
NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property

of their respective owners. © 2017 NXP B.V.

PUBLIC

AUTOMOTIVE FIELD APPLICATIONS ENGINEER

MANUEL RODRIGUEZ

INTRODUCTION TO QT

PROGRAMMING

AMF-AUT-T2795 | AUGUST 2017

PUBLIC 1

AGENDA
• What is Qt?

• Setting up Qt creator

• Hello world

• Building a calculator

• Building a weather station

PUBLIC 2

What is Qt?

01.

PUBLIC 3

Introduction

• Qt (“cute”) is a cross-platform application framework that is used for developing

application software that can be run on various software and hardware platforms

with little or no change in the underlying codebase, while still being a native

application with native capabilities and speed.

Application

Qt Framework

i.MX

PUBLIC 4

Introduction

• Much more than a GUI

framework, Qt also offers

support for SQL, XML, Network

and some sensors.

• Write once, deploy everywhere.

• Qt is available with both

commercial and open source

(GPL 2.0, GPL 3.0, and LGPL

3.0) licenses.

PUBLIC 5

Signals and slots

• Signals and slots are used for communication between objects.

• The concept is that GUI widgets can send signals containing event information

which can be received by other controls using special functions known as slots.

PUBLIC 6

QML

• QML is a declarative language that allows user interfaces to be described in terms

of their visual components and how they interact and relate with one another.

• A QML document defines a hierarchy of objects with a highly-readable, structured

layout.

• Every QML document consists of two parts: an imports section and an object

declaration section.

import QtQuick 2.6

Rectangle {

width: 200

height: 100

color: "red"

Text {

anchors.centerIn: parent

text: "Hello, World!“

}

}

PUBLIC 7

QML

• Output from the last example:

PUBLIC 8

Setting up Qt creator with the i.MX

02.

PUBLIC 9

Setting up the meta tool-chain with Qt creator

• In order to be able to cross-compile applications a meta-toolchain is created with

the Yocto project.

• After installing the meta-toolchain Qt creator is configured to use the tools that

were created by the Yocto Project to build applications for the target device.

• This process is thoroughly explained in the following thread in our community:

• https://community.nxp.com/docs/DOC-328543

• Since the computers on this hands-on have Qt creator already installed we will skip

these steps, you can follow the document above to setup your environment at

home.

https://community.nxp.com/docs/DOC-328543

PUBLIC 10

Hello world

03.

PUBLIC 11

Creating the project…

• Click on File>New File or Project

PUBLIC 12

Creating the project…

• Select Application>Qt Widgets Application

NOTE: Qt Quick UI projects cannot be

deployed to embedded or mobile target

platforms. For those platforms, create a Qt

Quick application instead or a Qt Widget app.

PUBLIC 13

Creating the project..

• Select a name for the project and the folder to store it.

PUBLIC 14

Creating the project…

• Select the kit (target) for the project, on this hands-on the Desktop will be the

target, but once you configure your kit for the i.MX you can start building

applications for it.

PUBLIC 15

Creating the project…

• This is how the kit selection looks like after the i.mx target is added. (Ubuntu)

PUBLIC 16

Creating the project…

• Select the class name and click next (we will leave it in its default state).

PUBLIC 17

Creating the project…

• Click on finish and the project will be created.

PUBLIC 18

Hello world!

• Click on the forms folder and then click again on the mainwindow.ui

• This file contains the “layout” information for our GUI.

PUBLIC 19

Hello world!

• Drag and drop a push button widget to your GUI.

• Double click on it and type “Hello world” on it.

PUBLIC 20

Hello world!

• Run the project by clicking at the icon below or pressing Ctrl+R

• The following window should now appear:

PUBLIC 21

Challenge!

• Play around in the design view and find a way to change the name of the window

from “MainWindow” to “Hello world!”

PUBLIC 22

Signals and slots

• In the design view click on the “Signals & Slots Editor” tab.

PUBLIC 23

Signals and slots

• Click on the plus sign to add a signal & slot connection

PUBLIC 24

Signals and slots

• Select the pushButton object as the sender and the “clicked()” signal.

• Select the MainWindow as the receiver and the “close()” slot.

• Run the project, now clicking on the button will close the window.

PUBLIC 25

Building a calculator

04.

PUBLIC 26

Building a calculator

• Follow the previous steps to create a new project, you can select the name of the

class to be Calculator.

• Go to the design view and drag and drop an LCD number to your GUI

PUBLIC 27

Building a calculator

• Drag and drop all the buttons as in the following image, do not worry about the

placement we will arrange them in the next step.

PUBLIC 28

Building a calculator

• Select the buttons that need to be arranged in a “cluster”

PUBLIC 29

Building a calculator

• Once selected, right click on one of them and select the Lay Out in a Grid option.

PUBLIC 30

Building a calculator

• This is how your calculator might look like after applying the lay out to some

buttons.

PUBLIC 31

Building a calculator

• To ease the signals & slots handling we will change the name of the button objects

to reflect their functionality, e.g. pushButton_0 up to pushButton_9 and a

pushButton object for each of the available math operations.

PUBLIC 32

Building a calculator

• Right click one of the buttons and select the Go to slot… option. Then select the

signal to be used, clicked() on this case.

PUBLIC 33

Building a calculator

• The previous step will generate a stub function in calculator.cpp and a prototype in

calculator.h

• The format remains the same for all the buttons you can simply copy/paste the

stubs and change their name or perform the previous step on all of them.

PUBLIC 34

Building a calculator

• This is the “template” that we will use for all the number buttons, this updates the

value on the display with respect the clicked button.

PUBLIC 35

Building a calculator

• We will add two variables on calculator.h to hold the value of the numbers for the

operations.

• We will also declare an enum to hold all the available operations.

PUBLIC 36

Building a calculator

• This is how we will implement the operations, the value is obtained from the LCD

object and stored as the first number for the operation, then we select the type of

operation to perform.

PUBLIC 37

Building a calculator

• At last we will add the functionality to the “clear” and “enter” buttons, the clear

button will clear the display when clicked and the enter button will perform the

selected operation and update the display value.

PUBLIC 38

Building a calculator

• Click on the run button and you should be able to see the calculator on your

display.

PUBLIC 39

Building a thermometer

05.

PUBLIC 40

Modifying an example

• In this section we are going to modify one of the many available examples.

• Search for the dial example and click on the example that appears at the bottom

right of your screen.

PUBLIC 41

Modifying an example

• Select the Edit view…

PUBLIC 42

Running the example

• Click on the Run icon to see the original example

PUBLIC 43

Example organization

• All the images used to create the dial are stored under Resources/content.

• There is an object called Dial, that features all the functionality of the Dial.

PUBLIC 44

Displaying the dial value

• We are going to modify the Dial.qml object to display the value in text.

• Go to the bottom of the Dial.qml file and add the following text object:

• Run the example, the Dial will now display its value on text.

PUBLIC 45

Switching between Celsius and Fahrenheit

• We will add a button to control whether to display the value on Celsius or

Fahrenheit.

• To do so we will modify the dialcontrol.qml file.

• Add the QtQuick.Controls 1.4 library and a variable to select the scale:

PUBLIC 46

Switching between Celsius and Fahrenheit

• We will add the button and place at the top left of the dial, the button will display

Celsius by default and it will change the label after being clicked.

PUBLIC 47

Switching between Celsius and Fahrenheit

• Now we will modify the Dial.qml file to modify the value on the display accordingly,

to do so we only add the following line to our previous modification.

PUBLIC 48

Results!

• You can leverage on existing examples to create your application and learn more

about Qt!

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2017 NXP B.V.

