

© 2023 NXP Semiconductors. All right reserved

Author: MCUXpresso IDE Team

Version: 2 .0.0 - 20 t h January 2023

Using the MIMXRT1170-EVK and EVKB with MCUXpresso IDE

Table of Contents

1. Overview .. 3

2. Read Me First ... 4

MIMXRT1170-EVK Information .. 4

MIMXRT1170-EVKB Information .. 5

Debug Restrictions .. 5

3. Overview of Board features related to Debug ... 6

MIMXRT1170-EVK .. 6

MIMXRT1170-EVKB .. 7

4. On board Debug Probe .. 9

MIMXRT1170-EVK .. 9

LPC-Link2 mode .. 9

Permanently installing LPC-Link2 Firmware – LPCScrypt ... 9

Updating the DAPLink Firmware version ... 10

MIMXRT1170-EVKB .. 11

Updating Firmware – MCU-Link installer ... 11

Debug Connection .. 11

5. Memories ... 13

MPU Memory attributes and Cache(s) ... 15

6. Flash Drivers ... 16

7. New Project Creation ... 17

8. SDK Examples ... 19

Importing an example .. 20

9. Debug Launch Configurations .. 21

Single-core RT117x derivatives ... 24

Using Cortex-M4 as boot core .. 24

10. Project Debug ... 25

11. Project Modifications required to enable SWO Trace ... 28

12. XIP How and Why ... 30

13. Resets ... 31

14. Building and Debugging Projects for SDRAM ... 32

Modifying projects for using the SDRAM region .. 33

15. Troubleshooting ... 35

Erasing the QSPI Flash .. 35

© 2023 NXP Semiconductors. All right reserved 2

Use of __WFI() or low-power modes .. 36

Using hardware breakpoints .. 36

Identifying unexpected debug failures due to unavailable M7 core .. 37

Debugging a stand-alone CM4 example on the secondary core .. 38

Using external Debug Probes ... 39

Debug performance and the Data Cache ... 39

Using different debug probe types ... 40

Revision History

Date Description
October 9th, 2020 V1.0.0 – Initial Revision
February 26th, 2021 V1.1.0 – Updates based on latest IDE & SDK releases
September 15th, 2021 V1.2.0 – Updates based on IDE 11.4.x & SDK 2.10 releases. Added SWO Trace section
January 17th, 2023 V1.3.0 – Updates in Flash Drivers, SWO sections. Added SDRAM section.
January 20th, 2023 V2.0.0 – Updates for EVKB board

© 2023 NXP Semiconductors. All right reserved 3

1. Overview

This document is intended to assist users who are new to using the MIMXRT1170-EVK or
MIMXRT1170-EVKB boards. It assumes some familiarity with creating projects and debugging
applications with MCUXpresso IDE v11.x.

It also assumes an appropriate SDK for the MIMXRT1170-EVK or MIMXRT1170-EVKB board
has been installed into MCUXpresso IDE, and a LinkServer/CMSIS-DAP debug connection will
be used for all debug operations.

This document applies to MIMXRT1170-EVK REV C or later and MIMXRT1170-EVKB boards
which are fitted with MCU i.MX RT1176 B0 silicon. The RT1170 (family) name is used
interchangeably to refer to the MCU.

Note: it is strongly recommended that the latest available SDK is installed – at the time of
writing this is the MIMXRT1170-EVK(B) version 2.13.0.

For more information on using MCUXpresso IDE, please see the MCUXpresso IDE User Guide.

Note: this is a guide only and not intended as a definitive document

© 2023 NXP Semiconductors. All right reserved 4

2. Read Me First

The MIMXRT1170-EVK and MIMXRT1170-EVKB boards have a number of subtle design
differences to the similar MIMXRT1060-EVK board, please refer to the section Overview of
Board features related to Debug for details of board features.

The i.MX RT1170 MCU features a high-performance Arm® Cortex®-M7 core and a power-
efficient Cortex®-M4 core.

The i.MX RT1170 uses the primary Cortex-M7 core for booting, while having the secondary
Cortex-M4 core invisible to the debug world. For LinkServer debug connections, a connect
script file is automatically selected to wake-up the M4 core such that it is visible for
subsequent debug operations. Additionally, a reset script file is automatically selected to
handle booting and debug visibility after a reset operation. Please refer to the section Debug
Launch Configurations for more information.

Certain images when programmed into flash can prevent debug control on this part, leading
to error messages of the form below when debug operations are attempted:

For example, this can occur if an image is programmed onto flash that located the stack
outside of accessible RAM, placed the device in a deep sleep state, or otherwise caused an
exceptional condition which interferes with debug access.

To erase the flash (and potentially recover debug control), please follow the procedure
described in the Troubleshooting section at the end of this document before any other debug
operations are attempted.

Please also refer to the section Onboard Debug Probe to ensure your board is programmed
with the correct debug probe firmware.

MIMXRT1170-EVK Information

The onboard debug probe (sometimes referred to as “FreeLink”) is based on an LPC4322 MCU
and is very similar to an LPC-Link2. As supplied it is pre-programmed with a version of DAPLink
(CMSIS-DAP) firmware, however fitting a link J22 will allow it to operate as an LPC-Link2 debug
probe and in this mode will deliver superior performance and features. Please see Onboard
Debug Probe for more details.

At the time of writing there is only one variant of this board which ships fitted with an external
16MB QSPI Flash connected by default through FlexSPI1.

© 2023 NXP Semiconductors. All right reserved 5

MIMXRT1170-EVKB Information

One key improvement is the use of new MCU-Link onboard debug probe hardware. This
debug probe is based on an LPC55S69 MCU and is very similar to the stand-alone MCU-Link
probe and features two VCOM interfaces. As supplied it is pre-programmed with a version of
NXP’s CMSIS-DAP compatible firmware, but it can also be programmed with a J-Link LITE
compatible firmware option (this is outside the scope of this document). Please see Onboard
Debug Probe for more details.

At the time of writing there is only one variant of this board which ships fitted with an external
64MB QSPI Flash connected by default through FlexSPI1.

Note: Even though there are additional flashes fitted on the EVK(B) board, they cannot be used
without board-level modifications, therefore the rest of this document as well as SDK example
projects reference only the QSPI flash.

For further information on the i.MX-RT1170 and the EVK development board, please see the
following links:

https://www.nxp.com/pages/:i.MX-RT1170

https://www.nxp.com/pages/:MIMXRT1170-EVK

The document “MIMXRT1170 EVK Board Hardware User's Guide” may also prove useful
https://www.nxp.com/webapp/Download?colCode=MIMXRT1170EVKHUG

Debug Restrictions

Despite the extensive feature set of this MCU/Board, some debug capabilities are not
available.

ETB based instruction trace is not supported by this MCU.

https://www.nxp.com/pages/:i.MX-RT1170
https://www.nxp.com/pages/:MIMXRT1170-EVK
https://www.nxp.com/webapp/Download?colCode=MIMXRT1170EVKHUG

© 2023 NXP Semiconductors. All right reserved 6

3. Overview of Board features related to Debug

MIMXRT1170-EVK

Below is a photograph of the MIMXRT1170-EVK board with key elements numbered and
described:

1. MCU Power LED (D16). Note: if this LED is not lit, the MCU/board is not powered and
cannot be debugged (see 2 and 9).

2. Jumper block J38 – Controls MCU power source (see break out section link options)

a. External power connection (see 3)

b. Target USB1 provides power (see 10)

c. Power via the USB debug connection (only available when using DAPLink OpenSDA
firmware) (see 4, 5)

3. External power connection. If used, this should be 5V, centre +ve, and J38 set to position
a (see 2a). This allows power to the board to be controlled via switch SW5 (above the
barrel connector J43)

4. J11 – Onboard debug probe USB connection. This debug probe is pre-programmed with
DAPLink OpenSDA firmware and in this mode the USB connection can also power the
board (see 2c and 5)

MIMXRT1170-EVK

© 2023 NXP Semiconductors. All right reserved 7

5. J22 - When a link is fitted (as shown), the onboard debug probe will operate in LPC-Link2
compatibility mode. In this mode, MCUXpresso IDE will softload LPC-Link2 firmware
automatically when a debug operation is performed. In this mode, performance will be
considerably enhanced and SWO debug trace will become available. However, in this
mode the board must be powered externally (see 2a, b)

6. J1 – 20-way JTAG style connection for use with external debug probes such as the
standalone LPC-Link2

7. SW1 - DIP switches to select boot options (see break out section for details). Note: at the
time of writing, the MIMXRT1170-EVK boards ship with QSPI flash

8. Board printed table showing boot switch settings

9. Reset switches, SW4 (above) and SW6 (below, right). SW4 is the power-on reset button.
SW6 is the board ON/OFF button. A short pressing in OFF mode causes the internal power
management state machine to change state to ON. In ON mode, a short pressing
generates an interrupt as a software-controllable power-down (this can recover a WFI
‘freeze’). An approximate 5 seconds or more pressing causes a forced OFF – but the Power
LED can remain lit!

Target USB1 – can also be used to provide power to the target – (see 2b)

MIMXRT1170-EVKB

Below is a photograph of the MIMXRT1170-EVK board with key elements numbered and
described:

MIMXRT1170-EVKB

© 2023 NXP Semiconductors. All right reserved 8

1. MCU Power LED (D16). Note: if this LED is not lit, the MCU/board is not powered and
cannot be debugged (see 2 and 9).

2. Jumper block J38 – Controls MCU power source (see break out section link options)

a. External power connection (see 3)

b. Target USB1 provides power (see 10)

c. Power via the USB debug connection (see 4)

3. External power connection. If used, this should be 5V, centre +ve, and J38 set to position
a (see 2a). This allows power to the board to be controlled via switch SW5 (above the
barrel connector J43)

4. J86 – Onboard debug probe USB connection. This debug probe is pre-programmed with
MCU-Link CMSIS-DAP firmware and in this mode the USB connection can also power the
board (see 2c)

5. JP3 – MCU-Link firmware update mode. When a link is fitted, the firmware of the onboard
debug probe can be programmed using the MCU-Link installer host utility.

6. J1 – 20-way JTAG style connection for use with external debug probes such as the
standalone LPC-Link2 or MCU-Link probes

7. SW1 - DIP switches to select boot options (see break out section for details). Note: at the
time of writing, the MIMXRT1170-EVKB boards ship with QSPI flash

8. Board printed table showing boot switch settings

9. Reset switches, SW4 (above) and SW6 (below, right). SW4 is the power-on reset button.
SW6 is the board ON/OFF button. A short pressing in OFF mode causes the internal power
management state machine to change state to ON. In ON mode, a short pressing
generates an interrupt as a software-controllable power-down (this can recover a WFI
‘freeze’). An approximate 5 seconds or more pressing causes a forced OFF – but the Power
LED can remain lit!

10. Target USB1 – can also be used to provide power to the target – (see 2b)

© 2023 NXP Semiconductors. All right reserved 9

4. On board Debug Probe

MIMXRT1170-EVK

The onboard debug probe fitted to this board features enhanced hardware based on the
LPC4322 MCU (as also used on the LPC-Link2 debug probe). As shipped, this debug probe runs
DAPLink/CMSIS-DAP firmware in internal flash. This firmware features a mass storage device
bootloader allowing programming via drag and drop to its filer window.

However, in this mode, debug performance is limited and SWO trace features are not
available. Typical flash programming speed for small application – DAPLink firmware:

Flash Program Summary: 30764 bytes in 1.39 seconds (21.61 KB/sec)

LPC-Link2 mode

Fitting a jumper to link J22 and power cycling the board (and probe) will allow the debug
probe to re-enumerate as a LPC device - visible in Windows Bluetooth and Devices as:

In this LPC-Link2 compatibility mode, MCUXpresso IDE will automatically recognise the device
and softload LPC-Link2 firmware at the start of the next debug session.

At this point, the probe will re-enumerate and be visible in Windows as below:

In addition to improved debug performance (which includes approximately 4x speed
improvement for flash programming), SWO trace features are also available.

Typical flash programming speed for a small application – LPC-Link2 firmware:

Flash Program Summary: 30764 bytes in 0.39 seconds (76.84 KB/sec)

Note: both versions of probe firmware are able to provide debug control and simultaneous
serial communications via VCOM. Although there is no mass storage capability in this mode,
binary file (or .axf) programming via the IDE’s GUI Flash Tool will deliver much faster
performance.

Permanently installing LPC-Link2 Firmware – LPCScrypt

DAPLink firmware is factory programmed into the internal flash of the LPC4322 debug probe
MCU. However, if desired, this can be permanently replaced using the LPCScrypt utility:
https://www.nxp.com/LPCSCRYPT

https://www.nxp.com/LPCSCRYPT

© 2023 NXP Semiconductors. All right reserved 10

If this is done, LPC-Link2 firmware will permanently replace DAP-Link when link J22 is not
fitted.

Updating the DAPLink Firmware version

At the time of writing there are no known issues with the supplied DAPLink firmware, and no
new versions are available. However, the update mechanism is described below for
reference.

From MCUXpresso IDE go to Help -> Additional resources -> OpenSDA Firmware Updates, this
will open a web page ‘OPENSDA: OpenSDA Serial and Debug Adapter’. From this page, locate
the dropdown and select the MIMXRT 1170-EVK board.

Download the latest DAPLink binary

To install the firmware, follow the procedure below:

1. Power off the board

2. Press and hold SW3 (on the same side as the USB OpenSDA connector, below)

3. Connect a USB cable to the OpenSDA connector

4. Release SW3

5. Open a filer window and observe a drive labelled MAINTENANCE appears:

© 2023 NXP Semiconductors. All right reserved 11

6. Open this drive and drag the previously downloaded firmware onto the filer window

a. The filer window should close when the firmware update has completed

7. Eject the device

8. Power off the board

Important Note: This version of OpenSDA firmware supports drag and drop programming of
the onboard QSPI device only. Please be aware that the maximum size that can be
programmed in this manner is limited to the amount of available onchip RAM on this device.

MIMXRT1170-EVKB

The onboard debug probe fitted to this board features the new MCU-Link hardware based on
the LPC55S69 MCU (as also used on the stand-alone MCU-Link debug probe). As shipped, this
debug probe runs NXP’s CMSIS-DAP firmware in internal flash. This firmware has debug and
SWO trace features and includes two VCOM USB to serial interfaces.

Updating Firmware – MCU-Link installer

CMSIS-DAP firmware is factory programmed into the internal flash of the LPC55S69 debug
probe MCU. To update to a more recent version, or to switch to using a J-Lite compatible
firmware, download and use the MCU-Link installer utility available on the MCU-Link debug
probe architecture page: https://www.nxp.com/MCULINK.

To update the firmware, fit a jumper across JP3, power on the board and run the desired
program_CMSIS or program_JLINK utilities.

Debug Connection

For initial use, we recommend using the onboard debug probe via USB connection (DAPLink
mode for EVK boards as this option provides power to the board). See previous Overview of
Board features… section above, option 2.c. Before attempting a debug operation ensure that
the Green LED D16 is lit – see 1 above.

https://www.nxp.com/MCULINK

© 2023 NXP Semiconductors. All right reserved 12

Note: if the board has been configured correctly the LED next to SW5 switch will light green.
If the LED is not lit, the MCU will not be powered and debug will fail, resulting in an error
similar to that below (despite the debug probe being available):

© 2023 NXP Semiconductors. All right reserved 13

5. Memories

Below is the default arrangement of usable memories on this MCU and board. Some, or all of
these regions will be visible within an MCUXpresso IDE project's Memory Configuration Editor
(as below):

• External board memories are highlighted in blue. LinkServer Flashdriver for the QSPI
device highlighted in red.

• Note: Due to the multicore nature of this MCU, some memory regions have dedicated
usage for the two cores. Some of the memories are visible to both cores at the same
addresses, while for other memories each core uses a different address.

• Note: By default, projects will be linked to the first flash memory in this list and use the
first RAM region for data, heap and stack. However, the SDK (projects and examples)
may select a subset of these memories and/or change their order to control linkage
(and also override default linkage using the LinktoRAM feature – see later)

BOARD_FLASH (QSPI) at 0x30000000: This 16MB (for EVK) / 64MB (for EVKB) device is board
memory external to the MCU. Programming of this device is provided by a flash driver called
MIMXRT1170_SFDP_QSPI.cfx (for LinkServer CMSIS-DAP debug connections). On reset, (if
board boot DIP switches SW1 are set for QSPI Flash Boot) the BootROM will interrogate this
device and attempt to identify a specific image header. If found, the header data will be used
to configure its operation (and also initialise the SDRAM). If a correct header is not found, this
device will be unavailable.

Note: MCUXpresso IDE will automatically generate and locate an appropriate header from
information supplied by the SDK for new projects and as required for example projects.

Code can be run directly from this Flash, this is known as Execute in Place (XIP). This Flash can
be cached by the MCU.

Note: The term XIP is used to differentiate from an alternative boot strategy, where the
BootROM will relocate code (and data) from flash for RAM execution.

Note: Also see the section on Flash Drivers.

© 2023 NXP Semiconductors. All right reserved 14

SRAM

The i.MX RT1170 has 2MB total on-chip SRAM which includes:

• up to 512 KB of TCM for Cortex-M7

• 256 KB of TCM for Cortex-M4

• dedicated 1.25MB OCRAM

The configurable 512 KB shared with Cortex-M7 TCM is FlexRAM which can be allocated as a
combination of I-TCM, D-TCM for Cortex-M7 and general OCRAM. The implied partitioning of
this block is 256KB ITCM, 256KB DTCM, 0KB OCRAM

The SRAM includes some regions designated for ECC. When the ECC feature is enabled, the
users cannot utilise the ECC memory regions in SRAM.

SRAM_OC at 0x20240000: This 1024KB is on chip SRAM accessed over AXI and is cacheable
by the MPU. Code or data accessed from this memory will use space within the cache. If this
memory is marked as not cacheable, performance will be significantly reduced.

Most example projects reserve the upper 256KB range as NCACHE_REGION to be used as
non-cacheable area.

SRAM_ITC_cm7 at 0x0: This 256KB device (FlexRAM) is on chip SRAM, and tightly coupled to
the Cortex-M7, and will be 'seen' by the CPU before the cache, therefore the contents of this
RAM will not be cached. This RAM will provide the best deterministic performance for
program execution.

SRAM_DTC_cm7 at 0x20000000: This 256KB (FlexRAM) is on chip SRAM, and tightly coupled
to the Cortex-M7, and will be 'seen' by the CPU before the cache, therefore the contents of
this RAM will not be cached. This RAM will provide the best deterministic performance for
data accesses.

Note: Tightly coupled memories may be described to the MPU with cacheable attributes,
however their contents will not actually be cached. They are intended to be used for code (and
data) requiring the maximum performance (and minimum power - this is a complex area and
will not be discussed further in this document).

SRAM_ITC_cm4 at 0x1FFE0000: This is 128KB Code TCM (LMEM RAM_L) for the Cortex-M4

SRAM_DTC_cm4 at 0x20000000: This is 128KB System TCM (LMEM RAM_U) for the Cortex-
M4

Note: The two TCM regions for Cortex-M4 are also available using the remapping address
0x20200000. Cortex-M7 can access Cortex-M4’s TCM through this aliased address.

SDRAM at 0x80000000: This 64MB device is board memory external to the MCU. This RAM
block must be initialized before it can be used. An XIP Flash header contains the data for the
BootROM to use to initialize this RAM memory. Code can be run directly from this RAM. This
RAM can be cached by the MPU.

Note: If this initialization does not occur, then the RAM will not be available and a debug
operation targeting this memory will fail! See section Building and Debugging Projects for
SDRAM for more details.

© 2023 NXP Semiconductors. All right reserved 15

MPU Memory attributes and Cache(s)

Complex memory systems present considerable flexibility to any system designer and much
of this detail is beyond the scope of this document. However, it should be understood that
this MCU contains two cores, each with its own set of caches designed to improve the system
performance when accessing board memories (SDRAM, Flash and OC_RAM). Furthermore,
memory regions can be assigned properties governing how memory access are treated
inside that region by the CPU.

A Memory Protection Unit (MPU) is present on each core of this MCU to control these
memory region properties.

New and example (board) projects will contain a function BOARD_ConfigMPU within the file
board.c. This function performs the MPU configuration for the various memory regions
including cache setup and the exact behavior of this function is controlled by a number of
defined symbols. It is strongly recommended that (if used) this function is examined and
understood to ensure the memory system is configured as desired.

Note: While most examples in SDK use the last 256KB of SRAM_OC range as
NCACHE_REGION mapped at 0x20300000, there may still be other projects that define
NCACHE_REGION in the upper 16MB of SDRAM mapped as a non-cacheable region at
0x83000000 address. The SDRAM block must be initialized before it can be used. An XIP Flash
header contains the data for the BootROM to use to initialize this RAM memory. If this
initialization does not occur, then the SDRAM will not be available and a debug operation
targeting this memory will fail!

© 2023 NXP Semiconductors. All right reserved 16

6. Flash Drivers

Supplied with MCUXpresso IDE v11.7.x is a QSPI flash driver for CMSIS-DAP debug
connections. This driver MIMXRT1170_SFDP_QSPI.cfx will program a range of QSPI devices
connected through FlexSPI1 that provide identification via the JEDEC Serial Flash Discovery
Protocol.

Please see the MCUXpresso IDE v11.7.x User Guide 16.2.4 “Flash Drivers using SFDP
protocol”) for more information.

Also supplied is an alternative version of the flash driver for QSPI devices
MIMXRT1170_FlexSPI2_A_SFDP_QSPI.cfx which is suitable for a range of QSPI flash devices
connected to FlexSPI2 (there are none such flashes fitted on the EVK board, but this situation
can come up with custom board designs).

The MIMXRT1170-EVK/EVKB boards include an additional Octal flash device, but it cannot be
used without board-level modifications. Nevertheless, drivers for specific Octal flash types
MIMXRT1170_SFDP_MXIC_OPI.cfx and MIMXRT1170_SFDP_MICRON_OPI.cfx are supplied
with the MCUXpresso IDE and can be used if needed.

The source project for all these drivers is supplied with MCUXpresso IDE, located at:
<IDE install Directory>\ide\Examples\Flashdrivers\NXP\iMXRT\iMXRT117x_FlexSPI_SFDP.zip.
This driver project is supplied as a base for users to develop CMSIS-DAP flash drivers for
alternative flash devices or custom board designs.

© 2023 NXP Semiconductors. All right reserved 17

7. New Project Creation

The MCUXpresso IDE New Project wizard defaults to creating projects suitable for Cortex-M7
core to execute in place (XIP) from the board QSPI using the SRAM_DTC memory for data.

1 – To create a New Project, Click 'New Project' to launch the New Project Wizard:

2 - Ensure the EVK board is selected (otherwise board features including flash memory will
not be available):

3 - Click Next:

© 2023 NXP Semiconductors. All right reserved 18

4 - In the Cores section select cm7 as core and Standalone as role. Click Next (accepting all
the default options)

5 - Accept the default options in Advanced project settings and click Finish.

A new project (as below will be created).

This is a 'Hello World' project/application that will execute (XIP) from the QSPI memory using
the first RAM region (SRAM_DTC_cm7) for stack and global data. This RAM region is used
because the SRAM_DTC_cm7 is marked by the SDK as the first RAM region for new projects
(the order of the memory regions can be changed in the Advanced project settings in step 5
above).

© 2023 NXP Semiconductors. All right reserved
19

8. SDK Examples

The MIMXRT1170-EVK SDK version 2.13.0 contains many examples that can be used to
demonstrate various functionalities of the dual-core i.MX RT1176 MCU.

Currently in SDK there are three types of example projects:

Single-core CM7 projects:

- named with _cm7 suffix, shown in blue color
- intended to demonstrate a functionality executing on M7 core
- target execution (XIP) from QSPI flash - they produce an image that can be

programmed in flash and booted by the platform (CM7 is the default boot core in i.MX
RT1170)

Single-core CM4 projects:

- named with _cm4 suffix, shown in blue color, outside of a linked projects pair
- intended to demonstrate a functionality executing on the secondary M4 core
- linked to RAM, without a boot header – they produce an image that cannot be flashed

and booted by the platform (M7 is the default boot core in i.MX RT1170)
- rely on a debugger to download the code in RAM and start executing the application

For more information see Debugging a stand-alone CM4 example on the secondary
core section

Multicore projects:

- consisting of a pair of linked projects, one for CM7 (primary core), and one for CM4
(secondary core)

- project linking is represented by the yellow color and ‘Linked to:’ reference
- intended to demonstrate multicore execution / interaction between CM7 and CM4

cores
- the code produced by the secondary _cm4 project gets included in the master's image

(_cm7) at link-time
- the generated (combined) flash image contains both the code for M7 and for M4

cores, and the resulting image can be booted by the MCU
- during the execution, the M7 code prepares and releases the M4 core to execute its

dedicated code
- the cores can be debugged simultaneously (when a debug session for the master core

is launched, it automatically starts a second debug session for the secondary core)
For more detailed information on the principles and practicalities of using multicore
projects, please see the MCUXpresso IDE User Guide, chapter 19. Multicore Projects.

© 2023 NXP Semiconductors. All right reserved
20

Importing an example

From the QuickStart panel select the Import SDK example wizard. Ensure the Board is selected
as in the previous wizard and click Next.

Use the Filter to quickly locate the required example.

For example: type 'led' as shown below:

Select the required project and Click Finish. The Project Explorer will look as below:

Note: the project demonstrates a simple delay based blinky. It imports the required XIP header
and is executed from Flash.

This project can be debugged directly, and you should see the board’s LED toggling. If the
board is power cycled, you should see the LED blinky program re-run from Flash.

© 2023 NXP Semiconductors. All right reserved 21

9. Debug Launch Configurations

LinkServer Launch Configurations are automatically generated when a project is first
debugged. A few important non-standard features are automatically added (as highlighted
below).

The i.MX RT1170 MCU has two cores: a high-performance Cortex-M7 core and a power-
efficient Cortex-M4 core. It is assumed that the MCU has the default configuration in which
the CM7 is the boot core to begin execution starting from the on-chip boot ROM.

Note: The RT1170 features a configurable fuse setting that may be blown to select the CM4
core as boot core. This configuration is briefly discussed in a subsection later on.

The connect script RT1170_connect_M7_wake_M4.scp is required to ensure the secondary
Cotex-M4 core is also visible when a debug connection is made to the primary Cortex-M7
boot core. This is required because the secondary (M4) AP is not visible while the core is held
in reset. In order to make the M4 core visible to the debugger (such that it can be used for a
multi-core debugging session), the connect script releases the M4 core in case it has not been
released already and re-enumerates the available cores.

The reset script RT1170_reset.scp is required to ensure correct functionality of debugger-
initiated resets while accounting for some particularities of i.MX RT1170:

© 2023 NXP Semiconductors. All right reserved 22

1. Unlike previous MCUs, when i.MX RT1170 is being reset via SYSRESET_REQ while
under debugger control, the boot ROM code will not pass control to a user’s
application residing in flash, instead it will enter a debug loop at a fixed PC address
(0x00223104). In this situation, the debugger needs to initialize the execution
context (by explicitly setting PC, SP to point to the application in flash) in order to
continue the interrupted boot flow.

The script initializes the execution context based on the application’s vector table
in flash (assumed to reside at 0x30002000 address)

2. When the MCU is reset, the boot core (M7) is allowed to execute, while the
secondary core (M4) is held in reset. In this state, the M4 core is not visible on the
debug bus. Similar to the actions performed by the connect script, the reset script
also needs to ensure debug visibility of the secondary core after a reset operation.

Unlike the connect script which needs to be less intrusive, the reset script takes
greater control of the sequence used to wake up the M4 core:

- a spin loop code is assembled in D-TCM region (0x2021FF00)

- the M4 core clock is being set to a safe setting

- the M4 core is reset and released to execute the spin loop prepared in
advance

This sequence serves two purposes:

- it enables the M4 AP, required for debug visibility
- it keeps the M4 core in a well-defined state, preventing it from executing

any other code which can interfere with the platform until it will be properly
initialized by an application at a later stage.

Note: since the M4 core is reset and released by the reset script at an early stage,
an application that intends to use the M4 (secondary) core needs to follow the
recommended sequence which involves resetting and releasing the M4 core. This is
already taken care of when using SDK’s mcmgr functions (MCMGR_StartCore).
However, if an application uses its own implementation of booting the secondary
core, it must respect the above principle as outlined by the reference
implementation provided in mcmgr driver in SDK. At the time of writing, there are
some SDK example projects (mu_* driver examples) which do not properly
implement the sequence to boot the secondary core, resulting in the M4 core
continuing to execute the spin loop code (0x2021FF00) instead of the intended code
when debugged in MCUXpresso IDE.

When a reset script is used, it overrides any other reset configuration in the IDE. Therefore,
the reset script needs to handle the most common scenarios (see also Resets section):

- when used post flash programming - in this case it performs a SYSTEM reset
- when debugging RAM-based applications - in this case it performs a SOFT reset

© 2023 NXP Semiconductors. All right reserved 23

The option --no-packed is required because the Debug Access Port on this part does not
support packed transfers. If this option is not present, then certain debug operations such as
semihosting may fail to operate correctly.

The above options will be added automatically to project launch configurations when
importing or creating projects using the MIMXRT1170-EVK SDK.

When debugging Cortex-M4 images, the following option is automatically set within the
launch configuration as shown below:

This --cachelib libahb_lmem.so module ensures that cache coherence is maintained during
debug operations.

Failing to specify this module when debugging Cortex-M4 with caches enabled may lead to
erroneous debug information and operation, for example inability to hit or resume from
software breakpoints.

When debugging Cortex-M7 images that make use of SDRAM or OC_RAM for storage of
variable data (globals, stack, heap etc.) then the following option should be manually set
within the launch configuration as shown below:

This --cachelib libm7_cache.so module ensures that cache coherence is maintained during
debug operations.

Note: this module is not specified by default as its use incurs a debug performance penalty.
However, failing to specify this module when debugging cached RAMs may lead to erroneous
debug information and operation. This module is not required if the SDRAM or OC_RAM only
contains constant or uncached data or are not used within the project.

© 2023 NXP Semiconductors. All right reserved 24

Single-core RT117x derivatives

While this document mostly covers the dual-core RT1176 device, the i.MX RT1170 processor
family includes single-core derivatives which feature only a Cortex-M7 core, such as RT1171
and RT1172. These derivatives are supported by a dedicated device SDK package.

When creating a new project for a single-core derivative, the set of options automatically
selected to project launch configurations will be slightly different to the options selected for
dual-core derivatives described previously.

Specifically, the debugger scripts are different, since they don’t need to handle the M4 core:
RT1170_connect_M7.scp is used as connect script, while RT1170_reset_M7.scp is the reset
script.

Using Cortex-M4 as boot core

Dual-core RT117x processors can be configured via a fuse setting to use the Cortex-M4 core
for booting (instead of the default Cortex-M7).

The boot order is controlled via a BT_CORE_SEL fuse that needs to be changed. This operation
is outside the scope of this document. Please keep in mind that such an operation is not
reversible!

Note also that due to change in the boot process this configuration cannot be supported in
the regular SDK package for MIMXRT1170-EVK. A special software support package with
multi-core example projects for this use-case will be provided in a separate Application Note,
which is also outside the scope of this document.

When importing the example projects specially designed for using Cortex-M4 as primary boot
core, the set of options automatically selected to project launch configurations will be
different to the options selected for the regular use-cases described in the previous sections.

Specifically, the debugger scripts will be different, since they need to handle the ‘mirrored’
boot flow: RT1170_connect_M4_wake_M7.scp is used as connect script, while
RT1170_reset_M4.scp is the reset script.

Also, the Flash driver reset handling option will be changed to SOFT for the Cortex-M4 core.

The debug configuration for Cortex-M7 will automatically select --cachelib libahb_lmem.so
option to ensures that cache coherence is maintained during multicore debug operations.

© 2023 NXP Semiconductors. All right reserved 25

10. Project Debug

To debug a new project or an imported example project, check the section at the start of this
document and ensure the board is correctly configured and powered. Then simply select the
Project and from the Quickstart panel, click Debug.

A probe discovery operation will be performed, which should locate the on board DAPLink
debug probe. Select this and click OK.

The project will build and a debug operation will commence. If all goes well, you should see
the following Debug stack and the application halted on main().

The debug operations are logged (within the Console -> Debug Messages) and will look as
below. This log contains a lot of data, the flash programming section is highlighted in bold;
the connect and reset scripts (see Debug Launch Configurations) are shown in a different
colour.

© 2023 NXP Semiconductors. All right reserved 26

MCUXpresso IDE RedlinkMulti Driver v11.4 (Sep 6 2021 11:06:09 -

crt_emu_cm_redlink build 11)

Found chip XML file in

/Users/nxp/Documents/MCUXpressoIDE_11.4.1/workspace/evkmimxrt1170_iled_blin

ky_cm7/Debug/MIMXRT1176xxxxx.xml

Reconnected to existing LinkServer process.

============= SCRIPT: RT1170_connect_M7_wake_M4.scp =============

RT1170 Connect M7 and Wake M4 Script

DpID = 6BA02477

APID = 0x84770001

View cores on the DAP AP

DpID = 6BA02477

TAP 0: 6BA02477 Core 0: M7 APID: 84770001 ROM Table: E00FD003*

TAP 0: 6BA02477 Core 1: M4 APID: 24770011 ROM Table: E00FF003

============= END SCRIPT ==

Probe Firmware: DAPLink CMSIS-DAP (ARM)

Serial Number: 02280000082d065700000000000000000000000097969905

VID:PID: 0D28:0204

USB Path: USB_0d28_0204_14423000_ff00

Using memory from core 0 after searching for a good core

debug interface type = CoreSight DP (DAP DP ID 6BA02477) over SWD TAP 0

processor type = Cortex-M7 (CPU ID 00000C27) on DAP AP 0

number of h/w breakpoints = 8

number of flash patches = 0

number of h/w watchpoints = 4

Probe(0): Connected&Reset. DpID: 6BA02477. CpuID: 00000C27. Info: <None>

Debug protocol: SWD. RTCK: Disabled. Vector catch: Disabled.

Content of CoreSight Debug ROM(s):

RBASE E00FD000: CID B105100D PID 000008E88C ROM (type 0x1)

ROM 1 E00FE000: CID B105100D PID 04000BB4C8 ROM (type 0x1)

ROM 2 E00FF000: CID B105100D PID 04000BB4C7 ROM (type 0x1)

ROM 3 E000E000: CID B105E00D PID 04000BB00C Gen SCS (type 0x0)

ROM 3 E0001000: CID B105E00D PID 04000BB002 Gen DWT (type 0x0)

ROM 3 E0002000: CID B105E00D PID 04000BB00E Gen (type 0x0)

ROM 3 E0000000: CID B105E00D PID 04000BB001 Gen ITM (type 0x0)

ROM 2 E0041000: CID B105900D PID 04001BB975 CSt ARM ETMv4.0 type 0x13 Trace

Source - Core

ROM 2 E0042000: CID B105900D PID 04004BB906 CSt type 0x14 Debug Control -

Trigger, e.g. ECT

ROM 1 E0043000: CID B105900D PID 04001BB908 CSt CSTF type 0x12 Trace Link -

Trace funnel/router

NXP: MIMXRT1176xxxxx

DAP stride is 1024 bytes (256 words)

Inspected v.2 External Flash Device on SPI using SFDP JEDEC ID

MIMXRT1170_SFDP_QSPI.cfx

Image 'iMXRT1170_FlexSPI_SFDP_QSPI Feb 10 2021 11:12:20'

Opening flash driver MIMXRT1170_SFDP_QSPI.cfx

Sending VECTRESET to run flash driver

Flash variant 'JEDEC_FlexSPI_Device' detected (16MB = 256*64K at 0x30000000)

Closing flash driver MIMXRT1170_SFDP_QSPI.cfx

Connected: was_reset=false. was_stopped=false

Awaiting telnet connection to port 3334 ...

GDB nonstop mode enabled

Opening flash driver MIMXRT1170_SFDP_QSPI.cfx (already resident)

Sending VECTRESET to run flash driver

Flash variant 'JEDEC_FlexSPI_Device' detected (16MB = 256*64K at 0x30000000)

Writing 30764 bytes to address 0x30000000 in Flash

30004000 done 53% (16384 out of 30764)

30008000 done 100% (32768 out of 30764)

Sectors written: 1, unchanged: 0, total: 1

Erased/Wrote sector 0-0 with 30764 bytes in 1410msec

Closing flash driver MIMXRT1170_SFDP_QSPI.cfx

Flash Write Done

Flash Program Summary: 30764 bytes in 1.41 seconds (21.31 KB/sec)

============= SCRIPT: RT1170_reset.scp =============

© 2023 NXP Semiconductors. All right reserved 27

SYSTEM Reset

DpID = 6BA02477

TAP 0: 6BA02477 Core 0: M7 APID: 84770001 ROM Table: E00FD003*

TAP 0: 6BA02477 AP 1: APID: 24770011 ROM Table: E00FF003

TAP 0: 6BA02477 AP 2: APID: 54770002 ROM Table: 00000002

APID = 0x84770001

Setting M4 spin code

Setting M4 clock

Resetting M4 core

Releasing M4

View cores on the DAP AP

DpID = 6BA02477

TAP 0: 6BA02477 Core 0: M7 APID: 84770001 ROM Table: E00FD003*

TAP 0: 6BA02477 Core 1: M4 APID: 24770011 ROM Table: E00FF003

R15 = 0x00223104

Vector table SP/PC is the reset context.

PC = 0x300024E1

SP = 0x20040000

XPSR = 0x01000000

VTOR = 0x30002000

============= END SCRIPT ===========================

Stopped: Breakpoint #1

© 2023 NXP Semiconductors. All right reserved 28

11. Project Modifications required to enable SWO Trace

At the time of writing, the latest SDK for the MIMXRT1170-EVK and MIMXRT1170-EVKB is
version 2.13.0. This SDK does describe to the IDE that SWO Trace features are available on
this board and most examples (but not the New Projects!) completely enable this feature.

Note that in previous versions of the SDK, examples correctly configure the trace clock, but
they used to assign the wrong pin for trace in the pin mux settings – GPIO_DISP_B2_07, when
in fact GPIO_LPSR_11 should have been used.

Although the recent version of the SDK enables SWO trace out of the box for example
projects, some modifications might be needed in case of projects based on previous versions
if the SDK, and also for projects generated by the New project wizard.

The necessary changes described below can be manually applied in the specific files, or the
Pins and Clocks Config tools can be used to add the configuration interactively and re-
generate the files.

Note: For MIMXRT1170-EVK board, SWO trace features are not supported by DAP-Link
firmware; LPC-Link2 firmware (or an external debug probe) is required.

For MIMXRT1170-EVKB board, SWO trace features are supported by both CMSIS-DAP and
J-Link firmware.

Modifications to pin_mux.c

Within a project, select the board subfolder and within this, locate the file pin_mux.c and
modify the function BOARD_InitPins as shown below:

void BOARD_InitPins(void) {

 [. . .]

 IOMUXC_SetPinMux(/* delete these lines if they exist */

 IOMUXC_GPIO_DISP_B2_07_ARM_TRACE_SWO, /* GPIO_DISP_B2_07 is

configured as ARM_TRACE_SWO */

 0U); /* Software Input On Field:

Input Path is determined by functionality */

 IOMUXC_SetPinConfig(

 IOMUXC_GPIO_DISP_B2_07_ARM_TRACE_SWO, /* GPIO_DISP_B2_07 PAD

functional properties : */

 0x02U);

 IOMUXC_SetPinMux(/* add these lines */

 IOMUXC_GPIO_LPSR_11_ARM_TRACE_SWO,

 0U);

 IOMUXC_SetPinConfig(

 IOMUXC_GPIO_LPSR_11_ARM_TRACE_SWO,

 0x02U);

}

Modifications to clock_config.c

Within a project, select the board subfolder and within this, locate the file clock_config.c and
add the lines if not already present in BOARD_BootClockRUN as shown below:

© 2023 NXP Semiconductors. All right reserved 29

 /* Configure CSTRACE using SYS_PLL2_CLK */

 rootCfg.mux = kCLOCK_CSTRACE_ClockRoot_MuxSysPll2Out;

 rootCfg.div = 4;

 CLOCK_SetRootClock(kCLOCK_Root_Cstrace, &rootCfg);

CSTRACE clock must be configured such that it generates a frequency no larger than the
maximum supported frequency (132MHz).

The above snippet uses SYS_PLL2_CLK (528MHz) divided by 4 to yield 132MHz trace clock.

The trace clock value configured in the application must be specified when prompted as part
of the SWO Trace Config dialog.

With these changes applied, SWO trace can be captured.

Please refer to the MCUXpresso IDE SWO Trace Guide for information on the use of SWO
trace features.

© 2023 NXP Semiconductors. All right reserved 30

12. XIP How and Why

Traditionally a standard Cortex-M application image is programmed into an internal flash
memory (of an MCU), this image is automatically executed once the MCU is reset (a bootable
flash). Although essentially hidden from the user; when an MCU is reset, the first code to run
is (usually) an internal BootROM, which is responsible for internal hardware setup and passing
control to the user’s application in Flash. From the perspective of the user however, it appears
as though their application is run immediately on reset.

In the case of the RT1170, all flash memory is external to the MCU and therefore unknown to
the BootROM. For the BootROM to boot an image from this flash, some additional
information must be supplied to allow flash initialization and optimal configuration etc. The
BootROM specification expects this configuration data to be located in an 8KB header at the
start of the user’s image (application). An XIP image supplies this information in an 8KB header
at the start image itself. Once programmed into flash, this information can be read by the
BootROM using basic subset of flash operations.

When the New Project Wizard is used and a board (evkimxrt1170) is selected, board
components will automatically be pre-selected - including an xip driver. This driver
component will ’pull in’ the required header files into a project folder (xip). The files within
this folder work in conjunction with our Managed Linker Script mechanism to create and
locate an appropriate header for this target flash device.

Note: this image header will only be created if the image is linked to the start of flash at
0x30000000 (the New Project default).

© 2023 NXP Semiconductors. All right reserved 31

13. Resets

When is a reset not a reset ...

The standard way a project is debugged is (after flash programming) for the MCU to be reset
(by the debug probe) and user debug control made via an automatic breakpoint set on main().
This scheme though will only work if the application being debugged can be launched via the
BootROM. In our case above, that would be an XIP image in QSPI with a correct header to
describe the world and initialize the QSPI flash.

However, it can also be useful to develop and debug applications running directly in a RAM
region. For this to work the user must still gain control of the executing code i.e. via a
breakpoint on main() again. However, a real reset cannot be used since this will run the
BootROM and this will control the boot process and not lead us to our RAM location ...

Instead for RAM projects, the debugger will issue a virtual reset using the type SOFT. A SOFT
reset type, simulates some parts of a real reset including setting up the PC, SP, PSR etc. Since
this is not a real reset, the MCU hardware can inherit some setup from its (pre reset) world,
for example multiplexing, RAM and/or FLASH configurations. Note: This may be beneficial,
but may also cause problems or confusion if not well understood.

SDK projects that target RAM use this SOFT reset mechanism.

Note: A project running from RAM may not restart successfully since Global data may only
have the intended initial values on the first execution. This is a consequence of the mechanism
and not a fault as such. The expected result can be achieved by using the QuickStart
‘Terminate, Build and Debug’ feature. All information will of course be lost if the target board
is power cycled.

© 2023 NXP Semiconductors. All right reserved 32

14. Building and Debugging Projects for SDRAM

The SRAM TCM and OC memories should always be present when the part is powered on.
However, they are of limited size, and the largest RAM on this board is the 64MB SDRAM.

As mentioned previously, SDRAM, being external memory on the board, needs to be
initialised before it can be used. This memory is typically initialized by the MCU BootROM
during reset based on configuration data (DCD) programmed into XIP header code in flash.
But for RAM projects intending to use this SDRAM area to directly download and execute
code from it, some additional steps are needed.

To ensure that the SDRAM region is correctly initialised before it is used for debug operations
targeting a SDRAM-based application, the recommended way is to first flash any application
that includes the needed DCD section. This is a one-time operation - as long as the application
remains in flash, every power cycle or debugger initiated reset leaves the SDRAM ready and
available for a subsequent SDRAM download / debug operation.

Most SDK examples already make available the SDRAM initialisation mechanism, by including
the DCD data needed to initialise the SDRAM as part of project - even the most simple
hello_world demo typically includes it.

Note that the code is enabled based on the XIP_BOOT_HEADER_DCD_ENABLE preprocessor
macro and may therefore be excluded by default.

Please follow these preparatory steps:

1. Import SDK example: hello_world_demo_cm7
2. Remove all existing code inside the main() function
3. Open project’s Properties, navigate to C/C++ Build > Settings, select Tool Settings tab,

then inside MCU C Compiler > Preprocessor page define symbol:
XIP_BOOT_HEADER_DCD_ENABLE=1

© 2023 NXP Semiconductors. All right reserved 33

4. Build the application and program it into flash (a simple debug operation inherently

programs the application into flash)

This one-time sequence ensures the SDRAM is automatically initialised each time the board
is powered up and it makes it available as a download target for SDRAM-based projects.

Modifying projects for using the SDRAM region

SDK example projects typically target the flash region by default. If you wish to target the
SDRAM region, this must be the first RAM region defined in the project’s memory
confguraton. If a flash region is also defined, the Link applicaton to RAM opton must also be
set.

1. Reorder the blocks in the Memory details using the up/down buttons to have the
SDRAM listed as the first RAM-type memory region

2. Select 'Link application to RAM' checkbox in Managed Linker Script preference page

© 2023 NXP Semiconductors. All right reserved 34

With these changes, and the preparatory steps above, you should now be able to
download and debug the SDRAM-based application.

© 2023 NXP Semiconductors. All right reserved 35

15. Troubleshooting

Erasing the QSPI Flash

If for any reason a 'bad' application is programmed into flash and the BootROM boots this
image, the resulting executed code may affect the part in such a way that prevents new debug
operations succeeding. Should this occur, the following operation should recover the
situation.

1. Power of the board.

2. Change the DIP switch (SW1) to prevent booting from QSPI Flash.

Set it to SDP mode – OFF-OFF-OFF-ON (see Overview of Board features… section)

3. As a precaution, kill any active debug components

➔ to do this, click the ‘Clean Up Debug’ toolbar icon:

4. Use the GUI Flash Tool to Erase the data in QSPI Flash.

➔ to do this, select a project that is configured for XIP from flash
(e.g. a New project or Example project as described above) and
click the GUI Flash Tool icon (the chip):

5. Select the probe as for a normal debug operation

6. Ensure the 'Erase flash memory' tab is selected. Click the 'Mass erase' radio button
and then click OK.

© 2023 NXP Semiconductors. All right reserved 36

7. If asked, select the Cortex-M7 core

8. This will cause a mass erase of the QSPI flash, leading to the following dialogue.

Remember to restore the DIP switch (SW1) to set boot from QSPI and also power cycle the
board. Next time the board boots, the BootROM will identify the Flash as erased and avoid
running any flash image.

Note: The time taken to erase this flash is proportional to the size of the flash and may take
some time to complete in case of large flash sizes.

Use of __WFI() or low-power modes

A common embedded program layout will consist of a top level loop containing a __WFI()
function call. This call will cause the CPU to enter a low power state pending the arrival of an
interrupt. Typically, there are no negative consequences for application and/or debug
operations when using WFI.

However, at the time of writing, examples and new projects for this MCU may lose debug
control if __WFI() or other low-power modes like deep sleep are used. Furthermore, a WFI
operation may suspend certain interrupt clocks such as used by SysTick, resulting in an
application effectively stopping. If an application executes a WFI operation directly after
reset, it may be difficult to recover the part.

If this occurs, holding down switch SW7 (WAKEUP) for 2 seconds should restore normal debug
(and interrupt) behaviour until the next time the board is power cycled.

If debug control cannot be achieved, it is recommended to erase the flash to recover the
board as explained in the section above.

Using hardware breakpoints

The Cortex-M4 core can use hardware breakpoints only at addresses lower than 0x20000000.
This means that HW breakpoints will not work when debugging code in some areas like
SRAM_OC or SRAM_DTC_cm4. The Cortex-M7 core does not have this restriction.

© 2023 NXP Semiconductors. All right reserved 37

Identifying unexpected debug failures due to unavailable M7 core

If for any reason a 'bad' application in flash crashes the booting core or affects it in such a way
that prevents debugging operations, it may result in the primary M7 core not being available
on the debug bus anymore.

This situation can cause the IDE to fail in unexpected ways.

Should this situation occur, any of the following manifestations are indicative of such
problems:

- A SWD configuration dialog showing only the M4 core popping up at the beginning of
a debug session:

- Error messages reporting HW breaks can only be set below 0x20000000

- Debug Messages console indicating M4 core being used (and M7 core missing from
the list of available cores)

© 2023 NXP Semiconductors. All right reserved 38

Debugging a stand-alone CM4 example on the secondary core

The stand-alone single-core CM4 example projects are RAM-based projects which rely on a
debugger connection to download to the designated RAM area and start executing. In order
to be able to execute on the M4 core, the secondary core need to be available on the debug
bus.

A particularity of the RT1170 MCU is that it boots with the secondary M4 core held in reset
and not available on the debug bus (thus having only the primary M7 core available). To make
the secondary core available on the debug bus, software must release the M4 core. In case of
multi-core projects, application code running on the M7 core prepares and releases the M4
core. Also, debugger scripts implement the sequence to make the M4 core available for
connection. For example, when starting a debug session for a flash-based application (multi-
core or single-core M7 projects) the debugger uses scripts to reset the MCU via
SYSRESET_REQ and make the M4 core available on the debug bus for a possible subsequent
debug connection to the M4 core.

But given the CM4 SDK examples are RAM-based applications, no system reset is performed
when starting the debug session, therefore the M4 core may be unavailable if it hasn't yet
been released by either an application or a previous debugger connection to the M7 core.

One simple way to make sure the M4 core is available is to launch a debug session using one
of the CM7 projects - this will make the M4 core available, even after terminating the M7
debug session. Another option is to have an application in flash that releases the M4 core.
This way the M4 core will be available after POR.

When the M4 core is not available when launching a debug session with an example project
targeting the secondary core, you will get a dialog like below:

This is an indication that the Cortex-M4 is not available; it offers you the choice to continue
the debug connection using the Cortex-M7 core instead.

© 2023 NXP Semiconductors. All right reserved 39

Using external Debug Probes

The onboard DAPLink OpenSDA debug interface on MIMXRT1170-EVK board does not deliver
particularly high debug performance. The standard 20-way ’JTAG’ header may be used with
external debug probes such as the LPC-Link2 or MCU-Link for faster debug operation.

If an external LPC-Link2 is used it is recommended that the board be both powered externally
and the link JP2 should be fitted to the LPC-Link2 probe.

For the MIMXRT1170-EVK board, the USB connector (J11) of the onboard debug probe must
be disconnected.

The MIMXRT1170-EVKB board features the more advanced MCU-Link onboard debug
solution. If using external debug probes is still desired, the onboard debug probe USB
connector (J86) can remain connected to make use of the VCOM features offered by the
probe, but in this case the JP4 jumper must be fitted in order to disable the SWD debug
interface of the onboard probe.

Debug performance and the Data Cache

When debugging images on the Cortex-M7 core that make use of SDRAM or OC_RAM for
storage of variable data (globals, stack, heap etc.) then the following option should be set
within the LinkServer debug launch configuration as shown below:

© 2023 NXP Semiconductors. All right reserved 40

This module ensures that debug cache coherence is maintained, and correct debug
operations may fail if this module is not specified. However, there will be a debug
performance penalty when this module is used.

Note: this module is not required if the SDRAM (or OC_RAM) only contains constant or
uncached data.

Using different debug probe types

Although this document only describes using LinkServer debug connections, the IDE supports
using other families of debug probes (SEGGER, PEmicro). Please see the MCUXpresso IDE User
Guide for more information.

Debugging a project with a probe will cause the selected probe to be stored in the launch
configuration for the current configuration (typically Debug or Release) of the current project.

If you wish to debug the same project using a different family of debug probe(s), then the
simplest option is to delete the launch configuration files associated with the project and start
a debug operation.

Failing to delete the launch configuration file associated with the previously used probe type
will prevent probe discovery from finding debug probes of the new type.

	1. Overview
	2. Read Me First
	MIMXRT1170-EVK Information
	MIMXRT1170-EVKB Information
	Debug Restrictions

	3. Overview of Board features related to Debug
	MIMXRT1170-EVK
	MIMXRT1170-EVKB

	4. On board Debug Probe
	MIMXRT1170-EVK
	LPC-Link2 mode
	Permanently installing LPC-Link2 Firmware – LPCScrypt
	Updating the DAPLink Firmware version

	MIMXRT1170-EVKB
	Updating Firmware – MCU-Link installer

	Debug Connection

	5. Memories
	MPU Memory attributes and Cache(s)

	6. Flash Drivers
	7. New Project Creation
	8. SDK Examples
	Importing an example

	9. Debug Launch Configurations
	Single-core RT117x derivatives
	Using Cortex-M4 as boot core

	10. Project Debug
	11. Project Modifications required to enable SWO Trace
	12. XIP How and Why
	13. Resets
	14. Building and Debugging Projects for SDRAM
	Modifying projects for using the SDRAM region

	15. Troubleshooting
	Erasing the QSPI Flash
	Use of __WFI() or low-power modes
	Using hardware breakpoints
	Identifying unexpected debug failures due to unavailable M7 core
	Debugging a stand-alone CM4 example on the secondary core
	Using external Debug Probes
	Debug performance and the Data Cache
	Using different debug probe types

