

Using FlexIO to emulate communications

and timing peripherals

1. Introduction

The FlexIO is a new on-chip peripheral available on

Kinetis and S32K microcontroller families. It is highly

configurable and capable of emulating a wide range of

communication protocols, such as UART, I2C, SPI, I2S

and LIN that are showed in this document and others

more like J1850, I3C, Manchester.

The standalone peripheral module FlexIO is used as an

additional peripheral module of the microcontroller and

is not a replacement of the any communication

peripheral. The key feature of FlexIO is that it enables

the user to build their own peripheral directly.

These compilations of examples create as simple

software demo based on S32K SDK (Software

Development Kit version that is included into

S32DS_v2018) and Bare Metal quick examples to give

a better approach about what is FlexIO, with these

examples the user can emulate different communication

modules and pwm signals.

NXP Semiconductors Document Number: AN12174

Application Note Rev. 0 , 06/2018

Contents

1. Introduction .. 1
2. Overview of the FlexIO module... 2
3. Emulating UART Using FlexIO .. 4

3.1. Instructions ... 4
3.2. Configuring the Shifters and Timers 7
Software implementation overview 10
3.3. Functions description .. 10
3.4. Running the demos ... 11

4. Emulating Dual SPI by using FlexIO 12
4.1. Configurations of the Shifters and Timers 14
4.2. Software overview .. 18
4.3. Implementation ... 20
4.4. Running the demos ... 20

5. Emulating I2C Bus Master by using FlexIO 24
5.1. Introduction... 24
5.2. General description ... 24
5.3. Configurations of the shifters and timers 25
5.4. Software overview .. 27
5.5. implementation ... 30
5.6. Running the demos ... 31

6. Generating PWM by Using FlexIO 32
6.1. Introduction... 32
6.2. General description ... 33
6.3. Configurations of the timer 33
6.4. Software implementation overview 35
6.5. Running the demos ... 36

7. Emulating I2S bus Master using FlexIO 36
7.1. General description ... 37
7.2. Configurations of the shifters and timers 38
7.3. Software implementation overview 40
7.4. Running the demos ... 40

8. Emulating LIN Master/Slave by using FlexIO 41
8.1. Introduction... 41
8.2. Emulating LIN using FlexIO 41
8.3. Configurations the Shifters and Timers 42

9. Conclusion ... 45
10. Revision history ... 45

Overview of the FlexIO module

Using FlexIO to emulate communications and timing peripherals Rev. 0 06/2018

2 NXP Semiconductors

2. Overview of the FlexIO module

The FlexIO module has the following main hardware resources:

• Shifter

• Timer

• Pin

The amount of these resources for a given MCU can be read from the FLEXIO_PARAM register. For

example, there are 4 shifters, 4 timers, and 8 pins in S32K1xx family.

Table 1. Resources used for communication protocols

Use Case Supported using FlexIO use Comments

UART

Application

Two independent parts Transmit

& Receive:

Transmit: one Timer, one Shifter

and one Pin

Receive: one Timer, one Shifter

and one Pin

50% Allows polling and interrupt

mode

Configurable bit order (bit

swapped buff MSB first)

Multiple transfers can be

supported using DMA

controller

Does not support automatic

insertion of parity bits

SPI Master Two timers, Two shifters, Four

pins

50% CPHA=0 and CPHA=1

supported

SPI Slave One timer, Two shifters, Four

pins

33% CPHA=0 and CPHA=1

supported

I2C Master Two timers, Two shifters, Two

pins

50% FlexIO inserts a stop bit after

every word to generate/verify

the ACK/NACK

I2S Master Two timers, Two shifters, Four

pins

50% Data transfers can be supported

using the DMA

Overview of the FlexIO module

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

NXP Semiconductors 3

The following diagram shows a high-level overview of the FlexIO module.

Figure 1. FlexIO block diagram

The following key features are provided:

• 32-bit shifters with transmit, receive, and data match modes

• Double buffered shifter operation

• 16-bit timers with high flexibility support for a variety of internal or external triggers, and Reset/

Enable/Disable/ Decrement conditions

• Automatic start/stop bit generation/check

Emulating UART Using FlexIO

Using FlexIO to emulate communications and timing peripherals Rev. 0 06/2018

4 NXP Semiconductors

• Interrupt, DMA, or polling mode operation

• Shifters, timers, pins, and triggers can be flexibly combined to operate

Transmit and receive are two basic modes of the shifters. If one shifter is configured to transmit mode, it

loads data from its buffer register and shifts data out to its assigned pin bit by bit. If one shifter is

configured to receive mode, it shifts data in from its assigned pin and stores data in its buffer register.

The load, store, and shift operations are all controlled by the shifter’s assigned timer.

The timers can also be configured as different operation modes per your requirement, including dual 8-

bit counters baud/bit mode, dual 8-bit counters PWM mode, and single 16-bit counter mode.

3. Emulating UART Using FlexIO

3.1. Instructions

For detailed explanation of the FlexIO refer to microcontroller reference manual. This example creates a

simple software demo based on S32K SDK and including bare metal configuration example drivers for

user to use FlexIO to emulate the UART.

This section describes how to emulate UART by using FlexIO. For this application, the evaluation

development board S32K144EVB-Q100, in Figure 2 has been used.

Emulating UART Using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

NXP Semiconductors 5

Figure 2. Development board S32K144EVB-Q100

In this application, FlexIO D0 pin is configured as UART TXD, FlexIO D1 pin is configured as UART

RXD. Make the connections between the TXD and RXD using 1 external wire. You can use a general

serial terminal/console to verify the result of data transfer.

The following diagram shows the hardware platform and data flows:

Emulating UART Using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

6 NXP Semiconductors

Figure 3. Hardware Platform and Data Flows of this Application

UART transmit uses the following resources:

• 1 timer — configured as an 8-bit counter mode to control data shift.

• 1 pin — controlled by timer to output data from SHIFTBUF.

• 1 shift — controlled by timer to shift data from SHIFTBUF and configured start bit and stop bit.

Figure 4. Resource Assignment of FlexIO to Emulate UART Transmit

UART receive uses the following resources:

• 1 timer — configured as an 8-bit counter mode to control data shift.

• 1 pin — controlled by timer to input data into SHIFTBUF.

Emulating UART Using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

NXP Semiconductors 7

• 1 shift — controlled by timer to shift data into SHIFTBUF and configured if the input data has

start bit and stop bit.

Figure 5. Resource assignment of FlexIO to emulate UART receive

Detailed configurations and usage information are provided in the following sections.

3.2. Configuring the Shifters and Timers

This section provides detailed configurations of the shifters and timers. Note that the items listed in this

section are the initial setting with UART baud rate= 115200, and UART bit count= 8-bit, one start bit,

one stop bit, no parity bit. Some of these settings must be changed by software to support the different

UART features. To understand these configurations, refer to the following sections and the S32K

reference manual.

3.2.1. UART transmit configurations

Configurations for shifter 0

Shifter 0 is used as the UART on pin FlexIO_D0 as TXD. It has the following initial configurations.

Table 2. Configurations for shifters 0/1

Items Configurations

Shifter mode transmit

Timer selection timer 0

Timer polarity on posedge of shift clock

Pin selection pin 0

Pin configuration pin output

Pin polarity active high

Emulating UART Using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

8 NXP Semiconductors

Input source from pin

Start bit start bit value 0

Stop bit Stop bit value 1

Buffer used SHIFTBUF[7:0] to initiate an 8-bit

transfer

Configurations for timer 0

Timer 0 is used by the UART to shift control of the shifter0. The shifter status flag is set SHIFTBUF has

been loaded with data from Shifter and is cleared each time the SHIFTBUF register is read, which

means the data in the SHIFTBUF has been transferred to the Shifter (SHIFTBUF is empty). The shifter

status flag 0 is configured to be the trigger of the timer 0, so as soon as the SHIFTBUT is written, the

status flag is cleared and timer 0 is enabled. The shifter begins to shift out the data on the negative edge

of the clock until the timer is disabled. The timer is disabled when the timer counter counts down to 0.

Timer 0 has the following initial configurations.

Table 3. Configurations for timer 0

Items Configurations

Timer mode dual 8-bit counters baud/bit mode.

Trigger selection shifter 0 status flag

Trigger polarity active low

Trigger source internal trigger

Pin configuration output disabled

Timer initial output output logic 1 when enabled, not affect by reset

Timer decrement source decrement on FlexIO clock, shift on timer output

Timer enable condition on trigger high

Timer disable condition on timer compare

Timer reset condition Timer never reset

Start bit enabled

Stop bit enabled on timer disable

Timer compare value ((n*2-1)<<8) | (baudrate_divider/2-1)) 1

1) n is the number of bytes in the transmission. Baudrate_divider is a value used for dividing the baud rate

from the FlexIO clock source.

3.2.2. UART receive configurations

Configurations for shifter 1

1 n is the number of bytes in the transmission. Baudrate_divider is a value used for dividing the baud rate from the FlexIO

clock source.

Emulating UART Using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

NXP Semiconductors 9

Shifter 1 is used as the UART on pin FlexIO_D1 as RXD. It has the following initial configurations.

Table 4. Configurations for shifter 1

Items configurations

Shifter mode receive

Timer selection timer 1

Timer polarity on negedge of shift clock

Pin selection pin 1

Pin configuration output disabled

Pin polarity active high

Input source from pin

Start bit start bit value 0

Stop bit start bit value 1

Buffer used SHIFTBUF[31:24] to receive data

Configurations for timer 1

Timer 1 is used by the UART to shift control of the shifter1. The pin1 rising edge is configured to be

enable the timer 1. The shifter begins to shift in the data on the negative edge of the clock until the timer

is disabled. The timer is disabled when the timer counter counts down to 0. Timer 1 has the following

initial configurations.

Table 5. Configurations for timer 1

Items Configurations
Timer mode dual 8-bit counters baud/bit mode.

Trigger selection trigger from pin1

Trigger polarity active high

Trigger source external trigger

Pin configuration output disabled

Timer initial output output logic 1 when enabled, not affect by reset

Timer decrement source decrement on FlexIO clock, shift on timer output

Timer enable condition on pin rising edge

Timer disable condition on timer compare

Timer reset condition Timer never reset

Start bit enabled

Stop bit enabled on timer disable

Timer compare value ((n*2-1)<<8) | (baudrate_divider/2-1)) 2

2) n is the number of bytes in the transmission. Baudrate_divider is a value used for dividing the baud rate

from the FlexIO clock source.

Emulating UART Using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

10 NXP Semiconductors

Software implementation overview

This section describes the software implementation focused on SDK (Software Development Kit version

that is included into S32DS_v2018), but please be aware that baremetal examples codes (following the

same configuration showed on tables on this docs) are delivered within the same SW package of the

Application note, all of functions can be directly used by user in their own codes with minor changes.

Features

• Interrupt, DMA or polling mode

• Provides blocking and non-blocking transmit and receive functions

• Configurable baud rate and number of bits

• Single stop bit only

• Parity bit not supported

Initialization

Before using any FlexIO driver the device must first be initialized using function

FLEXIO_DRV_InitDevice. Then the FLEXIO_UART Driver must be initialized, using

function FLEXIO_UART_DRV_Init(). It is possible to use more driver instances on the same FlexIO

device, if sufficient resources are available. Different driver instances on the same FlexIO device can

function independently of each other. When it is no longer needed, the driver can be de-initialized,

using FLEXIO_UART_DRV_Deinit(). This will release the hardware resources, allowing other driver

instances to be initialized.

3.3. Functions description

FLEXIO_DRV_InitDevice function enables the clock gating of the FlexIO IP module and selects the

proper peripheral clock source for FlexIO. The FLEXIO_CLK defined in the source file is exactly the

frequency of the peripheral clock source. It resets the FlexIO IP module by SW and re-enables it. This is

a general FlexIO IP module initialization function, called before using its shifters and timers.

FLEXIO_UART_DRV_Init function configures the timer0 as a dual 8-bit counters baud/bit mode to

shift data out with pin0 output to emulate UART TXD and configures the timer1 as a dual 8-bit counters

baud/bit mode to shift data in with pin1 input to emulate UART RXD. The ‘baud’ parameter means the

baud rate of UART. The ‘bits’ parameter means the bit number of one UART frame.

3.3.1. FLEXIO_UART_DRV_SendData

This function is used to send data via FlexIO UART.

3.3.2. FLEXIO_UART_DRV_ReceiveDataBlocking

This is used to receive data via FlexIO UART using block mode.

../../../../Users/nxf33052/AppData/Local/Microsoft/AppData/Local/Microsoft/NXP/S32DS_ARM_v1.3/S32DS/S32SDK_S32K14x_EAR_0.8.3/doc/html/group__flexio__uart__drv.html#ga58ed1198086e6b814a90dc6ad3891438
../../../../Users/nxf33052/AppData/Local/Microsoft/AppData/Local/Microsoft/NXP/S32DS_ARM_v1.3/S32DS/S32SDK_S32K14x_EAR_0.8.3/doc/html/group__flexio__uart__drv.html#ga1796eb1a735365892f8d747e6d45ef44

Emulating UART Using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

NXP Semiconductors 11

To use the FlexIO to emulate UART to send and receive data, you can call these functions in sequence

like in the main() function. It configures the baud rate to 115200 bps, and PTD0 as TXD, PTD1 as

RXD.

3.4. Running the demos

 This demo runs on S32K144EVB-Q100. The FlexIO pins assignment for TXD and RXD are shown in

the following table:

Table 6. FlexIO pins assignment table for UART TXD and RXD

You must make the connections between the TXD and RXD by using 1 external wire before

downloading the program image to the MCU via J-link or OpenSDA:

• UART TXD <----> UART RXD.

After that is complete, follow the next steps to run the demo and check the result:

• Plug in the Micro USB to connect the PC and target the S32K144EVB-Q100 board

• Open the UART debug terminal on your PC with 8in1 and 115200bps settings

• Open the project by S32DS workspace on your PC

• Rebuild all files and download the image into target

• After the data finishes transferring the results are printed on the master terminal

FlexIO UART TXD

FlexIO UART TXD Pin:FlexIO_D0 PTD0

FlexIO UART RXD

FlexIO UART RXD Pin:FlexIO_D1 PTD1

Emulating Dual SPI by using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

12 NXP Semiconductors

4. Emulating Dual SPI by using FlexIO

This section describes how to emulate dual SPI by using FlexIO. For this application, the

S32K144EVB-Q100, which is shown in the figure 2, has been used.

In this application, FlexIO D0~D3 pins are configured as SPI master, FlexIO D4~D7 pins are configured

as SPI slave. Make the connections between the master and slave using 4 external wires. You can use

general UART debug console to check the result of data loopback transfer. The following diagram

shows the hardware platform and data flows:

Emulating Dual SPI by using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

NXP Semiconductors 13

Figure 6. Hardware platform and data flows

SPI bus master can be emulated using:

• 2 Shifters: one shifter is used as the data transmitter and the other shifter is the receiver.

• 2 Timers: one timer is used for the SPI_CS output generation, and the other timer is used for the

load/store/shift control of the two shifters and SPI_SCK generation.

• 4 Pins: these are used as SPI_CS, SPI_SCK, SPI_SOUT, and SPI_SIN.

The following diagram shows the master resource assignment.

Figure 7. Resource Assignment of FlexIO to Emulate SPI Master

The SPI bus slave can be emulated using:

• 2 Shifters: one shifter is used as the data transmitter and the other shifter as the receiver.

• 1 Timer: used for the load/store/shift control of the two shifters.

Emulating Dual SPI by using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

14 NXP Semiconductors

• 4 Pins: the pins are used as SPI_CS, SPI_SCK, SPI_SOUT, and SPI_SIN.

The following diagram shows the slave resource assignment.

Figure 8. Resource Assignment of FlexIO to Emulate SPI slave

Detailed configurations and usage information are provided in the following sections.

4.1. Configurations of the Shifters and Timers

This section provides detailed configurations of the shifters and timers. Note that the items listed in this

section are the initial setting with CPHA= 0, SPI baud rate= 2 MHz, and SPI bit count= 8-bit, by default.

Some of these settings must be changed by software to support the different SPI features. To understand

these configurations, refer to the following sections and the S32K reference manual.

4.1.1. SPI master configurations

Configurations for shifter 0

Shifter 0 is used as the SPI master transmitter on pin FlexIO_D0 as SPI_SOUT. It has the following

initial configurations.

Emulating Dual SPI by using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

NXP Semiconductors 15

Table 7. Configurations for shifter 0

Items Configurations

Shifter mode transmit

Timer selection timer 0

Timer polarity on negative of shift clock

Pin selection pin 0

Pin configuration pin output

Pin polarity active high

Input source from pin

Start bit disabled, transmitter loads data on enable

Stop bit disabled

Buffer used bit byte swapped register

Configurations for shifter 1

Shifter 1 is used as the SPI master receiver on pin FlexIO_D1 as SPI_SIN. It has the following initial

configurations.

Table 8. Configurations for shifter 1

Items Configurations

Shifter mode receive

Timer selection timer 0

Timer polarity on positive of shift clock

Pin selection pin 1

Pin configuration output disabled

Pin polarity active high

Input source from pin

Start bit disabled, transmitter loads data on enable

Stop bit disabled

Buffer used bit byte swapped register

Configurations for timer 0

Timer 0 is used by the SPI master to generate SPI_SCK output on pin FlexIO_D2 and load/store/shift

control of the two shifters. The shifter status flag is set and cleared each time the SHIFTBUF register is

written and read, which means the data in the SHIFTBUF has been transferred to the Shifter

(SHIFTBUF is empty). The shifter status flag 0 is configured to be the trigger of the timer 0, so as soon

as the SHIFTBUT is written, the status flag is cleared and timer 0 is enabled. The shifter begins to shift

out the data on the negative edge of the clock until the timer is disabled. The timer is disabled when the

timer counter counts down to 0. Timer 0 has the following initial configurations.

Table 9. Configurations for timer 0

Items Configurations

Timer mode dual 8-bit counters baud/bit mode.

Trigger selection shifter 0 status flag

Trigger polarity active low

Trigger source internal trigger

Emulating Dual SPI by using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

16 NXP Semiconductors

Items Configurations

Pin selection pin 2

Pin configuration output enable

Pin polarity active high

Timer initial output output logic 0 when enabled, not affect by reset

Timer decrement source decrement on FlexIO clock, shift on timer output

Timer enable condition on trigger high

Timer disable condition on timer compare

Timer reset condition Timer never reset

Start bit enabled

Stop bit enabled on timer disable

Timer compare value ((n*2-1)<<8) | (baudrate_divider/2-1))3

Configurations for timer 1

Timer 1 is used by the SPI master to generate the SPI_CS output on pin FlexIO_D3. Timer 1 is

configured to be enabled when the timer 0 is enabled. The compare register is configured to the 16-bit

counter and set to 0xFFFF.With this value the timer never compares and is always active when the timer

is enabled. Timer 1 has the following initial configurations.

Table 10. Configurations for timer 1

Items Configurations

Timer mode single 16-bit counter mode

Trigger selection trigger from timer0

Trigger polarity active high

Trigger source internal trigger

Pin selection pin 3

Pin configuration output enable

Pin polarity active low

Timer initial output output logic 1 when enabled, not affect by reset

Timer decrement source decrement counter on FlexIO clock, Shift clock equals

timer output.

Timer enable condition on timer0 enable

Timer disable condition on timer0 disable

Timer reset condition Timer never reset

Start bit disabled

Stop bit disabled

Timer compare value 0xFFFF

4.1.2. SPI slave Configurations

Configurations for Shifter 2

3 n is the number of bytes in the transmission. Baudrate_divider is a value used for dividing the baud rate from the FlexIO

clock source.

Emulating Dual SPI by using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

NXP Semiconductors 17

Shifter 2 is used by the SPI slave transmitter on pin FlexIO_D4 as SPI_SOUT. It has the following

initial configurations.

Table 11. Configurations for Shifter 2

Items Configurations

Shifter mode transmit

Timer selection timer 2

Timer polarity on negative of shift clock

Pin selection pin 4

Pin configuration output enable

Pin polarity active high

Input source from pin

Start bit disabled, transmitter loads data on enable

Stop bit disabled

Buffer used bit byte swapped register

Configurations for Shifter 3

Shifter 3 is used by the SPI slave receiver on pin FlexIO_D5 as SPI_SIN. It has the following initial

configurations.

Table 12. Configurations for Shifter 3

Items configurations

Shifter mode receive

Timer selection timer 2

Timer polarity on positive of shift clock

Pin selection pin 5

Pin configuration output disabled

Pin polarity active high

Input source from pin

Start bit disabled, transmitter loads data on enable

Stop bit disabled

Buffer used bit byte swapped register

Configurations for Timer 2

Timer 2 is used by the SPI slave to acquire SPI_SCK on pin FlexIO_D6 from master to load/store/shift

control of the two shifters. In slave mode, the SPI_SCK and SPI_CS signal are configured as inputs and

driven by the SPI bus master. The transmit data is transferred at every SPI_SCK clock edge of each

frame to the shift register when the SPI_CS signal is asserted. As a result, select pin FlexIO_D7 of

SPI_CS as the trigger input to Timer 2. It has the following initial configurations.

Table 13. Configurations for Timer 2

Items Configurations

Timer mode single 16-bit counter mode

Trigger selection trigger from FlexIO pin 7 of SPI_CS

Emulating Dual SPI by using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

18 NXP Semiconductors

Items Configurations

Trigger polarity active low

Trigger source internal trigger

Pin selection pin 6

Pin configuration output enable

Pin polarity active high

Timer initial output output logic 0 when enabled, not affect by reset

Timer decrement source decrement on pin input, Shift clock equals pin input

Timer enable condition on trigger rising edge

Timer disable condition timer is never disabled

Timer reset condition Timer never reset

Start bit disabled

Stop bit disabled

Timer compare value (n*2-1)4

4.2. Software overview

The FLEXIO_SPI Driver allows communication on an SPI bus using the FlexIO module in the

S32144K processor.

Features:

• Master or slave operation

• Interrupt, DMA or polling mode

• Provides blocking and non-blocking transfer functions

• Configurable baud rate

• Configurable clock polarity and phase

• Configurable bit order and data size

• Functionality

Initialization

Before using any FlexIO driver the device must first be initialized using function

FLEXIO_DRV_InitDevice. Then the FLEXIO_SPI Driver must be initialized, using functions

FLEXIO_SPI_DRV_MasterInit() or FLEXIO_SPI_DRV_SlaveInit(). It is possible to use more driver

instances on the same FlexIO device, if sufficient resources are available. Different driver instances on

the same FlexIO device can function independently of each other. When it is no longer needed, the

driver can be de-initialized, using FLEXIO_SPI_DRV_MasterDeinit() or

4 n is the number of bytes in the transmission.

Emulating Dual SPI by using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

NXP Semiconductors 19

FLEXIO_SPI_DRV_SlaveDeinit(). This will release the hardware resources, allowing other driver

instances to be initialized other.

Master Mode

Master Mode provides functions for transmitting or receiving data to/from an SPI slave. Baud rate is

provided at initialization time through the master configuration structure, but can be changed at runtime

by using FLEXIO_SPI_DRV_MasterSetBaudRate() function. Note that due to module limitation not

any baud rate can be achieved. The driver will set a baud rate as close as possible to the requested baud

rate, but there may still be substantial differences, for example if requesting a high baud rate while using

a low-frequency FlexIO clock. The application should call FLEXIO_SPI_DRV_MasterGetBaudRate()

after FLEXIO_SPI_DRV_MasterSetBaudRate() to check what baud rate was set.

To send or receive data, use function FLEXIO_SPI_DRV_MasterTransfer(). The transmit and receive

buffers, together with parameters for the transfer are provided through the flexio_spi_transfer_t

structure. If only transmit or receive is desired, any one of the Rx/Tx buffers can be set to NULL. This

driver does not support continuous send/receive using a user callback function. The callback function is

only used to signal the end of a transfer.

Blocking operations will return only when the transfer is completed, either successfully or with error.

Non-blocking operations will initiate the transfer and return STATUS_SUCCESS, but the module is still

busy with the transfer and another transfer can't be initiated until the current transfer is complete. The

application will be notified through the user callback when the transfer completes, or it can check the

status of the current transfer by calling FLEXIO_SPI_DRV_MasterGetStatus(). If the transfer is still

ongoing this function will return STATUS_BUSY. If the transfer is completed, the function will return

either STATUS_SUCCESS or an error code, depending on the outcome of the last transfer.

The driver supports interrupt, DMA and polling mode. In polling mode, the function

FLEXIO_SPI_DRV_MasterGetStatus() ensures the progress of the transfer by checking and handling

transmit and receive events reported by the FlexIO module. The application should ensure that this

function is called often enough (at least once per transferred byte) to avoid Tx underflows or Rx

overflows. In DMA mode, the DMA channels that will be used by the driver are received through the

configuration structure. The channels must be initialized by the application before the flexio_spi driver

is initialized. The flexio_spi driver will only set the DMA request source.

Slave Mode

Slave Mode is similar to master mode, the main difference being that the

FLEXIO_SPI_DRV_SlaveInit() function initializes the FlexIO module to use the clock signal received

from the master instead of generating it. Consequently, there is no SetBaudRate function in slave mode.

Other than that, the slave mode offers a similar interface to the master mode.

Emulating Dual SPI by using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

20 NXP Semiconductors

FLEXIO_SPI_DRV_MasterTransfer() can be used to initiate transfers, and

FLEXIO_SPI_DRV_SlaveGetStatus() is used to check the status of the transfer and advance the transfer

in polling mode. All other specifications from the Master Mode description apply for Slave Mode too

4.3. Implementation

application have been implemented in this application, these are based on S32K SDK (Software

Development Kit version that is included into S32DS_v2018),

The demo software includes two source files: main.c and retarget.c. The source files provide the

following functions: configure the FlexIO to emulate dual SPI, DMA configurations and data

verification after transfer can be directly used by user in their own codes with minor changes. This demo

is realized in DMA mode as it has better performance compared with polling mode and interrupt mode.

FlexIO SPI Initialize Function

Before using any FlexIO driver the device must first be initialized using function

FLEXIO_DRV_InitDevice.

Then the FLEXIO_SPI Driver must be initialized, using functions FLEXIO_SPI_DRV_MasterInit() or

FLEXIO_SPI_DRV_SlaveInit(). It is possible to use more driver instances on the same FlexIO device, if

sufficient resources are available. Different driver instances on the same FlexIO device can function

independently of each other. When it is no longer needed, the driver can be de-initialized, using

FLEXIO_SPI_DRV_MasterDeinit() or FLEXIO_SPI_DRV_SlaveDeinit(). This will release the

hardware resources, allowing other driver instances to be initialized other. DMA Configuration

Function, this demo is to realize FlexIO emulate dual SPI loopback transfer by DMA mode. The

following prototypes are used to configure the DMA and DMAMUX.

The prototypes are:

DMA_Init();

ConfigDMAfor_SPI_MASTER_TX();

ConfigDMAfor_SPI_MASTER_RX();

ConfigDMAfor_SPI_SLAVE_TX();

ConfigDMAfor_SPI_SLAVE_RX();

Transmit/Receive Function

• FLEXIO_SPI_DRV_MasterTransfer

4.4. Running the demos

This demo runs on S32K144EVB-Q100. The FlexIO pins assignment for SPI master and slave are

shown in the following table:

Emulating Dual SPI by using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

NXP Semiconductors 21

Table 14. FlexIO pins assignment table for SPI master and slave

FlexIO SPI Master

FlexIO SPI master TX Pin:FlexIO_D0 PTD0

FlexIO SPI master RX Pin:FlexIO_D1 PTD1

FlexIO SPI master SCK Pin:FlexIO_D2 PTE15

FlexIO SPI master CS Pin:FlexIO_D3 PTE16

FlexIO SPI Slave

FlexIO SPI slave TX Pin:FlexIO_D4 PTE10

FlexIO SPI slave RX Pin:FlexIO_D5 PTE11

FlexIO SPI slave SCK Pin:FlexIO_D6 PTA8

FlexIO SPI slave CS Pin:FlexIO_D7 PTA9

You must make the connections between the master and slave by using 4 external wires before

downloading the program image to the MCU via J-link or OpenSDA:

• SPI master TX <----> SPI slave RX

• SPI master RX <----> SPI Slave TX

• SPI master SCK <----> SPI slave SCK

• SPI master CS <----> SPI slave CS

After that is complete, follow the next steps to run the demo and check the result:

• Plug in the Micro USB to connect the PC and target the S32K144EVB-Q100 board

• Open the UART debug terminal on your PC with 8in1 and 115200bps settings

• Open the project by S32DS workbench on your PC

• Rebuild all files and download the image into target

• Press any key to run the demo

• After the data finishes transferring the results are printed on the master terminal.

Emulating Dual SPI by using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

22 NXP Semiconductors

Figure 9. Terminal utility output

Emulating Dual SPI by using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

NXP Semiconductors 23

Figure 10. Terminal Utility Output (continued)

The software aims to ensure that SPI master transmits 256 bytes of 0x0~0xFF to slave. Simultaneously

the slave transmits inverted 256 bytes of 0xFF~0x0 to the master. You can check that the data transfer

result is correct using the debug terminal.

Emulating I2C Bus Master by using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

24 NXP Semiconductors

5. Emulating I2C Bus Master by using FlexIO

5.1. Introduction

This section describes how to emulate I2C bus Master by using FlexIO. For this application, the

development board S32K144EVB-Q100 and communicate with six-axis sensor FXOS8700CQ, in which

a general I2C interface is integrated. The data read from FXOS8700CQ is sent to PC terminal through a

UART port.

The following diagram shows the hardware platform and data flows. For more information on Open-

SDA in the diagram, see the relevant materials of the development board.)

Figure 1. S32K144EVB-Q100 connected with FXOS8700CQ

5.2. General description

I2C bus master is emulated using:

• Two shifters — Respectively used as a transmitter and a receiver.

• Two timers —One is used for the SCL output generation, and the other is used for the

load/store/shift control of the two shifters.

• Two pins — Respectively used as SDA and SCL.

Following figure shows the resource assignment:

Emulating I2C Bus Master by using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

NXP Semiconductors 25

Figure 2. Resource Assignment of FlexIO to Emulate I2C Master

5.3. Configurations of the shifters and timers

This section provides detailed configurations of the shifters and timers.

To understand these configurations, see the following descriptions and the reference manual.

5.3.1. Configurations for Shifter 0

Shifter 0 is used as the transmitter. It has the following initial configurations.

Table 15. Initial configuration of Shifter 0

Items Configurations

Shifter mode transmit

Timer selection timer 1

Timer polarity on posedge of shift clock

Pin selection pin 0

Pin configuration open drain or bidirectional output enable

Pin polarity active low

Emulating I2C Bus Master by using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

26 NXP Semiconductors

Items Configurations

Input source from pin

Start bit Value 0

Stop bit Value 1

Buffer used bit byte swapped register

5.3.2. Configurations for Shifter 1

Shifter 1 is used as the receiver. It has the following initial configurations.

Table 16. Initial configuration of Shifter 1

Items Configurations

Shifter mode Receive

Timer selection timer 1

Timer polarity on negedge of shift clock

Pin selection pin 0

Pin configuration Output disabled

Pin polarity active high

Input source from pin

Start bit Disable

Stop bit Value 0

Buffer used bit byte swapped register

5.3.3. Configurations for Timer 0

Timer 0 is used to generate SCL output and to trigger timer 1. It has the following initial configurations.

Table 17. Initial configuration of Timer 0

Items Configurations
Timer mode dual 8-bit counters baud/bit mode.

Trigger selection shifter 0 status flag

Trigger polarity active low

Trigger source internal trigger

Pin selection pin 1

Pin configuration Open drain or bidirectional output enable

Pin polarity active high

Timer initial output output logic 0 when enabled, not affect by reset

Timer decrement source decrement on FlexIO clock, shift on timer output

Timer enable condition on trigger high

Timer disable condition on timer compare

Timer reset condition On timer pin equals to timer output

Emulating I2C Bus Master by using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

NXP Semiconductors 27

Items Configurations
Start bit enabled

Stop bit enabled on timer disable

Timer compare value ((n*9+1)*2-1<<8) | (baudrate_divider))5

5.3.4. Configurations for Timer 1

Timer 1 is used to control the Shifter 0 and Shifter 1. It has the following initial configurations.

Table 18. Initial configuration of Timer 1

Items Configurations
Timer mode Single 16-bit counter mode

Trigger selection shifter 0 status flag

Trigger polarity active low

Trigger source internal trigger

Pin selection pin 1

Pin configuration Output disabled

Pin polarity active low

Timer initial output output logic 1 when enabled, not affect by reset

Timer decrement source Decrement on pin input, shift clock equal to pin input

Timer enable condition On timer 0 enable

Timer disable condition On timer 0 disable

Timer reset condition Never reset

Start bit enabled

Stop bit enabled on timer compare

Timer compare value 0x0F

5.4. Software overview

The FLEXIO_I2C Driver allows communication on an I2C bus using the FlexIO module in the

S32144K processor.

Features

• Master operation only

• Interrupt, DMA or polling mode

• Provides blocking and non-blocking transmit and receive functions

• 7-bit addressing

5 n is the number of bytes in the transmission. Baudrate_divider is a value used for dividing the baud rate

from the FlexIO clock source.

Emulating I2C Bus Master by using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

28 NXP Semiconductors

• Clock stretching

• Configurable baud rate

• Functionality

Initialization

Before using any FlexIO driver the device must first be initialized using function

FLEXIO_DRV_InitDevice. Then the FLEXIO_I2C Driver must be initialized using functions

FLEXIO_I2C_DRV_MasterInit(). It is possible to use more driver instances on the same FlexIO device,

if sufficient resources are available. Different driver instances on the same FlexIO device can function

independently of each other. When it is no longer needed, the driver can be de-initialized, using

FLEXIO_I2C_DRV_MasterDeinit(). This will release the hardware resources, allowing other driver

instances to be initialized.

Master Mode

Master Mode provides functions for transmitting or receiving data to/from any I2C slave. Slave address

and baud rate are provided at initialization time through the master configuration structure, but they can

be changed at runtime by using FLEXIO_I2C_DRV_MasterSetBaudRate() or

FLEXIO_I2C_DRV_MasterSetSlaveAddr(). Note that due to module limitation not any baud rate can be

achieved. The driver will set a baud rate as close as possible to the requested baud rate, but there may

still be substantial differences, for example if requesting a high baud rate while using a low-frequency

FlexIO clock. The application should call FLEXIO_I2C_DRV_MasterGetBaudRate() after

FLEXIO_I2C_DRV_MasterSetBaudRate() to check what baud rate was set.

To send or receive data to/from the currently configured slave address, use functions

FLEXIO_I2C_DRV_MasterSendData() or FLEXIO_I2C_DRV_MasterReceiveData() (or their blocking

counterparts). Parameter sendStop can be used to chain multiple transfers with repeated START

condition between them, for example when sending a command and then immediately receiving a

response. The application should ensure that any send or receive transfer with sendStop set to false is

followed by another transfer. The last transfer from a chain should always have sendStop set to true.

This driver does not support continuous send/receive using a user callback function. The callback

function is only used to signal the end of a transfer.

Blocking operations will return only when the transfer is completed, either successfully or with error.

Non-blocking operations will initiate the transfer and return STATUS_SUCCESS, but the module is still

busy with the transfer and another transfer can't be initiated until the current transfer is complete. The

application will be notified through the user callback when the transfer completes, or it can check the

status of the current transfer by calling FLEXIO_I2C_DRV_MasterGetStatus(). If the transfer is still

ongoing this function will return STATUS_BUSY. If the transfer is completed, the function will return

either STATUS_SUCCESS or an error code, depending on the outcome of the last transfer.

Emulating I2C Bus Master by using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

NXP Semiconductors 29

The driver supports interrupt, DMA and polling mode. In polling mode, the function

FLEXIO_I2C_DRV_MasterGetStatus() ensures the progress of the transfer by checking and handling

transmit and receive events reported by the FlexIO module. The application should ensure that this

function is called often enough (at least once per transferred byte) to avoid Tx underflows or Rx

overflows. In DMA mode, the DMA channels that will be used by the driver are received through the

configuration structure. The channels must be initialized by the application before the flexio_i2c driver

is initialized. The flexio_i2c driver will only set the DMA request source.

Before using the FLEXIO_I2C Driver the FlexIO clock must be configured. Refer to SCG HAL and

PCC HAL for clock configuration.

The following tips are the key points of using FlexIO to emulate I2C bus master.

Dealing with the transmitter and receiver: From the above configurations, you can see that there

are two shifters, sharing one timer (Timer 1) and SDA pin (Pin 0), respectively used as the

transmitter and receiver. So, both shifters are serviced for each byte in the transmissions. The

receiver is read after each byte transmission to clear the receive buffer and status flag. The

transmitter must transmit 0xFF to tristate the output when receiving.

Timer trigger settings: The triggers of the timers are set as the transmitter’s status flag. Filling a

byte into the transmitter’s buffer negates the status flag enables the timer 0 to start the decrement

count. The decrement source of timer 1 is set as the SCL pin input. Each SCL edge makes timer 1 to

decrease by 1. Two SCL edges make timer 1to go through one period, which results in the data in

the shifters to shift by one bit.

TIMCMP (Timer Compare Register) settings: TIMCMP of a timer stores the timer’s module

value. The high 8 bits of TIMCMP 0 need to be set to a value that equals to the amount of SCL

edges (both edges) in a transmission. The number of the data bytes, ACK/NACK bit, and stop-

condition bit should be taken into consideration when calculating the value. The low 8 bits of

TIMCMP 0 are used to configure the baud rate. The value set to TIMCMP 1 is calculated based on

the number bits in a single frame.

Operations for double-buffered shifters: The shifters are designed as double-buffered structure.

To avoid underflow when transmitting or receiving multiple bytes in high baud rate, the transmit

shifter and its buffer should be filled data by software in advance. The process can be divided into

the following steps: (1) Filling the first byte into the transmit buffer; (2) Waiting for the first byte to

be loaded into the transmit shifter by polling the status flag. Filling the second byte into the transmit

buffer; (3) Waiting for the first byte is shifted out and the second byte is loaded into the transmit

shifter. The first received byte is shifted into the receive shifter during this period. Waiting for the

first received byte to be stored into the receive buffer. Reading the receive buffer. Filling the third

byte into the transmit buffer. From the third step to the last, polling /interrupt/DMA mode can be

used. In respect of the time delay, DMA is less than interrupt, and interrupt is less than polling.

ACK/ NACK bit generation and check: An ACK or NACK bit is needed after each transmission

in I2C bus protocol. The SSTOP bit of the transmitter can be used to generate ACK/NACK. Set

SSTOP bit to 0 to generate ACK, and set it to 1 to generate NACK. The SSTOP bit of the receiver

can be used to check ACK/NACK. To shift the ACK/NACK bit out/in, timer 0 needs to output two

Emulating I2C Bus Master by using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

30 NXP Semiconductors

additional edges. When timer 1 has decreased to 0, the following SCL configured edge will shift the

ACK/NACK bit out/in.

Repeated START and STOP signal generation: As a (repeated) START signal is a falling edge

and STOP signal is a rising edge of SDA during SCL in high level. Therefore, SDA needs to be set

to high in advance (during SCL in low level) to generate repeated START signal, and set low to

generate STOP signal. These can be implemented by loading one additional byte into transmitter on

the last falling edge of SCL in each byte transmission. However, only the highest bit will be shifted

out. This is also controlled by the timers. Therefore, 0xFF is loaded if generating a repeated START

signal, and 0x00 is loaded if generating a STOP signal. The (repeated) START and STOP signal’s

level are respectively determined by the SSTART and SSTOP in the transmitter Shifter

Configuration Register. Before the first data bit shifts out, the configured start bit is loaded into the

transmit shifter and is then shifted out. When timer 0 decrement counts to 0, the configured stop bit

will be load into transmit shifter and then shifted out. Another point, the shifter will immediately

load the stop bit when the shifter is initially configured for transmit mode if a stop bit is enabled.

5.5. implementation

This section describes the software implementation. Several driver functions have been implemented

in this application, which are based on the S32K SDK(Software Development Kit version that is

included into S32DS_v2018).

The demo runs in polling mode. This section mainly describes several major driver functions.

5.5.1. Initialize Function

The Initialize Function is used to configure the shifters and timers in the application’s initialization

phase. The prototype is:

FlexIO_I2C_Init()

5.5.2. Transmit Function

This function is used to transmit one or more bytes to a given address of the slave device. The prototype

is:

status_t FLEXIO_I2C_DRV_MasterSendData (flexio_i2c_master_state_t * master, const uint8_t *

txBuff, uint32_t txSize, bool sendStop)

 where:

master - Pointer to the FLEXIO_I2C master driver context structure.

txBuff - pointer to the data to be transferred

txSize - length in bytes of the data to be transferred

sendStop - specifies whether or not to generate stop condition after the transmission returns

Error or success status returned by API

Emulating I2C Bus Master by using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

NXP Semiconductors 31

5.5.3. Receive Function

This function is used to receive one or more bytes from a given address of the slave device. The

prototype is:

status_t FLEXIO_I2C_DRV_MasterReceiveData (flexio_i2c_master_state_t * master,

uint8_t * rxBuff,

uint32_t rxSize,

bool sendStop

)

where:

master Pointer to the FLEXIO_I2C master driver context structure.

rxBuff pointer to the buffer where to store received data

rxSize length in bytes of the data to be transferred

sendStop specifies whether or not to generate stop condition after the reception

Returns Error or success status returned by API.

5.6. Running the demos

This demo runs on S32K144EVB-Q100. The FlexIO pins assignment for I2C master are shown in the

following table:

Table 19. FlexIO pins assignment table for I2C master

FlexIO I2C Master

FlexIO I2C master SDA Pin:FlexIO_D0 PTD0

FlexIO I2C master SCL Pin:FlexIO_D1 PTD1

After that is complete, follow the next steps to run the demo and check the result:

• Plug in the Micro USB to connect the PC and target the S32K144EVB-Q100 board

• Open the UART debug terminal on your PC with 8in1 and 115200bps settings

• Open the project by S32DS workbench on your PC

• Rebuild all files and download the image into target

Generating PWM by Using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

32 NXP Semiconductors

• The results are printed on the master terminal.

Figure 3. Terminal Utility Output

6. Generating PWM by Using FlexIO

6.1. Introduction

This use case creates a simple software demo based on the SDK (Software Development Kit version that

is included into S32DS_v2018) and basic baremetal driver for a easily FlexIO implementation as PWM

with frequency and duty configurations.

Generating PWM by Using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

NXP Semiconductors 33

This section describes how to generate the PWM by FlexIO. For this application, the development board

S32K144EVB-Q100, in Figure 2 has been used.

In the application, FlexIO generates a PWM waveform on the FXIO0_D0 (PTD0) pin. PTD0 is also

connected to BLUE LED. Use PWM to lighten the BLUE LED with different duty to show the

brightness change under different duty configurations.

6.2. General description

Generating PWM uses the following resources:

One timer — configured as an 8bit PWM mode to control the related pin output.

One pin — controlled by timer to toggle pin out and generate PWM.

Following figure shows the resource assignment:

Figure 4. Resource Assignment of FlexIO to generate PWM

The detailed configurations and usage information is provided in the following sections.

6.3. Configurations of the timer

This section provides detailed configurations of the timer.

To understand these configurations, see the following descriptions and the reference manual.

Configurations for Timer 0

Timer 0 generates the PWM output to pin 0. It has the following initial configurations.

Table 1. Initial configuration of Timer 0

Items Configurations
Timer mode Dual 8-bit PWM mode

Trigger selection N/A

Trigger polarity N/A

Trigger source Internal

Pin selection Pin 0

Pin configuration Output enabled

Pin polarity Active high

Timer initial output Output logic 1 when enabled, not affect by reset

Generating PWM by Using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

34 NXP Semiconductors

Timer decrement source Decrement on FlexIO clock, Shift on timer output

Timer enable condition Always enabled

Timer disable condition Never disabled

Timer reset condition Never reset

Start bit Disabled

Stop bit Disabled

Timer compare value

(((FLEXIO_CLK / freq) * (100 - duty) / 100 - 1) << 8) | ((FLEXIO_CLK / freq)

* duty / 100 - 1)

(((FLEXIO_CLK*Low_Period)/2-1)<<8)|((FLEXIO_CLK*High_Period)/2-1) or

((((FLEXIO_CLK/freq)*(100-duty)/100)/2-

1)<<8)|(((FLEXIO_CLK/freq)*duty/100)/2-1)

The following tips are the key points of using FlexIO to generate PWM.

• Timer mode configuration (TIMCTL[TIMOD] and TIMCTL[TIMDEC])

o Select the dual 8-bit PWM mode. In this mode, the lower 8-bits of the counter only

decrease when the timer output pin is high, and upper 8-bits only decrease when the timer

output pin is low. When the lower 8-bits of the counter decreases to 0, the timer output

would toggle and lead the upper 8-bits decrease. The lower 8-bits control the PWM high

pulse width and the upper 8-bits control the low pulse width.

o Configure the FlexIO clock (FLEXIO_CLK[1]) as the timer counter decrease source.

Therefore, the counter decreases on every FlexIO clock if decrease condition met.

• Timer compare value (TIMCMP[CMP]):

o The timer compare value is loaded into the timer counter when the timer is first enabled,

when the timer is reset or decreased to 0. Enter the dual 8-bits value into this compare

register to load the value to ensure every cycle of the PWM has the timer counter

reloaded from CMP. This compare value controls the PWM frequency and duty.

o Timer compare value = (((FLEXIO_CLK / freq) * (100 - duty) / 100 – 1) << 8) |

((FLEXIO_CLK / freq[2]) * duty[3] / 100 - 1)

• Timer output configuration (TIMCFG[TIMOUT])

o The timer output is set to logic one (high on pin) when enabled the timer is not affected

by reset. In 8-bits PWM mode, you must set the timer output to 1 when the timer enabled,

otherwise the lower 8-bits value of the counter would not decrease as mentioned above.

[1] FLEXIO_CLK is the clock from clock modules like SCG or MCG, used to control the FlexIO

timing.

[2] The frequency of the PWM generated.

[3] The duty of the PWM waveform.

Following figure shows the timing and signal examples. For example, TIMCP=0x58:

Generating PWM by Using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

NXP Semiconductors 35

Figure 5. Timing of the configurations

6.4. Software implementation overview

This section describes the software implementation. Several driver functions have been implemented in

this application are based on the S32K SDK (Software Development Kit version that is included into

S32DS_v2018).

A software package is provided along with this application note. The demo software includes only one

source file, main.c. This source file provides the following functions to configure the FlexIO as a PWM

generator, all of them can be directly used by user in their own codes with minor changes:

• FLEXIO_DRV_InitDevice(uint32_t instance, flexio_device_state_t *deviceState)

• flexio_pwm_init(uint32_t freq, uint8_t duty)

• flexio_pwm_start(void)

• flexio_pwm_stop(void)

6.4.1. flexio_init()

flexio_init() function enables the clock gating of the FlexIO IP module and selects the proper peripheral

clock source for FlexIO. The FLEXIO_CLK defined in the source file is exactly the frequency of the

peripheral clock source. It resets the FlexIO IP module by SW and re-enables it. This is a general FlexIO

IP module initialization function, called before using its shifters and timers.

6.4.2. flexio_pwm_init()

flexio_pwm_init() function configures the timer0 as a 8-bits PWM mode with pin0 output to generate

the PWM waveform. The timer detail configurations can be found in section 6.3. The ‘freq’ parameter

of this function is the specified PWM frequency you want to generate. The parameter must be within the

range of [MIN_FREQ, MAX_FREQ] macros defined in the source file. The ‘duty’ parameter is the

specified duty in unit of %, with a range of [1, 99].

Emulating I2S bus Master using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

36 NXP Semiconductors

6.4.3. flexio_pwm_start()

flexio_pwm_start() function enables the timer0 by setting TIMOD to 8-bits PWM and start generating

the PWM.

6.4.4. flexio_pwm_stop()

flexio_pwm_stop() function disables the timer0 by setting TIMOD and disable generating the PWM.

To use the FlexIO as PWM generator, you can call these three functions in sequence like in the main()

function. It configures the PWM frequency to 8 KHz, and duty from 99 to 1, to change the brightness of

the BLUE LED by PTD0.

6.5. Running the demos

You can download a program image to the microcontroller with Open-SDA. The PC host obtains a

serial port after a USB cable is connected between the PC host and the Open-SDA USB on

S32K144EVB-Q100.

Download and run the demo. The user can look at the RED LED with brightness changing from min to

max. The PWM signal can also be captured with an oscilloscope on the PTD0 pin, this shows the exact

frequency and duty.

7. Emulating I2S bus Master using FlexIO

This section describes how to emulate I2S bus Master by using FlexIO. For this application, the

evaluation board S32K144EVB-Q100, in following figure has been used.

Figure 6. S32K144EVB-Q100 connected with PCM5102A

Emulating I2S bus Master using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

NXP Semiconductors 37

In the application, FlexIO emulates an I2S interface to communicate with the PCM5102A (digital-to-

analog converter), in which a general I2S interface is integrated. The audio data is sent from S32K144 to

PCM5101A to display.

The following diagram shows the hardware platform and data flows. For more information on Open-

SDA in the diagram, see the relevant materials of the NXP development board.)

Figure 7. Hardware Platform and Data Flows of this Application

7.1. General description

I2S bus master is emulated using:

One shifters —used as a data transmitter.

Two timers —one is used for the load control of the shifter and BCLK output generation, and the

other is used for the LRCLK output generation.

Three pins — respectively used as DATA, LRCLK and BCLK.

Following figure shows the resource assignment:

Emulating I2S bus Master using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

38 NXP Semiconductors

Figure 8. Resource Assignment of FlexIO to Emulate I2S

The detailed configurations and usage information is provided in the following sections.

7.2. Configurations of the shifters and timers

This section provides detailed configurations of the shifters and timers.

To understand these configurations, see the following descriptions and the reference manual.

Configurations for Shifter 0

Shifter 0 is used as the data transmitter. It has the following initial configurations.

Table 2. Initial configuration of Shifter 0

Items Configurations

Shifter mode transmit

Timer selection timer 0

Timer polarity on posedge of shift clock

Pin selection pin 0

Pin configuration output enable

Pin polarity active high

Input source from pin

Start bit Start bit disabled, transmitter loads data on first shift

Stop bit disable

Buffer used bit byte swapped register

Configurations for Timer 0

Emulating I2S bus Master using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

NXP Semiconductors 39

Timer 0 is used for the load control of the shifter and BCLK output generation. It has the following

initial configurations.

Table 3. Initial configuration of Timer 0

Items Configurations

Timer mode dual 8-bit counters baud/bit mode.

Trigger selection shifter 0 status flag

Trigger polarity active low

Trigger source internal trigger

Pin selection pin 1

Pin configuration output enable

Pin polarity active low

Timer initial output output logic 0 when enabled, affect by reset

Timer decrement source decrement on FlexIO clock, shift on timer output

Timer enable condition on trigger high

Timer disable condition never disable

Timer reset condition On timer pin equals to timer output

Start bit enabled

Stop bit Disabled

Timer compare value ((n*2-1)<<8) | (baudrate_divider/2-1))6

Configurations for Timer 1

Timer 1 is used to the LRCLK output generation. It has the following initial configurations.

Table 4. Initial configuration of Timer 1

Items Configurations
Timer mode Single 16-bit counter mode

Trigger selection shifter 0 status flag

Trigger polarity active low

Trigger source internal trigger

Pin selection pin 2

Pin configuration Output enabled

Pin polarity active high

Timer initial output output logic 0 when enabled, affect by reset

Timer decrement source decrement on FlexIO clock, shift on timer output

Timer enable condition On timer 0 enable

Timer disable condition never disable

Timer reset condition Never reset

Start bit disable

Stop bit disable

Timer compare value (baudrate_divider/2-1)7

6 n is the number of bytes in the transmission. Baudrate_divider is a value used for dividing the baud rate from the FlexIO

clock source

Emulating I2S bus Master using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

40 NXP Semiconductors

7.3. Software implementation overview

This section describes the software implementation. Several driver functions have been implemented in

this application, which are based on the S32K SDK (Software Development Kit version that is included

into S32DS_v2018).

The demo runs in polling mode. This section mainly describes several major driver functions.

Initialize Function

The Initialize Function is used to configure the shifters and timers in the application’s initialization

phase. The prototype is:

void FlexIO_I2S_Init(void)

Transmit Function

This function is used to transmit one or more bytes to a given address of the slave device. The prototype

is:

status_t FLEXIO_I2S_DRV_MasterSendData (flexio_i2s_master_state_t * master,

const uint8_t * txBuff,

uint32_t txSize

)

where,

master -Pointer to the FLEXIO_I2S master driver context structure.

txBuff -pointer to the data to be transferred

txSize

Returns

-length in bytes of the data to be transferred

- Error or success status returned by API

7.4. Running the demos

This demo runs on S32K144EVB-Q100. The FlexIO pins assignment for I2S master and slave are

shown in the following table:

Table 5. FlexIO pins assignment table for I2S master

FlexIO I2S Master

FlexIO I2S master DATA Pin:FlexIO_D0 PTD0

FlexIO I2S master BCLK Pin:FlexIO_D1 PTD1

FlexIO I2S master LRCLK Pin:FlexIO_D2 PTE15

After that is complete, follow the next steps to run the demo and check the result:

7 Baudrate_divider is a value used for dividing the baud rate from the FlexIO clock source.

Emulating LIN Master/Slave by using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

NXP Semiconductors 41

Plug in the Micro USB to connect the PC and target the S32K144EVB-Q100 board

Open the UART debug terminal on your PC with 8in1 and 115200bps settings

Open the project by S32DS workbench on your PC

Rebuild all files and download the image into target

Press any key to run the demo

After the data begin to transfer you can hear the music.

8. Emulating LIN Master/Slave by using FlexIO

8.1. Introduction

The standalone peripheral module FlexIO is used as an additional peripheral module of the

microcontroller and is not a replacement of the LIN/UART peripheral. This example creates a simple

software demo based on S32K SDK and including bare metal configuration example drivers for you to

use FlexIO to emulate the LIN.

8.2. Emulating LIN using FlexIO

LIN implementation uses the following FlexIO module resources,

Transmitter configuration

One 16-bits timer - Dual 8-bit baud mode.

One 32-bits shifter - Transmit mode.

Two Output pins

controlled by timer to generate the baud rate.

to output shifter buffer data.

Receiver configuration:

One 16-bits timer - Dual 8-bit baud mode.

One 32-bits shifter - Receive mode.

Two I/O pins

generating baud rate.

shifter input data.

Emulating LIN Master/Slave by using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

42 NXP Semiconductors

Note: Timers and Shifters configuration is based in UART emulation

chapter 3#.

Available FlexIO resources after this implementation are 2 timers, 2 shifters and 4 pins, that can be used

for generate a PWM signal, emulate a UART, I2C, i2S or even another Master LIN instance.

8.3. Configurations the Shifters and Timers

Transmitter:

In timer reset Modify CMP value to:

 - 32 bits Transfer for Master sending ID or

 - 8 bits Transfer for Master sending a byte.

• Load shifter buffer with

 - PID << 24u | 0x555000

 - Data to send.

• Shift the data to the pin output.

• Start and stop bits are automatically loaded before or after data.

 Receiver

The data is shifted in when the store event is signaled.

• The status flag indicates when data can be read (generate interrupt).

• Store into the shifter buffer.

• Reading shifter buffer byte swapped register.

Emulating LIN Master/Slave by using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

NXP Semiconductors 43

LIN, Master and Slave use the same FlexIO configuration with minimum changes,

When Master mode is used: Star and Stop bit are disable.

When Slave mode is used: first time the timer compare is configured to wait for 13-bits of break field.

Table 6. Initial configuration of Shifter 0

Items Configurations

Shifter mode transmit

Timer selection timer 0

Timer polarity on posedge of shift clock

Pin selection pin 0

Pin configuration output enable

Pin polarity active high

Input source from pin

Start bit transmitter outputs start bit value ‘0’ before loading

data on first shift

Stop bit transmitter outputs stop bit value ‘1’ on store

Buffer used shifter buffer

Table 7. Initial configuration of Timer 0

Items Configurations

Timer mode dual 8-bit counters baud mode

Trigger selection shifter 0 status flag

Trigger polarity active low

Trigger source internal trigger

Pin selection pin 1

Pin configuration output disable

Pin polarity active high

Timer initial output output logic 0 when enabled, affect by reset

Emulating LIN Master/Slave by using FlexIO

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

44 NXP Semiconductors

Timer decrement source decrement on FlexIO clock, shift on timer output

Timer enable condition on trigger high

Timer disable condition on timer compare

Timer reset condition on trigger rising edge

Start bit enabled

Stop bit enabled on timer compare and timer disable

Timer compare value

Table 8. Initial configuration of Shifter 1

Items Configurations

Shifter mode receive

Timer selection timer 1

Timer polarity on negedge of shift clock

Pin selection pin 2

Pin configuration output disable

Pin polarity active high

Input source from pin

Start bit transmitter outputs start bit value ‘0’ before loading

data on first shift

Stop bit transmitter outputs stop bit value ‘1’ on store

Buffer used shifter buffer byte swapped

Table 9. Initial configuration of Timer 1

Items Configurations

Timer mode dual 8-bit counters baud mode

Trigger selection pin 2 input

Trigger polarity active low

Trigger source internal trigger

Pin selection pin 3

Pin configuration output disabled

Pin polarity active high

Timer initial output output logic 0 when enabled, affect by reset

Timer decrement source decrement on FlexIO clock, shift on timer output

Timer enable condition on trigger rising edge

Timer disable condition on timer compare

Timer reset condition Never reset

Start bit enable

Stop bit enable on timer compare and timer disable

Timer compare value

Revision history

Using FlexIO to emulate communications and timing peripherals, Rev. 0, 06/2018

NXP Semiconductors 45

FlexIO input frequency is the SYSTEM OSC divide by 8 = 1Mhz

Table 10. Configuration of Timer 0 to send LIN header

Items Configurations

Start bit disable

Stop bit Disable

Available FlexIO resources after this implementation are 2 timers, 2 shifters and 4 pins, that can be used

for generating a PWM signal, emulate a UART, I2C, i2S or even another Master LIN instance.

9. Conclusion

FlexIO is a new peripheral on S32K family. Thanks to the high flexibility of the shifters and timers,

FlexIO has the capability to emulate a wide range of protocols such as SPI, I2C, UART, I2S, LIN and

generate PWM, but is not limited only to emulate these peripherals the high flexibility helps us to

emulate many other communications interfaces.

10. Revision history
Table 11. Revision history

Revision number Date Substantive changes

0 06/2018 Initial release

Document Number: AN12174
Rev. 0

06/2018

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of the

application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of

their applications and products to reduce the effect of these vulnerabilities on

customer's applications and products, and NXP accepts no liability for any vulnerability

that is discovered. Customers should implement appropriate design and operating

safeguards to minimize the risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,

MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,

SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the

Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware,

the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,

PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the

SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack,

CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names

are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan,

Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered

trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7,

ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON,

POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its

subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are

registered trademarks of Oracle and/or its affiliates. The Power Architecture and

Power.org word marks and the Power and Power.org logos and related marks are

trademarks and service marks licensed by Power.org.

© 2018 NXP B.V.

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	1. Introduction
	2. Overview of the FlexIO module
	3. Emulating UART Using FlexIO
	3.1. Instructions
	3.2. Configuring the Shifters and Timers
	3.2.1. UART transmit configurations
	3.2.2. UART receive configurations

	Software implementation overview
	Initialization

	3.3. Functions description
	3.3.1. FLEXIO_UART_DRV_SendData
	3.3.2. FLEXIO_UART_DRV_ReceiveDataBlocking

	3.4. Running the demos

	4. Emulating Dual SPI by using FlexIO
	4.1. Configurations of the Shifters and Timers
	4.1.1. SPI master configurations
	4.1.2. SPI slave Configurations

	4.2. Software overview
	Initialization

	4.3. Implementation
	4.4. Running the demos

	5. Emulating I2C Bus Master by using FlexIO
	5.1. Introduction
	5.2. General description
	5.3. Configurations of the shifters and timers
	5.3.1. Configurations for Shifter 0
	5.3.2. Configurations for Shifter 1
	5.3.3. Configurations for Timer 0
	5.3.4. Configurations for Timer 1

	5.4. Software overview
	Initialization

	5.5. implementation
	5.5.1. Initialize Function
	5.5.2. Transmit Function
	5.5.3. Receive Function

	5.6. Running the demos

	6. Generating PWM by Using FlexIO
	6.1. Introduction
	6.2. General description
	6.3. Configurations of the timer
	6.4. Software implementation overview
	6.4.1. flexio_init()
	6.4.2. flexio_pwm_init()
	6.4.3. flexio_pwm_start()
	6.4.4. flexio_pwm_stop()

	6.5. Running the demos

	7. Emulating I2S bus Master using FlexIO
	7.1. General description
	7.2. Configurations of the shifters and timers
	7.3. Software implementation overview
	7.4. Running the demos

	8. Emulating LIN Master/Slave by using FlexIO
	8.1. Introduction
	8.2. Emulating LIN using FlexIO
	8.3. Configurations the Shifters and Timers

	9. Conclusion
	10. Revision history

