INTRODUCTION TO QT
PROGRAMMING

MANUEL RODRIGUEZ
AUTOMOTIVE FIELD APPLICATIONS ENGINEER

AMF-AUT-T2795 | AUGUST 2017

Ny SECURE CONNECTIONS
4\ FOR A SMARTER WORLD

of their respective owners.
PUBLIC

AGENDA

- What is Qt?

- Setting up Qt creator

- Hello world

- Building a calculator

- Building a weather station

PUBLIC

1

-
| 2 |

O

01.

What Is Qt?

Introduction

- Qt (“cute”) is a cross-platform application framework that is used for developing
application software that can be run on various software and hardware platforms
with little or no change in the underlying codebase, while still being a native
application with native capabilities and speed.

Application

Qt Framework

PUBLIC | 3

Introduction

- Much more than a GUI
framework, Qt also offers
support for SQL, XML, Network
and some sensors.

- Write once, deploy everywhere.

- Qt is available with both
commercial and open source
(GPL 2.0, GPL 3.0, and LGPL
3.0) licenses.

PUBLIC | 4

Signals and slots

- Signals and slots are used for communication between objects.

- The concept is that GUI widgets can send signals containing event information
which can be received by other controls using special functions known as slots.

connect(Object1, signal1, Object2, slot1)

Object connect(Object1, signal1, Object2, slot2)

signali
signal2

signall

Object3

signall connect(Object1, signal2, Object4, slot1)

Object4

>

>
connect(Object3, signal1, Object4, slot3)

PUBLIC | 5

QML

- QML is a declarative language that allows user interfaces to be described in terms
of their visual components and how they interact and relate with one another.

- A QML document defines a hierarchy of objects with a highly-readable, structured
layoult.

- Every QML document consists of two parts: an imports section and an object
declaration section.

{
width:

height:

color: "red"
{
anchors.centerln: parent
text: "Hello, World!“

}

}

PUBLIC | © 4\

QML

- Qutput from the last example:

Jaiicho vo

PUBLIC | 7

O

02.

Setting up Qt creator with the 1.MX

Setting up the meta tool-chain with Qt creator

- In order to be able to cross-compile applications a meta-toolchain is created with
the Yocto project.

- After installing the meta-toolchain Qt creator is configured to use the tools that
were created by the Yocto Project to build applications for the target device.

- This process is thoroughly explained in the following thread in our community:
» https://community.nxp.com/docs/DOC-328543

- Since the computers on this hands-on have Qt creator already installed we will skip
these steps, you can follow the document above to setup your environment at
home.

PUBLIC | 9 4\

https://community.nxp.com/docs/DOC-328543

@

03.

Hello world

Creating the project...

- Click on File>New File or Project

UL untiﬂedl!MainFonn._LEqml -t Creato_

File
]
=

Edit Euild Debug Analyze Tools Window Help

Mew File or Project... Ctrl+N
Open File or Project... Ctrl+0
Open File With...

Recent Files *
Recent Projects »
Sessions *

Session Manager...

Close Project
Close All Projects and Editors
Save "untitled1l/MainForm.ui.gm Ctrl+S

Save "untitled1l/MainForm.ui.gml” As...
Save All Ctrl+Shift+5
Reload "untitled1/MainForm.ui.gml”

Close "untitledl/MainForm.ui.gml” Ctrl+W
Close All Ctrl+Shift+W
Close All Except "untitledl/MainForm.ui.gml”

Close All Except Visible

Exit Ctrl+Q

PUBLIC

11

Creating the project...

- Select Application>Qt Widgets Application

Choose a template: [AH Templates ']

Projects i icati
. |m Qeidgets dpplication | Creates a Qt application for the desktop.
. Qt Console Application Includes a Qt Designer-based main

. indow.
Library | Qt Quick Application e

Other Project - Qt Quick Controls 2 Application Preselects a desktop Qt for building the

_ : application if available.
Non-Qt Project W Qt Canvas 3D Application

Import Project Supported Platforms: Desktop
Files and Classes

C++
Modeling
Qt

NOTE: Qt Quick Ul projects cannot be S
deployed to embedded or mobile target Java
platforms. For those platforms, create a Qt e

Nim
Quick application instead or a Qt Widget app.

| choose.. || cancel

PUBLIC | 12 x

Creating the project..

- Select a name for the project and the folder to store it.

e

= Qt Widgets Applicatio

. Introduction and Project Location
E» Location

Kits This wizard generates a Qt Widgets Application project. The application derives by default from QApplication and includes an
Details empty widget.

Summary

Name: Hello_world_embedded

Create in: C:\Users\b52932\Documents

Use as default project location

PUBLIC | 13

Creating the project...

- Select the kit (target) for the project, on this hands-on the Desktop will be the
target, but once you configure your kit for the i1.MX you can start building
applications for it.

Kit Selection

Qt Creator can use the following kits for project Hello_world_embedded:
Select all kits

Desktop Qt 5.6.2 MinGW 32bit

PUBLIC | 14

Creating the project...

- This is how the kit selection looks like after the i.mx target is added. (Ubuntu)

o Qt Widgets Application

: Kit Selection
Location
@ Kits Qt Creator can use the following kits for project untitled:
B Select all kits
& B Desktop Qt 5.6.2 GCC 64bit Details +
| i.mx6qsabreauto Details v
< Back Next> | Cancel

PUBLIC | 15

Creating the project...

- Select the class name and click next (we will leave it in its default state).

Class Information
Location

Kits Specify basic information about the classes for which you want to generate skeleton source code files.
E» Details

Summary Class name: MainWindow

Base class: [QMainWindow

Header file: mainwindow.h

Source file: mainwindow.cpp

Generate form: [V

Form file: mainwindow. ui

PUBLIC | 16

Creating the project...

- Click on finish and the project will be created.

&9 £ Qt Widgets Application
=

I

Project Management

Location

Kits Add as a subproject to project: [<None>
Details

E» Summary

Add to version control: [_{Non,e?

Files to be added in
C:\Users\b52932\Documents\Hello world embedded:

Hello world embedded.pro
main.cpp

mainwindow.cpp
mainwindow.h
mainwindow.ui

PUBLIC | 17

Hello world!

- Click on the forms folder and then click again on the mainwindow.ui
- This file contains the “layout” information for our GUI.

File Edit Builld Debug Analyze Tools
Projects > T. = H =
4 |5 Hello_world_embedded

= Hello_world_embedded.p

Welcome
» In Headers

E 4 . Sources
Edit = main.cpp

== mainwindow.cpp
4 |/ Forms

/ mainwindow.ui

]
Debug

).4

Projects

PUBLIC | 18

Hello world!

- Drag and drop a push button widget to your GUI.
- Double click on it and type “Hello world” on it.

Filter

Type H
~ Layouts o —

é Vertical Layout
Il Horizontal Layout
233 Grid Layout

¥ Form Layout

4 Spacers
@ Horizontal Spacer
E Vertical Spacer

= Buttons
E‘J Push Button

@ Tool Button

(® Radio Button

m

PUBLIC | 19

Hello world!

- Run the project by clicking at the icon below or pressing Ctrl+R

S (1] QAxWidget

l"g Font Combo Box

- The following window should now appear:

|| MainWindow

.
e | 2] &

[

Hello world

PUBLIC

20

Challenge!

- Play around in the design view and find a way to change the name of the window
from “MainWindow” to “Hello world!”

Hello world Hello world

PUBLIC | 21 x

Signals and slots

- In the design view click on the “Signals & Slots Editor” tab.

m=n Horizontal Scroll Bar Filt
E] Vertical Scroll Bar Ma
4 Horizontal Slider P

F Vertical Slider
Key Seguence Edit

4 Display Widgets
T Label Filter
@ Text Browser Name Used Text Shortcut Checkable ToolTip

‘ﬁ; Graphics View
E Calendar Widget
(2] LCD Number

@ Progress Bar

m

= Horizontal Line
[Vertical Line
[]] OpenGL Widget
<] QQuickWidget

1|

Action Editor Signals & Slots Editor

PUBLIC | 22

Signals and slots

- Click on the plus sign to add a signal & slot connection

m

1]

m-

Signal

Sender Receiver Slot

Action Editor Signals & Slots Editor

PUBLIC | 23

Signals and slots

- Select the pushButton object as the sender and the “clicked()” signal.
- Select the MainWindow as the receiver and the “close()” slot.
- Run the project, now clicking on the button will close the window.

Action Editor Signals & Slots Editor

PUBLIC | 24

@

04.

Building a calculator

Building a calculator

- Follow the previous steps to create a new project, you can select the name of the
class to be Calculator.

Go to the design view and drag and drop an LCD number to your GUI

u
Type Here
A Display Widgets |
R Label |
|AT] Text Browser I_i
CBTLICE Ty Graphics View I-l

|:] ; E, Calendar Widget
Debug @ LCD Number n
@3 Progress Bar
B = Horizontal Line

[l Vertical Line
P{, D OpenGL Widget | M
<] QQuickWidget p

PUBLIC | 26 4

Building a calculator

- Drag and drop all the buttons as in the following image, do not worry about the
placement we will arrange them in the next step.

[]
Type Here

PUBLIC | 27

Building a calculator

- Select the buttons that need to be arranged in a “cluster”

Type Here

[BN B B BN B B]
E~ NN~ N
| o ou B n
[B B B A W A
Hoo Moo WMra W
| o ou B n
N EEEN
| Y= =)

| o pu B pm |

PUBLIC | 28

Building a calculator

- Once selected, right click on one of them and select the Lay Out in a Grid option.

- - -

o 9 -

. > Change text.
Assign to button group ’
Change objectName..

e [Morph into ’
Change tooiTip...
Enter Change whatsThis...

Change styleSheet..,

Size Constraints ’
Promote o .

Go to siot.

71 Send to Back
-4 Bnng to Front

» Cut Crri+X
Copy Ctri«C
» Paste Ctri+V
Select All Ctri+A
Delete
I
pm— ,..Lfy out * | & Adjust Size Ctri+)
Nl Lay Out Horizontally Ctri+H
= Lay Out Vertically Ctriel

M Lay Out Horizontally in Splitter
¥ Lay Out Vertically in Splitter
LayOQutinaGnd Ctri+G

Lay Out in a Form Layout

PUBLIC | 29 4

Building a calculator

- This i1s how your calculator might look like after applying the lay out to some
buttons.

Type Here

PUBLIC | 30

Building a calculator

- To ease the signals & slots handling we will change the name of the button objects
to reflect their functionality, e.g. pushButton_ 0 up to pushButton 9 and a
pushButton object for each of the available math operations.

Property Object: pushButton_subtraction flue -
3 Class: QPushButton
pushButton_subtraction
4 —_
enabled [
> geometry [(101, 1), 89 x 27]
> sizePolicy [Minimum, Fixed, 0, 0]
> minimumSize 0x0
> maximumbSize 16777215 x 16777215
> sizelncrement 0x0
> baseSize 0x0

PUBLIC | 31 4\

Building a calculator

- Right click one of the buttons and select the Go to slot... option. Then select the
signal to be used, clicked() on this case.

| : | 1IT |
— Change text...

4 e - ———

7 Morph into 4

Select signal
Change toolTip...

- Change whatsThis... clicked QAbstractButton %
o [Change styleSheet.. clicked(bool) QAbstractButton P
R pressed() QAbstractButton L
o [Size Constraints > released() QAbstractButton 1=
o Layout Alignment *
3 | ok || cancel |
. [Promote to ..

Go to slot..

11 Send to Back
[y Bring to Front

= | s Fael W

PUBLIC | 32

Building a calculator

- The previous step will generate a stub function in calculator.cpp and a prototype In
calculator.h

¥

private slots:

4 yoid Calculator::on_pushButton_1_clicked() . hButt 1 clicked()
void on_pushButton_1_clicke 5

{ |vo'd Calculator:on,
18 |
h

L private:

- The format remains the same for all the buttons you can simply copy/paste the
stubs and change their name or perform the previous step on all of them.

PUBLIC | 33 4\

Building a calculator

- This is the “template” that we will use for all the number buttons, this updates the
value on the display with respect the clicked button.

4 yoid Calculator::on_pushButton_1_clicked()
{
int number;
number = ui->LlcdNumber->value();
number = number = 10 + 1}
1 ui->LlcdNumber->display(number)
h

PUBLIC | 34 4

Building a calculator

- We will add two variables on calculator.h to hold the value of the numbers for the
operations.

- We will also declare an enum to hold all the available operations.

4 class Calculator : public QMainWindow
{
Q_OBJECT
/* Variables to store numbers for the operations =*/
int numA, numB;
/* Available operations =/
4 enum operation {Add,
Sub,
Mul,
Divioper;

PUBLIC | 35 4

Building a calculator

- This is how we will implement the operations, the value is obtained from the LCD
object and stored as the first number for the operation, then we select the type of
operation to perform.

4 yoid Calculator::on_pushButton_multiplication_clicked()

{
this-»numA = ui->LlcdNumber->value();
ui->lcdNumber->display(@);
oper = Mul;
¥
4 yoid Calculator::on_pushButton_subtraction_clicked()
{
this—>numA = ui->LlcdNumber->value();
ui->LlcdMumber->display (@) ;
oper = Subj
}
4 yoid Calculator::on_pushButton_addition_clicked()
{
this—>numA = ui->LlcdNumber->value();
ui->LlcdNumber->display(@);
oper = Add;
¥
4 yoid Calculator::on_pushButton_division_clicked()
{
this—>numA = ui->LlcdNumber->value();
ui->LlcdMumber->display (@) ;
121 oper = [Div|;
g \

PUBLIC | 36 4

Building a calculator

- At last we will add the functionality to the “clear” and “enter” buttons, the clear
button will clear the display when clicked and the enter button will perform the
selected operation and update the display value.

4 vyoid Calculator::on_pushButton_clear_clicked()
{
numA = ©;
numB = ©;
128 ui->lcdNumber->display(0);

4 yoid Caleculator::on_pushButton_enter_clicked()

numB = ui->LlcdNumber->value();

switch (oper) {

case Add:
ui->lcdNumber->display(numA + numB) ;
break;

case Sub:
ui->lcdNumber->display(numA — numB) ;
break;

case Mul:
ui->LlcdNumber->display(numA = numB);
break;

case Diwv:
ui->lcdNumber->display(numA / numB) ;
break;

break;

PUBLIC | 37

Building a calculator

- Click on the run button and you should be able to see the calculator on your
display.

PUBLIC | 38

O

05.

Building a thermometer

Modifying an example

- In this section we are going to modify one of the many available examples.
- Search for the dial example and click on the example that appears at the bottom

right of your screen.

Projects Q8 5.6.2 MInGW 32bit | del
ned: |*cpp | Tt
taining text: | Boe __IB

- Reference book 2
irectory: Iihome!q Coffee cup
— bk
New to Qt?
Lo Qt Quick Syster Dialog g 4 Exa b d E f F mple det Form E

m how to davelop

f Own bcations a

ore Qr Creats

=
e m—— ~ Horizontal 3
J ' ‘ QuputDialog getinteqr
K —‘_ 2 QupuiDialog: getDoub
A gracoun | T S— | i Qinputiralog getiter
- l | L™~ ==
Criine Commnit
QtCon g P Qialog Example Shid I Standard Dsalogs Example ple
N\ sogs :
© Use Guce
PUBLIC

40

Modifying an example

- Select the Edit view...

File Edit Build Debug Analyze Tools Window Help

= [Manage Kie..]) Build Settings

Welcome Edit build configuration: [Add '] l Remaove I l Rename...
E [Import Existing Build... I
Edit General

y Active Project

Design

Shadow build: |+
[dialcontrol - acow bl

l’l Build directory: C:\Qt\Examples\Qt-5.6\quick\customitems\build-dialcontrol-Desktop_Qt_5_6_2_MinGW_32bit-Debug
el Build & Run

Build Steps
Projects = Desktop Qt 5.6.2 MinGW 3... gqmake: gqmake.exe dialcontrol.pro -spec win32-g++ "CONFIG+=debug" "CONFIG+=qml_debug" Details ¥
0)" Build
Make: mingw32-make.exe in C:\Qt\Examples\Qt-5.6\quick|customitems\build-dialcontrol-Desktop_Qt_5_1 Details *
Help P Run
Add Build Step -
Project Settings
Clean Steps
Editor
Code Style Make: mingw32-make.exe clean in C:\Qt\Examples\Qt-5.6\quick\\customitems\build-dialcontrol-Desktop_Qt_5_6_. Details ¥

Dependencies Add Clean Step ~

Clang Static Analyzer
Build Environment

Use System Environment Details ¥

PUBLIC | 41

L |

Running the example

- Click on the Run icon to see the original example

(l!,,"| dialcontroﬂglﬂui

PUBLIC | 42

Example organization

- All the images used to create the dial are stored under Resources/content.
- There is an object called Dial, that features all the functionality of the Dial.

4 | dialcontrol

@ dialcontrol.pro
> k. Sources
4 g Resources
4 @ dialcontrol.grc
4,/
A content
W background.png
am Dial.gml
B needle.png
W needle_shadow.png
B overlay.png
B guitpng
an QuitButton.gml
. dialcontrol.gml

PUBLIC | 43

Displaying the dial value

- We are going to modify the Dial.gml object to display the value Iin text.
- Go to the bottom of the Dial.gml file and add the following text object:

SV [text]
Text{
id: value_on_dial
xr 827 yr 130
text: volue.toFixed(1) + " °C"

h
SV [text]

- Run the example, the Dial will now display its value on text.

PUBLIC | 44

Switching between Celsius and Fahrenheit

- We will add a button to control whether to display the value on Celsius or
Fahrenheit.

- To do so we will modify the dialcontrol.gml file.
- Add the QtQuick.Controls 1.4 library and a variable to select the scale:

f/V [imports]

import QtQuick 2.2

import QtQuick.Window 2.1
import QtQuick.Controls 1.4
import "content"

f/V [imports]

/1 [9]
4 Rectangle {
color: "#545454"
width: 300; height: 300
property bool temp_scale: false
f/V [the dial in use]
// Dial with a slider to adjust it

PUBLIC | 45

Switching between Celsius and Fahrenheit

- We will add the button and place at the top left of the dial, the button will display
Celsius by default and it will change the label after being clicked.

QuitButton {
anchors.right: parent.right
anchors.top: parent.top
anchors.margins: 10

h
Button {
anchors. left: parent.left
anchors.top: parent.top
checkable: true
text: checked 7 "Fahrenheit":"Celsius"
onClicked: {
temp_scale = !temp_scale;
h
h
h
/18]

PUBLIC | 46

Switching between Celsius and Fahrenheit

- Now we will modify the Dial.gml file to modify the value on the display accordingly,
to do so we only add the following line to our previous modification.

//' loverlay]
[/ [text]
4 Text{
id: value_on_dial
x: 825 y: 130
text: temp_scale 7 (vaolue.toFixed(1l) + " °F") : (wvalue.toFixed(1) + " °C")
by
[/ [text]

PUBLIC | 47 4

Results!

- You can leverage on existing examples to create your application and learn more
about Qt!

.
|| dialcontrol

.
|| dialcontrol

Celsius

PUBLIC | 48 x

SECURE CONNECTIONS
FOR A SMARTER WORLD

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2017 NXP B.V.

