SMART ACTUATORS:

ENABLING AUTONOMOUS VEHICLES

THOMAS LENTSCH

STRATEGY & BUSINESS DEVELOPMENT
BUSINESS LINE ADVANCED AUTOMOTIVE ANALOG

AMF-AUT-T2655 | JUNE 2017

SECURE CONNECTIONS FOR A SMARTER WORLD

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2017 NXP B.V.

AGENDA

- The Autonomous Car of the Future
- Safety and Power Management
- Smart Actuators: Overview
- Battery Management
- Gate Drivers
- Solenoid Drivers
- Conclusion
- Q&A

01.

The Autonomous Car of the Future

Cars today

- Safe
- Reliable
- Dynamic/Sporty ⇔ Family Van
- Personal

... The Individual Joy of Riding

Autonomos Cars: Robots on wheels

- A robot is a machine especially one programmable by a computer capable of carrying out a complex series of actions automatically. Robots can be guided by an external control device or the control may be embedded within.
- Robots can be <u>autonomous</u> or semiautonomous and range from humanoids, to <u>industrial</u>, or medical operating robots, <u>UAV drones</u> and more
- By mimicking a lifelike appearance or automating movements, a robot may convey a sense of intelligence or thought of its own.

Autonomos Cars: Robots on wheels

Sense:

Translate analog world into digital data

Think:

- Process/aggegate/calculate digital data
- decide on arithmetic rules or advanced algorithms (AI)

Act:

 translate the "digital" decision back into the analog world

Autonomous Drive: Definitions

Near exponential increase in requirements on processing, functional safety and reliability

Full Automation

Driver —

LEVEL 5

Brain Off

Vehicle 🥞 👁 🖑 🗀

- Fully autonomous under all driving modes
- Human driver not expected to respond to request to intervene

LEVEL 1 **Driver Assistance**

- Adaptive cruise control
- Automatic braking
- Lane keeping

Partial Automation

Feet Off

- Partial automated parking
- Traffic jam assistance
- Emergency brake with steer

ADAS

Hands Off

- Semi autonomous:
- -Highway chauffeur
- -Self parking
- Human driver can regain control

Vehicle 👸 👁 🖑 🗀 Eyes Off

- Autonomous driving in some driving modes
- Human driver may not respond to request to intervene

Safe Autonomous System

Responsibility for safe operation

Control of complete vehicle

Control of steering

Control of vehicle speed

ADAS to Increase Safety, Reduce Road Fatalities

Safety: crucial for autonomous car

Safety, quality & reliability at the heart of automotive engineering

Trusted technology and functional safety track-record essential

Safety system adoption accelerated by mandates & NCAP ratings

ADAS needed to reverse recent increase in fatality rate (texting)

Domain Based Architectures

Domain	Product Offer
Connectivity	Smart Antenna, Secure Car Access, V2X, Broadcast Reception
Driver Replacement	Radar, Vision, Lidar Autonomy & Fusion Processors
Powertrain and Vehicle Dynamics	Engine Control Battery Management Electronic Stability Control, Braking Motion & Speed sensing
Body & Comfort	Smart Lighting, AirCon, Passive Safety Seat Control,
Driver Experience	Multimedia Processing Audio Processing

NXP OFFERS MOST COMPLETE SYSTEM SOLUTIONS FOR FASTEST TTM AND SCALABILITY

NXP Leads Domain Based Vehicle Architectures:

- Connectivity
- Driver Replacement
- Powertrain & Vehicle Dynamics
- Body & Comfort
- Driver Experience

Conceptual Vehicle Architecture

NXP Enables Transformation of In-Vehicle Networks

IVN TODAY

- Dominated by classic CAN
- No security
- Limited scalability and design-freedom
- Gateways being adopted
- Low bandwidth
- Functional safety by practice

OEM challenges

- Connect many more ECUs, sensors and actuators
- Manage multiple networking interfaces
- Introduce CAN FD in the network
- Enable 100Mb Ethernet network connectivity
- Enable >100Mb private connections
- Comply with increasing security & robustness
- Transition to new architectures

IVN TOMORROW

- Multiple secure high-bandwidth networks (CAN FD, Ethernet, ...)
- Various domains (functions, tasks)
- Centralized functions
- ASIL B & D on module level
- Security is a hygiene factor

02.

Safety / Power Management Solutions

Safety Integrity Level Requirements

- 7 Drive Train S&C
 Suspension / Dumping ASILC
 MC33907 with other MCU vendors
- 6 Drive Train S&C Electric Power Steering – ASILD

MC33907 & FS65 with MPC5744P

5 Drive Train – PowerTrain
Engine Management Unit – ASILB
MC33908 with MPC57x
FS651x with other MCU vendors

ASIL

LEGEND

4 Drive Train – PowerTrain
Transmission, Transfer Case – ASILD
MC33907 and FS650x
with other MCU vendors

- Domain Gateway

 Body, Safety, Chassis up to ASILD

 FS652x with MPC574xC

 or with other MCU vendors
- ADAS Vision

 1 Data Fusion ASILB, up to ASILD (Autonomous Drive)
 FS652x with MPC5777C
 - ADAS RADAR

 SRR, MRR, LRR ASILB
 FS652x with S32R2
 - ADAS ACC

 Adaptive Cruise Control ASILC

 MC33907 with MPC5744P
 - Drive Train Electrification

 Battery Management (12V, 48V, HV) ASILC

 FS650x with MPC5744P and MC33771
- 2 Drive Train Electrification Electric Motor (Alterno Starter, eAxel drive...) – ASILC FS45 with other MCU vendors
- Orive Train Electrification Inverter, DCDC Converter - ASILC FS650x or FS45 with other MCU vendors

Safety & Power Management Product Paradigm

Chassis Dynamics

Functional integration (eg, Valve drivers, braking)

FS Series – ASIL Safety + Power

- Functional safety
- Fail silent / fail operational

UJA GP & Networking

CAN/LIN networking + power management

VR Series – Regulators

Connected to VBAT - Cranking pulses

PF Series tailored for Micros

- Low voltage input
- Low power modes
- Configurability / high efficiency

High Current + High Efficiency

FS65/FS45 – Functional Safety SBC

Advanced Power Management

- Buck/Boost Vpre from 2.7 to 36V
- 2.0A / 6.5V Vpre capable
- FS65xx with Vcore 2.4MHz SMPS 0.8/1.5/2.2A
- FS450x with Vcore LDO 0.5A
- Configurable Vcore (external resistor bridge)
- Multiple LDO and Tracker
- Ultra Low Standby Current 30µA

System Solution

- Analog Multiplexer to sense multiple critical signal
- Small package size :49 mm²
- Robust CAN PHY FD 2M
- Configurable I/Os
- Long Duration Timer, Keep Alive memory supply

SCALABLE Family concept

PROVENDesigned at OEMs

Independent Safety Monitoring

- Single Point Failure : UV/OV Monitoring Unit
- Latent Failure: ABIST & LBIST
- Common Cause Failure: Independent electrical and physical fail safe circuitry and state machine
- **Reset**, **Fail Safe** pin to set system in predictive state when system is failing.
- Configurable Fail Safe State, while allowing system availibility, diagnostic and possible recovery.
- Optional Fail Silent operation
- Second Fail Safe pin to manage safe delay after failure event
- Advanced SafeAsssure documentation to fit for safety assessment
- **BOM cost savings** : No need for external MCU challenger
- MCU & external IC Safety Monitoring

SAFEFlexible Fail Silent

ROBUST
PASS 4200h HTOL

SIMPLIFIED
Tools & Documents

Electronic Stability Control - ESC

- ESC is the sum of
- ABS Anti-lock Brake System
- EBD Electronic Brake force Distribution
- TCS Traction Control System
- AYC Active Yaw Control
- ESC processes inputs from various sensors and controls braking action on wheels to keep car safely on the road or avoid obstacles
- ESC has high requirements on dependability and intrinsic safety of components used

SBCs as Backbone for NXP MCUs

Domain Based In-Vehicle Architectures

Connectivity	Smart Antenna, Secure Car Access, V2X, Broadcast Reception	i.MX – VR55, PF8x
Driver Replacement	Radar, Vision, Lidar Autonomy & Fusion	S32R – FS84-85 S32V – FS85
Powertrain and Vehicle Dynamics	Engine Control Battery Management Braking Motion & Speed sensing	S32K2 – FS45/UJA
Body & Comfort	Smart Lighting, AirCon, Passive Safety Seat Control,	S32K – MC33903/UJA S32K2 – FS45/UJA
Driver Experience	Multimedia Processing Audio Processing	i.MX – PF8x

SMART ACTUATORS:

Advanced Analog Solutions for Efficient and Safe Energy Management

Solid State Lighting Control

LED Drivers, Intelligent Matrix Controllers

- 1st driver with 2 stage scalable buck boost
- Driver supports high current LED, laser
- Controller with ramp curve generation

Motor Control

H-Bridge Drivers, 3-Phase Gate Drivers

- SPI control with configurable slew
- Real-time load current monitoring
- Functional safety ASIL-C solution

EV Power Inverters

IGBT, 48V Gate Drivers

- Low IGBT module BOM cost
- Small footprint over-current protection
- Integrated HV isolation
- Functional Safety: ASIL-D

Power Train Solenoid Control

Direct Fuel Injection (DFI), Automatic Transmission Solenoid Controllers

- · Integrated End-of-Injection measurement
- Low latency and high dynamic precision
- Lowest system BOM implementation

Engine Energy Management

LIN-based Alternator-Regulators

- High regulation accuracy, 12A capable
- Robust low battery operation
- Highly configurable

Li-Ion Battery Management

14V, 48V & HV Li-Ion Battery Cell Controllers

- Highest integration
- Single-chip ASIL-C
- High speed isolated daisy-chain
- Time aligned impedance measurement

Automotive xEV Landscape

	Micro Hybrid (Advanced Start-Stop)	Mild Hybrid Vehicle (MHV)	Full Hybrid Vehicle (FHV)	Plug-in Hybrid Vehicle (PHEV)	Electric Vehicle (EV)
Architecture	14V	48V 12V	<400 V	Combustion Engine Regenerative Braking Detric Motor/ Generator Generator	Power Motor-general Battery
Power Source(s)	Internal Combustion Engine (ICE)	ICE + electric motor	ICE + electric motor	ICE + electric motor	electric motor
Battery Capacity	<0.5 kWh	<0.5 kWh	1~1.5 kWh	7~16 kWh	20 ~90 kWh
Functions (cumulative)	Regenerative Braking	Acceleration assist	EV mode	Charge from power outlet	Full EV
Emission reduction	< 5%	< 30%	< 50%	< 70%	100%

Functional Safety Requirements on Battery Management

- A Battery system consists of several 10s of individual Li-cells connected in series/parallel
- Li-cell run the risk of thermal runaway
- A lithium battery fire can generate heat up to 1100°C
- Battery management systems monitor all cells individually for current flow, cell voltage and temperature.
- Our SOI process enables products to have up to 14 (16) cells put in series

Li-Ion Battery Cell Controllers – Scalable System Solution

Total NXP System Solution – 48V Battery Management Use Case

GD3100 IGBT Gate Driver for High Voltage Inverter

Differentiation:

- · Fast short circuit protection via direct feedback through i-sense IGBTs
- · High speed over current protection with soft shutdown
- SPI interface for ASIL C/D monitor and reporting, device programmability and flexibility
- Integrated temperature sense for system warning and ultimately soft shutdown for system protection
- Integrated galvanic signal isolation between the low-voltage drive electronics and the high-voltage power electronics in single package to reduce PCB area

Features:

- SPI for configurability and for providing detailed fault & status data for integrated protection and programmability
- High speed over current protection with soft shutdown
- Isolated AMUX for monitoring key circuit voltages and currents
- Gate-emitter clamp eliminates the need for negative gate supply voltage
- Integrated gate drive power stage capable of 10A source and sink
- Compatible with 200V to 1200V IGBTs, power range >125kW

Applications

- HEV Motor Inverters
- HV UPS Inverters
- Alternate Energy Inverters

32-Pin SOIC-WB

PART #	PKG	SAMPLES	RELEASE
MC33HB3100EK	SOICWB32	OCT (P2.0)	Q1'18

System Block Diagram

PT2000 / MC33816 Programmable Solenoid Controller

Programmable DFI controllers with 72V high & low side pre-drivers for driving up to 8 solenoids with precision output current profiles in dynamic load environments targeting 3, 4 & 6 cylinder engines

Differentiation

- High precision drive in dynamic load environments
- Low latency feedback with <900 ns response time
- Flexible current profiles through programmable μCores
- Redundant drive disable for functional safety compliance
- Programmable End-of-Injection measurement (PT2000)

Features

- 5 72V operation w/ 12 72V DC/DC boost converter
- Supports 2 or 3 bank Vboost configurations w/ full overlap
- Programmable diagnostics: OV, UV, OC, OT, Open Load
- 16-bit SPI control with IRQB and interrupt flags
- Integrated microcode encryption for enhanced security
- LQFP with exposed pad (PB-free):
 - PT2000 6 channel: 12 x 12 mm 80 pin
 - MC33816 4 channel 10 x 10 mm 65 pin

Typical Applications

- Gasoline direct injection (GDI) for 3, 4 & 6 cylinders
- Diesel direct injection (DDI)
- CNG / LNG engines & variable valve actuators (VVA)
- Active suspension & transmissions

Summary

- The autonomous car of the future will depend on reliable networking and power management architectures, therein from an increasing number of devices that can take smart, dependable and safe action
- These smart devices will either include intelligence or cooperate with a local MCU or central compute engine, offer connectivity and functional safety
- Such high current, high voltage products are enabled by NXP's unique and leading SOI and smart HV technologies
- Additional questions, follow-up?
 please contact Adrian Koh, Automotive Business Development
 adrian.koh@nxp.com

SECURE CONNECTIONS FOR A SMARTER WORLD