ENABLING TECHNOLOGIES: DDR FUNDAMENTALS

JACQUES LANDRY FIELD APPLICATIONS ENGINEERING AUTOMOTIVE

AMF-AUT-T2785 | AUGUST 2017

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2017 NXP B.V. PUBLIC

AGENDA

- Industry Trends
- Basic DDR SDRAM Structure
- SDRAM Differences
- General Hardware and Software Design Guidelines and Tips
- i.MX DRAM Register Programming Aid
- Layerscape DRAM Configuration and Validation via QCVS Tools

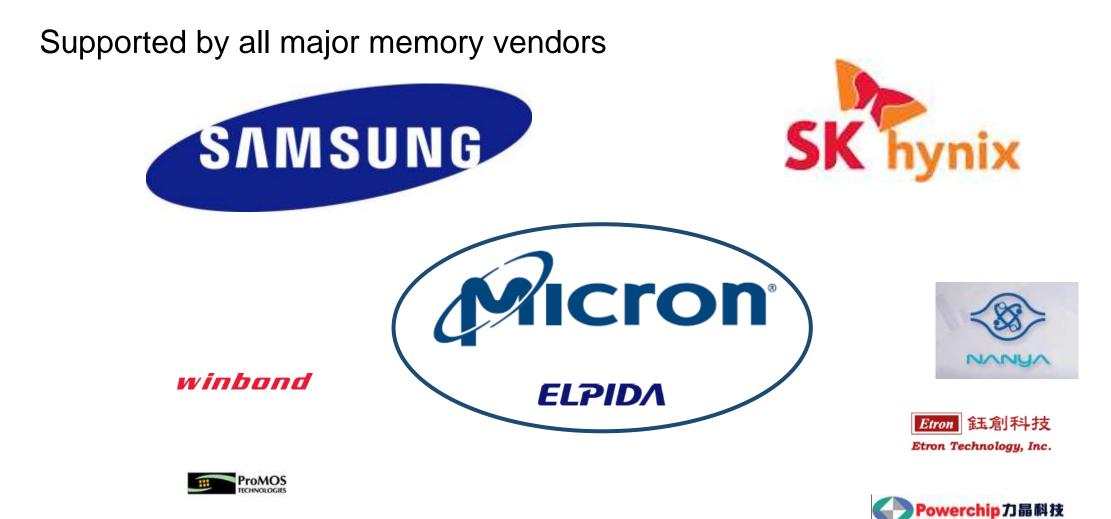
Session Introduction

- Understanding the DDR and memory controller fundamentals is key to a successful selection and design of a DDR interface
- In this session you will learn about:
 - Industry trends and fundamentals
 - DRAM Comparisons
 - Factors to consider when deciding, designing and delivering DDR on your board
 - Available DDR tools
- Who would benefit by attending this session?
 - Hardware, software and system design engineers planning to implement a DDR interface in their design
- Session length is 2 hours

Two common types of DRAM Memory

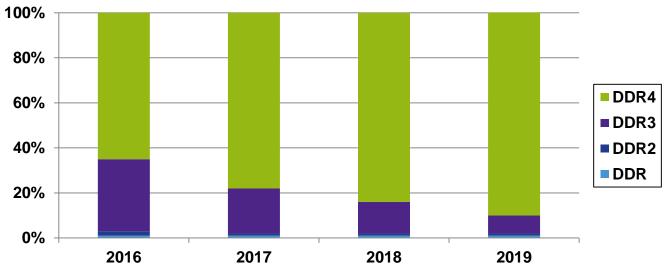
- **DDR DRAM** (focus on DDR4)
 - Typically used in PCs, Servers and Embedded Applications
 - Available in Discrete components and Modules
 - Largest total capacity
 - -ECC, CRC and parity protection for high reliability systems
- LPDDR DRAM (focus on LPDDR4)
 - Used in Mobile and Automotive Applications (often battery powered)
 - Discrete components (small packages)
 - -Low Power
 - Multi-Channel Architecture
 - Highest Speed
 - Configuration Flexibility

Industry Trends


Industry Trend

- DDR4 DRAM pricing is lower or same as DDR3\3L. The pricing crossover occurred around Q4 of 2015. Similarly, LPDDR4 is expected to crossover LPDDR3 in 2018.
- Production DDR4 DRAM, DIMMs and LPDDR4 are available from most DRAM vendors.
- The first NXP device with DDR4 support, T104x product, taped out in Q42013.The LS1043A also supports DDR4. <u>Nearly 4 years</u> of product experience with DDR4.
 - Many current and all future QorIQ products including T1, LS1, and LS2 products will support DDR4.
- The first NXP device with LPDDR4 support is the i.MX8 Family.

DDR3, DDR4 and LPDDR – Major Vendors



DRAM Migration Roadmap

	2016	2017	2018	2019
DDR	1%	1%	1%	1%
DDR2	2%	1%	1%	1%
DDR3	32%	20%	14%	8%
DDR4	65%	78%	84%	91%

DDR3/DDR3L/DDR4 Power Saving

- DDR3 DRAM provides 20% power savings over DDR2
- DDR3L DRAM provides 10% power savings over DDR3
- DDR4 DRAM provides 37% power savings over DDR3L

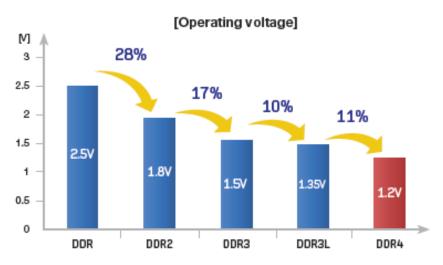


Figure 4. Reduced operating voltage requirements of DDR4 compared to DDR3L

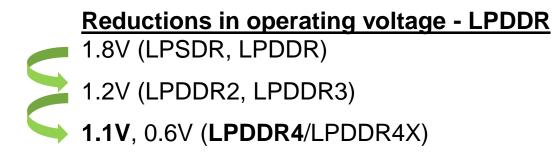
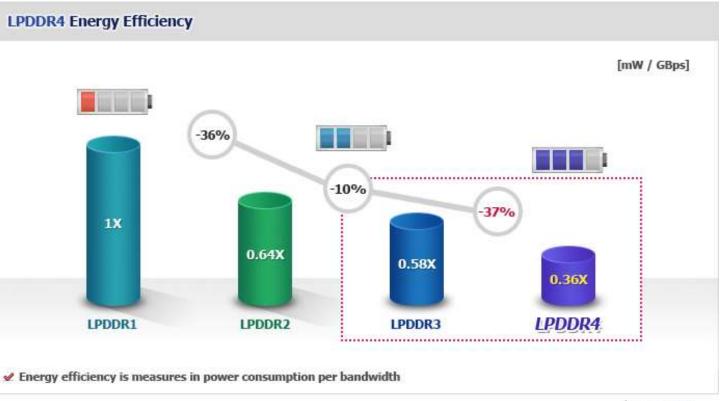

[Normalized power consumption]

Figure 5. Reduced normalized power consumption requirements of DDR4 compared to DDR3L



LPDDR2/LPDDR3/LPDDR4 Power Saving

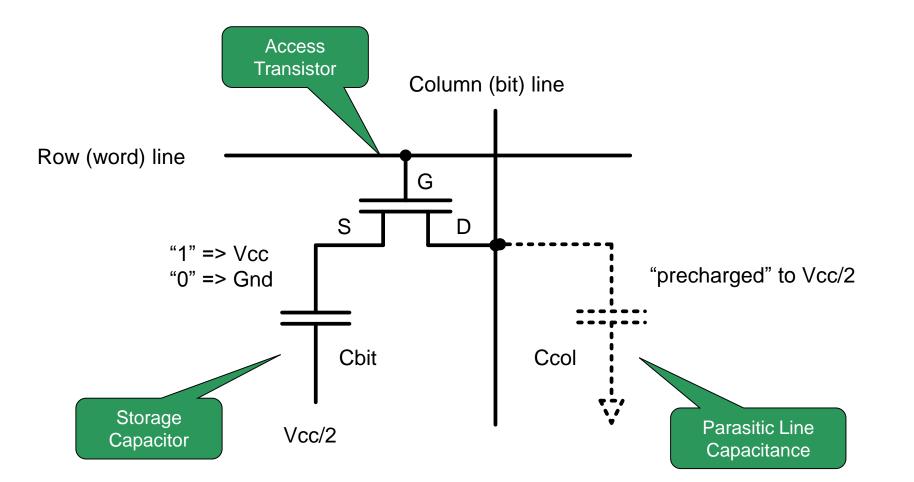
- LPDDR2 DRAM provides 36% power savings over LPDDR1
- LPDDR3 DRAM provides 10%
 power savings over LPDDR2
- PLDDR4 DRAM provides 37%
 power savings over LPDDR3

DDR SDRAM Highlights and Comparison

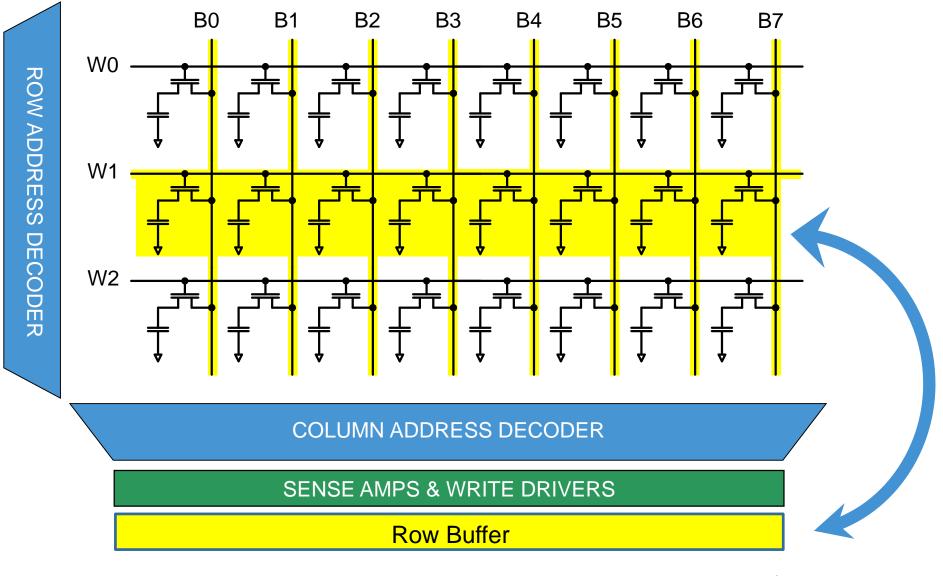
Feature/Category	DDR3	DDR4	LPDDR4
Package	BGA only	BGA only	BGA. PoP, Bare Die
Densities	512Mb -8Gb	2Gb -16Gb	2Gb to 16Gb per channel
Data Bus Organization	x4, x8, x16	x4, x8, x16	x32, (2 channels, x16), x64 (4 channels, x16)
Voltage	DDR3L:1.35V Core & I/O DDR3: 1.5V Core & I/O	1.2V Core 1.2V I/O, also 2.5V external VPP	LPDDR4: 1.1V, 1.8V Core & I/O LPDDR4X: 0.6V
Data I/O CMD, ADDR I/O	Center Tab Termination (CTT) CTT	Pseudo Open Drain (<mark>POD</mark>) CTT	LVSTL Programable voltage swing
Internal Memory Banks	8	16 for x4/x8 (2 BG), 8 for x16	8 per channel
Data Rate	DDR3/3L: up to2133/1866 MT/s	1600–3200 MT/s	1600-3200 MT/s (possible 4266 MT/s)
VREF	VREFCA & VREFDQ external	VREFCA external VREFDQ internal	CA Vref Internally Generated, Command Bus Training
Data Strobes/Prefetch/Burst Length/Burst Type	Differential/8-bits/BC4, BL8/ Fixed, OTF	Same as DDR3	BL16, BL32

DDR SDRAM Highlights and Comparison (cont'd)

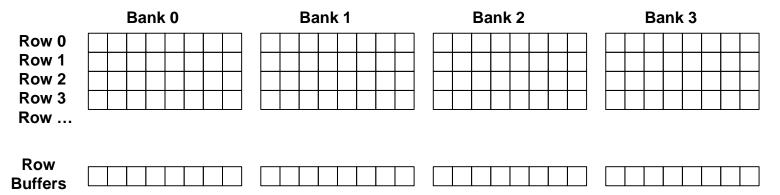
Feature/Category	DDR3	DDR4	LPDDR4
CRC Data Bus & C/A Parity	No	Yes	No
Connectivity test (TEN pin)	No	Yes	No
Bank Grouping	No	Yes	No
Data Bus Inversion	No	Yes	Yes
Write Leveling / ZQ / Reset	Yes	Yes	Yes
ACT_n new pin & command	No	Yes	No
Low power auto self-refresh	No	Yes	Yes
VREFDQ calibration	No	Yes	Yes

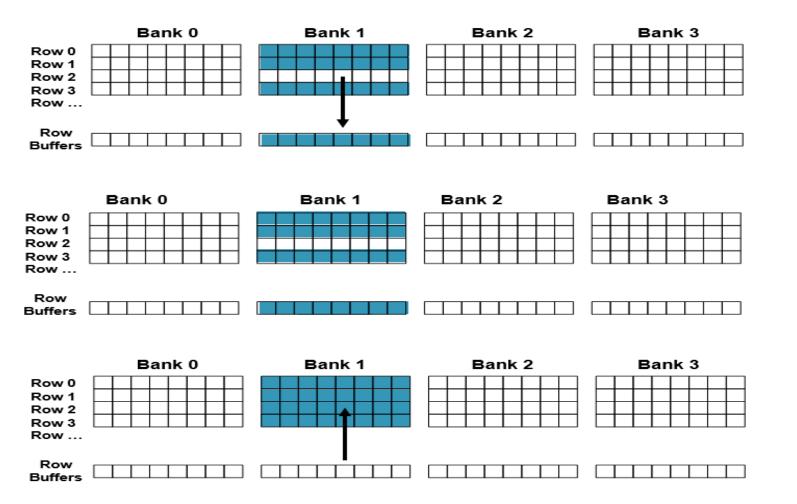


Basic DDR SDRAM Structure



Single Transistor Memory Cell

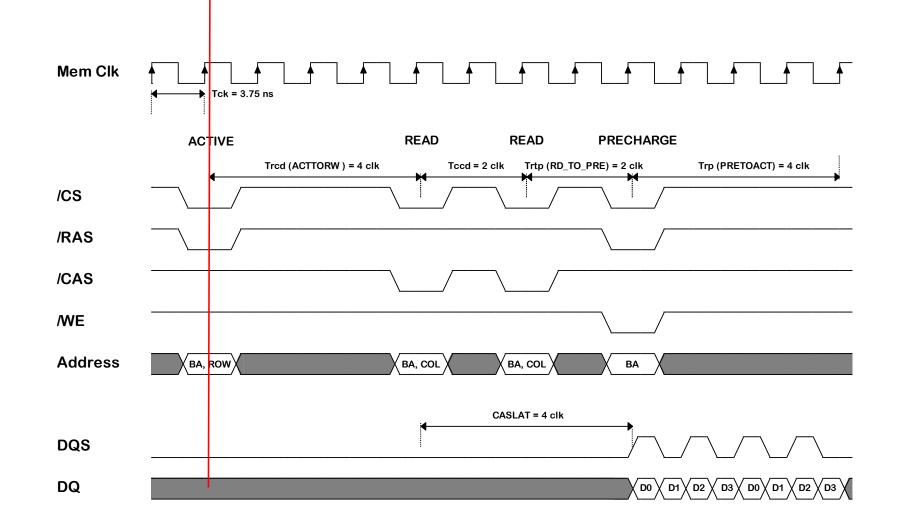

Memory Arrays


Internal Memory Banks

- Multiple arrays organized into banks
- Multiple banks per memory device
 - -DDR3 8 banks, and 3 bank address (BA) bits
 - -DDR4 16 banks with 4 banks in each of 4 sub bank groups
 - Can have one active row in each bank at any given time
- Concurrency
 - Can be opening or closing a row in one bank while accessing another bank

Memory Access

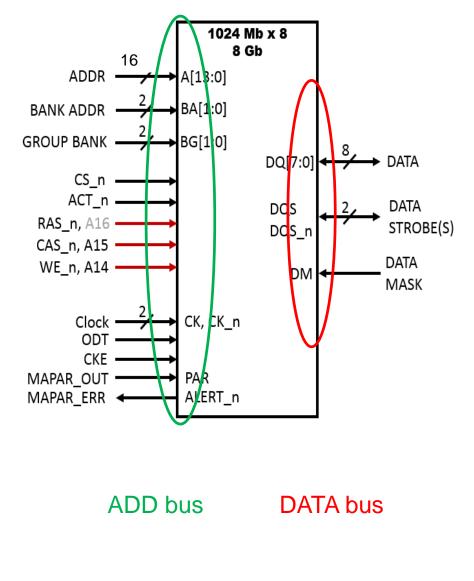
- A requested row is ACTIVATED and made accessible through the bank's row buffers
- READ and/or WRITE are issued to the active row in the row buffers
- The row is **PRECHARGED** and is no longer accessible through the bank's row buffers



Example: DDR4-2133 Open Page = 2.133Gb/s maximum bandwidth Closed Page = 199Mb/s maximum bandwidth <u>10x performance</u> advantage to read and write from an <u>open page</u>

PUBLIC | 16

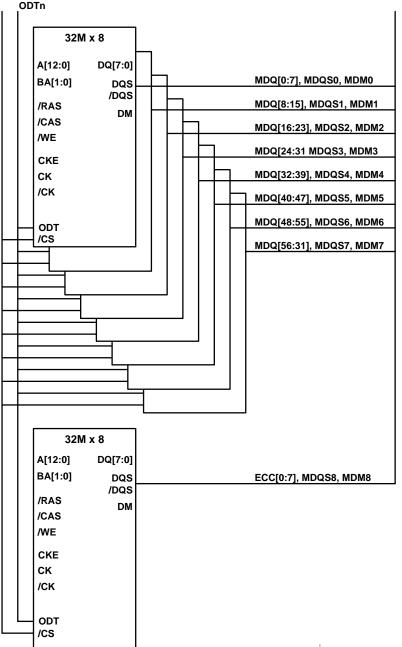
DDR2-533 Read Timing Example



PUBLIC 17

Example – 8Gb DDR4 SDRAM

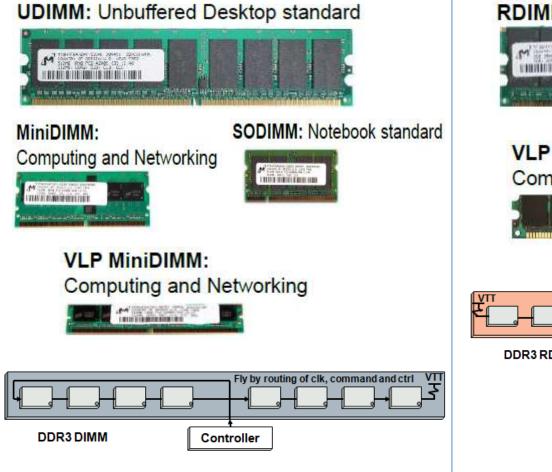
- Micron MT40A1G8
- 1024M x 8 (64M x 8 x 16 banks)
- 8 Gb total
- 16-bit row address
 - 64K rows
- 10-bit column address
 - 1K bits/row (1KB in x8 data with DRAM)
- 2-bit group and 2-bit bank address
- DATA bus: DQ, DQS, /DQS, DM (DBI)
- ADD bus: A, BA, GB, ACT, /CS, /RAS, /CAS, /WE, ODT, CKE, CK, /CK, PAR,
 /ALERT



Example – DDR4 UDIMM

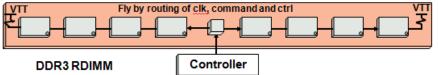
- Micron MTA9ASF51272AZ
- 9 each 512M x 8 DRAM devices
- 512M x 72 overall
- 4 GB total, single "rank"
- 9 "byte lanes"

Two Signal Bus


- 1- Address, command, control, and clock signals are shared among all 9 DRAM devices
- 2- Data, strobe, data mask not shared

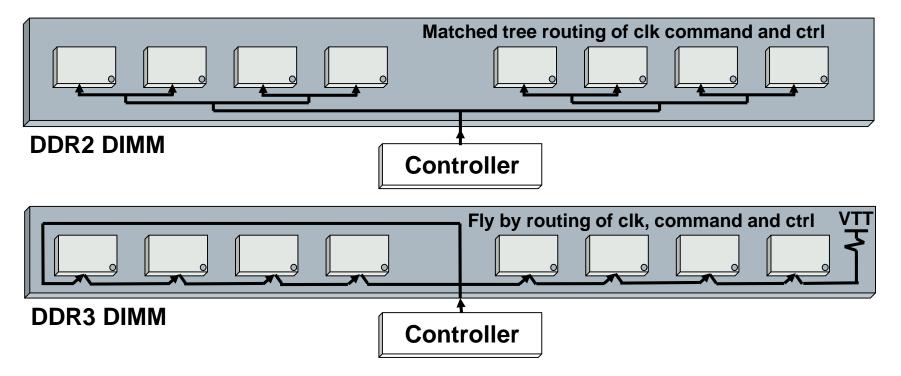
/CSn

DRAM Module Type



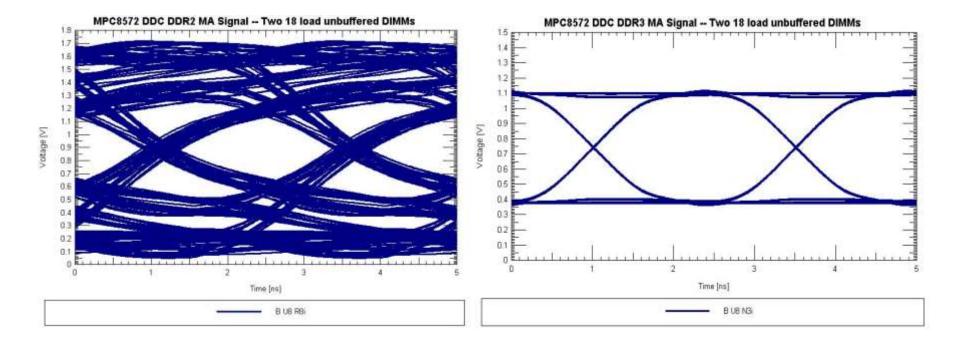
RDIMM: Registered Server standard

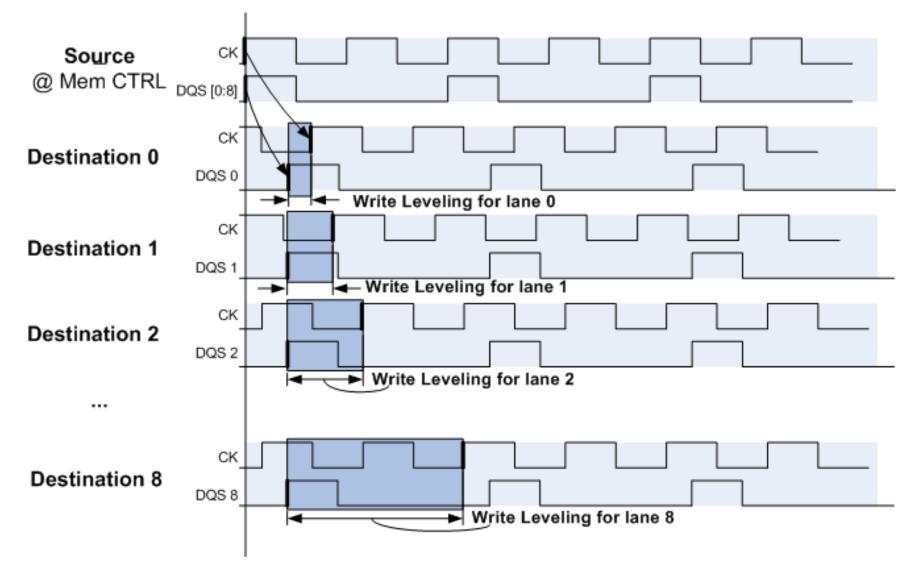
VLP RDIMM: Very Low Profile Computing and Networking



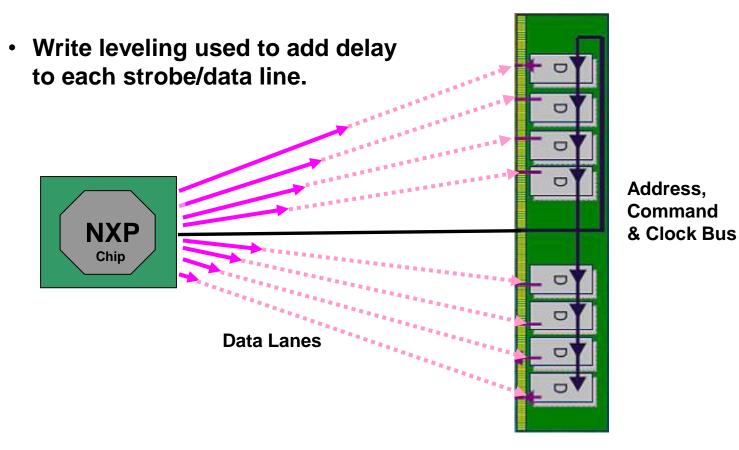
Fly-By Routing Topology

Introduction of "fly-by" architecture

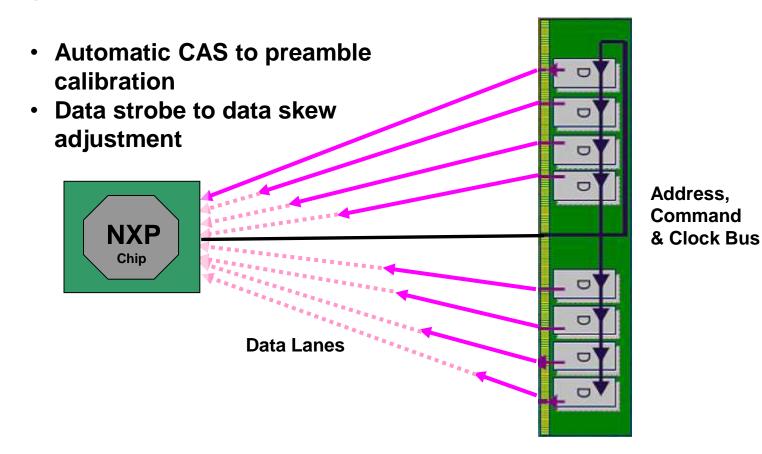

- Address, command, control & clocks
- Data bus (not illustrated below) remains unchanged, ie, direct 1-to-1 connection between the Controller bus lanes and the individual DDR devices.
- Improved signal integrity...enabling higher speeds
- On module termination


Fly-By Routing Improved SI

DDR2 Matched Tree Routing

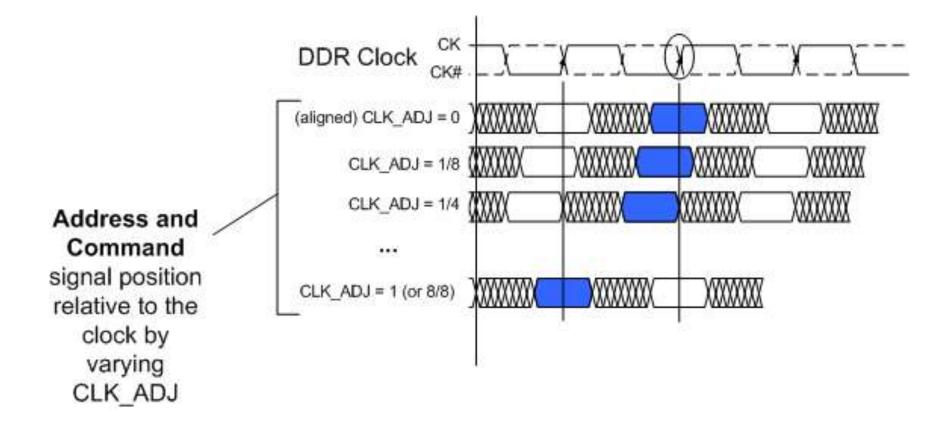

DDR3 Fly By Routing

What Is Write Leveling?

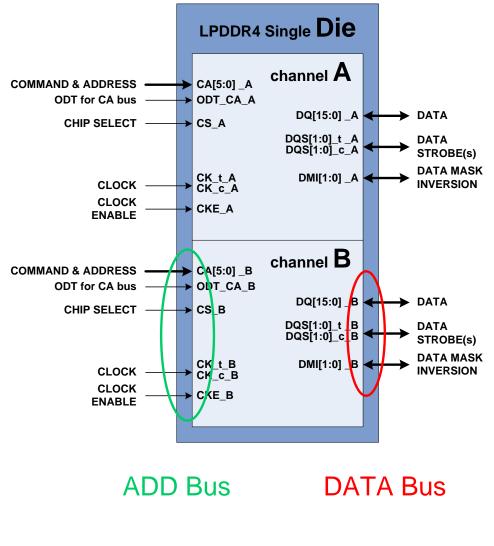

Write Adjustment

Write leveling sequence during the initialization process will determine the appropriate delays to each data byte lane and add this delay for every write cycle.

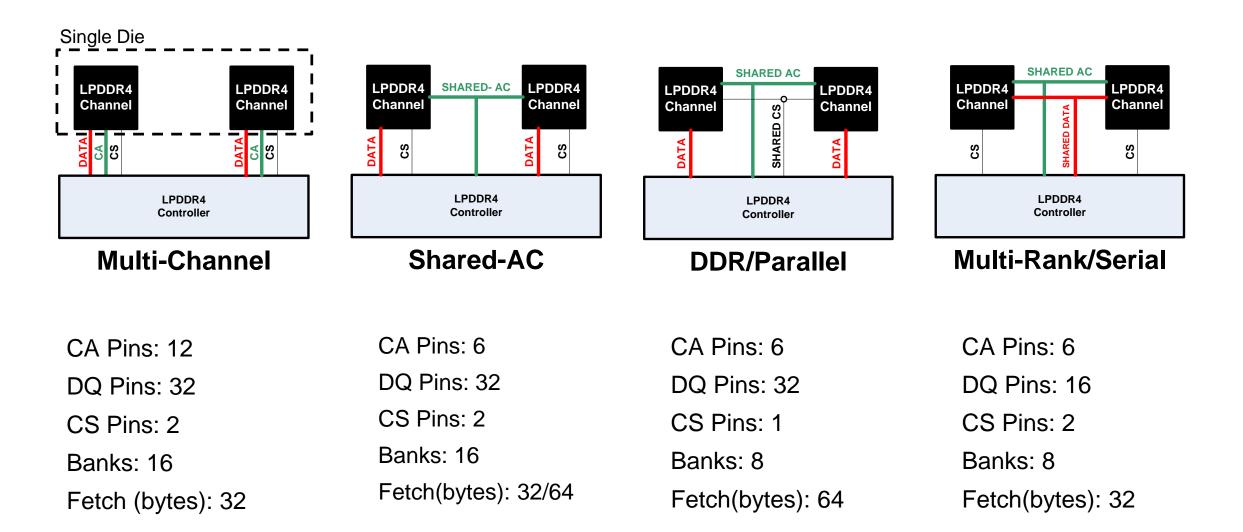
Read Adjustment



Auto CPO will provide the expected arrival time of preamble for each strobe line of each byte lane during the read cycle to adjust for the delays cased by the fly-by topology.

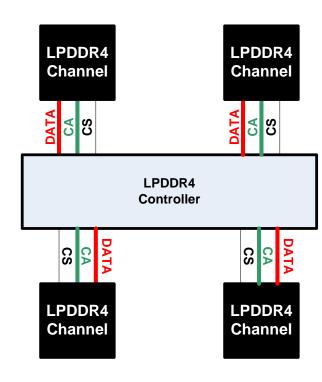

CLK_ADJ - Clock Adjust

 CLK_ADJ defines the timing of the address and command signals relative to the DDR clock.

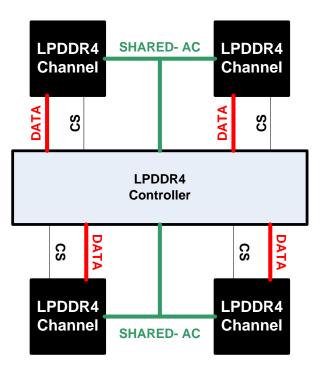


Example – generic LPDDR4 SDRAM

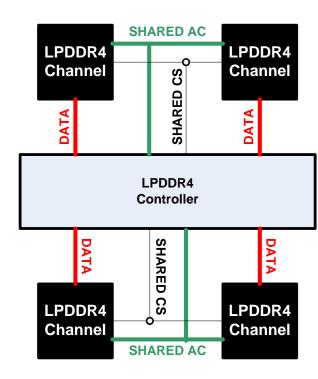
- 2 Channels per die
- 1, 2 or 4 Die per package
- 8 Banks per channel
- 2Gb to 16Gb Density range per channel
- DATA bus: DQ, DQS_t, DQS_c, DMI
- ADD bus: CA, OTD_CA, CS, CKE, CK_t, CK_c



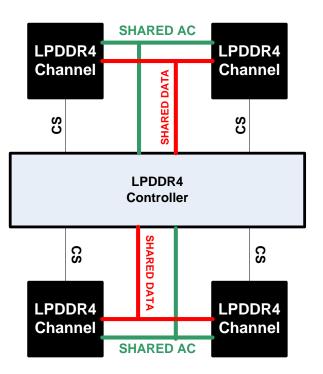
Example – LPDDR4 Arrangements – Single Die (2 Channels)



Example – LPDDR4 Arrangements – 2 Die (4 Channels)

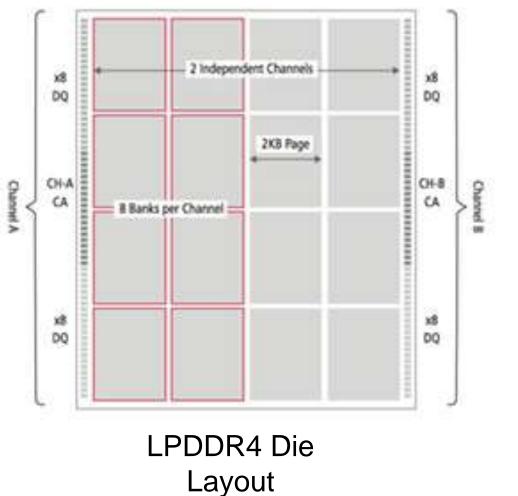


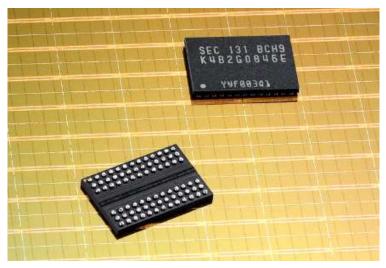
Multi-Channel



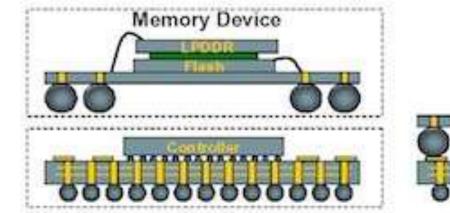
Shared-AC

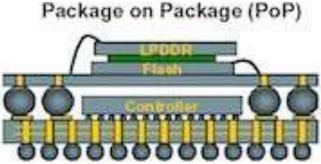
Example – LPDDR4 Arrangements – 2 Die (4 Channels) cont'd


DDR/Parallel



Multi-Rank/Serial




LPDDR4 Package

Micron LPDDR4

FLASH & LPDDR in PoP configuration

SDRAM Differences

PUBLIC 32

DDR3 vs. DDR4 DRAM Pinouts

- DDR4 Pins Added
 - VDDQ (2) : 1.2V pins to DRAM
 - VPP (2): 2.5V external voltage source for DRAM internal word line driver
 - BG (2): Bank Group (2): pins to identify the bank groups
 - DBI_n: Data Bus Inversion
 - ACT_n: Active command
 - PAR: Parity error signal for address bus
 - ALERT_n: Both, Parity error on C\A and CRC error on data bus
 - TEN: Connectivity test mode
- DDR3 Pins Eliminated
 - VREFDQ
 - Bank Address (1): one less BA pin
 - VDD (1), VSS (3), VSSQ (1)

-					
VDD	VSSQ		DM_n, DBI_n	VSSQ	VSS
VPP	VDDQ	DQS_c	DQ1	VDDQ	ZQ
VDDQ	DQ0	DQS_t	VDD	VSS	VDDQ
VSSQ	DQ4	DQ2	DQ3	DQ5	VSSQ
VSS	VDDQ		DQ7	VDDQ	VSS
VDDQ		ODT	CK_t	CK_c	VDD
VSS		CKE	CS_n		TEN
VDD	WE_n, A14	ACT_n	CAS_n, A15	RAS_n, A16	VSS
VREFCA	BGO	A10	A12	BG1	VDD
VSS	BAO	A4	A3	BA1	VSS
RESET_ n	A6	AO	A1	A5	ALERT_ n
VDD	A8	A2	A9	A7	VPP
VSS	A11	PAR	A17	A13	VDD

New Pin: ACT_n (Activate Command)

- ACT_n is a single pin for Active command input
- When ACT_n is low:
 - -ACT Command is asserted
 - -WE/CAS/RAS pins will be treated as address pins (A14:A16)
- When ACT_n is high
 - -WE/CAS/RAS pins will be treated as command pins

VDD	VSSQ		M_n, DBI	VSSQ	VSS
VPP	VDDQ	DQS_c	DQ1	VDDQ	ZQ
VDDQ	DQO	DQS_t	VDD	VSS	VDDQ
VSSQ	DQ4	DQ2	DQ3	DQ5	VSSQ
VSS	VDDQ		DQ7	VDDQ	VSS
VDDQ		ODT	CK_t	CK_c	VDD
VSS		CKE	CS_n		TEN
VDD	A14	ACT_n	A15	A16	VSS
VREFCA	BGO	A10	A12	BG1	VDD
VSS	BAO	A4	A3	BA1	VSS
RESET_n	A6	AO	A1	A5	ALERT_n
VDD	A8	A2	A9	A7	VPP
VSS	A11	PAR	A17	A13	VDD

VDD	VSSQ		M_n, DBI	VSSQ	VSS
VPP	VDDQ	DQS_c	DQ1	VDDQ	ZQ
VDDQ	DQO	DQS_t	VDD	VSS	VDDQ
VSSQ	DQ4	DQ2	DQ3	DQ5	VSSQ
VSS	VDDQ		DQ7	VDDQ	VSS
VDDQ		ODT	CK_t	CK_c	VDD
VSS		CKE	CS_n		TEN
VDD	WE_n	ACT_n	CAS_n	RAS_n	VSS
VREFCA	BGO	A10	A12	BG1	VDD
VSS	BAO	A4	A3	BA1	VSS
RESET_n	A6	AO	A1	A5	ALERT_n
VDD	A8	A2	A9	A7	VPP
VSS	A11	PAR	A17	A13	VDD

LPDDR3 vs. LPDDR4 DRAM Pinouts

- Change from a 10-bit DDR command/address bus to a 6-bit SDR bus
 - Address and Commands are encoded on CA lines
 - Addresses and Commands distributed over multiple cycle
- Change from one 32-bit wide bus to two independent 16-bit wide buses -x32, (2 channels, x16), x64 (4 channels, x16)

DRAM Densities DDR3 vs. DDR4

- 16 Banks for x4 and x8 DRAM DDR4, 8 Banks for x16
- 8Gb is DRAMs vendors choice for starting DDR4 density
- Larger memory size is one reason to use x4 vs. x8 vs. x16 DRAM
- Data mask or data bus inversion (DBI), not available in x4 DRAM

	Density	1Gb				2Gb			4Gb			8Gb			16 Gb		
	Width	x4	x8	x16	x4	x8	x16	x4	x8	x16	x4	x8	x16	x4	x8	x16	
	Banks	8	8	8	8	8	8	8	8	8	8	8	8				
R3	Rows	14	14	13	15	15	14	16	16	15	16	16	16				
	Columns	11	10	10	11	10	10	11	10	10	12	11	11				
	Page Size (KB)	1	1	2	1	1	2	1	1	2	2	2	2				
	Banks				16	16	8	16	16	8	16	16	8	16	16	8	
R4	Rows				15	14	14	16	15	15	17	16	16	18	17	17	
	Columns				10	10	10	10	10	10	10	10	10	10	10	10	
	Page Size (KB)				0.5	1	2	0.5	1	2	0.5	1	2	0.5	1	2	

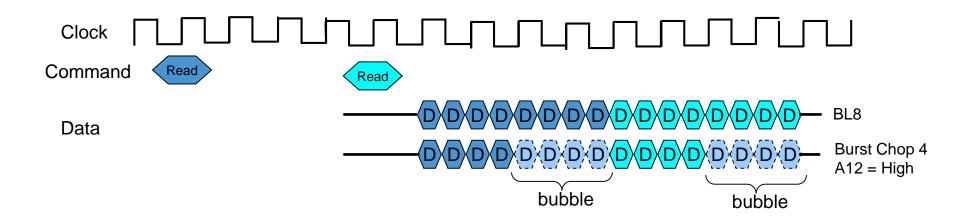
DRAM Densities progression in LPDDR

- LPDDR
 -512Mb to 8Gb
- LPDDR2 -512Mb to 16Gb
- LPDDR3
 - -4Gb to 32Gb

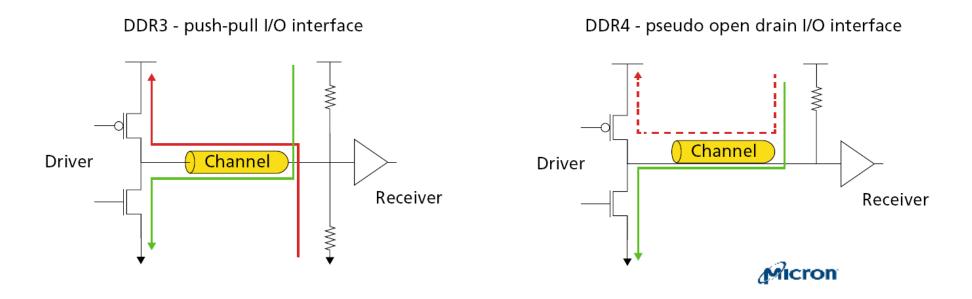
LPDDR4

-4Gb to 32Gb (2Gb to 16Gb per channel)

Modules DDR3 vs. DDR4


- U/RDIMM Pin count of 240 vs. 288, pin pitch of 1.0mm vs. 0.85mm
- Bottom edge flat vs. step ramp. Height & width increased by ~1mm
- DRAM ball count and ball pitch not changed
- DIMM topology of fly by for address/command bus not changed
- SoDIMM pin count of 204 vs. 260
- SoDIMM will have native ECC support vs. non-compatible pin out in DDR3

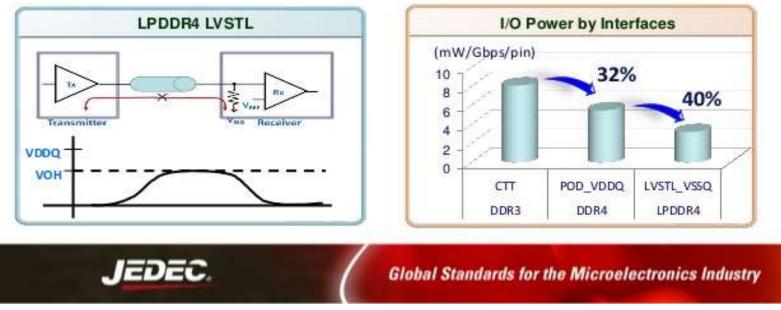
Burst Length


- DDR4 normally has Burst Length of 8 (BL8)
- DDR4 also support pseudo Burst Length of 4 (BC4, OTF BC)

- LPDDR3 Burst Length of 8 (BL8)
- LPDDR4 Burst Length of 16 (BL16)

DDR4 Output Driver/Termination

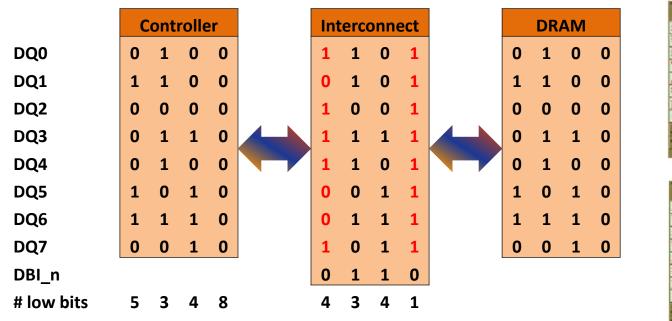
- Center tap termination is used in DDR3 receiver
- POD termination or pull up is used in DDR4 receiver
- Push-Pull driver in DDR3 and POD driver in DDR4
- Less power is consumed using POD driver & termination

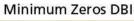


LPDDR4 Output Driver/Termination

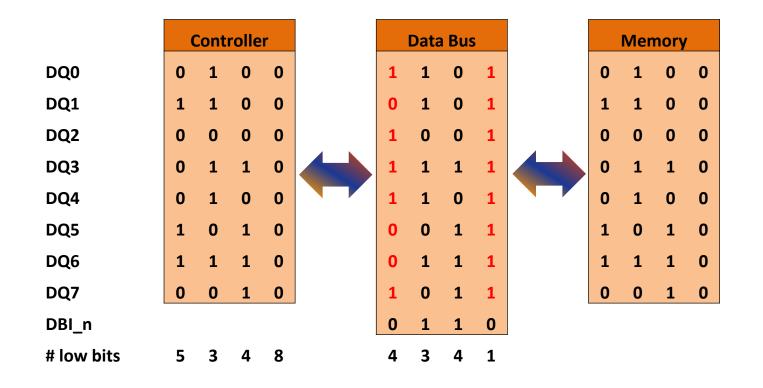
LPDDR4 - Innovative Interface LVSTL

LVSTL (Low Voltage Swing Terminated Logic)

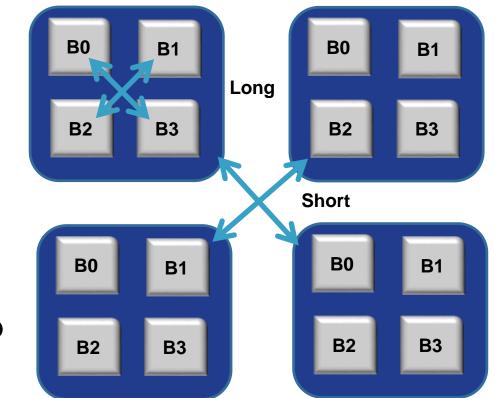

- High frequency operation with less IO power consumption
- No DC power consumption when driving "low"
- Lower Cio, small Xtalk and SSN, because of small swing
- Stronger reference plane
- Easy voltage scaling


New Pin: DBI_n (Data Bus Inversion)

- Active low input/output for data bus inversion mode
- Available only on x8 and x16 DRAM
- **PROs:** Less noise, better data eye and lower power consumption
- CONs: Performance is affected due to data mask not being available and CAS_LAT is increased by 2 clocks.

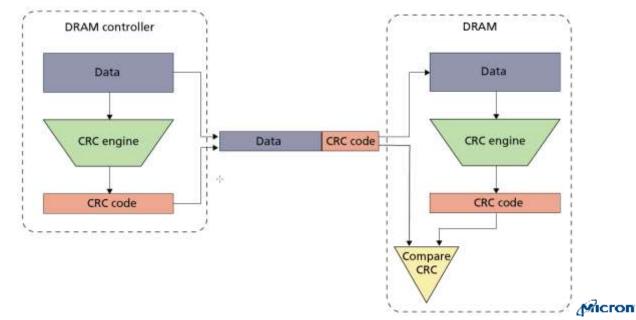


Data Bus Inversion - DBI


- If more than 4 bits of a byte lane are low, invert the data and drive the DBI_n pin low
- If 4 or less bits of a byte lane are low, do not invert the data and drive the DBI_n pin high

New Pin: BGn (Bank Group Address)

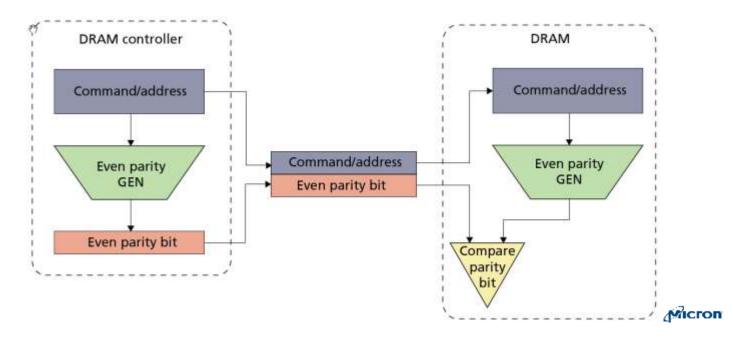
- Different timing within a group and between groups
 - -Active to active (tRRD_L)
 - -Write to read (tWTR_L)
 - -Read to read (tCCD_L)
 - -Write to write (tCCD_L)
- Controller to maintain timing requirements for both within a group (long) and between groups (short)



Data rate	1600	1866	2133	2400
tCCD_S	4	4	4	4
tCCD_L	5	5	6	6

New Pin: ALERT_n & Cyclic Redundancy Check (CRC)

- Alert_n Active low output signal that indicates an error event for reporting C/A parity and data write CRC errors
- Polynomial encoding is used to generate the CRC, 8-bits per write burst
- PROs: Better reliability by detecting data errors during write cycles
- CONs: Two beats added to the write burst to transfer the CRC header



*Not the same as ECC

New Pin: PAR (Address Bus Parity)

- C/A Parity signal (PAR) covers ACT_n, RAS_n, CAS_n, WE_n and the address bus. Control signals CKE, ODT, CS_n are not included
- Commands must be qualified by CS_n
- Alert_n used to flag error to memory controller
- **PROs:** Better reliability
- CONs: PL (4clk for 2133, 5clk for 2400) is added to read latency

Cyclic Redundancy Check (CRC)

- Alert_n Active low output signal that indicates an error event for both the C/A Parity Mode and the CRC Data Mode
- CRC Data mode:
 - To detect data errors during write cycles .
 - Polynomial encoding is used to generate the CRC for every 8-bit
 - -Two beats added to the write burst to transfer the CRC header
 - DRAM generates a CRC checksum per each write burst and DQS lane
 - DRM compares the generated checksum to controllers checksum
 - If Data Mask is disabled, corrupt data is written, with the Alert_n flag sent to controller to retry the write.
 - If Data Mask is enabled, corrupt data is not written, with the Alert_n flag sent to controller to retry the write.

Data Write CRC

- Example data mapping with CRC for 8-bit, 4-bit and 16-bit devices
- Note: not the same as ECC

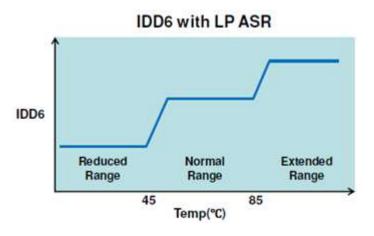
	0	1	2	3	4	5	6	7	8	9
DQ0	d0	d1	d2	d3	d4	d5	d6	d7	CRC0	1
DQ1	d8	d9	d10	d11	d12	d13	d14	d15	CRC1	1
DQ2	d16	d17	d18	d19	d20	d21	d22	d23	CRC2	1
DQ3	d24	d25	d26	d27	d28	d29	d30	d31	CRC3	1
DQ4	d32	d33	d34	d35	d36	d37	d38	d39	CRC4	1
DQ5	d40	d41	d42	d43	d44	d45	d46	d47	CRC5	1
DQ6	d48	d49	d50	d51	d52	d53	d54	d55	CRC6	1
DQ7	d56	d57	d58	d59	d60	d61	d62	d63	CRC7	1
DBI_n	d64	d65	d66	d67	d68	d69	d70	d71	1	1

The following figure shows detailed bit mapping for a x8 device.

The following figure shows detailed bit mapping for a x4 device.

	0	1	2	3	4	5	6	7	8	9
DQ0	d0	d1	d2	d3	d4	d5	d6	d7	CRC0	CRC4
DQ1	d8	d9	d10	d11	d12	d13	d14	d15	CRC1	CRC5
DQ2	d16	d17	d18	d19	d20	d21	d22	d23	CRC2	CRC6
DQ3	d24	d25	d26	d27	d28	d29	d30	d31	CRC3	CRC5 CRC6 CRC7

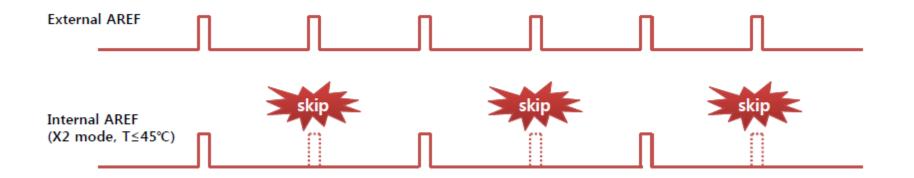
Data Write CRC (continued)


	0	1	2	3	4	5	6	7	8	9
DQ0	d0	d1	d2	d3	d4	d5	d6	d7	CRC0	1
DQ1	d8	d9	d10	d11	d12	d13	d14	d15	CRC1	1
DQ2	d16	d17	d18	d19	d20	d21	d22	d23	CRC2	1
DQ3	d24	d25	d26	d27	d28	d29	d30	d31	CRC3	1
DQ4	d32	d33	d34	d35	d36	d37	d38	d39	CRC4	1
DQ5	d40	d41	d42	d43	d44	d45	d46	d47	CRC5	1
DQ6	d48	d49	d50	d51	d52	d53	d54	d55	CRC6	1
DQ7	d56	d57	d58	d59	d60	d61	d62	d63	CRC7	1
DBIL_n	d64	d65	d66	d67	d68	d69	d70	d71	1	1
DQ8	d72	d73	d74	d75	d76	d77	d78	d79	CRC8	1
DQ9	d80	d81	d82	d83	d84	d85	d86	d87	CRC9	1
DQ10	d88	d89	d90	d91	d92	d93	d94	d95	CRC10	1
DQ11	d96	d97	d98	d99	d100	d101	d102	d103	CRC11	1
DQ12	d104	d105	d106	d107	d108	d109	d110	d111	CRC12	1
DQ13	d112	d113	d114	d115	d116	d117	d118	d119	CRC13	1
DQ14	d120	d121	d122	d123	d124	d125	d126	d127	CRC14	1
DQ15	d128	d129	d130	d131	d132	d133	d134	d135	CRC15	1
DBIU_n	d136	d137	d138	d139	d140	d141	d142	d143	1	1

A x16 device is treated as two x8 devices. x16 device will have two identical CRC trees implemented. CRC(0-7) covers data bits d(0-71). CRC(8-15) covers data bits d(72-143).

Low-Power Auto Self Refresh

- DDR4
 - While DRAM is in self-refresh mode, four refresh mode options available:
 - Manual mode, normal temperature (45C 85C)
 - Manual mode, extended temperature (85C 95C)
 - Manual mode, reduced temperature (0C 45C)
 - Automatic mode: automatically switches between modes based on temperature sensor measurements
 - Power savings by reducing refresh rate when possible


Auto Self Refresh	DDR4	DDR3		
Extended Range	85°C-95°C	85°C-95°C		
Normal Range	45°C-85°C			
Reduced Range	0°C-45°C	0°C-85°C		

- LPDDR4
 - Temperature-compensated self refresh (TCSR) mode
 - Partial-array self refresh (PASR)

Temperature Controlled Auto Refresh

- Enabled or disabled in MR4
- In extended temp mode controller sends refresh commands every 3.9us
- DRAM based on the internal temp sensor will skip refresh commands automatically to save power

Command Address Latency (CAL)

- DDR4 supports CAL as a power savings feature
- In default mode, DRAM C/A input receivers are always on
- In CAL mode, only CS receiver is always on. All remaining C/A input receivers are kept in a low power state when not in use. CS signal is sent N number of cycles earlier to allow DRAM time to wake up C/A input receivers

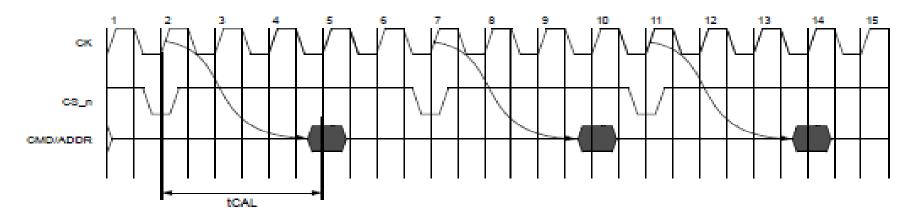


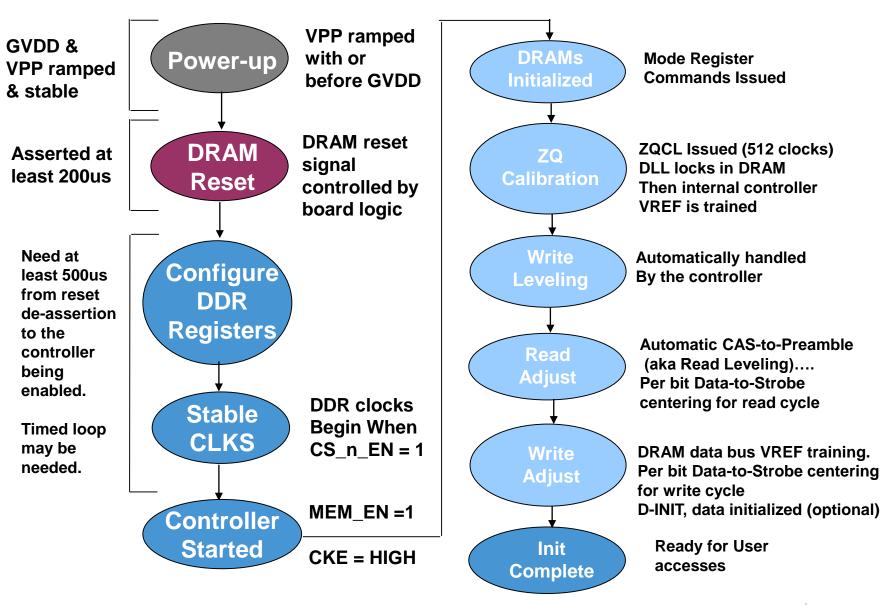
Figure 34 — Definition of CAL

Why DDR4 Over DDR3?

- Save on power and cost
 - DDR4 can reduce power by up to 37%
 - DDR4 price cross-over at the end of 2015
- Higher Data rates
 - DDR4 offers double the data rate
 - DDR4 doubles the number of internal banks, increased bandwidth
 - New options to increase performance
- Better reliability & manufacturing capabilities
 - Connectivity test
 - Data bus inversion (DBI)
 - Internal VREF calibration
 - CRC on DATA & parity on ADDRESS bus
- Larger densities

Why LPDDR4 Over PLDDR3?

- Save power
 - LPDDR4 can reduce overall power by up to 37% over LPDDR3
 - Many power savings mechanisms:
 - Temperature-compensated self refresh (TCSR), Partial-array self refresh (PASR), Deep power-down (DPD), Programmable drive strength (DS), Programmable VOH signal level
- Higher Data rates
 - Faster Clock rates
 - Two-channel architecture
 - Increased speed due dual channel die layout
 - Shorter signal distances
- Flexible memory configurations
 Better suite the application
- Larger densities



General Hardware and Software Design Guidelines and Tips

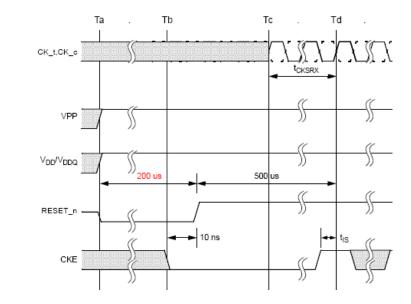
DDR4 Initialization Flow

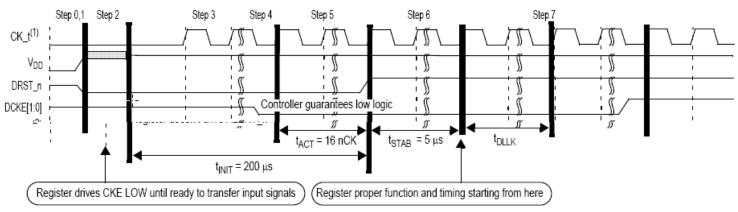
General Hardware Guidelines

- Examine the DDR4 Layout Guidelines for QorIQ devices App. Note (AN5097)
- Run pre and post board simulation
 - IBIS models are available for both controller and DRAM
- Employ industry standard practices
- Minimize Crosstalk, ISI, Vref noise, Impedance mismatches
- Eliminate return path discontinuities (RPD)
- Minimize the simultaneous switching output (SSO) effects
 - Proper distribution of power and ground planes
 - Proper capacitance decoupling
- Examine the reference design boards with DDR4 implemented
 - Both discrete and DIMM DDR4 are available for QorIQ devices

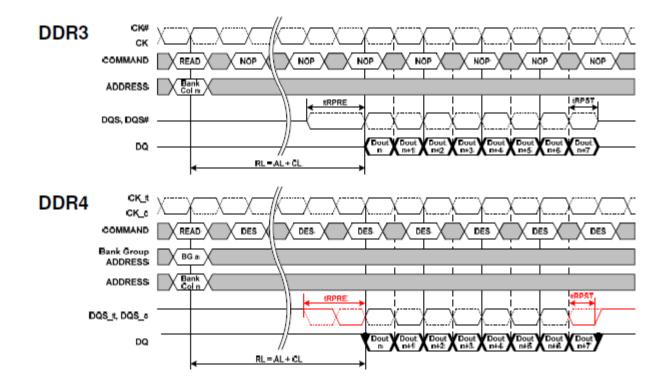
Important HW Considerations for DDR4 Transition

- VPP supply
 - VPP = 2.5V required for each DRAM
 - Follow DRAM vendor specification for power/current requirements
 - VPP ramped with or before GVDD
- VrefDQ reference input is removed
- New signals added to each DRAM
 - ACT_n
 - DBI
 - PAR
 - TEN (Pull to GND when not used)
 - ALERT


QorlQ	with	DDR3	L\DDR4
me	mory	contr	oller


DDR3L	DDR4
MRAS	MRAS/ MA[16]
MCAS	MCAS/ MA[15]
MWE	MWE/ MA[14]
MA[15]	ACT_n
MA[14]	BG1
MBA[2]	BGO
MDM[0-8]	MDM / DBI
MAPAR_ERR	Alert_n
MAPAR_OUT	PAR

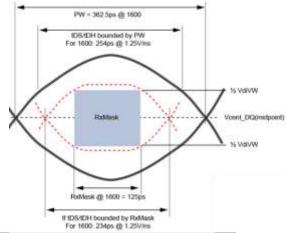
UDIMM vs. RDIMM DDR4 Reset


- UDIMM requires CKE to be low before RESET is de-asserted.
- RDIMM requires CKE to be low and clock to be present before RESET is deasserted

DDR3 and DDR4 Preamble and Idle Signal Differences

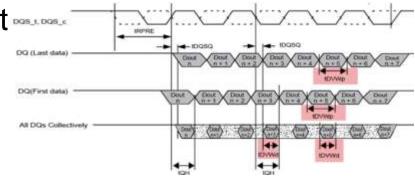
- DQ and DQS signals stay high during idle time
- DQS preamble is same for Read and Writes

Timing Budget

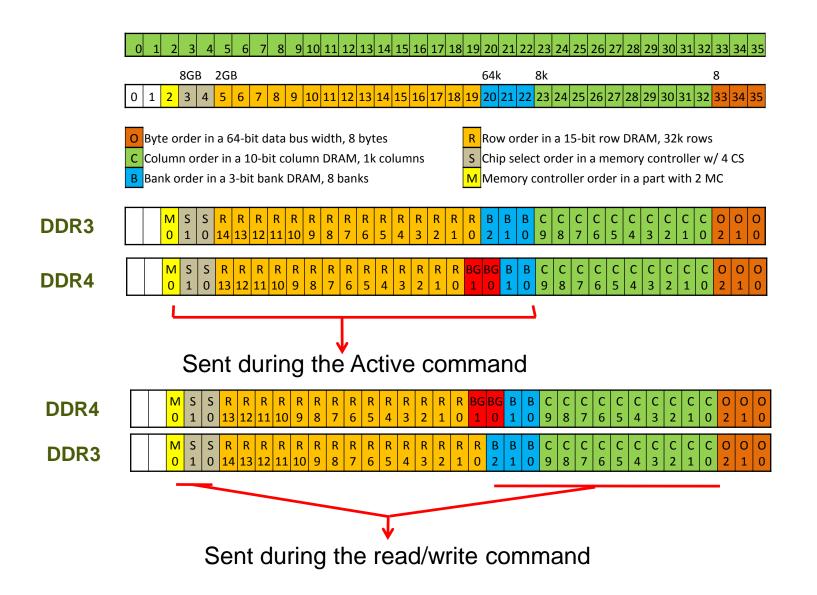

- UI, the max theoretical timing budget is divided between controller, DRAM and the interconnect.
- When using Timing from the datasheet
 - Adjust datasheet values to simulated slew rates
 - Datasheet values are based on 1V/ns slew rates
- Convert from VIH/Lac and VIH/Ldc to Vref values (A/C bus)
 - Account for slew rate variation
 - Data eyes are based on Vref values
- Rx Mask modifies the READ and WRITE timing budgets calculation
 Examples will clarifies the calculations
- tDVWp can be used for READ timing budget

Data Write Timing Budget Calculation

- The example shows 152ps available for the interconnect at 2133
 - For timing budget purpose, Rx mask can be the red dotted lines, but actual signal must be black lines



Element	Skew Component	DDR4	-2133	DDR4	DDR4-2400		Comments
		Setup	Hold	Setup	Hold		
Clock	Data/strobe chip PLL jitter	0	0	0	0	ps	Input clock jitter does not affect data capture, can insert DQS to data offset, in any
	DRAM tJITper	23.5	23.5	21	21	ps	Use what DRAM is tested for
	Clock skew	0	0	0	0	ps	Potential clock to strobe to data skew
Transmitter	Controller skew	77	77	73	73	ps	Assume 70% of DRAM's
Interconnect	DQ crosstalk and ISI1	0	0	0	0	ps	1 victim (1010), 4 aggressors (PRBS)
	DQS crosstalk and ISI1	0	0	0	0	ps	1 shielded victim (1010), 2 aggressors (PRBS)
	VREF reduction	0	0	0	0	ps	Vref generated internally, not required
	REFF mismatch	0	0	0	0	ps	Vref generated internally, not required
	Path matching (board)	0	0	0	0	ps	Within byte lane: 165 ps/in; mismatch within DQS to DQ
	Path matching (module)	0	0	0	0	ps	Module routing skew (30% reduction with leveling)
	Input capacitance matching	0	0	0	0	ps	Strobe to data variation, estimated
	ODT skew (1%)	0	0	0	0	ps	Estimated
	Total interconnect	0.0	0.0	0.0	0.0	ps	
Receiver	DRAM skew	80.9	80.9	75.8	75.8	ps	DRAM spec, RX mask, cal per DQ, TdiPW met, 2V/ns
	VrefDQ Calibration Error	0	0	0	0	ps	Assumes per DQ calibration (spec)
	Total Receiver	80.9	80.9	75.8	75.8	ps	DBI not enabled
Total loss	Total skew	157.6	157.6	148.5	148.5	ps	Transmitter + receiver + interconnect skews
MAX eye	Time available	234.3	234.3	208.3	208.3	ps	Total time available
Budget	Timing margin for Interconnect	76	76	59	59	ps	


Data Read Timing Budget Calculation

- - -Uses new tDVWp specification
 - Requires per DQ calibration

Element	Skew Component	DDR4-2133		DDR4	DDR4-2400		Comments	
		Setup	Hold	Setup	Hold			
Clock	Data/strobe chip PLL jitter	19	19	17	17	ps	estimated stargeted sigma (usuauly around 10-sigma)	
	DRAM tJITper	14.1	14.1	12.6	12.6	ps	DRAM output timing assumes no clock jitter; must derate tJITduty below	v
	Clock skew	4.9	4.9	4.4	4.4	ps	Amount of clock period reduction not acocunt for in duty cycle reduction	۱
Transmitter ¹	tCK/2 - DVWp	159.3		14	1.6	ps	Controller trains per DQ	
	tJITduty (measured)	19	19.74		17.64		tJITduty measured, not specification; assume 70% of tJITper	
	Static duty cycle adjust 9.4		.4	8.3		ps	0.5tCK to 0.49tCK	
	Transmitter skew	94.2	94.2	83.8	83.8	ps	total transmitter skew	
1	DQ crosstalk and ISI	0	0	0	0	ps	1 victim (1010), 4 aggressors (PRBS)	
	DQS crosstalk and ISI	0	0	0	0	ps	1 shielded victim (1010), 2 aggressors (PRBS)	
	VREF reduction (input eye)	0	0	0	0	ps	Vref generated internally, not required	
	REFFmismatch	0	0	0	0	ps	Vref generated internally, not required	
	Path matching (board)	0	0	0	0	ps	Within byte lane: 165 ps/in, mismatch within DQS to DQ	
	Path matching (module)	0	0	0	0	ps	Module routing skew (30% reduction with leveling)	
	Capacitance matching	0	0	0	0	ps	Strobe to data variation	
	ODT skew (1%)	0	0	0	0	ps	Estimated	
	Total interconnect	0	0	0	0	ps		
Receiver	Memory controller skew	80.9	80.9	75.8	75.8	ps	DRAM specification used, assume 2V/ns	
	VrefDQ Calibration Error	0	0	0	0	ps	Assumes per DQ calibration, internal Vref	
	Total Receiver	80.9	80.9	75.8	75.8	ps	DBI not enabled	
Total loss	Total skew	180.0	180.0	164.0	164.0	ps	Transmitter + receiver + interconnect skews	~?
MAX eye	Time available	234.3	234.3	208.3	208.3	ps	Total time available	Micro
Budget	Timing margin for Interconnect	54	54	44	44	ps		9-11 (Sec. 1)

Address Decoding for DDR

Software Use Case Considerations

- Look-Up tables
 - One write and many reads, 100% random access
 - -Worst case is to access the data from the same bank
 - Solution: copy identical table in two or more banks
- Statistics Counters
 - Equal read to write ratio or read-modify write
 - To maintain millions of counters
 - Solution: Instead of reading and writing back to the same counter, read from many (a group of) counters and write back to many (a group of) counters.

i.MX DRAM Register Programming Aid

Tools for DRAM Bring-up and Debug

DRAM Register Programming aid

Run basic DDR initialization and test memory	Assuming the use of a JTAG debugger, run the DDR initialization and open a debugger memory window pointing to the DDR memory map starting address. Try writing a few words and verify if they can be read correctly. If not, re-check the DDR initialization sequence and if the DDR has been correctly soldered onto the board. It is also recommended to re-check the schematic to ensure the DDR memory has been connected to the SoC correctly. In some cases, a DRAM calibration routine may need to be executed, see next row.	
Run DRAM Stress test (some SoC's include a DRAM calibration routine)	A unit test that focuses on the robustness of the DRAM interface. Downloaded through JTAG debugger into internal RAM. Some SoC's DRAM stress test, like MX6Q, includes option to run DRAM calibration.	

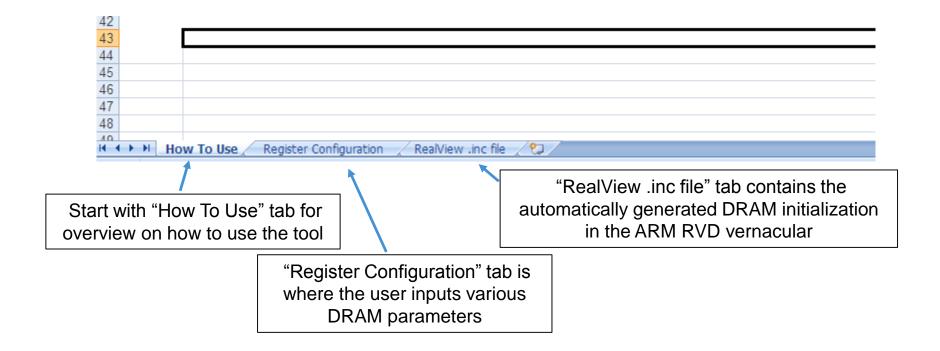
DRAM Stress Test

DRAM Register Programming Aid – Intro

- Tool to help create DRAM init scripts for specific memory types
 - Mainly used to help program JEDEC timing parameters
 - tRCD, tRC, tRFC, etc...
 - and for different DRAM parameters like rows, cols, and chip selects
 - Internal tool: Customers told to contact FAE for information
 - Excel spread sheet based, transparent, ease-of-use
 - "Automatically" creates RVD init script (.inc file)
 - To convert RVD to Lauterbach script format, Contact FAE.
 - How to modify *.inc script to *.ds for use with D5-Stream:
 - Change file name to *.ds
 - Substitute "mem set <reg_add> 32 <reg_val>"
 - For "set mem /32 <reg_add> = <reg_val>"

DRAM Register Programming Aid – Intro (Continued)

- Based on scripts provided by design/validation
- Anyone can use it, change it, fix it, etc...
- Each Programming Aid tool based on DRAM tech (DDR3, DDR2, LPDDR2, etc)
- · What's been created to date:
 - -MX7D: DDR3, LPDDR3
 - DDR3, LPDDR2; MX6DL: DDR3,LPDDR2; MX6SL: DDR3,LMX6DQ:PDDR2; MX6SX: DDR3, LPDDR2
 - -MX50: mDDR, LPDDR2, DDR2
 - -MX28: mDDR, DDR2
 - -What about other i.MX? No plans yet, need to resource this if enough interest


DRAM Register Programming Aid – Intro (Continued)

- Originated due to Denali controller on MX28 and MX50
 - Denali controller complex, many registers to program
 - Required use of Denali-specific tools available only to factory engineers (due to Denali license); burden on factory support
 - Even with Denali tools, the DRAM init scripts required further "tweaking" due to i.MX design integration
 - Register programming aid takes into account any "tweaking" and incorporates i.MX design specifics (based on scripts from design/validation)
 - Register programming aid offers more visibility on how the DRAM controller is being programmed
- Register programming aid tool concept carried over to i.MX FIL base controllers, starting with MX53 and MX6 series
- Tools are available to customers through assigned FAE's

DRAM Register Programming Aid – Usage Overview

- Programming aid tool Excel Spreadsheet based
 - There are three tabs (worksheets)

How to use the DRAM register programming aid outline

How To Use / Register Configuration / RealView .inc file /

Step 1. Obtain the desired DRAM data sheet from the DRAM vendor

The following are to be completed in the Register Configuration Worksheet tab.

How To Use Register Configuration RealView .inc file

Step 2. Update the Device Information table to include the DRAM information and system usage

Device Information	to the second	
Memory type:	mDDR	
Manufacturer.	Micron	
Memory part number.	MT46H64M16LF-5	
Memory timing info:	5.0ns	
Total DRAM Density per CS (Gb)	1	- 4
Number of ROW Addresses	14	
Number of COLUMN Addresses	10	
Number of BANKS	4	
Number of Chip Selects used	1	
Total DRAM density (Gb)	1	
Bus Width	×16	
Clock Cycle Freq (MHz)	200	6
Clock Cycle Time (ns)	5	

Step 3. Go through the various shaded cells in the spread sheet to update with data from the DRAM sheet (take special note of the "Legend" table to ascertain the meaning of different shaded cells; in many cases, the cells may not need to be updated).

Instructions	Legend		
	On Register Configuration Tab, this color indicates the bitfields that would commonly require updating. On Register Configuration Tab, this color indicates the bitfields that may be updated, but should typically not require it.		Pay attention to shaded cells – this is where
Shaded cells may require updating per the DRAM memory data sheet parameters. Certain registers should not need to be modified by the user. If a register is not provided then it is assumed this parameter is not to be changed eer the provided initialization scretch or that the	On Register Configuration Tab, this color indicates the bitfields that are updated automatically from setting provided in the "Device Information" table or other cells, and should not be changed manually	Automatically Updated Setting	you input data
register is read-only. Certain registers are provided though they may be noted as recommended to not change.	On Register Configuration Tab, an unshaded cell means that the value should remain as is and should not be modified. In these cases, the settings are provided for completeness.		Con't touch un-shaded cells
	On other tabs, this color indicates the cells that are affected by changes on the Register Configuration tab. Note, this cell shading should not used in this workshear Register Configuration tab, only in other tabs that are affected by cells in this tab.		This is relevant to the "RealView .inc file"

The following refers to the RealView .inc file Worksheet tab. In this tab, the entire DRAM initialization can be obtained. This initialization can be used as a RealView include file (see below) or are reference for the bootloader DRAM initialization.

Step 4. Go to the RealView .inc file Worksheet tab and copy and paste this into a text document (make sure to rename the document with a ".inc" file ending); this is ready to use with the RealView development system.

Step 5. This .inc file can also be used as a reference for other debugger tools and bootloaders.

Note, each spread sheet is for a specific i.MX SoC and DRAM memory type.

 These construction inputs value 								1		binary setting		How To Use	Register Config	uration / F	RealView .in	c file 🔪
		m para				ns 🕨		clk		within reaiste	r description		Register name	Register address (HEX)	Register	
Example tRC: 1. User inputs '55' (in 'ns')		TFAW (IFA	M)		50			10		GA000000		to maintain consistency tialization, recommend to affect on performance or	HW_DRAM_CTL39	0×800E009C	0×0A000000	
2. Tool calculates that 55ns=11clks* 3. Then configures binary setting for register		TMRD (tM8	RD)		÷			2		82000000	DRAM TMRD parameter in cycles. De of cycles required between two mode i This is the time required to complete th	register write commands he write operation to the parameter however, this	HW_DRAM_CTL40	0×800E00A0	0x02009C40	 Regisivative values calculative automative values
register 4. Tool takes all binary settings to		TINIT (UNI	-25	_	2000	00	4	0000		00009C40	DRAM TPDEX parameter in cycles. Th	e this parameter.		-		from u
create final register		TPDEX (IX			▼ 15			3		00020000	DRAM TRCD parameter in cycles. De CAS delay: in cycles		HW DRAM CTL41	0x800E00A4	0×0002030B	• The
Clock: 200MHz.		TRC (IRC	3		55			11		0000000B	DRAM TRC parameter in cycles. Defin between active commands for the sam the sum of tRAS+tRP (for tRP, use the tRP_AB for safer margin)	e bank, in cycles. This is				values also automat
lock period: 5ns		MAX (tRA	1		7000		1	4000 8	-	00368000	DRAM TRAS_MAX parameter in cycle maximum row active time, in cycles DRAM TRAS_MIN parameter in cycles minimum row activate time, in cycles		HW_DRAM_CTL42	0x800E00A8	0×00368008	update the
xample based on	1995	TRP (189			15			3	1.1	00000006	DRAM TRP (single bank) parameter in	ycles.				"RealV .inc file
MX28		TRFC (RF	<u>C)</u>		110	<u>x:</u>		22		00160000		s is the auto refresh duty sheets). This is the refresh commands to auto refresh commands are R data sheet should seconds). In some cases, the DDR data sheet only ammands in a 64ms time	HW_DRAM_CTL43	0x000E00AC	0x03160612	
ACTIVE-to-PRECHARGE command		'RAS	40	70,000	42	70,000	42	70,000	45	70,000	ns 22					,
ACTIVE to ACTIVE/ACTI TO REFRESH command	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	'RC	55	5	58,2	7	60	-	67.5	-	ns	Example	Micron mE	DR dat	a sheet	spec
Active to read or write	delay	¹ RCD	15	-	16.2	14	18	-	22.5	-	ns					

PUBLIC 73

• Changing device information, automatic update to register fields

	/	1. Type in c	levice p	arameter	s here]			
Device Information									
Memory type:	DDR3				1				
Manufacturer:	Micron			control bit setting	bit setting		Register		
Memory part number:	MT41J128M16HA-15	MMDC Control Parameter	N/A	(decimal)	within register	Notes	name	Register address	Register value (HEX)
Density of each DDR3 device	/								
(Gb):	2	SDE_0	-	1	80000000	SDE_0: Enable Chip Select 0, set to 0 (disable) or 1 (enable)			
Number of DRAM devices per chip select		SDE_1	-	1	4000000	SDE_1: Enable Chip Select 1, set to 0 (disable) or 1 (enable)			
Density per chip select (Gb)1:	8	ROW	-	3	03000000	ROW: number of ROW addresses. NOTE: this value is taken from the Device Information table above. Modify this value only in the table above.			
Number of Chip Selects used ² Total DRAM density (Gb)	2	COL	-	1	00100000	COL number of Column addresses. NOTE: : this value is taken from the Device Information table above. Modify this value only in the table above.	MDCTL	0x021B0000	0xC31A0000
Number of ROW Addresses ²	14	BL	-	1	00080000	BL: Burst length. For DDR3, set to 1 for burst length 8.			
Number of COLUMN Addresses ²	10	DSIZ	-	2		DSIZ: Data bus size. Note: this value is taken from the Device Information table above. Modify this value only in the table above.			\setminus
Number of BANKS ² Bus Width (input 16, 32, or 64 bits) ² Clock Cycle Freq (MHz) ³ Clock Cycle Time (ns)	8 64 533 1.876	2. Gets updat	ed here		1	3. Final r	egiste	r setting h	nere

Device Information		1. ROW	. COL. E	Bus width	are no	w changed from above			
Memory type:	DDR3		,			in enteringe en renn enterie			
Manufacturer:	someone			1			-		
Memory part number:	something			control bit setting	bit setting		Register		
Density of each DDR3 device (Gb):	2	MMDC Control Parameter	N/A	(decimal)	within register		name	Register address	Register value (HEX)
Number of DRAM devices per		SDE_0	-	1	8000000	SDE_0: Enable Chip Select 0, set to 0 (disable) or 1 (enable)			
chip select	4	SDE_1	-	1	4000000	SDE_1: Enable Chip Select 1, set to 0 (disable) or 1 (enable)			
Density per chip select (Gb)1:	8	ROW	-	4	04000000	ROW: number of ROW addresses. NOTE: this value is taken from the Device Information table above. Modify this value only	1		
Number of Chip Selects used ²	2	_				in the table above.	_		
Total DRAM density (Gb)	16	COL	-	2	00200000	COL number of Column addresses. NOTE: : this value is taken from the Device Information table above. Modify this value only	MDCTL	0x021B0000	0xC4290000
Number of ROW Addresses ²	15	51				in the table above.	-		
Number of COLUMN		BL	-	1		BL: Burst length. For DDR3, set to 1 for burst length 8.	1		
Addresses ² Number of BANKS ²		DSIZ	-	1	00010000	DSIZ: Data bus size. Note: this value is taken from the Device Information table above. Modify this value only in the table above.			
Bus Width (input 16, 32, or 64 bits) ²	32				1	BTW, these cells			, ,
Clock Cycle Freq (MHz) ³	533	2. Gets update	ed here			are automatically	updated		sly entered
Clock Cycle Time (ns)	1.876						parame	51613	

PUBLIC 74

How To Use Register Configuration RealView .inc file

Another detailed look...

How To Use Register Configuration RealView .inc file

• Let's say on MX6DQ, you had only one chip select populated (CS0)

Before, the MX6DQ register was as follows for the validation board which has DDR3 on both chip selects

MMDC Control Parameter	N/A	control bit setting (decimal)	bit setting within register	Notes	Register name	Register address	Register value (HEX)
SDE_0	-	1	80000000	SDE_0: Enable Chip Select 0, set to 0 (disable) or 1 (enable)			
SDE_1	-	1	4000000	SDE_1: Enable Chip Select 1, set to 0 (disable) or 1 (enable)			
ROW		3	03000000	ROW: number of ROW addresses. NOTE: this value is taken from the Device Information table above. Modify this value only in the table above.			
COL	-	1	00100000	COL number of Column addresses. NOTE: : this value is taken from the Device Information table above. Modify this value only in the table above.	MDCTL	0x021B0000	0xC31A0000
BL	-	1	00080000	BL: Burst length. For DDR3, set to 1 for burst length 8.			
DSIZ	-	2	00020000	DSIZ: Data bus size. Note: this value is taken from the Device Information table above. Modify this value only in the table above.			

Now, after the change to enable CS0 only, here's what the register looks like

		control bit setting			Ň	Register	Register
MMDC Control Parameter	N/A	(decimal)	register	Notes	Register name	address	value (HEX)
SDE_0	-	1	80000000	SDE_0: Enable Chip Select 0, set to 0 (disable) or 1 (enable)			
SDE_1	-	(0)	00000000	SDE_1: Enable Chip Select 1, set to 0 (disable) or 1 (enable)			
		1		ROW: number of ROW addresses. NOTE: this value is taken			
ROW	-	3	03000000	from the Device Information table above. Modify this value			
				only in the table above.		` a	
				COL number of Column addresses. NOTE: : this value is	MDCTL	0x021B0000	0x831A0000
COL	- /	1	00100000	taken from the Device Information table above. Modify this	MDOTE	0.02100000	0,0017,0000
				value only in the table above.			\uparrow
BL	-	1 🗙	00080000	BL: Burst length. For DDR3, set to 1 for burst length 8.			
				DSIZ: Data bus size. Note: this value is taken from the Device			
DSIZ	- /	2	00020000	Information table above. Modify this value only in the table			
				above.			

Clearing this means we are not enabling chip select 1

Register setting gets automatically updated

Don't touch. When BL cleared, burst length is 4 which is setting for LPDDR2

PUBLIC 75

// DDR Controller Regis				
// Manufacturer:	Micron			
// Device Part Number:				
// Clock Freq.:	200MHz			
// Density per CS (Gb):	LUUINIL		• DI	٦ΛΙ
// Chip Selects:	1		• DI	١AI
// Number of Banks:	4			
// Row address:	14		14-	
// Column address:	10		• Va	alue
//=====================================			Cor	ofia
setmem /32	0x800E0000=	0×00000000	001	my
setmem /32	0x800E0000=	0×00000000		
setmem /32	0x800E0054=	0×00000000	NI.	
setmem /32	0x800E0058=	0×00000000	• No	o us
setmem /32	0x800E005C=	0×00000000		
setmem /32	0x800E0060=	0×00000000		
setmem /32	0x800E0064=	0×00000000		
setmem /32	0x800E0068=	0x000000000		
setmem /32	0x800E006C=	0x01010101		
setmem /32	0x800E0000=	0x01010101		
setmem /32	0x800E0074=	0x0102010A		
setmem /32	0x800E007C=	0x00000101		
setmem /32	0x800E0080=	0x00000100		
setmem /32	0x800E0084=	0x00000100		
setmem /32	0x800E0088=	0x01000000		
setmem /32	0x800E008C=	0x00000002		/
setmem /32	0x800E0090=	0x01010000		
setmem /32	0x800E0094=	0x08060301		
setmem /32	0x800E0098=	0x06000001		
setmem /32	0x800E009C=	0x0A000000		
setmem /32	0x800E00A0=	0x02009C40		
setmem /32	0x800E00A4=	0x0002030B	*	
setmem /32	0x800E00A8=	0x0036B008		
setmen	00000200700		· · · · · · · · · · · · · · · · · · ·	
cotmon				
setmer TPI	DEX (tXP)	-	2	0
setmen				
TRCD	INT (tRCD)	15	3	0

How To Use / Register Configuration RealView .inc file

- DRAM initialization automatically generated per template
- Values in yellow are automatically updated from the "Register Configuration" tab (previous slide)
- No user input required in this tab

A few slides back, we saw an example of programming tRC and how the tool created the final value for this register address 0x800E00A4. The value is automatically transferred to this location.

setmem	732 UX600E00A6=	000000000						
setmen					DRAM TPDEX parameter in cycles. This is the power down exit			
setmer setmer	TPDEX (tXP)	-	2	00020000	time.			
setmen					DRAM TRCD parameter in cycles. Defines the DRAM RAS to			
setmen-	TRCD_INT (tRCD)	15	3	00000300	CAS delay, in cycles.	HW DRAM CTL41	0x800E00A4 (0x0002030B
setmen					DRAM TRC parameter in cycles. Defines the DRAM period	1111_DIV 111_01241	0000000000	000020300
					between active commands for the same bank, in cycles. This is			
					the sum of tRAS+tRP (for tRP, use the all banks parameter,			
	TRC (tRC)	55	11	0000000B	tRP_AB for safer margin)			
► I	How To Use Register Configu	uration / RealView	v .inc file 🏾 🖓					

MMDC Control Parameter	N/A	control bit setting (decimal)	bit setting within register	Notes	Register name	Register address	Register value (HEX
SDE_0	-	1	80000000	SDE_0: Enable Chip Select 0, set to 0 (disable) or 1 (enable)			
SDE_1	-	1	4000000	SDE_1: Enable Chip Select 1, set to 0 (disable) or 1 (enable)			
ROW	-	3	03000000	ROW: number of ROW addresses. NOTE: this value is taken from the Device Information table above. Modify this value only in the table above.			
COL	-	1	00100000	COL number of Column addresses. NOTE: : this value is taken from the Device Information table above. Modify this value only in the table above.	MDCTL	0x021B0000	0xC31A000
BL	-	1	0008000	BL: Burst length. For DDR3, set to 1 for burst length 8.			
DSIZ	-	2	00020000	DSIZ: Data bus size. Note: this value is taken from the Device Information table above. Modify this value only in the table above.			
				123 124 setmem /32 0x021b0004 =	0x00020036	// MMDC0_N	MDPDC

This example from the MX6DQ DDR3 register programming aid illustrates that the register value for MDCTL in the "RealView .inc file" tab is taken directly from the MDCTL Register value cell in the "Register Configuration" tab

	Modify this value only i			
0ve.	would this value only i			
120				
124	setmem /32	0x021b0004 =	0x00020036	// MMDC0_MDPDC
125	setmem /32	0x021b0008 =	0x09444040	// MMDC0_MDOTC
126	setmem /32	0x021b000c =	0x555A7975	// MMDC0_MDCFG0
127	setmem /32	0x021b0010 =	0xFF538F64	// MMDC0_MDCFG1
128	setmem /32	0x021b0014 =	0x01FF00DB	// MMDC0_MDCFG2
129	setmem /32	0x021b0018 =	0x00081740	// MMDC0_MDMISC
130				
131	setmem /32	0x021b001c =	0×0008000	// MMDC0_MDSCR, set the
132	setmem /32	0x021b002c =	0x000026d2	// MMDC0_MDRWD; recon
133	setmem /32	0x021b0030 =	0x005A0E21	// MMDC0_MDOR
134	setmem /32	0x021b0040 =	0x00000027	// CS0_END
135	setmem /32	0x021b0000 =	0xC31A0000	7/ MMDC0_MDCTL
136	// Mode register writes			
137	setmem /32	0x021b001c =	0x04088032	// MMDC0_MDSCR, MR2 v
138	setmem /32	0x021b001c =	0x00008033	// MMDC0_MDSCR, MR3 v
139	setmem /32	0x021b001c =	0x00048031	// MMDC0_MDSCR, MR1 v
140	setmem /32	0x021b001c =	0x09408030	// MMDC0_MDSCR, MR0 v
141	setmem /32	0x021b001c =	0x04008040	// MMDC0_MDSCR, ZQ ca
142				
143	setmem /32	0x021b001c =	0x0408803A	// MMDC0_MDSCR, MR2 v
144	setmem /32	0x021b001c =	0x0000803B	// MMDC0_MDSCR, MR3 v
145	setmem /32	0x021b001c =	0x00048039	// MMDC0_MDSCR, MR1 v

DRAM Stress Test – Overview and History

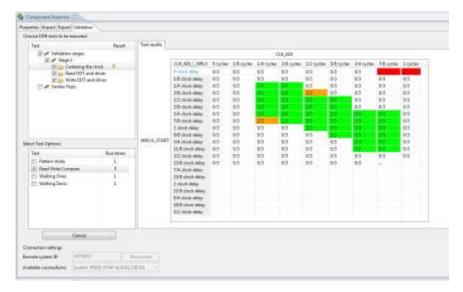
- Took years to develop, constantly evolving to catch elusive DRAM failures
- Compilation of various DRAM sub tests
 - Each sub test contains various data patterns/methods to stress the DRAM interface
 - Started with a few tests using memcpy and various data patterns (1's and 0's; A's and 5's; pseudorandom, etc)
 - Each new SoC/board presented new DRAM challenges/issues
 - New tests were created to debug
 - Historically, each test was run one-by-one, took time
 - Tests were compiled together into one overall test
 - Each test now called sub-test, executed through a function call
 - Marked beginning of 'stress test', sub-tests run in a loop, overnight
 - Cache enabled important, needed to mimic OS-type transactions; more stress
 - Increment DRAM frequency method to stress interface accounting for variations in PVT
 - How much above frequency max is considered ample?
 - Historically 30MHz or more seemed good
 - Useful for gathering statistical data; outliers may point to other issues

DRAM Stress Test – Overview and History (Continued)

- Non-OS test to exercise DRAM interface
 - Non-OS: easier than OS to catch/debug DRAM failures
 - Used by factory as part of DRAM validation
 - Helps diagnose but doesn't fix DDR problems
- Purpose: Root out potential signal integrity issues due to inadequate board layout
 - Primarily uses sequential bursts of back-to-back data looking for simultaneous switching noise (SSN)
 - Validation vehicle that reports how robust DRAM interface is given current set of parameters (i.e. drive strength settings, timing parameters, board layout, etc)
- Runs from internal RAM
 - Device under test is DRAM itself, don't execute out of same memory being tested
 - Download to IRAM via JTAG debugger tools (RVD, Lauterbach, Macraigor)
 - Now available in a USB version.
- FAE's are able to provide tailored code if necessary.
 - Any debugger that supports specific SoC ARM core and elf should work
 - Factory not responsible to test every debugger or debug it if doesn't work on other debuggers

DRAM Stress Test – Overview and History (Continued)

- Once DRAM stress test passes with ample margin, are we guaranteed the OS will never fail due to DRAM issues?
 - High degree of confidence DRAM robust enough, but...
 - OS is still the most stressful, particularly an OS stress test like Bonnie++
 - Recommend to run any OS stress tests to double check
 - Currently Supported SoC:
 - MX28, MX508, MX51, MX53, MX6DQ (Arik) MX6DL (Rigel), MX6SL (Megrez), MX6SX (Pele), MX7D
 - No plans to back port to older legacy processors
 - Issues encountered as some only have 16KB of IRAM
- Challenges
 - Test becoming too big to fit inside IRAM (128KB becoming a limiting factor)
 - -When new sub-tests are created, no plan in place to back port to older processors


Layerscape DRAM Configuration and Validation via QCVS Tools

Optimize/Validate the DDR Interface on your Board

- The board dependent parameters are optimized by connecting to your board and running targeted tests
- After this stage, the DDR interface in your board is optimized/validated

Register Configuration

Two general types of registers to be configured in the memory controller:

- First register type are set to the DRAM related parameter values, that are provided via SPD or DRAM datasheet. Over 100 register fields fall under this category.
- Second register type are the Non-SPD values that are set based on customer's application. For example:
 - -On-die-termination (ODT) settings for DRAM and controller
 - Driver impedance setting for DRAM and controller
 - Clock adjust value selection
 - -Write leveling start value (WRLVL_START)

Using QCS DDRv Tool

Configure and optimize your DDR interface in a matter of hours

- 1. Use the tool to generate the DDR register settings
 - Use the latest revision
 - Select the SPD option in configuration wizard when DIMM is used
 - Select Auto Configuration when Discrete DRAM is used
- 2. Optimize the DDR register setting on your QorlQ board
 - Run the clock centering test
 - Optimize the ODT and drive strength for read and write

DDRv DEMO: http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=PE_QORIQ_DDRV

Generate the DDR Register Settings

- Using DDR wizard, select the SPD option for DIMMs, or Auto configure for DIMMs or Discrete DRAM
- Press finish and you have generated DDR register settings

Configure:	1st DDR Controller		•
🔘 Imj 💿 Rea	o configuration port from memory file d from SPD crete DRAM © DIM M		
>>> READ DDR Conti Type Data rate	oller DR.	AM Settings : per rank Quad-ranked DIMM	

New QorIQ Configuration Project	
DDR Configuration	
Configured device T1040	
Configure: 1st DDR Controller Configuration mode	
 Discrete DRAM ● DIMM DDR Controller Type DDR 3 ▼ Data rate 1600 MT/s ▼ Rank/Chip select 1 ▼ Data bus width 64 bits ▼ CAS# latency (tCL) 11 clocks ▼ tRP/tRCD 13.75 ns ▼ 	DRAM Settings DRAM configuration per rank IGb: 128Mb x8 DIMM speed rating PC3-12800 (1600) Registered DIMM Mirrored DIMM Quad-ranked DIMM
?	Finish Cancel

DDR Interface ADD/CMND Bus Margins via QCVS Tool

- Clock signal is stepped cross the address bus eye unit interval and tool regenerate a pass/fail address bus eye.
 - In the example below the address eye is passing from 1/8 clk to 7/8 of clock. This is 80% of open eye from maximum available address bus unit interval.

	CLK_ADJ															
0	1/16	1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	11/16	3/4	13/16	7/8	15/16	1
0/1	0/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	0/1	0/1

• Write level margin table provides the reconstruction pass fail margins for each byte lane.

Pass / Total	Lane 0	Lane 1	Lone 2	Lane 3	Lane 4	Lane5	Lane	Lane 7	Lane 8 (ECC
1/8 clocks	11111		11////	1////	9////		2////	11/1/1	
1/4 clocks	21119		11/1//	¥/////	11/1/1	\$77777	20111	£77777	1//////////////////////////////////////
3/8 clocks	9700	11111	\$7777	V////	2777	27777	01111	<i>K/////</i>	
1/2 clocks	1/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
5/8 clocks	1/1	1/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
3/4 clocks	1/1	1/1	1/1	1/1	0/1	0/1	0/1	0/1	0/1
7/8 clocks	1/1	1/1	1/1	1/1	0/1	0/1	0/1	0/1	1/1
1 clocks	1/1	1/1	1/1	1/1	1/1	0/1	0/1	0/1	1/1
9/8 clocks	1/1	1/1	1/1	1/1	1/1	1/1	0/1	0/1	1/1
5/4 clocks	1/1	1/1	1/1	1/1	1/1	1/1	1/1	0/1	1/1
11/8 clocks	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
3/2 clocks	0/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
13/8 clocks	0/1	0/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
7/4 clocks	0/1	0/1	0/1	0/1	1/1	1/1	1/1	1/1	1/1
15/8 clocks	0/1	0/1	0/1	0/1	1/1	1/1	1/1	1/1	0/1
2 clocks	0/1	0/1	0/1	0/1	0/1	1/1	1/1	1/1	0/1
17/8 clocks	0/1	0/1	0/1	0/1	0/1	0/1	1/1	1/1	0/1
9/4 clocks	0/1	0/1	0/1	0/1	0/1	0/1	0/1	1/1	0/1

P2041RDB - DDRv Results

Det	ermine the b	est WRLVL_ST	ART byte lane	s values						
D	ass / Total				N	VRLVL_START				
	ass/ rotar	5/8 clocks	3/4 clocks	7/8 clocks	1 clocks	9/8 clocks	5/4 clocks	11/8 clocks	3/2 clocks	13/8 clocks
a	1/2 clocks	3/3	3/3							
15	5/8 clocks									
C	3/4 clocks									

- · · ·				
Determine t	the best c	lock ad	iust va	lue

	CLK_ADJ													
0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1														
0/3	3/3	3/3	3/3	3/3	3/3	3/3	0/3	0/3						

P	ass / Total	Lane 0	Lane 1	Lane 2	Lane 3	Lane 4	Lane 5	Lane 6	Lane 7
	1/8 clocks	0/3	0/3	0/3	3/3	0/3	0/3	0/3	0/3
	1/4 clocks	0/3	3/3	0/3	3/3	0/3	0/3	0/3	0/3
	3/8 clocks	0/3	3/3	0/3	3/3	0/3	0/3	0/3	0/3
	1/2 clocks	3/3	3/3	3/3	3/3	0/3	0/3	0/3	0/3
	5/8 clocks	3/3	3/3	3/3	3/3	0/3	3/3	0/3	0/3
	3/4 clocks	3/3	3/3	3/3	3/3	0/3	3/3	0/3	3/3
	7/8 clocks	3/3	3/3	3/3	3/3	0/3	3/3	3/3	3/3
	1 clocks	3/3	3/3	3/3	0/3	3/3	3/3	3/3	3/3
START	9/8 clocks	3/3	3/3	3/3	0/3	3/3	3/3	3/3	3/3
È.	5/4 clocks	2/3	0/3	3/3	0/3	3/3	3/3	3/3	3/3
Ľ,	11/8 clocks	0/3	0/3	3/3	0/3	3/3	3/3	3/3	3/3
WRL	3/2 clocks	0/3	0/3	0/3	0/3	3/3	3/3	3/3	3/3
5	13/8 clocks	0/3	0/3	0/3	0/3	3/3	0/3	3/3	3/3
	7/4 clocks	0/3	0/3	0/3	0/3	3/3	0/3	3/3	0/3
	15/8 clocks	0/3	0/3	0/3	0/3	3/3	0/3	0/3	0/3
	2 clocks	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3
	17/8 clocks	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3
	9/4 clocks	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3
	19/8 clocks	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3
	5/2 clocks	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3

T1040RDB - DDRv Results

D	ete	rmine the b	est WRLVL_ST	ART byte lane	es values						
	D-1	ss / Total				١	WRLVL_START				
	гa	ss / Total	5/8 clocks	3/4 clocks	7/8 clocks	1 clocks	9/8 clocks	5/4 clocks	11/8 clocks	3/2 clocks	13/8 clocks
ē	3	1/2 clocks	3/3	3/3							
<	51	1/2 clocks 5/8 clocks									
Ę	5	3/4 clocks									

Determine the best clock adjust value

	CLK_ADJ															
0	1/16	1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	11/16	3/4	13/16	7/8	15/16	1
0/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	0/3	0/3

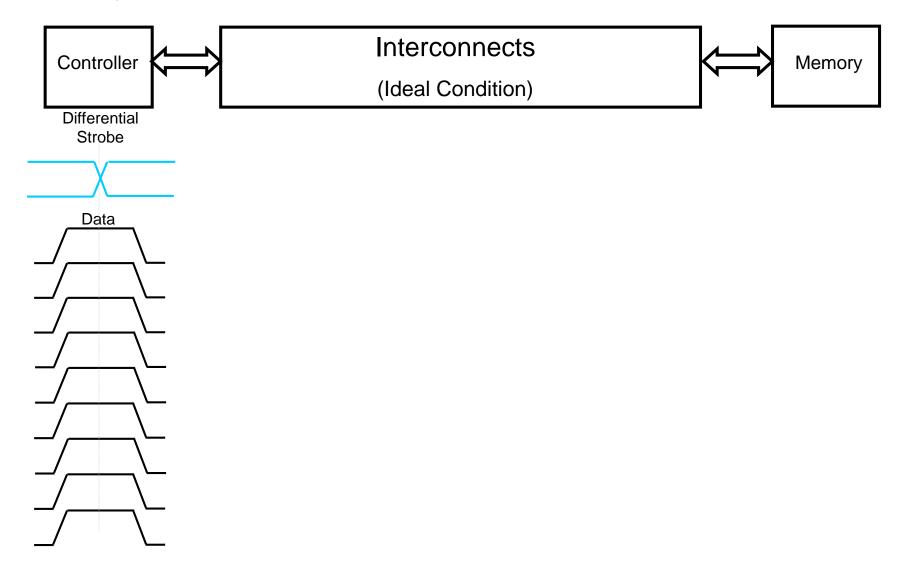
Det	ermine WRLV	L margin j	oer byte la	ne						
P	ass / Total	Lane 0	Lane 1	Lane 2	Lane 3	Lane 4	Lane 5	Lane 6	Lane 7	Lane 8 (ECC)
	1/8 clocks	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3
	1/4 clocks	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3
	3/8 clocks	3/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3
	1/2 clocks	3/3	3/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3
	5/8 clocks	3/3	3/3	3/3	0/3	0/3	0/3	0/3	0/3	0/3
	3/4 clocks	3/3	3/3	3/3	0/3	0/3	0/3	0/3	0/3	0/3
	7/8 clocks	3/3	3/3	3/3	3/3	0/3	0/3	0/3	0/3	0/3
	1 clocks	3/3	3/3	3/3	3/3	0/3	0/3	0/3	0/3	3/3
START	9/8 clocks	3/3	3/3	3/3	3/3	3/3	0/3	0/3	0/3	3/3
E.	5/4 clocks	3/3	3/3	3/3	3/3	3/3	3/3	0/3	0/3	3/3
5	11/8 clocks	0/3	3/3	3/3	3/3	3/3	3/3	3/3	0/3	3/3
WRLVL	3/2 clocks	0/3	0/3	3/3	3/3	3/3	3/3	3/3	0/3	3/3
5	13/8 clocks	0/3	0/3	0/3	3/3	3/3	3/3	3/3	3/3	3/3
	7/4 clocks	0/3	0/3	0/3	3/3	3/3	3/3	3/3	3/3	3/3
	15/8 clocks	0/3	0/3	0/3	0/3	3/3	3/3	3/3	3/3	3/3
	2 clocks	0/3	0/3	0/3	0/3	3/3	3/3	3/3	3/3	0/3
	17/8 clocks	0/3	0/3	0/3	0/3	3/3	3/3	3/3	3/3	0/3
	9/4 clocks	0/3	0/3	0/3	0/3	0/3	0/3	3/3	3/3	0/3
	19/8 clocks	0/3	0/3	0/3	0/3	0/3	0/3	0/3	3/3	0/3
	5/2 clocks	0/3	0/3	0/3	0/3	0/3	0/3	0/3	3/3	0/3

P5040 Customer Board - DDRv Results

Determine the ber	t WRLVL_START by	te lanes values
Determine the bes	LVVREVE_START D	/te lanes values

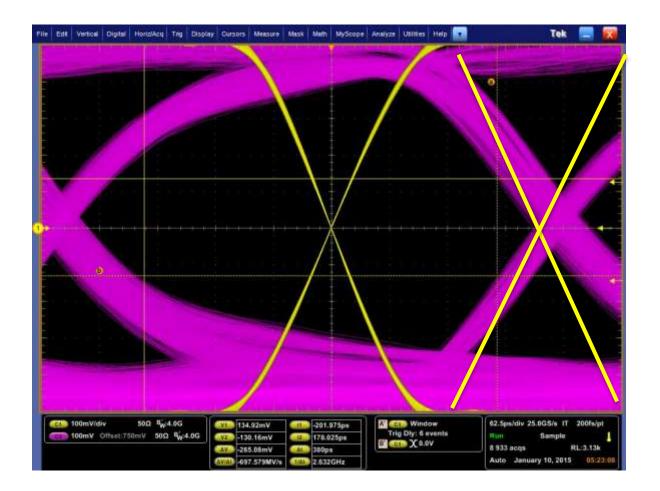
р	ass / Total				N N	VRLVL_START				
-	ass/ rotar	5/8 clocks	3/4 clocks	7/8 clocks	1 clocks	9/8 clocks	5/4 clocks	11/8 clocks	3/2 clocks	13/8 clocks
a	1/2 clocks	3/3	3/3							
13	5/8 clocks									
G	3/4 clocks									

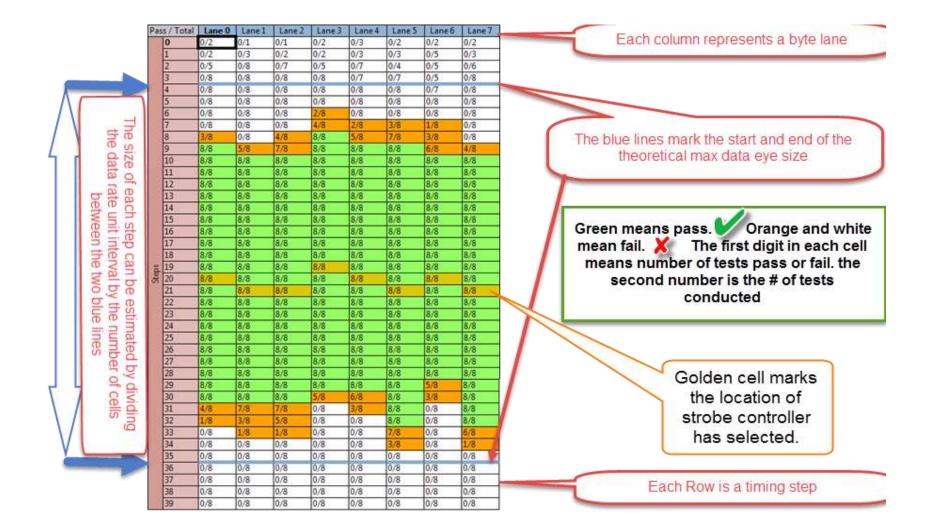
Determine the best clock adjust value


CLK_ADJ										
0	1/8	1/4	3/8	1/2	5/8	3/4	7/8	1		
0/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	0/3		

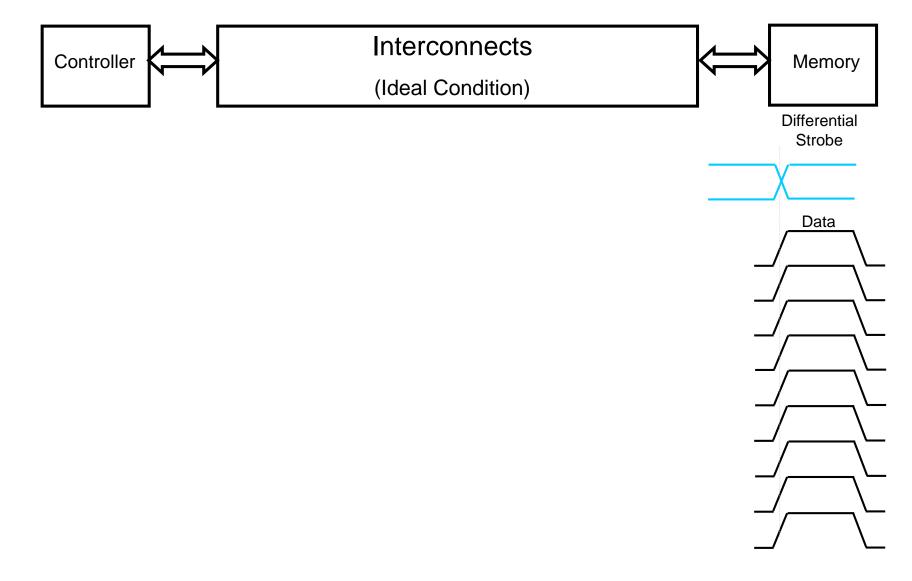
Determine WRLVL margin per byte lane										
P	ass / Total	Lane 0	Lane 1	Lane 2	Lane 3	Lane 4	Lane 5	Lane 6	Lane 7	Lane 8 (ECC)
WRLVL_START	1/8 clocks	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3
	1/4 clocks	3/3	3/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3
	3/8 clocks	3/3	3/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3
	1/2 clocks	3/3	3/3	3/3	3/3	0/3	0/3	0/3	0/3	0/3
	5/8 clocks	3/3	3/3	3/3	3/3	0/3	0/3	0/3	0/3	0/3
	3/4 clocks	3/3	3/3	3/3	3/3	0/3	0/3	0/3	0/3	3/3
	7/8 clocks	3/3	3/3	3/3	3/3	3/3	3/3	3/3	0/3	3/3
	1 clocks	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3
	9/8 clocks	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3
	5/4 clocks	0/3	0/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3
	11/8 clocks	0/3	0/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3
	3/2 clocks	0/3	0/3	0/3	0/3	3/3	3/3	3/3	3/3	3/3
	13/8 clocks	0/3	0/3	0/3	0/3	3/3	3/3	3/3	3/3	3/3
	7/4 clocks	0/3	0/3	0/3	0/3	3/3	3/3	3/3	3/3	0/3
	15/8 clocks	0/3	0/3	0/3	0/3	0/3	0/3	0/3	3/3	0/3
	2 clocks	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3
	17/8 clocks	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3
	9/4 clocks	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3
	19/8 clocks	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3
	5/2 clocks	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3

PUBLIC 89


Data Write Cycle

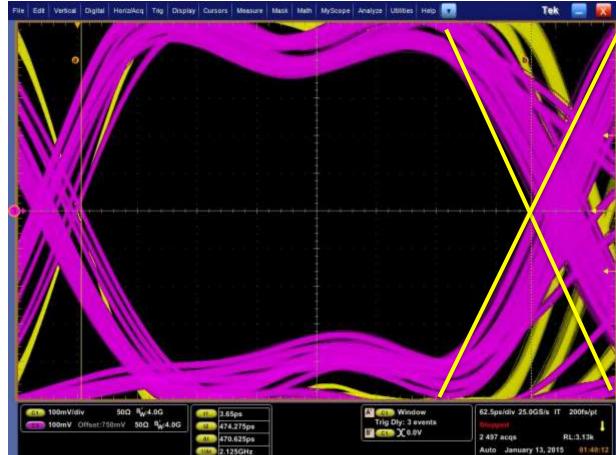

Write Data Eye on the Scope

- QCVS shifts the strobe in from right to left in small timing steps.
- At each step the a DMA write read compare test is performed and each cell is marked as pass or fail.
- This process is repeated for each byte lane.



Write Margin Table in QCVS Tool

Data Read Cycle



PUBLIC 93

Read Data Eye on the Scope

- Purple: data signal
- · Yellow: strobe signal
- Probe is connected close to DRAM
- Strobe is aligned with the data eye
- Setup and hold can NOT be measured
- Approximate margin can be estimated by using a required functional mask

Read Margin Table in QCVS Tool


- Blue line indicates the beginning and end of the theoretical data eye
- Estimated timing for each step = theoretical-dataeye / number of steps

In this example:

Theoretical-data-eye = 536ps

Number of steps = 40

Estimated step = 13.4ps

Summary

PUBLIC 96

Summary

- DDR4 is mainstream, LPDRR4 adoption is gaining momentum.
- QorIQ Layerscape and i.MX8 device families support latest DRAMs (DDR4 and LPDDR4)
- New DRAMs offer faster data rates, higher densities, reliability and low power consumption in comparison to previous generations.
- Layout guides, models and application notes are available.
- Available tools can help configure, validate and optimize complex DRAM interface to facilitate initial configuration and board bring-up.
 - i.MX Family → Spreadsheet and DRAM Stress Test program
 - Layerscape Family \rightarrow Code Warrior QCVS and DDRv Applications

Useful References

- Books:
 - DRAM Circuit Design: A Tutorial, Brent Keeth and R. Jacob Baker, IEEE Press, 2001
- Freescale AppNotes:
 - AN2582 Hardware and Layout Design Considerations for DDR Memory Interfaces
 - AN2910 Hardware and Layout Design Considerations for DDR2 Memory Interfaces
 - AN2583 Programming the PowerQUICCIII / PowerQUICCII Pro DDR SDRAM Controller
 - AN3369 PowerQUICC SDRAM Controller Register Setting Considerations
 - AN3939 PQ & QorlQ NXP ving
 - AN3940 Layout Desig.. ____iderations for DDR3 Memory Interface
 - AN4039 PowerQUICC DDR3 SDRAM Controller Register Setting Considerations
 - AN5097 Layout Design Considerations for DDR4 Memory Interface
- Micron AppNotes:
 - TN-41-07 DDR3 Power-Up, Initialization, and Reset
 - TN-41-08 DDR3 Design Guide
 - TN-40-03 DDR4 Design Guide
- JEDEC Specs:
 - JESD79-3F DDR3 SDRAM Specification
 - JESD79-4A DDR4 SDRAM Specification
- Tools
 - QCVS DDRV tool
 - http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=PE_QORIQ_SUITE&fsrch=1&sr=1&pageNum=1

Links to Useful DRAM Documents

• JEDEC

DDR3 Specification:

http://www.jedec.org/sites/default/files/docs/JESD79-3E.pdf

DDR3L Amendment:

http://www.jedec.org/sites/default/files/docs/JESD79-3-1_1.pdf

LPDDR3 Specification:

http://www.jedec.org/sites/default/files/docs/JESD209-3.pdf

WidelO SDR Specification:

http://www.jedec.org/sites/default/files/docs/JESD229.pdf

LPDDR2 Specification:

http://www.jedec.org/sites/default/files/docs/JESD209-2E.pdf

Micron Documentation

DRAM Support Site:

http://www.micron.com/products/dram/ddr3-sdram#documentation_support

SECURE CONNECTIONS FOR A SMARTER WORLD

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2017 NXP B.V.