
PUBLIC 

GABRIEL DAGANI
SENIOR ENGINEER, GRAPHICS & 

ARCHITECTURE
OCT 5TH, 2016

AMF-DES-T1939

TEACHING THINGS TO SEE -

INTRODUCTION TO 

I.MX 8 VISION 

ARCHITECTURE



PUBLIC 1

Teaching Machines to “See”



PUBLIC 2

AGENDA

• Intro to Machine Vision: 

Automotive and Consumer Applications

• Enabling Machine Vision in an SoC

• Machine Vision on i.MX 8



PUBLIC 3

What Comes to Mind When You Think of Machine Vision?



PUBLIC 4

Computer Vision Hierarchy

High Level (Complex) Vision

Mid Level (Multi-layer) Vision

Low Level (Single-layer) Vision

Image Processing

Image Formation / Collection



PUBLIC 5

What Are the Vision Use-Cases Involved in Automotive?

• Gesture control interaction

• Augmented reality

• Traffic sign / license plate detection

• Automobile safety

• Autonomous driving



PUBLIC 6

What Are the Vision Use-Cases for Industrial / Commercial?

• 3D Survey 

• Single / Multi Camera Surveillance

• Manufacturing defect recognition

• Robotics

• Drones

• Sensor Fusion



PUBLIC 7

ENABLING MACHINE 

VISION IN AN SOC



PUBLIC 8

[1] Krig, Scott, Computer Vision Metrics: Survey, Taxonomy and Analysis, Springer Apress, 2014.

Acceleration Strategies for Vision



PUBLIC 9

Resource Description Pros Cons Notes

Fixed Function 

HW

Specialty Logic that performs a 

single set of vision functions

Small / Fast Not flexible.

Algorithm stuck in time.

Vision algorithms evolve very 

quickly

Proprietary 

Vision Engine

Group of DSP devices that 

perform 2D calculates quickly

Scalable Algorithms are not portable,

Architecture is usually also 

proprietary

Initial algorithm optimization 

commitment forces long term 

investment in a single HW Vendor

GPU Leverage the ~10x compute 

power of a GPU for general 

compute

High Performance

Availability

Code portability

Power Consumption

Not efficient for Sparse 

compute

Usually requires a CPU to perform 

control and classification tasks

CPU Quickly leverage the CPU to 

perform the vision algorithm from 

top to bottom. 

Code portability

Time to market

Well understood

Lower compute throughput

Shared with OS and other 

apps

Performance bound and not ideal 

for dense compute

CPU SIMD CPU SIMD instruction set utilized 

for the higher compute 

performance

Available

Speed increase in 

performance

SIMD setup overhead is 

high

Performance is still bound 

by CPU being shared by OS 

and other apps

Useful, but reduces algorithm 

flexibility because SIMD instruction 

intrinsics are not well supported in 

general compilers

Acceleration Strategies for Embedded



PUBLIC 10

Camera

Processing

Image

Processing

Conversion

Image

Conditioning

SIMD Math 

Accel.
Edge Detection Filtering

Feature 

Classification

Context

Tracking
Decision Making

GPU

CPU

Rendering

Vision Pipeline Example

Image 

Processing



PUBLIC 11

Exposure, Color Balance, 

Dead Pixel Corr,

De-mosaic Bayer

RGB -> YUV

Gamma Corr.

HDR, Denoise

Dewarping

Sobel, FIR, smoothing, 

sharpening, Median, Histogram, 

Integral

Canny Edge, Harris 

Corner, Kirsh

HOG, Optical Flow, FAST, 

SURF, BRIEF, SIFT

SVM, Neural Nets,

Boosted Decision Trees 

High level contour tracking, 

object occlusion strategies

Indicators of Detection, 

Augmented Reality

Vision Pipeline Example (revisited)

Camera

Processing

Image

Processing

Conversion

Image

Conditioning

SIMD Math 

Accel.
Edge Detection Filtering

Feature 

Classification

Context

Tracking
Decision Making

GPU

CPU

Rendering

Image 

Processing



PUBLIC 12

MIPI-CSI2

4 lane

MIPI-CSI2

4 lane

Ethernet 

AVB

Image 

Capture 

Subsystem

Display 

Processor

MIPI-DSI

4 lane

HDMI/eDP

LVDS

CPU

Cluster
GPU_0

VX

GPU_1

VX

i.MX 8QuadMax Pixel Pipe



PUBLIC 13

4 Cameras

4 Cameras

N Cameras

Collect 

Video
Display

2 Displays

1 Displays

2 Displays

Machine 

Decision
Vision 

Processing
Render

i.MX 8QuadMax Pixel Pipe



PUBLIC 14

MACHINE VISION 

ON i.MX 8



PUBLIC 15

Open Source APIS that Accelerate Machine Vision and Compute



PUBLIC 16

OpenVX Standard Framework



PUBLIC 17

OpenVX
Node

OpenVX
Node

OpenVX
Node

OpenVX
Node

Downstream 

Application

Processing 

Native

Camera 

Control

Example OpenVX Graph

OpenVX Programming Framework

• Directed Acyclic Graph (DAG) Framework Pipeline

−Optimized precompiled kernels of commonly used vision processes

 A subset of OpenCV that lends itself to HW Acceleration

• HW Vendor can create hardened / silicon aware specialized kernels

• App Developer can create unique shader-based kernels using OpenCL or OpenGL APIs

−OpenVX Graphs can split, join, delay, and produce callbacks depending on heuristics.

 OpenVX Primitives include: Images, Image Pyramids, Process Graphs, Kernels, Control 

Parameters



PUBLIC 18

Accelerating Vision Using



PUBLIC 19

Governance
Community driven open source

with no formal specification

Formal specification defined and

implemented by hardware vendors

Conformance
No conformance tests for consistency and 

every vendor implements different subset

Full conformance test suite / process

creates a reliable acceleration platform

Portability APIs can vary depending on processor Hardware abstracted for portability

Scope
Very wide 

1000s of imaging and vision functions

Multiple camera APIs/interfaces

Tight focus on hardware accelerated functions 

for mobile vision

Use external camera API

Efficiency
Memory-based architecture

Each operation reads and writes memory

Graph-based execution

Optimizable computation, data transfer

Use Case Rapid experimentation Production development & deployment

Copyright Khronos (2014)

OpenCV and OpenVX Are Complimentary



PUBLIC 20

Vision Acceleration on i.MX 8

CPU

GPU + Vision

ARM Cores
Cortex-A53 | Cortex-A72

 Vision Optimized Dynamic VLIW Architecture

 Interleaved Multi-Threading Unified Cache

 Stream Interconnect to Hardwired Vision Functions

 Intelligent Switching Power Management

 Extended Vision Instruction Set (EVIS)



PUBLIC 21

Vivante OpenVX

implementation

OpenVX is a Khronos royalty free vision acceleration API designed to map 

OpenCV and other higher level vision libraries into optimized hardware 

implementations

GC7000VX GPUs have EVISTM hardware optimized GC7000 

implementations and hardware extensions to optimize the throughput of 

vision acceleration via OpenVX without an intermediate API layer

GC7000VX  17x performance improvement vs standard GPU (non VX) 

implementations for vision algorithms

E

V

I

S

GC7000VX
32 Vega Shaders

64/128 GFLOPS

i.MX Graphics with Vision Extensions



PUBLIC 22

Optimized Kernels for OpenVX



PUBLIC 23

Future Optimized OpenVX Kernels to Be Provided

• Flexible DMA Descriptor

− Up to 32 different ways to access image pixels (sliding window, row skips, 
column skips, etc.)

− Ultimate flexibility: can program pixel-by-pixel coordinate sequence in 
local memory for DMA.

− Per-thread conditional jumps => ideal for implementing classifier decision 
trees

• Enhanced Vision Instruction Set (EVIS)

− High precision fixed point processing

− Various dot product (DP) instructions 

Filter Kernel 9x9

Sobel Filter XY

Grid Fusion

Haar Classifier

Convolutional Neural 
Network

ORB (FAST9  / BRIEF31)

Harris Corner

HoG + SVM



PUBLIC 24

NXP Vision & Compute Enablement

• Algorithm R&D

−Vision

−Compute

−Language processing

• SDK development

−Enable rapid prototyping

−Development & profiling tools

• Creating tools and demos to 
promote the capabilities of the 
i.MX 6 and i.MX 8



PUBLIC 25

NXP – Drag and Drop Tool for Creating OpenVX Workflows




