
NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property

of their respective owners. © 2017 NXP B.V.

PUBLIC

EMBEDDED SW ENGINEER

NON-AUTOSAR SOFTWARE SOLUTIONS BASED ON S32 SDK

VLAD LIONTE

HANDS-ON WORKSHOP:

S32 SDK FOR S32K

AMF-AUT-T2689 | JUNE 2017

PUBLIC 1

AGENDA
• Introduction

− S32 SDK

− S32 Design Studio

• Hands-on

− Blinking LED

− Secured CAN Communication

• Q&A

PUBLIC 2

Introduction

01.

PUBLIC 3

S32 Software Development Kit (SDK)

• Non-Autosar Software package

• Automotive Grade: SPICE/CMMI

compliant, MISRA 2012

• Graphical-based configuration

• Compatible with Eclipse & other IDEs

• Supports all S32K MCU Families

• Supports multiple toolchains

PUBLIC 4

Class C

Class B

Class D

Features
• Integrated Non-Autosar SW Production-

grade software
• Graphical-based Configuration
• Layered Software Architecture
• Documented Source Code and Examples
• Integrated with S32 Design Studio and other

IDEs
• Featuring various Middleware
• FreeRTOS integration
• Multiple toolchains supported
• Several examples and demos

SW Quality Class

Low-level Drivers

Middleware & Stacks

LIN

Headers

F
re

e
R

T
O

S

Processor

Expert UI

Config files

Start-up/

Compiler

linker files

Driver

Examples
Demos

Helper

Tools
Applications

…

Analog

ADC

CMP

PDB

Timers

FTM

LPIT

LPTMR

RTC

WDOG

EWM

Comms

UART

FlexIO

CAN-FD

LIN

SPI

I2C

SoC
Clocks

Interrupts

Power

Pins

GPIO

FLASH

DMA

TRGMUX

Safety &

Security

EIM

ERM

CRC

MPU

cSEC

SBC

Hardware

O
S

IF

AMMCLib

S32 SDK – Architecture

PUBLIC 5

NXP S32 Design Studio IDE www.nxp.com/S32DS

• Free of charge

• Unlimited code size

• Eclipse based environment

• GNU compiler & debugger integrated

• S32 SDK integrated (graphical configuration)

• Processor Expert integrated (automatic code

generator)

• Can use with 3rd party compliers & debuggers

(IAR) via Connection Utility

• Supports S32K and Power Architecture (MPC)

products

• Not a replacement for NXP’s CodeWarrior IDE

• Not intended to compete with premium 3rd party

IDEs

http://www.nxp.com/S32DS

PUBLIC 6

GHS

NXP & 3rd Party IDEs – Performance/Price Map
P

ri
c
e

Capability / Features

$5k

$10k

CodeWarrior

(NXP)

IAR, GreenHills, WindRiver

$500

New S32 Design Studio

(NXP)

 Free of charge

 No code limit

 Processor Expert Integrated

PUBLIC 7

S32 Design Studio @ www.nxp.com/S32DS

• S32DS_v1.3 (includes SDK v0.9.0)

• Supports S32K144 MCU, 0N47T

& 0N57U mask sets

• S32DS_v1.2 (includes SDK_v0.8.2)

• Supports S32K144 MCU, 0N77P

mask set only (early silicon for

alpha customers only – not

available to mass market

customers)

http://www.nxp.com/S32DS

PUBLIC 8

S32 Design Studio – graphical configuration environment

PUBLIC 9

S32 Design Studio – graphical configuration environment

Pins configuration

PUBLIC 10

S32 Design Studio – graphical configuration environment

Processor view

PUBLIC 11

S32 Design Studio – graphical configuration environment
Components library

PUBLIC 12

S32 Design Studio – graphical configuration environment

Project components

PUBLIC 13

S32 Design Studio – graphical configuration environment
Component inspector

PUBLIC 14

S32 Design Studio – graphical configuration environment

Code generation

PUBLIC 15

S32 Design Studio – graphical configuration environment

Project build

PUBLIC 16

S32 Design Studio – deploying the application

Target debug

PUBLIC 17

Hands-on – Blinking LED

02.

PUBLIC 18

S32K144 Blinking LED: Objective

• In this lab you will learn:

− About the GPIOs structure in S32K144

− How interrupts works on S32K144

− How to create a new SDK project with S32DS.

− How to set a pin as output/input with SDK

− How the use the LPIT peripheral

− Set up an interrupt in S32K144 using SDK

− Blink an LED every 0.5 sec using the LPIT interrupt

PUBLIC 19

S32K144 Blinking LED: Resources to be used

• In this lab will be used the following components of the EVB:

− RGB LED

LED S32K144 PIN

BLUE PTD0

RED PTD15

GREEN PTD16

RGB LED

PUBLIC 20

S32K144 Blinking LED: Theory

• There are up to 89 GPIOs in the S32K144

− 5 PORTs (PTA, PTB, PTC, PTD, PTE)

• 8 high current pins (up to 20 mA each):
− PTD1, PTD0, PTD16, PTD15, PTB5, PTB4,PTE1, and PTE0

• Each I/O is interrupt capable

• Each I/O is DMA capable

• Support for edge or level sensitive

• Each can wake up MCU from low power modes

• Digital filter included for each I/O

Package GPIOs High current pins

100 LQFP 89 8

- PTD1

- PTD0

- PTD16

- PTD15

- PTB5

- PTB4

- PTE1

- PTE0

64 LQFP 59 8

- PTD1

- PTD0

- PTD16

- PTD15

- PTB5

- PTB4

- PTE1

- PTE0

PUBLIC 21

S32K144 Blinking LED: Theory

• Each I/O is multiplexed with different functionalities

• I/O functionality is selected with PORTx register, MUX bits.

• Alternative 1 (MUX=0b001) is GPIO functionality for all I/OS

• I/O interrupt configuration is controlled independently

• I/O Pull resistor is controlled independently

PUBLIC 22

S32K144 Blinking LED: Theory

• Each port pin is mapped to the following 32-bit GPIO registers, each bit represents

a pin in the port x:

- GPIOx->PDOR. Data Output

- GPIOx->PSOR. Set Output

- GPIOx->PCOR. Clear Output.

- GPIOx->PTOR. Toggle Output

- GPIOx->PDIR. Input register

- GPIOx->PIDR. Input disable register

- GPIOx-> PDDR. Data Direction register

PUBLIC 23

S32K144 Blinking LED: Theory

GPIO Direction selected with PDDR register.

GPIO INPUT

- Logic state available in PDIR register

GPIO OUTPUT

- Logic state controlled via PDOR or PCOR,PSOR and PTOR.

PUBLIC 24

S32K144 Blinking LED: Theory

NVIC (Nested Vector Interrupt Controller)

- Responsible of interrupt handling

- Supports vector table relocation

- Up to 240 vectored interrupts

- 111 interrupts available in S32K144

Asynchronous Wake-up Interrupt Controller (AWIC)

- Detect asynchronous wake-up events in stop modes

- Signal to clock control logic to resume system clocking

- After clock restart, NVIC observes the pending interrupt and performs normal interrupt process

- Used during low power modes to generate an wake up signal

PUBLIC 25

S32K144 Blinking LED: Theory

What happens when an interrupt occurs in an ARM Cortex M4?

PUBLIC 26

S32K144 Blinking LED: Theory

LPIT (Low power interrupt timer)
• 4 channels

• Individual or chained channel operation

• 32 bit counter per channel

• 4 operation modes:

- 32-bit Periodic Counter

- Dual 16-bit Periodic Counter

- 32-bit Trigger Accumulator

- 32-bit Trigger Input Capture

Module VLPR VLPW Stop VLPS

LPIT Full

functionality

Full

functionality

Async

operation

Async

operation

PUBLIC 27

S32K144 Blinking LED: Create New Project

• Create a new S32DS Project

PUBLIC 28

S32K144 Blinking LED: Configuring pins

• Select the pin_mux component in the Components window

PUBLIC 29

S32K144 Blinking LED: Select I/O pins direction

• In the Component Inspector window

• Select GPIO tab inside the Routing tab

PUBLIC 30

S32K144 Blinking LED: Select Output pin

• Go to PTD and select pin 16.

• In the Pin/Signal Selection Colum, select PTD16.

• In the Direction Colum, select Output.

PUBLIC 31

S32K144 Blinking LED: Add LPIT Component

• Go to Component Library window.

• Select the lpit in the Alphabetical tab.

• Double click lpit to add to your project.

• lpit component should appear on the component window.

• Adding the lpit component will automatically add clock_manager and interrupt_manager components

PUBLIC 32

S32K144 Blinking LED: Peripheral Clocks

• When adding a component to project, the clock_manger component enables the appropriate

peripheral clocks.

PUBLIC 33

S32K144 Blinking LED: LPIT Configuration

In the Components Window select the lpit component

PUBLIC 34

S32K144 Blinking LED: LPIT Configuration

• Go to Components Inspector.

• Check the Timer Run In Debug Mode box

• Check the Interrupt enable box

• Select Microsecond unit as period unit

• In the Time period field type 500000 counts for 0.5 sec.

PUBLIC 35

S32K144 Blinking LED: Generate the code

• To generate the code for the configuration select, click the generate code icon

in the Components window.

• Wait for the code to be generated.

PUBLIC 36

S32K144 Blinking LED: Application Code

• In the project window double click the main.c file to open it

PUBLIC 37

S32K144 Blinking LED: Init and Update Configuration Functions

• Expand the clock_manager component in the Components Window

• Drag and drop the CLOCK_SYS_Init function into main.

• Drag and drop the CLOCK_SYS_UpdateConfiguration function into main.

PUBLIC 38

S32K144 Blinking LED: Init and Update Configuration Functions

• In the CLOCK_SYS_Init function add the following parameters.

− g_clockManConfigsArr,

− CLOCK_MANAGER_CONFIG_CNT,

− g_clockManCallbacksArr,

− CLOCK_MANAGER_CALLBACK_CNT

• In the CLOCK_SYS_UpdateConfiguration add the following parameters.

− 0U,

− CLOCK_MANAGER_POLICY_FORCIBLE

PUBLIC 39

S32K144 Blinking LED: Initialize Pins

• Expand the pin_mux component in the Components Window.

• Drag and drop the Pins_DRV_Init function inside the, into main, below the clock

configuration

PUBLIC 40

S32K144 Blinking LED: Initialize Pins

• Pins_DRV_Init function receives two parameters:

− Number of pins to configure

− Configuration structure.

• The number of pins to configure is included by default

• The configuration structure is already created, with the name

g_pin_mux_InitConfigArr

• Add the configuration structure into the Pins_DRV_Init function

PUBLIC 41

S32K144 Blinking LED: Install LPIT Interrupt

• In the Components Window go to

Components-> Referenced Components->interrupt_manager

• Exapnd the interrupt_manager component

• Drag and drop the INT_SYS_InstallHandler function. Placed it after the

Pins_DRV_Init function in main.c

PUBLIC 42

S32K144 Blinking LED: Install LPIT Interrupt

• In the INT_SYS_InstallHandler function add the following parameters:

− LPIT0_Ch0_IRQn,

− &LPIT_ISR,

− (isr_t *)0

PUBLIC 43

S32K144 Blinking LED: Install LPIT Interrupt

• Create a new function named LPIT_ISR and placed above main

PUBLIC 44

S32K144 Blinking LED: Initialize LPIT

• Expand the lpit component in the Components Window

• Drag and drop the following functions in to main, place them after the INT_SYS_InstallHandler function

− LPIT_DRV_Init

− LPIT_DRV_InitChannel

− LPIT_DRV_StartTimerChannels

PUBLIC 45

S32K144 Blinking LED: Initialize LPIT

• In the LPIT_DRV_Init function add the following parameters:.

− INST_LPIT1,

− &lpit1_InitConfig

• In the LPIT_DRV_InitChannel function add the following parameters:.

− INST_LPIT1,

− 0

− &lpit1_ChnConfig0

• In the LPIT_DRV_StartTimerChannels function add the following parameters:.

− INST_LPIT1,

− (1 << 0)

PUBLIC 46

S32K144 Blinking LED: Clear LPIT Flag in interrupt

• Expand the lpit component in the Components Window

• Drag and drop the following function into LPIT_ISR:

− LPIT_DRV_ClearInterruptFlagTimerChannels

• In the LPIT_DRV_ClearInterruptFlagTimerChannels function add the following parameters:.

− FSL_LPIT1

− (1 << 0)

PUBLIC 47

S32K144 Blinking LED: Toggle Green LED (PTD16)

• Expand the gpio_hal component inside pin_mux, in the Components Window

• Drag and drop the GPIO_HAL_TogglePins function into LPIT_ISR

• Add the following parameters:

− PTD

− (1<<16)

PUBLIC 48

S32K144 Blinking LED: Build and debug the application

• Click on the build icon to make sure that there a no compiler errors.

• Configure the debug configuration start a new debug session

PUBLIC 49

S32K144 Blinking LED: Build and debug the application

• In the debug perspective click the run icon to start the project.

• Green LED should toggle every 0.5 sec.

PUBLIC 50

S32K144 Blinking LED: Challenge

• Toggle Green LED every 100 ms.

PUBLIC 51

Hands-on – Secure CAN

02.

PUBLIC 52

S32K144 Secured CAN: Objective

• In this lab you will learn:

− About the features of the FlexCAN module on S32K144

− About the features of the CSEc module on S32K144

− How to configure FlexCAN peripheral for both Rx & Tx

− How to initiate a CAN communication between two S32K boards

− How to use the CSEc driver to encrypt/decrypt the messages (AES)

PUBLIC 53

S32K144 Secured CAN: CAN Theory

• Full implementation of the CAN FD & CAN 2.0 B

− data field bitrate up to 8Mbps

• Flexible mailboxes (0/8/16/32/64 bytes data length)

• Listen-Only mode capability

• Programmable Loop-Back mode supporting self-test operation

• Programmable transmission priority scheme

• Independence from the transmission medium

• CRC status for transmitted message

• Full featured Rx FIFO with storage capacity for 6 frames

• DMA request for Rx FIFO

• Programmable clock source to the CAN Protocol Interface, either bus clock or crystal oscillator

• 100% backward compatibility with previous FlexCAN version

• 3 FlexCAN instances

PUBLIC 54

S32K144 Secured CAN: CAN Theory
Access to and from the internal interface bus
(clocks, address and data buses, interrupts,
DMA and test signals)

Embedded RAM dedicated to the FlexCAN

Message buffer selection for reception and
transmission (arbitration and ID matching
algorithms)

Serial communication on the CAN bus (RAM
access requests for rx and tx frames, rx
messages validation, error handling)

PUBLIC 55

S32K144 Secured CAN: CSEc Theory

• Cryptographic Services Engine (CSEc) – comprehensive set of

cryptographic functions (SHE)

− >10 general purpose keys

− AES-128, CBC, ECB, CMAC

− Sequential, Parallel, and Strict Boot mode

− AES-128 CMAC calculation and authentication

− Pseudo random number generation (PRNG) and true random

number generation (TRNG)

PUBLIC 56

S32K144 Secured CAN: Resources

• S32K144 – FlexCAN signals & pins

CAN0

Signal

S32K144

PIN

Tx PTE5

Rx PTE4 CAN

Connector

PUBLIC 57

S32K144 Secured CAN: Hands-on Preview

• Secured CAN communication between two S32K144 boards:

− Message encryption at tx, decryption at rx – selectable through user buttons (blue LED on)

− Toggle red/green LED when command successfully received (decrypted)

Press both buttons to

enable encryption

CAN BUS S32K144

EVB-Q100

CAN
TX

RX

S32K144

EVB-Q100

CAN
TX

RX

Toggle LED if received

command is correct

Press one of the two

buttons to send a toggle

LED command

Receive and optionally

decrypt the message
Optionally encrypt the

message before sending

PUBLIC 58

S32K144 Secured CAN: Importing demo applications

• Import ‘flexcan_encrypted’ example provided with the SDK:

− File->Import->General->Existing Projects into Workspace->Select root directory

− Select:

{DS_InstallationFolder}\S32DS\S32SDK_S32K144_RTM_1.0.0\examples\S32K144\demo_apps\flexcan_encrypted

− Make sure ‘Copy projects into workspace’ is checked, so the SDK example remains clean

PUBLIC 59

S32K144 Secured CAN: Master/Slave

• The main.c file contains the application code

• MASTER/SLAVE macros must be defined appropriately

PUBLIC 60

S32K144 Secured CAN: Build and debug

• Press the generate code button

• Build the application

• Debug on target

PUBLIC 61

S32K Technical Support – Communities

https://community.nxp.com

• S32K Community

− https://community.nxp.com/community/s32/s32k

− Note: Includes SDK related topics

• S32_Design_Studio IDE Community

− https://community.nxp.com/community/s32/s32ds

− Includes S32DS related topics

https://community.nxp.com/
https://community.nxp.com/community/s32/s32k
https://community.nxp.com/community/s32/s32ds

PUBLIC 62

S32K Technical Support – NXP Support Ticket /

TIC (Technical Information Center)
• http://nxpcommunity.force.com/community/CommunityContactSupport

• Log-in with your NXP Communities username and

password

− If new user, please register. If no verification email is

received, please check your spam folder. Email is

sent from engineers.corner@nxp.com

• Enter your support CASE

− All fields are mandatory

http://nxpcommunity.force.com/community/CommunityContactSupport
mailto:engineers.corner@nxp.com

PUBLIC 63

Thank you

nxp.com/S32K

PUBLIC 64

Q&A

05.

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2017 NXP B.V.

