

Automotive Software Architect & Technical Director

Christoph Dietachmayr (Elektrobit)

Solution Manager - Car infrastructure Automotive Software

October 2019 | Session #AMF-AUT-T3834

SECURE CONNECTIONS FOR A SMARTER WORLD

Agenda

- Introduction to Adaptive AUTOSAR
- NXP's Approach to AUTOSAR Adaptive Platform
- Elektobit's Adaptive AUTOSAR Solution for NXP Platform
- Q&A

Vehicle Architectures

Safe and Secure Mobility the semi value per car – today's standard car at \$380

Autonomy

- Different sensor types
- Data fusion:
 - Safe Processing with
 - Integrated AI capabilities
- Fail operation
- Big Data

Electrification

- Power Efficiency
- Battery Management
- Electrification Levels
 Hybrid, full electric...
- Broad range of solution
- Need for standardization

Connectivity

- V2X, 5G, Digital Radio
- Prognostic Health Management
- OTA Update Management
- Analytics (edge to cloud)
- Software-centric solutions
- System security

Vehicle Architectures

Mega Trends Force Vehicle Architecture Transformation

Low bandwidth, flat network One MCU per application

Unfit for future mobility

High bandwidth network
Gateway key to communication between domains

Step to autonomous car

Domains virtualized by SW – enabling high flexibility Easy enable/disable or update functions

Step to user-defined car

Vehicle Architectures

Mega Trends: Embedded Software become Software semi value per car – today's standard car at \$380

Technology Trends

Autonomy

Electrification

Connectivity

E/E Implication

- ECU Platform
- Topology
- Communication

- OSEK/VDX
- Signal Comm
- Static configuration

- Rich Operating Systems (e.g. Linux)
- Service Oriented Architecture
- Dynamic configuration

AUTOSAR Adaptive – Motivation

~ 1000 DMIPs

Another Platform for Different Applications

> 20.000 DMIPs

power

~ 10.000 DMIPs

Adaptive Platform – Comprehensive System Design

Integration of Classic-, Adaptive- and Non-AUTOSAR ECUs

Adaptive Platform – Architecture Logical View

Adaptive Platform – Main Requirements

Adaptive Platform – Functional Clusters

AP Foundation

- Fundamental functionalities for AP
- Locally used by one AP instance
- Comparable BSW to CP

Application

- AAs run on top of ARA
- PSE51 API restricted

AP Services

- Standard services of AP
- Locally and/or remotely accessible by different AP instances

(Virtual) Machine / Container / Hardware

AUTOSAR Runtime for Adaptive Applications = Σ of all Functional Cluster APIs / Services

API or Service Interface of a Functional Cluster.

- Programming language specific API for a Functional Cluster as specified in SWS
- The first programming language supported by the Adaptive Platform will be C++

Adaptive Platform – Key Aspects

Dynamic & Updatable

Safe & Secure

Adaptive Platform – Strategy

Specifications

Identify needs & use-cases

Concepts, Features, Requirements

Reference Code

Specification validation
Training/dissemination of AP

Attracting environment for coders

Platform Demonstrator

Highlights specific features
Prove interoperability

Showcase

Adaptive Platform – Roadmap

Auto Processors Tomorrow – Domain Architecture Requirements

Performance

Optimized for domain control

Real-time

Scalable

arm

Arm

Arm top to bottom

Arm Cortex-A, -R, and -M cores

Safe

ASIL D

Secure

Powerful hardware security engine (HSE)

Firmware upgradable public key encryption

> No side channel attacks

OTA

Across most nodes

Scalable encrypted external NVM

Wide memory range, read while write

SW Reuse

Massive software Re-use within and across application domains

- 1. Based on analysis of existing NXP Software code in existing customers' applications
- 2. Based on publicly available competitor roadmap performance statements versus today's best safe auto platform

NXP's S32 – Scalable Safe Auto Compute Platform

NXP's Safety Concept with the patented Safety by Software (SbSW) method, for performance cores, to efficiently enable the AUTOSAR Classic and Adaptive Platform Heath Monitoring & Safety.

AUTOSAR Adaptive - Trusted Platform and the Security Stack

Adaptive Application | Functional Cluster |
FC Exec Mgmt | Manifests |
POSIX OS |
Bootloader | Trust Anchor (e.g. HSM)

Software Package A
Signed container
Executables
Data
Manifests
Software Package
Manifest
Signature

OS/ECU-specific

Within AUTOSAR

S32 HSE – More than a Cryptographic Engine

Accelerates

Cryptographic operations

Offloads

the app with a dedicated intelligence

Establishes Trust

Secure Boot + Root of Trust

Controls

The platform

Easily Integrates

In your design

AUTOSAR Adaptive - Service Oriented Communication

Application layer

Application layer

API

Operating system

Execution Management

SOME/IP Communication Binding

SOME/IP Communication Binding

SOME/IP Communication Middleware

Adaptive AUTOSAR Foundation

S32 Ethernet Module & IPCF solution

- Performance (zero-copy)
- Freedom from interference (ASIL-D)
- MCAPI over Shared Memory (SHM)
- Virtual Eth over SHM and PCIe
- OS/HW agnostic

S32 IPCF: https://community.nxp.com/docs/DOC-334836
S32 SoA: https://community.nxp.com/docs/DOC-343674

Software Infrastructure for AUTOSAR Adaptive Platform

We are building an Infrastructure leveraging huge open source ecosystem and various communities targeted automotive software

Software Infrastructure for AUTOSAR Adaptive Platform

Adaptive AUTOSAR ready to use/build ecosystem

NXP Bluebox: Central Processing Unit For Autonomous

Driving

Highly Optimized Safe Central Compute

- Various sensor data streams: Radar, Vision, LiDAR, V2X
- S32V234 automotive vision and sensor fusion processor
- LS2084A embedded compute processor
- S32R27 radar microcontroller

Ease of Development

- ROS Space
- Open ROS Space Linux®-based system
- Programmable in linear C
- Easily customizable
- Development environment for mainstream vehicles
- AUTOSAR Adaptive Ready

Security

- CSE and ARM® TrustZone ® technology

High Performance per Power

- Up to 90,000 DMIPS at < 40 W
- Complete situational assessment
- Supporting classification
- Object detection and localization
- Mapping

Decision Making

- Global Path Planning
- Behavior Planning
- Motion Planning

NXP Automated Drive Kit

- Computing: NXP BlueBox 2.0
- Vision: Front Camera Software with MIPI CSI2
 Camera
- LiDAR: Selection of Lidars supported
- RADAF
- Inertial Measurement Unit & Integrated GPS
- Operating System
- Middleware: ROS (Robot Operating System)

Software Infrastructure for AUTOSAR Adaptive Platform

Production grade / Commercial use

Placeholder for Elektrobit Presentation

(TBC if it will be incorporated or need to stay separately)

SECURE CONNECTIONS FOR A SMARTER WORLD