
NXP Semiconductors
User’s Guide

Document Number: PT2000SWUG
Rev. 1.0, 8/2016

© 2016 NXP B.V.

MC33PT2000 programming guide and instruction set

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors
2

Table of Contents
1 Introduction. .3
2 Microcore programming description .3

2.1 CRAM addressing mode . 3
2.2 Arithmetic logic unit . 3
2.3 Start management . 6
2.4 Microprogram counter block . 6
2.5 Wait instructions . 7
2.6 Subroutine instructions . 8
2.7 Program flow (jump, Ldjr) instructions . 8
2.8 DataRAM access instructions . 9
2.9 Arithmetic instructions . 10
2.10 Shift instructions . 10
2.11 Control, status, and flags instructions . 11
2.12 Inter-core communication instructions . 11
2.13 Shortcuts . 13
2.14 Current sense blocks . 13
2.15 Output drivers . 14
2.16 Interrupts . 14
2.17 Counter/timers . 15
2.18 SPI back door . 16

3 Instruction set and subsets .17
3.1 Internal registers operand subsets . 17
3.2 Instruction set . 19

4 Specific assembler language .134
4.1 Writing an instruction . 134
4.2 Inserting a comment field . 134
4.3 Defining a constant . 134
4.4 Including a data RAM address definition file . 135
4.5 Using a line label . 135
4.6 Numbering convention . 135
4.7 Conditional assembly . 136

5 Example source code: three cylinders with freewheeling .137
5.1 Channel 1 - Ucore0 - control bank1 . 137
5.2 Channel 1 - Ucore1 - control bank2 . 139
5.3 Channel 2 - Ucore0 - control bank3 . 141
5.4 Channel 3 - Ucore0 - DCDC control . 143

6 References .144
7 Revision history .145

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 3

Introduction

1 Introduction
This programming guide relates to the PT2000 Programmable Solenoid Controller. Refer to the individual device data sheet for feature
information. The PT2000 programming guide describes the microcore programming model, instruction set, data types used, and basic
memory organization. Also included in the guide is an example of a microcore used in the KITPT2000FRDM3C using most of the
instructions described herein. The programming of the microcores has to be done using the PT2000 IDE available on the web.

2 Microcore programming description

2.1 CRAM addressing mode

All the jump instructions have two possible outcomes: if a specific condition (if any) is true, then the code flow continues at a destination
specified by a parameter, otherwise it continues to the next code line. In the same way, when a wait entry is configured, a parameter
specifies the destination.

The instruction set of PT2000 allows only two addressing modes to express the destination parameter for the CRAM:

• Relative address (“relative”): The relative address parameter is represented by 5 bits. The physical address of the destination is
obtained by adding the relative address to the physical address of the instruction that uses the parameter (that is the value of the
uprogram counter when the instruction is executed). The relative address must be considered as 2’s complement represented and
must be extended on 10 bit before the addition. By using relative addresses it is possible to range from “current_address - 16" to
“current_address +15”.

• Indirect address (“far”): It is possible to jump to the CRAM address contained into one of two jump_registers (jr1 and jr2): these
registers can be loaded with a dedicated instruction and simply referred to in the wait or jump instructions (refer to ldjr1 and ldjr2).

2.2 Arithmetic logic unit

The microcore contains a simple Arithmetic Logic Unit (ALU). The ALU has an 8-word internal register file, connected to the internal bus.
The ALU can perform the following operations:

• Addition and subtraction. These operations are completed in a single ck clock cycle.
• Multiplication. This operation is completed in uo to 32 ck clock cycles. The result is available as a 32-bit number, and is always in the

registers GPR6 (MSBs) and GPR7 (LSBs).
• Shift operations. The operand is shifted one position (left or right) each ck clock cycle, so it requires from 1 to 16 ck clock cycles to

execute. The shift operations always consume the operand. It is also possible to shift an operand by eight positions (left or right) or to
swap the eight MSBs with the eight LSBs in one ck clock cycle.

• Logic operation. It is possible to operate a bitwise logical operation (and, not, or, xor) between an operand and a mask. It is also
possible to bitwise invert an operand. All these operations are completed in a single ck clock cycle. These operations always consume
the operand.

• C2 conversions. It is possible to convert data from an unsigned representation to 2’s complement and vice versa. These operations
are completed in a single ck clock cycle.

MC33PT2000 programming guide and instruction set, Rev. 1.0

4 NXP Semiconductors

Microcore programming description

Figure 1. ALU block diagram

These operations consume the operand. While the ALU is busy performing an operation, request of other operations is impossible. In a
such cases the request is ignored by the ALU.

The ALU instructions are:

• Addition (add), addition with immediate (addi)
• Subtraction (sub), subtraction with immediate (subi)
• Multiplication (mul), multiplication with immediate (muli)
• Logical operation (and, not, or, xor)
• Conversion from positive to 2’s complement (toc2) and from 2’s complement to positive (toint)
• Shift operation (sh32r, sh32l, shl, shr, shls, shrs), shift operation with immediate (sh32ri, sh32li, shli, shri, shlsi, shrsi), and byte

manipulation shift (shl8, shr8, swap)
• ALU configuration (stal)

Some ALU instructions are multi-cycle (mul, muli and possibly sh32r, sh32l, shl, shr, shls, shrs, sh32ri, sh32li, shli, shri, shlsi, shrsi,
depending on how many shift positions are required). While a multi-cycle operation is in progress, all ALU instructions are ignored, except
for the stal instruction.

During this time any operations which try to modify the ALU registers (GPR0-7, arith_reg) are ignored (ldirl, ldirh and possibly cp, load if
their destination address is one of the ALU registers). Instructions which try to read the ALU registers are successful (possibly cp and
store). It is possible to transfer constant values to the ALU immediate register using the ldirl and ldirh instructions.

When a multi-cycle instruction is required, it is recommended to wait until the operation is finished (ex: cwer Dest opd row1) before going
to the next instruction. The operation completion can be checked by reading back the bit OP_DONE of the Arithmetic Condition Register
(arith_reg).

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 5

Microcore programming description

2.2.1 Arithmetic condition register
The 16-bit register contain the status of the ALU concerning the last requested operation.

• SHIFT_OUT is the last bit shifted out (either left or right) from a shift operation.
• CONV_SIGN is the product of all signs removed by toint instruction. This bit can be reset by performing a toint conversion with an rst

parameter.
• CARRY is the carry produced by the last addition or subtraction operation performed.
• ARITH_LOGIC is a parameter used for addition and subtraction operations. It has four possible values:

• “00” or “10”: no limitation is imposed on addition or subtraction. In case of an overflow, the result should be represented by 17
bits, but only the 16 LSBs of this result are put in the target register. In case of an underflow, the result put in the target register
is “65536 - the correct result”, which can always be represented on 16 bits.

• “01”: the result of addition or subtraction are saturated between the maximum possible value (if overflow) or the minimum possible
value (if underflow). The numbers are considered to be 2’s complement representation, so they are saturated between 8000h
(-32768) and 7FFFh (+32767).

• “11”: the result of addition or subtraction are saturated between the maximum possible value (if overflow) or the minimum possible
value (if underflow). The numbers are considered to be unsigned, so they are saturated between FFFFh (65535) and 0000h (0).

• MASK_MAX bit is set if the result of the last mask operation is FFFFh.
• MASK_MIN bit is set if the result of the last mask operation is 0000h.
• MUL_SHIFT_OVR is set to 0 if the 16 MSBs of the last multiplication or 32-bit shift result are all 0, otherwise it is 1.
• MUL_SHIFT_LOSS is set to 0 if the 16 LSBs of the last multiplication or 32-bit shift result are all 0, otherwise it is 1.
• RES_ZERO is set if the result of the last addition or subtraction is zero.
• RES_SIGN is set if the result of the last addition or subtraction is negative.
• UNSIGNED_UND is set if the last addition or subtraction produced underflow, considering the operands as unsigned numbers.
• SIGNED_UND is set if the last addition or subtraction produced underflow, considering the operands as 2’s complement numbers.
• UNSIGNED_OVR is set if the last addition or subtraction produced overflow, considering the operands as unsigned numbers.
• SIGNED_OVR is set if the last addition or subtraction produced overflow, considering the operands as 2’s complement numbers.
• The OP_DONE can be set by the ALU, and the Instruction_decoder can only read it. This bit is set to 0 when a multi-cycle operation

is in progress, otherwise is set to 1. If an ALU operation is issued when another operation is in progress (that is when the OP_DONE
is set to 0), the request is ignored.

Table 1. Arithmetic condition register

BIT NAME DESCRIPTION

15 SHIFT_OUT Shifted out bit

14 CONV_SIGN Last conversion sign

13 CARRY Carry over bit

12-11 ARITH_LOGIC Arithmetic logic

10 MASK_MIN Mask result 0000h

9 MASK_MAX Mask result FFFFh

8 MUL_SHIFT_OVR Multiplication shift overflow

7 MUL_SHIFT_LOSS Multiplication shift precision loss

6 RES_ZERO Addition or subtraction result is zero

5 RES_SIGN Addition or subtraction sign result

4 UNSIGNED_UND Unsigned underflow

3 UNSIGNED_OVR Unsigned overflow

2 SIGNED_UND Signed underflow

1 SIGNED_OVR Signed overflow

0 OP_DONE Operation complete

MC33PT2000 programming guide and instruction set, Rev. 1.0

6 NXP Semiconductors

Microcore programming description

2.3 Start management

The start management block is designed to provide an anti-glitch functionality in order to reject glitches on the input start signal and also
to provide the gen_start_uc0, gen_start_uc1, start_latch_uc0 and start_latch_uc1 signals. The main purpose of this block is to generate
the internal gen_start signals feeding the microcores starting from the startx pins. Each microcore can be sensitive to the 8 startx pins
according to the sensitivity map defined in the register start_config_reg_partx (103h, 104h, 123h, 124h, 143h, 144h).

This block also provides the start_latch_ucx signals; these 8-bit signals (1 for each microcore) are used by the corresponding microcore
to check which startx pin was active when the currently ongoing actuation began. In this way each microcore can be configured to be
sensitive for up to all the 8 startx pins. While the actuation is ongoing, it also has the ability to check the level of the startx pins in two
different modes that can be selected. The gen_start_ucx and start_latch_ucx can be generated according to two different strategies. The
strategies for the two signals can be separately selected in the start_config_regx (103h, 104h, 123h, 124h, 143h, 144h).

Transparent Mode”: The gen_start_ucx is high if at least one of the starx signals is high for which the corresponding microcore is sensitive
(refer to register start_config_reg (103h, 104h, 123h, 124h, 143h, 144h)). The start_latch_ucx signal is a living copy of the 8 startx pins
for which the channel can be sensitive.

Smart Latch Mode”: When a startx pin (to which the microcore is sensitive) goes high and the start_latch_ucx is “00000000”, the
gen_start_ucx is set and the current startx pin status is latched in the start_latch_ucx register. If a rising edge is detected on any other
startx pin, it is ignored. The gen_start_ucx signal goes to 0 only when the startx pin initially latched goes low. The start_latch_ucx register
is reset only by the microcode (and this is done usually when the actuation currently ongoing is stopped by the gen_start_ucx falling edge).
The gen_start_ucx signal does not go high, until the start_latch_ucx register has been reset.

Figure 2. Smart start latch

The gen_start_ucx signals generated by this anti-glitch circuit are then also provided as an input to the corresponding microcores. If Smart
Latch Mode is enabled, no start edge is latched before the channel is locked by the flash enable bit.

2.4 Microprogram counter block

This block contains two registers: the microprogram counter (uPC) and the auxiliary register.

2.4.1 MicroPC
This is a 10-bit counter used to address the Code RAM containing the microprogram.

After the Code RAM is locked, this counter is loaded with an entry point selected through a SPI register (refer to the Uc0_entry_point
(10Ah, 12Ah, and 14Ah) and the Uc1_entry_point (10Bh, 12Bh and 14Bh) sections), which is the address of the first ‘active’ instruction.

Time

START1

START2

start_launch_uc

gen_start_ucx

000000 000001 000000 000010

reset_start_latch

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 7

Microcore programming description

If an interrupt is requested, the uPC counter is moved to the appropriate interrupt routine register, as programmed in the parameter
registers (refer to Diag_routine_addr (10Ch, 12Ch, and 14Ch) and the Driver_disabled_routine_addr (10Dh, 12Dh, and 14Dh) and the
Sw_interrupt_routine_addr (10Eh, 12Eh, and 14Eh) sections). Only one level of interrupt is supported.

Before entering an interrupt routine, the interrupt status register is latched (refer to the Uc0_irq_status (10Fh, 12Fh, and 14Fh)). When an
iret (interrupt return) instruction is executed, the interrupt status register is cleared and the uPC counter can be restored to the original
address.

The instruction_decoder block directly controls the uPC in order to allow an efficient management of:

• direct jumps
• conditional jumps
• subroutine execution
• wait states

2.4.2 Auxiliary register
This 10-bit register is used to manage the one-level subroutine returns or as an auxiliary memory element.

Any time the system executes a “jump to subroutine” instruction, the uPC is automatically stored in the auxiliary register before jumping
to the subroutine start address. When the subroutine execution ends, the incremented auxiliary register content is transferred back to the
uPC.

2.5 Wait instructions

The PT2000 is an event/response machine. An event occurs and then code executes, the wait instructions are the key to this behavior.
The core waits at a 'wait' instruction for an event to occur.

These pending events are configured as rows in a six-row wait table. Before the wait instruction is issued, the wait table has to be
configured with the 'cwef' and 'cwer' instructions to obtain the desired behavior. One instruction is required for each wait entry needing to
be configured.

Although there are many possible event sources which can be configured inside the six row wait table:

• terminal_counts: any of the four terminal count (tc1, tc2, tc3, and tc4) signals can be checked to detect if any of the four counters has
reached its end of count position.

• Flags: checks the value (both polarities) of one of the 16 flags signals available.
• Shortcut feedback: the voltage feedback (both polarities) related to the three shortcut outputs.
• gen_start: checks the value (both polarities) of the filtered chx_start input signal to define when to start and finish an actuation.
• current_feedback: the value (both polarities) of the six current feedbacks.
• own_current_feedback: the value (both polarities) of the own current feedbacks. This feedback can be different for each microcore

and can be changed with the microcode instruction dfcsct. Table 2. shows the configuration after reset.

• vboost: the output (both polarities) of the comparator that measures the boost voltage.
• op_done: check if a previously issued ALU operation is still in progress or it is completed. This is mandatory for multiple cycle

instructions (like mul, muli and possibly sh32r, sh32l, shl, shr, shls, shrs, sh32ri, sh32li, shli, shri, shlsi, shrsi, depending on how many
shift positions are required)

Table 2. Current feedback assignment

Microcore Own Current Feedback (Reset value)

Uc0, channel 1 current feedback 1

Uc1, channel 1 current feedback 2

Uc0, channel 2 current feedback 3

Uc1, channel 2 current feedback 4

Uc0, channel 3 current feedback 5

Uc1, channel 3 current feedback 6

MC33PT2000 programming guide and instruction set, Rev. 1.0

8 NXP Semiconductors

Microcore programming description

2.6 Subroutine instructions

This section covers the instructions that support calling and returning from subroutines. As explained in the CRAM addressing mode the
jump to subroutine can be relative if the destination address is in a range from “current_address - 16" to “current_address +15”. If not,
instruction jump far to subroutine needs to be used. When a subroutine instruction is set, the program counter (pc) is saved in the auxiliary
register ‘aux’. The rfs instruction “return from subroutine” causes the program counter to jump back to the main program.

2.7 Program flow (jump, Ldjr) instructions

Conditions to be checked by the jump instructions are the same of the wait instruction with the addition of the following inputs:

• ctrl_reg: checks the value (both polarities) of one of the 16 control bits available in the ctrl_reg register (see register 101h, 102h, 121h,
122h, 141h, 142h).

• status_bits: checks the value (both polarities) of one of the 16 control bits available in the Status_bits register (see register 105h, 106h,
125h, 126h, 145h, 146h).

• voltage feedback: the voltage feedback (both polarities) related to all the outputs.
• start_latch: checks the value of the six bit start_latch.
• arithmetic_register: checks the value (high polarity only) of one of the bit of the ALU arithmetic register (See Arithmetic condition

register on page 5.).
• microcore_id: check if the microcore currently executing is uc0 or uc1

Same as the wait table it is possible to jump far or jump relative. The following instructions need to be used to define the destination
address when a jump far is required.

Table 6. defines the list of different jump instructions which are triggered.

Table 3. Wait instructions

cwef Create wait table entry far

cwer Create wait table entry relative

wait Wait until condition satisfied

Table 4. Subroutine instructions

jtsf Jump far to subroutine

jtsr Jump relative to subroutine

rfs Return from subroutine

Table 5. Load jump registers instructions

ldjr1 Load jump register 1

ldjr2 Load jump register 2

Table 6. Jump instructions

jarf Jump far on arithmetic condition

jarr Jump relative on arithmetic condition

jcrf Jump far on control register condition

jcrr Jump relative on control register condition

jfbkf Jump far on feedback condition

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 9

Microcore programming description

2.8 DataRAM access instructions

The Data RAM access instructions are used to load and store data memory. These instructions also set the access mode which can be
set to either 'Immediate' (_ofs parameter to be used) mode or 'Indexed' mode using the slab instruction. 'Indexed' mode is when an offset
from the Base Address register is applied to the access's address (ofs parameter to be used). It is possible to modify the value of add_base
with the stab instruction.

Figure 3. Indexed addressing mode

The three basic operations are:

• Copy. This instruction copies the value of one of the internal registers to another. The value of addr_base is neglected.
• Load. This instruction copies the value of a Data RAM element into one of the internal registers. A boolean parameter specifies if

addr_base must be considered while addressing the Data RAM only.
• Store. This instruction copies the value of one of the internal registers to a Data RAM element. A boolean parameter specifies if

addr_base must be considered while addressing the Data RAM only.

jfbkr Jump relative on feedback condition

jmpf Unconditional jump far

jmpr Unconditional jump relative

jocf Jump far on condition

jocr Jump relative on condition

joidf Jump far on microcore condition

joidr Jump relative on microcore condition

joslf Jump far on start condition

joslr Jump relative on start condition

jsrf Jump far on status register bit condition

jsrr Jump relative on status register bit condition

jtsf Jump far to subroutine

jtsr Jump relative to subroutine

Table 7. DRAM access instructions

cp Copy source register data to destination register

ldca Load counter from ALU register and set outputs

Table 6. Jump instructions (continued)

Register
‘base_add’

Register ‘ir’

DATARAM

‘slab’instruction

+ Indexed variable

‘load’, ‘store’… address

ofs

add_base

MC33PT2000 programming guide and instruction set, Rev. 1.0

10 NXP Semiconductors

Microcore programming description

2.9 Arithmetic instructions

The Arithmetic Logic Unit (ALU) does math calculations and bitwise operations. The immediate register (ir) is used for most instructions.
This register can be loaded using the ldirh and ldirl instructions.

2.10 Shift instructions

This section covers the shift instructions. Shifts include 'shift left' and 'shift right', 'shift by register' and 'shift immediate', 'normal shift' and
'signed shift' in which the most significant bit does not change, and 32-bit shifts in which the 'mh' and 'ml' registers are treated as a single
32-bit register in which the 'mh' register's lsb connects with the 'ml's registers msb.

Shifts take one instruction cycle per shifted bit and the 'arith_reg' register's 'OD' bit can be tested to determine when the shift is completed.
So an 11-bit shift would normally take 11 clock cycles to execute. However, there is a special 8-bit shift which takes just a single clock
cycle so shifts by constants greater than 8 bit positions can be sped up by combining the 8-bit shift with the immediate shift.

ldcd Load counter from Data RAM and set outputs

ldirh Load 8-MSB ir register

ldirl Load 8-LSB ir register

load Load data from Data RAM to register

slab Select Data RAM address base

stab Set Data RAM address base

stdrm Set Data RAM read mode

store Store register data in Data RAM

Table 8. Math instructions

add Add two ALU registers and place the result in one of the ALU registers

addi Add an ALU register to the value in the immediate register and place the result in an ALU register.

mul Multiply two ALU registers and place the result in reg32

muli Multiply an ALU register with the value in the immediate register and place the result in reg32.

stal Set arithmetic logic mode

sub Subtract two ALU registers and place the result in one of the ALU registers

subi Subtract the value in the immediate register from an ALU register and place the result in an ALU register.

swap Swap bytes inside ALU register

toc2 Convert an integer in an ALU register to 2's compliment format

toint Convert the 2’s complement value contained in an ALU register to integer format.

Table 9. Bitwise instructions

and AND an ALU register with the value in the immediate register and place the result in the ALU register.

not Invert ALU register bits

or OR an ALU register with the value in the immediate register and place the result in the ALU register.

xor XOR an ALU register with the value in the immediate register and place the result in the ALU register.

Table 7. DRAM access instructions (continued)

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 11

Microcore programming description

2.11 Control, status, and flags instructions

This section covers the instructions that handle the control register, the status register and the flags register. Note that each of the six cores
has it's own control and status register but the six cores share the flag register.

The flags register has many purposes. The devices's input pins can be read through the (single) flags register (refer to register 1A1h and
1A3h). On the other hand if flags are configured as output pins (refer to register 1A1h and 1A3h) they can be controlled through the flags
register. The flags register can also be used by the 'wait' instruction to execute a section of code depending on its value high or low.

2.12 Inter-core communication instructions

The inter-core communication register 'rxtx' provides a mechanism to share data between cores. It is possible to exchange 16-bit data
between different microcores, even belonging to different channels, using the ch_rxtx address in the internal memory map. Table 12.
shows the register in write mode. The transmitting microcores can write data at this address; the receiving microcores can read the data
using the same address, selecting the source with the stcrt instruction. Each core has its own 'rxtx' register that only it can write.

It is possible to select between two different ways of receiving the data. Table 13. shows the register in read mode when the data from
one single microcore is selected. This way allows transmitting 16-bit data between one microcore and another.

Table 14. shows the register in read mode when the source “sumh” or “suml” is selected. In this mode, the bits H0 to H3 or L0 to L3 in all
six microcores ch_rxtx registers are counted and the result can be read from the communication register. The result for each bit Hx and
Lx can be between 0 (“0000”) and 6 (“0110”).

Table 10. Shift Instructions

sh32l Shift left multiplication result register

sh32li Shift left multiplication result register by immediate value

sh32r Shift right multiplication result register

sh32ri Shift right multiplication result register by immediate value

shl Shift left ALU register

shl8 Shift left ALU register by 8 bits

shli Shift left the ALU register by immediate value

shls Shift left signed ALU register

shlsi Shift left signed ALU register by immediate value

shr Shift right ALU register

shr8 Shift right ALU register by 8 bits

shri Shift right the ALU register immediate value

shrs Shift right signed ALU register

shrsi Shift right signed ALU register immediate value

Table 11. Control, status and flags instructions

rstreg Reset registers (control, status, automatic diagnostics...)

stcrb Set control register bit

stf Set flag

stsrb Set status register bit

MC33PT2000 programming guide and instruction set, Rev. 1.0

12 NXP Semiconductors

Microcore programming description

Figure 4. Communication example between Ch1 uc0 and Ch2 uc0 (sspc)

Table 12. ch_rxtx internal register in write mode

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name Transmit_data

Bits in
sumh

or suml
mode

H3 H2 H1 H0 L3 L2 L1 L0
-

Reset 0000000000000000

Table 13. ch_rxtx internal register in read mode for source sssc to ospc

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name Received_data_from_selected_microcore

R/W r/w

Lock yes

Reset 0000000000000000

Table 14. ch_rxtx internal register in read mode for source sumh, suml

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name sum(H3) or sum(L3) sum(H2) or sum(L2) sum(H1) or sum(L1) sum(H0) or sum(L0)

Reset 0000000000000000

Table 15. Inter-communication instruction set

stcrt Set channel communication register

ALU

rxtx
Co

nf
ig

 ‘s
tc

rt’

W
rit

e

Re
ad

Ch 1, uCore 0

sssc
ossc
ssnc
osnc
sspc
ospc
sum

L
sum

H

ALU

rxtx

Co
nf

ig
 ‘s

tc
rt’

W
rit

e

Re
ad

Ch 2, uCore 0

sssc
ossc
ssnc
osnc
sspc
ospc
sum

L
sum

H

Ch1_uCore0

Ch2_uCore0

sumL

sumL
=

Sum of all
Channel
rxtx low

bits (L0 to
L3)

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 13

Microcore programming description

2.13 Shortcuts

Shortcuts are used to connect a core to the hardware. There are two types of shortcuts; 'output driver' shortcuts (dfsct) and 'current sense
block' shortcuts (dfcsct). Output driver shortcuts allow a core to modify the states of up to three outputs at once. By modifying all three
outputs in a single instruction, fully synchronized driver changes can occur in a single instruction.

Each core has one current sense block shortcut. The current sense block shortcut connects the core to one of the six current senses
blocks. This shortcut is used primarily for testing the 'own current' current threshold (see the 'ocur' field value of the 'jocf' and 'jocr'
instructions) or waiting for the 'own current' threshold to be reached (see the 'wait' instruction's 'ocur' field value.)

Another benefit of shortcuts is the ability to write core-independent code. This allows the exact same code to operate on different sets of
output drivers and current sense blocks without having to make driver specific conditional jumps.

2.14 Current sense blocks

As described in the datasheet, current sense blocks can be used as a current sense with offset compensation, or as an ADC or in a DCDC
mode. The following instructions in this section are used to configure each mode.

It is possible to set the DCDC mode (stdcctl) from the microcode of any core, as long as the core has access to the LS7 and/or LS8 output.
The low side used to control the DCDC low side (LS7 or LS8) has to be defined as shortcut 2 (dfsct) in order to use the DCDC mode.

The DAC registers are used to setup the current measurement block DACs. These DACs are affected as shown in Table 17.. These DACs
can be set by using the stdm instruction to setup the access mode.The DAC registers can be loaded with the cp and load instructions.
Loading DAC registers values to other registers or DRAM is also possible by means of the cp and store instructions.

Table 16. Shortcuts definition instructions

dfcsct Define current shortcut

dfsct Define pre-driver output shortcuts

Table 17. Current measurement DACs affectation to microcores

Microcore dac sssc dac ossc
oc_dac_sel_ucX=’0’ (next channel) oc_dac_sel_ucX=’1’ (previous channel)

dac ssoc dac osoc dac ssoc dac osoc

Uc0, channel 1 dac1 dac2 dac3 dac4 dac5 dac6

Uc1, channel 1 dac2 dac1 dac4 dac3 dac6 dac5

Uc0, channel 2 dac3 dac4 dac5 dac6 dac1 dac2

Uc1, channel 2 dac4 dac3 dac6 dac5 dac2 dac1

Uc0, channel 3 dac5 dac6 dac1 dac2 dac3 dac4

Uc1, channel 3 dac6 dac5 dac2 dac1 dac4 dac3

Table 18. Current sense instructions

stadc Set ADC mode

stdcctl Set DC-DC control mode

stdm Set DAC register mode access

stgn Set current measure operational amplifier gain

stoc Set offset compensation

MC33PT2000 programming guide and instruction set, Rev. 1.0

14 NXP Semiconductors

Microcore programming description

2.15 Output drivers

The instructions described in this section are used to control the Output Drivers. Each high-side and low-side can turn ON/OFF by all
microcores if the output access registers are configured properly (refer to register 160h to 165h). Low-side and high-side bias needs to
be enabled before using the diagnostics, and can be kept ON during the application.

It is possible to enable or disable the end of actuation mode. In the final phase of an actuation, while the current in the actuator is
decreasing, it is possible to detect when the current has reached the zero value. In most applications it is required that the Vsource
threshold for the corresponding HS output is set to zero: this condition can be automatically enabled and disabled together with the end
of actuation mode.

2.16 Interrupts

An interrupt routine is executed when an interrupt request is received by the microcore. The microcore must not have already been
executing another interrupt routine. The interrupt routine can’t be interrupted by any other interrupt, but only be terminated via an iret
instruction or (if configured in this way by the iconf instruction) by reading the related diagnosis register through SPI (not through the SPI
back door):

• Err_ucXchY registers (162h to 169h) for the automatic diagnosis interrupt
• Driver_status register (1D2h) for the disabled drivers interrupt.

The interrupts received are queued while another interrupt execution is ongoing. When exiting the ongoing interrupt routine with the iret
instruction, the queue can be cleared and queued interrupts are ignored. Otherwise, the queued interrupts are executed according to their
priorities:

• automatic diagnosis interrupt (higher priority)
• driver disabled interrupt
• software interrupt (lower priority)

The interrupt return address is always calculated when the interrupt occurs, and is stored in the Ucx_irq_status registers (10Fh, 110h,
12Fh, 130h). The return address is the address where the code execution was interrupted. If a wait or a conditional jump instruction is
interrupted, the return address is defined, restoring the status of the feedback at the moment the interrupt request occurred.

2.16.1 Automatic interrupt
Automatic diagnosis interrupt routine address: this address (defined in the Diag_routine_addr (10Ch and 12Ch) section) is selected as
the new uPC value if an automatic diagnosis interrupt request is received by the microcore. This condition has an higher priority than any
instruction and any other interrupt.

The following instructions are used to enable disable the automatic diagnostics and select different configuration.

Before turning ON the diagnostics, the error table needs to be configured properly by the SPI (refer to registers HSx_output_config (1D8h
to 1ECh) and LSx_output_config (1C0h to 1D1h)). The threshold can be configured either by the SPI (refer to registers VDS and VSRC
threshold section in the datasheet) or by using the chth instruction.

Table 19. Output drivers instructions

bias Enable high-side and low-side bias

steoa Set end of actuation mode

stfw Set freewheeling mode

sto Set single pre-driver output

stos Set pre-driver output shortcuts

stslew Set pre-driver output slew rate mode

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 15

Microcore programming description

2.16.2 Driver disable interrupt
Driver disabled interrupt routine address: this address (defined in the Driver_disabled_routine_addr (10Dh and 12Dh) section) is selected
as the new uPC value if an interrupt request, due to disabled drivers, is received by the microcore. This condition has an higher priority
than any instruction and the software interrupt.

2.16.3 Software interrupt
Software interrupt routine address: this address (defined in the Sw_interrupt_routine_addr (10Eh and 12Eh) section) is selected as the
new uPC value if a software interrupt request is received by the microcore. This condition has a higher priority than any instruction.

2.17 Counter/timers

This block contains 4 pairs of 16-bit up counter and 16-bit end of count registers. Each of the four counters is compared with an eoc_reg
(end of count register); if the counter is greater or equal than its corresponding end of count, then a terminal count signal is asserted. These
signals are fed to uinstruction_rom.

At reset each counter and eoc_reg is set to zero. When a counter reaches its end of count value, its value does not increase. If the eoc_reg
is changed without resetting the counter value, the counter value starts to increase again (if the new end of count value is greater than the
counter value) until the new end of count value is reached.

These counters can be loaded with data coming from the DRAM or from the internal bus (e.g. ALU registers); vice versa the counters can
write data into the DRAM or into any of the registers connected to the internal bus (this function can be used to perform period
measurements on the input signals).

It is possible to update any terminal count register without stopping the associated counter: this allows on-the-fly data correction in the
actuated timings. All load instructions executed can simultaneously load the eoc_reg with the value specified in the microinstruction and
reset the counter.

The counter starts counting up until it meets the eoc_reg value: at this point an eoc (end of count) signal is set to inform the micro-program
that this event has occurred. There are also load instructions which don't reset the counter after loading the eoc_reg register. (Refer to
instruction set (See Instruction set on page 19.) for details of all the instructions).

Counter 1 and 2 always operate with the ck execution clock: so the maximum time that is possible to measure with a single counter is
2^16 * ck clock period (10,923 ms at 6.0 MHz). Counter 3 and 4 can operate with a slower clock, obtained dividing the execution clock
frequency (by an integer factor from 1 to 12, 14, 16, 32, or 64), to measure longer times with lower resolution (refer to register
Counter_34_prescaler (111h, 131h and 151h).

Table 20. Automatic diagnostics instructions

chth Change VDS and VSRC threshold

endiag Enable automatic diagnosis

endiaga Enable all automatic diagnosis

endiags Enable automatic diagnosis shortcuts

slfbk Select HS2/4/6 feedback reference

Table 21. Software Interrupt Instructions

reqi Software interrupt request

swi Enable / Disable Software interrupt

iret Return from interrupt

MC33PT2000 programming guide and instruction set, Rev. 1.0

16 NXP Semiconductors

Microcore programming description

2.18 SPI back door

All the SPI accessible registers can be accessed also by the microcores through an “SPI back door”. Note that both Data and Code RAMs
are unavailable through the back door. The spi_access_controller receives all the register read/write requests, from the SPI interface and
from all the enabled microcores. Top priority is given to the requests coming from the SPI interface.

To read a SPI register, first the eight LSBs of the address must be provided in the eight LSBs of the ‘SPI address’ at an internal memory
map address to the load instruction. A read operation must be requested with the rdspi instruction. The result is available at the ‘SPI data’
address of the internal memory map. Note that it is necessary to wait one clk cycle to make sure the spi_data register is updated.

To write to a SPI register, first the eight LSBs of the address must be provided in the eight LSBs of the ‘SPI address’ address, and the data
to write must be provided at the ‘SPI data’ address to the load instruction. A write operation must be requested with the wrspi instruction.
Both the SPI read and write operations are two cycle operations. The registers must not be changed while the operation is in progress.

If the SPI back door is not used, the 8-bit register at the address ‘SPI address’ and the 16-bit register at the address ‘SPI data’ can be
used as spare register.

Table 22. Load counter and set output instructions

ldca Load counter from ALU register and set outputs

ldcd Load counter from Data RAM and set outputs

Table 23. SPI back door instructions

rdspi SPI read request

slsa Select SPI address

wrspi SPI write request

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 17

Instruction set and subsets

3 Instruction set and subsets

3.1 Internal registers operand subsets

This section details the pre-defined microcore register subsets used as instruction operands in Direct Addressing mode (DM).

3.1.1 AluReg subset

3.1.2 AluGprIrReg subset

Table 24. Operand subset overview

Operand label Operand subset description

AluReg Register designator for registers r0, r1, r2, r3, r5, r5, ir, mh, and ml.

AluGprIrReg Register designator for registers r0, r1, r2, r3, r5, r5, and ir.

UcReg
Register designator for registers r0, r1, r2, r3, r5, r5, ir, mh, ml, ar (arith_reg), aux, jr1, jr2, cnt1, cnt2, cnt3, cnt4, eoc1,
eoc1, eoc3, eoc4, flag, cr (ctrl_reg), sr (status_bits), spi_data, dac_sssc, dac_ossc, dac_ssoc, dac_osoc/batt,
dac56h56n/boost, spi_add, irq (irq_status), and rxtx (ch_rxtx)

JpReg Register designator for registers jr0 and jr1

Table 25. AluReg subset description

Register label Operand binary value

r0 000

r1 001

r2 010

r3 011

r4 100

ir 101

mh 110

ml 111

Table 26. AluGpsIrReg subset description

Register label Operand binary value

r0 000

r1 001

r2 010

r3 011

r4 100

ir 101

MC33PT2000 programming guide and instruction set, Rev. 1.0

18 NXP Semiconductors

Instruction set and subsets

3.1.3 UcReg subset

Table 27. UcReg subset description

Register label Operand binary value

r0 00000

r1 00001

r2 00010

r3 00011

r4 00100

ir 00101

mh 00110

ml 00111

ar (1) 01000

aux 01001

jr1 01010

jr2 01011

cnt1 01100

cnt2 01101

cnt3 01110

cnt4 01111

eoc1 10000

eoc2 10001

eoc3 10010

eoc4 10011

flag 10100

cr (1) 10101

sr (3) 10110

spi_data 10111

dac_sssc 11000

dac_ossc 11001

dac_ssoc 11010

dac_osoc/batt 11011

dac56h56n/boost 11100

spi_add 11101

irq (4) 11110

rxtx (5) 11111

Notes
1. ar is the ALU arithmetic register arith_reg
2. cr is the control register ctrl_reg
3. sr is the status bits register status_bits
4. irq is the interrupt status register irq_status
5. rxtx is the other channel communication register ch_rxtx

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 19

Instruction set and subsets

3.1.4 JpReg subset

3.2 Instruction set

The instructions contain an entry for each assembler mnemonic, in alphabetic order. Figure 5 is a representation of a instruction page.

Figure 5. Description of instruction page

Table 28. JrReg subset description

Register label Operand binary value

jr1 0

jr2 1

MNEMONIC

SYMBOLIC
DESCRIPTION OF

OPERATION

SYNTAX OF THE
INSTRUCTION AND

OPERANDS

DETAILED
DESCRIPTION OF

OPERATION

 DESCRIPTION OF
OPERANDS

 DETAIL OF
CONDITION
REGISTER

 DESCRIPTION OF
INTRUCTION BINARY

FORMAT

SIMPLIFIED INSTRUCTION
DESCRIPTION

MC33PT2000 programming guide and instruction set, Rev. 1.0

20 NXP Semiconductors

Instruction set and subsets

3.2.1 Mnemonic index
This subsection contains an entry for each assembler mnemonic, in alphabetic order.

Table 29. Instruction index

Instruction name Instruction description

add Add two ALU registers and place the result in one of the ALU registers

addi Add an ALU register to the value in the immediate register and place the result in an ALU register.

and AND-mask on ALU register with the immediate register to ALU register

bias Enable high-side and low-side bias

chth Change VDS and VSRC threshold

cp Copy source register data in destination register

cwef Create wait table entry far

cwer Create wait table entry relative

dfcsct Define current shortcut

dfsct Define pre-driver output shortcuts

endiag Enable automatic diagnosis

endiaga Enable all automatic diagnosis

endiags Enable automatic diagnosis shortcuts

iconf Interrupt configuration

iret Return from interrupt

jarf Jump far on arithmetic condition

jarr Jump relative on arithmetic condition

jcrf Jump far on control register condition

jcrr Jump relative on control register condition

jfbkf Jump far on feedback condition

jfbkr Jump relative on feedback condition

jmpf Unconditional jump far

jmpr Unconditional jump relative

jocf Jump far on condition

jocr Jump relative on condition

joidf Jump far on microcore condition

joidr Jump relative on microcore condition

joslf Jump far on start condition

joslr Jump relative on start condition

jsrf Jump far on status register bit condition

jsrr Jump relative on status register bit condition

jtsf Jump far to subroutine

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 21

Instruction set and subsets

jtsr Jump relative to subroutine

ldca Load counter from ALU register and set outputs

ldcd Load counter from Data RAM and set outputs

ldirh Load 8-MSB ir register

ldirl Load 8-LSB ir register

ldjr1 Load jump register 1

ldjr2 Load jump register 2

load Load data from Data RAM to register

mul Multiply two ALU registers and place the result in reg32

muli Multiply an ALU register with the value in the immediate register and place the result in reg32.

not Invert ALU register bits

or OR mask on ALU register with immediate register to ALU register

rdspi SPI read request

reqi Software interrupt request

rfs Return from subroutine

rstreg Reset registers (control, status, automatic diagnostics...)

rstsl Start-latch registers reset

sh32l Shift left multiplication result register

sh32li Shift left multiplication result register of immediate value

sh32r Shift right multiplication result register

sh32ri Shift right multiplication result register of immediate value

shl Shift left ALU register

shl8 Shift left ALU register of 8 bits

shli Shift left the ALU register of immediate value

shls Shift left signed ALU register

shlsi Shift left signed ALU register of immediate value

shr Shift right ALU register

shr8 Shift right ALU register of 8 bits

shri Shift right the ALU register of immediate value

shrs Shift right signed ALU register

shrsi Shift right signed ALU register of immediate value

sl56dac Select DAC 5 or DAC 6

slab Select Data RAM address base

slfbk Select HS2/4/6 feedback reference

slocdac Select other channel DAC

Table 29. Instruction index (continued)

Instruction name Instruction description

MC33PT2000 programming guide and instruction set, Rev. 1.0

22 NXP Semiconductors

Instruction set and subsets

slsa Select SPI address

stab Set Data RAM address base

stadc Set ADC mode

stal Set arithmetic logic mode

stcrb Set control register bit

stcrt Set channel communication register

stdcctl Set DC-DC control mode

stdm Set DAC register mode access

stdrm Set Data RAM read mode

steoa Set end of actuation mode

stf Set flag

stfw Set freewheeling mode

stgn Set current measure operational amplifier gain

stirq Set IRQB pin

sto Set single pre-driver output

stoc Set offset compensation

store Store register data in Data RAM

stos Set pre-driver output shortcuts

stslew Set pre-driver output slew rate mode

stsrb Set status register bit

sub Subtract two ALU registers and place the result in one of the ALU registers

subi Subtract the value in the immediate register from an ALU register and place the result in an ALU register.

swap Swap bytes inside ALU register

swi Enable / Disable Software interrupt

toc2 Convert an integer in an ALU register to 2's compliment format

toint Convert the 2’s complement value contained in an ALU register to integer format.

wait Wait until condition satisfied

wrspi SPI write request

xor Mask XOR with immediate register

Table 29. Instruction index (continued)

Instruction name Instruction description

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 23

Instruction set and subsets

Operation: (Source1) + (Source2) => (Destination); Carry => C

Assembler syntax: add op1 op2 res;

Description:

Sums the value contained in the op1 register with the value contained in op2 register and places the result in the res register.

Operands:

op1 – One of the register listed in the operand AluReg subset

op2 – One of the register listed in the operand AluReg subset

res – One of the register listed in the operand AluReg subset

Condition register:

• C – Carry over bit
• RZ - Addition or subtraction result is zero
• RS - Addition or subtraction result is negative
• UU - Unsigned underflow
• UO - Unsigned overflow
• SU - Signed underflow
• SO - Signed overflow

Instruction format:

add Two ALU registers addition to
ALU register add

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 0 res 0 op2 op1

MC33PT2000 programming guide and instruction set, Rev. 1.0

24 NXP Semiconductors

Instruction set and subsets

Operation: (Source) + Immediate value => (Destination); Carry => C

Assembler syntax: addi op1 Imm res;

Description:

Sums the value contained in the op1 register with the immediate value Imm and places the result in the res register.

Operands:

op1 – One of the register listed in the operand AluReg subset

• res - One of the registers listed in the operand AluReg Subset
• C – Carry over bit
• RZ - Addition or subtraction result is zero
• RS - Addition or subtraction result is negative
• UU - Unsigned underflow
• UO - Unsigned overflow
• SU - Signed underflow
• SO - Signed overflow

Instruction format:

addi ALU register addition with
immediate value to ALU register addi

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 res Imm op1

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 25

Instruction set and subsets

Operation: (Source) and Immediate register => (Source)

Assembler syntax: and op1;

Description:

Applies the AND-mask contained into the Ir register to the value contained in the op1 register and places the result in the op1 register. The
initial data stored in the op1 register is lost.

Operands:

op1 – One of the register listed in the operand AluReg subset

Ir –The ALU immediate register

Condition register:

• MN - Mask result is 0000h
• MM - Mask result is FFFFh

Instruction format:

Source code example:
*### Do 0x0C00 & IRQ status register ####

irq_and: cp irq r0; * Save irq register into r0 (for this example irq = 0x400 due to a sw interrupt 1)
ldirh 0Ch rst; * Load immediate register ir MSB with 0x0C and reset the LSB -> IR = 0x0C00
and r0; * Operation does ir & r0 = 0x0C00 & 0x0400 = 0x0400 and save this results in r0

and
AND-mask on ALU register with
the immediate register to ALU

register
and

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 1 0 1 1 0 0 1 op1

MC33PT2000 programming guide and instruction set, Rev. 1.0

26 NXP Semiconductors

Instruction set and subsets

Assembler syntax: bias BiasTarget Ctrl;

Description:

Enables/disables individually the high-side and low-side PT2000 load bias structures.

This operation is successful only if the microcore has the right to drive the output related to the selected bias structure. The drive right is
granted by setting the related bits in the Out_acc_ucX_chY (160h, 161h, 162h, 163h, 164h, 165h) configuration registers.

Operands:

BiasTarget – Operand defines the bias structure(s) to be selected

Ctrl – Operand defines the bias structure(s) state to be applied

Instruction format:

bias Enable high-side and low-side
bias bias

Operand label Operand description Operand binary value

hs1 Select HS1 bias structure 00000

hs2 Select HS2 bias structure 00001

hs3 Select HS3 bias structure 00010

hs4 Select HS4 bias structure 00011

hs5 Select HS5 bias structure 00100

hs6 Select HS6 bias structure 00101

hs7 Select HS7 bias structure 00110

ls1 Select LS1 bias structure 00111

ls2 Select LS2 bias structure 01000

ls3 Select LS3 bias structure 01001

ls4 Select LS4 bias structure 01010

ls5 Select LS5 bias structure 01011

ls6 Select LS6 bias structure 01100

ls7 Select LS7 bias structure 01101

ls8 Select LS8 bias structure 01110

hs2s Select HS2 strong bias structure 01111

hs4s Select HS4 strong bias structure 10000

all Select all high-side and low-side pre-driver bias structures including strong bias structures 10001

hs Select all high-side pre-driver bias structures including strong bias structures 10010

ls Select all low-side pre-driver bias structures 10011

Operand label Operand description Operand binary value

off Bias structure disable 0

on Bias structure enable 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 1 1 1 0 Ctrl BiasTarget

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 27

Instruction set and subsets

Assembler syntax: chth SelFbk ThLevel;

Description:

Changes the thresholds for the selected VDS and VSRC feedback comparator.

These are the same values as in registers Vds_threshold_hs_partx (16Bh, 16Ch), Vsrc_threshold_hs_partx (16Dh, 16Eh) and

Vds_threshold_ls_partx (16Fh, 170h).

This operation is successful only if the microcore has the right to drive the output related to selected threshold.

The configuration of the high-side pre-driver VSRC thresholds is also impacted by the bootstrap initialization mode.

Operands:

SelFbk – Operand defines the threshold comparator to be selected

chth Change VDS and VSRC threshold chth

Operand label Operand description Operand binary value

hs1v HS1 VDS feedback 00000

hs1s HS1 VSRC feedback 00001

hs2v HS2 VDS feedback 00010

hs2s HS2 VSRC feedback 00011

hs3v HS3 VDS feedback 00100

hs3s HS3 VSRC feedback 00101

hs4v HS4 VDS feedback 00110

hs4s HS4 VSRC feedback 00111

hs5v HS5 VDS feedback 01000

hs5s HS5 VSRC feedback 01001

hs6v HS6 VDS feedback 01010

hs6s HS6 VSRC feedback 01011

hs7v HS7 VDS feedback 01100

hs7s HS7 VSRC feedback 01101

ls1v LS1 VDS feedback 01110

ls2v LS2 VDS feedback 01111

ls3v LS3 VDS feedback 10000

ls4v LS4 VDS feedback 10001

ls5v LS5 VDS feedback 10010

ls6v LS6 VDS feedback 10011

ls7v LS7 VDS feedback 10100

ls8v LS8 VDS feedback 10101

MC33PT2000 programming guide and instruction set, Rev. 1.0

28 NXP Semiconductors

Instruction set and subsets

ThLevel – Operand defines threshold level to be applied

Instruction format:

Operand label Operand description Operand binary value

lv1 First level - 0.00 V 000

lv2 Second level - 0.50 V 001

lv3 Third level - 1.0 V 010

lv4 Fourth level - 1.5 V 011

lv5 Fifth level - 2.0 V 100

lv6 Sixth level - 2.5 V 101

lv7 Seventh level 3.0 V 110

lv8 Height level - 3.5 V 111

lv9 Ninth level - 0.10 V 100

lv10 Tenth level - 0.20 V 101

lv11 Eleventh level - 0.30 V 110

lv12 Twelfth level - 0.40 V 111

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 1 SelFbk ThLevel

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 29

Instruction set and subsets

Assembler syntax: cp op1 op2;

Description:

Copies the value from the source register op1 into the destination register op2.

Operands:

op1 – One of the register listed in the operand UcReg subset

op2 – One of the register listed in the operand UcReg subset

Instruction format:

cp Copy source register data in
destination register cp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 op1 op2 0 0 0

MC33PT2000 programming guide and instruction set, Rev. 1.0

30 NXP Semiconductors

Instruction set and subsets

Assembler syntax: cwef op1 Cond Entry ;

Description:

Initializes or changes a row in the wait table used by the wait instruction

The wait table is a five-row/two-column table:

• The first column contains the wait conditions.
• The second column contains the jump register name op1 contains the absolute destination addresses.

Up to five conditions may be checked at the same time.

When the condition Cond is satisfied and the entry is enabled, the execution continues either to the address 'jr1' or jr2' as specified by the
op1 parameter.

Operands:

op1 – One of the register listed in the operand JpReg subset

Cond – Operand defines the condition to be satisfied to enable the jump far

cwef Create wait table entry far cwef

Operand label Operand description Operand binary value

_f0 Flag 0 low 000000

_f1 Flag 1 low 000001

_f2 Flag 2 low 000010

_f3 Flag 3 low 000011

_f4 Flag 4 low 000100

_f5 Flag 5 low 000101

_f6 Flag 6 low 000110

_f7 Flag 7 low 000111

_f8 Flag 8 low 001000

_f9 Flag 9 low 001001

_f10 Flag 10 low 001010

_f11 Flag 11 low 001011

_f12 / _cur4 Flag 12 low / current feedback low 001100

_f13 Flag 13 low 001101

_f14 Flag 14 low 001110

_f15 Flag 15 low 001111

f0 Flag 0 high 010000

f1 Flag 1 high 010001

f2 Flag 2 high 010010

f3 Flag 3 high 010011

f4 Flag 4 high 010100

f5 Flag 5 high 010101

f6 Flag 6 high 010110

f7 Flag 7 high 010111

f8 Flag 8 high 011000

f9 Flag 9 high 011001

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 31

Instruction set and subsets

Entry – Operand defines the wait table row number

f10 Flag 10 high 011010

f11 Flag 11 high 011011

f12 / cur4 Flag 12 high / current feedback high 011100

f13 Flag 13 high 011101

f14 Flag 14 high 011110

f15 Flag 15 high 011111

tc1 Terminal count 1 100000

tc2 Terminal count 2 100001

tc3 Terminal count 3 100010

tc4 Terminal count 4 100011

_start Start low 100100

start Start high 100101

_sc1v Shortcut1 VDS feedback low 100110

_sc2v Shortcut2 VDS feedback low 100111

_sc3v Shortcut3 VDS feedback low 101000

_sc1s Shortcut1 source feedback low 101001

_sc2s Shortcut2 source feedback low 101010

_sc3s Shortcut3 source feedback low 101011

sc1v Shortcut1 VDS feedback high 101100

sc2v Shortcut2 VDS feedback high 101101

sc3v Shortcut3 VDS feedback high 101110

opd Instruction request to ALU executed 101111

vb Boost voltage high 110000

_vb Boost voltage low 110001

cur1 Current feedback 1 high 110010

cur2 Current feedback 2 high 110011

cur3 Current feedback 3 high 110100

cur56l Current feedback 56l high 110101

cur56h Current feedback 56h high 110110

cur56n Current feedback 4n high 110111

_cur1 Current feedback 1 low 111000

_cur2 Current feedback 2 low 111001

_cur3 Current feedback 3 low 111010

_cur56l Current feedback 56l low 111011

_cur56h Current feedback 56h low 111100

_cur56n Current feedback 4n low 111101

ocur Own current feedback high 111110

_ocur Own current feedback low 111111

Operand label Operand description Operand binary value

MC33PT2000 programming guide and instruction set, Rev. 1.0

32 NXP Semiconductors

Instruction set and subsets

Instruction format:

Source code example:
InitEntry: cwer vboost_high_hit vb row1; * Set wait table entry 1in case Vboost voltage is higher than Vboost_dac

cwer current_high_hit ocur row2; * Set wait table entry 2 in case own current sense is higher than dac threshold
ldjr1 eoinj0; * Set jr1 register to jump to eoinj0 label because there are more than 15 instructions between this

instruction and the label eoinj0
cwef jr1 _start row3 * Set wait table entry 3 in case start pin is going low
wait row123 * Wait here until one of the three conditions is satisfied

vboost_high_hit:
* #### Add some code here #####
current_high_hit:
*#### Add some code here #####
eoinj0: *More than 15 lines between the wait declaration and this label
*#### Add some code here #####

Operand label Operand description Operand binary value

row1 Wait table row 1 000

row2 Wait table row 2 001

row3 Wait table row 3 010

row4 Wait table row 4 011

row5 Wait table row 5 100

row6 Wait table row 6 101

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0 op1 Entry Cond

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 33

Instruction set and subsets

Assembler syntax: cwer Dest Cond Entry ;

Description:

Initializes or changes a row in the wait table used by the wait instruction

The wait table is a five-row/two-column table:

• The first column contains the wait conditions
• The second column contains the destination jump addresses

Up to five conditions may be checked at the same time.

When the condition Cond is satisfied and the entry is enabled, the execution continues at the correspondent destination jump address.

The jump is relative to the instruction Code RAM location. The destination address is the actual instruction Code RAM location added to
the Dest operand value. This 5-bit value is a two’s complemented number. The MSB is the sign. So Dest operand value is in the range of
{-16, 15}.

Operands:

Dest – Operand defines the 5-bit relative destination address in the range of {-16, 15}

Cond – Operand defines the condition to be satisfied to enable the jump far

cwer Create wait table entry relative cwer

Operand label Operand description Operand binary value

_f0 Flag 0 low 000000

_f1 Flag 1 low 000001

_f2 Flag 2 low 000010

_f3 Flag 3 low 000011

_f4 Flag 4 low 000100

_f5 Flag 5 low 000101

_f6 Flag 6 low 000110

_f7 Flag 7 low 000111

_f8 Flag 8 low 001000

_f9 Flag 9 low 001001

_f10 Flag 10 low 001010

_f11 Flag 11 low 001011

_f12 / _cur4 Flag 12 low/ current feedback low 001100

_f13 Flag 13 low 001101

_f14 Flag 14 low 001110

_f15 Flag 15 low 001111

f0 Flag 0 high 010000

f1 Flag 1 high 010001

f2 Flag 2 high 010010

f3 Flag 3 high 010011

f4 Flag 4 high 010100

f5 Flag 5 high 010101

f6 Flag 6 high 010110

f7 Flag 7 high 010111

f8 Flag 8 high 011000

MC33PT2000 programming guide and instruction set, Rev. 1.0

34 NXP Semiconductors

Instruction set and subsets

Entry – Operand defines the wait table row number

f9 Flag 9 high 011001

f10 Flag 10 high 011010

f11 Flag 11 high 011011

f12 / cur4 Flag 12 high / current feedback high 011100

f13 Flag 13 high 011101

f14 Flag 14 high 011110

f15 Flag 15 high 011111

tc1 Terminal count 1 100000

tc2 Terminal count 2 100001

tc3 Terminal count 3 100010

tc4 Terminal count 4 100011

_start Start low 100100

start Start high 100101

_sc1v Shortcut1 VDS feedback low 100110

_sc2v Shortcut2 VDS feedback low 100111

_sc3v Shortcut3 VDS feedback low 101000

_sc1s Shortcut1 source feedback low 101001

_sc2s Shortcut2 source feedback low 101010

_sc3s Shortcut3 source feedback low 101011

sc1v Shortcut1 VDS feedback high 101100

sc2v Shortcut2 VDS feedback high 101101

sc3v Shortcut3 VDS feedback high 101110

opd Instruction request to ALU executed 101111

vb Boost voltage high 110000

_vb Boost voltage low 110001

cur1 Current feedback 1 high 110010

cur2 Current feedback 2 high 110011

cur3 Current feedback 3 high 110100

cur56l Current feedback 56l high 110101

cur56h Current feedback 56h high 110110

cur56n Current feedback 4n high 110111

_cur1 Current feedback 1 low 111000

_cur2 Current feedback 2 low 111001

_cur3 Current feedback 3 low 111010

_cur56l Current feedback 56l low 111011

_cur56h Current feedback 56h low 111100

_cur56n Current feedback 4n low 111101

ocur Own current feedback high 111110

_ocur Own current feedback low 111111

Operand label Operand description Operand binary value

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 35

Instruction set and subsets

Instruction format:

Source code example:
InitEntry: cwer vboost_high_hit vb row1; * Set the wait table entry 1in case Vboost voltage is higher than Vboost_dac

cwer current_high_hit ocur row2; * Set the wait table entry 2 in case own current sense is higher than dac threshold
ldjr1 eoinj0; * Set jr1 register to jump to eoinj0 label because there is more than 15 instructions between this q

instruction and the label eoinj0
cwef jr1 _start row3 * Set the wait table entry 3 in case start pin is going low
wait row123 * Wait here until one of the three condition is reached

vboost_high_hit:
* #### Add some code here #####
current_high_hit:
*#### Add some code here #####
eoinj0: *More than 15 lines between the wait declaration and this label
*#### Add some code here #####

Operand label Operand description Operand binary value

row1 Wait table row 1 000

row2 Wait table row 2 001

row3 Wait table row 3 010

row4 Wait table row 4 011

row5 Wait table row 5 100

row6 Wait table row 5 101

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 Dest Entry Cond

MC33PT2000 programming guide and instruction set, Rev. 1.0

36 NXP Semiconductors

Instruction set and subsets

Assembler syntax: dfcsct ShrtCur ;

Description:

Defines the shortcut for the current feedback.

This shortcut defines the connection between the physical current feedback input of the microcore and the current measurement block.

At reset the default shortcut setting is the following:

Operands:

ShrtCur – Operand defines to which current measurement block is dedicated the shortcut.

Instruction format:

dfcsct Define current shortcut dfcsct

Shortcut Uc0Ch1 Uc1Ch1 Uc0Ch2 Uc1Ch2 Uc0Ch3 Uc1Ch2

ShrtCur dac1 dac2 dac3 dac4 dac5l dac6l

Operand label Operand description Operand binary value

dac1 DAC1 is selected as current shortcut 00

dac2 DAC2 is selected as current shortcut 01

dac3 DAC3 is selected as current shortcut 10

dac4 DAC4 is selected as current shortcut 11

dac5l DAC5L is selected as current shortcut 10

dac6l DAC6L is selected as current shortcut 11

dac5h DAC5H is selected as current shortcut 10

dac6h DAC6H is selected as current shortcut 11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 0 1 0 1 1 0 ShrtCur

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 37

Instruction set and subsets

Assembler syntax: dfsct Shrt1 Shrt2 Shrt3;

Description:

Defines three shortcuts applied to three pre-drivers output among the set of all the low-side and high-side pre-drivers.

The shortcuts table defines the connection between the physical outputs of the microcore and the external outputs pin (G_HSx and G_LSx)
driving the MOSFETs.

Note that in order to use the async or sync mode the low side use for DCDC has to be set as shortcut 2 (ex: dfsct undef ls7 undef).

At reset the default shortcut setting is undefined

Operands:

Shrt1, Shrt2, and Shrt3 – Operands defines to which pre-driver the shortcut is dedicated.

Instruction format:

dfsct Define pre-driver output shortcuts dfsct

Operand label Operand description Operand binary value

hs1 High-side pre-driver 1 0000

hs2 High-side pre-driver 2 0001

hs3 High-side pre-driver 3 0010

hs4 High-side pre-driver 4 0011

hs5 High-side pre-driver 5 0100

hs6 High-side pre-driver 6 0101

hs7 High-side pre-driver 7 0110

ls1 Low-side pre-driver 1 0111

ls2 Low-side pre-driver 2 1000

ls3 Low-side pre-driver 3 1001

ls4 Low-side pre-driver 4 1010

ls5 Low-side pre-driver 5 1011

ls6 Low-side pre-driver 6 1100

ls7 Low-side pre-driver 7 1101

ls8 Low-side pre-driver 8 1101

undef Undefined shortcut 1110

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 Shrt1 Shrt2 Shrt3 1 1

MC33PT2000 programming guide and instruction set, Rev. 1.0

38 NXP Semiconductors

Instruction set and subsets

Assembler syntax: endiag Sel Diag;

Description:

Enables or disables the automatic diagnosis for a single output and the related interrupt procedure for error handling.

This operation is successful only if the microcore has the right to drive the related outputs. The drive right is granted by setting the related
bits in the Out_acc_ucX_chY (160h, 161h, 162h, 163h, 164h, 165h) configuration registers.

At reset the automatic diagnosis is disabled.

Operands:

Sel – Operand defines the monitored pre-driver and VDS or VSRC feedback.

endiag Enable automatic diagnosis endiag

Operand label Operand description Operand binary value

hs1v High-side pre-driver 1 VDS feedback 00000

hs1s High-side pre-driver 1 SRC feedback 00001

hs2v High-side pre-driver 2 VDS feedback 00010

hs2s High-side pre-driver 2 SRC feedback 00011

hs3v High-side pre-driver 3 VDS feedback 00100

hs3s High-side pre-driver 3 SRC feedback 00101

hs4v High-side pre-driver 4 VDS feedback 00110

hs4s High-side pre-driver 4 SRC feedback 00111

hs5v High-side pre-driver 5 VDS feedback 01000

hs5s High-side pre-driver 5 SRC feedback 01001

hs6v High-side pre-driver 6 VDS feedback 01010

hs6s High-side pre-driver 6 SRC feedback 01011

hs7v High-side pre-driver 7 VDS feedback 01100

hs7s High-side pre-driver 7 SRC feedback 01101

ls1v Low-side pre-driver 1 VDS feedback 01110

ls2v Low-side pre-driver 2 VDS feedback 01111

ls3v Low-side pre-driver 3 VDS feedback 10000

ls4v Low-side pre-driver 4 VDS feedback 10001

ls5v Low-side pre-driver 5 VDS feedback 10010

ls6v Low-side pre-driver 6 VDS feedback 10011

ls7v Low-side pre-driver 7 VDS feedback 10100

ls8v Low-side pre-driver 8 VDS feedback 10101

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 39

Instruction set and subsets

Diag – Operand defines the diagnosis status

Instruction format:

Operand label Operand description Operand binary value

diagoff Automatic diagnosis disable 0

diagon Automatic diagnosis enable 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 1 1 1 1 Sel Diag

MC33PT2000 programming guide and instruction set, Rev. 1.0

40 NXP Semiconductors

Instruction set and subsets

Assembler syntax: endiaga Diag;

Description:

Enables or disables the automatic diagnosis for all the pre-drivers output the microcore is configured to drive. If automatic diagnosis
condition is satisfied, the related interrupt procedure for error handling is triggered.

The operation is successful only if the microcore has the right to drive the related outputs. The drive right is granted by setting the related
bits in the Out_acc_ucX_chY (160h, 161h, 162h, 163h, 164h, 165h) configuration registers.

At reset the automatic diagnosis is disabled.

Operands:

Diag – Operand defines the diagnosis status

Instruction format:

endiaga Enable all automatic diagnosis endiaga

Operand label Operand description Operand binary value

diagoff Automatic diagnosis disable 0

diagon Automatic diagnosis enable 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 1 0 1 0 1 0 0 Diag

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 41

Instruction set and subsets

Assembler syntax: endiags Diag_sh1_vds Diag_sh1_src Diag_sh2_vds Diag_sh3_vds;

Description:

Enables or disables the automatic for the outputs selected via shortcuts

Four events can be monitored in parallel:

• the drain-source voltage on shortcut1 output (Diag_sh1_vds)
• the source voltage on shortcut1 output (Diag_sh1_src)
• the drain-source voltage on shortcut2 output (Diag_sh2_vds)
• the drain-source voltage on shortcut3 output (Diag_sh3_vds)

If automatic diagnosis condition is satisfied, the related interrupt procedure for error handling is triggered.

The shortcuts are defined with the dfsct instruction.

The operation is successful only if the microcore has the right to drive the related outputs. The drive right is granted by setting the related
bits in the Out_acc_ucX_chY (160h, 161h, 162h, 163h, 164h, 165h) configuration registers.

At reset the automatic diagnosis are disabled.

Operands:

Diag _sh1_vds, Diag_sh2_vds and Diag_sh3_vds – Operands corresponding to the shortcuts related to VDS to be monitored.

Diag _sh1_src – Operand corresponding to the shortcuts related to VSRC to be monitored.

Instruction format:

endiags Enable automatic diagnosis
shortcuts endiags

Operand label Operand description Operand binary value

keep No changes, maintains the previous setting 00

NA Not applicable 01

off Automatic diagnosis disabled 10

on Automatic diagnosis enabled 11

Operand label Operand description Operand binary value

keep No changes, maintains the previous setting 00

NA Not applicable 01

off Automatic diagnosis disabled 10

on Automatic diagnosis enabled 11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 1 1 0 Diag _sh1_vds Diag _sh1_src Diag_sh2_vds Diag_sh3_vds

MC33PT2000 programming guide and instruction set, Rev. 1.0

42 NXP Semiconductors

Instruction set and subsets

Assembler syntax: iconf Conf;

Description:

Configures the microcore to be enabled by the interrupt return request.

The automatic interrupt return request is issued from, according to the iret_en bit state of the Driver_config_Part1 register (1A5h):

• Re-enabling the drivers in case the disabled drivers interrupt.
• Reading or writing the Driver_status register (1B2h) in case of automatic diagnosis interrupt. This register must be configured such

as to be ‘reset at read’.

The reset value is none.

Operands:

Conf – Operand defines interrupt behaviors

Instruction format:

iconf Interrupt configuration iconf

Operand label Operand description Operand binary value

none The microcore ignores all automatic interrupt return request 00

NA Not applicable 01

continue
When an interrupt return request is received, the code execution continues
from where it was interrupted

10

restart
When an interrupt return request is received, the code execution restarts
from the entry point

11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 1 0 1 0 1 1 Conf

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 43

Instruction set and subsets

Assembler syntax: iret Type Rst;

Description:

Ends the interrupt routine and clears the microcore interrupt register (uc0_irq_status (10Fh, 12Fh, 14Fh) and uc1_irq_status (110h, 130h,
150h)).

Operands:

Type – Operand defines how the program counter (uPC) is handled returning from the interrupt routine

Rst – Operand defines if the pending interrupts queue is clear when the iret instruction is executed

Instruction format:

iret Return from interrupt iret

Operand label Operand description Operand binary value

continue
The execution is resumed at the address stored in the 10 LSBs of the
interrupt register

0

restart
The execution is resumed at the address stored in the uc0_entry_point
(10Ah, 12Ah, 14Ah) or uc1_entry_point (10Bh, 12Bh, 14Bh) 1

Operand label Operand description Operand binary value

_rst The pending interrupts queue is not cleared 0

rst The pending interrupts queue is cleared 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 1 0 0 1 1 0 Type Rst

MC33PT2000 programming guide and instruction set, Rev. 1.0

44 NXP Semiconductors

Instruction set and subsets

Assembler syntax: jarf op1 BitSel;

Description:

Configures the jump to absolute location on arithmetic condition.

If the condition defined by the BitSel operand is satisfied, the program counter (uPC) is handled such as the next executed instruction is
located into the destination address contained in one of the jump registers.

The destination address defined by the op1 register is any of the absolute Code RAM location.

Operands:

op1 – One of the register listed in the operand JpReg subset

BitSel – Operand defines the arithmetic condition that triggers the jump. The arithmetic conditions are stored into the ALU condition
register

Instruction format:

jarf Jump far on arithmetic condition jarf

Operand label Operand description Operand binary value

opd OD -Operation complete 0000

ovs SO - Overflow with signed operands 0001

uns SU - Underflow with signed operands 0010

ovu UO - Overflow with unsigned operands 0011

unu UU - Underflow with unsigned operands 0100

sgn CS - Sign of result 0101

zero RZ - Result is zero 0110

mloss ML - Multiply precision loss 0111

mover MO - Multiply overflow 1000

all1 MM - Result of mask operation is FFFFh 1001

all0 MN - Result of mask operation is 0000h 1010

aritl false if add/sub saturation is enabled, true otherwise (see stal instruction) 1011

arith
false if logic is set to 2’s complement, true if logic is set to positive numbers
only (see stal instruction) 1100

carry C - Carry 1101

conv CS - Conversion sign 1110

csh SB - Carry on shift operation 1111

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 1 BitSel op1 0 1 0 1

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 45

Instruction set and subsets

Assembler syntax: jarr Dest BitSel;

Description:

Configures jump to relative location on arithmetic condition.

If the condition defined by the BitSel operand is satisfied, the program counter (uPC) is handled such as the next executed instruction is
relative destination address.

The jump is relative to the instruction Code RAM location. The destination address is the actual instruction Code RAM location added to
the Dest operand value. This 5-bit value is a two’s complemented number. The MSB is the sign. So Dest operand value is in the range of
{-16, 15}.

Operands:

Dest – Operand defines the 5-bit relative destination address in the range of {-16, 15}.

BitSel – Operand defines the arithmetic condition that triggers the jump. The arithmetic conditions are stored into the ALU condition
register

Instruction format:

Source code example:
*### Do 0x0800 & IRQ status register and jump to a label if results equal 0####
irq_and: cp irq r0; * Save the irq register into r0 (for this example irq = 0x400 due to a sw interrupt 1)

ldirh 08h rst; * Load immediate register ir MSB with 0x08 and reset the LSB -> IR = 0x0800
and r0; * Operation does ir & r0 = 0x0800 & 0x0400 = 0x0000 and save this results in r0
jarr results_zero all0; * if the results = 0 => sw interrupt was sw 1=> go to results_zero label

results_zero: ### Add code here ###

jarr Jump relative on arithmetic
condition jarr

Operand label Operand description Operand binary value

opd OD -Operation complete 0000

ovs SO - Overflow with signed operands 0001

uns SU - Underflow with signed operands 0010

ovu UO - Overflow with unsigned operands 0011

unu UU - Underflow with unsigned operands 0100

sgn CS - Sign of result 0101

zero RZ - Result is zero 0110

mloss ML - Multiply precision loss 0111

mover MO - Multiply overflow 1000

all1 MM - Result of mask operation is FFFFh 1001

all0 MN - Result of mask operation is 0000h 1010

aritl false if add/sub saturation is enabled, true otherwise (see stal instruction) 1011

arith
false if logic is set to 2’s complement, true if logic is set to positive numbers
only (see stal instruction)

1100

carry C - Carry 1101

conv CS - Conversion sign 1110

csh SB - Carry on shift operation 1111

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 1 0 BitSel Dest

MC33PT2000 programming guide and instruction set, Rev. 1.0

46 NXP Semiconductors

Instruction set and subsets

Assembler syntax: jcrf op1 CrSel Pol;

Description:

Configures the jump to absolute location on control register condition.

If the condition defined by the CrSel operand is satisfied according to the polarity Pol, the program counter (uPC) is handled such as the
next executed instruction is located into the destination address contained in one of the jump registers.

The destination address defined by the op1 register is any of the absolute Code RAM location.

Operands:

op1 – One of the register listed in the operand JpReg subset

CrSel – Operand defines the control register condition (Ctrl_reg_uc0 (101h, 121h, 141h) and Ctrl_reg_uc1 (102h, 122h, 142h) registers)
that triggers the jump

Pol – Operand defines the active polarity for the selected bit

Instruction format:

jcrf Jump far on control register
condition jcrf

Operand label Operand description Operand binary value

b0 Control register bit 0 (LSB) 0000

b1 Control register bit 1 0001

b2 Control register bit 2 0010

b3 Control register bit 3 0011

b4 Control register bit 4 0100

b5 Control register bit 5 0101

b6 Control register bit 6 0110

b7 Control register bit 7 0111

b8 Control register bit 8 1000

b9 Control register bit 9 1001

b10 Control register bit 10 1010

b11 Control register bit 11 1011

b12 Control register bit 12 1100

b13 Control register bit 13 1101

b14 Control register bit 14 1110

b15 Control register bit 15 (MSB) 1111

Operand label Operand description Operand binary value

low Active condition if the selected bit is ‘0’ 0

high Active condition if the selected bit is ‘1’ 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 1 Pol CrSel op1 0 1 0 0

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 47

Instruction set and subsets

Assembler syntax: jcrr Dest CrSel Pol;

Description:

Configures the jump to relative location on control register condition.

If the condition defined by the CrSel operand is satisfied according to the polarity Pol, the program counter (uPC) is handled such as the
next executed instruction is relative destination address

The jump is relative to the instruction Code RAM location. The destination address is the actual instruction Code RAM location added to
the Dest operand value. This 5-bit value is a two’s complemented number. The MSB is the sign. So Dest operand value is in the range of
{-16, 15}.

Operands:

Dest – Operand defines the 5-bit relative destination address in the range of {-16, 15}.

CrSel – Operand defines the control register condition (Ctrl_reg_uc0 (101h, 121h, 141h) and Ctrl_reg_uc1 (102h, 122h, 142h) registers)
that triggers the jump.

Pol – Operand defines the active polarity for the selected bit

Instruction format:

jcrr Jump relative on control register
condition jcrr

Operand label Operand description Operand binary value

b0 Control register bit 0 (LSB) 0000

b1 Control register bit 1 0001

b2 Control register bit 2 0010

b3 Control register bit 3 0011

b4 Control register bit 4 0100

b5 Control register bit 5 0101

b6 Control register bit 6 0110

b7 Control register bit 7 0111

b8 Control register bit 8 1000

b9 Control register bit 9 1001

b10 Control register bit 10 1010

b11 Control register bit 11 1011

b12 Control register bit 12 1100

b13 Control register bit 13 1101

b14 Control register bit 14 1110

b15 Control register bit 15 (MSB) 1111

Operand label Operand description Operand binary value

low Active condition if the selected bit is ‘0’ 0

high Active condition if the selected bit is ‘1’ 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 Pol CrSel Dest

MC33PT2000 programming guide and instruction set, Rev. 1.0

48 NXP Semiconductors

Instruction set and subsets

Assembler syntax: jfbkf op1 SelFbk Pol;

Description:

Configures the jump to absolute location on feedback condition.

If the condition defined by the SelFbk operand is satisfied according to the polarity Pol, the program counter (uPC) is handled such as the
next executed instruction is located into the destination address contained in one of the jump registers.

The destination address defined by the op1 register is any of the absolute Code RAM location.

Operands:

op1 – One of the register listed in the operand JpReg subset

SelFbk – Operand defines the feedback signal condition

jfbkf Jump far on feedback condition jfbkf

Operand label Operand description Operand binary value

hs1v High-side pre-driver 1 VDS feedback 000000

hs1s High-side pre-driver 1 VSRC feedback 000001

hs2v High-side pre-driver 2 VDS feedback 000010

hs2s High-side pre-driver 2 VSRC feedback 000011

hs3v High-side pre-driver 3 VDS feedback 000100

hs3s High-side pre-driver 3 VSRC feedback 000101

hs4v High-side pre-driver 4 VDS feedback 000110

hs4s High-side pre-driver 4 VSRC feedback 000111

hs5v High-side pre-driver 5 VDS feedback 001000

hs5s High-side pre-driver 5 VSRC feedback 001001

hs6v High-side pre-driver 6 VDS feedback 001010

hs6s High-side pre-driver 6 VSRC feedback 001011

hs7v High-side pre-driver 7 VDS feedback 001100

hs7s High-side pre-driver 7 VSRC feedback 001101

ls1v Low-side pre-driver 1 VDS feedback 001110

ls2v Low-side pre-driver 2 VDS feedback 001111

ls3v Low-side pre-driver 3 VDS feedback 010000

ls4v Low-side pre-driver 4 VDS feedback 010001

ls5v Low-side pre-driver 5 VDS feedback 010010

ls6v Low-side pre-driver 6 VDS feedback 010011

ls7v Low-side pre-driver 7 VDS feedback 010100

ls8v Low-side pre-driver 8 VDS feedback 010101

ls7f Low-side pre-driver 7 fast VDS feedback 010110

ls8f Low-side pre-driver 8 fast VDS feedback 010111

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 49

Instruction set and subsets

Pol – Operand defines the active polarity for the selected bit

Instruction format:

Operand label Operand description Operand binary value

low Active condition if the selected bit is ‘0’ 0

high Active condition if the selected bit is ‘1’ 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 SelFbk Pol op1 0 0 0 1

MC33PT2000 programming guide and instruction set, Rev. 1.0

50 NXP Semiconductors

Instruction set and subsets

Assembler syntax: jfbkr Dest SelFbk Pol;

Description:

Configures the jump to relative location on feedback condition.

If the condition defined by the SelFbk operand is satisfied according to the polarity Pol, the program counter (uPC) is handled such as the
next executed instruction is relative destination address.

The jump is relative to the instruction Code RAM location. The destination address is the actual instruction Code RAM location added to
the Dest operand value. This 5-bit value is a two’s complemented number. The MSB is the sign. So Dest operand value is in the range of
{-16, 15}.

Operands:

Dest – Operand defines the 5-bit relative destination address in the range of {-16, 15}.

SelFbk – Operand defines the feedback signal condition

jfbkr Jump relative on feedback
condition jfbkr

Operand label Operand description Operand binary value

hs1v High-side pre-driver 1 VDS feedback

hs1s High-side pre-driver 1 VSRC feedback

hs2v High-side pre-driver 2 VDS feedback

hs2s High-side pre-driver 2 VSRC feedback

hs3v High-side pre-driver 3 VDS feedback

hs3s High-side pre-driver 3 VSRC feedback

hs4v High-side pre-driver 4 VDS feedback

hs4s High-side pre-driver 4 VSRC feedback

hs5v High-side pre-driver 5 VDS feedback

hs5s High-side pre-driver 5 VSRC feedback

hs6v High-side pre-driver 6 VDS feedback

hs6s High-side pre-driver 6 VSRC feedback

hs7v High-side pre-driver 7 VDS feedback

hs7s High-side pre-driver 7 VSRC feedback

ls1v Low-side pre-driver 1 VDS feedback

ls2v Low-side pre-driver 2 VDS feedback

ls3v Low-side pre-driver 3 VDS feedback

ls4v Low-side pre-driver 4 VDS feedback

ls5v Low-side pre-driver 5 VDS feedback

ls6v Low-side pre-driver 6 VDS feedback

ls7v Low-side pre-driver 7 VDS feedback

ls8v Low-side pre-driver 8 VDS feedback

ls7f Low-side pre-driver 7 fast VDS feedback

ls8f Low-side pre-driver 8 fast VDS feedback

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 51

Instruction set and subsets

Pol – Operand defines the active polarity for the selected bit

Instruction format:

Operand label Operand description Operand binary value

low Active condition if the selected bit is ‘0’ 0

high Active condition if the selected bit is ‘1’ 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 SelFbk Pol Dest

MC33PT2000 programming guide and instruction set, Rev. 1.0

52 NXP Semiconductors

Instruction set and subsets

Assembler syntax: jmpf op1;

Description:

Configures the unconditional jump.

The destination address defined in one of the jump registers defined by the operand op1. The destination address is any of the absolute
Code RAM location.

Operands:

op1 – One of the register listed in the operand JpReg subset

Instruction format:

Source code example:
*### Jump far to the label eoinj0 ####

init0: ldjr1 eoinj0; * Load the eoinj label address to jr1 for a far jump
Convert: jmpf jr1; * jump to jr1 which eoinj0

.......x15 instruction lines.......... *If there are less than 15 lines between the jump and the label address jump far is not required, jump
relative is enough

eoinj0: stos off off off; * Turn Off all outputs

jmpf Unconditional jump far jmpf

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 1 1 0 1 0 op1 1 0 1

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 53

Instruction set and subsets

Assembler syntax: jmpr Dest SelFbk Pol;

Description:

Configures the unconditional jump to relative location.

The jump is relative to the instruction Code RAM location. The destination address is the actual instruction Code RAM location added to
the Dest operand value. This 5-bit value is a two’s complemented number. The MSB is the sign. So Dest operand value is in the range of
{-16, 15}.

Operands:

Dest – Operand defines the 5-bit relative destination address in the range of {-16, 15}.

Instruction format:

jmpr Unconditional jump relative jmpr

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 1 1 0 0 0 Dest

MC33PT2000 programming guide and instruction set, Rev. 1.0

54 NXP Semiconductors

Instruction set and subsets

Assembler syntax: jocf op1 Cond;

Description:

Configures the jump to absolute location on condition.

If the condition defined by the Cond operand is satisfied, the program counter (uPC) is handled such as the next executed instruction is
located into the destination address contained in one of the jump registers.

The feedbacks from current measurement 5 and 6 can not be checked at the same time by the same microcore (refer to register
Dac_rxtx_cr_config (112h, 132h, 152h)). The feedback from current measurement 4 can only be checked if this channel is activated via
the flags_source (1A3h) register. If the channel is activated, flag 12 can not be checked anymore.

The destination address defined by the op1 register is any of the absolute Code RAM location.

Operands:

op1 – One of the register listed in the operand JpReg subset

Cond – Operand defines the condition to be satisfied to enable the jump far

jocf Jump far on condition jocf

Operand label Operand description Operand binary value

_f0 Flag 0 low 000000

_f1 Flag 1 low 000001

_f2 Flag 2 low 000010

_f3 Flag 3 low 000011

_f4 Flag 4 low 000100

_f5 Flag 5 low 000101

_f6 Flag 6 low 000110

_f7 Flag 7 low 000111

_f8 Flag 8 low 001000

_f9 Flag 9 low 001001

_f10 Flag 10 low 001010

_f11 Flag 11 low 001011

_f12 / _cur4 Flag 12 low / Current feedback 4 low 001100

_f13 Flag 13 low 001101

_f14 Flag 14 low 001110

_f15 Flag 15 low 001111

f0 Flag 0 high 010000

f1 Flag 1 high 010001

f2 Flag 2 high 010010

f3 Flag 3 high 010011

f4 Flag 4 high 010100

f5 Flag 5 high 010101

f6 Flag 6 high 010110

f7 Flag 7 high 010111

f8 Flag 8 high 011000

f9 Flag 9 high 011001

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 55

Instruction set and subsets

f10 Flag 10 high 011010

f11 Flag 11 high 011011

f12 / cur4 Flag 12 high / Current feedback 4 high 011100

f13 Flag 13 high 011101

f14 Flag 14 high 011110

f15 Flag 15 high 011111

tc1 Terminal count 1 100000

tc2 Terminal count 2 100001

tc3 Terminal count 3 100010

tc4 Terminal count 4 100011

_start Start low 100100

start Start high 100101

_sc1v Shortcut1 VDS feedback low 100110

_sc2v Shortcut2 VDS feedback low 100111

_sc3v Shortcut3 VDS feedback low 101000

_sc1s Shortcut1 source feedback low 101001

_sc2s Shortcut2 source feedback low 101010

_sc3s Shortcut3 source feedback low 101011

sc1v Shortcut1 VDS feedback high 101100

sc2v Shortcut2 VDS feedback high 101101

sc3v Shortcut3 VDS feedback high 101110

opd Instruction request to ALU executed 101111

vb Boost voltage high 110000

_vb Boost voltage low 110001

cur1 Current feedback 1 high 110010

cur2 Current feedback 2 high 110011

cur3 Current feedback 3 high 110100

cur56l Current feedback 5/6l high 110101

cur56h Current feedback 5/6h high 110110

cur56n Current feedback 5/6n high 110111

_cur1 Current feedback 1 low 111000

_cur2 Current feedback 2 low 111001

_cur3 Current feedback 3 low 111010

_cur56l Current feedback 5/6l low 111011

_cur56h Current feedback 5/6h low 111100

_cur56n Current feedback 5/6n low 111101

ocur Own current feedback high 111110

_ocur Own current feedback low 111111

Operand label Operand description Operand binary value

MC33PT2000 programming guide and instruction set, Rev. 1.0

56 NXP Semiconductors

Instruction set and subsets

Instruction format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 Cond op1 0 0 0 0

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 57

Instruction set and subsets

Assembler syntax: jocr Dest Cond;

Description:

Configures the jump to relative location on condition.

If the condition defined by the Cond operand is satisfied, the program counter (uPC) is handled such as the next executed instruction is
relative destination address.

The feedbacks from current measurement 5 and 6 can not be checked at the same time by the same microcore (refer to register
Dac_rxtx_cr_config (112h, 132h, 152h)). The feedback from current measurement 4 can only be checked if this channel is activated via
the flags_source (1A3h) register. If the channel is activated, flag 12 can not be checked anymore.

The jump is relative to the instruction Code RAM location. The destination address is the actual instruction Code RAM location added to
the Dest operand value. This 5-bit value is a two’s complemented number. The MSB is the sign. So Dest operand value is in the range of
{-16, 15}.

Operands:

Dest – Operand defines the 5-bit relative destination address in the range of {-16, 15}.

Cond – Operand defines the condition to be satisfied to enable the relative jump

jocr Jump relative on condition jocr

Operand label Operand description Operand binary value

_f0 Flag 0 low 000000

_f1 Flag 1 low 000001

_f2 Flag 2 low 000010

_f3 Flag 3 low 000011

_f4 Flag 4 low 000100

_f5 Flag 5 low 000101

_f6 Flag 6 low 000110

_f7 Flag 7 low 000111

_f8 Flag 8 low 001000

_f9 Flag 9 low 001001

_f10 Flag 10 low 001010

_f11 Flag 11 low 001011

_f12 / _cur4 Flag 12 low / Current feedback 4 low 001100

_f13 Flag 13 low 001101

_f14 Flag 14 low 001110

_f15 Flag 15 low 001111

f0 Flag 0 high 010000

f1 Flag 1 high 010001

f2 Flag 2 high 010010

f3 Flag 3 high 010011

f4 Flag 4 high 010100

f5 Flag 5 high 010101

f6 Flag 6 high 010110

f7 Flag 7 high 010111

f8 Flag 8 high 011000

MC33PT2000 programming guide and instruction set, Rev. 1.0

58 NXP Semiconductors

Instruction set and subsets

f9 Flag 9 high 011001

f10 Flag 10 high 011010

f11 Flag 11 high 011011

f12 / cur4 Flag 12 high / Current feedback 4 high 011100

f13 Flag 13 high 011101

f14 Flag 14 high 011110

f15 Flag 15 high 011111

tc1 Terminal count 1 100000

tc2 Terminal count 2 100001

tc3 Terminal count 3 100010

tc4 Terminal count 4 100011

_start Start low 100100

start Start high 100101

_sc1v Shortcut1 VDS feedback low 100110

_sc2v Shortcut2 VDS feedback low 100111

_sc3v Shortcut3 VDS feedback low 101000

_sc1s Shortcut1 source feedback low 101001

_sc2s Shortcut2 source feedback low 101010

_sc3s Shortcut3 source feedback low 101011

sc1v Shortcut1 VDS feedback high 101100

sc2v Shortcut2 VDS feedback high 101101

sc3v Shortcut3 VDS feedback high 101110

opd Instruction request to ALU executed 101111

vb Boost voltage high 110000

_vb Boost voltage low 110001

cur1 Current feedback 1 high 110010

cur2 Current feedback 2 high 110011

cur3 Current feedback 3 high 110100

cur56l Current feedback 5/6l high 110101

cur56h Current feedback 5/6h high 110110

cur56n Current feedback 5/6n high 110111

_cur1 Current feedback 1 low 111000

_cur2 Current feedback 2 low 111001

_cur3 Current feedback 3 low 111010

_cur56l Current feedback 5/6l low 111011

_cur56h Current feedback 5/6h low 111100

_cur56n Current feedback 5/6n low 111101

ocur Own current feedback high 111110

_ocur Own current feedback low 111111

Operand label Operand description Operand binary value

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 59

Instruction set and subsets

Instruction format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 Cond Dest

MC33PT2000 programming guide and instruction set, Rev. 1.0

60 NXP Semiconductors

Instruction set and subsets

Assembler syntax: joidf op1 UcSel;

Description:

Configures the jump to absolute location on microcore identifier condition.

If the condition defined by the UcSel operand is satisfied, the program counter (uPC) is handled such as the next executed instruction is
located into the destination address contained in one of the jump registers.

The destination address defined by the op1 register is any of the absolute Code RAM location.

Operands:

op1 – One of the register listed in the operand JpReg subset

UcSel – Operand defines the microcore identifier condition

Instruction format:

joidf Jump far on microcore condition joidf

Operand label Operand description Operand binary value

uc0 The microcore 0 is the current microcore 0

uc1 The microcore 1 is the current microcore 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 1 1 0 0 UcSel op1 1 0 1

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 61

Instruction set and subsets

Assembler syntax: joidr Dest UcSel;

Description:

Configures the jump to relative location on condition.

If the condition defined by the UcSel operand is satisfied, the program counter (uPC) is handled such as the next executed instruction is
relative destination address.

The jump is relative to the instruction Code RAM location. The destination address is the actual instruction Code RAM location added to
the Dest operand value. This 5-bit value is a two’s complemented number. The MSB is the sign. So Dest operand value is in the range of
{-16, 15}.

Operands:

Dest – Operand defines the 5-bit relative destination address in the range of {-16, 15}.

UcSel – Operand defines the microcore identifier condition

Instruction format:

joidr Jump relative on microcore
condition joidr

Operand label Operand description Operand binary value

uc0 The microcore 0 is the current microcore 0

uc1 The microcore 1 is the current microcore 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 1 1 0 1 UcSel Dest

MC33PT2000 programming guide and instruction set, Rev. 1.0

62 NXP Semiconductors

Instruction set and subsets

Assembler syntax: joslf op1 StSel;

Description:

Configures the jump to absolute location on condition.

If the condition defined by the StSel operand is satisfied, the program counter (uPC) is handled such as the next executed instruction is
located into the destination address contained in one of the jump registers.

The destination address defined by the op1 register is any of the absolute Code RAM location.

Operands:

op1 – One of the register listed in the operand JpReg subset

StSel – Operand defines the start condition to be satisfied to enable the jump far

joslf Jump far on start condition joslf

Operand label Operand description Operand binary value

none No start latched 00000

start1 Start 1 latched 00001

start2 Start 2 latched 00010

start12 Start 1,2 latched 00011

start3 Start 3 latched 00100

start13 Start 1,3 latched 00101

start23 Start 2,3 latched 00110

start123 Start 1,2,3 latched 00111

start4 Start 4 latched 01000

start14 Start 1,4 latched 01001

start24 Start 2,4 latched 01010

start124 Start 1,2,4 latched 01011

start34 Start 3,4 latched 01100

start134 Start 1,3,4 latched 01101

start234 Start 2,3,4 latched 01110

start1234 Start 1,2,3,4 latched 01111

start5 Start 5 latched 10000

start6 Start 6latched 10000

start56 Start 5, 6 latched 10000

start7 Start 7 latched 10001

start57 Start 5,7 latched 10010

start67 Start 6,7 latched 10011

start8 Start 8 latched 10100

start58 Start 5,8 latched 10101

star68 Start 6,8 latched 10110

start568 Start 5,6,8 latched 10111

start78 Start 7,8 latched 11000

start578 Start 5,7,8 latched 11001

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 63

Instruction set and subsets

Instruction format:

start678 Start 6,7,8 latched 11010

start5678 Start 5,6,7,8 latched 11011

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 StSel op1 0 1 0 0

Operand label Operand description Operand binary value

MC33PT2000 programming guide and instruction set, Rev. 1.0

64 NXP Semiconductors

Instruction set and subsets

Assembler syntax: joslr Dest StSel;

Description:

Configures the jump to relative location on condition.

If the condition defined by the StSel operand is satisfied, the program counter (uPC) is handled such as the next executed instruction is
relative destination address.

The jump is relative to the instruction Code RAM location. The destination address is the actual instruction Code RAM location added to
the Dest operand value. This 5-bit value is a two’s complemented number. The MSB is the sign. So Dest operand value is in the range of
{-16, 15}.

Operands:

Dest – Operand defines the 5-bit relative destination address in the range of {-16, 15}.

StSel – Operand defines the start condition to be satisfied to enable the jump far

joslr Jump relative on start condition joslr

Operand label Operand description Operand binary value

none No start latched 00000

start1 Start 1 latched 00001

start2 Start 2 latched 00010

start12 Start 1,2 latched 00011

start3 Start 3 latched 00100

start13 Start 1,3 latched 00101

start23 Start 2,3 latched 00110

start123 Start 1,2,3 latched 00111

start4 Start 4 latched 01000

start14 Start 1,4 latched 01001

start24 Start 2,4 latched 01010

start124 Start 1,2,4 latched 01011

start34 Start 3,4 latched 01100

start134 Start 1,3,4 latched 01101

start234 Start 2,3,4 latched 01110

start1234 Start 1,2,3,4 latched 01111

start5 Start 5 latched 10000

start6 Start 6latched 10000

start56 Start 5, 6 latched 10000

start7 Start 7 latched 10001

start57 Start 5,7 latched 10010

start67 Start 6,7 latched 10011

start8 Start 8 latched 10100

start58 Start 5,8 latched 10101

star68 Start 6,8 latched 10110

start568 Start 5,6,8 latched 10111

start78 Start 7,8 latched 11000

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 65

Instruction set and subsets

Instruction format:

start578 Start 5,7,8 latched 11001

start678 Start 6,7,8 latched 11010

start5678 Start 5,6,7,8 latched 11011

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 StSel Dest

Operand label Operand description Operand binary value

MC33PT2000 programming guide and instruction set, Rev. 1.0

66 NXP Semiconductors

Instruction set and subsets

Assembler syntax: jsrf op1 SrSel Pol;

Description:

Configures the jump to absolute location on status register condition.

If the condition defined by the SrSel operand is satisfied according to the polarity Pol, the program counter (uPC) is handled such as the
next executed instruction is located into the destination address contained in one of the jump registers.

The destination address defined by the op1 register is any of the absolute Code RAM location.

Operands:

op1 – One of the register listed in the operand JpReg subset

SrSel – Operand defines the status register condition (Status_reg_uc0 (105h, 125h, 145h) and Status_reg_uc1 (106h, 126h, 146h)) that
triggers the jump

Pol – Operand defines the active polarity for the selected bit

Instruction format:

jsrf Jump far on status register bit
condition jsrf

Operand label Operand description Operand binary value

b0 Status register bit 0 (LSB) 0000

b1 Status register bit 1 0001

b2 Status register bit 2 0010

b3 Status register bit 3 0011

b4 Status register bit 4 0100

b5 Status register bit 5 0101

b6 Status register bit 6 0110

b7 Status register bit 7 0111

b8 Status register bit 8 1000

b9 Status register bit 9 1001

b10 Status register bit 10 1010

b11 Status register bit 11 1011

b12 Status register bit 12 1100

b13 Status register bit 13 1101

b14 Status register bit 14 1110

b15 Status register bit 15 (MSB) 1111

Operand label Operand description Operand binary value

low Active condition if the selected bit is ‘0’ 0

high Active condition if the selected bit is ‘1’ 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 1 Pol SrSel op1 0 1 0 1

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 67

Instruction set and subsets

Assembler syntax: jsrr Dest SrSel Pol;

Description:

Configures the jump to the relative location of the status register condition.

If the condition defined by the SrSel operand is satisfied according to the polarity Pol, the program counter (uPC) is handled such as the
next executed instruction is relative destination address.

The jump is relative to the instruction Code RAM location. The destination address is the actual instruction Code RAM location added to
the Dest operand value. This 5-bit value is a two’s complemented number. The MSB is the sign. So Dest operand value is in the range of
{-16, 15}.

Operands:

Dest – Operand defines the 5-bit relative destination address in the range of {-16, 15}.

SrSel – Operand defines the status register condition (Status_reg_uc0 (105h, 125h, 145h) and Status_reg_uc1 (106h, 126h, 146h)
registers) that triggers the jump

Pol – Operand defines the active polarity for the selected bit

Instruction format:

jsrr Jump relative on status register bit
condition jsrr

Operand label Operand description Operand binary value

b0 Status register bit 0 (LSB) 0000

b1 Status register bit 1 0001

b2 Status register bit 2 0010

b3 Status register bit 3 0011

b4 Status register bit 4 0100

b5 Status register bit 5 0101

b6 Status register bit 6 0110

b7 Status register bit 7 0111

b8 Status register bit 8 1000

b9 Status register bit 9 1001

b10 Status register bit 10 1010

b11 Status register bit 11 1011

b12 Status register bit 12 1100

b13 Status register bit 13 1101

b14 Status register bit 14 1110

b15 Status register bit 15 (MSB) 1111

Operand label Operand description Operand binary value

low Active condition if the selected bit is ‘0’ 0

high Active condition if the selected bit is ‘1’ 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 Pol SSel Dest

MC33PT2000 programming guide and instruction set, Rev. 1.0

68 NXP Semiconductors

Instruction set and subsets

Assembler syntax: jtsf op1;

Description:

Configures the jump on subroutine to absolute location

The program counter (uPC) is handled such as the next executed instruction is located into the destination address contained in one of
the jump registers.

When jump to subroutine is called, the current program counter value (uPC) is stored into the auxiliary register (aux) to handle end of
subroutine return.

The destination address defined by the op1 register is any of the absolute Code RAM location.

Operands:

op1 – One of the register listed in the operand JpReg subset

Instruction format:

jtsf Jump far to subroutine jtsf

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 1 1 0 1 1 op1 1 0 1

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 69

Instruction set and subsets

Assembler syntax: jtsr Dest ;

Description:

Configures the jump to subroutine to relative location on condition.

When jump to subroutine is called, the current program counter value (uPC) is stored into the auxiliary register (aux) to handle end of
subroutine return.

The jump is relative to the instruction Code RAM location. The destination address is the actual instruction Code RAM location added to
the Dest operand value. This 5-bit value is a two’s complemented number. The MSB is the sign. So Dest operand value is in the range of
{-16, 15}.

Operands:

Dest – Operand defines the 5-bit relative destination address in the range of {-16, 15}.

Instruction format:

jtsr Jump relative to subroutine jtsr

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 1 1 0 0 1 Dest

MC33PT2000 programming guide and instruction set, Rev. 1.0

70 NXP Semiconductors

Instruction set and subsets

Assembler syntax: ldca Rst Sh1 Sh2 op1 Eoc;

Description:

Loads one of the four end of count register (eoc1, eoc2, eoc3, eoc4) defined by the operand Eoc with a value stored in a ALU register op1
and sets the outputs defined by the shortcut Sh1 and Sh2.

Operands:

Rst – Operand (Boolean) defines if the selected counter value must be reset to zero or must be unchanged.

Sh1, Sh2– Operands set the first and second shortcuts related to the corresponding outputs. The output shortcuts are defined using the
dfsct instruction.

1 – One of the register listed in the operand AluReg subset

Eoc– Operand defines the end of count targeted among the four counters available.

Instruction format:

ldca Load counter from ALU register
and set outputs ldca

Operand label Operand description Operand binary value

_rst The counter value is maintained, only the end of counter is modified 0

rst The counter value is reset to zero and start to count from zero 1

Operand label Operand description Operand binary value

keep No changes, maintains the previous setting 00

off Automatic diagnosis disabled 01

on Automatic diagnosis enabled 10

toggle Reverse the previous setting 11

Operand label Operand description Operand binary value

c1 Register eoc1 00

c2 Register eoc2 01

c3 Register eoc3 10

c4 Register eoc4 11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 Rst Sh1 Sh2 Eoc op1 1 0 0

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 71

Instruction set and subsets

Assembler syntax: ldcd Rst Ofs Sh1 Sh2 Dram Eoc;

Description:

Loads one of the four end of count register (eoc1, eoc2, eoc3, eoc4) Eoc with a value stored in the 6-bit Data RAM address Dram and
sets the outputs defined by the shortcut Sh1 and Sh2.

The operand Dram can be identified with a univocal label. The compiler automatically substitutes the ‘define’ label (if used) with the suitable
Data RAM address.

The Data RAM address is accessed according to the Boolean operand Ofs using the Immediate addressing mode (IM).

Indexed addressing mode (XM). In that case address base is added the address

Dram. The address base is set using the stab instructions.

Operands:

Rst – Operand (Boolean) defines if the selected counter value must be reset to zero or must be unchanged.

Ofs– Operands set Data RAM addressing mode

Sh1, Sh2– Operands set the first and second shortcuts related to the corresponding outputs. The output shortcuts are defined using the
dfsct instruction.

Dram– Operand defines the 6-bit DRAM address

Eoc– Operand defines the end of count targeted among the four counters available.

ldcd Load counter from Data RAM and
set outputs ldcd

Operand label Operand description Operand binary value

_rst The counter value is maintained, only the end of counter is modified 0

rst The counter value is reset to zero and start to count from zero 1

Operand label Operand description Operand binary value

_ofs Data RAM immediate addressing mode (IM) 0

ofs Data RAM indexed addressing mode (XM) 1

Operand label Operand description Operand binary value

keep No changes, maintains the previous setting 00

off Automatic diagnosis disabled 01

on Automatic diagnosis enabled 10

toggle Reverse the previous setting 11

Operand label Operand description Operand binary value

c1 Register eoc1 00

c2 Register eoc2 01

c3 Register eoc3 10

c4 Register eoc4 11

MC33PT2000 programming guide and instruction set, Rev. 1.0

72 NXP Semiconductors

Instruction set and subsets

Assembler syntax: ldirh Value8 RstL;

Description:

Loads the Value8 data in the 8-MSB of the immediate register (ir).

Operands:

Value8 – Operand defines the 8-bit value to be loaded into the 8-MSB of the immediate register

RstL– Operand (Boolean) defines if set to zero the low-byte (7:0) of ir register

Instruction format:

ldirh Load 8-MSB ir register ldirh

Operand label Operand description Operand binary value

_rst No change on the ir[7:0] 0

rst Set the Zero the ir[7:0] 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 RstH Value8 1 1

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 73

Instruction set and subsets

Assembler syntax: ldirl Value8 RstH;

Description:

Loads the Value8 data in the 8-LSB of the immediate register (ir).

Operands:

Value8 – Operand defines the 8-bit value to be loaded into the 8-MSB of the immediate register

RstH– Operand (Boolean) defines if set to zero the high-byte (15:8) of ir register

Instruction format:

ldirl Load 8-LSB ir register ldirl

Operand label Operand description Operand binary value

_rst No change on the ir[15:8] 0

rst Set the Zero the ir[15:8] 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 RstL Value8 1 0

MC33PT2000 programming guide and instruction set, Rev. 1.0

74 NXP Semiconductors

Instruction set and subsets

Assembler syntax: ldjr1 Value10;

Description:

Loads the Value10 data in the 16-bit jump register 1 (jr1).

The operand Value10 can be replaced by a label. The compiler automatically substitutes the label (if used) with the defined value.

Operands:

Value10 – Operand defines the 10-bit value to be loading into the jump register 1

Instruction format:

Source code example:
*### Jump far to the label eoinj0 ####

init0: ldjr1 eoinj0; * Load the eoinj label address to jr1 for a far jump
Convert: jmpf jr1; * jump to jr1 which eoinj0

.......x15 instruction lines.......... *If there are less than 15 lines between the jump and the label address jump far is not required, jump
relative is enough

eoinj0: stos off off off; * Turn Off all outputs

ldjr1 Load jump register 1 ldjr1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 Value10 0 0

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 75

Instruction set and subsets

Assembler syntax: ldjr2 Value10;

Description:

Loads the Value10 data in the 16-bit jump register 2 (jr2).

The operand Value10 can be replaced by a label. The compiler automatically substitutes the label (if used) with the defined value.

Operands:

Value10 – Operand defines the 10-bit value to be loading into the jump register 2

Instruction format:

ldjr2 Load jump register 2 ldjr2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 Value10 0 0

MC33PT2000 programming guide and instruction set, Rev. 1.0

76 NXP Semiconductors

Instruction set and subsets

Assembler syntax: load Dram op1 Ofs;

Description:

Loads the data from the Data RAM at the address defined by the Dram operand to the op1 register.

The operand Dram can be identified with a univocal label. The compiler automatically substitutes the ‘define’ label (if used) with the
suitable Data RAM address.

The Data RAM address is accessed according to the Boolean operand Ofs using the Immediate addressing mode (IM).

Indexed addressing mode (XM). In that case, address base is added the address Dram. The address base is set using the stab
instructions.

Operands:

Dram– Operand defines the 6-bit Data RAM address

op1 – One of the register listed in the operand UcReg subset

Ofs– Operands set data RAM addressing mode

Instruction format:

load Load data from Data RAM to
register load

Operand label Operand description Operand binary value

_ofs Data RAM immediate addressing mode (IM) 0

ofs Data RAM indexed addressing mode (XM) 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 Dram op1 Ofs 1 0

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 77

Instruction set and subsets

Operation: (Source1) x (Source2) => (Destination)

Assembler syntax: mul op1 op2;

Description:

Multiplies the value contained in the op1 register with the value contained in op2 register and places the result in the reg32 register. The
reg32 register is the concatenation of the multiplication result registers mh and ml:

mh contains the 16-MSB

ml contains the 16-MSB

The multiplication requires 32 ck clock cycles to be completed.

Operands:

op1 – One of the register listed in the operand AluGprIrReg subset

op2 – One of the register listed in the operand AluGprIrReg subset

Condition register:

MO - Multiplication shift overflow

ML - Multiplication shift precision loss

OD –Operation complete

Instruction format:

Source code example:

*#### Multiply MUL1 by MUL2 and store MSBs result in r1 register and LSBs result in r0 register ########
#define MUL1 0; * The boost phase current value is stored in Data RAM address 0
#define MUL2 1; * The peak phase current value is stored in Data RAM address 1

multiplication: load MUL1 r0 _ofs; * Load MUL1 value from DRAMaddress 1 into the r0 register
load MUL2 r1 _ofs; * Load MUL2 value from DRAMaddress 2 into the r1 register
mul r0 r1; * Multiply MUL1 by MUL2
cwer MulDone opd row1; * Create a Wait entry until the operation is finished (required because mul takes 32ck cycles)
wait row1; * Wait here until operation is done then go to MulDone label

MulDone: cp mh r0; * Save MSB results into r0 register
cp ml r1; * Save LSB results into r1 register

mul Two ALU registers multiplication
to reg32 mul

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 1 1 0 op2 op1

MC33PT2000 programming guide and instruction set, Rev. 1.0

78 NXP Semiconductors

Instruction set and subsets

Operation: (Source) x Immediate value => (Destination)

Assembler syntax: muli op1 Imm;

Description:

Multiplies the value contained in the op1 register with the immediate value Imm and places the result in the reg32 register. The reg32
register is the concatenation of the multiplication result registers mh and ml:

mh contains the 16-MSB

ml contains the 16-LSB

The multiplication requires 32 ck clock cycles to be completed.

Operands:

op1 – One of the register listed in the operand AluGprIrReg subset

Imm –The Imm 4-bit immediate data register

Condition register:

MO - Multiplication shift overflow

ML - Multiplication shift precision loss

OD –Operation complete

Instruction format:

muli ALU register multiplication with
immediate value to reg32 muli

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 1 1 1 0 Imm op1

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 79

Instruction set and subsets

Operation: (Source) \ => (Source)

Assembler syntax: not op1;

Description:

Inverts each bit of the op1 register and places the result in the op1 register.

Operands:

op1 – One of the register listed in the operand AluReg subset

Condition register:

MN – Mask result is 0000h

MM - Mask result is FFFFh

Instruction format:

not Invert ALU register bits not

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 1 0 1 1 0 1 1 op1

MC33PT2000 programming guide and instruction set, Rev. 1.0

80 NXP Semiconductors

Instruction set and subsets

Operation: (Source) (+) Immediate register => (Source)

Assembler syntax: or op1 ir;

Description:

Applies the OR-mask stored in the Immediate Register (ir) to the op1 register and places the result in the op1 register.

Operands:

op1 – One of the register listed in the operand AluReg subset

Condition register:

MN – Mask result is 0000h

MM - Mask result is FFFFh

Instruction format:

or OR mask on ALU register with
immediate register to ALU register or

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 1 0 1 1 0 0 0 op1

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 81

Instruction set and subsets

Assembler syntax: rdspi;

Description:

Requests an SPI backdoor read.

The address must previously be defined in the SPI address register spi_add.

The rdspi instruction requires 2 ck cycle to complete operation. The SPI address register must not be changed on the following instruction,
otherwise the operation fails and the read data is dummy.

Instruction format:

Source code example:
*#### Read register 125h using SPI backdoor ########
SPI_Init: slsa ir; * Configure SPI accesses to use ‘ir’ as SPI address register
Ld_Add: ldirh 01h _rst; * Load 01h in the ir MSB register

ldirl 25h _rst; * Load 25h in the ir LSB register -> ir = 125h
SPI_Read: rdspi; * Read SPI using ir for address (125h)
Save_data: cp spi_data r0; * Copy the register 125h value (spi_data) into r0

rdspi SPI read request rdspi

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 1 0 0 1 1 1 1 1

MC33PT2000 programming guide and instruction set, Rev. 1.0

82 NXP Semiconductors

Instruction set and subsets

Assembler syntax: reqi id;

Description:

Requests a software interrupt

At the reqi instruction execution, the Code RAM address currently executed is stored in the interrupt return register corresponding to the
10 LSB of the uc0_irq_status register (10Fh, 12Fh, 14Fh) and for uc1_irq_status (110h, 130h, 150h).

By default, the return address of an interrupt is the line where the code was interrupted. In the case of a software interrupt, the return
address is the address where the code was interrupted + 1.

A software interrupt must not be interrupted.

Operands:

Id – Operand defines the 2-bit software interrupt request identifier.

Instruction format:

reqi Software interrupt request reqi

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 1 0 0 0 1 0 Id

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 83

Instruction set and subsets

Assembler syntax: rfs;

Description:

Ends a subroutine.

To continue the code execution, the program counter (uPC) is loaded with the content of the auxiliary register (aux) automatically updated
when the subroutine was called with the instructions jtsf and jtsr.

Instruction format:

rfs Return from subroutine rfs

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0

MC33PT2000 programming guide and instruction set, Rev. 1.0

84 NXP Semiconductors

Instruction set and subsets

Assembler syntax: rstreg TgtBit;

Description:

Resets single or multiple registers defined by the TgtBit operand. The instruction reset bits issued from SPI registers including:

control register ctrl_reg_uc0 (101h, 121h, 141h) and ctrl_reg_uc1 (102, 122, 142h)

status register status_reg_uc0 (105h, 125h, 145h) and status_reg_uc1 (106h, 126h, 146h)

automatic diagnosis register Err_ucXchY (1EDh to 1FEh)

Operands:

TgtBit– Operands defines the registers to be reset.

Instruction format:

rstreg Registers reset rstreg

Operand label Operand description Operand binary value

sr Reset status bits of the status registers 000

cr Reset control register 001

sr_diag_halt
Reset status bits, automatic diagnosis register and re-enables the possibility
to generate automatic diagnosis interrupts

010

all
Reset status bits, control register, automatic diagnosis register and
re-enables the possibility to generate automatic diagnosis interrupts

011

diag_halt
Reset automatic diagnosis register and re-enables the possibility to generate
automatic diagnosis interrupts

100

sr_cr Reset status bits and control register 101

sr_halt
Reset status bits and re-enables the possibility to generate automatic
diagnosis interrupts

110

halt Re-enables the possibility to generate automatic diagnosis interrupts 111

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 0 1 0 0 1 TgtBit

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 85

Instruction set and subsets

Assembler syntax: rstsl;

Description:

Resets the Start_latch_ucx register.

This instruction is active only if the Smart Latch Mode is enabled. The smart mode register can be activated by setting the bits
smart_start_uc0 and smart_start_uc1 of the Start_config_reg_Part2 registers (104h, 124h, 144h).

Instruction format:

rstsl Start-latch registers reset rstsl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1

MC33PT2000 programming guide and instruction set, Rev. 1.0

86 NXP Semiconductors

Instruction set and subsets

Operation: (Source) << factor => (Source)

Assembler syntax: sh32l op1;

Description:

Shifts the reg32 register left. The shift is single or multiple according to the op1 register value (factor).

The reg32 register is the concatenation of the multiplication result registers mh and ml:

mh contains the 16-MSB

ml contains the 16-LSB

To be completed, the shift operation requires a number of ck clock cycles corresponding to the op1 register value.

Operands:

op1 – One of the register listed in the operand AluReg subset

Condition register:

SB – Shift out bit

MO - Multiplication shift overflow

Instruction format:

sh32l Shift left multiplication result
register sh32l

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 1 0 1 op1 1 0 1

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 87

Instruction set and subsets

Operation: (Source) << Immediate value => (Source)

Assembler syntax: sh32li Imm;

Description:

Shifts the reg32 register left. The shift is single or multiple according to the immediate value (factor).

The reg32 register is the concatenation of the multiplication result registers mh and ml:

mh contains the 16-MSB

ml contains the 16-LSB

To be completed, the shift operation requires a number of ck clock cycles corresponding to the immediate value.

Operands:

Imm –The Imm 4-bit immediate data register

Condition register:

SB – Shift out bit

MO - Multiplication shift overflow

Instruction format:

sh32li Shift left multiplication result
register of immediate value sh32li

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 1 Imm 1 0 1

MC33PT2000 programming guide and instruction set, Rev. 1.0

88 NXP Semiconductors

Instruction set and subsets

Operation: (Source) >> factor => (Source)

Assembler syntax: sh32r op1;

Description:

Shifts the reg32 register right. The right shift is single or multiple according to the op1 register value (factor).

The reg32 register is the concatenation of the multiplication result registers mh and ml:

mh contains the 16-MSB

ml contains the 16-LSB

To be completed, the shift operation requires a number of ck clock cycles corresponding to the op1 register value.

Operands:

op1 – One of the register listed in the operand AluReg subset

Condition register:

SB – Shift out bit

ML - Multiplication shift precision loss

Instruction format:

sh32r Shift right multiplication result
register sh32r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 1 0 0 op1 1 0 1

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 89

Instruction set and subsets

Operation: (Source) >> Immediate value => (Source)

Assembler syntax: sh32ri Imm;

Description:

Shifts the reg32 register right. The right shift is single or multiple according to the immediate value.

The reg32 register is the concatenation of the multiplication result registers mh and ml:

mh contains the 16-MSB

ml contains the 16-LSB

To be completed, the shift operation requires a number of ck clock cycles corresponding to the immediate value.

Operands:

Imm –The Imm 4-bit immediate data register

Condition register:

SB – Shift out bit

ML - Multiplication shift precision loss

Instruction format:

sh32ri Shift right multiplication result
register of immediate value sh32ri

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 0 Imm 1 0 1

MC33PT2000 programming guide and instruction set, Rev. 1.0

90 NXP Semiconductors

Instruction set and subsets

Operation: (Source) << factor => (Source)

Assembler syntax: shl op1 op2;

Description:

Shifts the op1 register left. The shift is single or multiple according to the op2 register value (factor).

To be completed, the shift operation requires a number of ck clock cycles corresponding to the op2 register value.

Operands:

op1 – One of the register listed in the operand AluReg subset

op2– One of the register listed in the operand AluReg subset

Condition register:

SB – Shift out bit

MO - Multiplication shift overflow

Instruction format:

shl Shift left ALU register shl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 1 0 1 0 op2 op1

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 91

Instruction set and subsets

Operation: (Source) << 8 => (Source)

Assembler syntax: shl8 op1;

Description:

Shifts the op1 register 8 positions left.

To be completed, the shift operation requires one ck clock cycles.

Operands:

op1 – One of the register listed in the operand AluReg subset

Condition register:

SB – Shift out bit

MO - Multiplication shift overflow

Instruction format:

shl8 Shift left ALU register of 8 bits shl8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 1 0 1 1 1 1 1 op1

MC33PT2000 programming guide and instruction set, Rev. 1.0

92 NXP Semiconductors

Instruction set and subsets

Operation: (Source) << immediate value => (Source)

Assembler syntax: shl op1 Imm;

Description:

Shift the op1 register left. The shift is single or multiple according to the immediate value Imm.

To be completed, the shift operation requires a number of ck clock cycles corresponding to the immediate value Imm.

Operands:

op1 – One of the register listed in the operand AluReg subset

Imm –The Imm 4-bit immediate data register

Condition register:

SB – Shift out bit

MO - Multiplication shift overflow

Instruction format:

shli Shift left the ALU register of
immediate value shli

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 1 0 Imm op1

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 93

Instruction set and subsets

Operation: (Source) << factor => (Source)

Assembler syntax: shls op1 op2;

Description:

Shift the op1 register left. The shift is single or multiple according to the op2 register value (factor).

The op1 register is handled as a two’s complement number. The MBS (sign bit) is unchanged during the shift operation.

To be completed, the shift operation requires a number of ck clock cycles corresponding to the op2 register value.

Operands:

op1 – One of the register listed in the operand AluReg subset

op1 – One of the register listed in the operand AluReg subset

Condition register:

SB – Shift out bit

MO - Multiplication shift overflow

Instruction format:

shls Shift left signed ALU register shls

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 1 0 0 0 op2 op1

MC33PT2000 programming guide and instruction set, Rev. 1.0

94 NXP Semiconductors

Instruction set and subsets

Operation: (Source) << immediate value => (Source)

Assembler syntax: shls op1 Imm;

Description:

Shifts the op1 register left. The shift is single or multiple according to the immediate value Imm.

The op1 register is handled as a two’s complement number. The MBS (sign bit) is unchanged during the shift operation.

To be completed, the shift operation requires a number of ck clock cycles corresponding to the immediate value Imm.

Operands:

op1 – One of the register listed in the operand AluReg subset

Imm –The Imm 4-bit immediate data register

Condition register:

SB – Shift out bit

MO - Multiplication shift overflow

Instruction format:

shlsi Shift left signed ALU register of
immediate value shlsi

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 0 0 Imm op1

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 95

Instruction set and subsets

Operation: (Source) >> factor => (Source)

Assembler syntax: shr op1 op2;

Description:

Shift the op1 register right. The shift is single or multiple according to the op2 register value (factor).

To be completed, the shift operation requires a number of ck clock cycles corresponding to the op2 register value.

Operands:

op1 – One of the register listed in the operand AluReg subset

op2– One of the register listed in the operand AluReg subset

Condition register:

SB – Shift out bit

ML - Multiplication shift precision loss

Instruction format:

Source code example:
*### Shift the r3 register by the number of bits in the r2 register and wait until shift is complete ####
shift: shr r3 r2; * shift
wait_loop: jarr done opd; * jump to label done if shift is finished

jmpr wait_loop; * jump back to wait_loop label
done: *#### Add code here ####

shr Shift right ALU register shr

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 1 0 0 1 op2 op1

MC33PT2000 programming guide and instruction set, Rev. 1.0

96 NXP Semiconductors

Instruction set and subsets

Operation: (Source) >> 8 => (Source)

Assembler syntax: shr8 op1;

Description:

Shift the op1 register 8 positions right.

To be completed, the shift operation requires one ck clock cycle.

Operands:

op1 – One of the register listed in the operand AluReg subset

Condition register:

SB – Shift out bit

ML - Multiplication shift precision loss

Instruction format:

shr8 Shift right ALU register of 8 bits shr8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 1 0 1 1 1 1 0 op1

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 97

Instruction set and subsets

Operation: (Source) >> immediate value => (Source)

Assembler syntax: shr op1 Imm;

Description:

Shifts the op1 register right. The shift is single or multiple according to the immediate value Imm.

To be completed, the shift operation requires a number of ck clock cycles corresponding to the immediate value Imm.

Operands:

op1 – One of the register listed in the operand AluReg subset

Imm –The Imm 4-bit immediate data register

Condition register:

SB – Shift out bit

ML - Multiplication shift precision loss

Instruction format:

shri Shift right the ALU register of
immediate value shri

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 0 1 Imm op1

MC33PT2000 programming guide and instruction set, Rev. 1.0

98 NXP Semiconductors

Instruction set and subsets

Operation: (Source) >> factor => (Source)

Assembler syntax: shrs op1 op2;

Description:

Shift the op1 register right. The shift is single or multiple according to the op2 register value (factor).

The op1 register is handled as a two’s complement number. The MBS (sign bit) is unchanged during the shift operation.

To be completed, the shift operation requires a number of ck clock cycles corresponding to the op2 register value.

Operands:

op1 – One of the register listed in the operand AluReg subset

op2 – One of the register listed in the operand AluReg subset

Condition register:

SB – Shift out bit

ML - Multiplication shift precision loss

Instruction format:

shrs Shift right signed ALU register shrs

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 1 1 1 op2 op1

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 99

Instruction set and subsets

Operation: (Source) >> immediate value => (Source)

Assembler syntax: shrsi op1 Imm;

Description:

Shifts the op1 register right. The shift is single or multiple according to the immediate value Imm.

The op1 register is handled as a two’s complement number. The MBS (sign bit) is unchanged during the shift operation.

To be completed, the shift operation requires a number of ck clock cycles corresponding to the immediate value Imm.

Operands:

op1 – One of the register listed in the operand AluReg subset

Imm –The Imm 4-bit immediate data register

Condition register:

SB – Shift out bit

MO - Multiplication shift overflow

Instruction format:

shrsi Shift right signed ALU register of
immediate value shrsi

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 1 1 1 1 Imm op1

MC33PT2000 programming guide and instruction set, Rev. 1.0

100 NXP Semiconductors

Instruction set and subsets

Assembler syntax: sI56dac DacSel;

Description:

Sets which dac5 or dac6 refers to dac56h56n in the executing microcore. It overwrites the value of the “dac56” config bit in the
dac_rxtx_cr_config register (refer to Dac_rxtx_cr_config (112h, 132h, 152h)).

The reset value of DacSel is dac5.

Operands:

DacSel – Operand defines the register to be used to determine the data RAM address base

Instruction format:

sl56dac Select DAC 5 or DAC 6 sl56dac

Operand label Operand description Operand binary value

dac5 dac56h56n refers to dac5 0

dac6 dac56h56n refers to dac6 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 0 1 1 1 1 0 1 DacSel

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 101

Instruction set and subsets

Assembler syntax: slab SelBase;

Description:

Selects the register containing the address (add_base) used in the data RAM Indexed Addressing Mode (XM).

The reset value of SelBase is reg.

Operands:

SelBase – Operand defines the register to be used to determine the data RAM address base

Instruction format:

Source code example:
*### Example 1 ###
*### Use indexed addressing mode and the ‘add_base’ register to store 33h to address 16d ####
#define Test 0; * Define Test to be stored in Data RAM address 0
Set_Add: slab reg; * add_base register selected to offset the address

stab 10h; * set address register to 10h
ldirl 33h rst; * set ir LSB to 33h and reset MSB -> ir = 0033h
store ir Test ofs; * store ir inside Test + ofs (add_base)= 0 + 10h = 16d, ir is stored in address 16

*### Example 2###
*### Use indexed addressing mode and the ‘ir’ register to store DDh to address 32d ####
#define Test 0; * Define Test to be stored in Data RAM address 0
Set_Add: slab ir; * ir register selected to offset the address

ldirl DDh _rst; * set ir LSB to 55h
cp ir r0; * copy ir into r0 -> r0 = 55h
ldirl 20h rst; * set ir LSB to 20h and reset MSB -> ir = 0020h, it is used as an offset
store r0 Test ofs; * store ir inside Test + ofs (ir)= 0 + 20h = 32d, r0 is stored in address 32

slab Select Data RAM address base slab

Operand label Operand description Operand binary value

reg
Use the dedicated address base add_base register. In this case the address
base is defined with the stab instruction.

0

ir Use the ALU ir register as address base 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 1 0 1 1 1 0 1 SelBase

MC33PT2000 programming guide and instruction set, Rev. 1.0

102 NXP Semiconductors

Instruction set and subsets

Assembler syntax: slfbk Ref Diag;

Description:

Selects the feedback reference for both VDS of the high-side pre-drivers 2, 4, and 6.

In addition, this instruction enables the automatic diagnosis.

This operation is successful only if the microcore has the right to drive the related outputs. The drive right is granted by setting the related
bits in the Out_acc_ucX_chY (160h, 161h, 162h, 163h, 164h, 165h) configuration registers.

The reset of Ref value is boost.

Operands:

Ref – Operand defines the feedback reference for both VDS of the high-side pre-drivers 2, 4, and 6.

Diag – Operand defines the diagnosis status for both VDS of the high-side pre-drivers 2 and 4.

Instruction format:

slfbk Select HS2/4 feedback reference slfbk

Operand label Operand description Operand binary value

boost
Both VDS of the high-side pre-drivers 2 and 4 are referred to boost voltage
(VBOOST pin)

0

bat
Both VDS of the high-side pre-drivers 2 and 4 are referred to bat voltage
(VBATT pin)

1

Operand label Operand description Operand binary value

keep No changes, maintains the previous setting 00

off Automatic diagnosis disabled 10

on Automatic diagnosis enabled 11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 0 1 0 0 0 Ref Diag

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 103

Instruction set and subsets

Assembler syntax: slocdac Value;

Description:

The instruction changes the value of the “other channel” config bit in the dac_rxtx_cr_config register relative to the executing microcores.

Operands:

Value – Operand defines the other channel configuration bit

Instruction format:

slocdac Select other channel DAC slocdac

Operand label Operand description Operand binary value

next The “other channel” configuration bit is set to 0 0

previous The “other channel” configuration bit is set to 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 Value

MC33PT2000 programming guide and instruction set, Rev. 1.0

104 NXP Semiconductors

Instruction set and subsets

Assembler syntax: slsa SelSpi;

Description:

Selects the register containing the address used on SPI read and write instructions (rdspi and wrspi)

The reset values of SelSpi is reg.

Operands:

SelSpi – Operand defines the register containing the SPI address

Instruction format:

Source code example:
* ### Read data using SPI backdoor at SPI address 125h and store result in r0 register ###
SPI_Init: slsa ir; * Configure SPI accesses to use ‘ir’ for addresses
Ld_Add: ldirh 01h _rst; * Load 01h in the ir MSB register

ldirl 25h _rst; * Load 25h in the ir LSB register -> ir = 125h
SPI_Read: rdspi; * Read SPI using ir for address (125h)
Save_data: cp spi_data r0; * Copy the register 125h value (spi_data) into r0

slsa Select SPI address slsa

Operand label Operand description Operand binary value

reg Use the dedicated address register spi_add. 0

ir Use the ALU ir register as SPI address 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 1 0 1 1 1 0 0 SelSpi

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 105

Instruction set and subsets

Assembler syntax: stab Add_Base;

Description:

Loads the address value in the address base register add_base.

The address base register is a 6-bit register containing the address base used in the Data RAM Indexed Addressing Mode (XM).

The operand add_base can be identified with a univocal label. The compiler automatically substitutes the ‘define’ label (if used) with the
suitable address.

Operands:

add_base – Operand defines the 6-bit register containing the Address Base.

Instruction format:

Source code example:
*### Use indexed addressing mode and the ‘add_base’ register to store 33h to address 16d ####
#define Test 0; * Define Test to be stored in Data RAM address 0
Set_Add: slab reg; * add_base register selected to offset the address

stab 10h; * set address register to 10h
ldirl 33h rst; * set ir LSB to 33h and reset MSB -> ir = 0033h
store ir Test ofs; * store ir inside Test + ofs (add_base)= 0 + 10h = 16d, ir is stored in address 16h

stab Set Data RAM address base stab

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 0 0 0 add_base

MC33PT2000 programming guide and instruction set, Rev. 1.0

106 NXP Semiconductors

Instruction set and subsets

Assembler syntax: stadc AdcMode DacTarget;

Description:

Enables or disables the ADC conversion mode on the specified current measurement block.

The other channel is selected by SPI register bit (Dac_rxtx_cr_config (112h, 132h, 152h))

The operation is successful only if the microcore has the right to access the related current measurement block. The access right is
granted by setting the related bits in the Cur_block_access_partX register (166h, 167h, 168h).

The reset value of AdcMode is off.

Operands:

AdcMode – Operand activates the ADC mode on the selected current measurement block

DacTarget – Operand defines the current measurement block DAC to be set in ADC mode

Instruction format:

Source code example:
*### Software AtoD Conversion routine in Channel 1 Microcore 0 ####
#define Tadc_sp 0; * Define Sampling time ADC (11ck_ofscmp) to be stored in Data RAM address 0
#define ADC_results 1; * Define ADC results to be stored in Data RAM address 1

ADCinit: cwer sample tc2 row1; * Create wait table entry 1 when tc2 is reached go to Sample label (22us recommended)

Convert: ldcd rst _ofs keep keep Tadc_sp c2; * Load the length of the sampling time in counter 2
stadc on sssc; * Set current sense1 in adc mode and start acquisition
wait row1; * Wait until the sample time is done (refer to ADC init)

Sample: store dac_sssc ADC_results; * Copy adc results inside

ADCdisable: stadc off sssc; * Stop the ADC mode (note that if another conversion is needed 2 ck_ofscmp clk cycles are needed
between stadc on and stadc off instruction)

stadc Set ADC mode stadc

Operand label Operand description Operand binary value

off
The current measurement block compares the current flowing in the actuator
with a threshold (nominal behavior).

0

on
The current measurement block performs an analog to digital conversion of
the current flowing in the actuator

1

Operand label Operand description Operand binary value

sssc DAC of the same microcore same channel 00

ossc DAC of the other microcore same channel 01

ssoc DAC of the same microcore other channel 10

osoc DAC of the other microcore other channel 11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 0 1 1 0 1 AdcMod
e DacTarget

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 107

Instruction set and subsets

Assembler syntax: stal ModeAL;

Description:

Sets the arithmetic logic mode. This mode is the set according to the bits A1 and A0 of the ALU condition register (arith_reg). This
instruction configures the behavior of addition and subtraction instructions only. All other math instructions (multiply, shift, bitwise) are not
affected by this instruction. The addition and subtraction results are affected only if one of the ‘saturation’ modes is selected.

With ‘saturation’ enabled the results is bounded by the natural limits of the 16-bit register (max signed = 0x7FFF)

ALU operations behavior is affected by the arithmetic logic mode ModeAL as described by the following:

The ALU instruction operands are handled as aC-complement number (signed number). If the resulting value exceeds the result register
capacity, leads to overflow detection but no saturation.

The ALU instruction operands are handled as a C-complement number (signed number). If the resulting value exceeds the result register
capacity, it leads to overflow detection and saturation.

The ALU instruction operands are handled as a positive number (unsigned number). If the resulting value exceeds the result register
capacity it leads to overflow detection but no saturation.

The ALU instruction operands are handled as a positive number (unsigned number). If the resulting value exceeds the result register
capacity it leads to overflow detection and saturation.

The ModeAL reset value is al3.

Operands:

ModeAL – Operand defines the ALU behavior selected

Instruction format:

Source code example:

*##### Set saturation mode al2 to limit max/min values #####
Sat_test: stal al2; * Set saturation mode to al2

ldirh 7Fh rst; * Set 7Fh in the ir MSB and reset ir LSB
ldirl FDh _rst; * Set FFh in the ir LSB and keep the MSB -> ir = 7FFDh
addi ir 15 ir; * Add 15d to ir -> ir = ir +15d = 7FFDh + 15d = 800C but since saturation is enabled ir is equal to max

FFFFh

stal Set arithmetic logic mode stal

Operand label Operand description Operand binary value

al1 two’s complement number without overflow saturation 00

al2 two’s complement number with overflow saturation 01

al3 Positive number without overflow saturation 10

al4 Positive number with overflow saturation 11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 0 1 1 1 1 1 ModeAL

MC33PT2000 programming guide and instruction set, Rev. 1.0

108 NXP Semiconductors

Instruction set and subsets

Assembler syntax: stcrb Logic CrbSel;

Description:

Sets the logic level value individually with the Logic operand of each selected bit CrbSel of the control register.

Operands:

Logic – Operand defines the logic level value

CrbSel – Operand defines the control register bit to be selected

Instruction format:

stcrb Set control register bit stcrb

Operand label Operand description Operand binary value

low Low level 0

high High level 1

Operand label Operand description Operand binary value

b8 Control register bit 8 000

b9 Control register bit 9 001

b10 Control register bit 10 010

b11 Control register bit 11 011

b12 Control register bit 12 100

b13 Control register bit 13 101

b14 Control register bit 14 110

b15 Control register bit 15 (MSB) 111

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 1 0 1 Logic 0 CrbSel

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 109

Instruction set and subsets

Assembler syntax: stcrt UcId;

Description:

Each microcore shares the ch_rxtx register with the other microcores can read the shared register of another microcore.

This instruction selects the microcore's shared register accessed by the microcore executing the stcrt instruction.

The UcId reset value is sssc.

Operands:

UcId – Operand defines the microcore shared register to be access.

Instruction format:

Source code example:

*##### Exchange data between Channel 1 uCore 0 and Channel 2 uCore1 ######

*##### Channel 1 uCore0 add 40h in the rxtx register ####
Ld_rxtx: ldirl 40h rst; * Load ir LSB register with 40h and reset ir MSB

cp ir rxtx; * Channel1 Ucore0 rxtx register loaded with 40h
......
*##### End of Channel1 uCore0 ######

*##### Channel 2 uCore1 read ch1uc0_rxtx register and save it in ir register ####
Access_rxtx: stcrt ospc; * Access set to other microcore previous channel, in this case Channel1 uCore0

cp rxtx ir; * Copy rxtx coming from ch1_uc0 -> ir = 40h
.......
*##### End of Channel2 uCore1 ######

stcrt Set channel communication
register stcrt

Operand label Operand description Operand binary value

sssc The microcore executing the code 000

ossc The other microcore in the same channel 001

ssnc The same microcore in the next channel 010

osnc The other microcore in the next channel 011

sspc The same microcore in the previous channel 100

ospc The other microcore in the previous channel 101

sumh The sum of bits H 110

suml The sum of bits L 111

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 0 0 1 0 1 UcId

MC33PT2000 programming guide and instruction set, Rev. 1.0

110 NXP Semiconductors

Instruction set and subsets

Assembler syntax: stdcctl ModeDC;

Description

Selects if the DCDC must be controlled by the microcore (sync) or perform the automatic current regulation (async) between threshold
5l/6l and 5h/5l

The command affects the ls pre-driver which is set as the shortcut 2 of the microcores. This shortcut has to be set to LS7 or LS8 in order
to select the LS. If the shortcut is changed the DC/DC control keeps operating in the mode which was selected before.

The ModeDC reset value is sync.

Operands:

ModeDC – Operand defines the DC-DC control mode

Instruction format:

Source code example:
DCDC_set: dfsct undef ls7 undef; * Set lowside 7 as shortcut 2 needed for stdcctl instruction

...... * Need to configure dac settings and wait table
(See Including a data RAM address definition file on page 135)

stdcctl async_vds; * Enable DCDC resonant mode

stdcctl Set DC-DC control mode stdcctl

Operand label Operand description Operand binary value

sync DCDC is controlled by the microcore 00

async DCDC perform an automatic current control between threshold 56l and 56h 01

async_vds
DCDC perform an automatic current control between VDS threshold and
current H_fbk

10

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 1 0 0 0 1 1 ModeDC

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 111

Instruction set and subsets

Assembler syntax: stdm ModeDAC;

Description:

The DAC registers address (DAC Register x in DAC Mode and DAC_56h56neg Register) in the internal data memory map are split in two
slices:

dac_value_x and dac_value_x for the DAC Register x in DAC Mode

dac_value_5/6neg, dac_value_56h for the DAC_56h56neg Register.

This instruction selects which slice(s) is accessed.

The dac56h56n_boost address in the internal data memory map can refer to three registers (dac5/6h value, dac5/6neg value, dac boost
value); this same instruction selects which of the three register is accessed, according to the ModeDAC operand. Only dac 5 or dac 6 can
be addressed at the same time.

adc_batt_access_mode/dac_boost_access_mode: nothing (for the dac address) or the value of the dac boost (for the dac56h56n_boost
address) is accessed

dac_access_mode/dac56h_access_mode: the dac value (for the dac address) or the dac56h value (for the dac56h56n_boost address) is
accessed. the result is available in the 8 lower bits

offset_access_mode/dac56neg_access_mode: the offset register (for the dac address) or the dac56neg value (for the dac56h56n_boost
address) is accessed. the result is available in the 13-8 bits if reading an offset, in the 11-8 bits if reading dac56neg

full_access_mode/dac56h56n_access_mode: both the dac value and the offset register (for the dac address) or both the dac56h and the
dac56n value (for the dac56h56n_boost address) is accessed

The ModeDAC reset value is dac.

Operands:

ModeDAC – Operand defines the DAC access mode

Instruction format:

stdm Set DAC register mode access stdm

Operand label Operand description Operand binary value

null adc_batt_access_mode/dac_bst_access_mode 00

dac dac_access_mode/dac56h_access_mode 01

offset offset_access_mode/dac56n_access_mode 10

full full_access_mode/ dac56h56n_access_mode 11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 1 0 0 0 0 1 ModeDC

MC33PT2000 programming guide and instruction set, Rev. 1.0

112 NXP Semiconductors

Instruction set and subsets

Assembler syntax: stdrm ModeDRM;

Description:

Sets the Data RAM read mode.

The possible read modes according to the ModeDRM operand are:

dram_word_mode: all 16 bits are accessed

dram_lowbyte _mode: only the 8 LSBs of the source Data RAM are accessed. The result is available in the 8 lower bits of the destination
register. The upper 8 bits of the destination register is set to 00h.

dram_highbyte_mode: only the 8 MSBs of the source Data RAM are accessed. The result is available in the 8 lower bits of the destination
register. The upper 8 bits of the destination register is set to 00h.

dram_swapbyte_mode: the 8 LSBs and 8 MSBs of the source dram are accessed swapped and is available at the destination register.

This read mode is valid after the load and ldcd instructions following this stdrm instruction.

The ModeDRM reset value is word.

Operands:

ModeDRM – Operand defines the Data RAM read access

Instruction format:

stdrm Set Data RAM read mode stdrm

Operand label Operand description Operand binary value

word dram_word_mode 00

low dram_lowbyte _mode: 01

high dram_highbyte_mode 10

swap dram_swapbyte_mode 11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 1 0 0 0 0 0 ModeDRM

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 113

Instruction set and subsets

Assembler syntax: steoa Mask Switch;

Description:

Enables or disables the end of actuation mode for all the high-side pre-drivers the microcore has enabled to drive by means of the Switch
operand.

The VSRC threshold monitoring of the related pre-drivers can be disabled by setting the operand Mask

The Mask default value is nomask.

The Switch default value is bsneutral.

Operands:

Mask – Operand sets the VDS threshold mask

Switch – Operand sets the end of actuation mode

Instruction format:

steoa Set end of actuation mode steoa

Operand label Operand description Operand binary value

nomask VSRC threshold monitoring of the selected HS is unchanged 0

mask VSRC threshold monitoring of the selected HS is masked to zero 1

Operand label Operand description Operand binary value

keep Maintain the previous values 00

bsoff Bootstrap switch is forced off 11

bson Bootstrap switch can be enabled even if no low-side pre-driver is switched on 01

bsneutral Bootstrap control is not affected 10

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 0 1 1 1 0 Mask Switch

MC33PT2000 programming guide and instruction set, Rev. 1.0

114 NXP Semiconductors

Instruction set and subsets

Assembler syntax: stf Logic FlgSel;

Description:

Sets the logic level value with the Boolean Logic of the selected flag. The flag is selected according the FlgSel operand.

Operands:

Logic – Operand defines the logic level value

FlgSel – Operand defines the flag bit to be selected

Instruction format:

stf Set flag stf

Operand label Operand description Operand binary value

low Low level 0

high High level 1

Operand label Operand description Operand binary value

b0 Flag bit 0 0000

b1 Flag bit 1 0001

b2 Flag bit 2 0010

b3 Flag bit 3 0011

b4 Flag bit 4 0100

b5 Flag bit 5 0101

b6 Flag bit 6 0110

b7 Flag bit 7 0111

b8 Flag bit 8 1000

b9 Flag bit 9 1001

b10 Flag bit 10 1010

b11 Flag bit 11 1011

b12 Flag bit 12 1100

b13 Flag bit 13 1101

b14 Flag bit 14 1110

b15 Flag bit 15 1111

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 0 1 1 1 Logic FlgSel

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 115

Instruction set and subsets

Assembler syntax: stfw FwMode;

Description:

Defines the freewheeling output modes. Freewheeling control is automatic or manual according to the FwMode operand.

For each HS there are two possible freewheeling outputs. The output is selected in the fw_link (refer to Fw_link (169h)) register.

The FwMode operand is a Boolean defining the control mode:

if Shortcut1 is HS1, then LS1 and/or HS7 is set as freewheeling pre-driver

if Shortcut1 is HS2, then LS2 is set as freewheeling pre-driver

if Shortcut1 is HS3, then LS3 is set as freewheeling pre-driver

if Shortcut1 is HS4, then LS4 and/or Flag0 is set as freewheeling pre-driver

if Shortcut1 is HS5, then LS5 and/or Flag1 is set as freewheeling pre-driver.

if Shortcut1 is HS6, then LS6 and/or Flag2 is set as freewheeling pre-driver.

if Shortcut1 is HS7, then LS7 and/or Flag3 is set as freewheeling pre-driver.

The shortcuts are set using the dfsct instruction.

This operation can be successful without access to the output related to freewheeling. Stfw instruction is able to set/un-set outputs into
freewheeling mode even if the executing sequencer has no access to drive them.

The FwMode reset value is manual.

Operands:

FwMode – Operand defines the freewheeling mode

Instruction format:

Source code example:
*### Freewheeling between HS1 and LS1 (fw_link register needs to be set 169h) ####

Short_def: dfsct hs1 hs2 ls2; * Shortcut 1 is the one used for freewheeling so hs1 needs to be set in first position since the FW is LS1

PeakON: stos on off on; * During Boost phase turn ON hs1 hs2 ls2 and keep ls1 OFF
stfw auto; * Start the automatic freewheeling (has to be done after high side turn ON to avoid unwanted turn ON

of freewheeling low side after the stfw auto instruction)
......

PeakOFF: stos off off on; I* hs1 off, hs2 off, ls2 on and ls1 ON because of auto freewheeling
......

InjOFF: stos off off off; I* hs1 off, hs2 off, ls2 off and ls1 ON because of auto freewheeling
stfw manual; I* all high side and low side are OFF and freewheeling is now disabled

stfw Set freewheeling mode stfw

Operand label Operand description Operand binary value

 manual Freewheeling manual control 0

 auto Freewheeling automatic control 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 1 0 0 1 0 0 0 FwMode

MC33PT2000 programming guide and instruction set, Rev. 1.0

116 NXP Semiconductors

Instruction set and subsets

Assembler syntax: stgn Gain OpAmp;

Description:

Sets the gain of an operational amplifier with the Gain operand used to measure the current flowing through the actuator sense resistor.
The operational amplifier is selected according to the OpAmp operand.

The operation is successful only if the microcore has the right to access the related current measurement block. The access right is
granted by setting the related bits in the Cur_block_access_part1 register (166h), Cur_block_access_part2 Register (167h) and
Cur_block_access_part3 Register (168h).

The other channel is selected by SPI register bit (refer to Dac_rxtx_cr_config (112h, 132h, 152h))

The Gain reset value is gain 5.8.

Operands:

Gain – Operand defines the current measure operational amplifier gain

OpAmp – Operand defines the current measure operational amplifier gain to be set

Instruction format:

Source code example:

*#### Set gain of Current Sense 1 to 12.6 using Channel 1 Microcore 0 ######

init_gain: stgn gain12.6 sssc; * Set the gain of the opamp of the current measure block 1 (same microcore same channel)

stgn Set current measure operational
amplifier gain stgn

Operand label Operand description Operand binary value

gain5.8 Operational amplifier gain set to 5.8 00

gain8.7 Operational amplifier gain set to 8.7 01

gain12.6 Operational amplifier gain set to 12.5 10

gain19.3 Operational amplifier gain set to 19.3 11

Operand label Operand description Operand binary value

sssc Current measure operational amplifier of the same microcore same channel 00

ossc Current measure operational amplifier of the other microcore same channel 01

ssoc Current measure operational amplifier of the same microcore other channel 10

osoc Current measure operational amplifier of the other microcore other channel 11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 0 0 1 1 Gain OpAmp

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 117

Instruction set and subsets

Assembler syntax: stirq Logic;

Description:

Set the IRQB output pin

The Logic reset value is high.

Operands:

Logic – Operand defines the logic level of the IRQB pin

Instruction format:

stirq Set IRQB pin stirq

Operand label Operand description Operand binary value

low Low level 0

high High level 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 Logic

MC33PT2000 programming guide and instruction set, Rev. 1.0

118 NXP Semiconductors

Instruction set and subsets

Assembler syntax: sto OutSel Out;

Description:

Sets the state with the Out operand for the selected output according to the OutSel operand.

The operation is successful only if the microcore has the right to drive the related outputs. The drive right is granted by setting the related
bits in the Out_acc_ucX_chY (160h, 161h, 162h, 163h, 164h, 165h) configuration registers.

Operands:

OutSel – Operand defines the handled output

Out – Operand sets output state

Instruction format:

sto Set single pre-driver output sto

Operand label Operand description Operand binary value

hs1 High-side pre-driver 1 0000

hs2 High-side pre-driver 2 0001

hs3 High-side pre-driver 3 0010

hs4 High-side pre-driver 4 0011

hs5 High-side pre-driver 5 0100

hs6 High-side pre-driver 6 0101

hs7 High-side pre-driver 7 0110

ls1 Low-side pre-driver 1 0111

ls2 Low-side pre-driver 2 1000

ls3 Low-side pre-driver 3 1001

ls4 Low-side pre-driver 4 1010

ls5 Low-side pre-driver 5 1011

ls6 Low-side pre-driver 6 1100

ls7 Low-side pre-driver 7 1101

ls8 Low-side pre-driver 8 1110

undef Undefined 1111

Operand label Operand description Operand binary value

keep No changes, maintains the previous setting 00

off Output disabled 01

on Output enabled 10

toggle Reverse the previous setting 11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 0 1 0 OutSel Out

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 119

Instruction set and subsets

Assembler syntax: stoc Ctrl DacTraget;

Description:

Enables or disables the offset compensation with the operand Ctrl on the current measurement block specified according to the DacTarget
operand.

The operation is successful only if the microcore has the right to access the related current measurement block. The access right is granted
by setting the related bits in the Cur_block_access_part1 register (166h), Cur_block_access_2 Register (167h) and Cur_block_access_3
Register (168h)

The other channel is selected by SPI register bit (refer to Dac_rxtx_cr_config (112h, 132h, 152h))

The Ctrl reset value is off for all current measurement blocks.

Operands:

Ctrl – Operands sets offset compensation state

DacTarget – Operand defines the current measurement block

Instruction format:

Source code example:
*### Software AtoD Conversion routine in Channel 1 Microcore 0 ####
#define Toffset_comp 0; * The duration for the offset compensation is worst case 31 x ck_ofscmp, it is define in DRAM

address 2

Offcmpinit: cwer OffcmpOff tc2 row1; * Create wait table entry 1 when tc2 is reached go to OffCmpOff label

Offcmp: ldcd rst _ofs keep keep Toffset_cmp c1; * Load the length of the sampling time in counter 2
stoc on sssc; * Set offset compensation ON for current sense 1 (no current has to flow in the sense)
wait row12; * Wait until the offset compensation is done or row 5 event (i.e.: start event) occurred

OffcmpOff: stoc off sssc; * Turn OFF offset compensation

stoc Set offset compensation stoc

Operand label Operand description Operand binary value

off Disable the offset compensation 0

on Enable the offset compensation 1

Operand label Operand description Operand binary value

sssc DAC of the same microcore same channel 00

ossc DAC of the other microcore same channel 01

ssoc DAC of the same microcore other channel 10

osoc DAC of the other microcore other channel 11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 0 1 0 1 0 Ctrl DacTarget

MC33PT2000 programming guide and instruction set, Rev. 1.0

120 NXP Semiconductors

Instruction set and subsets

Assembler syntax: store op1 Dram Ofs;

Description:

Copies the content of the op1 source register in a Data RAM line defined by the 6-bit Data RAM address Dram.

The operand Dram can be identified with a univocal label. The compiler automatically substitutes the ‘define’ label (if used) with the
suitable Data RAM address.

The Data RAM address is accessed according to the Boolean operand Ofs using the:

Immediate addressing mode (IM).

Indexed addressing mode (XM). In that case, the address base is added to the address Dram. The address base is set using the stab
instructions.

Operands:

op1 – One of the register listed in the operand UcReg subset

Dram– Operand defines the 6-bit DRAM address

Ofs– Operands sets data RAM addressing mode

Instruction format:

Source code example:
*### Store a Data in DRAM address 0####
#define Testresults 0; * Define Testresults in the Data RAM address 0

Test: ldirl 45 rst; * Load 45 in ir register and reset the MSB -> ir = 45d
addi ir 9 r1; * Add ir + 9 and save results in r1 -> 45 + 9 = 54 in r1

Store_resutls: store r1 Testresults _ofs; * Store results inside dataram address 0 called Testresults, no offset required (no stab instruction)

store Store register data in Data RAM store

Operand label Operand description Operand binary value

_ofs Data RAM immediate addressing mode (IM) 0

ofs Data RAM indexed addressing mode (XM) 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 Ofs op1 Dram 0 1

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 121

Instruction set and subsets

Assembler syntax: stos Out1 Out2 Out3;

Description:

Sets the state of three outputs Out1, Out2 and Out3 previously defined as shortcuts with the dfsct instruction.

The operation is successful only if the microcore has the right to drive the related outputs. The drive right is granted by setting the related
bits in the Out_acc_ucX_chY (160h, 161h, 162h, 163h, 164h, 165h) configuration registers.

Operands:

Out1, Out2, and Out3 – Operands sets output state

Instruction format:

stos Set pre-driver output shortcuts stos

Operand label Operand description Operand binary value

keep No changes, maintains the previous setting 00

off Output disabled 01

on Output enabled 10

toggle Reverse the previous setting 11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 0 0 1 Out1 Out2 Out3

MC33PT2000 programming guide and instruction set, Rev. 1.0

122 NXP Semiconductors

Instruction set and subsets

Assembler syntax: stslew SlMode;

Description:

Defines the outputs slew rate mode with the Boolean SlMode.

The operation is successful only if the microcore has the right to drive the related outputs. The drive right is granted by setting the related
bits in the Out_acc_ucX_chY (160h, 161h, 162h, 163h, 164h, 165h) configuration registers.

The SlMode reset value is normal.

When switching the slew-rate from slow to fast, the new slew-rate is valid after typically 1ck cycle (166 ns considering fCK = 6.0 MHz).

When switching from fast to slow, it takes typically four ck cycles (666 ns considering fCK = 6.0 MHz) until the new slew-rate is effective.

Operands:

SlMode – Operands sets outputs slew rate mode

Instruction format:

stslew Set pre-driver output slew rate
mode stslew

Operand label Operand description Operand binary value

normal The outputs slew rate is set by an SPI register 0

fast The outputs slew rate is the highest one 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 1 0 0 1 0 1 1 SlMode

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 123

Instruction set and subsets

Assembler syntax: stsrb Logic SrbSel;

Description:

Sets individually the logic level value with the Logic operand of each selected bit SrbSel of the status register (status_reg_uc0 (105h, 125h,
145h) and status_reg_uc1 (106h, 126h, 146h)).

Operands:

Logic – Operand defines the logic level value

SrbSel – Operand defines the status register bit to be selected

Instruction format:

stsrb Set status register bit stsrb

Operand label Operand description Operand binary value

low Low level 0

high High level 1

Operand label Operand description Operand binary value

b0 Status register bit 0 (LSB) 0000

b1 Status register bit 1 0001

b2 Status register bit 2 0010

b3 Status register bit 3 0011

b4 Status register bit 4 0100

b5 Status register bit 5 0101

b6 Status register bit 6 0110

b7 Status register bit 7 0111

b8 Status register bit 8 1000

b9 Status register bit 9 1001

b10 Status register bit 10 1010

b11 Status register bit 11 1011

b12 Status register bit 12 1100

b13 Status register bit 13 1101

b14 Status register bit 14 1110

b15 Status register bit 15 (MSB) 1111

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 0 0 0 Logic SrbSel

MC33PT2000 programming guide and instruction set, Rev. 1.0

124 NXP Semiconductors

Instruction set and subsets

Operation: (Source1) - (Source2) => (Destination)

Assembler syntax: sub op1 op2 res;

Description:

Subtracts the value contained in the op1 register from the value contained in op2 register and places the result in the res register.

Operands:

op1 – One of the register listed in the operand AluReg subset

op2 – One of the register listed in the operand AluReg subset

res – One of the register listed in the operand AluReg subset

Condition register:

RZ - Addition or subtraction result is zero

RS - Addition or subtraction result is negative

UU - Unsigned underflow

UO - Unsigned overflow

SU - Signed underflow

SO - Signed overflow

Instruction format:

sub Two ALU registers subtraction to
ALU register sub

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 0 res 1 op2 op1

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 125

Instruction set and subsets

Operation: (Source) - Immediate value => (Destination)

Assembler syntax: subi op1 Imm res;

Description:

Subtracts the value contained in the Imm register from the value contained in the op1 register and places the result in the res register.

Operands:

op1 – One of the register listed in the operand AluReg subset

Imm –The Imm 4-bit immediate data register

res – One of the register listed in the operand AluReg subset

Condition register:

RZ - Addition or subtraction result is zero

RS - Addition or subtraction result is negative

UU - Unsigned underflow

UO - Unsigned overflow

SU - Signed underflow

SO - Signed overflow

Instruction format:

subi ALU register subtraction with
immediate value to ALU register subi

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 res Imm op1

MC33PT2000 programming guide and instruction set, Rev. 1.0

126 NXP Semiconductors

Instruction set and subsets

Operation: (Source)[0:7] < => (Source)[8:15]

Assembler syntax: swap op1;

Description:

Swaps the high byte and the low byte of the register op1.

Operands:

op1 – One of the register listed in the operand AluReg subset

Instruction format:

swap Swap bytes inside ALU register swap

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 0 1 1 0 0 op1

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 127

Instruction set and subsets

Assembler syntax: swi Switch;

Description:

Enables or disables all software interrupts and from start edges for a microcore. HW interrupts from automatic diagnosis, driver disable or
loss of clock are not disabled.

The Switch reset value is on (all SW interrupts enabled).

Operands:

Switch – Operands enable or disable SW interrupts

Instruction format:

swi Enable / Disable Software interrupt swi

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 Switch

MC33PT2000 programming guide and instruction set, Rev. 1.0

128 NXP Semiconductors

Instruction set and subsets

Assembler syntax: toc2 op1;

Description:

Converts the integer value contained in the AluReg register into a 2’s complement format.

If the conversion bit in the arithmetic condition register is zero, the 'toc2' instruction makes the most significant bit in the operand register
zero.

If the conversion bit is one, then it returns the 2's complement of the operand (bits[14:0] only) register.

Operands:

op1 – One of the register listed in the operand AluReg subset

Instruction format:

toc2 Conversion integer to C2 toc2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 0 0 1 0 0 AluReg

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 129

Instruction set and subsets

Assembler syntax: toint op1 Rst;

Description:

Convert the two’s complement value contained in op1 register to integer format.

The toint instruction retains the original value in the operand register op1 when its MSB bit is zero.

If the MSB is 1, then it returns the 2's complement of the operand register (op1[14:0]).

The toint instruction also saves the MSB of the operand op1 in the conversion bit CS of the arithmetic condition register arith_reg.

The MSB of the operand is either XORed with the existing conversion bit CS of the ALU condition register (if the instruction is called with
the _rst parameter) or replaces it (if the instruction is called with the rst parameter).

Operands:

op1 – One of the register listed in the operand AluReg subset

Rst – Operand defines if the conversion bit CS of the ALU condition register is reset

Condition register:

CS - Last conversion sign

Instruction format:

toint two’s complement to integer
conversion in ALU register toint

Operand label Operand description Operand binary value

_rst The existing conversion bit CS is XORed with the op1 MSB 0

rst The existing conversion bit CS is set according to the op1 MSB 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 0 1 1 0 0 Rst op1

MC33PT2000 programming guide and instruction set, Rev. 1.0

130 NXP Semiconductors

Instruction set and subsets

Assembler syntax: wait WaitMask ;

Description:

Stops the program counter (uPC) incrementing and waits until at least one of the enabled wait conditions is satisfied. When one of the
conditions is satisfied, the program counter is moved to the corresponding destination.

The possible wait conditions, along with the corresponding destinations, are stored in the wait table by means of the cwer and cwef
instructions.

The active wait table rows are enabled according to the WaitMask 5-bit operand.

Operands:

WaitMask – Operand defines the active wait table rows

wait Wait until condition satisfied wait

Operand label Operand description Operand binary value

always No wait table row enabled. Infinite loop 000000

row1 Wait table row 1 enabled 000001

row2 Wait table row 2 enabled 000010

row12 Wait table row 1,2 enabled 000011

row3 Wait table row 3 enabled 000100

row13 Wait table row 1,3 enabled 000101

row23 Wait table row 2,3 enabled 000110

row123 Wait table row 1,2,3 enabled 000111

row4 Wait table row 4 enabled 001000

row14 Wait table row 1,4 enabled 001001

row24 Wait table row 2,4 enabled 001010

row124 Wait table row 1,2,4 enabled 001011

row34 Wait table row 3,4 enabled 001100

row134 Wait table row 1,3,4 enabled 001101

row234 Wait table row 2,3,4 enabled 001110

row1234 Wait table row 1,2,3,4 enabled 001111

row5 Wait table row 5 enabled 010000

row15 Wait table row 1,5 enabled 010001

row25 Wait table row 2,5 enabled 010010

row125 Wait table row 1,2,5 enabled 010011

row35 Wait table row 3,5 enabled 010100

row135 Wait table row 1,3,5 enabled 010101

row235 Wait table row 2,3,5 enabled 010110

row1235 Wait table row 1,2,3,5 enabled 010111

row45 Wait table row 4,5 enabled 011000

row145 Wait table row 1,4,5 enabled 011001

row245 Wait table row 2,4,5 enabled 011010

row1245 Wait table row 1,2,4,5 enabled 011011

row345 Wait table row 3,4,5 enabled 011100

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 131

Instruction set and subsets

Instruction format:

row1345 Wait table row 1,3,4,5 enabled 011101

row2345 Wait table row 2,3,4,5 enabled 011110

row12345 Wait table row 1,2,3,4,5 enabled 011111

row6 Wait table row 6 enabled 100000

row16 Wait table row 1,6 enabled 100001

row26 Wait table row 2,6 enabled 100010

row36 Wait table row 3,6 enabled 100011

row46 Wait table row 4,6 enabled 100100

row56 Wait table row 5,6 enabled 100101

row126 Wait table row 1,2,6enabled 100110

row136 Wait table row 1,3,6 enabled 100111

row146 Wait table row 1,4,6 enabled 101000

row156 Wait table row 1,5,6 enabled 101001

row236 Wait table row 2,3,6 enabled 101010

row246 Wait table row 2,4,6 enabled 101011

row256 Wait table row 2,5,6 enabled 101100

row346 Wait table row 3,4,6 enabled 101101

row456 Wait table row 4,5,6 enabled 101110

row1236 Wait table row 1,2,3,6 enabled 101111

row1246 Wait table row 1,2,4,6 enabled 110000

row1256 Wait table row 1,2,5,6 enabled 110001

row1346 Wait table row 1,3,4,6 enabled 110010

row1356 Wait table row 1,3,5,6 enabled 110011

row1456 Wait table row 1,4,5,6 enabled 110100

row2346 Wait table row 2,3,4,6 enabled 110101

row2356 Wait table row 2,3,5,6 enabled 110110

row2456 Wait table row 2,4,5,6 enabled 110111

row3456 Wait table row 3,4,5,6 enabled 111000

row12346 Wait table row 1,2,3,4,6 enabled 111001

row12356 Wait table row 1,2,3,5,6 enabled 111010

row12456 Wait table row 1,2,4,5,6 enabled 111011

row13456 Wait table row 1,3,4,5,6 enabled 111100

row123456 Wait table row 1,2,3,4,5,6 enabled 111101

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 1 1 WaitMask

Operand label Operand description Operand binary value

MC33PT2000 programming guide and instruction set, Rev. 1.0

132 NXP Semiconductors

Instruction set and subsets

Assembler syntax: wrspi;

Description:

Requests an SPI backdoor write.

The address must previously be defined in the SPI address register spi_add.

The data must previously be defined in the SPI address register spi_data register.

The wrspi instruction requires 2 to 4 ck cycles to complete operation, depending on ck_prescaler value (refer to register Clock_Prescaler
(1A0h)). The SPI address register and SPI data register must not be changed on the following instruction, otherwise the operation fails
and the written data is dummy.

Instruction format:

Source code example:
*#### This code writes the value 125h inside the register at address 171h ###

SPI_Init: slsa ir; * Configure SPI accesses to use ‘ir’ for addresses
Ld_Data: ldirh 01h _rst; * Load 01h in the ir MSBregister

ldirl 25h _rst; * Load 25h in the ir LSB register -> ir = 125h
cp ir spi_data; * Load 125h into spi_data

Ld_Add: ldirh 01h _rst; * Load 01h in the ir MSB register (useless in this case since already loaded before)
ldirl 71h _rst; * Load 71h in the ir LSB register -> ir = 171h

SPI_Write: wrspi; * Write SPI using ir for address (171h) and spi_data for data (125h)

wrspi SPI write request wrspi

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 1 0 0 1 1 1 1 0

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 133

Instruction set and subsets

Operation: (Source) XOR Immediate register => (Source)

Assembler syntax: xor op1;

Description:

Applies the XOR-mask contained into the Ir register to the value contained in the op1 register and places the result in the op1 register.
The initial data stored in the op1 register is lost.

Operands:

op1 – One of the register listed in the operand AluReg subset

Ir –The ALU immediate register

Condition register:

MN - Mask result is 0000h

MM - Mask result is FFFFh

Instruction format:

xor Mask XOR with immediate register xor

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 1 0 1 1 0 1 0 Op1

MC33PT2000 programming guide and instruction set, Rev. 1.0

134 NXP Semiconductors

Specific assembler language

4 Specific assembler language
The PT2000 requires a microcode to enable most of its functions. The main benefit is the large flexibility in setting the device. This
microcode is defined by the software engineer in a source file, coding the PT2000 specific instructions in assembler language.

The extension *.dfi or *.psc is generally used for the source file. Any other extension can be used as a source code extension, with
the exception of assembler’s input file extensions (*. link, *.xml, *.key) or output file extensions. (*.cip, *.hex, *.bin, *.asm,
*.log, *.reg, *.cip.bin, *.cip.hex).

The assembler language coding rules are defined in the following sections.

4.1 Writing an instruction

Instructions allow the software designer to define the behavior that is executed independently by each microcore.

The allowed instructions and parameters are only the ones defined in the default instructions library (syntax.xml) or the custom syntax files.

All the instructions must be followed by the mandatory parameters. All the instructions must terminate with the character ';'. The instruction
syntax is as follows:

InstructionName Parameter1NameOrValue Parameter2NameOrValue...;

The instruction and parameter descriptions are provided in the PT2000 Data Sheet. The instructions and the associated parameters are
case sensitive. They can only be placed:

• At the beginning of the line
• Or after the end-of-comment field character ‘*’
• Or after a valid Label

One instruction per source file line or per include line is allowed. Below is an example:
stf low b0

4.2 Inserting a comment field

The source code file supports the addition of comments. The comment fields are identified with:

• Two '*' characters, one placed before and the other after the comment text
• One '*' symbol placed before comment text. In this case, all characters up to the end of the line are considered as part of the

comment.

The comment field syntax is as follows:
Comment
*Comment

Below are some examples:
Put the channel in error stat SWInterruptRoutine: stf low ErrorFlag;
SWInterruptRoutine: stf low ErrorFlag; *Put the channel in error stat

4.3 Defining a constant

The software designer can use a constant value label, instead of using a number as an instruction parameter (define). This constant
definition helps to make the source code more readable. The define function is used for a constant value definition that is used locally
in the source code. The constant definitions must terminate in the character ';'. The define syntax is as follows:

#define SymbolName SymbolValue;

The constant definitions are placed:

• At the beginning of the line
• Or after the final comment field character '*'

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 135

Specific assembler language

The constant definition must be placed in an instruction line. No other item, such as an instruction, label or include statement, is allowed
in a constant definition line. All define statements must be unique, that is not already used as the SymbolName of a line label, and cannot
have the same name as an instruction or a parameter. The define name (SymbolName) cannot start with a number but can contain one
or several numbers. It must not include spaces. The Define arguments SymbolName and SymbolValue are mandatory. See the
example below:

#define ErrorFlag 10;

4.4 Including a data RAM address definition file

The assembler has the ability to manage a nested file structure. The sub files called in the main source file are known as definition files.
These definition files are commonly used for variable definition dedicated to device Data RAM. However any instruction or label can be
used in definition files.

All the include statements must terminate with the character ';'. A valid file name must be placed between two apostrophe characters
(‘text’).

The include declaration must be placed:

• At the beginning of the line
• Or after the end comment character '*'

The include syntax is as follows:
#include ‘Filename.def’;

Use of nested include is not permitted.

Note that *.def or any other extension can be used as a definition file extension, with the exception of assembler’s input file extensions
(*.dfi, *. link, *.xml) or output file extensions. (*.cip, *.hex, *.bin, *.asm, *.log, *.reg, *.cip.bin, *.cip.hex).

See the example below:
#include ‘Source1.def’; *include variable to the source.dfi defined in the *definition file

4.5 Using a line label

The assembler can manage line labels. This kind of label is used to replace a line number called as an instruction parameter. The
assembler immediately replaces the label with the corresponding line number at the time of the source code assembly.

The label syntax is as follows:
LabelName:

The label refers to a line code where the label is set. For example, if the label Init is located on line 7 any instruction using this label
refers to line 7.

Labels must be placed at the beginning of the line or after the final character of a comment field. These labels end with the symbol ':'. All
labels must be followed by an instruction. They must be unique, must not already have been used as a SymbolName in a Define
statement, and cannot be an instruction or parameter name. The LabelName can contain numbers, but cannot fit the number format and
must not include spaces. An example follows:

SWInterruptRoutine:

4.6 Numbering convention

A parameter can either be a parameter name associated with a value defined in the syntax file or it can be a numeric value. When a
numeric value is used, the parameter is decimal. Three formats are possible:

• By default, the value is decimal (no suffix)
• A 'h' specifies that the value is hexadecimal
• A 'b' suffix specifies that the value is binary

An example follows:
ldirl 10 _rst; * number 10
ldirl 10h _rst; * number 16
ldirl 10b _rst; * number 2

MC33PT2000 programming guide and instruction set, Rev. 1.0

136 NXP Semiconductors

Specific assembler language

4.7 Conditional assembly

The assembler includes a basic IF function (conditional assembly). This function is 'static' so the IF function branch is considered at the
time of assembly. The IF function syntax is as follows:

#IF Condition
Instructions1
#ELSEIF
Instructions2
#ENDIF

The conditional assembly considers a branch only if its parameter is defined (whatever its value may be). Using an ELSE branch is
optional. All the instructions placed before the #IF label and after the #ENDIF label are excluded from the conditional code block and are
assembled. Only one level of condition assembly is supported, so an IF function cannot be nested within another IF function. Consider
the example below:

#define DDI 1; *define optional in this case.
#IF DDI
jmpr DDI_Init; *DDI constant is defined so this condition is met
*In this case the program counter jumps to the DDI_Init label line
#ELSE
jmpr GDI_Init; *GDI constant is not defined so this condition is never met
#ENDIF

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 137

Example source code: three cylinders with freewheeling

5 Example source code: three cylinders with freewheeling
This code can be used with the KITPT2000FRDM3C. It controls three cylinders with full overlap possible and includes the automatic
freewheeling control.

5.1 Channel 1 - Ucore0 - control bank1

* ### Channel 1 - uCore0 controls the injectors 1###
* This microcore controls BANK1
* High Side Vbat = hs1
* High SIde Vboost = hs2
* Low side Freewheeling = ls1
* Low side = ls2
* current sense = cur1

* ### Variables declaration ###

* Note: The data are stored into the dataRAM of the channel 1.
#define Iboost 0; * The boost phase current value is stored in the Data RAM address 0
#define Ipeak 1; * The peak phase current value is stored in the Data RAM address 1
#define Ihold 2; The hold phase current value is stored in the Data RAM address 2
#define Tpeak_off 3; * The peak off phase time is stored in the Data RAM address 3
#define Tpeak_tot 4; * The peak phase duration is stored in the Data RAM address 4
#define Tbypass 5; * The bypass phase time is stored in the Data RAM address 5
#define Thold_off 6; * The peak phase duration is stored in the Data RAM address 6
#define Thold_tot 7; * The peak phase duration is stored in the Data RAM address 7
* Note: The Thold_tot variable defines the current profile time out. The active STARTx pin is expected to toggle in is low state before this time out.

* ### Initialization phase ###
init0: stgn gain12.6 sssc; * Set the gain of the opamp of the current measure block 1

ldjr1 eoinj0; * Load the eoinj line label Code RAM address into the register jr1
ldjr2 idle0; * Load the idle line label Code RAM address into the register jr2
cwef jr1 _start row1; * If the start signal goes low, go to eoinj phase

* ### Idle phase- the uPC loops here until start signal is present ###
idle0: joslr inj1_start start1; * Perform an actuation on inj1 if start 1 (only) is active

jmpf jr1; * If more than 1 start active at the same time (or none), no actuation

* ### Shortcuts definition per the injector to be actuated ###
inj1_start:dfsct hs1 hs2 ls1; * Set the 3 shortcuts: VBAT, VBOOST, LS, shortcut 1 use for Freewheeling

jmpr boost0; * Jump to launch phase

* ### Launch phase enable boost ###
boost0: load Iboost dac_sssc _ofs; * Load the boost phase current threshold in the current DAC

cwer peak0 ocur row2; * Jump to peak phase when current is over threshold
stf low b0; * set flag0 low to force the DC-DC converter in idle mode
stos off on on; * Turn VBAT off, BOOST on, LS on
stfw auto; * Enable the freewheeling in this case LS1 is used as the freewheeling of hs1
wait row12; * Wait for one of the previously defined conditions

* ### Peak phase continue on Vbat ###
peak0: ldcd rst _ofs keep keep Tpeak_tot c1; * Load the length of the total peak phase in counter 1

load Ipeak dac_sssc _ofs; * Load the peak current threshold in the current DAC
cwer bypass0 tc1 row2; * Jump to bypass phase when tc1 reaches end of count
cwer peak_on0 tc2 row3; * Jump to peak_on when tc2 reaches end of count
cwer peak_off0 ocur row4; * Jump to peak_off when current is over threshold
stf high b0; * set flag0 high to release the DC-DC converter idle mode

peak_on0:stos on off on; * Turn VBAT on, BOOST off, LS on
wait row124; * Wait for one of the previously defined conditions

peak_off0:ldcd rst ofs keep keep Tpeak_off c2; * Load in the counter 2 the length of the peak_off phase
stos off off on; * Turn VBAT off, BOOST off, LS on

MC33PT2000 programming guide and instruction set, Rev. 1.0

138 NXP Semiconductors

Example source code: three cylinders with freewheeling

wait row123; * Wait for one of the previously defined conditions

* ### Bypass phase ###
bypass0:ldcd rst ofs keep keep Tbypass c3; * Load in the counter 3 the length of the off_phase phase

stos off off off; * Turn VBAT off, BOOST off, LS off
cwer hold0 tc3 row4; * Jump to hold when tc3 reaches end of count
wait row14; * Wait for one of the previously defined conditions

* ### Hold phase on Vbat ###
hold0: ldcd rst _ofs keep keep Thold_tot c1; * Load the length of the total hold phase in counter 2

load Ihold dac_sssc _ofs; * Load the hold current threshold in the DAC
cwer eoinj0 tc1 row2; * Jump to eoinj phase when tc1 reaches end of count
cwer hold_on0 tc2 row3; * Jump to hold_on when tc2 reaches end of count
cwer hold_off0 ocur row4; * Jump to hold_off when current is over threshold

hold_on0:stos on off on; * Turn VBAT on, BOOST off, LS on
wait row124; * Wait for one of the previously defined conditions

hold_off0:ldcd rst _ofs keep keep Thold_off c2;* Load the length of the hold_off phase in counter 1
stos off off on; * Turn VBAT off, BOOST off, LS on
wait row123; * Wait for one of the previously defined conditions

* ### End of injection phase ###
eoinj0: stos off off off; * Turn VBAT off, BOOST off, LS off

stfw manual; * Turn OFF the freewheeling LS_FW and HS is OFF
stf high b0; * set flag0 to high to release the DC-DC converter idle mode
jmpf jr2; * Jump back to idle phase

* ### End of Channel 1 - uCore0 code ###

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 139

Example source code: three cylinders with freewheeling

5.2 Channel 1 - Ucore1 - control bank2

* ### Channel 1 - uCore1 controls the injectors 2###
* This microcore controls BANK2
* High Side Vbat = hs3
* High SIde Vboost = hs4
* Low side Freewheeling = ls3
* Low side = ls4
* current sense = cur2

* ### Variables declaration ###
Shared between the two microcores.

* ### Initialization phase ###
init1: stgn gain12.6 sssc; * Set the gain of the opamp of the current measure block 2

ldjr1 eoinj1; * Load the eoinj line label Code RAM address into the register jr1
ldjr2 idle1; * Load the idle line label Code RAM address into the register jr2
cwef jr1 _start row1; * If the start signal goes low, go to eoinj phase

* ### Idle phase- the uPC loops here until start signal is present ###
idle1: joslr inj2_start start2; * Perform an actuation on inj3 if start 3 (only) is active

jmpf jr1; * If more than 1 start active at the same time (or none), no actuation

* ### Shortcuts definition per the injector to be actuated ###
inj2_start:dfsct hs3 hs4 ls3; * Set the 3 shortcuts: VBAT, VBOOST, LS, shortcut 1 use for Freewheeling

jmpr boost1; * Jump to launch phase

* ### Launch phase enable boost ###
boost1:load Iboost dac_sssc _ofs; * Load the boost phase current threshold in the current DAC

cwer peak1 ocur row2; * Jump to peak phase when current is over threshold
stf low b0; * set flag0 low to force the DC-DC converter in idle mode
stos off on on; * Turn VBAT off, BOOST on, LS on
stfw auto; * Enable the freewheeling between LS_FW and HS_Vbat
wait row12; * Wait for one of the previously defined conditions

* ### Peak phase continue on Vbat ###
peak1: ldcd rst _ofs keep keep Tpeak_tot c1; * Load the length of the total peak phase in counter 1

load Ipeak dac_sssc _ofs; * Load the peak current threshold in the current DAC
cwer bypass1 tc1 row2; * Jump to bypass phase when tc1 reaches end of count
cwer peak_on1 tc2 row3; * Jump to peak_on when tc2 reaches end of count
cwer peak_off1 ocur row4; * Jump to peak_off when current is over threshold
stf high b0; * set flag0 high to release the DC-DC converter idle mode

peak_on1:stos on off on; * Turn VBAT on, BOOST off, LS on and LS_FW off (stfw auto)
wait row124; * Wait for one of the previously defined conditions

peak_off1:ldcd rst ofs keep keep Tpeak_off c2; * Load in the counter 2 the length of the peak_off phase
stos off off on; * Turn VBAT off, BOOST off, LS on and LS_FW on (stfw auto)
wait row123; * Wait for one of the previously defined conditions

* ### Bypass phase ###
bypass1:ldcd rst ofs keep keep Tbypass c3; * Load in the counter 3 the length of the off_phase phase

stos off off off; * Turn VBAT off, BOOST off, LS off
cwer hold1 tc3 row4; * Jump to hold when tc3 reaches end of count
wait row14; * Wait for one of the previously defined conditions

* ### Hold phase on Vbat ###
hold1: ldcd rst _ofs keep keep Thold_tot c1; * Load the length of the total hold phase in counter 2

load Ihold dac_sssc _ofs; * Load the hold current threshold in the DAC
cwer eoinj1 tc1 row2; * Jump to eoinj phase when tc1 reaches end of count
cwer hold_on1 tc2 row3; * Jump to hold_on when tc2 reaches end of count
cwer hold_off1 ocur row4; * Jump to hold_off when current is over threshold

hold_on1:stos on off on; * Turn VBAT on, BOOST off, LS on

MC33PT2000 programming guide and instruction set, Rev. 1.0

140 NXP Semiconductors

Example source code: three cylinders with freewheeling

wait row124; * Wait for one of the previously defined conditions

hold_off1:ldcd rst _ofs keep keep Thold_off c2;* Load the length of the hold_off phase in counter 1
stos off off on; * Turn VBAT off, BOOST off, LS on
wait row123; * Wait for one of the previously defined conditions

* ### End of injection phase #
eoinj1: stos off off off; * Turn VBAT off, BOOST off, LS off

stf high b0; * set flag0 to high to release the DC-DC converter idle mode
jmpf jr2; * Jump back to idle phase

* ### End of Channel 1 - uCore1 code ###

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 141

Example source code: three cylinders with freewheeling

5.3 Channel 2 - Ucore0 - control bank3

* ### Channel 2 - uCore0 controls the injectors 0###
* This microcore controls BANK3
* High Side Vbat = hs5
* High SIde Vboost = hs6
* Low side Freewheeling = ls5
* Low side = ls6
* current sense = cur3

* ### Variables declaration ###
* Note: The data are stored into the dataRAM of the channel 2.
#define Iboost 0; * The boost phase current value is stored in the Data RAM address 0
#define Ipeak 1; * The peak phase current value is stored in the Data RAM address 1
#define Ihold 2; The hold phase current value is stored in the Data RAM address 2
#define Tpeak_off 3; * The peak off phase time is stored in the Data RAM address 3
#define Tpeak_tot 4; * The peak phase duration is stored in the Data RAM address 4
#define Tbypass 5; * The bypass phase time is stored in the Data RAM address 5
#define Thold_off 6; * The peak phase duration is stored in the Data RAM address 6
#define Thold_tot 7; * The peak phase duration is stored in the Data RAM address 7
* Note: The Thold_tot variable defines the current profile time out. The active STARTx pin is expected to toggle in is low state before this time out.

* ### Initialization phase ###
init0: stgn gain12.6 sssc; * Set the gain of the opamp of the current measure block 3

ldjr1 eoinj0; * Load the eoinj line label Code RAM address into the register jr1
ldjr2 idle0; * Load the idle line label Code RAM address into the register jr2
cwef jr1 _start row1; * If the start signal goes low, go to eoinj phase

* ### Idle phase- the uPC loops here until start signal is present ###
idle0: joslr inj3_start start3; * Perform an actuation on inj3 if start 3 (only) is active

jmpf jr1; * If more than 1 start active at the same time (or none), no actuation

* ### Shortcuts definition per the injector to be actuated ###
inj3_start:dfsct hs5 hs6 ls6; * Set the 3 shortcuts: VBAT, VBOOST, LS, shortcut 1 use for Freewheeling

jmpr boost0; * Jump to launch phase

* ### Launch phase enable boost ###
boost0: load Iboost dac_sssc _ofs; * Load the boost phase current threshold in the current DAC

cwer peak0 ocur row2; * Jump to peak phase when current is over threshold
stf low b0; * set flag0 low to force the DC-DC converter in idle mode
stos off on on; * Turn VBAT off, BOOST on, LS on
stfw auto; * Enable the freewheeling in this case LS1 is used as the freewheeling of hs1
wait row12; * Wait for one of the previously defined conditions

* ### Peak phase continue on Vbat ###
peak0: ldcd rst _ofs keep keep Tpeak_tot c1; * Load the length of the total peak phase in counter 1

load Ipeak dac_sssc _ofs; * Load the peak current threshold in the current DAC
cwer bypass0 tc1 row2; * Jump to bypass phase when tc1 reaches end of count
cwer peak_on0 tc2 row3; * Jump to peak_on when tc2 reaches end of count
cwer peak_off0 ocur row4; * Jump to peak_off when current is over threshold
stf high b0; * set flag0 high to release the DC-DC converter idle mode

peak_on0:stos on off on; * Turn VBAT on, BOOST off, LS on
wait row124; * Wait for one of the previously defined conditions

peak_off0:ldcd rst ofs keep keep Tpeak_off c2; * Load in the counter 2 the length of the peak_off phase
stos off off on; * Turn VBAT off, BOOST off, LS on
wait row123; * Wait for one of the previously defined conditions

* ### Bypass phase ###
bypass0:ldcd rst ofs keep keep Tbypass c3; * Load in the counter 3 the length of the off_phase phase

stos off off off; * Turn VBAT off, BOOST off, LS off
cwer hold0 tc3 row4; * Jump to hold when tc3 reaches end of count
wait row14; * Wait for one of the previously defined conditions

MC33PT2000 programming guide and instruction set, Rev. 1.0

142 NXP Semiconductors

Example source code: three cylinders with freewheeling

* ### Hold phase on Vbat ###
hold0: ldcd rst _ofs keep keep Thold_tot c1; * Load the length of the total hold phase in counter 2

load Ihold dac_sssc _ofs; * Load the hold current threshold in the DAC
cwer eoinj0 tc1 row2; * Jump to eoinj phase when tc1 reaches end of count
cwer hold_on0 tc2 row3; * Jump to hold_on when tc2 reaches end of count
cwer hold_off0 ocur row4; * Jump to hold_off when current is over threshold

hold_on0:stos on off on; * Turn VBAT on, BOOST off, LS on
wait row124; * Wait for one of the previously defined conditions

hold_off0:ldcd rst _ofs keep keep Thold_off c2;* Load the length of the hold_off phase in counter 1
stos off off on; * Turn VBAT off, BOOST off, LS on
wait row123; * Wait for one of the previously defined conditions

* ### End of injection phase ###
eoinj0: stos off off off; * Turn VBAT off, BOOST off, LS off

stf high b0; * set flag0 to high to release the DC-DC converter idle mode
jmpf jr2; * Jump back to idle phase

* ### End of Channel 2 - uCore0 code ###

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 143

Example source code: three cylinders with freewheeling

5.4 Channel 3 - Ucore0 - DCDC control

* ### Channel 3 - uCore0 controls dc-dc ###

* ### Variables declaration ###

#define Vboost_high 0; * The Vboost_high voltage value is stored in the Data RAM address 0
#define Vboost_low 1; * The Vboost_low voltage value is stored in the Data RAM address 1
#define Isense56_high 2; * The Isense4_high current value is stored in the Data RAM address 2
#define Isense56_low 3; * The Isense4_low current value is stored in the Data RAM address 3

* ### Initialization phase ###
init0: stgn gain5.8 ossc; * Set the gain of the opamp of the current measure block 4

dfsct undef ls7 undef; * NEW on the PT2000, for DCDC mode shortcut 2 is used in this case ls7
load Isense4_low dac_sssc _ofs; * Load Isense56_high current threshold in DAC 56L
load Isense4_high dac56h56n _ofs; * Load Isense56_high current threshold in DAC 56H
stdm null; * Set the boost voltage DAC access mode
cwer dcdc_idle _f0 row1; * Wait table entry for Vboost under Vboost_low threshold condition
cwer dcdc_on _vb row2; * Wait table entry for Vboost under Vboost_low threshold condition
cwer dcdc_off vb row3; * Wait table entry for Vboost over Vboost_high threshold condition

* ### Asynchronous phase ###
dcdc_on:load Vboost_high dac56h56n _ofs; * Load the upper Vboost threshold in vboost_dac register
 stdcctl async; * Enable asynchronous mode
 wait row13; * Wait for one of the previously defined conditions

* ### Synchronous phase ###
dcdc_off:load Vboost_low dac56h56n _ofs; * Load the upper Vboost threshold in vboost_dac register
 stdcctl sync; * Enable synchronous mode
 wait row12; * Wait for one of the previously defined conditions

* ### Idle phase ###
dcdc_idle: stdcctl sync; * Enable synchronous mode

jocr dcdc_idle _f0; * jump to previous line while flag 0 is low
jmpr dcdc_on; * force the DC-DC converter on when flag 0 goes high

* ### End of Channel 3 - uCore0 code ###

MC33PT2000 programming guide and instruction set, Rev. 1.0

144 NXP Semiconductors

References

6 References

Document number and description URL

MC33PT2000 Data Sheet http://www.nxp.com/files/analog/doc/data_sheet/MC33PT2000.pdf

NXP.com support pages URL

MC33PT2000 Product Summary Page http://www.nxp.com/webapp/sps/site/prod_summary.jsp?code=PT2000

Analog Home Page http://www.nxp.com/analog

http://www.nxp.com/files/analog/doc/data_sheet/MC33PT2000.pdf
http://www.nxp.com/webapp/sps/site/prod_summary.jsp?code=PT2000
http://nxp.com/analog

MC33PT2000 programming guide and instruction set, Rev. 1.0

NXP Semiconductors 145

Revision history

7 Revision history

Revision Date Description of Changes

1.0

3/2015 • Initial release

4/2015

• Updated dfcsct instruction (typo correction)

• Updated jtsf instruction (typo correction)

• Updated ldirh and ldirl instruction

• Updated slfbk instruction, NA operand removed

• Updated stcrt instruction suma and sumb replaced by sumh and suml

11/2015 • Updated description for stfw instruction

8/2016 • Updated document to NXP form and style

Information in this document is provided solely to enable system and software implementers to use NXP products. There

are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on

the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose,

nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims

any and all liability, including without limitation, consequential or incidental damages. "Typical" parameters that may be

provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including "typicals," must be validated for each customer application by the

customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells

products pursuant to standard terms and conditions of sale, which can be found at the following address:

http://www.nxp.com/terms-of-use.html.

NXP, the NXP logo, Freescale, the Freescale logo, and SMARTMOS are trademarks of NXP B.V. All other product or

service names are the property of their respective owners. All rights reserved.

© 2016 NXP B.V.

How to Reach Us:
Home Page:
NXP.com

Web Support:
http://www.nxp.com/support

Document Number: PT2000SWUG
Rev. 1.0

8/2016

http://www.nxp.com/terms-of-use.html
http://www.nxp.com/
http://www.nxp.com/support

	1 Introduction
	2 Microcore programming description
	2.1 CRAM addressing mode
	2.2 Arithmetic logic unit
	2.3 Start management
	2.4 Microprogram counter block
	2.5 Wait instructions
	2.6 Subroutine instructions
	2.7 Program flow (jump, Ldjr) instructions
	2.8 DataRAM access instructions
	2.9 Arithmetic instructions
	2.10 Shift instructions
	2.11 Control, status, and flags instructions
	2.12 Inter-core communication instructions
	2.13 Shortcuts
	2.14 Current sense blocks
	2.15 Output drivers
	2.16 Interrupts
	2.17 Counter/timers
	2.18 SPI back door

	3 Instruction set and subsets
	3.1 Internal registers operand subsets
	3.2 Instruction set

	4 Specific assembler language
	4.1 Writing an instruction
	4.2 Inserting a comment field
	4.3 Defining a constant
	4.4 Including a data RAM address definition file
	4.5 Using a line label
	4.6 Numbering convention
	4.7 Conditional assembly

	5 Example source code: three cylinders with freewheeling
	5.1 Channel 1 - Ucore0 - control bank1
	5.2 Channel 1 - Ucore1 - control bank2
	5.3 Channel 2 - Ucore0 - control bank3
	5.4 Channel 3 - Ucore0 - DCDC control

	6 References
	7 Revision history
	MC33PT2000 programming guide and instruction set

