NXP Semiconductors User Guide Document identifier: DDRTUG Rev. 1, 21 December 2021

DDR Tool User Guide

Contents

Chapter 1 Introduction	
Chapter 2 Create a new DDR tool project	4
Chapter 3 DDR configuration	5
3.1 Import *.ds file	5
3.2 OI configuration 3.3 Code generation	
Chapter 4 DDR validation	
4.1 Connection	
4.2 Test scenarios	
Chapter 5 FAQ	16
Chapter 6 Revision history	19

Chapter 1 Introduction

This document introduces the DDR configuration and validation tool. It is an embedded component of Config tools for i.MX and supports the i.MX 8M family of application processors.

The DDR tool provides two main functionalities: configuration and validation.

NOTE

The DDR tool is provided to help customers evaluate, debug, and optimize their designs. The results, or any part thereof, provided by the tool cannot be seen as a substitute for the traditional validation and compliance methods, which you must perform to declare compliance of the designs with the respective JEDEC standards.

Chapter 2 Create a new DDR tool project

To use the DDR tool, you first must create a new project.

To create a new DDR tool project, follow these steps:

- 1. Open the Config tools for i.MX.
- 2. Choose Create a new standalone configuration for processor, board, or kit and click Next.
- 3. From Processors, choose one of the devices with DDR tool support and click Finish.
- 4. To open the DDR tool view, Click **DDR** tool icon.

Config Tools Overview			×
i Project opened for the first time. Click on a tool ic	on to select the tool.		
Configuration - General Info Configuration is not saved on the disk	 Configuration - HW Info Processor: MIMX8MM4xxxKZ Part number: MIMX8MM4CVTKZ Core: Cortex-A53(core#0) SDK Version: ksdk2_0 	 Project No toolchain project detected 	
Pins Configures pin routing. including functional voltage/power rails, and run-time pin config ©	electrical pin properties, urration.	R Tool provides user friendly configuration of initialization for ntrollers and allows you to validate the configuration using validation scenarios.	
 Generated code board\pin_mux.c board\pin_mux.dts board\pin_mux.h 			~
		Close and Update Code Close	

5. To use the DDR tool, accept the Disclaimer.

	Disclaimer X
	All information provided is accurate to the best of NXP's knowledge and will not operate to increase NXP's warranty obligations. All information is provided "AS IS" and NXP makes no representation or warranty, express or implied, of accuracy, completeness, that products will be suitable for any specified use. NXP will not be liable for any damages or loss arising from, in connection with or incident to the information or assistance provided by NXP. Unless otherwise provided in a signed, written agreement, all sales transactions by NXP are subject to NXP's general terms and conditions of commercial sale: http://www.nxp.com/about/about-nxp/our-terms-and-conditions-of-commercial-sale:TERMSCONDITIONSSALE
	I Agree
Figure 2. Discla	aimer

Chapter 3 DDR configuration

The DDR configuration provides a user-friendly graphical interface to configure the DDR interface and other associated subsystems. You can use it to change the DDR controller and PHY configuration when a different memory module is used to the configuration and to optimize the parameters associated with signal integrity.

3.1 Import *.ds file

Use import of *.ds file to load the initialization script provided by the **Register Programming Aid (RPA)** tool and bypass the UI configuration. To obtain the latest RPAs, refer to the following link on NPX community.

1. To import the RPA initialization script, use the Import *.ds file button and browse for the desired *.ds file

	Preset Default LPDDK4 Configuration V
-	🚵 Import.ds file 🛛 🗸 📉
	Select file: C:\Users\nxa11585\Desktop\script\mx8mp\mx8mp_lpddr4_2gb_2000m_200m Browse
	DDR type LPDDR4 was detected! Note that imported settings will not be applied to the UI config view!
	× ×
	OK Cancel
Figure 3. Import RPA so	ript

2. To load the *.ds file and disable the UI configuration interface, press OK.

✓ Device Information	
Memory type	LPDDR4
Density per channel per chip select (Gb)	8
Number of Channels	2
Number of Chip Selects used	1
Total DRAM density (Gb)	16
Number of ROW Addresses	16
Number of COLUMN Addresses	10

3. The contents of the imported *.ds file is shown in Code Preview, ddr_config.ds

4. To switch back to UI configuration, press the button "Enable manual config".

	🔤 🗾 🗖	
	(?)	
	Preset Default LPDDR4 Configuration v	
Figure 6. Enable manual config		

3.2 UI configuration

The UI configuration allows you to change manually Device Information, PHY options, or Design-specific configuration. There are two modes available, **Basic** and **Advanced**.

NOTE
Advanced mode is only recommended for experienced users.

Basic mode allows you to configure the parameters that are design-dependent.

1. Device information

Memory type	LPDDR4	
Density per channel per chip select (Gb)	8	
Number of Channels	2	
Number of Chip Selects used	1	
Total DRAM density (Gb)	16	
Number of ROW Addresses	16	
Number of COLUMN Addresses	10	
Number of BANK addresses	3	
Number of BANKS	8	
Bus Width	32	×
Number of frequency setpoints	1	×
Clock Cycle Freq (MHz)	1500 MHz	
Clock Cycle Time	666.667 ps	

2. Board data bus configuration for LPDDR4

✓ Channels																
#	<							В								>
DRAM data bus	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DRAM data bus (User Input ->)	7	6	5	4	3	2	1	0	14	15	10	13	12	11	9	8
Byte lane	<			0				>	<			1				>
Data bus bits within byte lane	7	6	5	4	3	2	1	0	6	7	2	5	4	3	1	0
<																>

3. UART port selection

UART Port	UART2 ¥	
Figure 9. UART selectio	n UI	

4. DBI selection (for LPDDR4)

DBI	Disable	¥
Figure 10. DBI selection		

Advanced mode allows you to configure additional parameters.

1. The firmware version is the one officially supported by the BSP, but the **DDR tool** offers the possibility to select between multiple versions.

	Phy Firmware Version	FW2020.06			
	Figure 11. Firmware version se	lection UI			
	Use only the Firmware versior for each SOC.	NOTE n for your specific SoC and BSP GA version. Not all Firmware versions are supported			
2. PHY log level selection					
	Phy Log Level	Firmware complete 🗸			

- Figure 12. PHY log level selection
- 3. IOMUX configuration

#	Command	Address	Size	Value
0	memory set	0x30330214	32	0x00000010

4. PMIC configuration sequence

* PMIC config + × # PMIC command Value 0 pmic_cfg 0x004B 1 pmic_set 0x2F01 Figure 14. PMIC configuration UI

5. Custom configuration

	✓ Custom config + ×						
#	Command	Address	Size	Value	^		
0	memory set 🔺	0x30300000	32	0x0000000			
1	memory set	x30300000	32	0x0000000	~		
	memory setbit memory clrbit memory chkbit1 memory chkbit0						

NOTE

Any write to an incorrect address may cause unexpected behavior.

6. DQ ODT and DS configuration

 Read config 		
PHY ODT	60.0 ohm	~
DRAM driver strength	40 ohm	~
SOC ODT	60	
✓ Write config		
PHY driver strength	34.3 ohm	~
DRAM ODT	40 ohm	¥

7. CA ODT and DS configuration - Informational Only

	CA ODT and DS config			
	PHY driver strength (CA) DRAM ODT (CA)	40 ohm 40 ohm		
Figure 17.	CA ODT and DS configura	ation UI		

3.3 Code generation

You can generate the configuration as C code in the Code Preview View, which can be used by the U-Boot SPL driver.

You can trigger code generation by any change in the GUI, it is highlighted in the Code Preview.

You can save files from Code Preview on the disk by using DDR tool Export Wizard.

timing.c ddr_config.ds	Q Q 🔬 🗷 🔻
Export	- 🗆 X
DDR Tool Export Wizard	
^① File(s) to export: ddr_timing.c, ddr_config.ds	
Cortex-A53(core#0)	
C:\Tmp\cfg_project	∽ Browse
	Finish Cancel
ure 19. Export generated files	

Chapter 4 DDR validation

DDR validation uses different scenarios to assess DDR performance by downloading a test image to the internal RAM of the processor in the Serial Download mode. Results are sent to the DDR tool via UART.

DDR evaluation can help you to assess the stability of the DDR interface on the board in a non-OS environment.

lest scenarios	Test options	Generate reports
DDR View Validation 🕸		
Scenarios Result	Results Choose Tests PHY Test Pass / Total Checking 0 Test summary	
▲ ► Start Validation	Logs console	
	Legend: 🖓 🖬 🖬 🖬 🖬 🖬	
Connections:	Summary Logs	
Select connection type:	Test results	Error capture registers
Select COM port: COM3 V	Passed 0 (0.0%) Failed 0 (0.0%) Queued 1 (100.0%) Skipp Script Run Elapsed ti Result Fail reason Phy Init 1 N/A Queu Fail reason	Script: Phy Init Run: 1
Connection type		
COM ports list	<	>
COM pc	orts scan Test results overvie	w

4.1 Connection

To connect to a board, you must do the following:

- 1. Configure the board to boot in the Serial Download mode/Manufacture mode and power up the board.
- 2. Connect a UART cable from the host computer to the UART of the A-core on the board.
- 3. Connect a USB cable from the host computer to the USB port on the board that is used by the Serial Download mode. An "HID-compliant device" or a "USB Input Device" is shown in Windows Device Manager.

After the board is connected to the host computer, you should search the UART ports by using **COM port scan**. COM port drop list is populated with all the available UART ports.

	Connections: Select connection type:		
	SERIAL		\checkmark
	Select COM port:	COM3 COM3 COM4	
Figure 21. COM port select	ion		

Choose the correct UART that is used as the A-core debug UART port.

4.2 Test scenarios

Once the DDR configuration and board connection are set up, you can execute different **Test scenarios**. You can customize each test by setting the parameters from **Test options**.

Depending on the test and options selected, the execution time may differ. By default a 90 seconds timeout is set, to assure that in case of an issue the test finishes. To change the default value, edit the **Timeout (seconds)** option:

	Results Choose Tests
	Select which tests the scenario will run, a Sync selection across all scenarios
	Timeout (seconds): 90
Figure 22. Timeout selection	on

To start test execution, press the button "**Start Validation**". You can check the status of the running test from the **Logs** console. By default, the log level is set to **ERROR**. Additional log-level options are available, with different output in the console:

################## Result for:phy_init ###### Run 1 ###################################	View log for: Phy Init - Run 1 (Passed)	ERROR 🖂
Microsoft Windows [Version 10.0.18363.1139] INFO (c) 2019 Microsoft Corporation. All rights reserved. WARN	######################################	DEBUG
(c) 2019 Microsoft Corporation. All rights reserved.	Microsoft Windows [Version 10.0.18363.1139]	INFO
	(c) 2019 Microsoft Corporation. All rights reserved.	WARN

At the end of the test, the PASS/FAIL status is displayed in "Results". The test summary is displayed in "Summary".

D	re / Total		D	DRAM driver strength				
	1557 TOtal	240 ohm	120 ohm	80 ohm	60 ohm	48 ohm	40 ohm	
	240 ohm	0/1	0/1	0/1	0/1	0/1	0/1	
5	120 ohm	0/1	1/1	1/1	1/1	1/1	1/1	
0	80 ohm	0/1	1/1	1/1	1/1	1/1	1/1	
E	60 ohm	1/1	1/1	1/1	1/1	1/1	1/1	
	40 ohm	1/1	1/1	1/1	1/1	0/1	0/1	

- Yellow is for Test failed
- Orange is for Configuration error
- Red is for Target connection error or exception in the script
- Green is for Test passed

The DDR tool offers several test scenarios that can be split into Inspection, Optimization, vTSA, and Stressing.

4.2.1 Inspection

Inspection shows the status of the DDR Controller and DDR PHY configuration, by executing following tests:

- 1. Firmware Init executes the DDR PHY training to check the DDR PHY configuration.
- Operational performs basic memory access test by running Write-Read-Compare/ Walking Ones/ Walking Zeros tests. Such options as Start Address, Size, Enable DDR Memory cache, Access mode/Pattern option are available for each test.

	Write-Read-Co Start address	ompare parameters 0x40000000		hex	
5	Size ✓ Enable DD	32MB R Memory cache			
F	Use rando Pattern 0xAABBCCDI	m pattern D,0x01234567,0xFFFFFFF	,0χΑΑΑΑΑΑΑ,	~	
	0xAABBCCDI 0xAABBCCDI 0xAABBCCDI	D,0x01234567,0xFFFFFFF D,0x01234567,0xFFFFFFF D,0x01234567,0xFFFFFFF D,0x01234567,0xFFFFFFFF	,0xAAAAAAAA, ,0xAAAAAAAAA, ,0xAAAAAAAAA		
				~	
Figure 25. Test options					

4.2.2 Optimization

DQ ODT and driver strength tests sweep the DQ IO configurations to create board-specific Driver Strength vs. ODT PASS/FAIL map for the Reads and the Writes.

NOTE

Optimization is not available when UI configuration is bypassed by RPA initialization script import.

D-	an / Tatal	DRAM driver strength					
Pa	iss / Total	240 ohm	120 ohm	80 ohm	60 ohm	48 ohm	40 ohm
	240 ohm	0/1	0/1	0/1	0/1	0/1	0/1
늄	120 ohm	0/1	1/1	1/1	1/1	1/1	1/1
2	80 ohm	0/1	1/1	1/1	1/1	1/1	1/1
E.	60 ohm	1/1	1/1	1/1	1/1	1/1	1/1
	40 ohm	1/1	1/1	1/1	1/1	1/1	1/1

For passing cells (Green cells), enable the option *Apply current selection in DDR configuration* (right click on the cell). It sets the respective Driver Strength and ODT value into the configuration for use in other scenarios.

Rea	d ODT and	d driver - L	.P4					
Dana (Tatal			D	RAM drive	er strength			
Pas	s / IOtal	240 ohm	120 ohm	80 ohm	60 ohm	48 ohm	40 ohm	
	240 ohm	0/1	0/1	0/1	0/1	0/1	0/1	
PHY ODT	120 ohm	0/1	1/1	1 /1	1 /1	1 /1	1 /1	
	80 ohm	1/1	1/1	Apply	uration			
	60 ohm	1/1	1/1	1/1	1/1	1/1	1/1	
	40 ohm	1/1	1/1	1/1	1/1	1/1	1/1	

Figure 27. Apply DQ ODT and DS configuration

NOTE

You can use the Driver Strength vs. ODT map as one of the criteria when deriving optimal ODT/Driver Strength values. This map cannot serve as all-comprising output to make this determination.

NOTE

NXP strongly recommends using the default ODT and Drive strength values that are tested and validated as part of our GA BSP. To ensure that your design adheres to the board layout requirements, refer to the device i.MX 8M Hardware Developer's Guide.

4.2.3 vTSA

vTSA performs Virtual Timing Signal Analysis by running **Diag Write Margin/ Diag Read Margin** with virtual eye diagram displayed as output.

NOTE

Details about vTSA are provided in FAQ section.

4.2.4 Stressing

To test the stability of the DDR configuration more extensively, you can use the *Stressing* scenario, with its suite of tests that covers different situations.

Two ways of running *Stress* tests are available:

1. **Single run** runs the test suite one time with different options selected (Size, Enable DDR Memory cache, Stop on fail). In case of failure, you can check the status of each test in the suite in the Logs console, with Log level set to INFO

Results Choose Tests		
Stress Tests Pass / Total Checking 0 0/1		
Summary Logs View log for: Stress tests - Run 1 (Failed)	~	
INFOtest_app [INFO]: Start Stress testsINFOtest_app [INFO]: Data is address test fail with 2097152 failsINFOtest_app [INFO]: Row hop read test fail with 4194287 failsINFOtest_app [INFO]: SSN memcpy x32 test1 fail with 1629438 failsINFOtest_app [INFO]: SSN memcpy x32 test2 fail with 1686524 failsINFOtest_app [INFO]: SSN memcpy x32 test3 fail with 480248 failsINFOtest_app [INFO]: SSN memcpy x32 test4 fail with 480248 failsINFOtest_app [INFO]: SSN memcpy x32 test4 fail with 458098 failsINFOtest_app [INFO]: SSN memcpy x32 test4 fail with 256 fails		
Figure 29. Stress tests		

2. Test duration runs the test suite for a selected time. This is suitable for overnight tests.

Source address	0x40000000 hex		
Size	32MB ~		
🗹 Enable DDR	DDR Memory cache		
Stop on fail			
Test duration	✓ 1 → Hours 0 → Minutes		

In the Logs console, you can monitor test execution and see the number of iterations and the duration.

Resul	Its Choose Tests ress Tests ss / Total Checking 0 1/1	
Lege	end: 🗆 🛱 🗖 🗖 🗖 🗖 🗖	
Sum	nmaryLogs	
View	w log for: Stress tests - Run 1 (Passed) ERROR	\sim
0s: 1s: 2s: 3s: 4s: 5s:	PASSED (1/1) PASSED (2/2) PASSED (3/3) PASSED (4/4) PASSED (5/5) PASSED (6/6)	^
Figure 31. Str	ress tests results	

NOTE

Make sure the **Timeout (seconds)** setting is higher than the **Test duration** setting, otherwise the test ends with timeout.

Chapter 5 FAQ

- 1. What does vTSA mean?
 - a. vTSA is an abbreviation for Virtual Timing Signal Analysis.
 - b. A "virtual" TSA uses the memory controller itself to test margins without test equipment. "Virtual" does not mean simulation!
 - c. Memory controllers have the ability the alter timings, voltage references, termination settings, and so on, for both incoming and outgoing signals.
 - d. "Training" is a process when the memory controller sweeps these parameters and finds the configuration with the most margin for operation.
 - e. A vTSA simply logs this information for output, which provides insight into the signaling margin of the system without the need for test equipment.
 - f. Initialization and calibration settings can be dumped to a file for analysis as well.
- 2. What is the vTSA output?
 - a. Virtual Timing Signal Analysis(vTSA) provides write and read data eye diagrams virtually by running a series of write/read transactions as opposed to the hardware method of using a high-speed oscilloscope to perform manual physical TSA (pTSA) measurements.
 - b. This being the case, vTSA output itself approximates the actual write/read eyes.
 - c. You should expect some variation between trained values of delay lines and VREF in comparison to the vTSA report of these values.
 - d. vTSA only reports the values it detects in the "widest" part of the reported eye, which may itself vary from run-to-run.
 - e. The key takeaway from using this tool is to display the virtual write/read eyes to convince the user of the robustness of their design.

- 3. Need more information about vTSA?
 - a. The vTSA tool is an approximation of an actual pTSA. Thus, you may note some variation between the trained delay line value and the vTSA "mid" value. It is observed and expected that this variation may be up to ~20 ps. The key takeaway from the generated eye diagrams should be focused on verifying the ample margin of the trained delay line value within the data eye.
 - b. For the trained VREF value, the LPDDR4 device Mode Register 14 (MR14 which holds the trained VREF value) applies to ALL byte lanes. In other words per JEDEC, there is not an MR14 per byte lane and instead, MR14 applies to all byte lanes.

- c. For a board that follows the NXP DDR layout guidelines, there should be plenty of margin around the VREF trained value. You can find the guidelines in the respective NXP Hardware Developer Guide.
- 4. How a data eye margin is generated?
 - a. There are several delay steps available to shift each DQ and DQS.
 - b. As DQ crosses the unit interval, from zero-step delay to 1 unit internal step delay, each step is tested with a write-read-compare test to determine pass or fail.
 - c. The DQ traverse of the unit interval is repeated for all available VREF steps.
 - d. Delay steps generate a line, and repeating the lines at each VREF step generates data eye margin.
 - e. The crossing of DQS signal with trained VREF and delay step is placed in the generated data eye margin.
 - f. Each passing dot in the margin eye already meets the setup, hold, and voltage requirement.

- 5. What represents the information next to the data eye?
 - a. Unit interval = 1/data rate; for example, at 3200MT/s data rate the unit interval = 312.5 ps
 - b. The x-axis displays the time. It is one unit interval in percentage. -50 % to +50 %
 - c. The x-axis data eye margin width opening is displayed as the percentage of one unit interval. For example: Step w=80.56 % of UI
 - d. The y-axis displays the voltage.
 - e. The y-axis open data eye margin height/amplitude opening is displayed in voltage. Ex: Vref h=0.35 V

- 6. How much margin is considered as good?
 - a. To determine the required margin mask, you must do the following:
 - · Optimize The DDR interface
 - Settings have been optimized, generate the worst-case data eye margin using the worst-case conditions (temperature, voltage, frequency, pattern) for a customer board DDR interface.

- Use the DDR training optimizing/centering the strobe to the eye margin
- b. A green pixel in the data eye margin indicates a passing cell. It means for that green pixel the setup and hold time as well as the VIHLac/dc are satisfactory.
- c. Any additional green pixels around the strobe location in the data eye margin are additional margin available to DDR for that DQ.
- 7. Why is the trained Vref sometimes not in the exact center of the eye?
 - a. The VREF training must select a value that corresponds to all of the byte lanes' passing VREF window and then program this value into the LPDDR4 MR14 register. It means that for a one-byte lane, though the trained VREF value may not seem to be in the exact center of the data eye, it is selected to provide the best possible margin for this byte lane along with satisfying the other byte lanes.
- 8. How to check that wrong UART is selected?

Set the Log Level to DEBUG and check the messages from console

File "C:\nxp\i.MX_CFG_v9\bin\python38\serial\serialwin32.py", line 62, in open raise SerialException("could not open port {!r}: {!r}".format(self.portstr, ctypes.WinError())) serial.serialutil.SerialException: could not open port 'COM4': PermissionError(13, 'Access is denied.', None, 5)

or

```
Traceback (most recent call last):

File "C:\ProgramData\NXP\mcu_data_v9\processors\MIMX8MM4xxxKZ\ksdk2_0\mem_validation\ddrc\scripts\common\base_test.py", line 224,

assert self.is_waiting_for_input()

AssertionError
```

- 9. How to proceed in case of test timeout?
 - a. In case of test timeout, the below pop-up window appears

🕑 Valida	ation Error	×
	Connection timed-out!	
		ОК

b. Increase the timeout (second) option and rerun the test. If you get the below error, power off the board, unplug the UART cable, power on the board, plug in the UART cable

Traceback (most recent call last):
File "C:\ProgramData\NXP\mcu_data_v9\processors\MIMX8MM4xxxKZ\ksdk2_0\mem_validation\ddrc\scripts\common\base_test.py", line 224,
assert self.is_waiting_for_input()
AssertionError

Chapter 6 Revision history

Table 1. Revision history

Date	Revison number	Changes
11 August 2021	0	Initial version
21 December 2021	1	Screenshots are updated, section 4.3 is removed

How To Reach Us Home Page: nxp.com Web Support: nxp.com/support Limited warranty and liability — Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, elQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2021.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

> Date of release: 21 December 2021 Document identifier: DDRTUG

