MOSFET BASED H-BRIDGEWINDOW LIFTIMPLEMENTATIONAMF-AUT-T2353

AGUSTIN DIAZ, JESUS SANCHEZ, JUAN ROMERO OCT, 2016

SECURE CONNECTIONS FOR A SMARTER WORLD

PUBLIC

Session Agenda

- Electric motor demands in Automotive
- Current/future brushed DC motor solutions
- MagniV portfolio for Motor Control
- Overview of S12ZVMB
- Live demo
- Conclusions

MOTOR CONTROL - 10 BILLION ELECTRIC MOTORS SHIPPED GLOBALLY IN 2013 2.5 BILLION IN AUTOMOBILES, 30 PER CAR AVERAGE

Relay based vs. Mosfet based DC motor control

Comparing	Relay	Mosfet
Ease of control	Very High	High
Maintenance of mechanism and motor	Mid	Low
Speed control	No	Yes
Acoustic noise	High	Mid
Board Dimensions (Z- axis)	High	Low
Switching Frequency	Low	High

Relay

Mosfet

Motor Control Portfolio

Application Examples

- EPS
- Door Module
- Seat Module
- Oil Pump
- Water Pump
- Fuel Pump
- Cooling Fan
- HVAC Blower
- Window Lift
- Sunroof
- Sliding Doors
- Wipers

32bit PowerPC 16bit MagniV 32bit ARM M0+ 16bit S12G

Level 3 = ASIL-C

Level 4 = ASIL-D

NP

OVERVIEW / ADVANTAGES OF S12ZVMB

S12ZVMB Family

LIN based Integrated H-Bridge driver

- Key Features:
 - S12Z CPU @ 32MHz bus speed
 - VREG + 5V/20mA switchable sensor supply
 - LIN PHY, LIN2.1 / 2.2 / J2602 compliant
 - High Voltage Inputs (HVI) with internal connection to ADC for analog 12V measurements
 - High-Side Drivers for switch panel and LED
 - H-Bridge Gate Pre-Driver for 4-NMOS control (Gate Charge 50-80nC)
- Target applications:
 - Windowlift / Sunroof
 - LIN-controlled Valves for gases / liquids (EGR-control)
 - Seat-position, Lordosis
 - Belt pretentioner, prefetcher

Digital Components MCU Core and Memories

5V Analog Components

High-Voltage Components

Options:

- Package: 48-LQFP; 64 LQFP
- Memory: 48 ... 64kB Flash
- Temperature: V / M / W

S12VMBx in Windowlifter - Application Use-case

S12ZVMB MOTOR CONTROL LOOP

Motor control peripherals integration

Pulse Width Modulator Module (PMF)

- 6 PWM channels, 3 independent counters
- Up to 6 independent channels or 3 complementary pairs
- Based on core clock (max. 64MHz)
- Complementary operation:
- Dead time insertion
- Top and Bottom pulse width correction
- Double switching

PUBI IC

11

- Separate top and bottom polarity control
- Edge- or center-aligned PWM signals
- Integral reload rates from 1 to 16 cycles
- H-bridge configuration supported.
- Individual software-controlled PWM outputs
- Programmable fault protection

Double-Switching Mode

PWM1, DEADTIME

Programmable Trigger Unit (PTU)

Completely avoids CPU involvement to trigger ADC during the control cycle

- One 16-bit counter as time base
- Up to 32 trigger events per trigger generator
- Trigger Value List stored in system memory
- Double buffered list, so that CPU can load new values in the background
- Software generated "Reload" & trigger event
- synchronized with PMF and ADC to guarantee coherent update of all control loop modules

Conversion Flow – Restart Mode

- Restart mode is ideal for motor control applications.
- Internal or external (from other peripherals) trigger signals.
- PTU can trigger the ADC generate a delay in the measurement. This will allow the ADC to measure the current with right timing.
- Everything is done by hardware so CPU does not suffer any load.

Timing

- The interconnection between PMF,PTU and ADC allows accurate timing for current measurements.
- Reload signal of the PMF restarts the PTU counter and ADC commands flow.
- **PTU control the time** between reload of PMF and ADC measurements.
- Everything is done by hardware.
 No load for the CPU.

The importance of measuring at the right time

ADC

Gate Driver Unit (GDU)

17 PUBLIC

V_{DS} Monitoring & Overcurrent Protection

After turning on (any) high-side or low-side transistor, the HSx voltage is monitored

Current Measurement & Overcurrent Protection

- Low side, current sense amplifier.
- Internal Op-Amps (w/offset compensation) each one linked to an ADC channel.
- Gain / offset selected by external resistors.
- Integrated overcurrent comparator

LIN INTERFACE

LIN Physical Layer

- NXP offers a complete line of products to meet the needs of high-performance CAN embedded applications.
- MagniV MCUs as S12ZVMB has an on-chip LIN physical transceiver and a dedicated power supply using an external ballast transistor for its. Having this module on-chip helps reduce the total amount of components required to implement LIN communication.

eference	Part	Mounting	Remark
DMLIN	Diode	Mandator y only for master ECU	Reverse Polarity protection from LIN to VSUP.
RMLIN1	Resistor: 2kΩ	sistor: 2kΩ Wer Loss: mW Perance: 1% kage Size: 6 quirement: Power loss	For Master ECU
and RMLIN2	Power Loss: 250mW		If more than 2 resistors are used in parallel, the values
	Tolerance: 1%		have to be chosen in a way that the overall resistance
	Package Size: 1206		RM of $1k\Omega$ and the minimum power loss of the
	Requirement:		complete master termination has to be
	Min Power loss		fulfilled.
	of the complete master	For Slave ECU	
termination ha to be ≥ 500mV	termination has to be \geq 500mW		RMLIN1 and RMLIN2 are not needed on the PCB layout

22 PUBLIC

Reference	Part	Mounting	Remark
DMLIN	Diode	Mandator y only for master ECU	Reverse Polarity protection from LIN to VSUP.
RMLIN1 and RMLIN2	Resistor: 2kΩ Power Loss: 250mW Tolerance: 1% Package Size: 1206 Requirement: Min Power loss of the complete master termination has to be ≥ 500mW	Mandator y only for Master ECU	For Master ECU If more than 2 resistors are used in parallel, the values have to be chosen in a way that the overall resistance RM of $1k\Omega$ and the minimum power loss of the complete master termination has to be fulfilled. For Slave ECU RMLIN1 and RMLIN2 are not needed on the PCB layout

23 PUBLIC

Reference	Part	Mounting	Remark
C1	Capacitor: Master ECU:	Mandator y	The value of the master node has to be chosen in a way that the LIN
	Slave ECU: 220pF		specification is fulfilled.
	Tolerance: 10%		
	Package Size: 0805		
	Voltage: ≥50V		
C2	Capacitor:	Optional	Mounting of the optional
	Package Size: 0805		part only allowed if there is an explicit written permission of the respective OEM available. Placed close to the connector.

Mandatory only for Master Mode

Reference	Part	Mounting	Remark
ESD	ESD ProtectionZenerMOVTVS	Optional	Layout pad for an additional ESD protection part. Mounting of the optional part only allowed if there is an explicit written permission of the respective OEM available. Place close to the connector.

ENABLEMENT

S12ZVMB – Development Tools and Enablement

HARDWARE:

- EVB for ~\$200:
 - Prototype-EVB boards available now (X-S12ZVMBEVB)
- USBMULTILINKBDM: In-Circuit Debugger/Programmer

COMPILER, DEBUGGER:

- Codewarrior
- Cosmic

Run time Software:

• LIN driver will be available free of charge (befiore product launch)

APPLICATION NOTE, REFERENCE DESIGN, MIDDLEWARE:

- Window lifter reference design
- Window lifter Demo
- Hardware Design Guidelines for S12ZVM Microcontrollers

Get to know the S12ZVMB64 EVB

The **S12ZVMBEVB** is a development board for the MagniV S12ZVMB64 Mixed Signal MCU and provides rapid and fully integrated single chip solution to drive external power MOSFETs for 2Phase DC Motor drive applications.

The particular differentiating features of this family are the enhanced S12Z core, the combination of an ADC synchronized to PWM signals using a Programmable Trigger Unit (PTU) and the integration of "highvoltage" analog modules, including the voltage regulator (VREG), Gate Drive Unit (GDU) and a Local Interconnect Network (LIN) physical layer.

S12ZVMBEVB Peripheral List

Interface	ID	Description
Power Supply and	J1	Power supply Connector [+12V]
protection	J3	Power supply Connector [+12V]
	D2	Power LED indicator, ON when VBAT [+12V] is connected to the board
	D3	Power LED indicator, ON when HD [+12V] is connected to the Motor control interface
	D4	MCU Power LED Indicator. ON when VDDX is regulating to +5V
User Peripherals	SW2	User switch (Active high)
	SW3	User switch (Active high)
	SW7	User HVI switch (Active low)
	SW8	User HVI switch (Active low)
	SW6	HVI Switch connected to VSUP/GND
	SW1	RESET Switch
	R58	Potentiometer connected to HVI
	R65	Potentiometer connected to ADC port AN3
	D13	UserLED - Green
	D14	UserLED - Green
	D15	UserLED - Green
	D16	UserLED - Green
Motor Control	J21	2-Phase Motor control Connector with GND
Communication and	J35	OSBDM/USB Connector
Programming Interfaces	D17	OSBDM PWR LED, ON when OSBDM is successfully enumerated as USB device.
	D18	OSBDM STATUS LED. ON when OSBDM is successfully transmitting as USB device.
	J10/J9	LIN Interface
	J6	LIN Master Enable
	J33	Header selector for OSBDM_RXD/TXD
	J31	SPI/Hall sensor lines with 5.0V and GND

Interface

Switch

30 PUBLIC

Window Lift – Reference Design

Features

- Smallest possible, of 2 or 4 layer PCB with components only on the top.
- BDM Interface .Connector HDR 2x3 100mils
- Hall Sensor/SPI. Connector HDR 2x3 100mils
- LIN based communication. Including bootloader functionality in the 2nd phase of SW development)
- Overcurrent protection via an external current sense resistor.
- Antipinch functionality enabled with the combination of both the hall-effect sensor feedback and the current sensing feedback.

Window Lift – Reference Design

32 PUBLIC

S12ZVMB Window lift ref. design

 Car window is being virtually simulated

S12ZVMB: Window Lift Demo

v1.0

- Buttons to move the motor up, down or stop it.
- Current and encoder pulse width values are being plotted.
- Calibration routine enabled
- SW enabled with Antipinch algorithm.

S12 MagniV Benefits

S12 MagniV solutions deliver optimal **system cost** and **physical footprint** for sensor and actuator applications.

Reduced PCB Space Up to 30%

Improved manufacturing efficiency

Replacing typically 3 IC by 1 MagniV reduces assembly and test cost while quality improves

Reduced Bill Of Material (BOM)

Fewer components to purchase, handle, store and qualify

Simplified motor control that speeds up time-to-market

Save up to 6 months on development, validation and ISO26262 implementation

- Abstract the complexity of 3-phase motor control software development
- Production ready Automotive quality SW and Tools
- SafeAssure program

SECURE CONNECTIONS FOR A SMARTER WORLD