument.

To check whether this option is in
effect, use the
__option(warn_unusedarg)
command.

Missing
‘return’
Statements

Checked — Compiler checks for
missing ‘return’ statements.

Clear — Compiler does not
perform such checks.

See #pragma warn_missingreturn.

Table 4.7 C/C++ Warnings Panel Elements (continued)

Element Purpose Comments
5156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Expression
Has No Side
Effect

Checked — Compiler issues
warning if expression has no
side effect.

Clear — Compiler does not
perform such checks.

See #pragma
warn_no_side_effect

Extra
Commas
checkbox

Checked — Compiler checks for
extra commas in enums.

Clear — Compiler does not
perform such checks.

To check whether this option is in
effect, use the
__option(warn_extracomma)
command.

Inconsistent
Use of ‘class’
and ‘struct’
Keywords
checkbox

Leave clear. Does not apply to C.

Empty
Declarations
checkbox

Checked — Compiler issues
warnings about declarations
without variable names.

Clear — Compiler does not issue
such warnings.

According to this option, the
incomplete declaration int ; would
prompt the compiler response
WARNING.

To check whether this option is in
effect, use the
__option(warn_emptydecl)
command.

Include File
Capitalization

Checked — Compiler issues
warning about include file
capitalization.

Clear — Compiler does not
perform such checks.

See #pragma warn_filenamecaps.

Pad Bytes
Added

Checked — Compiler checks for
pad bytes added.

Clear — Compiler does not
perform such checks.

See #pragma warn_padding.

Undefined
Macro In #if

Checked — Compiler checks for
undefined macro in #if.

Clear — Compiler does not
perform such checks.

See #pragma warn_undefmacro.

Table 4.7 C/C++ Warnings Panel Elements (continued)

Element Purpose Comments
52 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
M56800E Assembler
Use the M56800E Assembler panel (Figure 4.7) to specify the format of the assembly
source files and the code that the DSP56800E assembler generates. Table 4.8 explains the
elements of this panel.

Figure 4.7 M56800E Assembler Panel

Non-Inlined
Functions
checkbox

Checked — Compiler issues a
warning if unable to inline a
function.

Clear — Compiler does not issue
such warnings.

To check whether this option is in
effect, use the
__option(warn_notinlined)
command.

Treat All
Warnings As
Errors
checkbox

Checked — System displays
warnings as error messages.

Clear — System keeps warnings
and error messages distinct.

Table 4.7 C/C++ Warnings Panel Elements (continued)

Element Purpose Comments
5356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Table 4.8 M56800E Assembler Panel Elements

Element Purpose Comments

Generate
Listing File
checkbox

Checked — Assembler
generates a listing file during
IDE assembly of source files.

Clear — Assembler does not
generate a listing file.

A listing file contains the source file
with line numbers, relocation
information, and macro expansions.
The filename extension is .lst.

Expand
Macros in
Listing
checkbox

Checked — Assembler macros
expand in the assembler
listing.

Clear — Assembler macros do
not expand.

This checkbox is available only if the
Generate Listing File checkbox is
checked.

Assert NOPs
on pipeline
conflicts
checkbox

Checked — Assembler
automatically resolves pipeline
conflicts by inserting NOPs.

Clear — Assembler does not
insert NOPs; it reports pipeline
conflicts in error messages.

NOP is optional. The core will stall
for you (delay the required time)
even if you do not put the NOP.

Emit
Warnings for
NOP
assertions
checkbox

Checked — Assembler issues
a warning any time it inserts a
NOP to prevent a pipeline
conflict.

Clear — Assembler does not
issue such warnings.

This checkbox is available only if the
Assert NOPs on pipeline conflicts
checkbox is checked.

Emit
Warnings for
Hardware
Stalls
checkbox

Checked — Assembler warns
when a hardware stall occurs
upon execution.

Clear — Assembler does not
issue such warnings.

This option helps optimize the cycle
count.

Allow legacy
instructions
checkbox

Checked — Assembler permits
legacy DSP56800 instruction
syntax.

Clear — Assembler does not
permit this legacy syntax.

Selecting this option sets the Default
Data Memory Model and Default
Program Memory Model values to 16
bits.
54 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
M56800E Processor
Use the M56800E Processor panel (Figure 4.8) to specify the kind of code the compiler
creates. This panel is available only if the current build target uses the M56800E Linker.
Table 4.9 explains the elements of this panel.

Pad Pipeline
for Debugger
checkbox

Checked — Mandatory for
using the debugger. Inserts
NOPs after certain branch
instructions to make
breakpoints work reliably.

Clear — Does not insert such
NOPs.

If you select this option, you should
select the same option in the
M56800E Processor Settings panel.
Selecting this option increases code
size by 5 percent. But not selecting
this option risks nonrecovery after
the debugger comes to breakpoint
branch instructions.

Emit
Warnings for
odd SP
Increment/
Decrement
checkbox

Checked — Enables
assembler warnings about
instructions that could misalign
the stack frame.

Clear — Does not enable such
warnings.

Default Data
Memory
Model list box

Specifies 16 or 24 bits as the
default size.

Factory setting: 16 bits.

Default
Program
Memory
Model list box

Specifies 16, 19, or 21 bits as
the default size.

Factory setting: 19 bits.

Prefix File
text box

Specifies a file to be included
at the beginning of every
assembly file of the project.

Lets you include common definitions
without using an include directive in
every file.

Table 4.8 M56800E Assembler Panel Elements (continued)

Element Purpose Comments
5556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Figure 4.8 M56800E Processor Panel
56 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Table 4.9 M56800E Processor Panel Elements

Element Purpose Comments

Hardware
DO Loops
list box

Specifies the level of hardware
DO loops:

• No DO Loops —
Compiler does not
generate any

• No Nested DO Loops
— Compiler generates
hardware DO loops,
but does not nest them

• Nested DO Loops —
Compiler generates
hardware DO loops,
nesting them two deep.

If hardware DO loops are enabled,
debugging will be inconsistent
about stepping into loops.

Test immediately after this table
contains additional Do-loop
information.

Small
Program
Model
checkbox

Checked — Compiler generates
a more efficient switch table,
provided that code fits into the
range 0x0—0xFFFF

Clear — Compiler generates an
ordinary switch table.

Do not check this checkbox
unless the entire program code
fits into the 0x0—0xFFFF memory
range.

Large Data
Model
checkbox

Checked — Extends DSP56800E
addressing range by providing
24-bit address capability to
instructions

Clear — Does not extend
address range

24-bit address modes allow
access beyond the 64K-byte
boundary of 16-bit addressing.

Globals live
in lower
memory
checkbox

Checked — Compiler uses 24-bit
addressing for pointer and stack
operations, 16-bit addressing for
access to global and static data.

Clear — Compiler uses 24-bit
addressing for all data access.

This checkbox is available only if
the Large Data Model checkbox is
checked.
5756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Pad pipeline
for debugger
checkbox

Checked — Mandatory for using
the debugger. Inserts NOPs after
certain branch instructions to
make breakpoints work reliably.

Clear — Does not insert such
NOPs.

If you select this option, you
should select the same option in
the M56800E Assembler panel.
Selecting this option increases
code size by 5 percent. But not
selecting this option risks
nonrecovery after the debugger
comes to breakpoint branch
instructions.

Emit
separate
character
data section
checkbox

Checked — Compiler breaks out
all character data, placing it in
appropriate data sections
(.data.char, .bss.char, or
.const.data.char).

Clear — Compiler does not break
out this data.

See additional information
immediately after this table.

Zero-
initialized
globals live
in data
instead of
BSS
checkbox

Checked — Globals initialized to
zero reside in the .data section.

Clear — Globals initialized to
zero reside in the .bss section.

Create
assembly
output
checkbox

Checked — Assembler generates
assembly code for each C file.

Clear — Assembler does not
generate assembly code for each
C file.

The pragma #asmoutput
overrides this option for individual
files.

Generate
code for
profiling

Checked — Compiler generates
code for profiling.

Clear — Compiler does not
generate code for profiling.

For more details about the profiler,
see the Profiler.

Table 4.9 M56800E Processor Panel Elements (continued)

Element Purpose Comments
58 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
The compiler generates hardware DO loops for two situations:

1. Aggregate (array and structure) initializations, and for struct copy, under any of these
conditions:

• The aggregate is byte aligned, and the aggregate size is greater than four bytes.

• The aggregate is word aligned, and the aggregate size is greater than four words.

• The aggregate is long aligned, the aggregate size is greater than eight words, and the
Global Optimizations panel specifies Optimize for Smaller Code Size.

• The aggregate is long aligned, the aggregate size is greater than 32 words, and the
Global Optimizations panel specifies Optimize for Faster Execution.

2. Counted loops in C, provided that the loop counter value is less than 65536, and that
there are no jumps to subroutines inside the loop.

Pipeline
Conflict
Detection
Inline ASM
list box

Specifies pipeline conflict
detection during compiling of
inline assembly source code:

• Not Detected —
compiler does not
check for conflicts

• Conflict Error —
compiler issues error
messages if it detects
conflicts

• Conflict Error/
Hardware Stall
Warning — compiler
issues error messages
if it detects conflicts,
warnings if it detects
hardware stalls

For more information about
pipeline conflicts, see the
explanations of pragmas
check_c_src_pipeline and
check_inline_asm_pipeline.

Pipeline
Conflict
Detection C
Language
list box

Specifies pipeline conflict
detection during compiling of C
source code:

• Not Detected —
compiler does not
check for conflicts

• Conflict error —
compiler issues error
messages if it detects
conflicts

For more information about
pipeline conflicts, see the
explanations of pragmas
check_c_src_pipeline and
check_inline_asm_pipeline.

Table 4.9 M56800E Processor Panel Elements (continued)

Element Purpose Comments
5956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
If you enable separate character data sections, the compiler puts character data (and
structures containing character data) into these sections:

• .data.char — initialized static or global character data objects

• .bss.char — uninitialized static or global character data objects

• .const.data.char — const qualified character objects and static string data

You can locate these data sections in the lower half of the memory map, making sure that
the data can be addressed.

ELF Disassembler
Use the ELF Disassembler panel (Figure 4.9) to specify the content and display format for
disassembled object files. Table 4.10 explains the elements of this panel. (To view a
disassembled module, select Project > Disassemble from the main-window menu bar.)

Figure 4.9 ELF Disassembler Panel
60 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Table 4.10 ELF Disassembler Panel Elements

Element Purpose Comments

Show
Headers
checkbox

Checked — Disassembled output
includes ELF header information.

Clear — Disassembled output
does not include this information.

Show
Symbol and
String Tables
checkbox

Checked — Disassembled
modules include symbol and string
tables.

Clear — Disassembled modules
do not include these tables.

Verbose Info
checkbox

Checked — ELF file includes
additional information.

Clear — ELF file does not include
additional information.

For the .symtab section,
additional information includes
numeric equivalents for some
descriptive constants. For the
.line and .debug sections,
additional information includes
an unstructured hex dump.

Show
Relocations
checkbox

Checked — Shows relocation
information for corresponding text
(.rela.text) or data (.rela.data)
section.

Clear — Does not show relocation
information.

Show Code
Modules
checkbox

Checked — Disassembler outputs
ELF code sections for the
disassembled module. Enables
subordinate checkboxes.

Clear — Disassembler does not
output these sections. Disables
subordinate checkboxes.

Subordinate checkboxes are Use
Extended Mnemonics, Show
Addresses and Object Code,
Show Source Code, and Show
Comments.

Use
Extended
Mnemonics
checkbox

Checked — Disassembler lists
extended mnemonics for each
instruction of the disassembled
module.

Clear — Disassembler does not list
extended mnemonics.

This checkbox is available only if
the Show Code Modules
checkbox is checked.
6156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Show
Addresses
and Object
Code
checkbox

Checked — Disassembler lists
address and object code for the
disassembled module.

Clear — Disassembler does not list
this code.

This checkbox is available only if
the Show Code Modules
checkbox is checked.

Show Source
Code
checkbox

Checked — Disassembler lists
source code for the current
module.

Clear — Disassembler does not list
source code.

Source code appears in mixed
mode, with line-number
information from the original C
source file.

This checkbox is available only if
the Show Code Modules
checkbox is checked.

Show
Comments
checkbox

Checked — Disassembler
comments appear in sections that
have comment columns.

Clear — Disassembler does not
produce comments.

This checkbox is available only if
the Show Code Modules
checkbox is checked.

Show Data
Modules
checkbox

Checked — Disassembler outputs
ELF data sections, such as .data
and .bss, for the disassembled
module.

Clear — Disassembler does not
output ELF data sections.

Disassemble
Exception
Tables
checkbox

Leave clear. Does not apply to C.

Show Debug
Info
checkbox

Checked — Disassembler includes
DWARF symbol information in
output.

Clear — Disassembler does not
include this information in output.

Table 4.10 ELF Disassembler Panel Elements (continued)

Element Purpose Comments
62 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
M56800E Linker
Use the M56800E Linker panel (Figure 4.10) to specify linker behavior of the linker. (This
panel is only available if the current build target uses the M56800E Linker.) Table 4.11
explains the elements of this panel.

Figure 4.10 M56800E Linker Panel
6356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Table 4.11 M56800E Linker Panel Elements

Element Purpose Comments

Generate
Symbolic
Info
checkbox

Checked — Linker generates
debugging information, within
the linked ELF file.

Clear — Linker does not
generate debugging
information.

If you select Project > Debug from
the main-window menu bar, the IDE
automatically enables this option.

Clearing this checkbox prevents you
from using the CodeWarrior debugger
on your project; it also disables the
subordinate Store Full Path Names
checkbox.

Store Full
Path Names
checkbox

Checked — Linker includes
full path names for source
files. (Default)

Clear — Linker uses only file
names.

This checkbox is available only if the
Generate Symbolic Info checkbox is
checked.

Generate
Link Map
checkbox

Checked — Linker generates
a link map. Enables
subordinate checkboxes List
Unused Objects, Show
Transitive Closure, and
Annotate Byte Symbols.

Clear — Linker does not
generate a link map.

A link map shows which file provided
the definition of each object and
function, the address of each object
and function, a memory map of
section locations, and values of linker-
generated symbols. It also lists
unused but unstripped symbols.

List Unused
Objects
checkbox

Checked — Linker includes
unused objects in the link
map.

Clear — Linker does not
include unused objects in the
link map.

This checkbox is available only if the
Generate Link Map checkbox is
checked.

Show
Transitive
Closure
checkbox

Checked — Link map
includes a list of all objects
that main() references.

Clear — Link map does not
include this list.

Text after this table includes an
example list.

This checkbox is available only if the
Generate Link Map checkbox is
checked.
64 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Annotate
Byte
Symbols

Checked — Linker includes B
annotation for byte data types
(e.g., char) in the Linker
Command File.

Clear — By default, the Linker
does not include the B
annotation in the Linker
Command File. Everything
without the B annotation is a
word address.

For an example of the Linker
Command File with and without the B
annotation, see Listing 4.3.

Disable
Deadstrippin
g checkbox

Checked — Prevents the
linker from stripping unused
code or data.

Clear — Lets the linker
deadstrip.

Generate
ELF Symbol
Table
checkbox

Checked — Linker includes
an ELF symbol table and
relocation list in the ELF
executable file.

Clear — Linker does not
include these items in the
ELF executable file.

Suppress
Warning
Messages
checkbox

Checked — Linker does not
display warnings in the
message window.

Clear — Linker displays
warnings in the message
window.

Generate S-
Record File
checkbox

Checked — Linker generates
an output file in S-record
format. Activates subordinate
checkboxes.

Clear — Linker does not
generate an S-record file.

For the DSP56800E, this option
outputs three S-record files: .s (both P
and X memory contents), .p (P
memory contents), and .x (X memory
contents). The linker puts S-record
files in the output folder (a sub-folder
of the project folder.)

Table 4.11 M56800E Linker Panel Elements (continued)

Element Purpose Comments
6556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Check the Show Transitive Closure checkbox to have the link map include the list of
objects main() references. Consider the sample code of Listing 4.1. If the Show Transitive

Sort By
Address
checkbox

Checked — Enables the
compiler to use byte
addresses to sort type S3 S-
records that the linker
generates.

Clear — Does not enable
byte-address sorting.

This checkbox is available only if the
Generate S-Record File checkbox is
checked.

Generate
Byte
Addresses
checkbox

Checked — Enables the
linker to generate type S3 S-
records in bytes.

Clear — Does not enable
byte generation.

This checkbox is available only if the
Generate S-Record File checkbox is
checked.

Max Record
Length text
box

Specifies the maximum
length of type S3 S-records
that the linker generates, up
to 256 bytes.

The CodeWarrior debugger handles
256-byte S-records. If you use
different software to load your
embedded application, this text box
should specify that software’s
maximum length for S-records.

This checkbox is available only if the
Generate S-Record File checkbox is
checked.

EOL
Character
list box

Specifies the end-of-line
character for the type S3 S-
record file: MAC, DOS, or
UNIX format.

This checkbox is available only if the
Generate S-Record File checkbox is
checked.

Entry Point
text box

Specifies the program starting
point — the first function the
linker uses when the program
runs.

Text after this table includes additional
information about the entry point.

Force Active
Symbols text
box

Directs the linker to include
symbols in the link, even if
those symbols are not
referenced. Makes symbols
immune to deadstripping.

Separate multiple symbols with single
spaces.

Table 4.11 M56800E Linker Panel Elements (continued)

Element Purpose Comments
66 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Closure option is in effect and you compile this code, the linker generates a link map file
that includes the list of Listing 4.2.

Listing 4.1 Sample Code for Show Transitive Closure

void foot(void){ int a = 100; }
void pad(void){ int b = 101; }

int main(void){
foot();
pad();
return 1;

}

Listing 4.2 Link Map File: List of main() References

Link map of Finit_sim_
1] interrupt_vectors.text found in 56800E_vector.asm
2] sim_intRoutine (notype,local) found in 56800E_vector.asm
2] Finit_sim_ (func,global) found in 56800E_init.asm
3] Fmain (func,global) found in M56800E_main.c
4] Ffoot (func,global) found in M56800E_main.c
4] Fpad (func,global) found in M56800E_main.c
3] F__init_sections (func,global) found in Runtime 56800E.lib

initsections.o
4] Fmemset (func,global) found in MSL C 56800E.lib mem.o
5] F__fill_mem (func,global) found in MSL C 56800E.lib

mem_funcs.o
1] Finit_sim_ (func,global) found in 56800E_init.asm

Use the Entry Point text box to specify the starting point for a program. The default
function this text box names is in the startup code that sets up the DSP56800E
environment before your code executes. This function and its corresponding startup code
depend on your stationery selection.

For hardware-targeted stationery, the startup code is in support\<name of
hardware, e.g., DSP56852E>_init.asm

For simulator-targeted stationery, the startup code is in
support\DSP56800E_init.asm

The startup code performs such additional tasks as clearing the hardware stack, creating an
interrupt table, and getting the addresses for the stack start and exception handler. The
final task for the startup code is calling your main() function.

Check the Annotate Byte Symbols checkbox to have the link map include the B annotation
for byte addresses and no B annotation for word addresses (Listing 4.3).
6756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Listing 4.3 Example of Annotate Byte Symbols

int myint;
char mychar;

B 0000049C 00000001 .bss Fmychar (main.c)
0000024F 00000001 .bss Fmyint (main.c)

Remote Debugging
Use the Remote Debugging panel (Figure 4.11, Figure 4.12) to set parameters for
communication between a DSP56800E board or Simulator and the CodeWarrior
DSP56800E debugger. Table 4.12 explains the elements of this panel.

NOTE Communications specifications also involve settings of the debugging
M56800E Target panel (Figure 4.14).

Figure 4.11 Remote Debugging Panel (56800E Simulator)
68 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Figure 4.12 Remote Debugging Panel (56800E Local Connection)
6956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
M56800E Target (Debugging)
Use the debugging M56800E Target panel (Figure 4.14) to set parameters for
communication between a DSP56800E board or Simulator and the CodeWarrior
DSP56800E debugger. Table 4.13 explains the elements of this panel.

Table 4.12 Remote Debugging Panel Elements

Element Purpose Comments

Connection
list box

Specifies the connection type:

• 56800E Simulator —
appropriate for testing
code on the simulator
before downloading code
to an actual board.

• 56800E Local Hardware
Connection (CSS) —
appropriate for using your
computer’s command
converter server,
connected to a
DSP56800E board.

• 56800 Local USBTAP
Connection —
appropriate for when you
are using an USP TAP.

• 56800E Local FSL
OSBDM Connection —
appropriate for when you
are using an OSBDM.

Selecting 56800E
Simulator keeps the panel
as Figure 4.11 shows.

Selecting Local Hardware
Connection adds the
JTAG Clock Speed text
box to the panel, as
Figure 4.12 shows.

Remote
download
path text box

Not supported at this time.

Launch
Remote Host
Application
checkbox

Not supported at this time.

JTAG Clock
Speed text
box

Specifies the JTAG clock speed for
local hardware connection. (Default
is 500 kilohertz.)

This list box is available
only if the Connection list
box specifies Local
Hardware Connection
(CSS). The HTI will not
work properly with a clock
speed over 500 kHz.
70 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
NOTE Communications specifications also involve settings of the Remote Debugging
panel (Figure 4.11, Figure 4.12).

Auto-Clear Previous Breakpoint on New
Breakpoint Request
This option is only available when you enable the Breakpoint Mode (HW only) option.
When you also enable the Auto-clear previous hardware breakpoint and set a
breakpoint, the original breakpoint is automatically cleared and the new breakpoint is
immediately set. If you disable the Auto-clear previous hardware breakpoint option
and attempt to set another breakpoint, you will be prompted with the following message:

Figure 4.13 Hardware Breakpoint Already Set

If you click the Yes button, the previous breakpoint is cleared and the new breakpoint is
set.

If you click the Yes to all button, the Auto-clear previous hardware breakpoint option
is enabled and the previously set breakpoint is cleared out without prompting for every
subsequent occurrence.

If you click the No button, the previous breakpoint is kept and the new breakpoint request
is ignored.
7156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Figure 4.14 Debugging M56800E Target Panel

Table 4.13 Debugging M56800E Target Panel Elements

Element Purpose Comments

Always reset
on download
checkbox

Checked — IDE issues a
reset to the target board
each time you connect to
the board.

Clear — IDE does not issue
a reset each time you
connect to the target board.

Use
initialization
file checkbox

Checked — After a reset,
the IDE uses an optional
hardware initialization file
before downloading code.

Clear — IDE does not use a
hardware initialization file.

The Use initialization file text box
specifies the file.

Text immediately after this table gives
more information about initialization
files.

Use
initialization
file text box

Specifies the initialization
file.

Applicable only if the Use initialization
file checkbox is checked.
72 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
An initialization file consists of text instructions telling the debugger how to initialize the
hardware after reset, but before downloading code. You can use initialization file
commands to assign values to registers and memory locations, and to set up flash memory
parameters.

The initialization files of your IDE are on the path:

{CodeWarrior path}\M56800E Support\initialization

The name of each initialization file includes the number of the corresponding processor,
such as 568345. Each file with “_ext” enables the processor’s external memory. If the
processor has Flash memory, the initialization file with “_flash” enables both Flash and
external memory.

To set up an initialization file:

1. In the debugging M56800E Target panel, check the Use initialization file checkbox.

2. Specify the name of the initialization file, per either substep a or b:

a. Type the name in the Use initialization file text box. If the name is not a full
pathname, the debugger searches for the file in the project directory. If the file is

Auto-clear
previous
harware
breakpoint
checkbox

Determines when to use
software or hardware
breakpoints.

• Checked —
Automatically
clears the
previous
hardware
breakpoint.

• Clear — Does not
automatically
clear the previous
hardware
breakpoint.

Software breakpoints contain debug
instructions that the debugger writes
into your code. You cannot set such
breakpoints in flash, as it is read-only.

Hardware breakpoints use the on-chip
debugging capabilities of the
DSP56800E. The number of available
hardware breakpoints limits these
capabilities. The debugger uses
software breakpoints in Software and
Default modes, freeing up Hardware
breakpoints to be used else where.

Note: Breakpoint Mode (HW only)
affects HW targets.

Target OS list
box

Specifies the OS Selects the OS plug-in. The
BareBoard option does not use an OS
plug-in.

Processor list
box

Specifies the processor Currently this selects the register
layout.

Table 4.13 Debugging M56800E Target Panel Elements (continued)

Element Purpose Comments
7356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
not in this directory, the debugger searches on the path: {CodeWarrior
path}\M56800E Support\initialization directory.

b. Click the Choose button; the Choose file dialog box appears. Navigate to the
appropriate file. When you select the file, the system puts its name in the Use
initialization file text box.

Each text line of a command file begins with a command or the comment symbol #. The
system ignores comment lines, as well as blank lines.

Table 4.14 lists the supported commands and their arguments. For a more detailed
description of the Flash Memory commands see Flash Memory Commands.

Table 4.14 Initialization File Commands and Arguments

Command Arguments Description

writepmem <addr> <value> Writes a 16-bit value to the
specified P: Memory
location.

writexmem <addr> <value> Writes a 16-bit value to the
specified X: Memory
location.

writereg <regName> <value> Writes a 16-bit value to the
specified register.

set_hfmclkd <value> Writes the flash memory’s
clock divider value to the
hfmclkd register

set_hfm_base <address> Sets the address of
hfm_base. This is the map
location of the flash memory
control registers in X:
Memory.

add_hfm_unit <startAddr><endAddr
>
<bank><numSectors>
<pageSize><progMe
m>
<boot><interleaved>

Adds a flash memory unit to
the list and sets its parameter
values.

set_hfm_programmer_base <address> Specifies the address where
the onboard flash
programmer will be loaded in
P: Memory.
74 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Remote Debug Options
Use the Remote Debug Options panel (Figure 4.15) to specify different remote debug
options.

set_hfm_prog_buffer_base <address> Specifies where the data to
be programmed will be
loaded in X: Memory.

set_hfm_prog_buffer_size <size> Specifies the size of the
buffer in X: Memory which
will hold the data to be
programmed.

set_hfm_erase_mode <units | pages | all> Sets the erase mode.

set_hfm_verify_erase <1 | 0> Sets the flash memory erase
verification mode.

set_hfm_verify_progra
m

<1 | 0> Sets the flash program
verification mode.

unlock_flash_on_conne
ct

<1 | 0> Unlocks and erases flash
memory immediately upon
connection.

Table 4.14 Initialization File Commands and Arguments (continued)

Command Arguments Description
7556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Figure 4.15 Remote Debug Options

Table 4.15 Remote Debug Options Panel Elements

Element Purpose Comments

Program
Download
Options area

Checked Download
checkboxes specify
the section types to be
downloaded on initial
launch and on
successive runs.

Checked Verify
checkboxes specify
the section types to be
verified (that is, read
back to the linker).

Section types:

• Executable — program-code
sections that have X flags in the
linker command file.

• Constant Data — program-data
sections that do not have X or W
flags in the linker command file.

• Initialized Data — program-data
sections with initial values. These
sections have W flags, but not X
flags, in the linker command file.

• Uninitialized Data — program-data
sections without initial values.
These sections have W flags, but
not X flags, in the linker command
file.

Use Memory
Configuration
File
checkbox

Not supported at this time.
76 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
7756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
78 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

5
C for DSP56800E

This chapter explains considerations for using C with the DSP56800E processor. Note that
the DSP56800E processor does not support:

• C++ language

• Standard C trigonometric and algebraic floating-point functions (such as sine, cosine,
tangent, and square root)

Furthermore, C pointers allow access only to X memory.

NOTE The DSP56800E MSL implements a few trigonometric and algebraic
functions, but these are mere examples that the DSP56800E does not support.

This chapter includes these sections:

• Number Formats

• Calling Conventions and Stack Frames

• User Stack Allocation

• Data Alignment Requirements

• Variables in Program Memory

• Code and Data Storage

• Large Data Model Support

• Optimizing Code

• Deadstripping and Link Order

• Working with Peripheral Module Registers

• Generating MAC Instruction Set

Number Formats
This section explains how the CodeWarrior compiler implements ordinal and floating-
point number types for 56800E processors. For more information, read limits.h and
float.h, in the M56800E Support folder.
7956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Number Formats
Ordinal Data Types
Table 5.1 shows the sizes and ranges of ordinal data types.

Floating Point Types
Table 5.2 shows the sizes and ranges of the floating-point types.

Table 5.1 56800E Ordinal Types

Type Option Setting Size
(bits)

Range

char Use Unsigned Chars is
disabled in the C/C++
Language (C Only) settings
panel

8 -128 to 127

Use Unsigned Chars is
enabled

8 0 to 255

signed char n/a 8 -128 to 127

unsigned
char

n/a 8 0 to 255

short n/a 16 -32,768 to 32,767

unsigned
short

n/a 16 0 to 65,535

int n/a 16 -32,768 to 32,767

unsigned
int

n/a 16 0 to 65,535

long n/a 32 -2,147,483,648 to
2,147,483,647

unsigned
long

n/a 32 0 to 4,294,967,295

pointer small data model (“Large
Data Model” is disabled in
the M56800E Processor
settings panel)

16 0 to 65,535

large data model (“Large
Data Model” is enabled)

24 0 to 16,777,215
80 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Calling Conventions and Stack Frames
64-Bit Data Types
The compiler supports 64-bit long and double data types, although 32-bit long and double
data types are the default. To activate and use the 64-bit data types, the user must:

1. Use #pragma slld on in a common header file, or in the C/C++ Preprocessor panel.

2. Use precompiled MSL and runtime support libraries with the _SLLD suffix (e.g., use
MSL C 56800E smm_SLLD.lib instead of MSL C 56800E smm.lib and runtime
56800E smm_SLLD.lib instead of runtime 56800E smm.lib).

3. Add * (ll_engine.text) to the code section in the linker command file.

Calling Conventions and Stack Frames
The DSP56800E compiler stores data and call functions differently than the DSP56800
compiler does. Advantages of the DSP56800E method include: more registers for
parameters and more efficient byte storage.

Passing Values to Functions
The compiler uses registers A,B, R1, R2, R3, R4, Y0, and Y1 to pass parameter values to
functions. Upon a function call, the compiler scans the parameter list from left to right,
using registers for these values:

• The first two 8/16-bit integer values — Y0 and Y1.

• The first two 32-bit integer or float values — A and B.

• The first four pointer parameter values — R2, R3, R4, and R1 (in that order).

• The third and fourth 8/16-bit integer values — A and B (provided that the compiler
does not use these registers for 32-bit parameter values).

• The third 8/16-bit integer value — B (provided that the compiler does not use this
register for a 32-bit parameter value).

Table 5.2 M56800E Floating-Point Types

Type Size (bits) Range

float 32 1.17549e-38 to 3.40282e+38

short double 32 1.17549e-38 to 3.40282e+38

double 32 1.17549e-38 to 3.40282e+38

long double 32 1.17549e-38 to 3.40282e+38
8156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Calling Conventions and Stack Frames
The compiler passes the remaining parameter values on the stack. The system increments
the stack by the total amount of space required for memory parameters. This incrementing
must be an even number of words, as the stack pointer (SP) must be continuously long-
aligned. The system moves parameter values to the stack from left to right, beginning with
the stack location closest to the SP. Because a long parameter must begin at an even
address, the compiler introduces one-word gaps before long parameter values, as
appropriate.

Returning Values From Functions
The compiler returns function results in registers A, R0, R2, and Y0:

• 8-bit integer values — Y0.

• 16-bit integer values — Y0.

• 32-bit integer or float values — A.

• All pointer values — R2.

• Structure results — R0 contains a pointer to a temporary space allocated by the
caller. (The pointer is a hidden parameter value.)

Additionally, the compiler:

• Reserves R5 for the stack frame pointer when a function makes a dynamic allocation.
(This is the original stack pointer before allocations.) Otherwise, the compiler saves
R5 across function calls.

• Saves registers C10 and D10 across function calls.

• Does not save registers C2 and D2 across function calls.

Volatile and Non-Volatile Registers
Values in non-volatile registers can be saved across functions calls. Another term for such
registers is saved over a call registers (SOCs).

Values in volatile registers cannot be saved across functions calls. Another term for such
registers is non-SOC registers.

Table 5.3 lists both the volatile and non-volatile registers.

Table 5.3 Volatile and Non-Volatile Registers

Unit Register Size Type Comments

Arithmetic Logic
Unit (ALU)

Y1 16 Volatile (non-SOC)

Y0 16 Volatile (non-SOC)
82 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Calling Conventions and Stack Frames
Y 32 Volatile (non-SOC)

X0 16 Volatile (non-SOC)

A2 4 Volatile (non-SOC)

A1 16 Volatile (non-SOC)

A0 16 Volatile (non-SOC)

Arithmetic Logic
Unit (ALU)
(continued)

A10 32 Volatile (non-SOC)

A 36 Volatile (non-SOC)

B2 4 Volatile (non-SOC)

B1 16 Volatile (non-SOC)

B0 16 Volatile (non-SOC)

B10 32 Volatile (non-SOC)

B 36 Volatile (non-SOC)

C2 4 Volatile (non-SOC)

C1 16 Non-Volatile
(SOC)

C0 16 Non-Volatile
(SOC)

C10 32 Non-Volatile
(SOC)

C 36 Volatile (non-SOC) Includes volatile
register C2.

D2 4 Volatile (non-SOC)

D1 16 Non-Volatile
(SOC)

D0 16 Non-Volatile
(SOC)

Table 5.3 Volatile and Non-Volatile Registers (continued)

Unit Register Size Type Comments
8356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Calling Conventions and Stack Frames
D10 32 Non-Volatile
(SOC)

D 36 Volatile (non-SOC) Includes volatile
register D2.

Address
Generation Unit
(AGU)

R0 24 Volatile (non-SOC)

Address
Generation Unit
(AGU)
(continued)

R1 24 Volatile (non-SOC)

R2 24 Volatile (non-SOC)

R3 24 Volatile (non-SOC)

R4 24 Volatile (non-SOC)

R5 24 Non-volatile (SOC) If the compiler uses
R5 as a pointer, it
becomes a non-
volatile register — its
value can not be
saved over called
functions.

N 24 Volatile (non-SOC)

SP 24 Volatile (non-SOC)

N3 16 Volatile (non-SOC)

M01 16 Volatile (non-SOC) Certain registers must
keep specific values
for proper C execution
— set this register to
0xFFFF.

Program
Controller

PC 21 Volatile (non-SOC)

LA 24 Volatile (non-SOC)

LA2 24 Volatile (non-SOC)

Table 5.3 Volatile and Non-Volatile Registers (continued)

Unit Register Size Type Comments
84 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Calling Conventions and Stack Frames
Stack Frame and Alignment
Figure 5.1 depicts generation of the stack frame. The stack grows upward, so pushing data
onto the stack increments the stack pointer’s address value.

Figure 5.1 Stack Frame

HWS 24 Volatile (non-SOC)

FIRA 21 Volatile (non-SOC)

FISR 13 Volatile (non-SOC)

Program
Controller
(continued)

OMR 16 Volatile (non-SOC) Certain registers must
keep specific values
for proper C execution
— in this register, set
the CM bit.

SR 16 Volatile (non-SOC)

LC 16 Volatile (non-SOC)

LC2 16 Volatile (non-SOC)

Table 5.3 Volatile and Non-Volatile Registers (continued)

Unit Register Size Type Comments

called function stack space

outgoing parameters

user and compiler locals

nonvolatile registers

status register

return address

incoming parameters

calling function stack space

 SP

callee’s SP
8556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
User Stack Allocation
The stack pointer (SP) is a 24-bit register, always treated as a word pointer. During a
function execution, the stable position for the SP is at the top of the user and compiler
locals. The SP increases during the call if the stack is used for passed parameters.

The software stack supports structured programming techniques, such as parameter
passing to subroutines and local variables. These techniques are available for both
assembly-language and high-level-language programming. It is possible to support passed
parameters and local variables for a subroutine at the same time within the stack frame.

The compiler stores local data by size. It stores smaller data closest to the SP, exploiting
SP addressing modes that have small offsets. This means that the compiler packs all bytes
two per word near the stack pointer. It packs the block of words next, then blocks of longs.
Aggregates (structs and arrays) are farthest from the stack pointer, not sorted by size.

NOTE When a function makes a dynamic allocation, the compiler reserves R5 as a
stack frame pointer. (This is the stack pointer before allocations.)

The compiler always must operate with the stack pointer long aligned. This means that:

• The start-up code in the runtime first initializes the stack pointer to an odd value.

• At all times after that, the stack pointer must point to an odd word address.

• The compiler never generates an instruction that adds or subtracts an odd value from
the stack pointer.

• The compiler never generates a MOVE.W or MOVEU.W instruction that uses the
X:(SP)+ or X:(SP)- addressing mode.

User Stack Allocation
The 56800E compilers build frames for hierarchies of function calls using the stack
pointer register (SP) to locate the next available free X memory location in which to locate
a function call’s frame information. There is usually no explicit frame pointer register.
Normally, the size of a frame is fixed at compile time. The total amount of stack space
required for incoming arguments, local variables, function return information, register
save locations (including those in pragma interrupt functions) is calculated and the stack
frame is allocated at the beginning of a function call.

Sometimes, you may need to modify the SP at runtime to allocate temporary local storage
using inline assembly calls. This invalidates all the stack frame offsets from the SP used to
access local variables, arguments on the stack, etc. With the User Stack Allocation feature,
you can use inline assembly instructions (with some restrictions) to modify the SP while
maintaining accurate local variable, compiler temps, and argument offsets, i.e., these
variables can still be accessed since the compiler knows you have modified the stack
pointer.
86 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
User Stack Allocation
The User Stack Allocation feature is enabled with the #pragma
check_inline_sp_effects [on|off|reset] pragma setting. The pragma
may be set on individual functions. By default the pragma is off at the beginning of
compilation of each file in a project.

The User Stack Allocation feature allows you to simply add inline assembly modification
of the SP anywhere in the function. The restrictions are straight-forward:

1. The SP must be modified by the same amount on all paths leading to a control flow
merge point.

2. The SP must be modified by a literal constant amount. That is, address modes such as
“(SP)+N” and direct writes to SP are not handled.

3. The SP must remain properly aligned.

4. You must not overwrite the compiler’s stack allocation by decreasing the SP into the
compiler allocated stack space.

Point 1 above is required when you think about an if-then-else type statement. If one
branch of a decision point modifies the SP one way and the other branch modifies SP
another way, then the value of the SP is run-time dependent, and the compiler is unable to
determine where stack-based variables are located at run-time. To prevent this from
happening, the User Stack Allocation feature traverses the control flow graph, recording
the inline assembly SP modifications through all program paths. It then checks all control
flow merge points to make sure that the SP has been modified consistently in each branch
converging on the merge point. If not, a warning is emitted citing the inconsistency.

Once the compiler determined that inline SP modifications are consistent in the control
flow graph, the SP’s offsets used to reference local variables, function arguments, or
temps are fixed up with knowledge of inline assembly modifications of the SP. Note, you
may freely allocate local stack storage:

1. As long as it is equally modified along all branches leading to a control flow merge
point.

2. The SP is properly aligned. The SP must be modified by an amount the compiler can
determine at compile time.

A single new pragma is defined. #pragma check_inline_sp_effects
[on|off|reset] will generate a warning if the user specifies an inline assembly
instruction which modifies the SP by a run-time dependent amount. If the pragma is not
specified, then stack offsets used to access stack-based variables will be incorrect. It is the
user’s responsibility to enable #pragma check_inline_sp_effects, if they
desire to modify the SP with inline assembly and access local stack-based variables. Note
this pragma has no effect in function level assembly functions or separate assembly only
source files (.asm files).

In general, inline assembly may be used to create arbitrary flow graphs and not all can be
detected by the compiler.

For example:
8756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
User Stack Allocation
REP #3
ADDA #2,SP

This example would modify the SP by three, but the compiler would only see a
modification of one. Other cases such as these might be created by the user using inline
jumps or branches. These are dangerous constructs and are not detected by the compiler.

In cases where the SP is modified by a run-time dependent amount, a warning is issued.

Listing 5.1 Example 1 – Legal Modification of SP Using Inline Assembly

#define EnterCritical() { asm(adda #2,SP);\
asm(move.l SR,X:(SP)+); \
asm(bfset #0x0300,SR); \
asm(nop); \
asm(nop);}

#define ExitCritical() { asm(deca.l SP);\
 asm(move.l x:(SP)-,SR); \
 asm(nop);\

asm(nop);}

#pragma check_inline_sp_effects on

int func()
{

int a=1, b=1, c;

EnterCritical();

c = a+b;

ExitCritical();

}

This case will work because there are no control flow merge points. SP is modified
consistently along all paths from the beginning to the end of the function and is properly
aligned.

Listing 5.2 Example 2 – Illegal Modification of SP using Inline Assembly

#define EnterCritical() { asm(adda #2,SP);\
asm(move.l SR,X:(SP)+); \
asm(bfset #0x0300,SR); \
asm(nop); \
88 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
User Stack Allocation
asm(nop);}

#define ExitCritical() { asm(deca.l SP);\
asm(move.l x:(SP)-,SR); \
asm(nop);\

asm(nop);}

#pragma check_inline_sp_effects on

int func()
{

int a=1, b=1, c;

if (a)
{

EnterCritical();

c = a+b;

}
else {

c = b++;
}

ExitCritical();

return (b+c);
}

This example will generate the following warning because the SP entering the
‘ExitCritical’ macro is different depending on which branch is taken in the if. Therefore,
accesses to variables a, b, or c may not be correct.

Warning : Inconsistent inline assembly modification of SP in this
function.
M56800E_main.c line 29 ExitCritical();

Listing 5.3 Example 3 – Modification of SP by a Run-time Dependent Amount

#define EnterCritical() { asm(adda R0,SP);\
asm(move,l SR,X:(SP)+); \
asm(bfset #0x0300,SR); \
asm(nop); \
asm(nop);}

#define ExitCritical() { asm(deca.l SP);\
8956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
User Stack Allocation
asm(move.l X:(SP)-,SR); \
asm(nop);\
asm(nop);}

#pragma check_inline_sp_effects on
int func()
{

int a=1, b=1, c;

if (a)
{

EnterCritical();

c = a+b;

}
else {

EnterCritical();
c = b++;

}

return (b+c);
}

This example will generate the following warning:

Warning : Cannot determine SP modification value at compile time
M56800E_main.c line 20 EnterCritical();

This example is not legal since the SP is modified by run-time dependent amount.

If all inline assembly modifications to the SP along all branches are equal approaching the
exit of a function, it is not necessary to explicitly deallocate the increased stack space. The
compiler “cleans up” the extra inline assembly stack allocation automatically at the end of
the function.

Listing 5.4 Example 4 – Automatic Deallocation of Inline Assembly Stack Allocation

#pragma check_inline_sp_effects on
int func()
{

int a=1, b=1, c;

if (a)
{

90 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Data Alignment Requirements
EnterCritical();

c = a+b;

}
else {

EnterCritical();
c = b++;

}

return (b+c);
}

This example does not need to call the ‘ExitCritical’ macro because the compiler will
automatically clean up the extra inline assembly stack allocation.

Data Alignment Requirements
The data alignment rules for DSP56800E stack and global memory are:

• Bytes — byte boundaries.

Exception: bytes passed on the stack are always word-aligned, residing in the lower
bytes.

• Words — word boundaries.

• Longs, floats, and doubles — double-word boundaries:

– Least significant word is always on an even word address.

– Most significant word is always on an odd word address.

– Long accesses through pointers in AGU registers (for example, R0 through R5 or
N) point to the least significant word. That is, the address is even.

– Long accesses through pointers using SP point to the most significant word. That
is, the address in SP is odd.

• Structures — word boundaries (not byte boundaries).

NOTE A structure containing only bytes still is word aligned.

• Structures — double-word boundaries if they contain 32-bit elements, or if an inner
structure itself is double-word aligned.

• Arrays — the size of one array element.
9156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Data Alignment Requirements
Word and Byte Pointers
The alignment requirements explained above determine how the compiler uses
DSP56800E byte and word pointers to implement C pointer types. The compiler uses:

• Word pointers for all structures

• The SP to access the stack resident data of all types:

– Bytes

– Shorts

– Longs

– Floats

– Doubles

– Any pointer variables

• Word pointers to access:

– Shorts

– Longs

– Any pointer variables

• Byte pointers for:

– Single global or static byte variable, if accessed through a pointer using X:(Rn)

– Global or static array of byte variables

The compiler does not use pointers to access scalar global or static byte variables
directly by their addresses. Instead, it uses an instruction with a .BP suffix:

MOVE[U].BP X:xxxx,<dest>

MOVE.BP <src>,X:xxxx

Reordering Data for Optimal Usage
The compiler changes data order, for optimal usage. The data reordering follows these
guidelines:

• Reordering is mandatory if local variables are allocated on the stack.

• The compiler does not reorder data for parameter values passed in memory (instead
of being passed in registers).

• The compiler does not reorder data when locating fields within a structure.
92 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Variables in Program Memory
Variables in Program Memory
This feature allows the programmer full flexibility in deciding the placement of variables
in memory. Variables can be now declared as part of the program memory, using a very
simple and intuitive syntax. For example:

__pmem int c; // 'c' is an integer that will be stored in program memory.

This feature is very useful when data memory is tight, because some or all of the data can
be moved to program memory. It can be handled exactly the same way as normal data.
This is almost completely transparent to the programmer, with a few exceptions that will
be presented in the next paragraphs.

The CPU architecture only allows post increment addressing of words (16-bit data) in
program memory. While the compiler circumvents this restriction and allows full access
to all data types in program memory, the performance is decreased. If placement of some
variables in program memory is needed, and at the same time the execution speed is
important, here are some pointers that can be used to organize the code:

• Try to keep all variables that are used in a loop (the loop counter included) in data
memory. This condition becomes more important as the loop nesting level increases.

• If possible, place only int (16-bit) data in program memory. Data types with different
dimensions are accessed via sequences of code rather than single instructions. 16-bit
data is fastest, followed by 32-bit data and 8-bit data.

• Data in program memory can be loaded and stored in a limited number of DALU
registers. Because of this, a number of register save/restore sequences can appear if
there are not enough available DALU registers. This could be a problem with
computational intensive code because the operations do not take place only in
registers anymore, and the execution of the code will be slower. This can be avoided
by using as many variables in data memory as possible.

Declaring Program Memory Variables
A program memory variable is declared using the __pmem qualifier. Here are some
examples:

typedef struct // simple structure declaration
{
 int i;
 char *p;
 long l;
} test;

__pmem int ip1 = 5; // initialized int in program memory
__pmem int ip2; // uninitialized int in program memory
int *__pmem ppx1; // pointer in program memory to int in data memory
9356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Variables in Program Memory
__pmem int * __pmem ppp1; // pointer in program memory to int in
program memory
__pmem int parr[100]; // array in program memory
__pmem test sp; // structure in program memory
__pmem int aap[2][2]; // two dimensional array in program memory
__pmem int *pxp1; // pointer in data memory to int in program memory

Using Variables in Program Memory
Variables in program memory can be used almost exactly like variables in data memory.
The exceptions are presented below:

• The __pmem qualifier cannot be used in a structure declaration because a structure
can have all its members either in program memory or in data memory, but not in
both memory spaces. The compiler will issue an error message in this case. For
example:

typedef struct // simple structure declaration
{
 int i;
 char __pmem *p; // error, __pmem not allowed here
 long l;
} test;

• The compiler will signal an error when an implicit conversion between a pointer to
data in data memory and a pointer to data in program memory is attempted. For
example, using the previous definitions, the compiler gives an error for this
assignment:

pxp1 = ppx1;

Explicit conversions are allowed, but they should be used with care. An explicit
conversion for the previous assignment that is accepted by the compiler is given below:

pxp1 = (__pmem int *)ppx1;
94 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Variables in Program Memory
Another consequence of this restriction is that an important part of the MSL functions that
have at least an argument that is a pointer will not work with variables in program
memory. For example:

char *c1; // pointer in data memory to char in data memory
char __pmem *c2; // pointer in data memory to char in program
memoryvstrcat(c1, c2); // error, the second argument can't be
converted to 'const char *'

If variable argument lists are used, this problem is generally hidden. The program is
compiled with no errors from the compiler, but it doesn't work as expected. The most
common example is the printf function:

char *c1 = "xmem"; // pointer in data memory to char in data memory
char __pmem *c2 = "pmem"; // pointer in data memory to char in program
memory

printf("%s\n", c1); // works as expected
printf("%s\n", c2); // doesn't work as expected

Here, the type of the arguments is lost because printf uses a variable argument list.
Thus the compiler can not signal a type mismatch and the program will compile without
errors, but it won't work as expected, because printf assumes that all the data is stored
in data memory.

Linking with Variables in Program Memory
The compiler creates special sections in the output file for variables in program memory.
This is a description of all data in program memory sections:

• .data.pmem (initialized program memory data)

• .const.data.pmem (constant program memory data)

• bss.pmem (uninitialized program memory data).

The following sections are also generated if you choose to generate separate sections for
char data:

• .data.char.pmem (initialized program memory chars)

• .const.data.char.pmem (constant program memory chars)

• .bss.char.pmem (uninitialized program memory chars)
9556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Variables in Program Memory
These sections are used in the linker command file just like normal sections. A typical
linker command file for a program that uses data in program memory looks like Listing
5.5.

NOTE __pmem qualifier can be used only for global variable and is not available for
local variable.

Listing 5.5 Typical Linker Command File

MEMORY
{
 .p_RAM (RWX) : ORIGIN = 0x0082, LENGTH = 0xFF3E
 .p_reserved_regs (RWX) : ORIGIN = 0xFFC0, LENGTH = 0x003F
 .p_RAM2 (RWX) : ORIGIN = 0xFFFF, LENGTH = 0x0000
 .x_RAM (RW) : ORIGIN = 0x0001, LENGTH = 0x7FFE #
SDM xRAM limit is 0x7FFF
}

SECTIONS
{
 .application_code :
 {v # .text sections

 * (.text)
 * (rtlib.text)
 * (fp_engine.text)
 * (user.text)
 * (.data.pmem) # program memory initalized data
 * (.const.data.pmem) # program memory constant data
 * (.bss.pmem) # program memory uninitialized data
 } > .p_RAM

 .data :
 {
 # .data sections

 * (.const.data.char) # used if "Emit Separate Char Data
Section" enabled
 * (.const.data)v * (fp_state.data)
 * (rtlib.data)
 * (.data.char) # used if "Emit Separate Char Data
Section" enabled
 * (.data)

 # .bss sections

 * (rtlib.bss.lo)
96 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Code and Data Storage
 * (rtlib.bss)
 . = ALIGN(1);
 _START_BSS = .;
 * (.bss.char) # used if "Emit Separate Char Data
Section" enabled
 * (.bss)
 _END_BSS = .;

 # setup the heap address

 . = ALIGN(4);
 _HEAP_ADDR = .;
 _HEAP_SIZE = 0x100;
 _HEAP_END = _HEAP_ADDR + _HEAP_SIZE;
 . = _HEAP_END;

 # setup the stack address

 _min_stack_size = 0x200;
 _stack_addr = _HEAP_END;
 _stack_end = _stack_addr + _min_stack_size;
 . = _stack_end;

 # export heap and stack runtime to libraries

 F_heap_addr = _HEAP_ADDR;
 F_heap_end = _HEAP_END;
 F_Lstack_addr = _HEAP_END;
 F_start_bss = _START_BSS;
 F_end_bss = _END_BSS;
 } > .x_RAM
}

Code and Data Storage
The DSP56800E processor has a dual Harvard architecture with separate CODE (P:
memory) and DATA (X: memory) memory spaces. Table 5.4 shows the sizes and ranges of
these spaces, as well as the range of character data within X memory, for both the small
and large memory models. (You may need to use the ELF Linker and Command
Language or M56800E Linker settings panel to specify how the project-defined sections
map to real memory.)
9756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Large Data Model Support
A peculiarity of the DSP56800E architecture is byte addresses for character (1-byte) data,
but word addresses for data of all other types. To calculate a byte address, multiply the
word address by 2. An address cannot exceed the maximum physical address, so placing
character data in the upper half of memory makes the data unaddressable. (Address
registers have a fixed width.)

For example, in the small memory model (maximum data address: 64 KB), placing
character data at 0x8001 requires an access address of 0x10002. But this access address
does not fit into 16-bit storage, as the small data memory model requires. Under your
control, the compiler increases flexibility by placing all character data into specially-
named sections as described in M56800E Processor. You can locate these sections in the
lower half of the memory map, making sure that the data can be addressed.

Large Data Model Support
The DSP56800E extends the DSP56800 data addressing range, by providing 24-bit
address capability to some instructions. 24-bit address modes allow user accesses beyond
the 64K-word boundary of 16-bit addressing. To control large data memory model
support, use the M56800E Processor panel (Figure 5.2). See M56800E Processor for
explanations of this panel’s elements.

Table 5.4 Code and Data Memory Ranges

Section
Small Model Large Model

Size Range

(Word Address)

Size Range

(Word Address)

CODE

(P:

memory)

128 KB 0 - 0xFFFF 1 MB 0 - 0x7FFFF

DATA

(X: memory)

128 KB 0 - 0xFFFF 32 MB 0 - 0xFFFFFF

DATA

(X: memory)

character
data

64 KB 0 - 0x7FFF 16 MB 0 - 0x7FFFFF
98 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Large Data Model Support
Figure 5.2 M56800E Processor Panel: Large Data Model

Extended data is data located beyond the 16-bit address boundary — as if it exists in
extended (upper) memory. Memory located below the 64K boundary is lower memory.

The compiler default arrangement is using 16-bit addresses for all data accesses. This
means that absolute addresses (X:xxxx addressing mode) are limited to 16 bits. Direct
addressing or pointer registers load or store 16-bit addresses. Indexed addressing indexes
are 16-bit quantities. The compiler treats data pointers as 16-bit pointers that you may
store in single words of memory.

If the large data memory model is enabled, the compiler accesses all data by 24-bit
addressing modes. It treats data pointers as 24-bit quantities that you may store in two
words of memory. Absolute addressing occurs as 24-bit absolute addresses. Thus, you
may access the entire 24-bit data memory, locating data objects anywhere.

You do not need to change C source code to take advantage of the large data memory
model.

Examples in DSP56800E assembly code of extended data addressing are:

Extended Data Addressing Example
Consider the code of Listing 5.6:
9956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Large Data Model Support
Listing 5.6 Addressing Extended Data

move.w x:0x123456,A1 ; move int using 24 bit absolute address
tst.l x:(R0-0x123456) ; test a global long for zero using 24-bit

 ; pointer indexed addressing
move.l r0,x:(R0)+ ; r0 stored as 24-bit quantity
cmpa r0,r1 ; compare pointer registers as 24 bit

; quantities

The large data memory model is convenient because you can place data objects anywhere
in the 24-bit data memory map. But the model is inefficient because extended data
addressing requires more program memory and additional execution cycles.

However, all global and static data of many target applications easily fit within the 64 K
word memory boundary. With this in mind, you can check the Globals live in lower
memory checkbox of the M56800E Processor settings panel. This tells the compiler to
access global and static data with 16-bit addresses, but to use 24-bit addressing for all
pointer and stack operations. This arrangement combines the flexibility of the large data
memory model with the efficiency of the small data model’s access to globals and statics.

NOTE If you check the Globals live in lower memory checkbox, be sure to store data
in lower memory.

Accessing Data Objects Examples
Table 5.5 and Table 5.6 show appropriate ways to access a global integer and a global
pointer variable. The first two columns of each table list states of two checkboxes, Large
Data Model and Globals live in lower memory. Both checkboxes are in the M56800E
Processor settings panel. Note that the first enables the second.

Table 5.5 lists ways to access a global integer stored at address X:0x1234.

int g1;

Table 5.5 Accessing Global Integer

Large Data
Model
checkbox

Globals Live in
Lower Memory
Checkbox

Instruction Comments

Clear Clear move.w
X:0x1234,y0

Default values

Checked Clear move.w
X:0x001234,y0
100 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Large Data Model Support
Table 5.6 lists ways to load a global pointer variable, at X:0x4567, into an address register.

int * gp1;

External Library Compatibility
If you enable the large data model when the compiler builds your main application,
external libraries written in C also must be built with the large data model enabled. The
linker enforces this requirement, catching global objects located out of range for particular
instructions.

A more serious compatibility problem involves pointer parameters. Applications built
with the large data memory model may pass pointer parameter values in two words of the
stack. But libraries built using the small memory model may expect pointer arguments to
occupy a single word of memory. This incompatibility will cause runtime stack
corruption.

Clear Checked Combination not
allowed

Checked Checked move.w
X:0x1234,y0

Global accesses use
16-bit addressing

Table 5.6 Loading Global Pointer Variable

Large Data
Model
checkbox

Globals Live in
Lower Memory
Checkbox

Instruction Comments

Clear Clear move.w
X:0x4567,r0

Default 16-bit
addressing, 16-bit
pointer value

Checked Clear move.l
X:0x004567,r0

24-bit addressing,
pointer value is 24-bit

Clear Checked Combination not
allowed

Checked Checked move.l
X:0x4567,r0

16-bit addressing,
pointer value is 24-bit

Table 5.5 Accessing Global Integer (continued)

Large Data
Model
checkbox

Globals Live in
Lower Memory
Checkbox

Instruction Comments
10156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Optimizing Code
You may or may not build external libraries or modules written in assembly with extended
addressing modes. The linker does not enforce any compatibility rules on assembly
language modules or libraries.

The compiler encodes the memory model into the object file. The linker verifies that all
objects linked into an executable have compatible memory models. The ELF header’s
e_flags field includes the bit fields that contain the encoded data memory model attributes
of the object file:

#define EF_M56800E_LDMM 0x00000001 /* Large data memory model
flag */

Additionally, C language objects are identified by an ELF header flag.

#define EF_M56800E_C 0x00000002 /* Object file generated from
C source */

Optimizing Code
Register coloring is an optimization specific to DSP56800E development. The compiler
assigns two (or more) register variables to the same register, if the code does not use the
variables at the same time. The code of Listing 5.7 does not use variables i and j at the
same time, so the compiler could store them in the same register:

Listing 5.7 Register Coloring Example

short i;
int j;

for (i=0; i<100; i++) { MyFunc(i); }
for (j=0; j<100; j++) { MyFunc(j); }

However, if the code included the expression MyFunc (i+j), the variables would be in
use at the same time. The compiler would store the two variables in different registers.

For DSP56800E development, you can instruct the compiler to:

1. Store all local variables on the stack. — (That is, do not perform register coloring.)
The compiler loads and stores local variables when you read them and write to them.
You may prefer this behavior during debugging, because it guarantees meaningful
values for all variables, from initialization through the end of the function. To have the
compiler behave this way, specify Optimizations Off, in the Global Optimizations
settings panel.

2. Place as many local variables as possible in registers. — (That is, do perform
register coloring.) To have the compiler behave this way, specify optimization Level 1
or higher, in the Global Optimizations settings panel.
102 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Deadstripping and Link Order
NOTE Optimizations Off is best for code that you will debug after compilation.
Other optimization levels include register coloring. If you compile code with
an optimization level greater than 0 and then debug the code, register coloring
could produce unexpected results.

Variables declared volatile (or those that have the address taken) are not kept in
registers and may be useful in the presence of interrupts.

3. Run Peephole Optimization. — The compiler eliminates some compare instructions
and improves branch sequences. Peephole optimizations are small and local
optimizations that eliminate some compare instructions and improve branch
sequences. To have the compiler behave this way, specify optimization Levels 1
through 4, in the Global Optimizations settings panel.

 Deadstripping and Link Order
The M56800E Linker deadstrips unused code and data only from files compiled by the
CodeWarrior C compiler. The linker never deadstrips assembler relocatable files or C
object files built by other compilers.

Libraries built with the CodeWarrior C compiler contribute only the used objects to the
linked program. If a library has assembly files or files built with other C compilers, the
only files that contribute to the linked program are those that have at least one referenced
object. If you enable deadstripping, the linker completely ignores files without any
referenced objects.

The Link Order page of the project window specifies the order (top to bottom) in which
the DSP56800E linker processes C source files, assembly source files, and archive (.a and
.lib) files. If both a source-code file and a library file define a symbol, the linker uses the
definition of the file that appears first, in the link order. To change the link order, drag the
appropriate filename to a different place, in this page’s list.

Working with Peripheral Module Registers
This section highlights the issues and recommends programming style for using bit fields
to access memory mapped I/O. Memory mapped I/O is a way of accessing devices that are
not on the system. A part of the normal address space is mapped to I/O ports. A read/write
to that memory location triggers an access to the I/O device, though to the program it
seems like a normal memory access. Even if one byte is written to in the space allocated to
a peripheral register, the whole register is written to. So the other byte of the peripheral
register will not retain its data. This may happen because the compiler generates optimal
bit-field instructions with a read(byte)-mask-writeback(byte) code sequence.
10356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Working with Peripheral Module Registers
Compiler Generates Bit Instructions
The compiler generates BFSET for |= , BFCLR for &=, and BFCHG for ^= operators.

Listing 5.8 shows a C source example and the generated sample code.

Listing 5.8 C Source Example

int i;
int *ip;

void main(void)
{

i &= ~1;

/* generated codes
P: 00000082: 8054022D0001 bfclr #1,X:0x00022d
*/

(*(ip))^= 1;

/* generated codes
P:00000085: F87C022C moveu.w X:0x00022c,R0
P:00000087: 84400001 bfchg #1,X:(R0)
*/

((int)(0x1234))|=1;

/* generated codes
P:00000089: E4081234 move.l #4660,R0
P:0000008B: 82400001 bfset #1,X:(R0)
*/

}

/* generated codes
P:0000008D: E708 rts
*/

Note the following example:

#define word int

union {
 word Word;
 struct {
 word SBK :1;
104 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Working with Peripheral Module Registers
 word RWU :1;
 word RE :1;
 word TE :1;
 word REIE :1;
 word RFIE :1;
 word TIIE :1;
 word TEIE :1;
 word PT :1;
 word PE :1;
 word POL :1;
 word WAKE :1;
 word M :1;
 word RSRC :1;
 word SWAI :1;
 word LOOP :1;
 } Bits;
} SCICR;

/* Code:*/
SCICR.Bits.TE = 1; /* SCICR content is 0x0800 */
SCICR.Bits.PE = 1; /* SCICR content is 0x0002 ??? */

Explanation of Undesired Behavior
If “SCICR” is mapped to a peripheral register, the code that is used to access the register is
not portable and might be unsafe, like in DSP56800E at present.

Bit field behavior in C is almost all implementation defined. So generating the following
code is legal:

SCICR.Bits.TE = 1; /* SCICR content is 0x0800 */

/* generated codes
P:00000082:874802c moveu.w #SCICR,R0
P:00000084:F0E0000 move.b X:(R0),A
P:00000086:8350008 bfset #8,A1
P:00000088:9800 move.b A1,X:(R0)
*/

SCICR.Bits.PE = 1; /* SCICR content is 0x0002 ??? */

/* generated codes
P:00000089:F0E00001 move.b X:(R0+1),A
P:0000008B:83500002 bfset #2,A1
P:0000008D:9804 move.b A1,X:(R0+1)
10556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Working with Peripheral Module Registers
*/

However, since the writes (at P:0x88 and at P:0x8D) are byte instructions and only 16 bits
can be written to the SCICR register, the other bytes look as if they are filled with zeros
before the SCICR is overwritten.

The use of byte accesses is due to a compiler optimization that tries to generate the
smallest possible memory access.

Recommended Programming Style
The use of a union of a member that can hold the whole register (the “Word” member
above) and a struct that can access the bits of the register (the “Bits” member above) is a
good idea.

What is recommended is to read the whole memory mapped register (using the “Word”
union member) into a local instance of the union, do the bit-manipulation on the local, and
then write the result as a whole word into the memory mapped register. So the C code
would look something like:

#define word int

union SCICR_union{
 word Word;
 struct {
 word SBK :1;
 word RWU :1;
 word RE :1;
 word TE :1;
 word REIE :1;
 word RFIE :1;
 word TIIE :1;
 word TEIE :1;
 word PT :1;
 word PE :1;
 word POL :1;
 word WAKE :1;
 word M :1;
 word RSRC :1;
 word SWAI :1;
 word LOOP :1;
 } Bits;
} SCICR;

/* Code: */
106 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Generating MAC Instruction Set
 union SCICR_union localSCICR;
 localSCICR.Word = SCICR.Word;

/* generated codes
P:00000083:F07C022C move.w X:#SCICR,A
P:00000085:907F move.w A1, X: (SP-1)
*/

 localSCICR.Bits.TE = 1;

/* generated codes
P:00000086:8AB4FFFF adda #-1,SP,R0
P:00000088:F0E00000 move.b X:(R0),A
P:0000008A:83500008 bfset #8,A1
P:0000008C:9800 move.b A1,X: (R0)
*/

 localSCICR.Bits.PE = 1;

/* generated codes
P:0000008D:F0E00001 move.b X: (R0+1),A
P:0000008F:83500002 bfset #2,A1
P:00000091:9804 move.b A1,x: (R0+1)
*/

 SCICR.Word = localSCICR.Word;

*/ generated codes
P:00000092:B67F022C move.w X:(SP-1),X:#SCICR
*/

Generating MAC Instruction Set

The compiler generates the imac.l instruction if the C code performs multiplication on
two long operands which are casted to short type; and the product is added to a long type.
For example, the following code:

short a;
short b;
long c;
.....
long d = c+((long)a*(long)b);
.....
10756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Generating MAC Instruction Set
generates the following assembly:

move.w X:0x000000,Y0 ; Fa
move.w X:0x000000,B ; Fb
move.l X:0x000000,A ; Fc
imac.l B1,Y0,A
108 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

6
High-Speed Simultaneous
Transfer

High-Speed Simultaneous Transfer (HSST) facilitates data transfer between low-level
targets (hardware or simulator) and host-side client applications. The data transfer occurs
without stopping the core.

The host-side client must be an IDE plug-in or a script run through the command-line
debugger.

When the customer links their application to the target side hsst lib, the debugger detects
that the customer wants to use hsst and automatically enables hsst communications.

NOTE To use HSST, you must launch the target side application through the
debugger.

Host-Side Client Interface
This section describes the API calls for using High-Speed Simultaneous Transfer (HSST)
from your host-side client application.

At the end of this section, an example of a HSST host-side program is given (Listing 6.1
on page 115).

hsst_open

A host-side client application uses this function to open a communication channel with the
low-level target. Opening a channel that has already been opened will result in the same
channel ID being returned.

Prototype

HRESULT hsst_open (
const char* channel_name,
size_t *cid);
10956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Host-Side Client Interface
Parameters

channel_name

Specifies the communication channel name.

cid

Specifies the channel ID associated with the communication channel.

Returns

S_OK if the call succeeds or S_FALSE if the call fails.

hsst_close

A host-side client application uses this function to close a communication channel with the
low-level target.

Prototype

HRESULT hsst_close (size_t channel_id) ;

Parameters

channel_id

Specifies the channel ID of the communication channel to close.

Returns

S_OK if the call succeeds or S_FALSE if the call fails.

hsst_read

A host-side client application uses this function to read data sent by the target application
without stopping the core.

Prototype

HRESULT hsst_read (
void *data,
size_t size,
size_t nmemb,
size_t channel_id,
size_t *read);
110 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Host-Side Client Interface
Parameters

data

Specifies the data buffer into which data is read.

size

Specifies the size of the individual data elements to read.

nmemb

Specifies the number of data elements to read.

channel_id

Specifies the channel ID of the communication channel from which to read.

read

Contains the number of data elements read.

Returns

S_OK if the call succeeds or S_FALSE if the call fails.

hsst_write

A host-side client application uses this function to write data that the target application can
read without stopping the core.

Prototype

HRESULT hsst_write (
void *data,
size_t size,
size_t nmemb,
size_t channel_id,
size_t *written);

Parameters

data

Specifies the data buffer that holds the data to write.

size

Specifies the size of the individual data elements to write.

nmemb

Specifies the number of data elements to write.
11156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Host-Side Client Interface
channel_id

Specifies the channel ID of the communication channel to write to.

written

Contains the number of data elements written.

Returns

S_OK if the call succeeds or S_FALSE if the call fails.

hsst_size

A host-side client application uses this function to determine the size of unread data (in
bytes) in the communication channel.

Prototype

HRESULT hsst_size (
size_t channel_id,
size_t *unread);

Parameters

channel_id

Specifies the channel ID of the applicable communication channel.

unread

Contains the size of unread data in the communication channel.

Returns

S_OK if the call succeeds or S_FALSE if the call fails.

hsst_block_mode

A host-side client application uses this function to set a communication channel in
blocking mode. All calls to read from the specified channel block indefinitely until the
requested amount of data is available. By default, a channel starts in the blocking mode.

Prototype

HRESULT hsst_block_mode (size_t channel_id);
112 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Host-Side Client Interface
Parameters

channel_id

Specifies the channel ID of the communication channel to set in blocking mode.

Returns

S_OK if the call succeeds or S_FALSE if the call fails.

hsst_noblock_mode

A host-side client application uses this function to set a communication channel in non-
blocking mode. Calls to read from the specified channel do not block for data availability.

Prototype

HRESULT hsst_noblock_mode (size_t channel_id);

Parameters

channel_id

Specifies the channel ID of the communication channel to set in non-blocking mode.

Returns

S_OK if the call succeeds or S_FALSE if the call fails.

hsst_attach_listener

Use this function to attach a host-side client application as a listener to a specified
communication channel. The client application receives a notification whenever data is
available to read from the specified channel.

HSST notifies the client application that data is available to read from the specified
channel. The client must implement this function:

void NotifiableHSSTClient:: Update (size_t descriptor, size_t
size, size_t nmemb);

HSST calls the Notifiable HSST Client:: Update function when data is
available to read.
11356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Host-Side Client Interface
Prototype

HRESULT hsst_attach_listener (
size_t cid,
NotifiableHSSTClient *subscriber);

Parameters

cid

Specifies the channel ID of the communication channel to listen to.

subscriber

Specifies the address of the variable of class Notifiable HSST Client.

Returns

S_OK if the call succeeds or S_FALSE if the call fails.

hsst_detach_listener

Use this function to detach a host-side client application that you previously attached as a
listener to the specified communication channel.

Prototype

HRESULT hsst_detach_listener (size_t cid);

Parameters

cid

Specifies the channel ID of the communication channel from which to detach a previously
specified listener.

Returns

S_OK if the call succeeds or S_FALSE if the call fails.

hsst_set_log_dir

A host-side client application uses this function to set a log directory for the specified
communication channel.
114 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Host-Side Client Interface
This function allows the host-side client application to use data logged from a previous
High-Speed Simultaneous Transfer (HSST) session rather than reading directly from the
board.

After the initial call to hsst_set_log_dir, the CodeWarrior software examines the
specified directory for logged data associated with the relevant channel instead of
communicating with the board to get the data. After all the data has been read from the
file, all future reads are read from the board.

To stop reading logged data, the host-side client application calls hsst_set_log_dir
with NULL as its argument. This call only affects host-side reading.

Prototype

HRESULT hsst_set_log_dir (
size_t cid,
const char* log_directory);

Parameters

cid

Specifies the channel ID of the communication channel from which to log data.

log_directory

Specifies the path to the directory in which to store temporary log files.

Returns

S_OK if the call succeeds or S_FALSE if the call fails.

HSST Host Program Example
In Listing 6.1 the host is the IDE plug-in (DLL) to the interface with the HSST target
(DSP56800E) project. This establishes data transfer between the host (your computer) and
the target (the DSP56800E board).

NOTE Before launching the program, the IDE plug-in needs to be created and placed
in the folder: CodeWarrior\bin\Plugins\Com.

Listing 6.1 Sample HSST Host Program

#include "CodeWarriorCommands.h"
#include "HSSTInterface.h"
#include <cstdio>
#include <cstdlib>

unsigned __stdcall HSSTClientMain (void *pArguments);
11556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Target Library Interface
#define buf_size 1000 /* Data size */

/* Assigning name for Plugin and Menu Title */
extern const CWPluginID kToolbarTestPluginID = "HSST_host_sample";
extern const wchar_t* MenuTitle = L"HSST_host_sample";

unsigned __stdcall HSSTClientMain (void *pArguments)
{

IMWHSST_Client *pHSST = (IMWHSST_Client *)pArguments;

long data[buf_size];
size_t channel_1, channel_2, read_items, written_items;

/* Opening channel 1 and 2 from HOST side */
HRESULT hr_1 = pHSST->hsst_open ("channel_1", &channel_1);
HRESULT hr_2 = pHSST->hsst_open ("channel_2", &channel_2);

/* HOST reading data from channel 1 */
pHSST->hsst_read (data, sizeof(long), buf_size, channel_1,

&read_items);

/* HOST writing data to channel 2 */
pHSST->hsst_write(data, sizeof(long), buf_size, channel_2,
&written_items);

return 0;

}

Target Library Interface
This section describes the API calls for using High-Speed Simultaneous Transfer (HSST)
from your target application.

At the end of this section, an example of a HSST target program is given (Listing 6.2 on
page 123).
116 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Target Library Interface
HSST_open

A target application uses this function to open a bidirectional communication channel with
the host. The default setting is for the function to open an output channel in buffered
mode. Opening a channel that has already been opened will result in the same channel ID
being returned.

Prototype

HSST_STREAM* HSST_open (const char *stream);

Parameters

stream

Passes the communication channel name.

Returns

The stream associated with the opened channel.

HSST_close

A target application uses this function to close a communication channel with the host.

Prototype

int HSST_close (HSST_STREAM *stream);

Parameters

stream

Passes a pointer to the communication channel.

Returns

0 if the call was successful or -1 if the call was unsuccessful.

HSST_setvbuf

A target application can use this function to perform the following actions:

• Set an open channel opened in write mode to use buffered mode
11756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Target Library Interface
NOTE This can greatly improve performance.

• Resize the buffer in an existing buffered channel opened in write mode

• Provide an external buffer for an existing channel opened in write mode

• Reset buffering to unbuffered mode

You can use this function only after you successfully open the channel.

The contents of a buffer (either internal or external) at any time are indeterminate.

Prototype

int HSST_setvbuf (
HSST_STREAM *rs,
unsigned char *buf,
int mode,
size_t size);

Parameters

rs

Specifies a pointer to the communication channel.

buf

Passes a pointer to an external buffer.

mode

Passes the buffering mode as either buffered (specified as HSSTFBUF) or unbuffered
(specified as HSSTNBUF).

size

Passes the size of the buffer.

Returns

0 if the call was successful or -1 if the call was unsuccessful.

NOTE You must flush the buffers before exiting the program to ensure that all the data
that has been written is sent to the host. For more details, see HSST_flush.
118 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Target Library Interface
HSST_write

A target application uses this function to write data for the host-side client application to
read.

Prototype

size_t HSST_write (
void *data,
size_t size,
size_t nmemb,
HSST_STREAM *stream);

Parameters

data

Passes a pointer to the data buffer holding the data to write.

size

Passes the size of the individual data elements to write.

nmemb

Passes the number of data elements to write.

stream

Passes a pointer to the communication channel.

Returns

The number of data elements written.

HSST_read

A target application uses this function to read data sent by the host.

Prototype

size_t HSST_read (
void *data,
size_t size,
size_t nmemb,
HSST_STREAM *stream);
11956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Target Library Interface
Parameters

data

Passes a pointer to the data buffer into which to read the data.

size

Passes the size of the individual data elements to read.

nmemb

Passes the number of data elements to read.

stream

Passes a pointer to the communication channel.

Returns

The number of data elements read.

HSST_flush

A target application uses this function to flush out data buffered in a buffered output
channel.

Prototype

int HSST_flush (HSST_STREAM *stream);

Parameters

stream

Passes a pointer to the communication channel. The High-Speed Simultaneous Transfer
(HSST) feature flushes all open buffered communication channels if this parameter is null.

Returns

0 if the call was successful or -1 if the call was unsuccessful.

HSST_size

A target application uses this function to determine the size of unread data (in bytes) for
the specified communication channel.
120 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Target Library Interface
Prototype

size_t HSST_size (HSST_STREAM *stream);

Parameters

stream

Passes a pointer to the communication channel.

Returns

The number of bytes of unread data.

HSST_raw_read

A target application uses this function to read raw data from a communication channel
(without any automatic conversion for endianness while communicating).

Prototype

size_t HSST_raw_read (
void *ptr,
size_t length,
HSST_STREAM *rs);

Parameters

ptr

Specifies the pointer that points to the buffer into which data is read.

length

Specifies the size of the buffer in bytes.

rs

Specifies a pointer to the communication channel.

Returns

The number of bytes of raw data read.

NOTE This function is useful for sending data structures (e.g., C-type structures).
12156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Target Library Interface
HSST_raw_write

A target application uses this function to write raw data to a communication channel
(without any automatic conversion for endianness while communicating).

Prototype

size_t HSST_raw_write (
void *ptr,
size_t length,
HSST_STREAM *rs);

Parameters

ptr

Specifies the pointer that points to the buffer that holds the data to write.

length

Specifies the size of the buffer in bytes.

rs

Specifies a pointer to the communication channel.

Returns

The number of data elements written.

NOTE This function is useful for sending data structures (e.g., C-type structures).

HSST_set_log_dir

A target application uses this function to set the host-side directory for storing temporary
log files. Old logs that existed prior to the call to HSST_set_log_dir() are over-
written. Logging stops when the channel is closed or when HSST_set_log_dir() is
called with a null argument. These logs can be used by the host-side function
HSST_set_log_dir.

Prototype

int HSST_set_log_dir (
HSST_STREAM *stream,
char *dir_name);
122 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Target Library Interface
Parameters

stream

Passes a pointer to the communication channel.

dir_name

Passes a pointer to the path to the directory in which to store temporary log files.

Returns

0 if the call was successful or -1 if the call was unsuccessful.

HSST Target Program Example
In Listing 6.2 the HSST target program runs in parallel with the host plug-in. The target
communicates with the host-side (your computer).

NOTE To restart the program after execution, click on Restart HSST as shown in
Figure 6.1.

Listing 6.2 Sample HSST Target Program

#include <stdio.h>
#include <stdlib.h>
#include "HSST.h"

#define buf_size 1000 /* Data size */

long i, test_buffer[buf_size];

int main ()
{

HSST_STREAM *channel_1, *channel_2;
int written_items=0;
int read_items=0;

for (i = 0; i < buf_size; ++ i)
{

test_buffer[i] = i;
}

/* Opening channel 1 and 2 from TARGET side */
channel_1 = HSST_open ("channel_1");
channel_2 = HSST_open ("channel_2");
12356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Target Library Interface
/* TARGET writing data to channel 1 */
written_items = HSST_write(test_buffer, sizeof(long),

buf_size, channel_1);

/* TARGET reading data from channel 2 */
read_items = HSST_read(test_buffer, sizeof(long), buf_size,

channel_2);

return 0;
}

Figure 6.1 Restart HSST

NOTE For an HSST example, see the HSST example in this path:
{CodeWarrior path}(CodeWarrior_Examples)\
DSP56800E_hsst_client-to-client
124 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

7
Data Visualization

Data visualization lets you graph variables, registers, regions of memory, and HSST data
streams as they change over time.

The Data Visualization tools can plot memory data, register data, global variable data, and
HSST data.

• Starting Data Visualization

• Data Target Dialog Boxes

• Graph Window Properties

Starting Data Visualization
To start the Data Visualization tool:

1. Start a debug session

2. Select Data Visualization > Configurator.

The Data Types window (Figure 7.1) appears. Select a data target type and click the
Next button.

Figure 7.1 Data Types Window
12556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Data Visualization
Data Target Dialog Boxes
3. Configure the data target dialog box and filter dialog box.

4. Run your program to display the data (Figure 7.2).

Figure 7.2 Graph Window

Data Target Dialog Boxes
There are four possible data targets. Each target has its own configuration dialog.

• Memory

• Registers

• Variables

• HSST

Memory
The Target Memory dialog box lets you graph memory contents in real-time.
126 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Data Visualization
Data Target Dialog Boxes
Figure 7.3 Target Memory Dialog Box

Data Type
The Data Type list box lets you select the type of data to be plotted.

Data Unit
The Data Units text field lets you enter a value for number of data units to be plotted. This
option is only available when you select Memory Region Changing Over Time.

Single Location Changing Over Time
The Single Location Changing Over Time option lets you graph the value of a single
memory address. Enter this memory address in the Address text field.

Memory Region Changing Over Time
The Memory Region Changing Over Time options lets you graph the values of a memory
region. Enter the memory addresses for the region in the X-Axis and Y-Axis text fields.

Registers
The Target Registers dialog box lets you graph the value of registers in real-time.
12756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Data Visualization
Data Target Dialog Boxes
Figure 7.4 Target Registers Dialog Box

Select registers from the left column, and click the -> button to add them to the list of
registers to be plotted.

Variables
The Target Globals dialog box lets you graph the value of global variables in real-time.
(See Figure 7.5.)
128 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Data Visualization
Data Target Dialog Boxes
Figure 7.5 Target Globals Dialog Box

Select global variables from the left column, and click the -> button to add them to the list
of variables to be plotted.

HSST
The Target HSST dialog box lets you graph the value of an HSST stream in real-time.
(See Figure 7.6.)

NOTE To plot HSST data, the data visualization tool needs its own HSST channel.
Make sure your program opens a separate channel exclusively for the data
visualization window. This will avoid impacting data transmissions on other
channels.
12956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Data Visualization
Graph Window Properties
Figure 7.6 Target HSST Dialog Box

Channel Name
The Channel Name text field lets you specify the name of the HSST stream to be plotted.

Data Type
The Data Type list box lets you select the type of data to be plotted.

Graph Window Properties
To change the look of the graph window, click the graph properties button to open
the Format Axis dialog box.
130 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Data Visualization
Graph Window Properties
Figure 7.7 Format Axis Dialog Box

Scaling
The default scaling settings of the data visualization tools automatically scale the graph
window to fit the existing data points.

To override the automatic scaling, uncheck a scaling checkbox to enable the text field and
enter your own value.

To scale either axis logarithmically, enable the Logarithmic Scale option of the
corresponding axis.

Display
The Display settings let you change the maximum number of data points that are plotted
on the graph.

NOTE For a data visualization example that uses HSST, see the data visualization
example in this path:
{CodeWarrior path}(CodeWarrior_Examples)\
hsst_Data_Visualization
13156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Data Visualization
Graph Window Properties
132 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

8
Debugging for DSP56800E

This chapter explains the generic features of the CodeWarrior™ debugger and consists of
these sections:

• Using Remote Connections

• Target Settings for Debugging

• Command Converter Server

• Launching and Operating Debugger

• Load/Save Memory

• Fill Memory

• Save/Restore Registers

• EOnCE Debugger Features

• Using DSP56800E Simulator

• Register Details Window

• Loading .elf File without Project

• Using Command Window

• System-Level Connect

• Debugging in Flash Memory

• Notes for Debugging on Hardware

Using Remote Connections
Remote connections are settings that describe how the CodeWarrior IDE should connect
to and control program execution on target boards or systems, such as the debugger
protocol, connection type, and connection parameters the IDE should use when it connects
to the target system. This section shows you how to access remote connections in the
CodeWarrior IDE, and describes the various debugger protocols and connection types the
IDE supports.

NOTE We have included several types of remote connections in the default
CodeWarrior installation. You can modify these default remote connections to
suit your particular needs.
13356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using Remote Connections
Accessing Remote Connections
You access remote connections in the CodeWarrior IDE Preferences window. Remote
connections listed in the preferences window are available for use in all CodeWarrior
projects and build targets.

To access remote connections:

1. From the CodeWarrior menu bar, select Edit > Preferences.

The IDE Preferences window (Figure 8.1) appears.

Figure 8.1 IDE Preferences Window

2. In the IDE Preference Panels list, select Remote Connections.

The Remote Connections preference panel (Figure 8.2) appears.
134 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using Remote Connections
Figure 8.2 Remote Connections Preference Panel

NOTE The specific remote connections that appear in the Remote Connections list
differ between CodeWarrior products and hosts.

The Remote Connections preference panel lists all of the remote connections of which
the CodeWarrior IDE is aware. You use this preference panel to add your own remote
connections, remove remote connections, and configure existing remote connections to
suit your needs.

1. To add a new remote connection, click Add.

2. To configure an existing remote connection, select it and click Change.

3. To remove an existing remote connection, select it and click Remove.

NOTE To specify a remote connection for a particular build target in a CodeWarrior
project, you select the remote connection from the Connection list box in the
Remote Debugging target settings panel. For an overview of the Remote
Debugging settings panel, see the CodeWarrior IDE User’s Guide.

Understanding Remote Connections
Every remote connection specifies a debugger protocol and a connection type.
13556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using Remote Connections
A debugger protocol is the protocol the IDE uses to debug the target system. This setting
generally relates specifically to the particular device you use to physically connect to the
target system.

A connection type is the type of connection (such as CCS, USBTAP, OSBDM, or
Simulator) the CodeWarrior IDE uses to communicate with and control the target system.

Table 8.1 describes each of the supported debugger protocols.

Each of these protocols supports one or more types of connections (CCS, USBTAP, and
Simulator). Editing Remote Connections describes each supported connection type and
how to configure them.

Editing Remote Connections
Based on the specified debugger protocol and connection type, the IDE makes different
settings available to you. For example, if you specify a Serial connection type, the IDE
presents settings for baud rate, stop bits, flow control, and so on. Table 8.2 describes the
supported connection types for each debugger protocol.

To configure a remote connection to correspond to your particular setup, you must edit the
connection settings. You access the settings with the Edit Connection dialog box. You
can view this dialog box in one of these ways:

Table 8.1 Debugger Protocols

Debugger Protocol Description

CCS 56800E Protocol Plug-in Select to use a CCS hardware target system.

56800E Simulator Select to use the Simulator on the host computer.

56800E FSL OSBDM
Protocol Plug-in

Select to use the FSL OSBDM on the host computer.

Table 8.2 Supported Connection Types

Debugger Protocol Supported Connection Types

CCS 56800E Protocol Plug-in CCS Remote Connection, USBTAP

56800E Simulator Simulator

56800E FSL OSBDM
Protocol Plug-in

FSL OSBDM
136 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using Remote Connections
• In the Remote Connections IDE preference panel, select a connection from the list,
and click Change. The Edit Connection dialog box appears.

• In the Remote Connections IDE preference panel, click Add to create a new remote
connection. The New Connection dialog box appears.

• In the Remote Debugging target settings panel, select a connection from the
Connection list box, then click the Edit Connection button. The Edit Connection
dialog box appears.

This section describes the settings for each connection type:

• CCS Remote Connection

• USBTAP

• Simulator

• FSL OSBDM

CCS Remote Connection
Use this connection type to configure how the IDE uses the Command Converter Server
(CCS) protocol to connect with the target system. This connection type is available only
when the CCS 56800E Protocol Plug-in debugger protocol is selected.

Figure 8.3 shows the settings that are available to you when you select CCS Remote
Connection from the Connection Type list box in the Edit Connection dialog box.
13756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using Remote Connections
Figure 8.3 CCS 56800E Protocol Plugin for Debugger

Table 8.3 describes the options in this dialog box.

Table 8.3 CCS Remote Connection Options

Option Description

Name Enter the name you want to use to refer to this remote
connection within the CodeWarrior IDE.

Debugger Select CCS 56800 Protocol Plug-in.

Show in processes list Check to list the connection in processes.

Connection Type Select CCS Remote Connection.

Use Remote CCS Check to debug code on a target system when the system
already has CCS running and connected.

Server IP Address Enter the Internet Protocol (IP) address assigned to the
target system.

Port # Enter the port number on the target system to which the IDE
should connect for CCS operations. The default port number
for CCS hardware connections is 41475. Enter 41476 for the
CCS Simulator.
138 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using Remote Connections
USBTAP
Use this connection type to configure how the IDE uses CodeWarrior USB TAP device to
connect with the target system. This connection type is available only when the CCS
56800E Protocol Plug-in debugger protocol is selected.

Figure 8.4 shows the settings that are available to you when you select USBTAP from the
Connection Type list box in the Edit Connection dialog box.

Specify CCS Executable Check to use another CCS executable file rather than the
default CCS executable file:
CWInstall\ccs\bin\ccs.exe

Multi-Core Debugging Check to debug code on a target system with multiple cores
where you need to specify the JTAG chain for debugging.
Click Choose to specify the JTAG initialization file. A JTAG
initialization file contains the names and order of the boards /
cores you want to debug.

JTAG Configuration File Specify the name and path of the JTAG initialization file that
describes the items on the JTAG chain.

CCS Timeout Enter the duration (in seconds) after which the CCS should
attempt to reconnect to the target system if a connection
attempt fails.

Specify Internal Clock
Freq.

Check to specify the internal clock frequency in unit tck.

Reset Target on Launch Check to reset the target board on every launch
configuration.

Enable Logging Check to support logging.

Table 8.3 CCS Remote Connection Options (continued)

Option Description
13956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using Remote Connections
Figure 8.4 USBTAP Connection Settings

Table 8.4 describes the options in this dialog box.

Table 8.4 UBTAP Options

Option Description

Name Enter the name you want to use to refer to this remote
connection within the CodeWarrior IDE.

Debugger Select CCS 56800E Protocol Plugin.

Connection Type Select USBTAP Connection.

CCS Timeout Enter the maximum number of seconds the debugger should
wait for a response from CCS. By default, the debugger
waits up to 10 seconds for responses.
140 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using Remote Connections
Simulator
Use this connection type to configure the behavior of the simulator. This connection type
is available only when the 56800E Simulator Protocol Plug-in debugger protocol is
selected.

Figure 8.5 shows the setting that are available to you when you select Simulator from the
Connection Type list box in the Edit Connection dialog box.

Multi-Core Debugging Check to debug code on a target system with multiple cores
where you need to specify the JTAG chain for debugging.
Click Choose to specify the JTAG initialization file. A JTAG
initialization file contains the names and order of the boards /
cores you want to debug.

Note: this option has no effect for the 56800E Digital Signal
Controller.

Reset Target on Launch Check to have the debugger send a reset signal to the target
system when you start debugging.

Clear to prevent the debugger from resetting the target
device when you start debugging.

Table 8.4 UBTAP Options (continued)

Option Description
14156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using Remote Connections
Figure 8.5 Simulator Connection Settings

Table 8.5 describes the options in this dialog box.

FSL OSBDM
Use this connection type to configure the behavior of the Freescale Open Source BDM
connection. This connection is available when the 56800E GDI Protocol Plug-in
debugger protocol is selected.

Figure 8.6 shows the setting that are available to you when you select FSL OSBDM from
the Connection Type list box in the Edit Connection dialog box.

Table 8.5 Simulator Options

Option Description

Name Enter the name you want to use to refer to this remote
connection within the CodeWarrior IDE.

Debugger Select SIM 56800E Protocol Plugin.

Connection Type Select Simulator.

Simulation Bandwidth Select the simulator bandwidth (low, medium, or high).
142 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using Remote Connections
Figure 8.6 FSL OSBDM Connection Settings

Table 8.6 describes the options in this dialog box.

Table 8.6 FSL OSBDM

Option Description

Name Enter the name you want to use to refer to this remote
connection within the CodeWarrior IDE.

Debugger Select 56800E GDI.

Connection Type Select GDI Remote Connection.

GDI DLL Select or enter the path of the GDI dynamic link library.
Alternatively, click Browse to locate the DLL. The default
location of OSBDM GDI dll is
{Compiler}bin\Plugins\Support\OSBDM\osb
dm-jm60_gdi_dsc.dll.

Startup File Select or enter the path of the startup file. Alternatively, click
Browse to locate the file.

Log Communications
Data to Log Window

Check to create a log of communication data to the log
window.
14356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Target Settings for Debugging
Target Settings for Debugging
The following table (Table 8.7) lists the target settings for Debugging. To edit the
<target> settings, select Edit > <target> Settings > Debugger > Remote Debugging.

Table 8.7 Target Settings for Debugging

Option Description

Name Enter the name you want to use to refer to this remote
connection within the CodeWarrior IDE.

Debugger Select CCS 56800E Protocol Plugin.

Connection Type Select USBTAP.

Use default serial
number

Check if you only have one USB TAP device connected to
the host computer.

Clear if you have more than one USB TAP device connected
to the host computer. When this checkbox is checked, the
USB TAP Serial Number text box is available.

USB TAP Serial Number If you have more than one USB TAP connected to the host
computer, enter the serial number of the USB TAP you want
to use for debugging.

Note: The USB TAP serial number is located on a label on
the bottom of the device.

CCS Timeout Enter the maximum number of seconds the debugger should
wait for a response from CCS. By default, the debugger
waits up to 10 seconds for responses.

Interface Clock
Frequency

Select the clock frequency for the Ethernet TAP device. We
recommended you set this to 4 MHz.

Mem Read Delay Enter the number of additional processor cycles (in the
range: 0 through 65024) the debugger should insert as a
delay for completion of memory read operations. By default,
the debugger delays for 350 cycles.

Mem Write Delay Enter the number of additional processor cycles (in the
range: 0 through 65024) the debugger should insert as a
delay for completion of memory write operations. By default,
the debugger does not delay.
144 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Target Settings for Debugging
This section explains how to control the debugger by modifying the appropriate settings
panels.

To properly debug DSP56800E software, you must set certain preferences in the Target
Settings window. The M56800E Target panel is specific to DSP56800E development.
The remaining settings panels are generic to all build targets.

Other settings panels can affect debugging. Table 8.8 lists these panels.

Reset Target on Launch Check to have the debugger send a reset signal to the target
system when you start debugging.

Clear to prevent the debugger from resetting the target
device when you start debugging.

Force Shell Download Check to have the debugger start the Ethernet TAP shell
when you start debugging.

Clear to prevent the debugger from starting the Ethernet
TAP shell when you start debugging.

Do not use fast
download

Check to have the debugger use a standard (slow)
procedure to write to memory on the target system.

Clear to have the debugger use an optimized (fast)
download procedure to write to memory on the target
system.

Enable Logging Check to have the IDE display a log of all debugger
transactions during the debug session. If this checkbox is
checked, a protocol logging window appears when you
connect the debugger to the target system.

Note: If you set the AMCTAP_LOG_FILE environment
variable, the IDE directs log messages to the specified file.

Table 8.8 Setting Panels that Affect Debugging

This panel… Affects… Refer to…

M56800E Linker Symbolics, linker
warnings

Deadstripping and Link Order

M56800E Processor Optimizations Optimizing Code

Debugger Settings Debugging options

Table 8.7 Target Settings for Debugging (continued)

Option Description
14556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Command Converter Server
The M56800E Target panel is unique to DSP56800E debugging. The available options in
this panel depend on the DSP56800E hardware you are using and are described in detail in
the section on Remote Debug Options.

Command Converter Server
The command converter server (CCS) handles communication between the CodeWarrior
debugger and the target board. An icon in the status bar indicates the CCS is running. The
CCS is automatically launched by your project when you start a CCS debug session if you
are debugging a target board using a local machine. However, when debugging a target
board connected to a remote machine, see Setting Up Remote Connection.

NOTE Projects are set to debug locally by default. The protocol the debugger uses to
communicate with the target board, for example, PCI, is determined by how
you installed the CodeWarrior software. To modify the protocol, make changes
in the Freescale Command Converter Server window ().

Essential Target Settings for Command
Converter Server
Before you can download programs to a target board for debugging, you must specify the
target settings for the command converter server:

• Local Settings

If you specify that the CodeWarrior IDE start the command converter server locally,
the command converter server uses the connection port (for example, LPT1) that you
specified when you installed CodeWarrior™ Development Studio for 56800/E
Digital Signal Controllers.

Remote Debugging Debugging
communication
protocol

Remote Debugging

Remote Debug
Options

Debugging options Remote Debug Options

Table 8.8 Setting Panels that Affect Debugging (continued)

This panel… Affects… Refer to…
146 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Command Converter Server
• Remote Settings

If you specify that the CodeWarrior IDE start the command converter server on a
remote machine, specify the IP address of the remote machine on your network (as
described in Setting Up Remote Connection).

• Default Settings

By default, the command converter server listens on port 41475. You can specify a
different port number for the debugger to connect to if needed (as described in
Setting Up Remote Connection). This is necessary if the CCS is configured to a port
other than 41475.

After you have specified the correct settings for the command converter server (or verified
that the default settings are correct), you can download programs to a target board for
debugging.

The CodeWarrior IDE starts the command converter server at the appropriate time if you
are debugging on a local target.

Before debugging on a board connected to a remote machine, ensure the following:

• The command converter server is running on the remote host machine.

• Nobody is debugging the board connected to the remote host machine.

Changing Command Converter Server
Protocol to Parallel Port
If you specified the wrong parallel port for the command converter server when you
installed CodeWarrior™ Development Studio for 56800/E Digital Signal Controllers, you
can change the port.

Change the parallel port:

1. Click the command converter server icon.

While the command converter server is running, locate the command converter server
icon on the status bar. Right-click on the command converter server icon (Figure 8.7):

Figure 8.7 Command Converter Server Icon

A menu appears (Figure 8.8):

Figure 8.8 Command Converter Server Menu
14756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Command Converter Server
2. Select Show console from the menu.

The Freescale Command Converter Server window appears (Figure 8.9).

Figure 8.9 Command Converter Server Window

3. On the console command line, type the following command:

delete all

4. Press Enter.

5. Type the following command, substituting the number of the parallel port to use (for
example, 1 for LPT1):

config cc parallel:1

6. Press Enter.

7. Type the following command to save the configuration:

config save

8. Press Enter.

Changing Command Converter Server
Protocol to HTI
To change the command converter server to an HTI Connection:

1. While the command converter server is running, right-click on the command converter
server icon shown in Figure 8.7 or double click on it.

2. From the menu shown in Figure 8.8, select Show Console.
148 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Command Converter Server
3. At the console command line in the Freescale Command Converter Server window,
type the following command:

delete all

4. Press Enter.

5. Type the following command:

config cc: address

(substituting for address the name of the IP address of your CodeWarrior HTI)

NOTE If the software rejects this command, your CodeWarrior HTI may be an earlier
version. Try instead the command: config cc nhti:address, or the
command: config cc Panther:address, substituting for address
the IP address of the HTI.

6. Press Enter.

7. Type the following command to save the configuration:

config save

8. Press Enter.

Changing Command Converter Server
Protocol to PCI
To change the command converter server to a PCI Connection:

1. While the command converter server is running, right-click on the command converter
server icon shown in Figure 8.7 or double click on it.

2. From the menu shown in Figure 8.8, select Show Console.

3. At the console command line in the Freescale Command Converter Server window,
type the following command:

delete all

4. Press Enter.

5. Type the following command:

config cc pci

6. Press Enter.

7. Type the following command to save the configuration:

config save

8. Press Enter.
14956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Command Converter Server
Setting Up Remote Connection
A remote connection is a type of connection to use for debugging along with any
preferences that connection may need. To change the preferences for a remote connection
or to create a new remote connection:

1. On the main menu, select Edit > Preferences.

The IDE Preferences Window appears.

2. Click Remote Connections in the left column.

The Remote Connections panel shown in Figure 8.10 appears.

Figure 8.10 Remote Connections Panel

Add New Remote Connection
To add a new remote connection:

1. Click the Add button.

The New Connection window appears as shown in Figure 8.11.
150 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Command Converter Server
Figure 8.11 New Connection Window

2. In the Name edit box, type in the connection name.

3. Check Use Remote CCS checkbox.

Select this checkbox to specify that the CodeWarrior IDE is connected to a remote
command converter server. Otherwise, the IDE starts the command converter server
locally.

4. Enter the Server IP address or host machine name.

Use this text box to specify the IP address where the command converter server resides
when running the command converter server from a location on the network.

5. Enter the Port # to which the command converter server listens or use the default port,
which is 41475.

6. Click the OK button.

Change Existing Remote Connection
To change an existing remote connection:

1. Double click on the connection name that you want to change, or click once on the
connection name.

2. Click the Change button (shown in Figure 8.10 in grey).
15156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Launching and Operating Debugger
Remove Existing Remote Connection
To remove an existing remote connection:

1. Click once on the connection name.

2. Click the Remove button (shown in Figure 8.10 in grey).

Debugging Remote Target Board
For debugging a target board connected to a remote machine with Code Warrior IDE
installed, perform the following steps:

1. Connect the target board to the remote machine.

2. Launch the command converter server (CCS) on the remote machine with the local
settings configuration using instructions described in the section Essential Target
Settings for Command Converter Server.

3. In the Target Settings > Remote Debugging panel for your project, make sure the
proper remote connection is selected.

4. Launch the debugger.

Launching and Operating Debugger

NOTE CodeWarrior IDE automatically enables the debugger and sets debugger-
related settings within the project.

1. Set debugger preferences.

Select Edit > sdm Settings from the menu bar of the Freescale CodeWarrior
window.

The IDE displays the Remote Debugging panel in the <target> Settings window.
152 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Launching and Operating Debugger
Figure 8.12 Remote Debugging Panel

2. Select the Connection.

For example, select 56800E Local Hardware Connection (CCS).

3. Click OK button.

4. Debug the project.

 Use either of the following options:

• From the Freescale CodeWarrior window, select Project > Debug.

• Click the Debug button in the project window.

This command resets the board (if Always reset on download is checked in the
Debugger’s M56800E Target panel shown in Figure 4.14) and the download process
begins.

When the download to the board is complete, the IDE displays the Program window
(sdm.elf in sample) shown in Figure 8.13.

NOTE Source code is shown only for files that are in the project folder or that have
been added to the project in the project manager, and for which the IDE has
created debug information. You must navigate the file system in order to locate
sources that are outside the project folder and not in the project manager, such
as library source files.
15356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Launching and Operating Debugger
Figure 8.13 Program Window

5. Navigate through your code.

The Program window has three panes:

• Stack pane

The Stack pane shows the function calling stack.

• Variables pane

The Variables pane displays local variables.

• Source pane

The Source pane displays source or assembly code.

The toolbar at the top of the window has buttons that allows you access to the
execution commands in the Debug menu.

Step Over

Break

Step Into

Step Out

Breakpoint

Kill

Run

Watchpoint
Symbolics
154 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Launching and Operating Debugger
Setting Breakpoints and Watchpoints
1. Locate the code line.

Scroll through the code in the Source pane of the Program window until you come
across the main() function.

2. Select the code line.

Click the gray dash in the far left-hand column of the window, next to the first line of
code in the main() function. A red dot appears (Figure 8.14), confirming you have
set your breakpoint.

Figure 8.14 Breakpoint in Program Window

NOTE To remove the breakpoint, click the red dot. The red dot disappears.

For more details on how to set breakpoints and use watchpoints, see the CodeWarrior IDE
User’s Guide.

NOTE For the DSP56800E only one watchpoint is available. This watchpoint is only
available on hardware targets.

Breakpoint
Setting
15556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Launching and Operating Debugger
Viewing and Editing Register Values
Registers are platform-specific. Different chip architectures have different registers.

1. Access the Registers window.

From the menu bar of the Freescale CodeWarrior window, select View >
Registers.

Expand the General Purpose Registers tree control to view the registers as in Figure
8.15, or double-click on General Purpose Registers to view the registers as in Figure
8.16.

Figure 8.15 General Purpose Registers for DSP56800E
156 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Launching and Operating Debugger
Figure 8.16 General Purpose Registers Window

2. Edit register values.

To edit values in the register window, double-click a register value. Change the value
as you wish.

3. Exit the window.

The modified register values are saved.

NOTE To view peripheral registers, select the appropriate processor form the
processor list box in the M56800E Target Settings Panel.

Viewing X: Memory
You can view X memory space values as hexadecimal values with ASCII equivalents.
You can edit these values at debug time.

NOTE On targets that have Flash ROM, you cannot edit those values in the memory
window that reside in Flash memory.

1. Locate a particular address in program memory.

From the menu bar of the Freescale CodeWarrior window, select Data > View
Memory.
15756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Launching and Operating Debugger
NOTE The Source pane in the Program window needs to be the active one in order
for the Data > View Memory to be activated.

The Memory window appears (Figure 8.17).

Figure 8.17 View X:Memory Window

2. Select type of memory.

Locate the Page list box at the bottom of the View Memory window. Select X for X
Memory.

3. Enter memory address.

Type the memory address in the Display field located at the top of the Memory
window.

To enter a hexadecimal address, use standard C hex notation, for example, 0x0.

NOTE You also can enter the symbolic name whose value you want to view by typing
its name in the Display field of the Memory window.

NOTE The other view options (Disassembly, Source and Mixed) do not apply when
viewing X memory.

Viewing P: Memory
You can view P memory space and edit the opcode hexadecimal values at debug time.

NOTE On targets that have Flash ROM, you cannot edit those values in the memory
window that reside in Flash memory.
158 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Launching and Operating Debugger
1. Locate a particular address in program memory.

To view program memory, from the menu bar of the Freescale CodeWarrior
window, select Data > View Memory.

The Memory window appears (Figure 8.17).

2. Select type of memory.

Locate the Page list box at the bottom of the View Memory window. Select P for P
Memory.

3. Enter memory address.

Type the memory address in the Display field located at the top of the Memory
window.

To enter a hexadecimal address, use standard C hex notation, for example: 0x82.

4. Select how you want to view P memory.

Using the View list box, you have the option to view P Memory in four different ways.

• Raw Data (Figure 8.18).

Figure 8.18 View P:Memory (Raw Data) Window

• Disassembly (Figure 8.19).
15956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Launching and Operating Debugger
Figure 8.19 View P:Memory (Disassembly) Window

• Source (Figure 8.20).

Figure 8.20 View P:Memory (Source) Window

• Mixed (Figure 8.21).

Figure 8.21 View P:Memory (Mixed) Window
160 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Load/Save Memory
Load/Save Memory
From the menu bar of the Freescale CodeWarrior window, select Debug > 56800E >
Load/Save Memory to display the Load/Save Memory dialog box (Figure 8.22).

Figure 8.22 Load/Save Memory Dialog Box

Use this dialog box to load and save memory at a specified location and size with a user-
specified file. You can associate a key binding with this dialog box for quick access. Press
the Tab key to cycle through the dialog box displays, which lets you quickly make
changes without using the mouse.

History Combo Box
The History combo box displays a list of recent loads and saves. If this is the first time
you load or save, the History combo box is empty. If you load/save more than once, the
combo box fills with the memory address of the start of the load or save and the size of the
fill, to a maximum of ten sessions.

If you enter information for an item that already exists in the history list, that item moves
up to the top of the list. If you perform another operation, that item appears first.

NOTE By default, the History combo box displays the most recent settings on
subsequent viewings.
16156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Load/Save Memory
Radio Buttons
The Load/Save Memory dialog box has two radio buttons:

• Load Memory

• Save Memory

The default is Load Memory.

Memory Type Combo Box
The memory types that appear in the Memory Type Combo box are:

• P: Memory (Program Memory)

• X: Memory (Data Memory)

Address Text Field
Specify the address where you want to write the memory. If you want your entry to be
interpreted as hex, prefix it with 0x; otherwise, it is interpreted as decimal.

Size Text Field
Specify the number of words to write to the target. If you want your entry to be interpreted
as hex, prefix it with 0x; otherwise, it is interpreted as decimal.

Dialog Box Controls

Cancel, Esc, and OK
In Load and Save operations, all controls are disabled except Cancel for the duration of
the load or save. The status field is updated with the current progress of the operation.
Clicking Cancel halts the operation, and re-enables the controls on the dialog box.
Clicking Cancel again closes the dialog box. Pressing the Esc key is same as clicking the
Cancel button.

With the Load Memory radio button selected, clicking OK loads the memory from the
specified file and writes it to memory until the end of the file or the size specified is
reached. If the file does not exist, an error message appears.

With the Save Memory radio button selected, clicking OK reads the memory from the
target piece by piece and writes it to the specified file. The status field is updated with the
current progress of the operation.
162 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Fill Memory
Browse Button
Clicking the Browse button displays OPENFILENAME or SAVEFILENAME, depending
on whether you selected the Load Memory or Save Memory radio button.

Fill Memory
From the menu bar of the Freescale CodeWarrior window, select Debug > 56800E > Fill
Memory to display the Fill Memory dialog box (Figure 8.23).

Figure 8.23 Fill Memory Dialog Box

Use this dialog box to fill memory at a specified location and size with user- specified raw
memory data. You can associate a key binding with this dialog box for quick access. Press
the Tab key to cycle through the dialog box display, which lets you quickly make changes
without using the mouse.

NOTE Fill Memory does not support Flash Memory.

History Combo Box
The History combo box displays a list of recent fill operations. If this is the first time you
perform a fill operation, the History combo box is empty. If you do more than one fill,
then the combo box populates with the memory address of that fill, to a maximum of ten
sessions.

If you enter information for an item that already exists in the history list, that item moves
up to the top of the list. If you do another fill, then this item is the first one that appears.

NOTE By default, the History combo box displays the most recent settings on
subsequent viewings.
16356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Fill Memory
Memory Type Combo Box
The memory types that can appear in the Memory Type Combo box are:

• P:Memory (Program Memory)

• X:Memory (Data Memory)

Address Text Field
Specify the address where you want to write the memory. If you want it to be interpreted
as hex, prefix it with 0x; otherwise, it is interpreted as decimal.

Size Text Field
Specify the number of words to write to the target. If you want it to be interpreted as hex,
prefix your entry with 0x; otherwise, it is interpreted as decimal.

Fill Expression Text Field
Fill writes a set of characters to a location specified by the address field on the target,
repeatedly copying the characters until the user-supplied fill size has been reached. Size is
the total words written, not the number of times to write the string.

Interpretation of Fill Expression
The fill string is interpreted differently depending on how it is entered in the Fill String
field. Any words prefixed with 0x is interpreted as hex bytes. Thus, 0xBE 0xEF would
actually write 0xBEEF on the target. Optionally, the string could have been set to
0xBEEF and this would do the same thing. Integers are interpreted so that the equivalent
signed integer is written to the target.

ASCII Strings
ASCII strings can be quoted to have literal interpretation of spaces inside the quotes.
Otherwise, spaces in the string are ignored. Note that if the ASCII strings are not quoted
and they are numbers, it is possible to create illegal numbers. If the number is illegal, an
error message is displayed.

Dialog Box Controls

OK, Cancel, and Esc
Clicking OK writes the memory piece by piece until the target memory is filled in. The
Status field is updated with the current progress of the operation. When this is in progress,
164 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Save/Restore Registers
the entire dialog box grays out except the Cancel button, so the user cannot change any
information. Clicking the Cancel button halts the fill operation, and re-enables the
controls on the dialog box. Clicking the Cancel button again closes the dialog box.
Pressing the Esc key is same as pressing the Cancel button.

Save/Restore Registers
From the menu bar of the Freescale CodeWarrior window, select Debug > 56800E >
Save/Restore Registers to display the Save/Restore Registers dialog box (Figure 8.24).

Figure 8.24 Save/Restore Registers Dialog Box

Use this dialog box to save and restore register groups to and from a user-specified file.

History Combo Box
The History combo box displays a list of recent saves and restores. If this is the first time
you have saved or restored, the History combo box is empty. If you saved or restored
before, the combo box remembers your last ten sessions. The most recent session will
appear at the top of the list.

Radio Buttons
The Save/Restore Registers dialog box has two radio buttons:

• Save Registers

• Restore Registers

The default is Save Registers.
16556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
EOnCE Debugger Features
Register Group List
This list is only available when you have selected Save Registers. If you have selected
Restore Registers, the items in the list are greyed out. Select the register group that you
wish to save.

Dialog Box Controls

Cancel, Esc, and OK
In Save and Restore operations, all controls are disabled except Cancel for the duration of
the load or save. The status field is updated with the current progress of the operation.
Clicking Cancel halts the operation, and re-enables the controls on the dialog box.
Clicking Cancel again closes the dialog box. Pressing the Esc key is same as clicking the
Cancel button.

With the Restore Registers radio button selected, clicking OK restores the registers from
the specified file and writes it to the registers until the end of the file or the size specified
is reached. If the file does not exist, an error message appears.

With the Save Register radio button selected, clicking OK reads the registers from the
target piece by piece and writes it to the specified file. The status field is updated with the
current progress of the operation.

Browse Button
Clicking the Browse button displays OPENFILENAME or SAVEFILENAME, depending
on whether you selected the Restore Registers or Save Registers radio button.

EOnCE Debugger Features
The following EOnCE Debugger features are discussed in this section:

• Set Hardware Breakpoint Panel

• Special Counters

• Trace Buffer

• Set Trigger Panel

NOTE These features are only available when debugging with a hardware target.

For more information on the debugging capabilities of the EOnCE, see the EOnCE
chapter of your processor’s user manual.
166 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
EOnCE Debugger Features
Set Hardware Breakpoint Panel
The Set Hardware BreakPoint panel (Figure 8.25) lets you set a trigger to do one of the
following: halt the processor, cause an interrupt, or start or stop trace buffer capture.

To open this panel:

1. From the menu bar, select DSP56800E > Set Breakpoint Trigger(s).

To clear triggers set with this panel:

1. From the menu bar, select DSP56800E > Clear Triggers.

Figure 8.25 Set Hardware Breakpoint Panel

The Set Hardware BreakPoint panel options are:

• Set trigger

Select this button to open the Set Trigger panel (Figure 8.29). For more information on
using this panel, see Set Trigger Panel.

• Action

This pull down list lets you select the resulting action caused by the trigger.

– Halt core

Stops the processor.

– Interrupt

Causes an interrupt and uses the vector for the EOnCE hardware breakpoint (unit
0).

Special Counters
This feature lets you use the special counting function of the EOnCE unit.

To open the EOnCE Special Counter panel (Figure 8.26):

1. From the menu bar, select DSP56800E > Special Counter.

This panel is non-modal and will update itself whenever the processor stops.
16756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
EOnCE Debugger Features
Figure 8.26 EOnCE Special Counter Panel

The EOnCE Special Counter panel options are:

• Counter size

This pull down list gives you the option to use a 16 or 40-bit counter.

NOTE Using the 40-bit counter will disable stepping in the debugger.

• Counter function

This pull down list allows you to choose which counting function to use.

• Set trigger(s)

Pushing this button opens the Set Trigger panel. For more information on using this
panel, see Set Trigger Panel.

• Perform action

This pull down list lets you select the action that occurs when the correct conditions
are met, as set in the Set Trigger panel and the On condition pull down list.

• On condition

This pull down list lets you set the order in which a trigger and counter reaching zero
must occur to perform the action specified in Perform action.

• Counter value

This edit box should be preloaded with a non-zero counter value when setting the
counter. The counter will proceed backward until a stop condition occurs. The edit
box will contain the value of the counter and will be updated whenever the processor
stops.
168 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
EOnCE Debugger Features
Trace Buffer
The trace buffer lets you view the target addresses of change-of-flow instructions that the
program executes. The trace buffer is configured with the Trace Buffer Setup panel
(Figure 8.27).

To open this panel:

1. From the IDE menu bar, select DSP56800E > Setup Trace Buffer.

Figure 8.27 Trace Buffer Setup Panel

To view the contents of the trace buffer (Figure 8.28):
16956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
EOnCE Debugger Features
1. From the IDE menu bar, select DSP56800E > Dump Trace Buffer.

Figure 8.28 Contents of Trace Buffer

To clear triggers set with the Trace Buffer Setup panel (Figure 8.27):

1. From the menu bar, select DSP56800E > Clear Triggers.

The Trace Buffer Setup panel options are:

• Capture Events

Select this set of checkboxes to specify which instructions get captured by the trace
buffer.

– Change of flow not taken

Select this checkbox to capture target addresses of conditional branches and
jumps that are not taken.

– Interrupt

Select this checkbox to capture addresses of interrupt vector fetches and target
addresses of RTI instructions.

– Subroutine

Select this checkbox to capture target addresses of JSR, BSR, and RTS
instructions.

– Forward branches and JCC Backward branches

Select this checkbox to capture target addresses of the following taken
instructions:

 BCC forward branch

 BRSET forward branch
170 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
EOnCE Debugger Features
 BRCLR forward branch

 JCC forward and backward branches

– Backward branches excluding JCC backward branches

Select this checkbox to capture target addresses of the following taken
instructions:

BCC backward branch

BRSET backward branch

BRCLR backward branch

• Set trigger(s)

Select this button to open the Set Trigger panel (Figure 8.29). For more information
on using this panel, see Set Trigger Panel. The resulting trigger halts trace buffer
capture.

• Capture initially halted, started by trigger

When this option is checked, the trace buffer starts off halted.

• Buffer full action

This pull down list lets you select the resulting action caused by the trace buffer
filling.

Set Trigger Panel
The Set Trigger panel (Figure 8.29) lets you set triggers for all the EOnCE functions. It
can be accessed from the panels used to configure those functions. The options available
change depending on the function being configured.
17156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
EOnCE Debugger Features
Figure 8.29 Set Trigger Panel

The Set Trigger panel options are:

• Primary trigger type

This pull down list contains the general categories of triggers that can be set.

• Primary trigger

This pull down list contains the specific forms of the triggers that can be set. This list
changes depending on the selection made in the Primary trigger type option. The #
symbol contained in some of the triggers' descriptions specifies that the sub-trigger
that it precedes must occur the number of times specified in the Breakpoint counter
option to cause a trigger. The -> symbol specifies that the first sub-trigger must
occur, then the second sub-trigger must occur to cause a trigger.

• Value options

There are two edit boxes used to specify addresses and data values. The descriptions
next to the boxes change according to the selection in Primary trigger type and
Primary trigger. According to these options, only one value may be available.

• Data compare length

When the data trigger (address and data) compare trigger is selected, this set of radio
buttons becomes available. These options allow you to specify the length of data
being compared at that address.
172 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using DSP56800E Simulator
• Data mask

When a data compare trigger is selected, this edit box becomes available. This value
specifies which bits of the data value are compared.

• Invert data compare

When a data compare trigger is selected, this checkbox becomes available. When
checked, the comparison result of the data value is inverted (logical NOT).

• Breakpoint counter

This edit box specifies the number of times a sub-trigger preceded by a # (see above)
must occur to cause a trigger.

• Advanced trigger

This pull down list contains options for combining triggers. The types of triggers that
can be combined are triggers set in this panel and core events.

• Core events

This set of checkboxes specify which core events are allowed to enter the breakpoint
logic and cause a trigger.

– DEBUGEV trigger enabled

When this checkbox is selected, the DEBUGEV instruction causes a core event.

– Overflow trigger enabled

 When this checkbox is selected, overflow and saturation conditions in the
processor cause core events.

• Use step counter to execute

When this checkbox is selected, the processor steps through additional
instructions after a trigger is signalled. The number of instructions to be stepped
is specified in the edit box that is enabled when this checkbox is checked.

Using DSP56800E Simulator
The CodeWarrior™ Development Studio for 56800/E Digital Signal Controllers includes
the Freescale DSP56800E Simulator. This software lets you run and debug code on a
simulated DSP56800E architecture without installing any additional hardware.

The simulator simulates the DSP56800E processor, not the peripherals. In order to use the
simulator, you must select a connection that uses the simulator as your debugging protocol
from the Remote Debugging panel.

NOTE The simulator also enables the DSP56800E menu for retrieving the machine
cycle count and machine instruction count when debugging.
17356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using DSP56800E Simulator
NOTE The data memory of the 56800E simulator is read-only from X:0xFF80 to
X:0xFFFF.

Cycle/Instruction Count
From the menu bar of the Freescale CodeWarrior window, select 56800E > Display
Cycle/Instruction count. The following window appears (Figure 8.30):

Figure 8.30 Simulator Cycle/Instruction Count

NOTE Cycle counting is not accurate while single stepping through source code in the
debugger. It is only accurate while running. Thus, the cycle counter is more of
a profiling tool than an interactive tool.

Press the Reset button to zero out the current machine-cycle and machine-instruction
readings.
174 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Register Details Window
Memory Map
Figure 8.31 Simulator Memory Map

NOTE Figure 8.31 is the memory map configuration for the simulator. Therefore, the
simulator does not simulate each DSP568xx device’s specific memory map,
but assumes the memory map of the DSP56824.

Register Details Window
From the menu bar of the Freescale CodeWarrior window, select View > Register Details
or in the Registers window (Figure 8.15) right-click to open the Register Details
window(Figure 8.32).

Program
Memory
Space

Interrupt
Vectors

 Reserved

1FFFFF $FFFFFF

$7F

$0 $0

P: X:

$FFCO

 X Data
 Memory
 Space
17556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Loading .elf File without Project
Figure 8.32 Register Details Window

In the Register Details window, click the Browse button to locate the register description
files. Register description files must end with the .xml extension and be a single register
description file but not layout-level description file.

Example of a single register description file location:

\<CWInstallDir>\bin\Plugins\support\Registers\M56800E\GPIOA\
GPIOA_56F8006\GPIO_A_DDR.xml

Example of a layout-level description file location:

<CWInstallDir>\bin\Plugins\support\Registers\M56800E\GPIOA\G
PIOA_56F8006.xml

For general purpose registers you can type the name of the register (e.g., OMR, SR, IPR,
etc.) directly in the Description File field. The CodeWarrior IDE looks in the following
path when searching for GPR register description files:

<CWInstallDir>\bin\Plugins\support\Registers\M56800E\GPR

Using the Format list box in the Register Details window, you can change the format in
which the CodeWarrior IDE displays the registers.

Using the Text View list box in the Register Details window, you can change the text
information the CodeWarrior IDE displays.

Loading .elf File without Project
You can load and debug an .elf file without an associated project. To load an .elf file
for debugging without an associated project:
176 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using Command Window
1. Launch the CodeWarrior IDE.

2. Choose File > Open and specify the file to load in the standard dialog box that
appears.

Alternatively, you can drag and drop an .elf file onto the IDE.

3. You may have to add additional access paths in the Access Path preference panel in
order to see all of the source code.

4. Choose Project > Debug to begin debugging the application.

NOTE When you debug an .elf file without a project, the IDE sets the Build before
running setting on the Build Settings panel of the IDE Preference panels to
Never. Consequently, if you open another project to debug after debugging an
.elf file, you must change the Build before running setting before you can
build the project.

The project that the CodeWarrior tools uses to create a new project for the given .elf file
is 56800E_Default_Project.xml, which is in the directory located in the path:

CodeWarrior\bin\plugins\support

You can create your own version of this file to use as a default setting when opening an
.elf file:

1. Create a new project with the default setting you want.

2. Export the project to xml format.

3. Rename the xml format of the project to 56800E_Default_Project.xml and place it in
the support directory.

NOTE Back up or rename the original version of the default xml project before
overwriting it with your own customized version.

Using Command Window
In addition to using the regular CodeWarrior IDE debugger windows, you also can debug
using Tcl scripts or the Command Window.

For more information on Tcl scripts and the Command Window, see the CodeWarrior
Development Studio IDE 5.9 Windows® Automation Guide.
17756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
System-Level Connect
System-Level Connect
The CodeWarrior DSP56800E debugger lets you connect to a loaded target board and
view system registers and memory. A system-level connect does not let you view
symbolic information during a connection.

NOTE The following procedure explains how to connect in the context of developing
and debugging code on a target board. However, you can select the Debug >
Connect command anytime you have a project window open, even if you have
not yet downloaded a file to your target board.

To perform a system-level connect:

1. Select the Project window for the program you downloaded.

2. From the menu bar, select Debug > Connect.

The debugger connects to the board. You can now examine registers and the contents
of memory on the board.

Debugging in Flash Memory
The debugger is capable of programming flash memory. The programming occurs at
launch, during download. The flash programming option is turned on and the parameters
are set in the initialization file. This file is specified in the Debugger > M56800E Target
preference panel. A list of flash memory commands is given in the next section.

The stationery provides an example of how to specify a default initialization file, how to
write a linker command file for flash memory, and how to copy initialized data from ROM
to RAM using provided library functions.

NOTE If you use the phase locked loop (PLL) to change the system speed and you are
using software or automatic breakpoints, you will need to enable the alternate
flash download sequence, as described by the “target_code_sets_hfmclkd”
command in the following section.

Flash Memory Commands
The following is a list of flash memory commands that can be included in your
initialization file.

For more information on flash memory commands and initialization of the flash, see
M56800E Target (Debugging).
178 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Debugging in Flash Memory
set_hfmclkd <value>

This command writes the value which represents the clock divider for the flash memory
to the hfmclkd register.

The value for the set_hfmclkd command depends on the frequency of the clock. If
you are using a supported EVM, this value should not be changed from the value provided
in the default initialization file. However, if you are using an unsupported board and the
clock frequency is different from that of the supported EVM, a new value must be
calculated as described in the user’s manual of the particular processor that you are using.

NOTE The set_hfmclkd, set_hfm_base, and at least one add_hfm_unit
command must exist to enable flash programming. All other flash memory
commands are optional.

set_hfm_base <address>

This command sets the address of hfm_base, which is where the flash control registers
are mapped in X: memory.

NOTE The set_hfm_base and add_hfm_unit commands should not be
changed for a particular processor. Their values will always be the same.

set_hfm_config_base <address>

This command sets the address of hfm_config_base, which is where the flash
security values are written in program flash memory. If this command is present, the
debugger used the address to mimic part of the hardware reset behavior by copying the
protection values from the configuration field to the appropriate flash control registers.

add_hfm_unit <startAddr> <endAddr> <bank> <numSectors>

<pageSize> <progMem> <boot> <interleaved>

This command adds a flash unit to the list and sets its parameters.
17956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Debugging in Flash Memory
NOTE The set_hfm_base and add_hfm_unit commands should not be
changed for a particular processor. Their values will always be the same.

set_hfm_erase_mode units | pages | all

This command sets the erase mode as units, pages or all. If you set this to units,
the units that are programmed are mass erased. If set this to pages, the pages that are
programmed are erased. If you set this to all, all units are mass erased including those
that have not been programmed. If you omit this command, the erase mode defaults to the
unit mode.

set_hfm_verify_erase 1 | 0

If you set this to 1, the debugger verifies that the flash memory has been erased, and alerts
you if the erase failed. If this command is omitted, the flash erase is not verified.

set_hfm_verify_program 1 | 0

If you set this to 1, the debugger verifies that the flash has been programmed correctly,
and alerts you if the programming failed. If you omit this command, flash programming is
not verified.

target_code_sets_hfmclkd 1 | 0

If you set this to 1, the debugger uses an alternate launch sequence. First, the flash
memory is loaded. Next, the processor is reset to clear the hfmclkd register to allow the
correct divider to be set for the new system speed (as set by the PLL). Finally, if needed,
the RAM is loaded.

When this option is enabled, the hfmclkd register needs to be loaded in the startup code.
For more details on setting the hfmclkd register, see the chapter “Flash Memory” in the
MC56F8300 Peripheral User Manual. For a demo of the proper use of this feature, see the
example code.
180 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Notes for Debugging on Hardware
Flash Lock/Unlock
The Flash Lock and Flash Unlock commands let you control the Flash security state.

The Flash Lock command enables the Flash security state. In this state, you can not read
the memory or the registers.

The Flash Unlock command disables the Flash security. This results in all the Flash
memory being erased.

NOTE The Flash Lock and Flash Unlock commands can only be enabled if the
debugger session is not running.

 To use the Flash Lock or Flash Unlock command:

1. Kill any open debugger sessions.

2. Select a DSP56800E project with a Flash target.

NOTE A Flash target is a target using an initialization file containing Flash
commands.

3. Select a Flash target.

4. Select either Debug > 56800E > Flash Lock or Debug > 56800E > Flash Unlock
command.

Notes for Debugging on Hardware
Below are some tips and some things to be aware of when debugging on a hardware target:

• Ensure your Flash data size fits into Flash memory.

The linker command file specifies where data is written to. There is no bounds
checking for Flash programming.

• The standard library I/O function such as printf uses large amount of memory
and may not fit into flash targets.

• Use the Flash stationery when creating a new project intended for ROM.

The default stationery contains the Flash configuration file and debugger settings
required to use the Flash programmer.

• There is only one hardware breakpoint available, which is shared by IDE breakpoints
(when the Breakpoint Mode is set to hardware in the M56800E Target panel),
watchpoints, and EOnCE triggers. Only one of these may be set at a time.

• When a hardware breakpoint trigger is set to react to an instruction fetch (IDE
hardware breakpoint or EOnCE trigger) be aware that the hardware will react to the
18156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Notes for Debugging on Hardware
fetch whether or not the fetched instruction is executed. For example, if a hardware
breakpoint is set just after a loop, the processor will stop with the execution point
inside the loop. This is because the target instruction will be fetched while the
program is in the loop due to the large pipeline. A branch will occur to facilitate the
loop; however, the processor will stop because the target instruction has already been
fetched.

• The M56800E cannot single step over certain two and three-word uninterrupted
sequences. However, the debugger compensates using software breakpoints and the
trace buffer to allow single stepping in these situations. But, if these techniques
cannot be used (e.g., debugging in ROM or the trace buffer in use) single stepping
over these sequences results in the processor executing each instruction in the
sequence before stopping. The execution will be correct. Just be aware of this “slide”
in these situations.

• Debugging an application involves single-stepping through code. But if you don't
modify interrupts that are part of normal code execution, the debugger could jump to
interrupt-handler code, instead of stepping to the next instruction. By default, The
CodeWarrior debugger for DSC automatically masks all interrupt levels when the
user single steps over an instruction or a function and unmasks them afterwards.
Therefore, the user is advised to be aware of the temporary interrupt mask enable
values in Status Register (SR) when stepping over an inline assembly instruction that
copies the value of SR to another location.
182 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

9
Profiler

The profiler is a run-time feature that collects information about your program. It records
the minimum, maximum, and total number of clock cycles spent in each function. The
profiler allows you to evaluate your code and determine which functions require
optimization.

When profiling is enabled, the compiler adds code to call the entry functions in the profiler
library. These profiler library functions do all of the data collection. The profiler library,
with the help of the debugger create a binary output file, which is opened and displayed by
the CodeWarrior IDE.

NOTE For more information on the profiler library and its usage, see the CodeWarrior
Development Studio IDE 5.5 User’s Guide Profiler Supplement.

To enable your project for profiling:

1. Add the following path to your list of user paths in the Access Paths settings panel:

 {Compiler}M56800x Support\profiler

2. Add the following line to the file that contains the function main():

 #include “Profiler.h”

3. Add the profiler library file to your project. Select the library that matches your target
from this path:

 {CodeWarrior path}M56800x Support\profiler\lib

4. Add the following function calls to main():

 ProfilerInit()

 ProfilerClear()

 ProfilerSetStatus()

 ProfilerDump()

 ProfilerTerm()

For more details of these functions, see the CodeWarrior Development Studio IDE 5.5
User’s Guide Profiler Supplement.

5. It may be necessary to increase the heap size to accommodate the profiler data
collection. This can be set in the linker command file by changing the value of
__heap_size.
18356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Profiler
6. Enable profiling by setting the Generate code for profiling option in the M56800E
Processor settings panel or by using the profile on | off pragma to select individual
functions to profile.

NOTE For a profiler example, see the profiler example in this path:
{CodeWarrior path}(CodeWarrior_Examples)\
SimpleProfiler
184 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

10
Inline Assembly Language
and Intrinsics

The CodeWarrior™ compiler supports inline assembly language and intrinsic functions.
This chapter explains the IDE implementation of Freescale assembly language, with
regard to DSP56800E development. It also explains the relevant intrinsic functions.

This chapter includes these sections:

• Inline Assembly Language

• Intrinsic Functions

Inline Assembly Language
This section explains how to use inline assembly language. It includes these sections:

• Inline Assembly Overview

• Assembly Language Quick Guide

• Calling Assembly Language Functions from C Code

• Calling Functions from Assembly Language

Inline Assembly Overview
To specify assembly-language interpretation for a block of code in your file, use the asm
keyword and standard DSP56800E instruction mnemonics.

NOTE To make sure that the C compiler recognizes the asm keyword, you must clear
the ANSI Keywords Only checkbox of the C/C++ Language (C Only)
settings panel.
Differences in calling conventions mean that you cannot re-use DSP56800
assembly code in the DSP56800E compiler.

Listing 10.1 shows how to use the asm keyword with braces, to specify that an entire
function is in assembly language.
18556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Inline Assembly Language
Listing 10.1 Function-level syntax

asm <function header>
{

<assembly instructions>
}

The function header can be any valid C function header; the local declarations are any
valid C local declarations.

Listing 10.2 shows how to use the asm keyword with braces, to specify that a block of
statements or a single statement is in assembly language.

Listing 10.2 Statement-level syntax

asm { inline assembly statement
 inline assembly statement

 ...
}

asm {inline assembly statement}

The inline assembly statement is any valid assembly-language statement.

Listing 10.3 shows how to use the asm keyword with parentheses, to specify that a single
statement is in assembly language. Note that a semicolon must follow the close
parenthesis.

Listing 10.3 Alternate single-statement syntax

asm (inline assembly statement);

NOTE If you apply the asm keyword to one statement or a block of statements within
a function, you must not define local variables within any of the inline-
assembly statements.

Assembly Language Quick Guide
Keep these rules in mind as you write assembly language functions:

1. Each statement must be a label or a function.

2. A label can be any identifier not already declared as a local variable.
186 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Inline Assembly Language
3. All labels must follow the syntax:

[LocalLabel:]

Listing 10.4 illustrates the use of labels.

Listing 10.4 Labels in M56800E assembly

x1: add x0,y1,a
x2:

add x0,y1,a
x3 add x0,y1,a //ERROR, MISSING COLON

4. All instructions must follow the syntax:

((instruction) [operands])

5. Each statement must end with a new line

6. Assembly language directives, instructions, and registers are not case-sensitive. The
following two statements are the same:

add x0,y0

ADD X0,Y0

7. Comments must have the form of C or C++ comments; they must not begin with the ;
or # characters. Listing 10.5 shows the valid syntax for comments.

Listing 10.5 Valid comment syntax

move.w x:(r3),y0 # ERROR
add.w x0,y0 // OK
move.w r2,x:(sp) ; ERROR
adda r0,r1,n /* OK */

8. To optimize a block of inline assembly source code, use the inline assembly directive
.optimize_iasm on before the code block. Then use the directive
.optimize_iasm off at the end of the block. (Omitting .optimize_iasm
off means that optimizations continue to the end of the function.)

Calling Assembly Language Functions
from C Code
You can call assembly language functions from C just as you would call any standard C
function, using standard C syntax.
18756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Inline Assembly Language
Calling Inline Assembly Language Functions
Listing 10.6 demonstrates how to create an inline assembly language function in a C
source file. This example adds two 16-bit integers and returns the result.

Notice that you are passing two 16-bit addresses to the add_int function. You pick up
those addresses in R2 and R3, passing the sum back in Y0.

Listing 10.6 Sample code - Creating an inline assembly language function

asm int add_int(int * i, int * j)
{

move.w x:(r2),y0
move.w x:(r3),x0
add x0,y0
// int result returned in y0
rts

}

Listing 10.7 shows the C calling statement for this inline-assembly-language function.

Listing 10.7 Sample Code - Calling an Inline Assembly Language Function

int x = 4, y = 2;

y = add_int(&x, &y); /* Returns 6 */

Calling Pure Assembly Language Functions
If you want C code to call assembly language files, you must specify a SECTION mapping
for your code, for appropriate linking. You must also specify a memory space location.
Usually, this means that the ORG directive specifies code to program memory (P) space.

In the definition of an assembly language function, the GLOBAL directive must specify the
current-section symbols that need to be accessible by other sections.

Listing 10.8 is an example of a complete assembly language function. This function writes
two 16-bit integers to program memory. A separate function is required for writing to P:
memory, because C pointer variables allow access only to X: data memory.

The first parameter is a short value and the second parameter is the 16-bit address.

Listing 10.8 Sample code – Creating an assembly language function

;”my_asm.asm”
SECTION user ;map to user defined section in CODE
ORG P: ;put the following program in P
188 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Inline Assembly Language
;memory

GLOBAL Fpmemwrite ;This symbol is defined within the
;current section and should be
;accessible by all sections

Fpmemwrite:
MOVE Y1,R0 ;Set up pointer to address
NOP ;Pipeline delay for R0
MOVE Y0,P:(R0)+ ;Write 16-bit value to address

;pointed to by R0 in P: memory and
;post-increment R0

rts ;return to calling function

ENDSEC ;End of section
END ;End of source program

Listing 10.9 shows the C calling statement for this assembly language function.

Listing 10.9 Sample code – Calling an assembly language function from C

void pmemwrite(short, short);/* Write a value into P: memory */

void main(void)
{

// ...other code

 // Write the value given in the first parameter to the address
 // of the second parameter in P: memory
 pmemwrite((short)0xE9C8, (short)0x0010);

 // other code...
}

Calling Functions from Assembly
Language
Assembly language programs can call functions written in either C or assembly language.

• From within assembly language instructions, you can call C functions. For example,
if the C function definition is:

void foot(void) {
/* Do something */

}

Your assembly language calling statement is:
18956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
jsr Ffoot

• From within assembly language instructions, you can call assembly language
functions. For example, if pmemwrite is an assembly language function, the
assembly language calling statement is:

jsr Fpmemwrite

Intrinsic Functions
This section explains CodeWarrior intrinsic functions. It consists of these sections:

• Implementation

• Fractional Arithmetic

• Intrinsic Functions for Math Support

• Modulo Addressing Intrinsic Functions

Implementation
The CodeWarrior IDE for DSP56800E has intrinsic functions to generate inline-assembly-
language instructions. These intrinsic functions are a CodeWarrior extension to ANSI C.

Use intrinsic functions to target specific processor instructions. For example:

• Intrinsic functions let you pass in data for specific optimized computations. For
example, ANSI C data-representation rules may make certain calculations
inefficient, forcing the program to jump to runtime math routines. Such calculations
would be coded more efficiently as assembly language instructions and intrinsic
functions.

• Intrinsic functions can control small tasks, such as enabling saturation. One method
is using inline assembly language syntax, specifying the operation in an asm block,
every time that the operation is required. But intrinsic functions let you merely set
the appropriate bit of the operating mode register.

The IDE implements intrinsic functions as inline C functions in file
intrinsics_56800E.h, in the MSL directory tree. These inline functions contain
mostly inline assembly language code. An example is the abs_s intrinsic, defined as:

Listing 10.10 Example code - Definition of intrinsic function: abs_s

#define abs_s(a) __abs_s(a)
/* ABS_S */

inline Word16 __abs_s(register Word16 svar1)
{
/*
190 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
 * Defn: Absolute value of a 16-bit integer or fractional value
 * returning a 16-bit result.
 * Returns $7fff for an input of $8000
 *
 * DSP56800E instruction syntax: abs FFF
 * Allowed src regs: FFF
 * Allowed dst regs: (same)
 *
 * Assumptions: OMR's SA bit was set to 1 at least 3 cycles
 * before this code.
 */

asm(abs svar1);
return svar1;

}

Fractional Arithmetic
Many of the intrinsic functions use fractional arithmetic with implied fractional values.
An implied fractional value is a symbol declared as an integer type, but calculated as a
fractional type. Data in a memory location or register can be interpreted as fractional or
integer, depending on program needs.

All intrinsic functions that generate multiply or divide instructions perform fractional
arithmetic on implied fractional values. (These intrinsic functions are DIV, MPY, MAC,
MPYR, and MACR) The relationship between a 16-bit integer and a fractional value is:

Fractional Value = Integer Value / (215)

The relationship between a 32-bit integer and a fractional value is similar:

Fractional Value = Long Integer Value / (231)

Table 10.1 shows how 16- and 32-bit values can be interpreted as either fractional or
integer values.

Table 10.1 Interpretation of 16- and 32-bit Values

Type Hex Integer Value Fixed-Point Value

short int 0x2000 8192 0.25

short int 0xE000 -8192 -0.25

long int 0x20000000 536870912 0.25

long int 0xE0000000 -536870912 -0.25
19156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
NOTE Intrinsic functions us these macros:
Word16. — A macro for signed short.
Word32. — A macro for signed long.

Intrinsic Functions for Math Support
Table 10.2 lists the math intrinsic functions. See Modulo Addressing Intrinsic Functions
for explanations of the remaining intrinsic functions.

For the latest information about intrinsic functions, refer to file
intrinsics_56800E.h.

NOTE Intrinsics for integers contain int in the name.
Intrinsics for long long support contain LL in the name.

NOTE To use long long intrinsics, you must include the
instrinsics_LL_56800E.h file. Other intrinsics reside in
intrinsics_56800E.h.
192 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Table 10.2 Intrinsic Functions for DSP56800E

Category Function Category (cont.) Function (cont.)

Absolute/Negate abs_s Multiplication/MAC
(continued from
previous column)

mult_r

negate MULT_R_INT

L_abs L_mac

L_negate L_MAC_INT

LL_ABS L_msu

LL_NEGATE L_MSU_INT

Addition/
Subtraction

add L_mult

sub L_MULT_INT

L_add L_mult_ls

L_sub L_MULT_LS_INT

LL_ADD LL_LL_MULT_INT

LL_SUB LL_MULT_INT

Control stop LL_LL_MAC_INT

wait LL_MAC_INT

turn_off_conv_rndg LL_MSU_INT

turn_off_sat LL_LL_MSU_INT

turn_on_conv_rndg LL_MULT_LS_INT

turn_on_sat LL_LL_MULT

Deposit/Extract extract_h LL_MULT

extract_l LL_LL_MAC

L_deposit_h LL_MAC

L_deposit_l LL_MSU

LL_DEPOSIT_H LL_LL_MSU

LL_DEPOSIT_L LL_MULT_LS
19356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Absolute/Negate
The intrinsic functions of the absolute-value/negate group are:

• abs_s

• negate

• L_abs

Deposit/Extract
(cont.)

LL_EXTRACT_H Normalization ffs_s

LL_EXTRACT_L norm_s

Division div_s ffs_l

DIV_S_INT norm_l

div_s4q Rounding round_val

DIV_S4Q_INT ROUND_INT

div_ls LL_ROUND

DIV_LS_INT Shifting shl

div_ls4q shlftNs

DIV_LS4Q_INT shlfts

LL_DIV shr

LL_DIV_INT shr_r

LL_DIV_S4Q_INT shrtNs

Multiplication/
MAC

mac_r L_shl

MAC_R_INT L_shlftNs

msu_r L_shlfts

MSU_R_INT L_shr

mult L_shr_r

MULT_INT L_shrtNs

Table 10.2 Intrinsic Functions for DSP56800E (continued)

Category Function Category (cont.) Function (cont.)
194 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
• L_negate

• LL_ABS

• LL_NEGATE

abs_s

Absolute value of a 16-bit integer or fractional value returning a 16-bit result. Returns
0x7FFF for an input of 0x8000.

Assumptions

OMR’s SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word16 abs_s(Word16 svar1)

Example

int result, s1 = 0xE000; /* - 0.25 */

result = abs_s(s1);

// Expected value of result: 0x2000 = 0.25

negate

Negates a 16-bit integer or fractional value returning a 16-bit result. Returns 0x7FFF for
an input of 0x8000.

Assumptions

OMR’s SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word16 negate(Word16 svar1)
19556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Example

int result, s1 = 0xE000; /* - 0.25 */

result = negate(s1);

// Expected value of result: 0x2000 = 0.25

L_abs

Absolute value of a 32-bit integer or fractional value returning a 32-bit result. Returns
0x7FFFFFFF for an input of 0x80000000.

Assumptions

OMR’s SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_abs(Word32 lvar1)

Example

long result, l = 0xE0000000; /* - 0.25 */

result = L_abs(s1);

// Expected value of result: 0x20000000 = 0.25

L_negate

Negates a 32-bit integer or fractional value returning a 32-bit result. Returns 0x7FFFFFFF
for an input of 0x80000000.

Assumptions

OMR’s SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_negate(Word32 lvar1)
196 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Example

long result, l = 0xE0000000; /* - 0.25 */

result = L_negate(s1);

// Expected value of result: 0x20000000 = 0.25

LL_ABS

Absolute value of a 64-bit integer or fractional value returning a 64-bit result.

Prototype

Word64 __LL_abs(Word64 llvar)

Example

long long s1 = 0xEDCBA98800000000;

long long result;

result = LL_abs (s1);

// Expected value of result: abs(0xEDCBA98800000000) =
0x1234567800000000

LL_NEGATE

Negates a 64-bit integer or fractional value returning a 64-bit result.

Prototype

Word64 __LL_negate(Word64 llvar)

Example

long long s1 = 0x2345678900000000;

long long result;

result = LL_negate (s1);

// Expected value of result: neg(0x2345678900000000) =
0xDCBA987700000000
19756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Addition/Subtraction
The intrinsic functions of the addition/subtraction group are:

• add

• sub

• L_add

• L_sub

• LL_ADD

• LL_SUB

add

Addition of two 16-bit integer or fractional values, returning a 16-bit result.

Assumptions

OMR’s SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word16 add(Word16 src_dst, Word16 src2)

Example

short s1 = 0x4000; /* 0.5 */

short s2 = 0x2000; /* 0.25 */

short result;

result = add(s1,s2);

// Expected value of result: 0x6000 = 0.75

sub

Subtraction of two 16-bit integer or fractional values, returning a 16-bit result.
198 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Assumptions

OMR’s SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word16 sub(Word16 src_dst, Word16 src2)

Example

short s1 = 0x4000; /* 0.5 */

short s2 = 0xE000; /* -0.25 */

short result;

result = sub(s1,s2);

// Expected value of result: 0x6000 = 0.75

L_add

Addition of two 32-bit integer or fractional values, returning a 32-bit result.

Assumptions

OMR’s SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_add(Word32 src_dst, Word32 src2)

Example

long la = 0x40000000; /* 0.5 */

long lb = 0x20000000; /* 0.25 */

long result;

result = L_add(la,lb);

// Expected value of result: 0x60000000 = 0.75
19956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
L_sub

Subtraction of two 32-bit integer or fractional values, returning a 32-bit result.

Assumptions

OMR’s SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_sub(Word32 src_dst, Word32 src2)

 Example

long la = 0x40000000; /* 0.5 */

long lb = 0xE0000000; /* -0.25 */

long result;

result = L_sub(la,lb);

// Expected value of result: 0x60000000 = 0.75

LL_ADD

Addition of two 64-bit integer or fractional values, returning a 64-bit result.

Prototype

Word64 __LL_add(Word64 src_dst, Word64 src2)

Example

long long s1 = 0x3579BDEF00000000;

long long s2 = 0xA864213500000000;

long long result;

result = L_add (s1, s2);

// Expected value of result: 0x3579BDEF00000000 +
0xA864213500000000 = 0xDDDDDF2400000000
200 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
LL_SUB

Subtraction of two 64-bit integer or fractional values, returning a 64-bit result.

Prototype

Word64 __LL_sub(Word64 src_dst, Word64 src2)

Example

long long s1 = 0x2345678900000000;

long long s2 = 0xDCBA987700000000;

long long result;

result = L_sub (s1, s2);

// Expected value of result: 0x2345678900000000 -
0xDCBA987700000000 = 0x468ACF1200000000

Control
The intrinsic functions of the control group are:

• stop

• wait

• turn_off_conv_rndg

• turn_off_sat

• turn_on_conv_rndg

• turn_on_sat

stop

Generates a STOP instruction which places the processor in the low power STOP mode.

Prototype

void stop(void)

Usage

stop();
20156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
wait

Generates a WAIT instruction which places the processor in the low power WAIT mode.

Prototype

void wait(void)

Usage

wait();

turn_off_conv_rndg

Generates a sequence for disabling convergent rounding by setting the R bit in the OMR
register and waiting for the enabling to take effect.

NOTE If convergent rounding is disabled, the assembler performs twos complement
rounding.

Prototype

void turn_off_conv_rndg(void)

Usage

turn_off_conv_rndg();

turn_off_sat

Generates a sequence for disabling automatic saturation in the MAC Output Limiter by
clearing the SA bit in the OMR register and waiting for the disabling to take effect.

Prototype

void turn_off_sat(void)

Usage

turn_off_sat();
202 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
turn_on_conv_rndg

Generates a sequence for enabling convergent rounding by clearing the R bit in the OMR
register and waiting for the enabling to take effect.

Prototype

void turn_on_conv_rndg(void)

Usage

turn_on_conv_rndg();

turn_on_sat

Generates a sequence for enabling automatic saturation in the MAC Output Limiter by
setting the SA bit in the OMR register and waiting for the enabling to take effect.

Prototype

void turn_on_sat(void)

Usage

turn_on_sat();

Deposit/Extract
The intrinsic functions of the deposit/extract group are:

• extract_h

• extract_l

• L_deposit_h

• L_deposit_l

• LL_DEPOSIT_H

• LL_DEPOSIT_L

• LL_EXTRACT_H

• LL_EXTRACT_L
20356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
extract_h

Extracts the 16 MSBs of a 32-bit integer or fractional value. Returns a 16-bit value. Does
not perform saturation. When an accumulator is the destination, zeroes out the LSP
portion. Corresponds to truncation when applied to fractional values.

Prototype

Word16 extract_h(Word32 lsrc)

Example

long l = 0x87654321;

short result;

result = extract_h(l);

// Expected value of result: 0x8765

extract_l

Extracts the 16 LSBs of a 32-bit integer or fractional value. Returns a 16-bit value. Does
not perform saturation. When an accumulator is the destination, zeroes out the LSP
portion.

Prototype

Word16 extract_l(Word32 lsrc)

Example

long l = 0x87654321;

short result;

result = extract_l(l);

// Expected value of result: 0x4321
204 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
L_deposit_h

Deposits the 16-bit integer or fractional value into the upper 16 bits of a 32-bit value, and
zeroes out the lower 16 bits of a 32-bit value.

Prototype

Word32 L_deposit_h(Word16 ssrc)

Example

short s1 = 0x3FFF;

long result;

result = L_deposit_h(s1);

// Expected value of result: 0x3fff0000

L_deposit_l

Deposits the 16-bit integer or fractional value into the lower 16 bits of a 32-bit value, and
sign extends the upper 16 bits of a 32-bit value.

Prototype

Word32 L_deposit_l(Word16 ssrc)

Example

short s1 = 0x7FFF;

long result;

result = L_deposit_l(s1);

// Expected value of result: 0x00007FFF

LL_DEPOSIT_H

Deposits the 32-bit integer or fractional value into the upper 32-bits of a 64 bit value, and
zeros out the lower 32-bits of a 64-bit value.
20556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Prototype

Word64 __LL_deposit_h(Word32 lsrc)

Example

long s = 0x12341234;

long long result;

result = LL_deposit_h (s);

// Expected value of result: 0x1234123400000000

LL_DEPOSIT_L

Deposits the 32-bit integer or fractional value into the lower 32-bits of a 64 bit value, and
sign extends the upper 32-bits of a 64-bit value.

Prototype

Word64 __LL_deposit_l(Word32 lsrc)

Example

long s = 0x12341234;

long long result;

result = LL_deposit_h (s);

// Expected value of result: 0x0000000012341234

LL_EXTRACT_H

Extracts the 32 MSBs of a 64-bit integer or fractional value. Returns a 32-bit value.

Prototype

Word32 __LL_extract_h(Word64 llsrc)
206 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Example

long long s = 0x1234123443214321;

long result;

result = LL_extract_h (s);

// Expected value of result: 0x12341234

LL_EXTRACT_L

Extracts the 32 LSBs of a 64-bit integer or fractional value. Returns a 32-bit value.

Prototype

Word32 __LL_extract_l(Word64 llsrc)

Example

long long s = 0x1234123443214321;

long result;

result = LL_extract_h (s);

// Expected value of result: 0x43214321

Division
The intrinsic functions of the division group are:

• div_s

• DIV_S_INT

• div_s4q

• DIV_S4Q_INT

• div_ls

• DIV_LS_INT

• div_ls4q

• DIV_LS4Q_INT

• LL_DIV

• LL_DIV_INT

• LL_DIV_S4Q_INT
20756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
div_s

Single quadrant division, that is, both operands are of positive 16-bit fractional values,
returning a 16-bit result. If both operands are equal, returns 0x7FFF (occurs naturally).

NOTE Does not check for division overflow or division by zero.

Prototype

Word16 div_s(Word16 s_numerator, Word16 s_denominator)

Example

short s1=0x2000; /* 0.25 */

short s2=0x4000; /* 0.5 */

short result;

result = div_s(s1,s2);

// Expected value of result: 0.25/0.5 = 0.5 = 0x4000

DIV_S_INT

Single quadrant division (i.e. both operands positive) of two 16-bit integer values,
returning a 16-bit result. If both operands are equal, returns $7FFF (occurs naturally).

Prototype

Word16 __div_s_int(Word16 s_denominator, Word16 s_numerator)

Example

int s1 = 0x2000; /* 8192 */

int s2 = 0x0800; /* 2048 */

int result;

result = div_s_int (s1,s2);

// Expected value of result: 8192 / 2048 = 4 = 0x0004
208 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
div_s4q

Four quadrant division of two 16-bit fractional values, returning a 16-bit result.

NOTE Does not check for division overflow or division by zero.

Prototype

Word16 div_s4q(Word16 s_numerator, Word16 s_denominator)

Example

short s1=0xE000;/* -0.25 */

short s2=0xC000;/* -0.5 */

short result;

result = div_s4q(s1,s2);

// Expected value of result: -0.25/-0.5 = 0.5 = 0x4000

DIV_S4Q_INT

Four quadrant division of a 16-bit integer dividend and a 16-bit integer divisor, returning a
16-bit result.

Prototype

Word16 __div_s4q_int(Word16 s_numerator, Word16
s_denominator)

Example

int s1 = 0xE000; /* -8192 */

int s2 = 0x0800; /* 2048 */

int result;

result = div_s4q_int (s1,s2);

// Expected value of result: -8192 / 2048 = -4 = 0xFFFC
20956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
div_ls

Single quadrant division, that is, both operands are positive two 16-bit fractional values,
returning a 16-bit result. If both operands are equal, returns 0x7FFF (occurs naturally).

NOTE Does not check for division overflow or division by zero.

Prototype

Word16 div_ls(Word32 l_numerator, Word16 s_denominator)

Example

long l =0x20000000;/* 0.25 */

short s2=0x4000;/* 0.5 */

short result;

result = div_ls(l,s2);

// Expected value of result: 0.25/0.5 = 0.5 = 0x4000

DIV_LS_INT

Single quadrant division (i.e. both operands positive) of a 32-bit integer dividend and a 16-
bit integer divisor, returning a 16-bit result. If both operands are equal, returns $7FFF
(occurs naturally).

Prototype

Word16 __div_ls_int(Word16 s_denominator, Word32 l_numerator)

Example

int s1 = 0x2000; /* 8192 */

long s2 = 0x08000000; /* 134217728 */

int result;

result = div_s_int (s1,s2);

// Expected value of result: 134217728 / 8192 = 16384 =
0x4000
210 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
div_ls4q

Four quadrant division of a 32-bit fractional dividend and a 16-bit fractional divisor,
returning a 16-bit result.

NOTE Does not check for division overflow or division by zero.

Prototype

Word16 div_ls4q(Word32 l_numerator, Word16 s_denominator)

Example

long l =0xE0000000;/* -0.25 */

short s2=0xC000;/* -0.5 */

short result;

result = div_ls4q(s1,s2);

// Expected value of result: -0.25/-0.5 = 0.5 = 0x4000

DIV_LS4Q_INT

Four quadrant division of a 32-bit integer dividend and a 16-bit integer divisor, returning a
16-bit result.

Prototype

Word16 __div_ls4q_int(Word16 s_denominator, Word32
l_numerator)

Example

int s1 = 0xE000; /* -8192 */

long s2 = 0x08000000; /* 134217728 */

int result;

result = div_ls4q_int (s1,s2);

// Expected value of result: 134217728 / -8192 = -16384
= 0xC000
21156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
LL_DIV

Division of one 64-bit fractional value and one 32-bit fractional value, returning a 32-bit
result.

Prototype

Word32 __LL_div(Word64 s_numerator, Word32 s_denominator)

Example

long long s1 = 0x1807E01E00000000;

long s2 = 0x300F0000;

long result;

result = LL_div (s1,s2);

// Expected value of result: 0x1807E01E00000000 /
0x300F0000 = 0x40010000

NOTE The intrinsics_LL_56800E.h file must be included.

LL_DIV_INT

Single quadrant division (i.e. both operands positive) of two 64-bit integer values,
returning a 64-bit result.

Prototype

Word64 __LL_div_int(Word64 s_numerator, Word64 s_denominator)

Example

long long s1 = 0x000000001807E01E;

long long s2 = 0x000000000000300F;

long long result;

result = LL_div_int (s1, s2);

// Expected value of result: 0x000000001807E01E /
0x000000000000300F = 0x0000000000008002
212 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
LL_DIV_S4Q_INT

Four quadrant division of a 64-bit integer dividend and a 64-bit integer divisor, returning a
64-bit result.

Prototype

Word64 __LL_div_s4q_int(Word64 s_denominator, Word64
s_numerator)

Example

long long s1 = 0x000000001807E01E;

long long s2 = 0x000000000000300F;

long long result;

result = LL_div_s4q_int (s1, s2);

// Expected value of result: 0x000000001807E01E /
0x000000000000300F = 0x0000000000008002

Multiplication/MAC
The intrinsic functions of the multiplication/MAC group are:

• mac_r

• MAC_R_INT

• msu_r

• MSU_R_INT

• mult

• MULT_INT

• mult_r

• MULT_R_INT

• L_mac

• L_MAC_INT

• L_msu

• L_MSU_INT

• L_mult

• L_MULT_INT
21356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
• L_mult_ls

• L_MULT_LS_INT

• LL_LL_MULT_INT

• LL_MULT_INT

• LL_LL_MAC_INT

• LL_MAC_INT

• LL_MSU_INT

• LL_LL_MSU_INT

• LL_MULT_LS_INT

• LL_LL_MULT

• LL_MULT

• LL_LL_MAC

• LL_MAC

• LL_MSU

• LL_LL_MSU

• LL_MULT_LS

mac_r

Multiply two 16-bit fractional values and add to 32-bit fractional value. Round into a 16-
bit result, saturating if necessary. When an accumulator is the destination, zeroes out the
LSP portion.

Assumptions

OMR’s SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

OMR’s R bit was set to 1 at least three cycles before this code, that is, twos complement
rounding, not convergent rounding.

Prototype

Word16 mac_r(Word32 laccum, Word16 sinp1, Word16 sinp2)
214 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Example

short s1 = 0xC000;/* - 0.5 */

short s2 = 0x4000;/* 0.5 */

short result;

long Acc = 0x0000FFFF;

result = mac_r(Acc,s1,s2);

// Expected value of result: 0xE001

MAC_R_INT

Multiply two 16-bit integer values and add to 32-bit integer value. Round into a 16-bit
result.

Prototype

Word16 __mac_r_int(Word32 laccum, Word16 sinp1, Word16 sinp2)

Example

long s1 = 0x20000000;/* 536870912 */

int s2 = 0x2000;/* 8192 */

int s3 = 0x2000;/* 8192 */

int result;

result = mac_r_int (s1, s2, s3);

// Expected value of result : round(8192 * 8192 +
536870912) = round (603979776) = 9216 = 0x2400

msu_r

Multiply two 16-bit fractional values and subtract this product from a 32-bit fractional
value. Round into a 16-bit result, saturating if necessary. When an accumulator is the
destination, zeroes out the LSP portion.

Assumptions

OMR’s SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.
21556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
OMR’s R bit was set to 1 at least three cycles before this code, that is, twos complement
rounding, not convergent rounding.

Prototype

Word16 msu_r(Word32 laccum, Word16 sinp1, Word16 sinp2)

Example

short s1 = 0xC000;/* - 0.5 */

short s2 = 0x4000;/* 0.5 */

short result;

long Acc = 0x20000000;

result = msu_r(Acc,s1,s2);

// Expected value of result: 0x4000

MSU_R_INT

Multiply two 16-bit integer values and substract this product from a 32-bit integer value.
Round into a 16-bit result.

Prototype

Word16 __msu_r_int(Word32 laccum, Word16 sinp1, Word16 sinp2)

Example

long s1 = 0x20000000;/* 536870912 */

int s2 = 0x2000;/* 8192 */

int s3 = 0x2000;/* 8192 */

int result;

result = msu_r_int (s1, s2, s3);

// Expected value of result : round(536870912 - 8192 *
8192) = round (469762048) = 7168 = 0x1c00
216 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
mult

Multiply two 16-bit fractional values and truncate into a 16-bit fractional result. Saturates
only for the case of 0x8000 x 0x8000. When an accumulator is the destination, zeroes out
the LSP portion.

Assumptions

OMR’s SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word16 mult(Word16 sinp1, Word16 sinp2)

Example

short s1 = 0x2000;/* 0.25 */

short s2 = 0x2000;/* 0.25 */

short result;

result = mult(s1,s2);

// Expected value of result: 0.625 = 0x0800

MULT_INT

Multiply two 16-bit integer values and truncate into a 16-bit integer result.

Prototype

Word16 __mult_int(Word16 sinp1, Word16 sinp2)

Example

int s1 = 0x2000;/* 8192 */

int s2 = 0x2000;/* 8192 */

int result;

result = mult_int (s1, s2);

// Expected value of result : 8192 * 8192 = high
(67108864) = 1024 = 0x0400
21756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
mult_r

Multiply two 16-bit fractional values, round into a 16-bit fractional result. Saturates only
for the case of 0x8000 x 0x8000. When an accumulator is the destination, zeroes out the
LSP portion.

Assumptions

OMR’s SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

OMR’s R bit was set to 1 at least three cycles before this code, that is, twos complement
rounding, not convergent rounding.

Prototype

Word16 mult_r(Word16 sinp1, Word16 sinp2)

Example

short s1 = 0x2000;/* 0.25 */

short s2 = 0x2000;/* 0.25 */

short result;

result = mult_r(s1,s2);

// Expected value of result: 0.0625 = 0x0800

MULT_R_INT

Multiply two 16-bit integer values and round into a 16-bit integer result.

Prototype

Word16 __mult_r_int(Word16 sinp1, Word16 sinp2)
218 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Example

int s1 = 0x2000;/* 8192 */

int s2 = 0x2000;/* 8192 */

int result;

result = mult_int (s1, s2);

// Expected value of result : 8192 * 8192 = round
(67108864) = 1024 = 0x0400

L_mac

Multiply two 16-bit fractional values and add to 32-bit fractional value, generating a 32-
bit result, saturating if necessary.

Assumptions

OMR’s SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_mac(Word32 laccum, Word16 sinp1, Word16 sinp2)

Example

short s1 = 0xC000;/* - 0.5 */

short s2 = 0x4000;/* 0.5 */

long result, Acc = 0x20000000;/* 0.25 */

result = L_mac(Acc,s1,s2);

// Expected value of result: 0

L_MAC_INT

Multiply two 16-bit integer values and add to 32-bit integer value, generating a 32-bit
result.

Prototype

Word32 __L_mac_int(Word32 laccum, Word16 sinp1, Word16 sinp2)
21956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Example

long s1 = 0x20000000;/* 536870912 */

int s2 = 0x2000;/* 8192 */

int s3 = 0x2000;/* 8192 */

long result;

result = L_mac_int (s1, s2, s3);

// Expected value of result: 8192 * 8192 + 536870912 =
603979776 = 0x24000000

L_msu

Multiply two 16-bit fractional values and subtract this product from a 32-bit fractional
value, saturating if necessary. Generates a 32-bit result.

Assumptions

OMR’s SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_msu(Word32 laccum, Word16 sinp1, Word16 sinp2)

Example

short s1 = 0xC000;/* - 0.5 */

short s2 = 0xC000;/* - 0.5 */

long result, Acc = 0;

result = L_msu(Acc,s1,s2);

// Expected value of result: 0.25

L_MSU_INT

Multiply two 16-bit integer values and substract this product from a 32-bit integer value.
Generates a 32-bit result.
220 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Prototype

Word32 __L_msu_int(Word32 laccum, Word16 sinp1, Word16 sinp2)

Example

long s1 = 0x20000000;/* 536870912 */

int s2 = 0x2000;/* 8192 */

int s3 = 0x2000;/* 8192 */

long result;

result = L_msu_int (s1, s2, s3);

// Expected value of result : 536870912 - 8192 * 8192 =
469762048 = 0x1c000000

L_mult

Multiply two 16-bit fractional values generating a signed 32-bit fractional result. Saturates
only for the case of 0x8000 x 0x8000.

Assumptions

OMR’s SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_mult(Word16 sinp1, Word16 sinp2)

Example

short s1 = 0x2000;/* 0.25 */

short s2 = 0x2000;/* 0.25 */

long result;

result = L_mult(s1,s2);

// Expected value of result: 0.0625 = 0x08000000
22156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
L_MULT_INT

Multiply two 16-bit integer values generating a 32-bit integer result.

Prototype

Word32 __L_mult_int(Word16 sinp1, Word16 sinp2)

Example

int s1 = 0x2000;/* 8192 */

int s2 = 0x2000;/* 8192 */

long result;

result = mult_int (s1, s2);

// Expected value of result : 8192 * 8192 = 67108864 =
0x04000000

L_mult_ls

Multiply one 32-bit and one-16-bit fractional value, generating a signed 32-bit fractional
result. Saturates only for the case of 0x80000000 x 0x8000.

Assumptions

OMR’s SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_mult_ls(Word32 linp1, Word16 sinp2)

Example

long l1 = 0x20000000;/* 0.25 */

short s2 = 0x2000;/* 0.25 */

long result;

result = L_mult(l1,s2);

// Expected value of result: 0.625 = 0x08000000
222 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
L_MULT_LS_INT

Multiply one 32-bit and one 16-bit integer value, generating a signed 32-bit integer result.

Prototype

Word32 __L_mult_ls_int(Word32 linp1, Word16 sinp2)

Example

long s1 = 0x20000000;/* 536870912 */

int s2 = 0x2000;/* 8192 */

long result;

result = L_mult_ls_int (s1, s2);

// Expected value of result : high(8192 * 536870912) =
high(4398046511104) = 67108864 = 0x04000000

LL_LL_MULT_INT

Multiply two 64-bit integer values generating a signed 64-bit integer result.

Prototype

Word64 __LL_LL_mult_int(Word64 sinp1, Word64 sinp2)

Example

long long s1 = 0x000000000000A003;

long long s2 = 0x000000000000B005;

long long result;

result = LL_LL_mult_int (s1, s2);

// Expected value of result: 0x000000000000A003 *
0x000000000000B005 = 0x000000006E05300F
22356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
LL_MULT_INT

Multiply two 32-bit integer values generating a signed 64-bit integer result.

Prototype

Word64 __LL_mult_int(Word32 sinp1, Word32 sinp2)

Example

long s1 = 0x0000A003;

long s2 = 0x0000B005;

long long result;

result = LL_mult_int (s1, s2);

// Expected value of result: 0x0000A003 * 0x0000B005 =
0x000000006E05300F

LL_LL_MAC_INT

Multiply two 64-bit integer values and add to 64-bit integer value, generating a 64-bit
result.

Prototype

Word64 __LL_LL_mac_int(Word64 laccum, Word64 sinp1, Word64
sinp2)

Example

long long s1 = 0x000000000000A003;

long long s2 = 0x000000000000B005;

long long s = 0x00000000D0008000;

long long result;

result = LL_LL_mac_int (s, s1, s2);

// Expected value of result: 0x00000000D0008000 +
0x000000000000A003 * 0x000000000000B005 =
0x00000001305B00F
224 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
LL_MAC_INT

Multiply two 32-bit integer values and add to 64-bit integer value, generating a 64-bit
result.

Prototype

Word64 __LL_mac_int(Word64 laccum, Word32 sinp1, Word32
sinp2)

Example

long s1 = 0x0000A003;

long s2 = 0x0000B005;

long long s = 0x00000000D0008000;

long long result;

result = LL_mac_int (s, s1, s2);

// Expected value of result: 0x00000000D0008000 +
0x0000A003 * 0x0000B005 = 0x00000001305B00F

LL_MSU_INT

Multiply two 32-bit integer values and subtract this product from a 64-bit integer value.
Generates a 64-bit result.

Prototype

Word64 __LL_msu_int(Word64 laccum, Word32 sinp1, Word32
sinp2)

Example

long s1 = 0x0000A003;

long s2 = 0x0000B005;

long long s = 0x00000000D0008000;

long long result;

result = LL_msu_int (s, s1, s2);

// Expected value of result: 0x00000000D0008000 -
0x0000A003 * 0x0000B005 = 0x000000061FB4FF1
22556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
LL_LL_MSU_INT

Multiply two 64-bit integer values and subtract this product from a 64-bit integer value.
Generates a 64-bit result.

Prototype

Word64 __LL_LL_msu_int(Word64 laccum, Word64 sinp1, Word64
sinp2)

Example

long long s1 = 0x000000000000A003;

long long s2 = 0x000000000000B005;

long long s = 0x00000000D0008000;

long long result;

result = LL_LL_msu_int (s, s1, s2);

// Expected value of result: 0x00000000D0008000 -
0x000000000000A003 * 0x000000000000B005 =
0x000000061FB4FF1

LL_MULT_LS_INT

Multiply a 64-bit integer value with a 32-bit integer value, generating a 64-bit result.

Prototype

Word64 __LL_mult_ls_int(Word64 linp1, Word32 sinp2)

Example

long long s1 = 0x00000000A0030000;

long s2 = 0x0000B005;

long long result;

result = LL_mult_ls_int (s1, s2);

// Expected value of result: 0x00000000A0030000 *
0x0000B005 = 0x00006E05300F0000
226 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
LL_LL_MULT

Multiply two 64-bit fractional values generating a signed 64-bit fractional result.

Prototype

Word64 __LL_LL_mult(Word64 sinp1, Word64 sinp2)

Example

long long s1 = 0x00000000A0030000;

long long s2 = 0x00000000B0050000;

long long result;

result = LL_LL_mult (s1, s2);

// Expected value of result: 0x00000000A0030000 *
0x00000000B0050000 = 0xDC0A601E00000000

LL_MULT

Multiply two 32-bit fractional values generating a signed 64-bit fractional result.

Prototype

Word64 __LL_mult(Word32 sinp1, Word32 sinp2)

Example

long s1 = 0xA0030000;

long s2 = 0xB0050000;

long long result;

result = LL_mult (s1, s2);

// Expected value of result: 0xA0030000 * 0xB0050000 =
0x3BFA601E00000000

LL_LL_MAC

Multiply two 64-bit fractional values and add to 64-bit fractional value, generating a 64-
bit result.
22756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Prototype

Word64 __LL_LL_mac(Word64 laccum, Word64 sinp1, Word64 sinp2)

Example

long long s1 = 0x000000000000A003;

long long s2 = 0x000000000000B005;

long long s = 0x00000000D0008000;

long long result;

result = LL_LL_mac (s, s1, s2);

// Expected value of result: 0x00000000D0008000 +
0x000000000000A003 * 0x000000000000B005 =
0x00000001AC0AE01E

LL_MAC

Multiply two 32-bit fractional values and add to 64-bit fractional value, generating a 64-
bit result.

Prototype

Word64 __LL_mac(Word64 laccum, Word32 sinp1, Word32 sinp2)

Example

long s1 = 0x0000A003;

long s2 = 0x0000B005;

long long s = 0x00000000D0008000;

long long result;

result = LL_mac (s, s1, s2);

// Expected value of result: 0x00000000D0008000 +
0x0000A003 * 0x0000B005 = 0x00000001AC0AE01E

LL_MSU

Multiply two 32-bit fractional values and subtract this product from a 64-bit fractional
value. Generates a 64-bit result.
228 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Prototype

Word64 __LL_msu(Word64 laccum, Word32 sinp1, Word32 sinp2)

Example

long s1 = 0x0000A003;

long s2 = 0x0000B005;

long long s = 0x00000000D0008000;

long long result;

result = LL_msu (s, s1, s2);

// Expected value of result: 0x00000000D0008000 -
0x0000A003 * 0x0000B005 = 0xFFFFFFFFF3F61FE2

LL_LL_MSU

Multiply two 64-bit fractional values and subtract this product from a 64-bit fractional
value. Generates a 64-bit result.

Prototype

Word64 __LL_LL_msu(Word64 laccum, Word64 sinp1, Word64 sinp2)

Example

long long s1 = 0x000000000000A003;

long long s2 = 0x000000000000B005;

long long s = 0x00000000D0008000;

long long result;

result = LL_LL_msu (s, s1, s2);

// Expected value of result: 0x00000000D0008000 -
0x000000000000A003 * 0x000000000000B005 =
0xFFFFFFFFF3F61FE2

LL_MULT_LS

Multiply a 64-bit fractional value with a 32-bit fractional value, generating a 64-bit result.
22956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Prototype

Word64 __LL_mult_ls(Word64 linp1, Word32 sinp2)

Example

long long s1 = 0x00000000A0030000;

long long s2 = 0x0000B005;

long long result;

result = LL_LL_msu (s1, s2);

// Expected value of result: 0x00000000A0030000 *
0x0000B005 = 0x0000DC0A601E0000

Normalization
The intrinsic functions of the normalization group are:

• ffs_s

• norm_s

• ffs_l

• norm_l

ffs_s

Computes the number of left shifts required to normalize a 16-bit value, returning a 16-bit
result (finds 1st sign bit). Returns a shift count of 31 for an input of 0x0000.

NOTE Does not actually normalize the value! Also see the intrinsic norm_s which
handles the case where the input == 0x0000 differently.

Prototype

Word16 ffs_s(Word16 ssrc)
230 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Example

short s1 = 0x2000;/* .25 */

short result;

result = ffs_s(s1);

// Expected value of result: 1

norm_s

Computes the number of left shifts required to normalize a 16-bit value, returning a 16-bit
result. Returns a shift count of 0 for an input of 0x0000.

NOTE Does not actually normalize the value! This operation is not optimal on the
DSP56800E because of the case of returning 0 for an input of 0x0000. See the
intrinsic ffs_s which is more optimal but generates a different value for the case
where the input == 0x0000.

Prototype

Word16 norm_s(Word16 ssrc)

Example

short s1 = 0x2000;/* .25 */

short result;

result = norm_s(s1);

// Expected value of result: 1

ffs_l

Computes the number of left shifts required to normalize a 32-bit value, returning a 16-bit
result (finds 1st sign bit). Returns a shift count of 31 for an input of 0x00000000.

NOTE Does not actually normalize the value! Also, see the intrinsic norm_l which
handles the case where the input == 0x00000000 differently.
23156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Prototype

Word16 ffs_l(Word32 lsrc)

Example

long ll = 0x20000000;/* .25 */

short result;

result = ffs_l(ll);

// Expected value of result: 1

norm_l

Computes the number of left shifts required to normalize a 32-bit value, returning a 16-bit
result. Returns a shift count of 0 for an input of 0x00000000.

NOTE Does not actually normalize the value! This operation is not optimal on the
DSP56800E because of the case of returning 0 for an input of 0x00000000. See
the intrinsic ffs_l which is more optimal but generates a different value for the
case where the input == 0x00000000.

Prototype

Word16 norm_l(Word32 lsrc)

Example

long ll = 0x20000000;/* .25 */

short result;

result = norm_l(ll);

// Expected value of result: 1

Rounding
The intrinsic functions of the rounding group are:

• round_val

• ROUND_INT
232 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
• LL_ROUND

ROUND_INT

Rounds a 32-bit integer value into a 16-bit result. When an accumulator is the destination,
zeroes out the LSP portion.

Prototype

Word16 __round_int(Word32 lvar1)

Example

long s = 0x12347FFF;

int result;

result = round_int (s);

// Expected value of result: 0x1234

round_val

Rounds a 32-bit fractional value into a 16-bit result. When an accumulator is the
destination, zeroes out the LSP portion.

Assumptions

OMR’s R bit was set to 1 at least three cycles before this code, that is, two’s complement
rounding, not convergent rounding.

OMR’s SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word16 round(Word32 lvar1)

Example

long l = 0x12348002;/*if low 16 bits = 0xFFFF > 0x8000
23356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
then add 1 */

short result;

result = round_val(l);

// Expected value of result: 0x1235

LL_ROUND

Rounds a 64-bit integer or fractional value. Returns a 32-bit value.

Prototype

Word32 __LL_round(Word64 llvar)

Example

long long s = 0x1234123443214321;

long result;

result = LL_round (s);

// Expected value of result: 0x43214321

Shifting
The intrinsic functions of the shifting group are:

• shl

• shlftNs

• shlfts

• shr

• shr_r

• shrtNs

• L_shl

• L_shlftNs

• L_shlfts

• L_shr

• L_shr_r

• L_shrtNs
234 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
shl

Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is positive, a
left shift is performed. Otherwise, a right shift is performed. Saturation may occur during a
left shift. When an accumulator is the destination, zeroes out the LSP portion.

NOTE This operation is not optimal on the DSP56800E because of the saturation
requirements and the bidirectional capability. See the intrinsic shlftNs or shlfts
which are more optimal.

Assumptions

OMR’s SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word16 shl(Word16 sval2shft, Word16 s_shftamount)

Example

short result;

short s1 = 0x1234;

short s2 = 1;

result = shl(s1,s2);

// Expected value of result: 0x2468

shlftNs

Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is positive, a
left shift is performed. Otherwise, a right shift is performed. Saturation does not occur
during a left shift. When an accumulator is the destination, zeroes out the LSP portion.

NOTE Ignores upper N-5 bits of s_shftamount except the sign bit (MSB).
If s_shftamount is positive and the value in the lower 5 bits of
s_shftamount is greater than 15, the result is 0.
If s_shftamount is negative and the absolute value in the lower 5 bits of
23556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
s_shftamount is greater than 15, the result is 0 if sval2shft is positive,
and 0xFFFF if sval2shft is negative.

Prototype

Word16 shlftNs(Word16 sval2shft, Word16 s_shftamount)

Example

short result;

short s1 = 0x1234;

short s2 = 1;

result = shlftNs(s1,s2);

// Expected value of result: 0x2468

shlfts

Arithmetic left shift of 16-bit value by a specified shift amount. Saturation does occur
during a left shift if required. When an accumulator is the destination, zeroes out the LSP
portion.

NOTE This is not a bidirectional shift.

Assumptions

Assumed s_shftamount is positive.

OMR’s SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word16 shlfts(Word16 sval2shft, Word16 s_shftamount)
236 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Example

short result;

short s1 = 0x1234;

short s2 = 3;

result = shlfts(s1,s2);

// Expected value of result: 0x91a0

shr

Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is positive, a
right shift is performed. Otherwise, a left shift is performed. Saturation may occur during a
left shift. When an accumulator is the destination, zeroes out the LSP portion.

NOTE This operation is not optimal on the DSP56800E because of the saturation
requirements and the bidirectional capability. See the intrinsic shrtNs which is
more optimal.

Assumptions

OMR’s SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word16 shr(Word16 sval2shft, Word16 s_shftamount)

Example

short result;

short s1 = 0x2468;

short s2= 1;

result = shr(s1,s2);

// Expected value of result: 0x1234
23756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
shr_r

Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is positive, a
right shift is performed. Otherwise, a left shift is performed. If a right shift is performed,
then rounding performed on result. Saturation may occur during a left shift. When an
accumulator is the destination, zeroes out the LSP portion.

NOTE This operation is not optimal on the DSP56800E because of the saturation
requirements and the bidirectional capability. See the intrinsic shrtNs which is
more optimal.

Assumptions

OMR’s SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word16 shr_r(Word16 s_val2shft, Word16 s_shftamount)

Example

short result;

short s1 = 0x2468;

short s2= 1;

result = shr(s1,s2);

// Expected value of result: 0x1234

shrtNs

Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is positive, a
right shift is performed. Otherwise, a left shift is performed. Saturation does not occur
during a left shift. When an accumulator is the destination, zeroes out the LSP portion.

NOTE Ignores upper N-5 bits of s_shftamount except the sign bit (MSB).
If s_shftamount is positive and the value in the lower 5 bits of
s_shftamount is greater than 15, the result is 0 if sval2shft is positive,
and 0xFFFF if sval2shft is negative.
238 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
If s_shftamount is negative and the absolute value in the lower 5 bits of
s_shftamount is greater than 15, the result is 0.

Prototype

Word16 shrtNs(Word16 sval2shft, Word16 s_shftamount)

Example

short result;

short s1 = 0x2468;

short s2= 1;

result = shrtNs(s1,s2);

// Expected value of result: 0x1234

L_shl

Arithmetic shift of 32-bit value by a specified shift amount. If the shift count is positive, a
left shift is performed. Otherwise, a right shift is performed. Saturation may occur during a
left shift. When an accumulator is the destination, zeroes out the LSP portion.

NOTE This operation is not optimal on the DSP56800E because of the saturation
requirements and the bidirectional capability. See the intrinsic L_shlftNs or
L_shlfts which are more optimal.

Assumptions

OMR’s SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_shl(Word32 lval2shft, Word16 s_shftamount)
23956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Example

long result, l = 0x12345678;

short s2 = 1;

result = L_shl(l,s2);

// Expected value of result: 0x2468ACF0

L_shlftNs

Arithmetic shift of 32-bit value by a specified shift amount. If the shift count is positive, a
left shift is performed. Otherwise, a right shift is performed. Saturation does not occur
during a left shift.

NOTE Ignores upper N-5 bits of s_shftamount except the sign bit (MSB).

Prototype

Word32 L_shlftNs(Word32 lval2shft, Word16 s_shftamount)

Example

long result, l = 0x12345678;

short s2= 1;

result = L_shlftNs(l,s2);

// Expected value of result: 0x2468ACF0

L_shlfts

Arithmetic left shift of 32-bit value by a specified shift amount. Saturation does occur
during a left shift if required.

NOTE This is not a bidirectional shift.

Assumptions

Assumed s_shftamount is positive.
240 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
OMR’s SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_shlfts(Word32 lval2shft, Word16 s_shftamount)

Example

long result, l = 0x12345678;

short s1 = 3;

result = shlfts(l, s1);

// Expected value of result: 0x91A259E0

L_shr

Arithmetic shift of 32-bit value by a specified shift amount. If the shift count is positive, a
right shift is performed. Otherwise, a left shift is performed. Saturation may occur during a
left shift. When an accumulator is the destination, zeroes out the LSP portion.

NOTE This operation is not optimal on the DSP56800E because of the saturation
requirements and the bidirectional capability. See the intrinsic L_shrtNs which
is more optimal.

Assumptions

OMR’s SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_shr(Word32 lval2shft, Word16 s_shftamount)

Example

long result, l = 0x24680000;

short s2= 1;

result = L_shrtNs(l,s2);

// Expected value of result: 0x12340000
24156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
L_shr_r

Arithmetic shift of 32-bit value by a specified shift amount. If the shift count is positive, a
right shift is performed. Otherwise, a left shift is performed. If a right shift is performed,
then rounding performed on result. Saturation may occur during a left shift.

Assumptions

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_shr_r(Word32 lval2shft, Word16 s_shftamount)

Example

long l1 = 0x41111111;

short s2 = 1;

long result;

result = L_shr_r(l1,s2);

// Expected value of result: 0x20888889

L_shrtNs

Arithmetic shift of 32-bit value by a specified shift amount.If the shift count is positive, a
right shift is performed. Otherwise, a left shift is performed. Saturation does not occur
during a left shift.

NOTE Ignores upper N-5 bits of s_shftamount except the sign bit (MSB).

Prototype

Word32 L_shrtNs(Word32 lval2shft, Word16 s_shftamount)
242 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Example

long result, l = 0x24680000;

short s2= 1;

result = L_shrtNs(l,s2);

// Expected value of result: 0x12340000

Modulo Addressing Intrinsic Functions
A modulo buffer is a buffer in which the data pointer loops back to the beginning of the
buffer once the pointer address value exceeds a specified limit.

Figure 10.1 depicts a modulo buffer with the limit six. Increasing the pointer address value
to 0x106 makes it point to the same data it would point to if its address value were 0x100.

Figure 10.1 Example of Modulo Buffer

The CodeWarrior C compiler for DSP56800E uses intrinsic functions to create and
manipulate modulo buffers. Normally, a modulo operation, such as the % operator,
requires a runtime function call to the arithmetic library. For normally timed critical DSP
loops, this binary operation imposes a large execution-time overhead.

The CodeWarrior implementation, however, replaces the runtime call with an efficient
implementation of circular-address modification, either by using hardware resources or by
manipulating the address mathematically.

Processors such as the DSP56800E have on-chip hardware support for modulo buffers.
Modulo control registers work with the DSP pointer update addressing modes to access a
range of addresses instead of a continuous, linear address space. But hardware support
imposes strict requirements on buffer address alignment, pointer register resources, and
limited modulo addressing instructions. For example, R0 and R1 are the only registers
available for modulo buffers.

Address Data
0x100 0.68

0x101 0.73

0x105 0.95

0x102 0.81

0x103 0.86

0x104 0.90
24356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Accordingly, the CodeWarrior C compiler uses a well-defined set of intrinsic APIs to
implement modulo buffers.

Modulo Addressing Intrinsic Functions
The intrinsic functions for modulo addressing are:

• __mod_init

• __mod_initint16

• __mod_start

• __mod_access

• __mod_update

• __mod_stop

• __mod_getint16

• __mod_setint16

• __mod_error

__mod_init

Initialize a modulo buffer pointer with arbitrary data using the address specified by the
<addr_expr>. This function expects a byte address. <addr_expr> is an arbitrary C
expression which normally evaluates the address at the beginning of the modulo buffer,
although it may be any legal buffer address. The <mod_desc> evaluates to a compile
time constant of either 0 or 1, represented by the modulo pointers R0 or R1, respectively.
The <mod_sz> is a compile time integer constant representing the size of the modulo
buffer in bytes. The <data_sz> is a compile time integer constant representing the size
of data being stored in the buffer in bytes. <data_sz> is usually derived from the
sizeof() operator.

The __mod_init function may be called independently for each modulo pointer
register.

If __mod_error has not been previously called, no record of __mod_init errors are
saved.

If __mod_error has been previously called, __mod_init may set one of the error
condition in the static memory location defined by __mod_error. (See __mod_error
description for a complete list of error conditions).
244 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Prototype

void __mod_init (

int <mod_desc>,

void * <addr_expr>,

int <mod_sz>,

int <data_sz>);

Example

Initialize a modulo buffer pointer with a buffer size of 3 and where each element is
a structure:

__mod_init(0, (void *)&struct_buf[0], 3, sizeof(struct
mystruct));

__mod_initint16

Initialize modulo buffer pointer with integer data. The __mod_initint16 function
behaves similarly to the __mod_init function, except that word addresses are used to
initialize the modulo pointer register.

Prototype

void __mod_initint16(

int <mod_desc>,

int * <addr_expr>,

int <mod_sz>);

Example

Initialize an integer modulo buffer pointer with a buffer size of 10.

__mod_initint16(0, &int_buf[9], 10);

__mod_start

Write the modulo control register. The __mod_start function simply writes the modulo
control register (M01) for each modulo pointer register which has been previously
initialized. The values written to M01 depends on the size of the modulo buffer and which
pointers have been initialized.
24556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Prototype

void __mod_start(void);

__mod_access

Retrieve the modulo pointer. The __mod_access function returns the modulo pointer
value specified by <mod_desc> in the R2 register, as per calling conventions. The value
returned is a byte address. The data in the modulo buffer may be read or written by a cast
and dereference of the resulting pointer.

Prototype

void *__mod_access(int <mod_desc>);

Example

Assign a value to the modulo buffer at the current pointer.

*((char *)__mod_access(0)) = (char)i;

__mod_update

Update the modulo pointer. The __mod_update function updates the modulo pointer by
the number of data type units specified in <amount>. <amount> may be negative. Of
course, the pointer will wrap to the beginning of the modulo buffer if the pointer is
advanced beyond the modulo boundaries. <amount> must be a compile time constant.

Prototype

void __mod_update(int <mod_desc>, int <amount>);

Example

Advance the modulo pointer by 2 units.

__mod_update(0, 2);

__mod_stop

Reset modulo addressing to linear addressing. This function writes the modulo control
register with a value which restore linear addressing to the R0 and R1 pointer registers.
246 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Prototype

void __mod_stop(int <mod_desc);

__mod_getint16

Retrieve a 16-bit signed value from the modulo buffer and update the modulo pointer.This
function returns an integer value from the location pointed to by the modulo pointer. The
function then updates the modulo pointer by <amount> integer units (<amount>*2
bytes). <amount> must be a compile time constant.

Prototype

int __mod_getint16(int <mod_desc>, int <amount>);

Example

Retrieve an integer value from a modulo buffer and update the modulo buffer
pointer by one word.

int y;

y = __mod_getint16(0, 1);

__mod_setint16

Write a 16-bit signed integer to the modulo buffer and update the pointer. This function
evaluates <int_expr> and copies the value to the location pointed to by the modulo
pointer. The modulo pointer is then updated by <amount>. <amount> must be a
compile-time constant.

Prototype

int __mod_setint16(int <mod_desc>, int <int_expr>, int
<amount>);

Example

Write the modulo buffer with a value derived from an expression, do not update
modulo pointer.

__mod_setint16(0, getrandomint(), 0);
24756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
__mod_error

Set up a modulo error variable. This function registers a static integer address to hold the
error results from any of the modulo buffer API calls. The function returns 0 if it is
successful, 1 otherwise. The argument must be the address of a static, global integer
variable. This variable holds the result of calling each of the previously defined API
functions. This allows the user to monitor the status of the error variable and take action if
the error variable is non-zero. Typically, use __mod_error during development and
remove it once debugging is complete. __mod_error generates no code, although the
error variable may occupy a word of memory. A non-zero value in the error variable
indicates a misuse of the one of the API functions. Once the error variable is set it is reset
when __mod_stop is called. The error variable contains the error number of the last
error. A successful call to an API function does not reset the error variable; only
__mod_stop resets the error variable.

Prototype

int __mod_error(int * <static_object_addr>);

Example

Register the error number variable

static int myerrno;

assert(__mod_error(&myerrno) == 0) ;

Modulo Buffer Examples
Listing 10.11 and Listing 10.12 are two modulo buffer examples.

Listing 10.11 Modulo Buffer Example 1

#pragma define_section DATA_INT_MODULO ".data_int_modulo"

/* Place the buffer object in a unique section so the it can be aligned
properly in the linker control file. */

#pragma section DATA_INT_MODULO begin
int int_buf[10];
#pragma section DATA_INT_MODULO end
248 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
/* Convenient defines for modulo descriptors */

#define M0 0
#define M1 1

int main (void)
{

int i;

/* Modulo buffer will be initialized. R0 will be the modulo pointer
register. The buffer size is 10 units. The unit size is ‘sizeof(int)’.
*/

__mod_init(M0, (void *)&int_buf[0], 10, sizeof(int));

/* Write the modulo control register */

__mod_start();

/* Write int_buf[0] through int_buf[9]. R0 initially points at
int_buf[0] and wraps when the pointer value exceeds int_buf[9]. The
pointer is updated by 1 unit each time through the loop */

for (i=0; i<100; i++)
{

*((int *)__mod_access(M0)) = i;
__mod_update(M0, 1);

}

/* Reset modulo control register to linear addressing mode */
__mod_stop();

}

Listing 10.12 Modulo Buffer Example 2

/* Set up a static location to save error codes */
if (! __mod_error(&err_codes)) {

printf (“__mod_error set up failed\n”);
}

/* Initialize a modulo buffer pointer, pointing to an array of 10 ints.
*/
24956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
__mod_initint16(M0, &int_buf[9], 10);

/* Check for success of previous call */

if (err_code) { printf (“__mod_initint16 failed\n”) };

__mod_start();

/* Write modulo buffer with the result of the expression “i”.
Decrement the buffer pointer for each execution of the loop.
The modulo buffer wraps from index 0 to 9 through the entire execution
of the loop. */

for (i=100; i>0; i--) {

__mod_setint16(M0, i, -1);

}
__mod_stop();

Points to Remember
As you use modulo buffer intrinsic functions, keep these points in mind:

1. You must align modulo buffers properly, per the constraints that the M56800E User’s
Manual explains. There is no run-time validation of alignment. Using the modulo
buffer API on unaligned buffers will cause erratic, unpredictable behavior during data
accesses.

2. Calling __mod_start() to write to the modulo control register effectively changes
the hardware’s global-address-generation state. This change of state affects all user
function calls, run-time supporting function calls, standard library calls, and interrupts.

3. You must account for any side-effects of enabling modulo addressing. Such a side-
effect is that R0 and R1update in a modulo way.

4. If you need just one modulo pointer is required, use the R0 address register. Enabling
the R1 address register for modulo use also enables the R0 address register for modulo
use. This is true even if __mod_init() or __mod_initint16() have not
explicitly initialized R0.

5. A successful API call does not clear the error code from the error variable. Only
function __mod_stop clears the error code.
250 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Modulo Addressing Error Codes
To register a static variable for error-code storage, use __mod_error(). If an error
occurs, this static variable will contain one of the values Table 10.3 explains. Table 10.4
lists the error codes possible for each modulo addressing intrinsic function.

Table 10.3 Modulo Addressing Error Codes

Code Meaning

11 <mod_desc> parameter must be zero or one.

12 R0 modulo pointer is already initialized. An extraneous call to
__mod_init or __mod_initint16 to initialize R0 has been made.

13 R1 modulo pointer is already initialized. An extraneous call to
__mod_init or __mod_initint16 to initialize R1 has been made.

14 Modulo buffer size must be a compile time constant.

15 Modulo buffer size must be greater than one.

16 Modulo buffer size is too big.

17 Modulo buffer size for R0 and R1 must be the same.

18 Modulo buffer data types for R0 and R1 must be the same.

19 Modulo buffer has not been initialized.

20 Modulo buffer has not been started.

21 Parameter is not a compile time constant.

22 Attempt to use word pointer functions with byte pointer initialization.
__mod_getint16 and __mod_setint16 were called but __mod_init
was used for initialization. __mod_initint16 is required for pointer
initialization.

23 Modulo increment value exceeds modulo buffer size.

24 Attempted use of R1 as a modulo pointer without initializing R0 for modulo
use.
25156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Table 10.4 Possible Error Codes

Function Possible Error Code

__mod_init 11, 12, 13, 14, 15, 16, 17, 18, 21

__mod_stop none

__mod_getint16 11, 14, 20, 22, 24

__mod_setint16 11, 14, 20, 22, 24

__mod_start none

__mod_access 11, 19, 20, 24

__mod_update 11, 14, 20, 23, 24

__mod_initint16 11, 12, 13, 14, 15, 16, 17
252 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

11
ELF Linker

The CodeWarrior™ Executable and Linking Format (ELF) Linker makes a program file
out of the object files of your project. The linker also allows you to manipulate code in
different ways. You can define variables during linking, control the link order to the
granularity of a single function, change the alignment, and even compress code and data
segments so that they occupy less space in the output file.

All of these functions are accessed through commands in the linker command file (LCF).
The linker command file has its own language complete with keywords, directives, and
expressions, that are used to create the specifications for your output code. The syntax and
structure of the linker command file is similar to that of a programming language.

This chapter includes the following sections:

• Structure of Linker Command Files

• Linker Command File Syntax

• Linker Command File Keyword Listing

Structure of Linker Command Files
Linker command files contain three main segments:

• Memory Segment

• Closure Blocks

• Sections Segment

A command file must contain a memory segment and a sections segment. Closure
segments are optional.

Memory Segment
In the memory segment, available memory is divided into segments. The memory segment
format looks like Listing 11.1.

Listing 11.1 Sample MEMORY segment

MEMORY {
segment_1 (RWX): ORIGIN = 0x8000, LENGTH = 0x1000
segment_2 (RWX): ORIGIN = AFTER(segment_1), LENGTH = 0
25356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Structure of Linker Command Files
data (RW) : ORIGIN = 0x2000, LENGTH = 0x0000
#segment_name (RW) : ORIGIN = memory address, LENGTH = segment
#length
#and so on...

}

The first memory segment definition (segment_1) can be broken down as follows:

• the (RWX) portion of the segment definition pertains to the ELF access permission of
the segment. The (RWX) flags imply read, write, and execute access.

• ORIGIN represents the start address of the memory segment (in this case 0x8000).

• LENGTH represents the size of the memory segment (in this case 0x1000).

• INITVAL represents the link-time initialization value to be used for watermarking a
memory segment . For any ‘INITVAL = (expression)’ the ‘(expression)’ is treated as
a word value.

Example

Assume for above example that there is a program section of length 0xF00 words
and it is placed in segment_ 3

 section{

 program_section_0x0F00;

 }>segment_ 3

Then , the resulting memory map will have (0x1000-0xF00=0x100) words at
the end of segment_3 that will be initialized with the pattern specified in
INITVAL =0xABCD .

Memory segments with RWX attributes are placed into P: memory while RW attributes
are placed into X: memory.

If you cannot predict how much space a segment will occupy, you can use the function
AFTER and LENGTH = 0 (unlimited length) to fill in the unknown values.

Closure Blocks
The linker is very good at deadstripping unused code and data. Sometimes, however,
symbols need to be kept in the output file even if they are never directly referenced.
Interrupt handlers, for example, are usually linked at special addresses, without any
explicit jumps to transfer control to these places.

Closure blocks provide a way to make symbols immune from deadstripping. The closure
is transitive, meaning that symbols referenced by the symbol being closed are also forced
into closure, as are any symbols referenced by those symbols, and so on.
254 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Structure of Linker Command Files
NOTE The closure blocks need to be in place before the SECTIONS definition in the
linker command file.

The two types of closure blocks available are:

• Symbol-level

Use FORCE_ACTIVE to include a symbol into the link that would not be otherwise
included. An example is shown in Listing 11.2.

Listing 11.2 Sample symbol-level closure block

FORCE_ACTIVE {break_handler, interrupt_handler, my_function}

• Section-level

Use KEEP_SECTION when you want to keep a section (usually a user-defined
section) in the link. Listing 11.3 shows an example.

Listing 11.3 Sample section-level closure block

KEEP_SECTION {.interrupt1, .interrupt2}

A variant is REF_INCLUDE. It keeps a section in the link, but only if the file where it is
coming from is referenced. This is very useful to include version numbers. Listing 11.4
shows an example of this.

Listing 11.4 Sample section-level closure block with file dependency

REF_INCLUDE {.version}

Sections Segment
Inside the sections segment, you define the contents of your memory segments, and define
any global symbols to be used in the output file.

The format of a typical sections block looks like Listing 11.5.

NOTE As shown in Listing 11.5, the .bss section always needs to be put at the end
of a segment or in a standalone segment, because it is not a loadable section.

Listing 11.5 Sample SECTIONS segment

SECTIONS {
25556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Syntax
.section_name : #the section name is for your reference
{ #the section name must begin with a '.'

filename.c (.text) #put the .text section from filename.c
filename2.c (.text) #then the .text section from filename2.c
filename.c (.data)
filename2.c (.data)
filename.c (.bss)
filename2.c (.bss)
. = ALIGN (0x10); #align next section on 16-byte boundary.

} > segment_1 #this means "map these contents to segment_1"

.next_section_name:
{

more content descriptions
} > segment_x # end of .next_section_name definition
} # end of the sections block

Linker Command File Syntax
This section explains some practical ways in which to use the commands of the linker
command file to perform common tasks.

Alignment
To align data on a specific word-boundary, use the ALIGN and ALIGNALL commands to
bump the location counter to the preferred boundary. For example, the following fragment
uses ALIGN to bump the location counter to the next 16-byte boundary. An example is
given in Listing 11.6.

Listing 11.6 Sample ALIGN command usage

file.c (.text)
. = ALIGN (0x10);
file.c (.data) # aligned on a word boundary.

You can also align data on a specific word-boundary with ALIGNALL, as shown in
Listing 11.7.

Listing 11.7 Sample ALIGNALL command usage

file.c (.text)
ALIGNALL (0x10); #everything past this point aligned on word boundary
256 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Syntax
file.c (.data)

Arithmetic Operations
Standard C arithmetic and logical operations may be used to define and use symbols in the
linker command file. Table 11.1 shows the order of precedence for each operator. All
operators are left-associative.

NOTE The shift operator shifts two-bits for each shift operation. The divide operator
performs division and rounding.

Comments
Comments may be added by using the pound character (#) or C++ style double-slashes (/
/). C-style comments are not accepted by the LCF parser. Listing 11.8 shows examples of
valid comments.

Listing 11.8 Sample comments

This is a one-line comment
* (.text) // This is a partial-line comment

Table 11.1 Arithmetic operators

Precedence Operators

highest (1) - ˜ !

2 * / %

3 + -

4 >> <<

5 == != > < <= >=

6 &

7 |

8 &&

9 ||
25756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Syntax
Deadstrip Prevention
The M56800E linker removes unused code and data from the output file. This process is
called deadstripping. To prevent the linker from deadstripping unreferenced code and
data, use the FORCE_ACTIVE, KEEP_SECTION, and REF_INCLUDE directives to
preserve them in the output file.

Variables, Expressions, and Integral Types
This section explains variables, expressions, and integral types.

Variables and Symbols
All symbol names within a Linker Command File (LCF) start with the underscore
character (_), followed by letters, digits, or underscore characters. Listing 11.9 shows
examples of valid lines for a command file:

Listing 11.9 Valid command file lines

_dec_num = 99999999;
_hex_num_ = 0x9011276;

Variables that are defined within a SECTIONS section can only be used within a
SECTIONS section in a linker command file.

Global Variables
Global variables are accessed in a linker command file with an ‘F’ prepended to the
symbol name. This is because the compiler adds an ‘F’ prefix to externally defined
symbols.

Listing 11.10 shows an example of using a global variable in a linker command file. This
example sets the global variable _foot, declared in C with the extern keyword, to the
location of the address location current counter.

Listing 11.10 Using global variable in LCF

F_foot = .;

If you use a global symbol in an LCF, as in Listing 11.10, you can access it from C
program sources as shown in Listing 11.11.

Listing 11.11 Accessing a Global Symbol from C Program Sources

extern unsigned long _Lstack_addr[];
258 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Syntax
int main(void)
{
unsigned long* StackStartAddr;
StackStartAddr = _Lstack_addr;

Expressions and Assignments
You can create symbols and assign addresses to those symbols by using the standard
assignment operator. An assignment may only be used at the start of an expression, and a
semicolon is required at the end of an assignment statement. An example of standard
assignment operator usage is shown in Listing 11.12.

Listing 11.12 Standard Assignment Operator Usage

_symbolicname = some_expression; # Legal
_sym1 + _sym2 = _sym3; # ILLEGAL!

When an expression is evaluated and assigned to a variable, it is given either an absolute
or a relocatable type. An absolute expression type is one in which the symbol contains the
value that it will have in the output file. A relocatable expression is one in which the value
is expressed as a fixed offset from the base of a section.

Integral Types
The syntax for linker command file expressions is very similar to the syntax of the C
programming language. All integer types are long or unsigned long.

Octal integers (commonly know as base eight integers) are specified with a leading zero,
followed by numeral in the range of zero through seven. Listing 11.13 shows valid octal
patterns that you can put into your linker command file.

Listing 11.13 Sample Octal patterns

_octal_number = 012;
_octal_number2 = 03245;

Decimal integers are specified as a non-zero numeral, followed by numerals in the range
of zero through nine. To create a negative integer, use the minus sign (-) in front of the
number. Listing 11.14 shows examples of valid decimal integers that you can write into
your linker command file.

Listing 11.14 Sample Decimal integers

_dec_num = 9999;
25956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Syntax
_decimalNumber = -1234;

Hexadecimal (base sixteen) integers are specified as 0x or 0X (a zero with an X),
followed by numerals in the range of zero through nine, and/or characters A through F.
Examples of valid hexadecimal integers that you can put in your linker command file
appear in Listing 11.15.

Listing 11.15 Sample Hex integers

_somenumber = 0x0F21;
_fudgefactorspace = 0XF00D;
_hexonyou = 0xcafe;

NOTE When assigning a value to a pointer variable, the value is in byte units despite
that in the linked map (.xMAP file), the variable value appears in word units.

File Selection
When defining the contents of a SECTION block, specify the source files that are
contributing to their sections.

In a large project, the list can become very long. For this reason, you have to use the
asterisk (*) keyword. The * keyword represents the filenames of every file in your project.
Note that since you have already added the .text sections from the main.c,
file2.c, and file3.c files, the * keyword does not include the .text sections
from those files again.

Function Selection
The OBJECT keyword allows precise control over how functions are placed within a
section. For example, if the functions pad and foot are to be placed before anything
else in a section, use the code as shown in the example in Listing 11.16.

Listing 11.16 Sample function selection using OBJECT keyword

SECTIONS {
.program_section :

{
OBJECT (Fpad, main.c)
OBJECT (Ffoot, main.c)
* (.text)

} > ROOT
260 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Syntax
}

NOTE If an object is written once using the OBJECT function selection keyword, the
same object will not be written again if you use the '*' file selection keyword.

ROM to RAM Copying
In embedded programming, it is common to copy a portion of a program resident in ROM
into RAM at runtime. For example, program variables cannot be accessed until they are
copied to RAM.

To indicate data or code that is meant to be copied from ROM to RAM, the data or code is
assigned two addresses. One address is its resident location in ROM (where it is
downloaded). The other is its intended location in RAM (where it is later copied in C
code).

Use the MEMORY segment to specify the intended RAM location, and the AT(address)
parameter to specify the resident ROM address.

For example, you have a program and you want to copy all your initialized data into RAM
at runtime. Listing 11.17 shows the LCF you use to set up for writing data to ROM.

Listing 11.17 LCF setup for ROM to RAM copy

MEMORY {
.text (RWX) : ORIGIN = 0x8000, LENGTH = 0x0 # code (p:)
.data (RW) : ORIGIN = 0x3000, LENGTH = 0x0 # data (x:)-> RAM

}

SECTIONS{

.main_application :
{

.text sections

*(.text)
*(.rtlib.text)
*(.fp_engine.txt)
*(user.text)

} > .text

__ROM_Address = 0x2000
.data : AT(__ROM_Address) # ROM Address definition
{

.data sections
F__Begin_Data = .; # Start location for RAM (0x3000)
26156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Syntax
*(.data) # Write data to the section (ROM)
*(fp_state.data);
*(rtlib.data);
F__End_Data = .; # Get end location for RAM

.bss sections
* (rtlib.bss.lo)
* (.bss)
F__ROM_Address = __ROM_Address

} > .data
}

To make the runtime copy from ROM to RAM, you need to know where the data starts in
ROM (__ROM_Address) and the size of the block in ROM you want to copy to RAM.
In the following example (Listing 11.18), copy all variables in the data section from ROM
to RAM in C code.

Listing 11.18 ROM to RAM copy from C after writing data flash

#include <stdio.h>
#include <string.h>

int GlobalFlash = 6;

// From linker command file
extern __Begin_Data, __ROMAddress, __End_Data;

void main(void)
{

unsigned short a = 0, b = 0, c = 0;
unsigned long dataLen = 0x0;
unsigned short __myArray[] = { 0xdead, 0xbeef, 0xcafe };

// Calculate the data length of the X: memory written to Flash
dataLen = (unsigned long)&__End_Data -
unsigned long)&__Begin_Data;

// Block move from ROM to RAM
memcpy((unsigned long *)&__Begin_Data,

(const unsigned long *)&__ROMAddress,dataLen);

a = GlobalFlash;

return;
 }
262 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Syntax
Utilizing Program Flash and Data RAM for
Constant Data in C
There are many advantages and one disadvantage if constant data in C is flashed to
program flash memory (pROM) and copied to data flash memory (xRAM) at startup, with
the usual pROM-to-xRAM initialization.

The advantages are:

• constant data is defined and addressed conventionally via C language

• pROM flash space is used for constant data (pROM is usually larger than xROM)

• the pROM flash is now freed up or available

The disadvantage is that the xRAM is consumed for constant data at run-time.

If you wish to store constant data in program flash memory and have it handled by the
pROM-to-xRAM startup process, a simple change is necessary to the pROM-to-xRAM
LCF. Simply, place the constant data references into the data_in_p_flash_ROM
section after the __xRAM_data_start variable like the other data references and
remove the “data in xROM” section. See Listing 11.19.

Listing 11.19 Using typical pROM-to-xRAM LCF

.data_in_p_flash_ROM : AT(__pROM_data_start)
{

__xRAM_data_start = .;

* (.const.data.char) # move constant data references here
* (.const.char)

* (.data.char)
* (.data)

etc.

Utilizing Program Flash for User-Defined
Constant Section in Assembler
There are many advantages and one disadvantage in writing specific data to pROM with
linker commands and accessing this data in assembly,

The advantages are:

• pROM flash space is used for user-specified constant data (pROM is usually larger
than xROM), where the constant data is defined and addressed by assembly
language
26356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Syntax
• part of the pROM flash is now freed up or available

The disadvantage is that data is not defined or accessed conventionally via C language;
data is specifically flashed to pROM via the linker command file and fetched from pROM
with assembly.

If you want to keep specific constant data in pROM and access it from there, you can use
the linker commands to explicitly store the data in pROM and then later access the data in
pROM with assembly.

The next two sections describe putting data in the pROM flash at build and run-time.

Putting Data in pROM Flash at Build-time
The linker commands have specific instructions which set values in the binary image at
the build time (Listing 11.20). For example, WRITEH inserts two bytes of data at the
current address of a section. These commands are placed in the LCF, which tells the linker
at build time to place data in P or X memory. Optionally, you can also set the current
location prior to the write command to ensure a specific location address for easier
reference later. The location within the section is not important.

For more information, see the LCF section in this document.

Listing 11.20 LCF write example using MC56F832x for build-time

.executing_code :
{

.text sections

. = 0x00A4; # optionally set the location -- we use 0x00A4 in this
case
WRITEH(0xABCD); # now set some value here; location within the
section is not important
* (.text)
* (interrupt_routines.text)
* (rtlib.text)
* (fp_engine.text)
* (user.text)

etc

} > .p_flash_ROM

Putting Data in pROM Flash at Run-time

The assembly example in Listing 11.21 fetches the pROM-flashed value at run-time in
Listing 11.20.
264 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Keyword Listing
Listing 11.21 LCF write example using MC56F832x for run-time

move.l #$00A4, r1 ; move the pROM address into r3
move.w p:(r3)+, x0 ; fetch data from pROM at address r1 into x0

Stack and Heap
To reserve space for the stack and heap, arithmetic operations are performed to set the
values of the symbols used by the runtime.

The Linker Command File (LCF) performs all the necessary stack and heap initialization.
When Stationery is used to create a new project, the appropriate LCFs are added to the
new project.

See any Stationery-generated LCFs for examples of how stack and heap are initialized.

Writing Data Directly to Memory
You can write data directly to memory using the WRITEx command in the linker
command file. The WRITEB command writes a byte, the WRITEH command writes two
bytes, and the WRITEW command writes four bytes. You insert the data at the section’s
current address.

Listing 11.22 Embedding data directly into output

.example_data_section :
{

WRITEB 0x48; // 'H'
WRITEB 0x69; // 'i'
WRITEB 0x21; // '!'

}

Linker Command File Keyword Listing
This section explains the keywords available for use when creating CodeWarrior™
Development Studio for 56800/E Digital Signal Controllers application objects with the
linker command file. Valid linker command file functions, keywords, directives, and
commands are:
26556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Keyword Listing
. (location counter)

The period character (.) always maintains the current position of the output location.
Since the period always refers to a location in a SECTIONS block, it can not be used
outside a section definition.

A period may appear anywhere a symbol is allowed. Assigning a value to period that is
greater than its current value causes the location counter to move, but the location counter
can never be decremented.

This effect can be used to create empty space in an output section. In the example below,
the location counter is moved to a position that is 0x1000 words past the symbol
FSTART_.

Example

.data :

{

*(.data)

*(.bss)

FSTART_ = .;

. = FSTART_ + 0x1000;

__end = .;

} > DATA

ADDR

The ADDR function returns the address of the named section or memory segment.

Prototype

ADDR (sectionName | segmentName | symbol)

In the example below, ADDR is used to assign the address of ROOT to the symbol
__rootbasecode.

Example

MEMORY{

ROOT (RWX) : ORIGIN = 0x8000, LENGTH = 0

}

266 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Keyword Listing
SECTIONS{

.code :

{

__rootbasecode = ADDR(ROOT);

*(.text);

} > ROOT

}

NOTE In order to use segmentName with this command, the segmentName must start
with the period character even though segmentNames are not required to start
with the period character by the linker, as is the case with sectionName.

ALIGN

The ALIGN function returns the value of the location counter aligned on a boundary
specified by the value of alignValue. The alignValue must be a power of two.

Prototype

ALIGN(alignValue)

Note that ALIGN does not update the location counter; it only performs arithmetic. To
update the location counter, use an assignment such as:

Example

. = ALIGN(0x10); #update location counter to 16
#byte alignment

ALIGNALL

ALIGNALL is the command version of the ALIGN function. It forces the minimum
alignment for all the objects in the current segment to the value of alignValue. The
alignValue must be a power of two.

Prototype

ALIGNALL(alignValue);
26756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Keyword Listing
Unlike its counterpart ALIGN, ALIGNALL is an actual command. It updates the location
counter as each object is written to the output.

Example

.code :

{

ALIGNALL(16); // Align code on 16 byte boundary

* (.init)

* (.text)

ALIGNALL(16); //align data on 16 byte boundary

* (.rodata)

} > .text

FORCE_ACTIVE

The FORCE_ACTIVE directive allows you to specify symbols that you do not want the
linker to deadstrip. You must specify the symbol(s) you want to keep before you use the
SECTIONS keyword.

Prototype

FORCE_ACTIVE{ symbol[, symbol] }

INCLUDE

The INCLUDE command let you include a binary file in the output file.

Prototype

INCLUDE filename
268 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Keyword Listing
KEEP_SECTION

The KEEP_SECTION directive allows you to specify sections that you do not want the
linker to deadstrip. You must specify the section(s) you want to keep before you use the
SECTIONS keyword.

Prototype

KEEP_SECTION{ sectionType[, sectionType] }

MEMORY

The MEMORY directive allows you to describe the location and size of memory segment
blocks in the target. This directive specifies the linker the memory areas to avoid, and the
memory areas into which it links the code and date.

The linker command file may only contain one MEMORY directive. However, within the
confines of the MEMORY directive, you may define as many memory segments as you
wish.

Prototype

MEMORY { memory_spec }

The memory_spec is:

segmentName (accessFlags) : ORIGIN = address, LENGTH = length, [COMPRESS] [>
fileName]

segmentName can include alphanumeric characters and underscore '_' characters.

accessFlags are passed into the output ELF file (Phdr.p_flags). The
accessFlags can be:

• R-read

• W-write

• X-executable (for P: memory placement)

ORIGIN address is one of the following:
26956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Keyword Listing
Example

memory{

code (RWX) : ORIGIN = 0x8000, LENGTH = 0

overlay1 (RWX) : ORIGIN = AFTER(code), LENGTH = 0

overlay2 (RWX) : ORIGIN = AFTER(code), LENGTH = 0

data (RW) : ORIGIN = 0x1000, LENGTH = 0

}

ORIGIN is the assigned address.

LENGTH is one of the following:

NOTE There is no overflow checking with autolength. The linker can produce an
unexpected result if you use the autolength feature without leaving enough free
memory space to contain the memory segment. For this reason, when you use
autolength, use the AFTER keyword to specify origin addresses.

> fileName is an option to write the segment to a binary file on disk instead of an ELF
program header. The binary file is put in the same folder as the ELF output file. This
option has two variants:

Table 11.2 Origin Address

A memory address Specify a hex address, such as 0x8000.

An AFTER command Use the AFTER(name [,name]) command to tell the linker to
place the memory segment after the specified segment. In
the example below, overlay1 and overlay2 are placed after
the code segment. When multiple memory segments are
specified as parameters for AFTER, the highest memory
address is used.

Table 11.3 Length

A value greater than
zero

If you try to put more code and data into a memory segment
than your specified length allows, the linker stops with an
error.

Autolength by
specifying zero

When the length is 0, the linker lets you put as much code
and data into a memory segment as you want.
270 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Keyword Listing
OBJECT

The OBJECT keyword allows control over the order in which functions are placed in the
output file.

Prototype

OBJECT (function, sourcefile.c)

It is important to note that if you write an object to the output file using the OBJECT
keyword, the same object will not be written again by either the GROUP keyword or the '*'
wildcard.

REF_INCLUDE

The REF_INCLUDE directive allows you to specify sections that you do not want the
linker to deadstrip, but only if they satisfy a certain condition: the file that contains the
section must be referenced. This is useful if you want to include version information from
your source file components. You must specify the section(s) you want to keep before you
use the SECTIONS keyword.

Prototype

REF_INCLUDE{ sectionType [, sectionType]}

SECTIONS

A basic SECTIONS directive has the following form:

Prototype

SECTIONS { <section_spec> }

section_spec is one of the following:

Table 11.4 Option Choices

>fileName Writes the segment to a new file.

>>fileName Appends the segment to an existing file.
27156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Keyword Listing
• sectionName: [AT (loadAddress)] {contents} > segmentName

• sectionName: [AT (loadAddress]] {contents} >> segmentName

sectionName is the section name for the output section. It must start with a period
character. For example, ".mysection".

AT (loadAddress) is an optional parameter that specifies the address of the section.
The default (if not specified) is to make the load address the same as the relocation
address.

contents are made up of statements. These statements can:

• Assign a value to a symbol.

• Describe the placement of an output section, including which input sections are
placed into it.

segmentName is the predefined memory segment into which you want to put the
contents of the section. The two variants are:

Example

SECTIONS {

.text : {

F_textSegmentStart = .;

footpad.c (.text)

. = ALIGN (0x10);

padfoot.c (.text)

F_textSegmentEnd = .;

} > TEXT

.data : { *(.data) } > DATA

.bss : { *(.bss) > BSS

*(COMMON)

}

}

Table 11.5 Option Choices

>segmentName Places the section contents at the beginning of the memory
segment segmentName.

>>segmentName Appends the section contents to the memory segment
segmentName.
272 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Keyword Listing
SIZEOF

The SIZEOF function returns the size of the given segment or section. The return value is
the size in bytes.

Prototype

SIZEOF(sectionName | segmentName | symbol)

NOTE In order to use segmentName with this command, the segmentName must start
with the period character even though segmentNames are not required to start
with the period character by the linker, as is the case with sectionName.

SIZEOFW

The SIZEOFW function returns the size of the given segment or section. The return value
is the size in words.

Prototype

SIZEOFW(sectionName | segmentName | symbol)

NOTE In order to use segmentName with this command, the segmentName must start
with the period character even though segmentNames are not required to start
with the period character by the linker, as is the case with sectionName.

WRITEB

The WRITEB command inserts a byte of data at the current address of a section.

Prototype

WRITEB (expression);

expression is any expression that returns a value 0x00 to 0xFF.
27356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Keyword Listing
WRITEH

The WRITEH command inserts two bytes of data at the current address of a section.

Prototype

WRITEH (expression);

expression is any expression that returns a value 0x0000 to 0xFFFF.

WRITEW

The WRITEW command inserts 4 bytes of data at the current address of a section.

Prototype

WRITEW (expression);

expression is any expression that returns a value 0x00000000 to 0xFFFFFFFF.
274 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

12
Command-Line Tools

This chapter includes the following sections:

• Usage

• Response File

• Sample Build Script

• Arguments

Usage
To call the command-line tools, use the following format:

The compiler automatically calls the linker by default and any options from the linker is
passed on by the compiler to the assembler. However, you may choose to only compile
with the –c flag. In this case, the assembler will only assemble and will not call the linker.

Also, available are environment variables. These are used to provide path information for
includes or libraries, and to specify which libraries are to be included. You can specify the
variables listed in Table 12.2.

Table 12.1 Format

Tools File Names Format

Compiler mwcc56800e.exe compiler-options [linker-options] file-list

Linker mwld56800e.exe linker-options file-list

Assembler mwasm56800e.exe assembler-options file-list
27556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Response File
These are the target-specific variables, and will only work with the DSP56800E tools. The
generic variables MWCIncludes, MWLibraries, MWLibraryFiles, and
MWAsmIncludes apply to all target tools on your system (such as Windows). If you only
have the DSP56800E tools installed, then you may use the generic variables if you prefer.

Response File
In addition to specifying commands in the argument list, you may also specify a “response
file”. A response file’s filename begins with an ‘@’ (for example, @file), and the contents
of the response file are commands to be inserted into the argument list. The response file
supports standard UNIX-style comments. For example, the response file @file, contain
the following:

Listing 12.1 Response file

Response file @file
-o out.elf # change output file name to ‘out.elf’
-g # generate debugging symbols

The above response file can used in a command such as:

mwcc56800e @file main.c

It would be the same as using the following command:

mwcc56800e –o out.elf –g main.c

Table 12.2 Environment Variables

Tool Library Description

Compiler MWC56800EIncludes Similar to Access Paths panel; separate
paths with ‘;’ and prefix a path with ‘+’ to
specify a recursive path

Linker MW56800ELibraries

MW56800ELibraryFiles

Similar to MWC56800EIncludes

List of library names to link with project;
separate with ‘;’

Assembler MWAsm56800EIncludes Similar to MWC56800EIncludes
276 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Sample Build Script
Sample Build Script
This following is a sample of a DOS batch (BAT) file. The sample demonstrates:

• Setting of the environmental variables.

• Using the compiler to compile and link a set of files.

Listing 12.2 Sample DOS batch file

 REM *** set GUI compiler path ***
 set COMPILER={path to compiler}

 REM *** set includes path ***
 set MWCIncludes=+%COMPILER%\M56800E Support
 set MWLibraries=+%COMPILER%\M56800E Support
 set MWLibraryFiles=Runtime 56800E.Lib;MSL C 56800E.lib

 REM *** add CLT directory to PATH ***
 set
PATH=%PATH%;%COMPILER%\DSP56800E_EABI_Tools\Command_Line_Tools\

 REM *** compile options and files ***
 set COPTIONS=-O3
 set CFILELIST=file1.c file2.c
 set LOPTIONS=-m FSTART_ -o output.elf -g
 set LCF=linker.cmd

 REM *** compile, assemble and link ***
 mwcc56800e %COPTIONS% %CFILELIST%
 mwasm56800e %AFILELIST%
 mwld56800e %LOPTIONS% %LFILELIST% %LCF%

Arguments
Listing 12.3 General command-Line options

--
General Command-Line Options

All the options are passed to the linker unless otherwise noted.
Please see '-help usage' for details about the meaning of this help.

--
-help [keyword[,...]] # global; for this tool;

display help
usage # show usage information
27756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
[no]spaces # insert blank lines between options in
printout

all # show all standard options
[no]normal # show only standard options
[no]obsolete # show obsolete options
[no]ignored # show ignored options
[no]deprecated # show deprecated options
[no]meaningless # show options meaningless for this target
[no]compatible # show compatibility options

opt[ion]=name # show help for a given option; for 'name',
maximum length 63 chars

search=keyword # show help for an option whose name or help
contains 'keyword' (case-sensitive); for
'keyword', maximum length 63 chars

group=keyword # show help for groups whose names contain
'keyword' (case-sensitive); for 'keyword'
maximum length 63 chars

tool=keyword[,...] # categorize groups of options by tool;
default

 all # show all options available in this tool
this # show options executed by this tool

default
other|skipped # show options passed to another tool
both # show options used in all tools

#
#

-version # global; for this tool;
show version, configuration, and build date

-timing # global; collect timing statistics
-progress # global; show progress and version
-v[erbose] # global; verbose information; cumulative;

implies -progress
-search # global; search access paths for source files

specified on the command line; may specify
object code and libraries as well; this
option provides the IDE's 'access paths'
functionality

-[no]wraplines # global; word wrap messages; default
-maxerrors max # specify maximum number of errors to print, zero

means no maximum; default is 0
-maxwarnings max # specify maximum number of warnings to print,

zero means no maximum; default is 0
-msgstyle keyword # global; set error/warning message style

mpw # use MPW message style
std # use standard message style; default
gcc # use GCC-like message style
IDE # use CW IDE-like message style
parseable # use context-free machine-parseable message
278 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
style
#

-[no]stderr # global; use separate stderr and stdout streams;
if using -nostderr, stderr goes to stdout

Listing 12.4 Compiler options

--
Preprocessing, Precompiling, and Input File Control Options
--

-c # global; compile only, do not link
-[no]codegen # global; generate object code
-[no]convertpaths # global; interpret #include filepaths specified

for a foreign operating system; i.e.,
<sys/stat.h> or <:sys:stat.h>; when enabled,
'/' and ':' will separate directories and
cannot be used in filenames (note: this is
not a problem on Win32, since these
characters are already disallowed in
filenames; it is safe to leave the option
'on'); default

-cwd keyword # specify #include searching semantics: before
searching any access paths, the path
specified by this option will be searched

proj # begin search in current working directory;
default

source # begin search in directory of source file
explicit # no implicit directory; only search '-I' or

'-ir' paths
include # begin search in directory of referencing

file
#

-D+ | -d[efine # cased; define symbol 'name' to 'value' if
name[=value] # specified, else '1'

-[no]defaults # global; passed to linker;
same as '-[no]stdinc'; default

-dis[assemble] # global; passed to all tools;
disassemble files to stdout

-E # global; cased; preprocess source files
-EP # global; cased; preprocess and strip out #line

directives
-ext extension # global; specify extension for generated object

files; with a leading period ('.'), appends
extension; without, replaces source file's
extension; for 'extension', maximum length 14
chars; default is none
27956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
-gccinc[ludes] # global; adopt GCC #include semantics: add '-I'
paths to system list if '-I-' is not
specified, and search directory of
referencing file first for #includes (same as
'-cwd include')

-i- | -I- # global; change target for '-I' access paths to
the system list; implies '-cwd explicit';
while compiling, user paths then system paths
are searched when using '#include "..."; only
system paths are searched with '#include
<...>'

-I+ | -i p # global; cased; append access path to current
#include list(see '-gccincludes' and '-I-')

-ir path # global; append a recursive access path to
current #include list

-[no]keepobj[ects] # global; keep object files generated after
invoking linker; if disabled, intermediate
object files are temporary and deleted after
link stage; objects are always kept when
compiling

-M # global; cased; scan source files for
dependencies and emit Makefile, do not
generate object code

-MM # global; cased; like -M, but do not list system
include files

-MD # global; cased; like -M, but write dependency
map to a file and generate object code

-MMD # global; cased; like -MD, but do not list system
include files

-make # global; scan source files for dependencies and
emit Makefile, do not generate object code -

nofail # continue working after errors in earlier files
-nolink # global; compile only, do not link
-noprecompile # do not precompile any files based on the

filename extension
-nosyspath # global; treat #include <...> like #include

"..."; always search both user and system
path lists

-o file|dir # specify output filename or directory for object
file(s) or text output, or output filename
for linker if called

-P # global; cased; preprocess and send output to
file; do not generate code

-precompile file|di # generate precompiled header from source; write
header to 'file' if specified, or put header
in 'dir'; if argument is "", write header to
source-specified location; if neither is
defined, header filename is derived from
280 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
source filename; note: the driver can tell
whether to precompile a file based on its
extension; '-precompile file source' then is
the same as '-c -o file source'

-preprocess # global; preprocess source files
-prefix file # prefix text file or precompiled header onto all

source files
-S # global; cased; passed to all tools;

disassemble and send output to file
-[no]stdinc # global; use standard system include paths

(specified by the environment variable
%MWCIncludes%); added after all system '-I'
paths; default

-U+ | -u[ndefine] name # cased; undefine symbol 'name'

--
Front-End C/C++ Language Options
--

-ansi keyword # specify ANSI conformance options, overriding
the given settings

off # same as '-stdkeywords off', '-enum min', and
'-strict off'; default

on|relaxed # same as '-stdkeywords on', '-enum min', and
'-strict on'

strict # same as '-stdkeywords on', '-enum int', and
'-strict on'
#

-ARM on|off # check code for ARM (Annotated C++ Reference
Manual) conformance; default is off

-bool on|off # enable C++ 'bool' type, 'true' and 'false'
constants; default is off

-char keyword # set sign of 'char'
signed # chars are signed; default
unsigned # chars are unsigned

#
-Cpp_exceptions on|off # passed to linker;

enable or disable C++ exceptions; default is
on

-dialect | -lang keyword # passed to linker;
specify source language

c # treat source as C always
c++ # treat source as C++ always
ec++ # generate warnings for use of C++ features

outside Embedded C++ subset (implies
'dialect cplus')
‘dialect cplus’)

-enum keyword # specify word size for enumeration types
min # use minimum sized enums; default
28156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
int # use int-sized enums
#

-inline keyword[,...] # specify inline options
on|smart # turn on inlining for 'inline' functions;

default
none|off # turn off inlining
auto # auto-inline small functions (without

'inline' explicitly specified)
noauto # do not auto-inline; default
all # turn on aggressive inlining: same as

'-inline on, auto'
deferred # defer inlining until end of compilation

unit; this allows inlining of functions in
both directions

level=n # cased; inline functions up to 'n' levels
deep; level 0 is the same as '-inline on';
for 'n', range 0 - 8

#
-iso_templates on|off # enable ISO C++ template parser (note: this

requires a different MSL C++ library);
default is off

-[no]mapcr # reverse mapping of '\n' and '\r' so that
'\n'==13 and '\r'==10 (for Macintosh MPW
compatability)

-msext keyword # [dis]allow Microsoft VC++ extensions
 on # enable extensions: redefining macros,

allowing XXX::yyy syntax when declaring
method yyy of class XXX,
allowing extra commas,
ignoring casts to the same type,
treating function types with equivalent
parameter lists but different return types
as equal,
allowing pointer-to-integer conversions,
and various syntactical differences

off # disable extensions; default on non-x86
targets
#

-[no]multibyte[aware] # enable multi-byte character encodings for
source text, comments, and strings

-once # prevent header files from being processed more
than once

-pragma # define a pragma for the compiler such as
"#pragma ..."

-r[equireprotos] # require prototypes
-relax_pointers # relax pointer type-checking rules
-RTTI on|off # select run-time typing information (for C++);

default is on
282 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
-som # enable Apple's Direct-to-SOM implementation
-som_env_check # enables automatic SOM environment and new

allocation checking; implies -som
-stdkeywords on|off # allow only standard keywords; default is off
-str[ings] keyword[,...] # specify string constant options

[no]reuse # reuse strings; equivalent strings are the
same object; default

[no]pool # pool strings into a single data object
[no]readonly # make all string constants read-only

#
-strict on|off # specify ANSI strictness checking; default is

off
-trigraphs on|off # enable recognition of trigraphs; default is off
-wchar_t on|off # enable wchar_t as a built-in C++ type; default

is on

--
Optimizer Options

Note that all options besides '-opt off|on|all|space|speed|level=
...' are for backwards compatibility; other optimization options may
be superceded by use of '-opt level=xxx'.
--

-O # same as '-O2'
-O+keyword[,...] # cased; control optimization; you may combine

options as in '-O4,p'
0 # same as '-opt off'
1 # same as '-opt level=1'
2 # same as '-opt level=2'
3 # same as '-opt level=3'
4 # same as '-opt level=4'
p # same as '-opt speed'
s # same as '-opt space'

#
-opt keyword[,...] # specify optimization options

off|none # suppress all optimizations; default
on # same as '-opt level=2'
all|full # same as '-opt speed, level=4'
[no]space # optimize for space
[no]speed # optimize for speed
l[evel]=num # set optimization level:

level 0: no optimizations
#

level 1: global register allocation,
peephole, dead code elimination

#
level 2: adds common subexpression
elimination and copy propagation
28356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
#
level 3: adds loop transformations,
strength reduction, loop-invariant code
motion

#
level 4: adds repeated common
subexpression elimination and
loop-invariant code motion
; for 'num', range 0 - 4; default is 0

[no]cse # common subexpression elimination
[no]commonsubs #
[no]deadcode # removal of dead code
[no]deadstore # removal of dead assignments
[no]lifetimes # computation of variable lifetimes
[no]loop[invariants] # removal of loop invariants
[no]prop[agation] # propagation of constant and copy assignments
[no]strength # strength reduction; reducing multiplication

by an index variable into addition
[no]dead # same as '-opt [no]deadcode' and '-opt

[no]deadstore'
display|dump # display complete list of active

optimizations
#

--
DSP M56800E CodeGen Options
--

-DO keyword # for this tool;
specify hardware DO loops

off # no hardware DO loops; default
nonested # hardware DO loops but no nested ones
nested # nested hardware DO loops

#
-padpipe # for this tool;

pad pipeline for debugger
-ldata | -largedata # for this tool;

data space not limited to 64K
-globalsInLowerMemory # for this tool;

globals live in lower memory; implies '-large
data model'

-sprog | -smallprog # for this tool;
program space limited to 64K

--
Debugging Control Options
--

-g # global; cased; generate debugging information;
same as '-sym full'
284 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
-sym keyword[,...] # global; specify debugging options
off # do not generate debugging information;

default
on # turn on debugging information
full[path] # store full paths to source files

#
--
C/C++ Warning Options
--

-w[arn[ings]] # global; for this tool;
keyword[,...] # warning options
off # passed to all tools;

turn off all warnings
on # passed to all tools;

turn on most warnings
[no]cmdline # passed to all tools;

command-line driver/parser warnings
[no]err[or] | # passed to all tools;
[no]iserr[or] # treat warnings as errors
all # turn on all warnings, require prototypes
[no]pragmas | # illegal #pragmas
[no]illpragmas #
[no]empty[decl] # empty declarations
[no]possible | # possible unwanted effects
[no]unwanted #
[no]unusedarg # unused arguments
[no]unusedvar # unused variables
[no]unused # same as -w [no]unusedarg,[no]unusedvar
[no]extracomma | # extra commas
[no]comma #
[no]pedantic | # pedantic error checking
[no]extended #
[no]hidevirtual | # hidden virtual functions
[no]hidden[virtual] #
[no]implicit[conv] # implicit arithmetic conversions
[no]notinlined # 'inline' functions not inlined
[no]largeargs # passing large arguments to unprototyped

functions
[no]structclass # inconsistent use of 'class' and 'struct'
[no]padding # padding added between struct members
[no]notused # result of non-void-returning function not

used
[no]unusedexpr # use of expressions as statements without

side effects
[no]ptrintconv # conversions from pointers to integers, and

vice versa
display|dump # display list of active warnings
28556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
#

Listing 12.5 Command-line Linker options

--
Command-Line Linker Options
--

-dis[assemble] # global; disassemble object code and do not
link; implies '-nostdlib'

-L+ | -l path # global; cased; add library search path; default
is to search current working directory and
then system directories (see '-defaults');
search paths have global scope over the
command line and are searched in the order
given

-lr path # global; like '-l', but add recursive library
search path

-l+file # cased; add a library by searching access paths
for file named lib<file>.<ext> where <ext> is
a typical library extension; added before
system libraries (see '-defaults')

-[no]defaults # global; same as -[no]stdlib; default
-nofail # continue importing or disassembling after

errors in earlier files
-[no]stdlib # global; use system library access paths

(specified by %MWLibraries%) and add system
libraries (specified by %MWLibraryFiles%);
default

-S # global; cased; disassemble and send output to
file; do not link; implies '-nostdlib'

--
ELF Linker Options
--

-[no]dead[strip] # enable dead-stripping of unused code; default
-force_active # specify a list of symbols as undefined; useful

symbol[,...] # to force linking of static libraries
#

-keep[local] on|off # keep local symbols (such as relocations and
output segment names) generated during link;
default is on

-m[ain] symbol # set main entry point for application or shared
library; use '-main ""' to specify no entry
point; for 'symbol', maximum length 63 chars;
default is 'FSTART_'

-map [keyword[,...]] # generate link map file
closure # calculate symbol closures
286 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
unused # list unused symbols
#

-sortbyaddr # sort S-records by address; implies '-srec'
-srec # generate an S-record file; ignored when

generating static libraries
-sreceol keyword # set end-of-line separator for S-record file;

implies '-srec'
mac # Macintosh ('\r')
dos # DOS ('\r\n'); default
unix # Unix ('\n')

-sreclength length # specify length of S-records (should be a

multiple of 4); implies '-srec'; for
'length', range 8 - 252; default is 64

-usebyteaddr # use byte address in S-record file; implies
'-srec'

-o file # specify output filename

--
DSP M56800E Project Options
--

-application # global; generate an application; default
-library # global; generate a static library

--
DSP M56800E CodeGen Options
--

-ldata | -largedata # data space not limited to 64K
--
Linker C/C++ Support Options
--

-Cpp_exceptions on|off # enable or disable C++ exceptions;
default is on

-dialect | -lang keyword # specify source language
c # treat source as C++ unless its extension is

'.c', '.h', or '.pch'; default
c++ # treat source as C++ always

#

--
Debugging Control Options
--

-g # global; cased; generate debugging information;
same as '-sym full'

-sym keyword[,...] # global; specify debugging options
off # do not generate debugging information;

default
on # turn on debugging information
28756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
full[path] # store full paths to source files
#

--
Warning Options
--

-w[arn[ings]] # global; warning options
keyword[,...] #
off # turn off all warnings
on # turn on all warnings
[no]cmdline # command-line parser warnings
[no]err[or] | # treat warnings as errors
[no]iserr[or] #

display|dump # display list of active warnings
#

--
ELF Disassembler Options
--

-show keyword[,...] # specify disassembly options
only|none # as in '-show none' or, e.g.,

'-show only,code,data'
all # show everything; default

[no]code | [no]text # show disassembly of code sections; default
[no]comments # show comment field in code; implies '-show

code'; default
[no]extended # show extended mnemonics; implies '-show

code'; default
[no]data # show data; with '-show verbose', show hex

dumps of sections; default
[no]debug | [no]sym # show symbolics information; default
[no]exceptions # show exception tables; implies '-show data';

default
[no]headers # show ELF headers; default
[no]hex # show addresses and opcodes in code

disassembly; implies '-show code'; default
[no]names # show symbol table; default
[no]relocs # show resolved relocations in code and

relocation tables; default
[no]source # show source in disassembly; implies '-show

code'; with '-show verbose', displays
entire source file in output, else shows
only four lines around each function;
default

[no]xtables # show exception tables; default
[no]verbose # show verbose information, including hex dump

of program segments in applications;
default
288 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
#

Listing 12.6 Assembler control options

--
Assembler Control Options
--

-[no]case # identifiers are case-sensitive; default
-[no]debug # generate debug information
-[no]macro_expand # expand macro in listin output
-[no]assert_nop # add nop to resolve pipeline dependency; default
-[no]warn_nop # emit warning when there is a pipeline

dependency
-[no]warn_stall # emit warning when there is a hardware stall

 -[no]legacy # allow legacy DSP56800 instructions(imply
data/prog 16)

-[no]debug_workaround # Pad nop workaround debuggin issue in some
implementation; default

-data keyword # data memory compatibility
16 # 16 bit; default
24 # 24 bit

#
-prog keyword # program memory compatibility

16 # 16 bit; default
19 # 19 bit
21 # 21 bit

#

28956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
290 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

13
Libraries and Runtime Code

You can use a variety of libraries with the CodeWarrior™ IDE. The libraries include
ANSI-standard libraries for C, runtime libraries, and other codes. This chapter explains
how to use these libraries for DSP56800E development.

With respect to the Standard Library (MSL) for C, this chapter is an extension of the MSL
C Reference. Consult that manual for general details on the standard libraries and their
functions.

This chapter includes the following sections:

• MSL for DSP56800E

• Runtime Initialization

• EOnCE Library

MSL for DSP56800E
This section explains the Standard Library (MSL) that has been modified for use with
DSP56800E. The compiler library supports C++ support functions, including
trigonometric, hyperbolic, power, absolute value functions, exponential and logarithmic
functions.

NOTE To use double precision function versions, you must use libraries that support
long long and double data types. Libraries that support these types have names
that include _SLLD. Use #pragma slld on to compile the project.

NOTE Libraries are available that are precompiled for speed (the library name
contains the specifier o4p) or precompiled for code size (the library name
contains the specifier o4s).

Using MSL for DSP56800E
CodeWarrior™ Development Studio for 56800/E Digital Signal Controllers includes a
version of the Standard Library (MSL). MSL is a complete C library for use in embedded
projects. All of the sources necessary to build MSL are included in CodeWarrior™
Development Studio for 56800/E Digital Signal Controllers, along with the project files
29156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
MSL for DSP56800E
for different configurations of MSL. If you already have a version of the CodeWarrior
IDE installed on your computer, the CodeWarrior installer adds the new files needed for
building versions of MSL for DSP56800E.

The project directory for the DSP56800E MSL is: CodeWarrior\M56800E
Support\msl\MSL_C\DSP_56800E\projects\MSL C 56800E.mcp

Do not modify any of the source files included with MSL. If you need to make changes
based on your memory configuration, make changes to the runtime libraries.

Ensure that you include one or more of the header files located in the following directory:

CodeWarrior\M56800E Support\msl\MSL_C\DSP_56800E\inc

When you add the relative-to-compiler path to your project, the appropriate MSL and
runtime files will be found by your project. If you create your project from Stationery, the
new project will have the proper support access path.

Console and File I/O
DSP56800E Support provides standard C calls for I/O functionality with full ANSI/ISO
standard I/O support with host machine console and file I/O for debugging sessions (Host
I/O) through the JTAG port or HSST in addition to such standard C calls such as memory
functions malloc() and free().

A minimal “thin” printf via “console_write” and “fflush_console” is provided in addition
to standard I/O.

See the MSL C Reference manual (Main Standard Library).

Library Configurations
There are Large Data Model and Small Data Model versions of all libraries. (Small
Program Model default is off for all library and Stationery targets.)

Main Standard Library (MSL) provides standard C library support.

The Runtime libraries provide the target-specific low-level functions below the high-level
MSL functions. There are two types of Runtime libraries:

• JTAG-based Host I/O

• HSST-based Host I/O.

For each project requiring standard C library support, a matched pair of MSL and
Runtime libraries are required (SDM or LDM pairs).

The HSST library is added to HSST client-to-client DSP56800E targets. For more
information see High-Speed Simultaneous Transfer.

NOTE DSP56800E stationery creates new projects with LDM and SDM targets and
the appropriate libraries.
292 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
MSL for DSP56800E
Below is a list of the DSP56800E libraries:

• Standard Libraries (MSL)

– MSL C 56800E.lib

Standard C library support for Small Data Model.

– MSL C 56800E lmm.lib

Standard C library support for Large Data Model.

• Runtime Libraries

– runtime 56800E.lib

Low-level functions for MSL support for Small Data Model with Host I/O via
JTAG port.

– runtime 56800E lmm.lib

Low-level functions for MSL support for Large Data Model with Host I/O via
JTAG port.

– runtime_hsst_56800E.lib

Low-level functions for MSL support for Small Data Model with Host I/O via
HSST.

– runtime_hsst_56800E_lmm.lib

Low-level functions for MSL support for Large Data Model with Host I/O via
HSST.

• HSST Libraries

There are debug and release targets for SDM and LDM. The release targets have
maximum optimization settings and debug info turned off. For more information see
High-Speed Simultaneous Transfer.

– hsst_56800E.lib

DSP 56800E HSST client functions for Small Data Model.

– hsst_56800E_lmm.lib

DSP56800E HSST client functions for Large Data Model.

Host File Location
Files are created with fopen on the host machine as shown in Table 13.1.
29356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
MSL for DSP56800E
Allocating Stacks and Heaps for
DSP56800E
Stationery linker command files (LCF) define heap, stack, and bss locations. LCFs are
specific to each target board. When you use M56800E stationery to create a new project,
CodeWarrior automatically adds the LCF to the new project.

See ELF Linker for general LCF information. See each specific target LCF in Stationery
for specific LCF information.

See Table 13.2 for the variables defined in each Stationery LCF.

To change the locations of these default values, modify the linker command file in
your DSP56800E project.

NOTE Ensure that the stack and heap memories reside in data memory.

Definitions
The following definitions are used throughout this document.

Table 13.1 Host File Creation Location

fopen Filename Parameter Host Creation Location

filename with no path target project file folder

full path location of full path

Table 13.2 LCF Variables and Address

Variables Address

_stack_addr Start address of the stack

_heap_size Size of the heap

_heap_addr Start address of the heap

_heap_end End address of the heap

_bss_start Start address of memory reserved for uninitialized variables

_bss_end End address of bss
294 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
Runtime Initialization
Stack
The stack is a last-in-first-out (LIFO) data structure. Items are pushed on the stack and
popped off the stack. The most recently added item is on top of the stack. Previously
added items are under the top, the oldest item at the bottom. The “top” of the stack may be
in low memory or high memory, depending on stack design and use. M56800E uses a 16-
bit-wide stack.

Heap
Heap is an area of memory reserved for temporary dynamic memory allocation and
access. MSL uses this space to provide heap operations such as malloc. M56800E does not
have an operating system (OS), but MSL effectively synthesizes some OS services such as
heap operations.

BSS
BSS is the memory space reserved for uninitialized data. The compiler will put all
uninitialized data here. If the Zero initialized globals live in data instead of BSS
checkbox in the M56800E Processor Panel is checked, the globals that are initialized to
zero reside in the .data section instead of the .bss section. The stationery init code
zeroes this area at startup. See the M56852 init (startup) code in this chapter for general
information and the stationery init code files for specific target implementation details.

NOTE Instead of accessing the original Stationery files themselves (in the Stationery
folder), create a new project using Stationery which will make copies of the
specific target board files such as the LCF.

Runtime Initialization
The default init function is the bootstrap or glue code that sets up the DSP56800E
environment before your code executes. This function is in the init file for each board-
specific stationery project. The routines defined in the init file performs other tasks such
as clearing the hardware stack, creating an interrupt table, and retrieving the stack start and
exception handler addresses.

The final task performed by the init function is to call the main() function.

The starting point for a program is set in the Entry Point field in the M56800E Linker
settings panel.

The project for the DSP56800E runtime is: CodeWarrior\M56800E
Support\runtime_56800E\projects\Runtime 56800E.mcp
29556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
Runtime Initialization
When creating a project from R1.1 or later Stationery, the associated init code is specific
to the DSP56800E board. See the startup folder in the new project folder for the init code.

Listing 13.1 Sample Initialization File (DSP56852EVM)

#

; ---
;
; 56852_init.asm
; sample

description: main entry point to C code.
; setup runtime for C and call main
;
; ---

;===============================
; OMR mode bits
;===============================
NL_MODE EQU $8000
CM_MODE EQU $0100
XP_MODE EQU $0080
R_MODE EQU $0020
SA_MODE EQU $0010

section rtlib

XREF F_stack_addr
org p:

GLOBAL Finit_M56852_

Table 13.3 Library Names and Locations

Library Name Location

Large Memory Model

Runtime 56800E lmm.lib

CodeWarrior\M56800E
Support\runtime_56800E\lib

Small Memory Model

Runtime 56800E.Lib

CodeWarrior\M56800E
Support\runtime_56800E\lib
296 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
Runtime Initialization
SUBROUTINE "Finit_M56852_",Finit_M56852_,Finit_M56852END-
Finit_M56852_

Finit_M56852_:

;
; setup the OMr with the values required by C
;

bfset #NL_MODE,omr ; ensure NL=1 (enables nsted DO loops)
nop
nop

bfclr #(CM_MODE|XP_MODE|R_MODE|SA_MODE),omr ; ensure CM=0
(optional for C)

; ensure XP=0 to enable harvard architecture
; ensure R=0 (required for C)
; ensure SA=0 (required for C)

; Setup the m01 register for linear addressing
move.w #-1,x0
moveu.w x0,m01 ; Set the m register to linear addressing

moveu.w hws,la ; Clear the hardware stack
moveu.w hws,la
nop
nop

CALLMAIN: ; Initialize compiler environment

;Initialize the Stack
move.l #>>F_Lstack_addr,r0
bftsth #$0001,r0
bcc noinc
adda #1,r0

noinc:
tfra r0,sp ; set stack pointer too
move.w #0,r1
nop
move.w r1,x:(sp)
adda #1,sp

jsr F__init_sections

; Call main()
move.w #0,y0 ; Pass parameters to main()
move.w #0,R2
move.w #0,R3
29756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
jsr Fmain ; Call the Users program
;
; The fflush calls where removed because they added code
; growth in cases where the user is not using any debugger IO.
; Users should now make these calls at the end of main if they use
debugger IO
;
; move.w #0,r2
; jsr Ffflush ; Flush File IO
; jsr Ffflush_console ; Flush Console IO

; end of program; halt CPU
debughlt
rts

Finit_M56852END:

endsec

EOnCE Library
The EOnCE (Enhanced On Chip Emulator) library provides functions, which allows your
program to control the EOnCE. The library lets you set and clear triggers for breakpoints,
watchpoints, program traces, and counters. With several option enumerations, the library
greatly simplifies using the EOnCE from within the core, and thus eliminates the need for
a DSP56800E User Manual. The library and the debugger are coordinated so that the
debugger does not overwrite a trigger set by the library, and vice versa.

To use the EOnCE library, you must include it in your project. The name of the file is
eonce 56800E lmm.lib and it is located at:
CodeWarrior\M56800ESupport\eonce\lib

The Large Data Model option must be enabled in the M56800E Processor preference
panel. Any source file that contains code that calls any of the EOnCE Library functions
must #include eonceLib.h. This header file is located at:
CodeWarrior\M56800E Support\eonce\include

The library functions are listed below:

• _eonce_Initialize

• _eonce_SetTrigger

• _eonce_SetCounterTrigger

• _eonce_ClearTrigger

• _eonce_GetCounters
298 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
• _eonce_GetCounterStatus

• _eonce_SetupTraceBuffer

• _eonce_GetTraceBuffer

• _eonce_ClearTraceBuffer

• _eonce_StartTraceBuffer

• _eonce_HaltTraceBuffer

• _eonce_EnableDEBUGEV

• _eonce_EnableLimitTrigger

The sub-section Definitions defines:

• Return Codes

• Normal Trigger Modes

• Counter Trigger Modes

• Data Selection Modes

• Counter Function Modes

• Normal Unit Action Options

• Counter Unit Action Options

• Accumulating Trigger Options

• Miscellaneous Trigger Options

• Trace Buffer Capture Options

• Trace Buffer Full Options

• Miscellaneous Trace Buffer Option

_eonce_Initialize

Initializes the library by setting the necessary variables.

Prototype

void _eonce_Initialize(unsigned long baseAddr, unsigned int
units)

Parameters

baseAddr unsigned long
29956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Specifies the location in X: memory where the EOnCE registers are located.

units unsigned int

Specifies the number of EOnCE breakpoint units available.

Remarks

This function must be called before any other library function is called. Its
parameters are dependent on the processor being used. Instead of calling this
function directly, one of the defined macros can be called in its place. These
include _eonce_Initialize56838E(), _eonce_Initialize56852E(), and
_eonce_Initialize56858E(). These macros call _eonce_Initialize with the correct
parameters for the 56838, 56852, and 56858, respectively.

Returns

Nothing.

_eonce_SetTrigger

Sets a trigger condition used to halt the processor, cause an interrupt, or start and stop the
trace buffer. This function does not set triggers for special counting functions.

Prototype

int _eonce_SetTrigger(unsigned int unit, unsigned long
options, unsigned long value1, unsigned long value2,
unsigned long mask, unsigned int counter)

Parameters

unit unsigned int

Specifies which breakpoint unit to use.

options unsigned long

Describes the behavior of the trigger. For more information on the identifiers for
this parameter, see the sub-section Definitions.

value1 unsigned long

Specifies the address or data value to compare as defined by the options parameter.

value2 unsigned long

Specifies the address or data value to compare as defined by the options parameter.

mask unsigned long
300 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Specifies which bits of value2 to compare.

counter unsigned int

Specifies the number of successful comparison matches to count before completing
trigger sequence as defined by the options parameter

Remarks

This function sets all triggers, except those used to define the special counting
function behavior. Carefully read the list of defined identifiers that can be OR’ed
into the options parameter.

Returns

Error code as defined in the sub-section Definitions.

_eonce_SetCounterTrigger

Sets a trigger condition used for special counting functions.

Prototype

int _eonce_SetCounterTrigger(unsigned int unit, unsigned
long options, unsigned long value1, unsigned long value2,
unsigned long mask, unsigned int counter, unsigned long
counter2)

Parameters

unit unsigned int

Specifies which breakpoint unit to use.

options unsigned long

Describes the behavior of the trigger. For more information on the identifiers for
this parameter, see the sub-section Definitions.

value1 unsigned long

Specifies the address or data value to compare as defined by the options parameter.

value2 unsigned long

Specifies the address or data value to compare as defined by the options parameter.

mask unsigned long

Specifies which bit of value2 to compare.

counter unsigned int
30156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Specifies the value used to pre-load the counter, which proceeds backward when
EXTEND_COUNTER is OR’ed into the options parameter. counter contains the
least significant 16-bits.

counter2 unsigned long

Specifies the value used to pre-load the counter, which proceeds backward. When
EXTEND_COUNTER is OR’ed into the options parameter. counter2 contains the
most significant 24-bits. However, when EXTEND_COUNTER is not OR’ed
counter2 should be set to 0.

Remarks

This function is used to set special counting function triggers. The special counting
options are defined in the sub-section Definitions. Carefully read the list of defined
identifiers that can be ORed into the options parameter.

Returns

Error code as defined in the sub-section Definitions.

_eonce_ClearTrigger

Clears a previously set trigger.

Prototype

int _eonce_ClearTrigger(unsigned int unit)

Parameters

unit unsigned int

Specifies which breakpoint unit to use.

Remarks

This function clears a trigger set with the _eonce_SetTrigger or
_eonce_SetCounterTrigger functions.

Returns

Error code as defined in the sub-section Definitions.
302 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
_eonce_GetCounters

Retrieves the values in the two counter registers.

Prototype

int _eonce_GetCounters(unsigned int unit, unsigned int
*counter, unsigned long *counter2)

Parameters

unit unsigned int

Specifies which breakpoint unit to use.

counter unsigned int *

Holds the value of the counter, or the least significant 16 bits, if the counter has
been extended to 40-bits.

counter2 unsigned long *

Holds the most significant 24 bits if the counter has been extended to 40 bits. This
parameter must be a valid pointer even if the counter has not been extended.

Remarks

This function retrieves the value of the counter of the specified breakpoint unit.
This function is most useful when using the special counting function of the
breakpoint, but can also be used to retrieve the trigger occurrence counter.

Returns

Error code as defined in the sub-section Definitions.

_eonce_GetCounterStatus

Retrieves the status of the breakpoint counter.

Prototype

int _eonce_GetCounters(char *counterIsZero, char
*counterIsStopped)

Parameters

counterIsZero char *
30356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Returns a 1 if the breakpoint counter has reached zero.

counterIsStopped char *

Returns a 1 if the breakpoint counter has been stopped by a Counter Stop Trigger.

Remarks

This function returns the state of the breakpoint counter when using the special
counting function.

Returns

Error code as defined in the sub-section Definitions.

_eonce_SetupTraceBuffer

Configures the behavior of the trace buffer.

Prototype

int _eonce_SetupTraceBuffer(unsigned int options)

Parameters

options unsigned int

Describes the behavior of the trace buffer. See Definitions for more information on
the identifiers for this parameter.

Remarks

Sets the behavior of the trace buffer. Triggers can also be set to start and stop trace
buffer capture using the _eonce_SetTrigger function.

Returns

Error code as defined in the sub-section Definitions.

_eonce_GetTraceBuffer

Retrieves the contents of the trace buffer.

Prototype

int _eonce_GetTraceBuffer(unsigned int *count, unsigned long
304 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
*buffer)

Parameters

count unsigned int *

Passes in the size of the buffer; if 0 is passed in, the contents of the trace buffer are
not retrieved, instead the number of entries in the trace buffer are returned in count.

buffer unsigned long *

Points to an array in which the contents of the trace buffer are returned starting
with the oldest entry.

Remarks

This function retrieves the addresses contained in the trace buffer. The addresses
represent the program execution point when certain change-of-flow events occur.
The trace buffer behavior, including capture events, can be configured using
_eonce_SetupTraceBuffer.

Returns

Error code as defined in the sub-section Definitions.

_eonce_ClearTraceBuffer

Clears the contents of the trace buffer.

Prototype

int _eonce_ClearTraceBuffer()

Parameters

None.

Remarks

This function clears the trace buffer and is useful when you want a fresh set of data.
It is necessary to resume capturing when the trace buffer is full and configured to
stop capturing.

Returns

Error code as defined in the sub-section Definitions.
30556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
_eonce_StartTraceBuffer

Resumes trace buffer capturing.

Prototype

int _eonce_StartTraceBuffer()

Parameters

None.

Remarks

This function causes the trace buffer to immediately start capturing.

Returns

Error code as defined in the sub-section Definitions.

_eonce_HaltTraceBuffer

Halts trace buffer capturing.

Prototype

int _eonce_HaltTraceBuffer()

Parameters

None.

Remarks

Causes the trace buffer to immediately stop capturing.

Returns

Error code as defined in the sub-section Definitions.

_eonce_EnableDEBUGEV

Allows or disallows a DEBUGEV instruction to cause a core event in breakpoint unit 0.
306 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Prototype

int _eonce_EnableDEBUGEV(char enable)

Parameters

enable char

If a non-zero value, allows the DEBUGEV instruction to cause a core event. If a
zero value, prevents the DEBUGEV instruction from causing a core event.

Remarks

This function configures the behavior for the DEBUGEV instructions. For a core
event to occur, breakpoint unit 0 must be activated by setting a trigger using the
_eonce_SetTrigger or _eonce_SetCounterTrigger functions.

Returns

Error code as defined in the sub-section Definitions.

_eonce_EnableLimitTrigger

Allows or disallows a limit trigger to cause a core event in breakpoint unit 0.

Prototype

int _eonce_EnableLimitTrigger(char enable)

Parameters

enable char

If a non-zero value, allows this instruction to cause a core event. If a zero value,
prevents this instruction from causing a core event.

Remarks

This function configures the behavior for overflow and saturation conditions in the
processor core. For a core event to occur, breakpoint unit 0 must be activated by
setting a trigger using the _eonce_SetTrigger or _eonce_SetCounterTrigger
functions.

Returns

Error code as defined in the sub-section Definitions.
30756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Definitions
This sub-section defines:

• Return Codes

• Normal Trigger Modes

• Counter Trigger Modes

• Data Selection Modes

• Counter Function Modes

• Normal Unit Action Options

• Counter Unit Action Options

• Accumulating Trigger Options

• Miscellaneous Trigger Options

• Trace Buffer Capture Options

• Trace Buffer Full Options

• Miscellaneous Trace Buffer Option

Return Codes
Every function except _eonce_Initialize returns one of the error codes in Table 13.4.

Table 13.4 Error Codes

Error Code Description

EONCE_ERR_NONE No error.

EONCE_ERR_NOT_INITIALIZED The _eonce_Initialize function has not
been called before the current function.

EONCE_ERR_UNIT_OUT_OF_RANGE The unit parameter is greater than or equal
to the number of units specified in
_eonce_Initialize.

EONCE_ERR_LOCKED_OUT The core cannot access the EOnCE
registers because the debugger has locked
out the core. This occurs when a trigger has
been set using the EOnCE GUI panels or
through an IDE breakpoint or watchpoint.
308 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Normal Trigger Modes
One of the defined identifiers listed in Listing 13.2 must be ORed into the options
parameter of the _eonce_SetTrigger function. A key for the defined identifiers listed in
Listing 13.2 is given in Table 13.5.

Listing 13.2 Normal Trigger Modes

B1PA_N
B1PR_N
B1PW_N
B2PF_N
B1XA_OR_B2PF_N
B1XA_N_OR_B2PF
B1PF_OR_B2PF_N
B1PA_OR_B2PF_N
B1PA_N_OR_B2PF
B1PF_OR_N_B2PF
B1PA_OR_N_B2PF
B1XR_AND_N_B2DR
B1XW_AND_N_B2DW
B1XA_AND_N_B2DRW
B1PF_N_THEN_B2PF
B2PF_THEN_B1PF_N
B1PA_N_THEN_B2PF
B1PA_THEN_B2PF_N
B2PF_N_THEN_B1PA
B2PF_THEN_B1PA_N
B1XA_N_THEN_B2PF
B1XA_THEN_B2PF_N
B2PF_N_THEN_B1XA
B2PF_THEN_B1XA_N
B1XW_N_THEN_B2PF
B1XW_THEN_B2PF_N
B2PF_N_THEN_B1XW
B2PF_THEN_B1XW_N
B1XR_N_THEN_B2PF
B1XR_THEN_B2PF_N
B2PF_N_THEN_B1XR
B2PF_THEN_B1XR_N
B1PF_STB_B2PF_HTB
B1PA_STB_B2PF_HTB
B2PF_STB_B1PA_HTB
Defined Identifier Key for Normal Trigger Modes
30956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Counter Trigger Modes
The following triggers generate a Counter Stop Trigger. The exceptions are the modes that
generate both start and stop triggers.

The defined identifiers listed in Listing 13.3 must be ORed into the options parameter of
the _eonce_SetCounterTrigger function. A key for the defined identifiers listed in
Listing 13.3 is given in Table 13.6.

Table 13.5 Defined Identifier Key: Normal Trigger Modes

Identifier Fragments Description

B1 breakpoint 1; value set in value1

B2 breakpoint 2; value set in value2

P p-memory address; this is followed by a type of access

X x-memory address; this is followed by a type of access

D value being read from or written to x-memory

A memory access

R memory read

W memory write

F memory fetch; only follows a P

OR links two sub-triggers by a logical or

AND links two sub-triggers by a logical and

THEN creates a sequence; first sub-trigger must occur, then
second sub-trigger must occur to complete the trigger

N the sub-trigger it follows must occur N times as set in
the count parameter; if N follows an operation, then the
combination of the sub-triggers must occur N times;
(count - 1) will be written to the BCNTR register

STB sub-trigger starts the trace buffer

HTB sub-trigger halts the trace buffer
310 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Listing 13.3 Counter Trigger Modes

B1PA
B1PR
B1PW
B2PF
B1XA_OR_B2PF
B1PF_OR_B2PF
B1PA_OR_B2PF
B1XR_AND_B2DR
B1XW_AND_B2DW
B1XA_AND_B2DRW
B1PF_THEN_B2PF
B1PA_THEN_B2PF
B2PF_THEN_B1PA
B1XA_THEN_B2PF
B2PF_THEN_B1XA
B1XW_THEN_B2PF
B2PF_THEN_B1XW
B1XR_THEN_B2PF
B2PF_THEN_B1XR
B1PF_SC_B2PF_HC
B1PA_SC_B2PF_HC
B2PF_SC_B1PA_HC

Table 13.6 Defined Identifier Key: Counter Trigger Modes

Identifier Fragments Description

B1 Breakpoint 1; value set in value1

B2 Breakpoint 2; value set in value2

P P-memory address; this is followed by a type of access

X X-memory address; this is followed by a type of access.

D Value being read from or written to x-memory

A Memory access

R Memory read

W Memory write

F Memory fetch; only follows a P

OR Links two sub-triggers by a logical or
31156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Data Selection Modes
If the trigger mode being set includes a data value compare (contains B2D from the list
Normal Trigger Modes or Counter Trigger Modes), then one of the defined identifiers in
Table 13.7 must be ORed into the options parameter of the _eonce_SetTrigger or
_eonce_SetCounterTrigger function. If not, then do not OR in any of these identifiers.

Counter Function Modes
One of the defined identifiers in Table 13.8 must be ORed into the options parameter of
the _eonce_SetCounterTrigger function.

AND Links two sub-triggers by a logical and

THEN Creates a sequence; first sub-trigger must occur, then
second sub-trigger must occur to complete the trigger

SC Sub-trigger starts the counter

HC Sub-trigger halts the counter

Table 13.7 Data Selection Modes

Defined
Identifiers

Description

B2D_BYTE Makes a comparison when the data being moved is of byte-length

B2D_WORD Makes a comparison when the data being moved is of word-length

B2D_LONG Makes a comparison when the data being moved is of long-length

Table 13.8 Counter Function Modes

Defined Identifiers Description

PCLK_CLOCK_CYCLES Count PCLK cycles

CLK_CLOCK_CYCLES Count CLK cycles

INSTRUCTIONS_EXECUTED Count instructions executed

Table 13.6 Defined Identifier Key: Counter Trigger Modes (continued)

Identifier Fragments Description
312 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Normal Unit Action Options
This list of options describes the action taken when a non-counter trigger is generated.
One of the defined identifiers in Table 13.9 must be ORed into the options parameter of
the _eonce_SetTrigger function.

Counter Unit Action Options
This list of options describes the action taken when a counter trigger is generated. One of
the defined identifiers in Table 13.10 must be ORed into the options parameter of the
_eonce_SetCounterTrigger function. Identifiers that include
ZERO_BEFORE_TRIGGER only perform the action when the counter counts down to
zero before the Counter Stop Trigger occurs. Identifiers that include
TRIGGER_BEFORE_ZERO only perform the action when the Counter Stop Trigger
occurs before the counter counts down to zero.

TRACE_BUFFER_WRITES Count writes to the trace buffer

COUNTER_START_TRIGGERS Count Counter Start Triggers

PCLK_CLOCK_CYCLES Count PCLK cycles

Table 13.9 Normal Unit Actions Options Mode

Defined Identifiers Description

UNIT_ACTION Enters debug mode is unit 0, else passes signal on
to next unit

INTERRUPT_CORE Interrupts to vector set for this unit

HALT_TRACE_BUFFER Trace buffer capture is halted

START_TRACE_BUFFER Trace buffer capture is started

UNIT_ACTION Enters debug mode is unit 0, else passes signal on
to next unit

Table 13.8 Counter Function Modes (continued)

Defined Identifiers Description
31356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Accumulating Trigger Options
One of the defined identifiers in Table 13.11 must be ORed into the options parameter of
the _eonce_SetTrigger function when breakpoint unit 0 is being configured.

Table 13.10 Counter Unit Actions Options Mode

Defined Identifiers Description

NO_ACTION Counter status bits still get set

UNIT_ACTION_ZERO_BEFORE
_TRIGGER

Enters debug mode is unit 0, else passes
signal on to next unit

INTERRUPT_CORE_ZERO_
BEFORE_TRIGGER

Interrupts to vector set for this unit

UNIT_ACTION_TRIGGER_BEFORE
_ZERO

Enters debug mode is unit 0, else passes
signal on to next unit

INTERRUPT_CORE_TRIGGER_
BEFORE_ZERO

Interrupts to vector set for this unit

Table 13.11 Accumulating Trigger Options Mode with Breakpoint Unit 0

Defined Identifiers Description

PREV_UNIT_OR_THIS_TRIGGER_OR_
CORE_EVENT

A trigger is generated if the previous
breakpoint unit passes in a trigger signal
or this breakpoint unit creates a trigger
signal or if a core event occurs

PREV_UNIT_THEN_THIS_TRIGGER_OR
_CORE_EVENT

A trigger is generated if the previous
breakpoint unit passes in a trigger signal
followed by either this breakpoint unit
creating a trigger signal or a core event
occurring

THIS_TRIGGER_THEN_CORE_EVENT A trigger is generated if this breakpoint
unit creates a trigger signal followed by a
core event occurring

PREV_UNIT_THEN_THIS_TRIGGER_
THEN_CORE_EVENT

A trigger is generated if the previous
breakpoint unit passes in a trigger signal
followed by this breakpoint unit creating a
trigger signal followed by a core event
occurring
314 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
One of the defined identifiers in Table 13.12 must be ORed into the options parameter of
the _eonce_SetTrigger function when a breakpoint unit other than unit 0 is being
configured.

Miscellaneous Trigger Options
The defined identifiers in Table 13.13 are optional.

Trace Buffer Capture Options
The options in Table 13.14 determine which kind of changes-of-flow will be captured. OR
in as many of the following defined identifiers into the options parameter of the
_eonce_SetupTraceBuffer function.

Table 13.12 Accumulating Trigger Options Mode, Non-0 Breakpoint Unit

Defined Identifiers Description

PREV_UNIT_OR_THIS_TRIGGER A trigger is generated if the previous
breakpoint unit passes in a trigger signal
or this breakpoint unit creates a trigger
signal

PREV_UNIT_THEN_THIS_TRIGGER A trigger is generated if the previous
breakpoint unit passes in a trigger signal
followed by this breakpoint unit creating a
trigger signal

Table 13.13 Miscellaneous Trigger Options

Defined Identifiers Description

INVERT_B2_COMPARE The signal from breakpoint 2 is inverted before entering the
combination logic; this can be ORed into the options
parameter of the _eonce_SetTrigger or
_eonce_SetCounterTrigger function

EXTEND_COUNTER The counter, when using the special counting function, is
extended to 40 bits by using the OSCNTR as the most
significant 24 bits; this can be ORed into the options
parameter of the _eonce_SetCounterTrigger function
when configuring breakpoint unit 0; WARNING: It is not
recommended that this option be used if the processor will
enter debug mode (breakpoint, console or file I/O) before
the counter is read, because the OSCNTR is needed for
stepping and would corrupt the counter
31556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Trace Buffer Full Options
The options in Table 13.15 describe what action to take when the trace buffer is full. One
of the following defined identifiers must be ORed into the options parameter of the
_eonce_SetupTraceBuffer function.

Table 13.14 Trace Buffer Capture Options

Defined Identifiers Description

CAPTURE_CHANGE_OF_FLOW_
NOT_TAKEN

Saves target addresses of conditional branches
and jumps that are not taken to the trace buffer

CAPTURE_CHANGE_OF_FLOW_
INTERRUPT

Saves addresses of interrupt vector fetches and
target addresses of RTI instructions to the trace
buffer

CAPTURE_CHANGE_OF_FLOW_
SUBROUTINE

Saves the target addresses of JSR, BSR, and
RTS instructions to the trace buffer

CAPTURE_CHANGE_OF_
FLOW_0

Saves the target addresses of the following
taken instructions to the trace buffer:

BCC forward branch

BRSET forward branch

BRCLR forward branch

JCC forward and backward branches

CAPTURE_CHANGE_OF_
FLOW_1

Saves the target addresses of the following
taken instructions to the trace buffer:

BCC backward branch

BRSET backward branch

BRCLR backward branch

Table 13.15 Trace Buffer Full Options

Defined Identifiers Description

TB_FULL_NO_ACTION Capture continues, overwriting previous entries

TB_FULL_HALT_CAPTURE Capture is halted
316 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Miscellaneous Trace Buffer Option
The TRACE_BUFFER_HALTED option may be OR’ed into the options parameter of the
_eonce_SetupTraceBuffer function. This option puts the trace buffer in a halted state
when leaving _eonce_SetupTraceBuffer function. This is most useful when setting a
trigger, by calling _eonce_SetTrigger, to start the trace buffer when a specific condition
is met.

TB_FULL_DEBUG Processor enters debug mode

TB_FULL_INTERRUPT Processor interrupts to vector specified as
Trace Buffer Interrupt

Table 13.15 Trace Buffer Full Options (continued)

Defined Identifiers Description
31756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
318 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

A
Porting Issues

This appendix explains issues relating to successfully porting code to the most current
version of the CodeWarrior Development Studio for Freescale 56800/E Digital Signal
Controllers.

This appendix includes the following sections:

• Converting DSP56800E Projects from Previous Versions

• Removing illegal object_c on pragma directive Warning

Converting DSP56800E Projects from
Previous Versions

When you open older projects in the CodeWarrior IDE, the IDE automatically prompts
you to convert your existing project (Figure A.1). Your old project will be backed up if
you need to access that project file at a later time. The CodeWarrior IDE cannot open
older projects if you do not convert them.

Figure A.1 Project Conversion Dialog

Removing illegal object_c on pragma
directive Warning

If after porting a project to DSP56800E 7.x, you get a warning that says illegal
object_c on pragma directive, you need to remove it. To remove this warning:
31956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Porting Issues
Removing illegal object_c on pragma directive Warning
1. Open the project preference and go to the C/C++ Preprocessor.

2. Remove the line #pragma objective_con from the prefix text field.
320 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

B
DSP56800x New Project
Wizard

This appendix explains the high-level design of the new project wizard.

Overview
The DSP56800x New Project wizard supports the DSP56800x processors listed in Table
B.1.

Table B.1 Supported DSP56800x Processors for New Project Wizard

DSP56800 DSP56800E

DSP56F801 (60 MHz) DSP56852

DSP56F801 (80 MHz) DSP56853

DSP56F802 DSP56854

DSP56F803 DSP56855

DSP56F805 DSP56857

DSP56F807 DSP56858

DSP56F826 MC56F8002

DSP56F827 MC56F8006

MC56F8013

MC56F8014

MC56F8023

MC56F8025

MC56F8036

MC56F8037
32156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
Overview
Wizard rules for the DSP56800x New Project Wizard are described in the following sub-
sections:

MC56F8122

MC56F8123

MC56F8145

MC56F8146

MC56F8147

MC56F8155

MC56F8156

MC56F8157

MC56F8165

MC56F8166

MC56F8167

MC56F824x

MC56F825x

MC56F8322

MC56F8323

MC56F8335

MC56F8345

MC56F8346

MC56F8356

MC56F8357

MC56F8365

MC56F8366

MC56F8367

Table B.1 Supported DSP56800x Processors for New Project Wizard (continued)

DSP56800 DSP56800E
322 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
Overview
• Page Rules

• Resulting Target Rules

• Rule Notes

Refer to DSP56800x New Project Wizard Graphical User Interface for details about the
DSP56800x New Project Wizard Graphical User Interface.

Page Rules
The page rules governing the wizard page flow for the simulator and the different
processors are shown in the Table B.2, Table B.3, Table B.4, and Table B.5.

Table B.2 Page Rules for Simulator, DSP56F801 (60 and 80 MHz), DSP56F802,
MC56F801x, MC56F802x, MC56F803x, MC56F812x, and MC56F832x

Target Selection Page Next Page Next Page

any simulator Program Choice Page

Finish Page

DSP56F801 60 MHz

DSP56F801 80 MHz

DSP56F802

MC56F801x

MC56F802x

MC56F803x

MC56F812x

MC56F832x
32356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
Overview
Table B.3 Page Rules for DSP56F803, DSP56F805, DSP56F807, DSP56F826, and
DSP56F827

Target Selection
Page

Next Page Next Page Next Page

DSP56F803 Program
Choice Page

External/Internal
Memory Page

Finish Page

DSP56F805

DSP56F807

DSP56F826

DSP56F827

Table B.4 Page Rules for DSP56852, DSP56853, DSP56854, DSP56855, DSP56857, and
DSP56858

Target Selection Page Next Page Next Page

DSP56852 Program Choice
Page

Finish Page

DSP56853

DSP56854

DSP56855

DSP56857

DSP56858
324 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
Overview
Resulting Target Rules
The rules governing possible final project configurations are shown in Table B.6.

Table B.5 Page Rules for MC56F814x, MC56F815x, MC56F816x, MC56F833x, MC56F834x,
MC56F835x, and MC56F836x

Target
Selection
Page

Next Page Next Page Next Page if
Processor
Expert Not
Selected

Next Page

MC56F814x Program
Choice Page

Data Memory
Model Page

External/Internal
Memory Page

Finish Page

MC56F815x

MC56F816x

MC56F833x

MC56F834x

MC56F835x

MC56F836x

Table B.6 Resulting Target Rules

Target Possible Targets

56800 Simulator Target with Non-HostIO Library and Target with Host IO
Library

56800E Simulator Small Data Model and Large Data Model

DSP5680x External Memory and/or Internal Memory with pROM-to-
xRAM Copy

DSP5682x External Memory and/or Internal Memory with pROM-to-
xRAM Copy

DSP5685x (Small Data Model and Small Data Model with HSST) or
(Large Data Model and Large Data Model with HSST)

MC56F801x

MC56F802x

MC56F803x

Small Data Model Internal Memory with pROM-to-xRAM
Copy
32556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Rule Notes
Additional notes for the DSP56800x New Project Wizard rules are:

• The DSP56800x New Project Wizard uses the DSP56800x EABI Stationery for all
projects. Anything that is in the DSP56800x EABI Stationery will be in the wizard-
created projects depending on the wizard choices.

• The DSP56800x EABI Stationery has all possible targets, streamlined and tuned
with the DSP56800x New Project Wizard in mind.

• The DSP56800x New Project Wizard creates the entire simulator project with all the
available targets in context of “Stationery as documentation and example.”

DSP56800x New Project Wizard Graphical
User Interface

This section describe the DSP56800x New Project Wizard graphical user interface.

The subsections in this section are:

• Invoking New Project Wizard

• New Project Dialog Box

• Target Pages

• Program Choice Page

• Data Memory Model Page

MC56F812x

MC56F832x

Small Data Model or Large Data Model Internal Memory
with pROM-to xRAM Copy

MC56F814x

MC56F815x

MC56F816x

MC56F833x

MC56F834x

MC56F835x

MC56F836x

(Small Data Memory External and/or Small Data Memory
Internal with pROM-to-xRAM Copy) or (Large Data
Memory External and/or Large Data Memory Internal with
pROM-to-xRAM Copy)

Table B.6 Resulting Target Rules (continued)

Target Possible Targets
326 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
• External/Internal Memory Page

• Finish Page

Invoking New Project Wizard
To invoke the New Project dialog box, from the Freescale CodeWarrior menu bar, select
File > New (Figure B.1).

Figure B.1 Invoking DSP56800x New Project Wizard

New Project Dialog Box
After selecting File > New from the Freescale CodeWarrior menu bar, the New project
dialog box (Figure B.2) appears. In the list of stationeries, you can select either the
DSP56800x New Project Wizard or any of the other regular stationery.
32756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Figure B.2 New Project Dialog Box

Target Pages
When invoked, the New Project wizard first shows a dynamically created list of
supported target families and processors or simulators. Each DSP56800x family is
associated with a subset of supported processors and a simulator. Figure B.3, Figure B.4,
Figure B.5, Figure B.6, Figure B.7, Figure B.8, Figure B.9, Figure B.10, Figure B.11,
Figure B.12, Figure B.13, Figure B.14, Figure B.15, Figure B.16and Figure B.17) show
the supported processors and simulator.
328 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Figure B.3 DSP56800x New Project Wizard Target Dialog Box (DSP56F80x)

Figure B.4 DSP56800x New Project Wizard Target Dialog Box (DSP56F82x)
32956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Figure B.5 DSP56800x New Project Wizard Target Dialog Box (DSP5685x)

Figure B.6 DSP56800x New Project Wizard Target Dialog Box (MC56F800x)
330 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Figure B.7 DSP56800x New Project Wizard Target Dialog Box (MC56F801x)

Figure B.8 DSP56800x New Project Wizard Target Dialog Box (MC56F802x)
33156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Figure B.9 DSP56800x New Project Wizard Target Dialog Box (MC56F803x)

Figure B.10 DSP56800x New Project Wizard Target Dialog Box (MC56F81xx)
332 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Figure B.11 DSP56800x New Project Wizard Target Dialog Box (MC56F824x_5x)

Figure B.12 DSP56800x New Project Wizard Target Dialog Box (MC56F83xx)
33356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Figure B.13 DSP56800x New Project Wizard Target Dialog Box (Simulators)

One target family and one target processor or simulator must be selected before continuing
to the next page of the wizard.

NOTE Depending on which processor you select, different pages of the wizard will
appear. For more information, refer to the Page Rules section.

If you select the simulator, then the DSP56800x New Project wizard - Program Choice
page appears (see Program Choice Page).

Program Choice Page
If you chose either of the simulators, Figure B.14 appears. From the Programs group,
select the desired starter main() program option to include in the project.
334 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Figure B.14 DSP56800x New Project Wizard - Program Choice

Click Next to proceed to the next page of the wizard determined by the Page Rules.

Data Memory Model Page
If you select a DSP56800E processor (56F83xx or 5685x family), then the Data Memory
Model page appears (Figure B.15) and you must select either the Small Data Model
(SDM) or Large Data Model (LDM).

Figure B.15 DSP56800x New Project Wizard - 56800E Data Memory Model Page

Click Next to proceed to the next page of the wizard determined by the Page Rules.
33556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
External/Internal Memory Page
Depending on the processor that you select, the External/Internal Memory page may
appear (Figure B.16) and you must select either external or internal memory.

NOTE Multiple memory targets can be checked.

Figure B.16 DSP56800x New Project Wizard - External/Internal Memory Page

Click Next to proceed to the next page of the wizard determined by the Page Rules.

Finish Page
Clicking the Finish button on the Finish page (Figure B.17), initiates the project creation
process.

NOTE All target choices end on this page.
336 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Figure B.17 DSP56800x New Project Wizard - Finish Page
33756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
338 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Index

Symbols
. (location counter) linker keyword 266

A
abs_s intrinsic function 195
Absolute/Negate intrinsic functions 194
Access Paths panel 39
add intrinsic function 198
add_hfm_unit Flash debugger command 179, 180
Addition/Subtraction intrinsic functions 198
ADDR linker keyword 266, 267
ALIGN linker keyword 267
ALIGNALL linker keyword 267, 268
Auto-clear previous breakpoint on new

breakpoint release 71

B
breakpoints 155
Build Extras panel 39

C
C for DSP56800E 79–103
C/C++ language panel 42
C/C++ warnings panel 48–52
calling conventions 81–85
Changing Target Settings 37
child windows 24
code storage 97
CodeWarrior IDE 11, 12, 27, 28
CodeWarrior IDE Target Settings Panels 39
command converter server 146–152
command window 177
connection type 136
Control intrinsic functions 201
conventions, calling 81–85
converting CodeWarrior projects 319
creating a project 22, 25
Custom Keywords settings panel 39
Cycle/Instruction Count 174

D
data alignment 91, 92
data storage 97
deadstripping 103
debugger

command converter server 146–152
EOnCE features 166–173
fill memory 163–165
load/save memory 161–163
operating 152–157
save/restore registers 165–166
system level connect 178

debugger protocol 136
Debugger Settings panel 39
debugging 133–182

Flash memory 178
notes for hardware 181
supported remote connections 133–141, ??–

142
target settings 144, 146

Deposit/Extract intrinsic functions 203
development process 28–33

building (compiling and linking) 31–33
debugging 33
editing code 30, 31
project files 30

development studio overview 27–33
dialog boxes

fill memory 163–165
load/save memory 161–163
save/restore registers 165–166

div_ls intrinsic function 210
DIV_LS_INT intrinsic function 210
div_ls4q intrinsic function 211
DIV_LS4Q_INT intrinsic function 211
div_s intrinsic function 208
DIV_S_INT intrinsic function 208
div_s4q intrinsic function 209
DIV_S4Q_INT intrinsic function 209
Division intrinsic functions 207
docking windows 24
DSP56800E simulator 173
33956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

E
ELF disassembler panel 60–62
.elf file, loading 176
EOnCE debugger features 166–173
EOnCE library

definitions 308–317
EOnCE library functions 298–307

_eonce_ClearTraceBuffer 305
_eonce_ClearTrigger 302
_eonce_EnableDEBUGEV 306
_eonce_EnableLimitTrigger 307
_eonce_GetCounters 303
_eonce_GetCounterStatus 303, 304
_eonce_GetTraceBuffer 304
_eonce_HaltTraceBuffer 306
_eonce_Initialize 299
_eonce_SetCounterTrigger 301, 302
_eonce_SetTrigger 300, 301
_eonce_SetupTraceBuffer 304
_eonce_StartTraceBuffer 306

EOnCE panels
set hardware breakpoint 167
set trigger 171–173
special counters 167–168
trace buffer 169–171

_eonce_ClearTraceBuffer library function 305
_eonce_ClearTrigger library function 302
_eonce_EnableDEBUGEV library function 306
_eonce_EnableLimitTrigger library function 307
_eonce_GetCounters library function 303
_eonce_GetCounterStatus library function 303,

304
_eonce_GetTraceBuffer library function 304
_eonce_HaltTraceBuffer library function 306
_eonce_Initialize library function 299
_eonce_SetCounterTrigger library function 301,

302
_eonce_SetTrigger library function 300, 301
_eonce_SetupTraceBuffer library function 304
_eonce_StartTraceBuffer library function 306
example HSST host program 115–116
example HSST target program 123, 124
Exporting and importing panel options to XML

Files 38

extract_h intrinsic function 204
extract_l intrinsic function 204

F
ffs_l intrinsic function 231, 232
ffs_s intrinsic function 230
File Mappings panel 39
fill memory dialog box 163–165
Flash debugger commands

add_hfm_unit 179, 180
set_hfm_base 179
set_hfm_config_base 179
set_hfm_erase_mode 180
set_hfm_verify_erase 180
set_hfm_verify_program 180
set_hfmclkd 179
target_code_sets_hfmclkd 180

Flash memory debugging 178
Flash ROM

programming tips 181
floating windows 24
FORCE_ACTIVE linker keyword 268
formats, number 79, 81

G
getting started 17, 22, 25
Global Optimizations settings panel 39

H
hardware debugging notes 181
high-speed simultaneous transfer 109–124
host program example, HSST 115–116
host-side API hsst functions 109–115
HSST 109–124

host-side API functions 109–115
target library API functions 116–123
visualization 125

HSST functions
hsst_attach_listener 113, 114
hsst_block_mode 112, 113
HSST_close 117
hsst_close 110
hsst_detach_listener 114
34056800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

HSST_flush 120
hsst_noblock_mode 113
HSST_open 117
hsst_open 109
HSST_raw_read 121
HSST_raw_write 122
HSST_read 119
hsst_read 110
HSST_set_log_dir 122, 123
hsst_set_log_dir 114
HSST_setvbuf 117, 118
HSST_size 120
hsst_size 112
HSST_write 119
hsst_write 111

HSST host program example 115–116
HSST target program example 123, 124
hsst_attach_listener function 113, 114
hsst_block_mode function 112, 113
HSST_close function 117
hsst_close function 110
hsst_detach_listener function 114
HSST_flush function 120
hsst_noblock_mode function 113
HSST_open function 117
hsst_open function 109
HSST_raw_read function 121
HSST_raw_write function 122
HSST_read function 119
hsst_read function 110
HSST_set_log_dir function 122, 123
hsst_set_log_dir function 114
HSST_setvbuf function 117, 118
HSST_size function 120
hsst_size function 112
HSST_write function 119
hsst_write function 111

I
IDE, CodeWarrior 11, 12, 27, 28
INCLUDE linker keyword 268
initialization, runtime 295–298
INITVAL 254
inline assembly

calling functions 187–190
overview 185, 186
quick guide 186, 187

inline assembly language 185–190
Intrinsic functions 190–252

abs_s 195
Absolute/Negate 194
add 198
Addition/Subtraction 198
Control 201
Deposit/Extract 203
div_ls 210
DIV_LS_INT 210
div_ls4q 211
DIV_LS4Q_INT 211
div_s 208
DIV_S_INT 208
div_s4q 209
DIV_S4Q_INT 209
Division 207
extract_h 204
extract_l 204
ffs_l 231, 232
ffs_s 230
Fractional arithmetic 191, 192
Implementation 190, 191
L_abs 196
L_add 199
L_deposit_h 205
L_deposit_l 205
L_mac 219
L_MAC_INT 219
L_msu 220
L_MSU_INT 220
L_mult 221
L_MULT_INT 222
L_mult_ls 222
L_MULT_LS_INT 223
L_negate 197
L_shl 239, 240
L_shlftNs 240
L_shlfts 240
L_shr 241
L_shr_r 242
34156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

L_shrtNs 242
L_sub 200
LL_ABS 197
LL_ADD 200
LL_DEPOSIT_H 205
LL_DEPOSIT_L 206
LL_DIV_INT 212
LL_DIV_S4Q_INT 213
LL_EXTRACT_H 206
LL_EXTRACT_L 207
LL_LL_MAC 227
LL_LL_MAC_INT 224
LL_LL_MSU 229
LL_LL_MSU_INT 226
LL_LL_MULT 227
LL_LL_MULT_INT 223
LL_MAC 228
LL_MAC_INT 225
LL_MSU 228
LL_MSU_INT 225
LL_MULT 227
LL_MULT_INT 224
LL_MULT_LS 229
LL_MULT_LS_INT 226
LL_NEGATE 197
LL_ROUND 234
LL_SUB 201
mac_r 214, 215
MAC_R_INT 215
__mod_access 246
__mod_error 248
__mod_getint16 247
__mod_init 244, 245
__mod_init16 245
__mod_setint16 247
__mod_start 245
__mod_stop 246
__mod_update 246
Modulo addressing 244
msu_r 215
MSU_R_INT 216
mult 217
MULT_INT 217
mult_r 218

MULT_R_INT 218
Multiplication/MAC 213
negate 195, 196
norm_l 232
norm_s 231
Normalization 230
ROUND_INT 233
round_val 233
Rounding 232
Shifting 234
shl 235
shlftNs 235, 236
shlfts 236, 237
shr 237
shr_r 238
shrtNs 238, 239
stop 201
sub 198
turn_off_coonv_rndg 202
turn_off_sat 202
turn_on_conv_rndg 203
wait 202

introduction 11–??

K
KEEP_SECTION linker keyword 269

L
L_abs intrinsic function 196
L_add intrinsic function 199
L_deposit_h intrinsic function 205
L_deposit_l intrinsic function 205
L_mac intrinsic function 219
L_MAC_INT intrinsic function 219
L_msu intrinsic function 220
L_MSU_INT intrinsic function 220
L_mult intrinsic function 221
L_MULT_INT intrinsic function 222
L_mult_ls intrinsic function 222
L_MULT_LS_INT intrinsic function 223
L_negate intrinsic function 197
L_shl intrinsic function 239, 240
L_shlftNs intrinsic function 240
L_shlfts intrinsic function 240
34256800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

L_shr intrinsic function 241
L_shr_r intrinsic function 242
L_shrtNs intrinsic function 242
L_sub intrinsic function 200
large data model support 98–102
libraries and runtime code 291–317
link order 103
linker command files

keywords 265–274
structure 253–256
syntax 256–265

linker keywords
. (location counter) 266
ADDR 266, 267
ALIGN 267
ALIGNALL 267, 268
FORCE_ACTIVE 268
INCLUDE 268
KEEP_SECTION 269
MEMORY 269, 271
OBJECT 271
REF_INCLUDE 271
SECTIONS 271, 272
SIZEOF 273
SIZEOFW 273
WRITEB 273
WRITEH 274
WRITEW 274

LL_ABS intrinsic function 197
LL_ADD intrinsic function 200
LL_DEPOSIT_H intrinsic function 205
LL_DEPOSIT_L intrinsic function 206
LL_DIV_INT intrinsic function 212
LL_DIV_S4Q_INT intrinsic function 213
LL_EXTRACT_H intrinsic function 206
LL_EXTRACT_L intrinsic function 207
LL_LL_MAC intrinsic function 227
LL_LL_MAC_INT intrinsic function 224
LL_LL_MSU intrinsic function 229
LL_LL_MSU_INT intrinsic function 226
LL_LL_MULT intrinsic function 227
LL_LL_MULT_INT intrinsic function 223
LL_MAC intrinsic function 228
LL_MAC_INT intrinsic function 225

LL_MSU intrinsic function 228
LL_MSU_INT intrinsic function 225
LL_MULT intrinsic function 227
LL_MULT_INT intrinsic function 224
LL_MULT_LS intrinsic function 229
LL_MULT_LS_INT intrinsic function 226
LL_NEGATE intrinsic function 197
LL_ROUND intrinsic function 234
LL_SUB intrinsic function 201
load/save memory dialog box 161–163
loading .elf file 176

M
M5600E target panel 41, 42
M56800E assembler panel 53, 55
M56800E linker panel 63–67
M56800E processor panel 55
M56800E target (debugging) panel 70–75
mac_r intrinsic function 214, 215
MAC_R_INT intrinsic function 215
Main Standard Library (MSL) 291–295
Math support intrinsic functions 192–243
MEMORY linker keyword 269, 271
memory, viewing 157–160
__mod_access intrinsic function 246
__mod_error intrinsic function 248
__mod_getint16 intrinsic function 247
__mod_init intrinsic function 244, 245
__mod_init16 intrinsic function 245
__mod_setint16 intrinsic function 247
__mod_start intrinsic function 245
__mod_stop intrinsic function 246
__mod_update intrinsic function 246
Modulo addressing

Intrinsic functions 243–252
modulo addressing

error codes 251, 252
points to remember 250

Modulo addressing intrinsic functions 244
modulo buffer examples 248–250
msu_r intrinsic function 215
MSU_R_INT intrinsic function 216
mult intrinsic function 217
MULT_INT intrinsic function 217
34356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

mult_r intrinsic function 218
MULT_R_INT intrinsic function 218
Multiplication/MAC intrinsic functions 213

N
negate intrinsic function 195, 196
norm_l intrinsic function 232
norm_s intrinsic function 231
Normalization intrinsic functions 230
number formats 79, 81

O
OBJECT linker keyword 271
_eonce_HaltTraceBuffer library function 306
operating the debugger 152–157
optimizing code 102, 103
overview, development studio 27–33
overview, target settings 37

P
P memory, viewing 158–160
panels

C/C++ language 42
C/C++ warnings 48–52
ELF disassembler 60–62
M56800E assembler 53, 55
M56800E linker 63–67
M56800E processor 55
M56800E target 41, 42
M56800E target (debugging) 70–75
remote debug options 75–76
remote debugging 68–70
target settings 40–41

panels, settings 39–??
Peripheral Module Registers 103
porting issues 319
project

creating 22, 25

R
REF_INCLUDE linker keyword 271
References 15
register details window 160, 175

register values 156–157
Registers, peripheral module 103
remote debug options panel 75–76
remote debugging panel 68–70
requirements, system 17
Restoring Target Settings 38
ROUND_INT intrinsic function 233
round_val intrinsic function 233
Rounding intrinsic functions 232
runtime code 291–317
runtime initialization 295–298

S
save/restore registers dialog box 165–166
Saving new target settings

stationery files 38
SECTIONS linker keyword 271, 272
set hardware breakpoint EOnCE panel 167
set trigger EOnCE panel 171–173
set_hflkd Flash debugger command 179
set_hfm_base Flash debugger command 179
set_hfm_config_base Flash debugger

command 179
set_hfm_erase_mode Flash debugger

command 180
set_hfm_verify_erase Flash debugger

command 180
set_hfm_verify_program Flash debugger

command 180
settings panels 39–??

Access Paths 39
Build Extras 39
C/C++ language 42
C/C++ warnings 48–52
Custom Keywords 39
Debugger Settings 39
ELF disassembler 60–62
File Mappings 39
Global Optimizations 39
M56800E assembler 53, 55
M56800E linker 63–67
M56800E processor 55
M56800E target 41, 42
M56800E target (debugging) 70–75
34456800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

remote debug options 75–76
remote debugging 68–70
Source Trees 39
target settings 40–41

settings, target 35–??
Shifting intrinsic functions 234
shl intrinsic function 235
shlftNs intrinsic function 235, 236
shlfts intrinsic function 236, 237
shr intrinsic function 237
shr_r intrinsic function 238
shrtNs intrinsic function 238, 239
simulator 173
simultaneous transfer, high speed 109–124
SIZEOF linker keyword 273
SIZEOFW linker keyword 273
Source Trees settings panel 39
special counters EOnCE panel 167–168
stack frames 85, 86
stationery

saving new target settings 38
stop intrinsic function 201
storage, code and data 97
sub intrinsic function 198
system level connect 178
system requirements 17

T
target library API hsst functions 116–123
target program example, HSST 123, 124
target settings 35–??

overview 37
target settings panel 40–41
Target Settings panels

Access Paths 39
Build Extras 39
Custom Keywords 39
Debugger Settings 39
File Mappings 39
Global Optimizations 39
Source Trees 39

Target Settings window 37
target_code_sets_hfmclkd Flash debugger

command 180

To 15
trace buffer EOnCE panel 169–171
turn_off_conv_rndg intrinsic function 202
turn_off_sat intrinsic function 202
turn_on_conv_rndg intrinsic function 203

U
undocking windows 24

V
values, register 156–157
viewing memory 157–160

W
wait intrinsic function 202
windows

register details 160, 175
WRITEB linker keyword 273
WRITEH linker keyword 274
WRITEW linker keyword 274

X
X memory, viewing 157–158
XML files

exporting and importing panel options 38
34556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

346 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

	Introduction
	CodeWarrior IDE
	Freescale 56800/E Digital Signal Controllers
	References

	Getting Started
	System Requirements
	Creating Project

	Development Studio Overview
	CodeWarrior IDE
	Development Process
	Project Files
	Editing Code
	Building: Compiling and Linking
	Debugging

	Target Settings
	Target Settings Overview
	Target Setting Panels
	Changing Target Settings
	Exporting and Importing Panel Options to XML Files
	Restoring Target Settings

	CodeWarrior IDE Target Settings Panels
	DSP56800E-Specific Target Settings Panels
	Target Settings
	M56800E Target
	C/C++ Language (C Only)
	C/C++ Preprocessor
	C/C++ Warnings
	M56800E Assembler
	M56800E Processor
	ELF Disassembler
	M56800E Linker
	Remote Debugging
	M56800E Target (Debugging)
	Remote Debug Options

	C for DSP56800E
	Number Formats
	Ordinal Data Types
	Floating Point Types
	64-Bit Data Types

	Calling Conventions and Stack Frames
	Passing Values to Functions
	Returning Values From Functions
	Volatile and Non-Volatile Registers
	Stack Frame and Alignment

	User Stack Allocation
	Data Alignment Requirements
	Word and Byte Pointers
	Reordering Data for Optimal Usage

	Variables in Program Memory
	Declaring Program Memory Variables
	Using Variables in Program Memory
	Linking with Variables in Program Memory

	Code and Data Storage
	Large Data Model Support
	Extended Data Addressing Example
	Accessing Data Objects Examples
	External Library Compatibility

	Optimizing Code
	Deadstripping and Link Order
	Working with Peripheral Module Registers
	Compiler Generates Bit Instructions
	Explanation of Undesired Behavior
	Recommended Programming Style

	Generating MAC Instruction Set

	High-Speed Simultaneous Transfer
	Host-Side Client Interface
	HSST Host Program Example

	Target Library Interface
	HSST Target Program Example

	Data Visualization
	Starting Data Visualization
	Data Target Dialog Boxes
	Memory
	Registers
	Variables
	HSST

	Graph Window Properties

	Debugging for DSP56800E
	Using Remote Connections
	Accessing Remote Connections
	Understanding Remote Connections
	Editing Remote Connections

	Target Settings for Debugging
	Command Converter Server
	Essential Target Settings for Command Converter Server
	Changing Command Converter Server Protocol to Parallel Port
	Changing Command Converter Server Protocol to HTI
	Changing Command Converter Server Protocol to PCI
	Setting Up Remote Connection
	Debugging Remote Target Board

	Launching and Operating Debugger
	Setting Breakpoints and Watchpoints
	Viewing and Editing Register Values
	Viewing X: Memory
	Viewing P: Memory

	Load/Save Memory
	Fill Memory
	Save/Restore Registers
	EOnCE Debugger Features
	Set Hardware Breakpoint Panel
	Special Counters
	Trace Buffer
	Set Trigger Panel

	Using DSP56800E Simulator
	Cycle/Instruction Count
	Memory Map

	Register Details Window
	Loading .elf File without Project
	Using Command Window
	System-Level Connect
	Debugging in Flash Memory
	Flash Memory Commands
	Flash Lock/Unlock

	Notes for Debugging on Hardware

	Profiler
	Inline Assembly Language and Intrinsics
	Inline Assembly Language
	Inline Assembly Overview
	Assembly Language Quick Guide
	Calling Assembly Language Functions from C Code
	Calling Functions from Assembly Language

	Intrinsic Functions
	Implementation
	Fractional Arithmetic
	Intrinsic Functions for Math Support
	Modulo Addressing Intrinsic Functions

	ELF Linker
	Structure of Linker Command Files
	Memory Segment
	Closure Blocks
	Sections Segment

	Linker Command File Syntax
	Alignment
	Arithmetic Operations
	Comments
	Deadstrip Prevention
	Variables, Expressions, and Integral Types
	File Selection
	Function Selection
	ROM to RAM Copying
	Utilizing Program Flash and Data RAM for Constant Data in C
	Utilizing Program Flash for User-Defined Constant Section in Assembler
	Stack and Heap
	Writing Data Directly to Memory

	Linker Command File Keyword Listing

	Command-Line Tools
	Usage
	Response File
	Sample Build Script
	Arguments

	Libraries and Runtime Code
	MSL for DSP56800E
	Using MSL for DSP56800E
	Allocating Stacks and Heaps for DSP56800E

	Runtime Initialization
	EOnCE Library
	Definitions

	Porting Issues
	Converting DSP56800E Projects from Previous Versions
	Removing illegal object_c on pragma directive Warning

	DSP56800x New Project Wizard
	Overview
	Page Rules
	Resulting Target Rules
	Rule Notes

	DSP56800x New Project Wizard Graphical User Interface
	Invoking New Project Wizard
	New Project Dialog Box
	Target Pages
	Program Choice Page
	Data Memory Model Page
	External/Internal Memory Page
	Finish Page

	Index

