
User Manual
for S32K1 FEE Driver

Document Number: UM2FEEASR4.4 Rev0000R1.0.1 Rev. 1.0

1 Revision History 2

2 Introduction 3
2.1 Supported Derivatives . 3
2.2 Overview . 4
2.3 About This Manual . 5
2.4 Acronyms and Definitions . 6
2.5 Reference List . 6

3 Driver 7
3.1 Requirements . 7
3.2 Driver Design Summary . 7
3.3 Hardware Resources . 8
3.4 Deviations from Requirements . 8
3.5 Driver Limitations . 13
3.6 Driver usage and configuration tips . 13

3.6.1 FEE Data Organization details . 13
3.6.2 Memory Dump Example . 15
3.6.3 FEE Block Always Available . 16
3.6.4 Managing Cluster and Block Consistency . 17
3.6.5 Cluster Swap . 17
3.6.6 Block Update . 18
3.6.7 Immediate Block Update . 19
3.6.8 Det Errors Description . 19
3.6.9 Endurance calculation . 21
3.6.10 Configuration tips . 22
3.6.11 Sector managerment and sector retirement . 26
3.6.12 FEE Swap Foreign Blocks feature . 38

3.7 Runtime errors . 39
3.8 Symbolic Names Disclaimer . 40

4 Tresos Configuration Plug-in 41
4.1 Module Fee . 42
4.2 Container FeeClusterGroup . 43
4.3 Container FeeCluster . 43
4.4 Container FeeSector . 43
4.5 Parameter FeeSectorIndex . 45
4.6 Reference FeeSectorRef . 45
4.7 Container FeeBlockConfiguration . 46
4.8 Parameter FeeBlockNumber . 47
4.9 Parameter FeeBlockSize . 47

NXP Semiconductors
S32K1 FEE Driver

i

4.10 Parameter FeeImmediateData . 48
4.11 Parameter FeeNumberOfWriteCycles . 48
4.12 Parameter FeeBlockAssignment . 49
4.13 Reference FeeClusterGroupRef . 49
4.14 Reference FeeDeviceIndex . 50
4.15 Container FeeSectorToRecover . 50
4.16 Reference FeeSectorToRecoverRef . 51
4.17 Container FeeGeneral . 51
4.18 Parameter FeeDevErrorDetect . 52
4.19 Parameter FeeEnableUserModeSupport . 52
4.20 Parameter FeeMainFunctionPeriod . 52
4.21 Parameter FeeNvmJobEndNotification . 53
4.22 Parameter FeeNvmJobErrorNotification . 53
4.23 Parameter FeeClusterFormatNotification . 54
4.24 Parameter FeePollingMode . 54
4.25 Parameter FeeSetModeSupported . 55
4.26 Parameter FeeVersionInfoApi . 55
4.27 Parameter FeeVirtualPageSize . 56
4.28 Parameter FeeDataBufferSize . 56
4.29 Parameter FeeBlockAlwaysAvailable . 57
4.30 Parameter FeeLegacyEraseMode . 58
4.31 Parameter FeeSwapForeignBlocksEnabled . 58
4.32 Parameter FeeMarkEmptyBlocksInvalid . 59
4.33 Parameter FeeConfigAssignment . 60
4.34 Parameter FeeMaximumNumberBlocks . 60
4.35 Parameter FeeSectorRetirement . 62
4.36 Parameter FeeSectorEraseRetries . 62
4.37 Container CommonPublishedInformation . 63
4.38 Parameter ArReleaseMajorVersion . 63
4.39 Parameter ArReleaseMinorVersion . 64
4.40 Parameter ArReleaseRevisionVersion . 64
4.41 Parameter ModuleId . 65
4.42 Parameter SwMajorVersion . 65
4.43 Parameter SwMinorVersion . 66
4.44 Parameter SwPatchVersion . 66
4.45 Parameter VendorApiInfix . 67
4.46 Parameter VendorId . 68
4.47 Container FeePublishedInformation . 68
4.48 Parameter FeeBlockOverhead . 69
4.49 Parameter FeePageOverhead . 69

ii
S32K1 FEE Driver

NXP Semiconductors

5 Module Index 70
5.1 Software Specification . 70

6 Module Documentation 71
6.1 FEE . 71

6.1.1 Detailed Description . 71
6.1.2 Data Structure Documentation . 74
6.1.3 Macro Definition Documentation . 78
6.1.4 Types Reference . 83
6.1.5 Enum Reference . 83
6.1.6 Function Reference . 86

NXP Semiconductors
S32K1 FEE Driver

1

Chapter 1

Revision History

Revision Date Author Description
1.0 24.02.2022 NXP RTD Team Prepared for release RTD S32K1 Version 1.0.1

2
S32K1 FEE Driver

NXP Semiconductors

Chapter 2

Introduction

• Supported Derivatives

• Overview

• About This Manual

• Acronyms and Definitions

• Reference List

This User Manual describes NXP Semiconductor AUTOSAR Flash EEPROM Emulation (FEE) for S32K1. A←↩

UTOSAR FEE driver configuration parameters and deviations from the specification are described in FEE Driver
chapter of this document. AUTOSAR FEE driver requirements and APIs are described in the AUTOSAR FEE
driver software specification document.

2.1 Supported Derivatives

The software described in this document is intended to be used with the following microcontroller devices of NXP
Semiconductors:

• s32k116_qfn32

• s32k116_lqfp48

• s32k118_lqfp48

• s32k118_lqfp64

• s32k142_lqfp48

• s32k142_lqfp64

• s32k142_lqfp100

• s32k142w_lqfp48

• s32k142w_lqfp64

• s32k144_lqfp48

NXP Semiconductors
S32K1 FEE Driver

3

Introduction

• s32k144_lqfp64

• s32k144_lqfp100

• s32k144_mapbga100

• s32k144w_lqfp48

• s32k144w_lqfp64

• s32k146_lqfp64

• s32k146_lqfp100

• s32k146_mapbga100

• s32k146_lqfp144

• s32k148_lqfp100

• s32k148_mapbga100

• s32k148_lqfp144

• s32k148_lqfp176

All of the above microcontroller devices are collectively named as S32K1.

2.2 Overview

AUTOSAR (AUTomotive Open System ARchitecture) is an industry partnership working to establish stan-
dards for software interfaces and software modules for automobile electronic control systems.

AUTOSAR:

• paves the way for innovative electronic systems that further improve performance, safety and environmental
friendliness.

• is a strong global partnership that creates one common standard: "Cooperate on standards, compete on
implementation".

• is a key enabling technology to manage the growing electrics/electronics complexity. It aims to be prepared
for the upcoming technologies and to improve cost-efficiency without making any compromise with respect to
quality.

• facilitates the exchange and update of software and hardware over the service life of the vehicle.

4
S32K1 FEE Driver

NXP Semiconductors

Introduction

2.3 About This Manual

This Technical Reference employs the following typographical conventions:

• Boldface style: Used for important terms, notes and warnings.

• Italic style: Used for code snippets in the text. Note that C language modifiers such "const" or "volatile" are
sometimes omitted to improve readability of the presented code.

Notes and warnings are shown as below:

Note

This is a note.

Warning

This is a warning

NXP Semiconductors
S32K1 FEE Driver

5

Introduction

2.4 Acronyms and Definitions

Term Definition
API Application Programming Interface
ASM Assembler
AUTOSAR Automotive Open System Architecture
DET Development Error Tracer
ECU Electronic Control Unit
MCU Micro Controller Unit
OS Operating System
MSB Most Significant Bit
N/A Not Applicable
SWS Software Specification
VLE Variable Length Encoding
XML Extensible Markup Language
ISR Interrupt Service Routine
IVOR Interrupt Vector Offset Register
ECC Error Correcting Code
DFO Data Flash Optimized
DW Double Word
EEPROM Electrically Erasable Programmable Read-Only Memory
FLS Flash memory driver
FEE Flash EEPROM Emulation
RTD Real Time Drivers

2.5 Reference List

Title Version
1 Specification of Fee Driver AUTOSAR Release 4.4.0
2 Reference Manual S32K1xx Series Reference Manual, Rev. 14, 09/2021
3 Datasheet S32K1xx Data Sheet, Rev. 14, 08/2021

4 Errata

S32K116_0N96V Rev. 22/OCT/2021
S32K118_0N97V Rev. 22/OCT/2021
S32K142_0N33V Rev. 22/OCT/2021
S32K144_0N57U Rev. 22/OCT/2021
S32K144W_0P64A Rev. 22/OCT/2021
S32K146_0N73V Rev. 22/OCT/2021
S32K148_0N20V Rev. 22/OCT/2021

6
S32K1 FEE Driver

NXP Semiconductors

Chapter 3

Driver

• Requirements

• Driver Design Summary

• Hardware Resources

• Deviations from Requirements

• Driver Limitations

• Driver usage and configuration tips

• Runtime errors

• Symbolic Names Disclaimer

3.1 Requirements

The driver deviates from the AUTOSAR Fee driver software specification (See Table Reference List).

AUTOSAR deviations from requirements are described in Deviations from Requirements chapter of this document..

3.2 Driver Design Summary

EEPROM (electrically erasable programmable read only memory), which can be byte or word programmed and
erased, is often used in automotive electronic control units (ECUs). This flexibility for program and erase operations
makes it suitable for data storage of application variables.

For the devices without EEPROM memory, the block-erasable (or sector-erasable) flash memory can be used to
emulate the EEPROM through EEPROM emulation software. The Flash EEPROM Emulation module implements
emulation of variable-length blocks. Two or more FEE clusters are used to implement such software emulation
scheme. The Flash EEPROM Emulation (FEE) provides the upper layer a virtual addressing scheme as well as a
"virtually" unlimited number of erase/program cycles. The Flash EEPROM emulation module provides services for
reading, writing, erasing and invalidating emulated EEPROM blocks apart from other basic features specified by the
software specification.

NXP Semiconductors
S32K1 FEE Driver

7

Driver

During the FEE module configuration, each FEE block is assigned to specific FEE cluster group where the FEE
block will be physically emulated. Each FEE cluster group consists of at least two FEE clusters, where each FEE
cluster consists of at least one FLS logical sector. The list of available FLS logical sectors that can be used by the
FEE module for emulation depends on actual FLS driver logical sector list configuration.

The memory operations (read, write etc.) are performed asynchronously. Their respective APIs store actual pa-
rameters into internal data structures and immediately return. The job is performed by means of state machines,
which are driven by repetitive calls to the so called main functions of the FEE and FLS drivers (Fee_MainFunction,
Fls_MainFunction). These executive functions accomplish their tasks in predefined chunks of data only, and shall
be called by the application repeatedly (e.g. periodically in a dedicated task).

Note: For correct FEE operation the underlying FLS driver has to have configured the job-notification callbacks to
FEE module:

FlsJobEndNotification = Fee_JobEndNotification
FlsJobErrorNotification = Fee_JobErrorNotification

These callbacks control the FEE driver state machine transitions.

3.3 Hardware Resources

None

3.4 Deviations from Requirements

The driver deviates from the AUTOSAR FEE Driver software specification in some places. The table below identifies
the AUTOSAR requirements that are not implemented or out of scope for the FEE Driver.

Term Definition
N/S Out of scope
N/I Not implemented
N/F Not fully implemented

Below table identifies the AUTOSAR requirements that are not fully implemented, implemented differently or out
of scope for the FEE driver.

8
S32K1 FEE Driver

NXP Semiconductors

Driver

Requirement Status Description Notes
SWS_Fee_00084 N/S Module - Header File - Imported Type

- Fls - Fls.h - Fls_AddressType - Fls.h
- Fls_LengthType - MemIf - Mem←↩

If.h - MemIf_JobResultType - Mem←↩

If.h - MemIf_ModeType - MemIf.←↩

h - MemIf_StatusType - Std_Types -
StandardTypes.h - Std_ReturnType -
StandardTypes.h - Std_VersionInfo←↩

Type -

Not an FEE module requirement.

SWS_Fee_00022 N/F If the current module status is ME←↩

MIF_IDLE or if the current module
status is MEMIF_BUSY_INTERN←↩

AL, the function Fee_Read shall ac-
cept the read request, copy the given
computed parameters to module inter-
nal variables, initiate a read job, set
the FEE module status to MEMIF←↩

_BUSY, set the job result to MEM←↩

IF_JOB_PENDING and return with
E_OK.

Fee driver doesn't support MEMIF_←↩

BUSY_INTERNAL status

SWS_Fee_00025 N/F If the current module status is ME←↩

MIF_IDLE or if the current module
status is MEMIF_BUSY INTERN←↩

AL, the function Fee_Write shall ac-
cept the write request, copy the given
computed parameters to module inter-
nal variables, initiate a write job, set
the FEE module status to MEMIF←↩

_BUSY, set the job result to MEM←↩

IF_JOB_PENDING and return with
E_OK

Fee driver doesn't support MEMIF_←↩

BUSY_INTERNAL status

SWS_Fee_00023 N/F The function Fee_MainFunction shall
check the consistency of the logical
block being read before notifying the
caller. If an inconsistency of the read
data is detected or if the requested
block cant be found, the function Fee←↩

_MainFunction shall set the job re-
sult to MEMIF_BLOCK_INCONS←↩

ISTENT and call the error notification
routine of the upper layer if configured.

MEMIF_BLOCK_INCONSISTENT
is return value also for not-existing
Fee blocks in NVM in case parameter
FEE_MARK_EMPTY_BLOCKS←↩

_INVALID is OFF and in case block
is pre-erased in the LEGACY mode.

SWS_Fee_00075 N/F The function Fee_MainFunction shall
check, whether the block requested for
reading has been invalidated by the up-
per layer module. If so, the function
Fee_MainFunction shall set the job re-
sult to MEMIF_BLOCK_INVALID,
call the job error notification function
if configured.

MEMIF_BLOCK_INVALID is re-
turn value also for not-existing Fee
blocks in NVM in case parame-
ter FEE_MARK_EMPTY_BLOC←↩

KS_INVALID is ON

NXP Semiconductors
S32K1 FEE Driver

9

Driver

Requirement Status Description Notes
SWS_Fee_00187 N/S If the function Fls_BlankCheck is con-

figured (in the flash driver), the func-
tion Fee_Read shall call the function
Fls_BlankCheck to determine in ad-
vance whether a given memory area
can be read without encountering e.←↩

g. ECC errors due to trying to read
erased but not programmed flash cells.

Not applicable

SWS_Fee_00142 N/F If the job result is currently MEMIF←↩

_JOB_PENDING, the function Fee←↩

_JobEndNotification shall set the job
result to MEMIF_JOB_OK, else it
shall leave the job result untouched.

The driver shall set the job result from
MEMIF_JOB_PENDING to MEM←↩

IF_JOB_OK only when all related
jobs are finished.

SWS_Fee_00143 N/F If the job result is currently MEMIF←↩

_JOB_PENDING, the function Fee←↩

_JobErrorNotification shall set the job
result to MEMIF_JOB_FAILED, else
it shall leave the job result untouched.

The driver shall set the job result from
MEMIF_JOB_PENDING to MEM←↩

IF_JOB_FAILED when job result of
Fls driver is failed (except init job).

SWS_Fee_00007 N/S Depending on the implementation of
the FEE module and the exact address
format used, the functions of the FEE
module shall combine the 16bit block
number and 16bit address offset to de-
rive the physical flash address needed
for the underlying flash driver.

Unclear implementation of dataset
concept. This FEE uses a different
mapping algorithm.

SWS_Fee_00100 N/S Only those bits of the 16bit block
number, that do not denote a spe-
cific dataset or redundant copy shall be
used for address calculation.

Unclear implementation of dataset
concept. Not used in FEE driver.

SWS_Fee_00102 N/S The configuration of the FEE mod-
ule shall define the expected number of
erase/write cycles for each logical block
in the configuration parameter Fee←↩

NumberOfWriteCycles.

Not used due to usage of the two or
more clusters emulation algorithm.

SWS_Fee_00103 N/S If the underlying flash device or de-
vice driver does not provide at least the
configured number of erase/write cy-
cles per physical memory cell, the F←↩

EE module shall provide mechanisms
to spread the write access such that
the physical device is not overstressed.
This shall also apply to all manage-
ment data used internally by the FEE
module.

Emulation algorithm uses multiple
flash blocks regardless on configured
erase/write cycles.

SWS_Fee_00168 N/S If initialization is finished within Fee←↩

_Init, the function Fee_Init shall set
the module state from MEMIF_UN←↩

INIT to MEMIF_IDLE once initializa-
tion has been successfully finished.

Initialization Phase needs Fee_Main←↩

Function and Fls_MainFunction calles
to be completed. Also, the state
transition is not performed by the
Fee_Init() function itself, but as a part
of state machine execution driven by
main function calls.

10
S32K1 FEE Driver

NXP Semiconductors

Driver

Requirement Status Description Notes
SWS_Fee_00074 N/S The function Fee_GetStatus shall re-

turn MEMIF_BUSY_INTERNAL, if
an internal management operation is
currently ongoing.

Fee driver does not support MEMIF←↩

_BUSY INTERNAL

SWS_Fee_00105 N/S API function - Header File - De-
scription - Det_ReportRuntimeError -
Det.h - Service to report runtime er-
rors. If a callout has been configured
then this callout shall be called. - Fls←↩

_Cancel - Fls.h - Cancels an ongoing
job. - Fls_Compare - Fls_Com.h -
Compares the contents of an area of
flash memory with that of an applica-
tion data buffer. - Fls_Erase - Fls.h -
Erases flash sector(s). - Fls_GetJob←↩

Result - Fls.h - Returns the result of
the last job. - Fls_GetStatus - Fls.h -
Returns the driver state. - Fls_Read
- Fls.h - Reads from flash memory. -
Fls_SetMode - Fls.h - Sets the flash
driver's operation mode. - Fls_Write
- Fls.h - Writes one or more complete
flash pages. -

Not a FEE module requirement

SWS_Fee_00104 N/S API function - Header File - Descrip-
tion - Det_ReportError - Det.h - Ser-
vice to report development errors. -
Fls_BlankCheck - Fls.h - The function
Fls_BlankCheck shall verify, whether
a given memory area has been erased
but not (yet) programmed. The func-
tion shall limit the maximum num-
ber of checked flash cells per main
function cycle to the configured value
FlsMaxReadNormalMode or FlsMax←↩

ReadFastMode respectively. -

Not a FEE module requirement

SWS_Fee_00098 N/S Service name: - NvM_JobEnd←↩

Notification - Syntax: - void NvM_←↩

JobEndNotification(void) - Sync/←↩

Async: - true - Reentrancy: - Don't
care - Parameters (in): - None - Pa-
rameters (inout): - None - Parameters
(out): - None - Return value: - None
- Description: - – - Available via: -
Nvm.h -

Not a FEE module requirement

NXP Semiconductors
S32K1 FEE Driver

11

Driver

Requirement Status Description Notes
SWS_Fee_00099 N/S Service name: - NvM_JobError←↩

Notification - Syntax: - void NvM_←↩

JobErrorNotification(void) - Sync/←↩

Async: - true - Reentrancy: - Don't
care - Parameters (in): - None - Pa-
rameters (inout): - None - Parameters
(out): - None - Return value: - None
- Description: - – - Available via: -
Nvm.h -

Not a FEE module requirement

SWS_Fee_00999 N/S These requirements are not applicable
to this specification.

This is not a requirement.

ECUC_Fee_00153 N/S Name - FeeMainFunctionPeriod - Par-
ent Container - FeeGeneral - Descrip-
tion - The period between successive
calls to the main function in seconds. -
Multiplicity - 1 - Type - EcucFloat←↩

ParamDef - Range -]0 .. INF[-
 - Default value - – - Post-←↩

Build Variant Value - false - Value Con-
figuration Class - Pre-compile time - X
- All Variants - Link time - – - - Post-
build time - – - - Scope / Dependency
- scope: ECU -

Not needed in the current Fee imple-
mentation.

ECUC_Fee_00114 N/S Name - FeePollingMode - Parent Con-
tainer - FeeGeneral - Description - Pre-
processor switch to enable and disable
the polling mode for this module.←↩

true: Polling mode enabled, callback
functions (provided to FLS module)
disabled.false: Polling mode disabled,
callback functions (provided to FLS
module) enabled. - Multiplicity - 1
- Type - EcucBooleanParamDef - De-
fault value - – - Post-Build Variant
Value - false - Value Configuration
Class - Pre-compile time - X - All Vari-
ants - Link time - – - - Post-build time -
– - - Scope / Dependency - scope: local
-

Not supported by FEE module, un-
clear polling concept.

ECUC_Fee_00110 N/S Name - FeeNumberOfWriteCycles
- Parent Container - FeeBlock←↩

Configuration - Description - Number
of write cycles required for this
block. - Multiplicity - 1 - Type -
EcucIntegerParamDef - Range - 0
.. 4294967295 - - Default
value - – - Post-Build Variant Value
- false - Value Configuration Class -
Pre-compile time - X - All Variants -
Link time - – - - Post-build time - – - -
Scope / Dependency - scope: local -

Not supported by FEE module due to
emulation scheme.

12
S32K1 FEE Driver

NXP Semiconductors

Driver

3.5 Driver Limitations

None.

3.6 Driver usage and configuration tips

• FEE Data Organization details

• Memory Dump Example

• FEE Block Always Available

• Managing Cluster and Block Consistency

• Cluster Swap

• Block Update

• Immediate Block Update

• Det Errors Description

• Endurance calculation

• Configuration tips

• Sector managerment and sector retirement

• FEE Swap Foreign Blocks feature

3.6.1 FEE Data Organization details

The FEE module provides upper layers with a 32bit virtual linear address space and uniform segmentation
scheme. This virtual 32bit address shall consist of:

• a 16bit block number - allowing a (theoretical) number of 65536 logical blocks

• a 16bit block offset - allowing a (theoretical) block size of 64KByte per block

The 16bit block number represents a configurable (virtual) paging mechanism. The organization of flash area reserved
for FEE driver is described here below. The memory area is organized in:

• Cluster Group: A group is made by at least 2 Clusters

• Cluster: One or more flash physical sectors containing FEE blocks

• Block: Area of flash containing application data

More clusters could be present in the area but just one is active and contains valid data while the others are not
used.

Note

In the example below FeeVirtualPageSize is set to 8. Header valid flag and invalid flag are aligned each to
FeeVirtualPageSize boundary. Each cluster/block has:

• an header
• data

NXP Semiconductors
S32K1 FEE Driver

13

Driver

Table 3.3 Data Organization Detail

4 bytes 4 bytes 4 bytes 4 bytes Description
ClrID Start address Cluster size Checksum Cluster header
Valid flag not used not used Cluster status
Block id Length Target address Checksum Block Assignment(1byte) Block 1 header

Valid flag Invalid flag Block 1 status

Block id Length Target address Checksum Block Assignment(1byte) Block 2 header

Valid flag Invalid flag Block 2 status

..

...
Block id Length Target address Checksum Block Assignment(1byte) Block n-1 header

Valid flag Invalid flag Block n-1 status

Block id Length Target address Checksum Block Assignment(1byte) Block n header

Valid flag Invalid flag Block n status

(padding) 16 byte

(padding) 16 byte

BLOCK n DATA Block n Data

BLOCK n DATA Block n Data

BLOCK n DATA Block n Data

BLOCK n DATA Block n Data

BLOCK n-1 DATA Block n-1 Data

BLOCK n-1 DATA Block n-1 Data

..

...
BLOCK 2 DATA Block 2 Data

BLOCK 2 DATA Block 2 Data

BLOCK 1 DATA Block 1 Data

BLOCK 1 DATA Block 1 Data

BLOCK 1 DATA Block 1 Data

BLOCK 1 DATA Block 1 Data

Table 3.4 ClusterHdr Type

uint32 (4 bytes) uint32 (4 bytes) uint32 (4 bytes) uint32 (4 bytes)
ClrID StartAddress ClusterSize checkSum

14
S32K1 FEE Driver

NXP Semiconductors

Driver

uint32 (4 bytes) uint32 (4 bytes) uint32 (4 bytes) uint32 (4 bytes)
valFlag blank1 invalFlag blank2

• ClrID: (uint32) Integer number uniquely identifying the cluster. The number is incremented whenever a new
cluster becomes active, i.e. the cluster with highest ClrID is the active one.

• StartAddress: (uint32) Configuration data: Start address of the cluster (logical start address of the first flash
sector belonging to this cluster).

• ClusterSize: (uint32) Configuration data: Length of the cluster.

• checkSum: (uint32) Sum of the ClrID, StartAddress and ClusterSize fields.

• val Flag: (uint8) 0x81 for a valid cluster. The field is padded with blank bytes (0xFF) to the virtual page size
boundary.

• invalFlag: (uint8) not-used. The field is padded with blank bytes (0xFF) to the virtual page size boundary.

Table 3.5 BlockHdr Type

uint32 (4 bytes) uint32 (4 bytes) uint32 (4 bytes) uint32 (4 bytes)
BlockNumber:Length TargetAddress checkSum assignment(1byte)
valFlag blank2 invalFlag blank3

• BlockNumber: (uint16) Configuration data: Integer number uniquely identifying the block.

• Length: (uint16) Configuration data: Length of the block.

• TargetAddress: (uint32) Logical address of the beginning of data area of this block.

• checkSum: (uint32) Sum of the BlockNumber, Length and TargetAddress fields.

• assignment(1byte): (uint8)Block assignment.Used only for FeeSwapForeignBlocksEnabled=True mode.

• valFlag: (uint8) 0x81 for a valid block. The field is padded with blank bytes (0xFF) to the virtual page size
boundary.

• invalFlag: (uint8) Value 0x18 in this field indicates that the block was invalidated. The field is padded with
blank bytes (0xFF) to the virtual page size boundary.

3.6.2 Memory Dump Example

The table below shows an example of the cluster dump:

• One group of two clusters is configured.

• The first cluster has start address 0x10000.

• The second cluster has start address 0x18000.

• Two blocks are written.

• The length of the first block is 4.

• The length of the second block is 64.

NXP Semiconductors
S32K1 FEE Driver

15

Driver

Table 3.6 Dump Memory example (Fee_VirtualPageSize = 8)

Offset 4 bytes 4 bytes 4 bytes 4 bytes De-
scrip-
tion

0000 00 00 00 01 00 00 00 00 00 01 00 00 00 01 00 01 Clr Hdr

0010 81 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF Clr Sts

0020 00 01 00 04 00 00 FF F8 00 01 FF FD FF FF FF FF Blk1
Hdr

0030 81 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF Blk1 Sts

0040 00 02 00 40 00 00 FF B8 00 01 FF FA FF FF FF FF Blk2
Hdr

0050 81 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF Blk2 Sts

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ...

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ...

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ...

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ...

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ...

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ...

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ...

FFB0 FF FF FF FF FF FF FF FF 01 01 01 01 01 01 01 01 Blk2
Data

FFC0 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 ...

FFD0 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 ...

FFE0 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 ...

FFF0 01 01 01 01 01 01 01 01 00 00 00 00 FF FF FF FF Blk1
Data

Note: Values 0x00 and 0x01 represent example application data stored in blocks 1 and 2 respectively, and 0xFF is
the value of unprogrammed (erased, blank) flash memory byte.

3.6.3 FEE Block Always Available

To be consistent with AUTOSAR Requirement SWS_Fee_00153 (When a block write operation is started,
the FEE module shall mark the corresponding block as inconsistent.) and SWS_Fee_00154 (Upon the successful
end of the block write operation, the block shall be marked as consistent (again)) in case of reset, power loss etc.
occur between the writing of the first part of the header (including the checksum) and the writing of the valid flag
of the header, neither newly nor previously written data is available.

This is the default behavior of the driver if "FEE Block Always Available" configuration parameter is set to FALSE.

16
S32K1 FEE Driver

NXP Semiconductors

Driver

This behaviour can be modified (thus losing compliance with AUTOSAR requirement SWS_Fee_00153 and SW←↩

S_Fee_00154) and if a previous valid instance of the block exists, it is always possible to recover it.

3.6.4 Managing Cluster and Block Consistency

The FEE module shall manage the consistency of blocks when catastrophic events occur. If such event occurs
(i.e. a power down or reset when an erase/write operation is ongoing), FEE driver shall be able to recover the last
valid instance of the blocks stored in flash, ignoring the possible last block update interrupted by the reset. In case
of reset or power down, the flash peripheral aborts any high voltage operation, it can lead to ECC
errors in some flash locations. During start-up, the FEE driver, will scan the memory (header region) in order
to restore the cluster and blocks status. If some blocks header contain ECC errors an IVOR exception is thrown
during the read operation and FLS driver will manages it.

To achieve the same robustness as in the previous platforms, the FeeVirtualPageSize in 57xxs should be updated
accordingly:

• If optimized ECC handling is available in the FLS driver and if only code flash segments are configured, the
FeeVirtualPageSize can be set to 8 bytes (1 DW).

• Otherwise, 4 DW (32 bytes) must be used.

This is due to the fact that the EER bit (used to verify if ECC is present) is affected by 4 DW, regardless on the
ECC size which is just 1 DW.

The driver behaves differently depending on which operation was interrupted:

• a cluster swap is ongoing,

• a block update is ongoing,

• an immediate block update is ongoing.

3.6.5 Cluster Swap

The cluster swap is a way how unlimited erase/write cycles required by AUTOSAR are implemented. A clus-
ter swap occurs in the following cases:

• when the active cluster has not enough free space to host the writing of new block.

• when a flash job has failed during FEE initialization stage.

• when the last header is corrupted∗ (wrong checksum, parsed block doesn’t match with configuration, unknown
block number).

NXP Semiconductors
S32K1 FEE Driver

17

Driver

• when trying to execute write or erase immediate jobs on address damaged for aging of the flash.

The swap consists of the following steps (stages):

• Erase the next cluster (ERASING stage).

• Write the first part of the cluster header (16 byte: incremented ClrID, StartAddress, ClusterSize, Checksum)
(FORMATTING stage).

• Copy the last valid instances of all blocks (header, data and status) also the block that generated the cluster
swap (old instance) (COPYING stage).

• Write the second part of cluster header (16 bytes: valid/invalid flag) (ACTIVE stage);

• Write the block that generated the cluster swap (new instance) (UPDATING stage) to the newly allocated
cluster.

Table 3.7 Cluster Swap Stages

CLUSTER STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5
ID 0001 ACTIVE ACTIVE ACTIVE OLD OLD

ID 0002 ERASING FORMATTING COPYING ACTIVE UPDATING

A system reset happens during STAGE 1
Since an erase operation may have been interrupted, the next cluster could be affected by ECC error.

A system reset happens during STAGE 2 and STAGE 4.
Since a program operation may have been interrupted, the next cluster header could be affected by ECC error.

A system reset happens during STAGE 3
Since a program operation may have been interrupted, the next cluster area could be affected by ECC error.

A system reset happens during STAGE 5.
Since a program operation may have been interrupted, the next cluster area could be affected by ECC error. The
active cluster is the one with ID 0002.
If the cluster swap process is broken in any of the preceding stages, the following happens during next startup:

• The application should runs the FEE initialization phase by calling Fee_Init and then repeatedly Fee_Main←↩

Function and Fls_MainFunction until the driver is in the idle state.

• During this phase the active cluster is recognized and it is not affected by ECC error.

• Only the block that caused cluster swap is lost. It the application writes any block, a new cluster swap is
initiated. This will erase the cluster again and remove the ECC error wherever it is.

3.6.6 Block Update

During normal execution (without any catastrophic event) the consistency of data block is assured by the or-
der in which the block fields are written to the memory. The block updating process consists of the following
steps:

18
S32K1 FEE Driver

NXP Semiconductors

Driver

• writing the BlkId, StartAddress Length and CheckSum fields in the header area;

• writing Data in the data area;

• updating the Status of block from INCONSISTENT to VALID.

In case of a catastrophic event during block updating after powering the system again a FEE Initialization phase
should be re-executed after power up the system. During this phase:

• the active cluster will be selected;

• the header blocks zone will be scanned in order to restore the status of blocks before the power down.

If more instances of the same block are present in the cluster, only the instance with highest address is kept as valid.

If FEE_MARK_EMPTY_BLOCKS_INVALID is ON: If an ECC error occurs, Fee_Init considers the block af-
fected invalid, and keeps the previous instance. If there is no block instance, the block is considered invalid either.
If FEE_MARK_EMPTY_BLOCKS_INVALID is OFF: If an ECC error occurs, Fee_Init considers the block af-
fected inconsistent, and keeps the previous instance. If there is no block instance, the block is considered inconsistent.

3.6.7 Immediate Block Update

Immediate data are used for fast write operations, because no swap operation can occur during write (when
used properly). Typical use case is storage of crash; related data. Unfortunately the AutoSAR specification is not
100% unambiguous regarding this feature and its use rules.

A part of each cluster is reserved for this kind of data. The size of this area is computed from the configuration to
be able to hold one instance of all immediate data blocks. It is not located in any predefined static area.

Immediate data blocks are usually stored exactly the same way as standard blocks. No pre-allocation of block private
data area is performed in the Fee_EraseImmediateBlock function. Only if the given immediate block has already
been stored in the reserved area, cluster swap is performed. Standard blocks cannot be saved to the reserved area
at all.

During normal execution (without a catastrophic event) immediate data blocks are updated in two steps:

1. First phase: By calling Fee_EraseImmediateBlock (and appropriate amount of Fee_MainFunction/Fls_←↩

MainFunction calls), the cluster usage is checked.

• If the affected immediate data block has not been stored in the reserved area, it is safe to continue without
a cluster swap (there is a space reserved for a single future write operation).

• If there is already an instance of this block in the reserved area, a cluster swap is performed. As a result,
a copy of this old block instance will be stored in the unreserved area, and a new instance can be later
written without any delay.

Note: This step is mandatory.

2. Second phase: Write the actual data by calling the Fee_Write function. The write operation is exactly the
same as for the standard data blocks.

To enhance compatibility with the legacy mode, it is possible to configure the Fee_EraseImmediateBlock function
to explicitly invalidate the previous instance of the given block. It is effectively the same as hiding the old instance

3.6.8 Det Errors Description

NXP Semiconductors
S32K1 FEE Driver

19

Driver

Table 3.8 Det Errors detailed description

Name Value [hex] Description
FEE_E_UNINIT 0x01 API service called when module was not initialized.

Please see the AUTOSAR specifications for further de-
tails.

FEE_E_INVALID_BLOCK_NO 0x02 API service called when FEE Block Number is invalid.
Please see the AUTOSAR specifications for further de-
tails.

FEE_E_INVALID_BLOCK_OFS 0x03 API service called when Block Offset is invalid. Please
see the AUTOSAR specifications for further details.

FEE_E_PARAM_POINTER 0x04 API service called when input Data Pointer is invalid.
Please see the AUTOSAR specifications for further de-
tails.

FEE_E_INVALID_BLOCK_LEN 0x05 API service called when input Block Length is invalid.
Please see the AUTOSAR specifications for further de-
tails.

FEE_E_BUSY 0x06 API service called when FEE module is busy processing
a user request. Please see the AUTOSAR specifications
for further details.

FEE_E_BUSY_INTERNAL 0x07 API service called when FEE module is busy doing in-
ternal management operations. Please see the AUT←↩

OSAR specifications for further details.

FEE_E_INVALID_CANCEL 0x08 API service called when no job was pending. Please see
the AUTOSAR specifications for further details.

FEE_E_INIT_FAILED 0x09 API API Fee_init failed.

FEE_E_CANCEL_API 0x0A User called the Fee_Cancel() function but the “Fee
Cancel API” configuration parameter is set to off

FEE_E_CLUSTER_GROUP_IDX 0x0B Error reported by APIs Fee_GetRunTimeInfo and
Fee_ForceSwapOnNextWrite when they are called with
invalid(out of range) parameter.

FEE_E_FOREIGN_BLOCKS_OVF 0x0C Error reported during scanning of the data flash as
part of processing of Fee_Init job when Fee finds in
data flash more blocks than the maximum number
statically configured. It happens when the number of
foreign blocks found in data flash is equal or higher
than FEE_MAX_NR_OF_BLOCKS - FEE_CRT←↩

_CFG_NR_OF_BLOCKS. The error code is only re-
ported with FEE_SWAP_FOREIGN_BLOCKS_E←↩

NABLED=ON.To fix this DET error the configurator
must configure FEE_MAX_NR_OF_BLOCKS to a
higher value.

20
S32K1 FEE Driver

NXP Semiconductors

Driver

3.6.9 Endurance calculation

Below is an example of calculating the FEE endurance. Assumption: The number of write times is the same for
all blocks.

Table 3.9 INPUT VALUES

Name Value
BLOCK1_SIZE 32

BLOCK2_SIZE 64

BLOCK3_SIZE 16

FLASH_ALLOCATED_SIZE 65536

FEE_VIRTUAL_PAGE_SIZE 8

FLASH_CELL_ENDURANCE 1000

Table 3.10 ASSUMED INPUT

Name Value
NO_OF_CLUSTER_GROUPS 1

NO_OF_CLUSTERS 2

RSRVD_CLUSTER_GAP 64

Table 3.11 INTERMEDIATE OUTPUT

Name Value
FEE_BLOCK_OVERHEAD 32

FEE_CLUSTER_OVERHEAD 32

ALIGNED_BLOCK1_SIZE 32

ALIGNED_BLOCK2_SIZE 64

ALIGNED_BLOCK3_SIZE 16

BLOCK1_INSTANCE_TOTAL_SIZE 64

BLOCK2_INSTANCE_TOTAL_SIZE 96

BLOCK3_INSTANCE_TOTAL_SIZE 48

Intermediate output formula:
FEE_BLOCK_OVERHEAD = ceiling(12 / FEE_VIRTUAL_PAGE_SIZE + 2) ∗ FEE_VIRTUAL_PA←↩

GE_SIZE
FEE_CLUSTER_OVERHEAD = ceiling(16 / FEE_VIRTUAL_PAGE_SIZE + 2) ∗ FEE_VIRTUAL_←↩

PAGE_SIZE

NXP Semiconductors
S32K1 FEE Driver

21

Driver

ALIGNED_BLOCKx_SIZE = floor((BLOCK_SIZE + FEE_VIRTUAL_PAGE_SIZE - 1)/FEE_VIRTU←↩

AL_PAGE_SIZE) ∗ FEE_VIRTUAL_PAGE_SIZE
BLOCKx_INSTANCE_TOTAL_SIZE = FEE_BLOCK_OVERHEAD + ALIGNED_BLOCKx_SIZE
RSRVD_CLUSTER_GAP = 2 ∗ FEE_BLOCK_OVERHEAD
BLOCKS_INSTANCE_TOTAL_SIZE = Total of BLOCKx_INSTANCE_TOTAL_SIZE

Table 3.12 ENDURANCE

Name Value
AVAILABLE_WRITE_CYCLES 312,144.00

Endurance formula:
AVAILABLE_WRITE_CYCLES = floor(((FLASH_ALLOCATED_SIZE -(FEE_CLUSTER_OVERHEAD
+ RSRVD_CLUSTER_GAP + BLOCKS_INSTANCE_TOTAL_SIZE + 1) ∗NO_OF_CLUSTERS∗NO_OF_←↩

CLUSTER_GROUPS)/BLOCKS_INSTANCE_TOTAL_SIZE)∗FLASH_CELL_ENDURANCE)

3.6.10 Configuration tips

Task scheduling

Make sure that no FEE/FLS functions are interrupted by another FEE/FLS function except Fee_Cancel.

Example 1: Fee_MainFunction is called from 10 ms OS task and Fee_Write function is called from 20 ms OS task.
It has to be ensured that Fee_Write function is not interrupted by Fee_MainFunction.

Example2: Fee_MainFunction is called from several places in the application. It has to be ensured that Fee_Main←↩

Function is not interrupted by another Fee_MainFunction.

Time consumption

1. Be aware of the maximum time consumption of the FEE/FLS functions (the best is to use actual configuration
for performance analysis).
Example 1: If Fee_MainFunction execution takes up to 5 ms (e.g. when a cluster swap occurs), it is risky to
call it from an 1 ms task.
Example 2: Write operation takes 5 ms to complete. If a cluster swap occurs during the write operation, it may
take 500 ms.

2. Be aware of the maximum number of FEE/FLS main function calls or overall time needed for operations (read,
write, . . .) to finish. Again, the best is to use actual configuration for performance analysis.
Example 1: If "FLS erase blank check" is enabled, 64 KiB clusters are used and "Max erase blank check" is set
to 256 bytes, it may take up to 600 FEE/FLS main function calls to complete the swap operation. I.e. if the
main functions are called within a 10 ms task, it takes up to 6 s to finish the swap operation.
Note: presented timing numbers are just an example, please refer to the profiling report to get real numbers.

FEE Virtual Page Size

This parameter must reflect the granularity at which the Fls driver is able to distinguish ECC events. The ECC page
is 8 bytes in standard flash memory, and 4 bytes in DFO memory. To speed up flash read access, the flash array is
accessed using a wider bus (read page), which typically consists of 2 or more ECC pages.

22
S32K1 FEE Driver

NXP Semiconductors

Driver

For robustness reasons, the Fee management data and user blocks must be aligned at the virtual page boundary.
Otherwise an ECC-affected memory location may inadvertently spread the damage to areas belonging to another
block.

Note: On 57_xx_ platforms (55nm device) IVOR exception has been suppressed only in Data Flash and a new
ECC management has been implemented in such situation, as described also in integration/user manuals for the Fls
driver.

To achieve the same robustness as in the previous platforms, the FeeVirtualPageSize in 57_xx_s should be updated
accordingly:
If only code flash segments are configured, the FeeVirtualPageSize can be set to 8 bytes (1 DW). Otherwise, 4 DW
(32 bytes) must be used.
This is due to the fact that the EER bit (used to verify if ECC is present) is affected by 4 DW, regardless on the
ECC size which is just 1 DW.

Also: If data cache is enabled, even if the flash region is configured as cache-inhibited in the memory protection unit,
an ECC event might be reported, if there is an ECC affected location inside the same cache line as the location read by
driver. This means that an ECC affected location might falsely trigger and report ECC errors for any other location
inside the same cache line. To achieve the same robustness as in the previous platforms, the FeeVirtualPageSize
should be updated accordingly, to the same size as the cache line (4 DW, 32 bytes).

FEE Block Always Available

According to the AUTOSAR requirement, when the write operation starts, corresponding block is marked as incon-
sistent. It is marked as valid after successful write. It means that if the write operation is interrupted (canceled, by
device reset, power down ...), application cannot access the block data anymore. There is a configuration parameter
(FEE Block Always Available) which allows to set the module behavior against this requirement. As a result, the
FEE will always provide the last information which is not corrupted(this means block status FEE_BLOCK_VALID
or FEE_BLOCK_INVALID).

Example 1: Driver behavior is set according ASR requirement. One instance of the block is successfully written to
the memory. Another write operation of this block is scheduled but it is interrupted before finish (by Fee_Cancel or
power down). Block can be valid containing old data (operation was interrupted before write process started), block
can be valid containing new data (operation was interrupted just before returning success information), or block can
be invalid/inconsistent (ongoing write process was interrupted) .

Example 2: Driver behavior is set to violate ASR requirement (not supported by all versions). One instance of the
block is successfully written to the memory. Another write operation of this block is scheduled but it is interrupted
before finish (by Fee_Cancel or power down). Previous instance of the block is still accessible.

Immediate Data Usage (General)

Immediate data are used for fast write operations, because no swap operation can occur during write (when used
properly). Typical use-case is storage of crash-related data. Unfortunately the AutoSAR specification is not 100% un-
ambiguous regarding this feature and its use rules. The following sequence shall be used for the immediate data
usage:

1. Fee_EraseImmediateBlock: to allocate space for the block in advance. During its processing a swap operation
can occur.

2. Fee_Cancel: to interrupt any internal processing in case the driver is not idle.

3. Fee_Write of an immediate block: write block data; no swap can occur because space is already allocated.

NXP Semiconductors
S32K1 FEE Driver

23

Driver

In the course of time, a 2nd slightly different approach has been developed for this Fee module codebase. The older
one is called Legacy Mode to distinguish it from the current default (standard) one.

Immediate Data Usage in the Non-Legacy Mode (Default)

To streamline immediate data handling and to get rid of wasted space due to calls to the Fee_EraseImmediateBlock
function, a part of each cluster is reserved for this kind of data. Size of this area is computed from the configuration
to be able to hold one instance of all immediate data blocks. During the ECU lifetime, immediate data blocks are
stored exactly the same way as standard blocks. The cluster swap is triggered only if either A standard block does
not fit into the remaining free unreserved area, or Given immediate data block has already been stored in the reserved
area, or A write request is issued in case some inconsistencies have been detected in the non-volatile data structures
stored in the flash memory configured for the Fee module.

Immediate Data Usage in the Legacy Mode

In the Legacy Mode, memory area for an immediate data block is allocated as a part of the Fee_EraseImmediateBlock
function invocation that must precede write operation for this block.

After the immediate block is written, new space shall be allocated for further usage of this block (Fee_Erase←↩

ImmediateBlock function). Note that after Fee_EraseImmediateBlock function is called, new space is allocated and
the previous instance of the immediate block is no longer accessible.

Example of usage 1:

FEE/FLS initialization.
Space reservation for immediate blocks (Fee_EraseImmediateBlock).
Execution of the application code.
Abnormal situation occurs.
All fee operations are stopped (Fee_Cancel).
Immediate blocks are written.
Power down/reset...
FEE/FLS initialization.
Check if immediate data are written. If so, some abnormal situation occurred. The stored
information can be used.
Space reservation for immediate blocks - all previous data of these blocks are lost.

Example of usage 2:

Space reservation is done using flash image.
App is running and writing immediate data in case of some special situation (each
immediate block is written just once).
When all immediate blocks are written, unit is not writing any immediate data anymore
and report error state.

Code flash erase Be aware of the read-while-write support in the device when erasing the code flash from code flash.
If it is not supported, the access code shall be loaded into the RAM (the "FLS Load Access Code On Job Start"
parameter must be turned on). In this case the write/erase operation shall be set as synchronous (if asynchronous
write/erase is enabled, access code in the RAM is ignored).

Meaning of the FEE block states (result of the Fee_GetJobResult operation)

24
S32K1 FEE Driver

NXP Semiconductors

Driver

Table 3.13 FEE Job Information

MemIf_JobResultType Non-immediate block Immediate block

MEMIF_JOB_OK block is valid block is valid
MEMIF_BLOCK_INVALID block was invalidated, or

block is not in the cluster(if
FEE_MARK_EMPTY_BLOC←↩

KS_INVALID = ON)

block was invalidated, or
block is not in the cluster(if
FEE_MARK_EMPTY_BLOC←↩

KS_INVALID = ON)
space for the block is reserved

MEMIF_BLOCK_INCONSIST←↩

ENT
block has corrupted header (wrong
checksum, address, ...), or
block is not in the cluster(if
FEE_MARK_EMPTY_BLOC←↩

KS_INVALID = OFF) or
block doesn’t match the configura-
tion (length, immediate, ...)

block has corrupted header (wrong
checksum, address, ...), or
block is not in the cluster(if
FEE_MARK_EMPTY_BLOC←↩

KS_INVALID = OFF) or
block doesn’t match the configura-
tion (length, immediate, ...)

Note: If FEE_BLOCK_ALWAYS_AVAILABLE == STD_ON last valid block will be returned, it means that
inconsistent blocks will not be considered.
Note: For immediate data blocks MEMIF_BLOCK_INCONSISTENT is actually one of the working (acceptable)
states – the block has been allocated but not written yet, in this situation a requested read operation cannot be
performed.
Fls Configuration Constraints: Fls_Cancel() and Asynchronous Mode
The following has been identified during robustness analysis for the Fls / Fee drivers:

• Fls write/erase in synchronous mode is faster than in asynchronous one (fewer Fee/Fls_MainFunctions are
needed).

• If Fls asynchronous write is used, then the Fls_Cancel() can trigger some robustness issues. As a counter-
measure, if the Fls_Cancel() is supported (enabled), it is not possible to configure flash sectors with asyn-
chronous write for the Fee clusters. Either Fls_Cancel() must be disabled,or a sector with synchronous write
mode selected.

• The previous item does not apply to asynchronous erase (i.e. it is possible to use asynchronous erase mode for
better performance even if the Fls_Cancel is enabled).

Cluster versus total block size configuration
When configuring a cluster, the integrator must consider the following: the size of the cluster must be greater than
the sum of:

• one instance size for each block configured in the respective cluster plus

• the size of the largest block instance configured in the respective cluster plus

• all the management information required by the FEE to store those blocks.

This is the minimum cluster size required relative to the blocks size, but it is recommended to the integrator to
design the memory layout in such a way that the cluster swap is performed as rarely as possible (eg. there is enough
space in the cluster to write several block instances before there is the need to swap clusters). The disadvantages of
the cluster swap are the time consumption (user operations such as read/write might get delayed until the swap is
finished), the excessive consumption of available erase/program cycles of the flash memory, and the fact that because
of the long duration of a swap there is a higher probability to get interrupted by power-on resets which can lead to
ECC errors.Another important factor to consider when designing the memory layout is the write frequency of data.

NXP Semiconductors
S32K1 FEE Driver

25

Driver

3.6.11 Sector managerment and sector retirement

The "FEE sector managerment and sector retirement" feature can be enabled or disabled by the parameter
FeeSectorRetirement

• This feature was developed to support the following customer use case: "CPR_RTD_00505.fee"

• Add support for bad Sector Management and Sector Retirement

• Some flash memory specs have low endurance/write cycles availability, which needs to be improved by the
ability to retire bad sectors or locations affected by permanent ECC, at the expense of allocated flash size -
the endurance being a ppm specification

• This involves removing Sectors from configuration when they become unusable

The following parameters are used in FeeSectorRetirement mode:

• FeeSectorEraseRetries

– Number of attempts to erase each sector in the cluster when swapping in sector retirement mode.

– A sector will be marked as a bad sector after a number of attemps to erase all have failed.

• FeeSectorToRecover

– Container for the list of sectors to recover

– Specifies which sectors will be restored after replacing them on the configuration

3.6.11.1 Introduction

In this mode, the Fee driver can have ability to detect a bad sectors and skip them in runtime:

26
S32K1 FEE Driver

NXP Semiconductors

Driver

In order to support this feature, the following items have been implemented:

1. Support for in-consecutive sectors addresses in each cluster

• Because of the sector retirement, the logical address cannot be consecutive

2. Bad sectors management

• Bad sector criteria
• Store and retrieve the information of sectors status

3.6.11.2 Discontinuous logical sector address

From Fee’s point of view:

• The cluster address (called emulation address) is always consecutive: starts from 0 to (cluster size – 1)

• An extra layer will handle the address translation

NXP Semiconductors
S32K1 FEE Driver

27

Driver

To support this, the Fee driver needs to:

• Generate the information for each sector, including the start address and size in Fls layer

• Translate address from one Fee cluster to Fls sectors

• Calculate the logical address corresponding to the emulation address (based on the generated sectors configu-
ration)

– Each part will be linked to its sector located in Fls layer

– In this example, the data Fee requested is located at 3 discontinuous sectors

– The translation layer needs to calculate the start address and length for each job

28
S32K1 FEE Driver

NXP Semiconductors

Driver

• A job (read/write) in a cluster might be splitted into smaller jobs to handle the fragmented data localed in
discontinuous sectors. The translation layer will be responsible for:

– Process each job result

– Stop immediately when a part of job fails

– Report the final job result to Fee

• For erase operation:

– Erase sectors one by one

– The erase operation results will be used to detect and consider each sector is bad or not (bad sectors
criteria will be explained in the next section)

NXP Semiconductors
S32K1 FEE Driver

29

Driver

3.6.11.3 Bad sectors criteria

This section describes how the FEE driver manages bad sectors:

• How to detect a bad sector (Which criteria?)

• Where to store information of sectors status (Where?)

• How to retrieve this information? (If the power loss or reset)

Item Implemented solution

Bad sector criteria
Perfom in the swap stage: when erasing the next cluster
Use erase operation results to verify a sector is good or bad
Add a new configuration parameter FeeSectorEraseRetries (maximum number of
re-erase a sector)

Store sectors status

Store in the cluster header
- Use 2 byte for the sector count (the number of sectors in the cluster)
- Use 1 bit / sector to mark its status (1=good, 0=bad)
This information will be updated each swap stage, and written into the new cluster
header

Retrieve sectors status
Perfom in the init stage
- After the valid cluster header was found
- Read the sector status section in the cluster header and update the runtime data
structure

30
S32K1 FEE Driver

NXP Semiconductors

Driver

• A sector will be marked as a bad sector after a number of attemps to erase all have failed:

Note

• A cluster will be marked as a bad cluster if all its sectors were bad sectors or its size is not big enough to
contain any block data

• Bad cluster will be skipped by the Fee driver in runtime

3.6.11.4 Sectors information

3.6.11.4.1 Storing the sectors information

• Fee driver uses memory space in each cluster header to store the sectors information

• In the example below

– The Fls physical page size is 8 bytes and the FeeVirtualPageSize is set to 32
– The number os sectors is 6

NXP Semiconductors
S32K1 FEE Driver

31

Driver

Note

• The size of the sectors information will be rounded up to align with the Fls physical page size

• In the example above, 06 sectors need only 06 bit in the first byte of the binary bit status

• But the cluster header will be expanded to 8 bytes to align with the Fls physical page size (8 bytes)

• The unused bits and unused bytes will be filled with zero value

• The sequence of updating sector status information when erasing an Fee cluster

1. Read cluster runtime information

2. Erase all good sector (include the cluster header)

3. Update sector information

4. Write new header into flash

32
S32K1 FEE Driver

NXP Semiconductors

Driver

Note

If FeeSectorRetirement is ON, the sectors information must be kept in the cluster header, so the data flash
layout will not be compatible with layout with previous FEE versions. This means that the first time when
this mode is switched to ON, projects must start with a clean erased data flash

3.6.11.4.2 Achieving the sectors information

• In the initialization stage, when scanning the valid cluster header in each cluster, Fee driver will:

– Scan every sector from the bottom until find the valid header

– Parse the cluster header to get the sectors status

– Only scan block data in good sectors in the active cluster

NXP Semiconductors
S32K1 FEE Driver

33

Driver

Note

• In the FeeSectorRetirement mode, Fee driver will automatically ignore bad clusters after erasing a
cluster in Init and Swap phases

• Fee driver will only notify the upper layer and mark the current job as failed in case there is not enough
cluster left in the cluster group

3.6.11.5 Bad sectors replacement

• Bad sectors can be replaced from the configuration by doing the following steps:

34
S32K1 FEE Driver

NXP Semiconductors

Driver

1. Get the current runtime information to identify which sectors are bad
2. Replace bad sectors by other good sectors in the configuration tool

(a) Replace bad sector
(b) Add the sector to the FeeSectorToRecover list

3. Re-initialize the Fee driver
4. Get the runtime information to check if the bad sectors were replaced or not

• The example below is using 01 group with 02 clusters, each cluster has 06 sectors (12 sectors in total)

Step 1: Get runtime information

• In order to get the information of Fee group 0, we need to create the runtime information data structure

• Then allocate the memory array to hold the whole 12 sectors information in this group

• After that, call the function Fee_GetRunTimeInfo

Note

• Users have to take care about the memory size of the sector runtime array passing to the function Fee←↩

_GetRunTimeInfo
• Because the driver will write the exact the number of sectors of the requested group into that array
• In case users do not want to get the sectors information, this must be a null pointer

NXP Semiconductors
S32K1 FEE Driver

35

Driver

Code example:

/* Allocate memory to contain sectors information for group 0 */

Fee_SectorRuntimeInfoType clusterGroup_0_sectorInfo[12U];

/* Create the runtime information data structure */

Fee_ClusterGroupRuntimeInfoType clusterGroup_0;

/* Point to the array will hold the sector information */

clusterGroup_0.sectorInfo = clusterGroup_0_sectorInfo;

/* Get the runtime information from FEE driver */

Fee_GetRunTimeInfo(0U, &clusterGroup_0);

• An example of the data runtime information

– As we can see the sector 0 of cluster 0 is a bad sector, because its size is zero

Step 2.1: Replace the bad sector by another good sector

36
S32K1 FEE Driver

NXP Semiconductors

Driver

• There are two way: choosing another logical or physical Fls sector

Step 2.2: Add that sector to the list FeeSectorToRecover

• The purpose is tell the Fee driver to recover this sector in the next swap phase

Step 3: Re-initialize the Fee driver by calling Fee_Init()

Step 4: Repeat the step 1 to check if the bad sector was replaced or not

Note

• Fee driver will replace bad sectors only in the swap phase, before erasing the next cluster
• Optional: After the bad sectors were recovered, users can remove them from the list FeeSectorTo←↩

Recover

NXP Semiconductors
S32K1 FEE Driver

37

Driver

3.6.12 FEE Swap Foreign Blocks feature

The "FEE Swap foreign blocks" feature can be enabled or disabled by the parameter FeeSwapForeignBlocks←↩

Enabled.

The "FEE Swap foreign blocks" feature was developed to support the following customer use case: the customer
has two different projects, BOOTLOADER and APPLICATION, which are separately compiled, built into different
executable files which are run on the same ECU in different scenarios. This means the two executables share the
same data flash emulated for calibration data. For the two projects the customer uses two different FEE block
configurations: for the BOOTLOADER project some blocks, for APPLICATION project other blocks, maybe some
blocks are common.

In the previous FEE implementation it was not possible to run over same data flash with different FEE configurations
because FEE used to keep at cluster swap only blocks which were present in the current configuration. This behavior
had the disadvantage that each time a new block was added in the APPLICATION project, the customer was
required to update also the FEE configuration from the BOOTLOADER project, even if BOOTLOADER blocks
were not added or deleted.

The following parameters are used in FeeSwapForeignBlocksEnabled mode:

• FeeBlockAssignment Defines in which project this block is used.
1. BOOTLOADER - Block is used ONLY by the BOOTLOADER project
2. APPLICATION - Block is used ONLY by the APPLICATION project
3. Shared - Block is used for BOTH APPLICATION and BOOTLOADER projects

• FeeConfigAssignment Defines for which project the current Fee configuration is used.
1. BOOTLOADER - Configuration is used only by the BOOTLOADER project
2. APPLICATION - Configuration is used only by the APPLICATION project

• FeeMaximumNumberBlocks This must be configured to total number of BOOTLOADER,APPLICATION blocks
and also some buffer for blocks added in the future project versions. This parameter will be used to statically
allocate space for the foreign block information, so it should be configured to accommodate the total number of
blocks running on the ECU in all project versions. Example of configuration: If APPLICATION uses 2 blocks,
boot loader 1 block and another 1 is shared between APPLICATION and BOOTLOADER then this parameter
must be configured to 2(only appl) + 1(only boot loader) + 1(shared) + X, where x is the maximum number of
blocks that it is estimated to be added in future project versions.

With FEE in the mode "FeeSwapForeignBlocksEnabled" it is possible to have different block configuration for the
BOOTLOADER and APPLICATION projects. This is possible by swapping also the foreign blocks. A block is
foreign if it has FeeBlockAssignment=BOOTLOADER if the FeeConfigAssignment is APPLICATION or if it has
FeeBlockAssignment=APPLICATION if the FeeConfigAssignment is BOOTLOADER.

The mode "FeeSwapForeignBlocksEnabled" is useful in the development phase, but it is not recommended to
be used in production phase , as it has the following disadvantages:

• It increases the cluster swap overall timing

• It increases the RAM consumption because it needs to allocate management data for the foreign blocks as well

• It adds the possibility of a new error FEE_E_FOREIGN_BLOCKS_OVF in case the configuration of Fee←↩

MaximumNumberBlocks is incorrect or in case Fee finds in data flash more blocks than it is allowed by
configuration FeeMaximumNumberBlocks. This can happen for example in case of some eccs in data flash
block header block assignment data and Fls_DsiHandler is not used. More information about Fls_DsiHandler
usage can be found in the FLS driver IM.

38
S32K1 FEE Driver

NXP Semiconductors

Driver

Nevertheless, it can be used in the production phase if the above points are not critical for the project.

Restrictions for configuring APPLICATION and BOOTLOADER projects:

• If the configurator changes a block which affects the configuration of the other project then he must apply this
change to both configurations. This means:
- if a SHARED block is changed to APPLICATION only in the APPLICATION configuration or BOOTLO←↩

ADER only in the BOOTLOADER configuration, then the change must be applied in the other configuration
also(delete block from the other configuration)
- if a non-SHARED block becomes SHARED, then the change must be applied to both configurations The
configurator must ensure that block numbers used for BOOTLOADER-only blocks and APPLICATION-only
blocks are different.

• If a block is used in both BOOTLOADER and APPLICATION(shared), the block must have the same at-
tributes(block number, size, immediate/non-immediate) in both configurations.

• A block is defined by the following attributes: number, size, immediate/not immediate characteristic. If a part
of this information changes in the configuration then the block will not be copied during the cluster swap.

• All configurations for BOOTLOADER and APPLICATION projects must be the same, except configuration
of not-shared blocks which must be different.

• All immediate blocks must be defined as shared between APPLICATION and BOOTLOADER if FEE_←↩

LEGCY_MODE=OFF is used. The reason is that the FEE must have the same reserved area for both
configurations.

• The configurator must ensure that the total APPLICATION and BOOTLOADER blocks size with FEE man-
agement information included can be accommodated by the cluster size. This might be managed in 2 ways:
- Use only SHARED and APPLICATION blocks, don't used BOOTLOADER blocks. This means all BOO←↩

TLOADER blocks are included in the APPLICATION configuration, even if they are not written/read by the
application project. If the bootloader configuration needs to change, application needs to be reconfigured as well.
This will ensure that the size restriction will be checked by the TRESOS tool at APPLICATION configuration
time.
- Temporarily add BOOTLOADER blocks to the application configuration only to check the size restriction

If FeeSwapForeignBlocksEnabled is ON, the block assignment information must be kept in the block header, so the
data flash layout will not be compatible with layout with previous FEE versions. This means that the first time
when this mode is switched to ON, projects must start with a clean erased data flash.

3.7 Runtime errors

• The driver supports runtime generation of the errors listed in the table:

Error code Function Condition triggering the error

FEE_E_BUSY

Fee_Init()

This function called while module is busy

Fee_SetMode()
Fee_Read()
Fee_Write()
Fee_InvalidateBlock()
Fee_EraseImmediateBlock()
Fee_GetRunTimeInfo()

FEE_E_INVALID_CANCEL Fee_Cancel() Fee_Cancel called while no job was pendingNXP Semiconductors
S32K1 FEE Driver

39

Driver

3.8 Symbolic Names Disclaimer

All containers having symbolicNameValue set to TRUE in the AUTOSAR schema will generate defines like:

#define <Mip>Conf_<Container_ShortName>_<Container_ID>

For this reason it is forbidden to duplicate the names of such containers across the RTD configurations or to use
names that may trigger other compile issues (e.g. match existing #ifdefs arguments).

40
S32K1 FEE Driver

NXP Semiconductors

Chapter 4

Tresos Configuration Plug-in

This chapter describes the Tresos configuration plug-in for the driver. All the parameters are described below.

• Module Fee

– Container FeeClusterGroup
∗ Container FeeCluster

· Container FeeSector
· Parameter FeeSectorIndex
· Reference FeeSectorRef

– Container FeeBlockConfiguration
∗ Parameter FeeBlockNumber
∗ Parameter FeeBlockSize
∗ Parameter FeeImmediateData
∗ Parameter FeeNumberOfWriteCycles
∗ Parameter FeeBlockAssignment
∗ Reference FeeClusterGroupRef
∗ Reference FeeDeviceIndex

– Container FeeSectorToRecover
∗ Reference FeeSectorToRecoverRef

– Container FeeGeneral
∗ Parameter FeeDevErrorDetect
∗ Parameter FeeEnableUserModeSupport
∗ Parameter FeeMainFunctionPeriod
∗ Parameter FeeNvmJobEndNotification
∗ Parameter FeeNvmJobErrorNotification
∗ Parameter FeeClusterFormatNotification
∗ Parameter FeePollingMode
∗ Parameter FeeSetModeSupported
∗ Parameter FeeVersionInfoApi
∗ Parameter FeeVirtualPageSize

NXP Semiconductors
S32K1 FEE Driver

41

Tresos Configuration Plug-in

∗ Parameter FeeDataBufferSize
∗ Parameter FeeBlockAlwaysAvailable
∗ Parameter FeeLegacyEraseMode
∗ Parameter FeeSwapForeignBlocksEnabled
∗ Parameter FeeMarkEmptyBlocksInvalid
∗ Parameter FeeConfigAssignment
∗ Parameter FeeMaximumNumberBlocks
∗ Parameter FeeSectorRetirement
∗ Parameter FeeSectorEraseRetries

– Container CommonPublishedInformation

∗ Parameter ArReleaseMajorVersion
∗ Parameter ArReleaseMinorVersion
∗ Parameter ArReleaseRevisionVersion
∗ Parameter ModuleId
∗ Parameter SwMajorVersion
∗ Parameter SwMinorVersion
∗ Parameter SwPatchVersion
∗ Parameter VendorApiInfix
∗ Parameter VendorId

– Container FeePublishedInformation

∗ Parameter FeeBlockOverhead
∗ Parameter FeePageOverhead

4.1 Module Fee

Configuration of the Fee (Flash EEPROM Emulation) module.

Included containers:

• FeeClusterGroup

• FeeBlockConfiguration

• FeeSectorToRecover

• FeeGeneral

• CommonPublishedInformation

• FeePublishedInformation

Property Value
type ECUC-MODULE-DEF
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantSupport false
supportedConfigVariants VARIANT-PRE-COMPILE

42
S32K1 FEE Driver

NXP Semiconductors

Tresos Configuration Plug-in

4.2 Container FeeClusterGroup

Vendor specific: Configuration of cluster group specific

parameters for the Flash EEPROM Emulation module.

Included subcontainers:

• FeeCluster

Property Value
type ECUC-PARAM-CONF-CONTAINER-DEF
lowerMultiplicity 1
upperMultiplicity Infinite
postBuildVariantMultiplicity false
multiplicityConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE

4.3 Container FeeCluster

Vendor specific: Configuration of cluster specific

parameters for the Flash EEPROM Emulation module.

Included subcontainers:

• FeeSector

Property Value
type ECUC-PARAM-CONF-CONTAINER-DEF
lowerMultiplicity 2
upperMultiplicity Infinite
postBuildVariantMultiplicity false
multiplicityConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE

4.4 Container FeeSector

Vendor specific: Configuration of sector specific

parameters for the Flash EEPROM Emulation module.

Included subcontainers:

NXP Semiconductors
S32K1 FEE Driver

43

Tresos Configuration Plug-in

• None

44
S32K1 FEE Driver

NXP Semiconductors

Tresos Configuration Plug-in

Property Value
type ECUC-PARAM-CONF-CONTAINER-DEF
lowerMultiplicity 1
upperMultiplicity Infinite
postBuildVariantMultiplicity false
multiplicityConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE

4.5 Parameter FeeSectorIndex

Vendor specific: Fee Sector Index is an invariant index, used to order Fee sectors and loop

over them in the correct, configured order. Its value should be equal with the position of the

configured sector inside the configured sector list (the same value as the shown index).

Rationale: The generated .epc configuration might reorder the flash sectors(alphabetically), thus the index parameter

changes, becoming out of sync with the real intended order .

Range:

min = 0

max = 65534

Property Value
type ECUC-INTEGER-PARAM-DEF
origin NXP
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
defaultValue 0
max 65534
min 0

4.6 Reference FeeSectorRef

Vendor specific: Reference to a logical Fls sector

NXP Semiconductors
S32K1 FEE Driver

45

Tresos Configuration Plug-in

the Fee cluster consist of.

Note: If the Fls_Cancel API is enabled in the FLS driver used by the FEE, the Fls Page Write Asynch

mode cannot be used for flash sectors. Disable Fls_Cancel API or use synchronous write.

If the Fls_Cancel API is enabled in the FLS driver used by the FEE, the FlsMaxWriteNormalMode/FlsMaxWriteFastMode

parameter value cannot be smaller than the size of the FEE Block/Cluster Header or the size of the FEE virtual
page, whichever

is larger. Disable Fls_Cancel API or choose the compatible FlsMaxWriteNormalMode/FlsMaxWriteFastMode
parameter value in the given FlsConfigSet.

Property Value
type ECUC-REFERENCE-DEF
origin NXP
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
requiresSymbolicNameValue False
destination /AUTOSAR/EcucDefs/Fls/FlsConfigSet/FlsSectorList/FlsSector

4.7 Container FeeBlockConfiguration

Configuration of block specific parameters for the Flash EEPROM Emulation module.

Included subcontainers:

• None

Property Value
type ECUC-PARAM-CONF-CONTAINER-DEF
lowerMultiplicity 1
upperMultiplicity Infinite
postBuildVariantMultiplicity false
multiplicityConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE

46
S32K1 FEE Driver

NXP Semiconductors

Tresos Configuration Plug-in

4.8 Parameter FeeBlockNumber

Block identifier (handle).

0x0000 and 0xFFFF shall not be used for block

numbers (see FEE006).

Range:

min = 2^NVM_DATA_SELECTION_BITS

max = 0xFFFF - 2^NVM_DATA_SELECTION_BITS

Note: Depending on the number of bits set aside for dataset selection

several other block numbers shall also be left out to ease implementation.

Property Value
type ECUC-INTEGER-PARAM-DEF
origin AUTOSAR_ECUC
symbolicNameValue true
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
defaultValue 1
max 65534
min 1

4.9 Parameter FeeBlockSize

Size of a logical block in bytes.

Property Value
type ECUC-INTEGER-PARAM-DEF
origin AUTOSAR_ECUC
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A

NXP Semiconductors
S32K1 FEE Driver

47

Tresos Configuration Plug-in

Property Value
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
defaultValue 1
max 65535
min 1

4.10 Parameter FeeImmediateData

Marker for high priority data.

true: Block contains immediate data.

false: Block does not contain immediate data.

Property Value
type ECUC-BOOLEAN-PARAM-DEF
origin AUTOSAR_ECUC
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
defaultValue false

4.11 Parameter FeeNumberOfWriteCycles

Number of write cycles required for this block.

Property Value
type ECUC-INTEGER-PARAM-DEF
origin AUTOSAR_ECUC
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE

48
S32K1 FEE Driver

NXP Semiconductors

Tresos Configuration Plug-in

Property Value
defaultValue 0
max 4294967295
min 0

4.12 Parameter FeeBlockAssignment

Choose to which project this block is assigned.

BootLoader - Block is used only by the boot loader project

Application - Block is used only by the application project

Shared - Block is used for the Application and Boot Loader projects

Property Value
type ECUC-ENUMERATION-PARAM-DEF
origin NXP
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
defaultValue APPLICATION
literals ['APPLICATION', 'BOOTLOADER', 'SHARED']

4.13 Reference FeeClusterGroupRef

Vendor specific: Reference to the Fee cluster group which the Fee

block belongs to. In other words, FeeClusterGroupRef assigns the Fee block

to particular Fee cluster group.

Property Value
type ECUC-REFERENCE-DEF
origin NXP
lowerMultiplicity 1
upperMultiplicity 1

NXP Semiconductors
S32K1 FEE Driver

49

Tresos Configuration Plug-in

Property Value
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
requiresSymbolicNameValue False
destination /TS_T40D2M10I1R0/Fee/FeeClusterGroup

4.14 Reference FeeDeviceIndex

Device index (handle).

Range: 0 .. 254 (0xFF reserved for broadcast call to

GetStatus function).

Property Value
type ECUC-REFERENCE-DEF
origin AUTOSAR_ECUC
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
requiresSymbolicNameValue true
destination /AUTOSAR/EcucDefs/Fls/FlsGeneral

4.15 Container FeeSectorToRecover

Vendor specific: Container for the list of sectors to recover, only used in Sector Retirement mode.

For more information, please refer to the chapter Sector Management and Sector Retirement in the User manual.

Included subcontainers:

• None

Property Value
type ECUC-PARAM-CONF-CONTAINER-DEF

50
S32K1 FEE Driver

NXP Semiconductors

Tresos Configuration Plug-in

Property Value
lowerMultiplicity 0
upperMultiplicity Infinite
postBuildVariantMultiplicity false
multiplicityConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE

4.16 Reference FeeSectorToRecoverRef

Vendor specific: Reference to the sector which will be recovered from the bad state.

For more information, please refer to the chapter Sector Management and Sector Retirement in the User manual.

Property Value
type ECUC-REFERENCE-DEF
origin NXP
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
requiresSymbolicNameValue False
destination /TS_T40D2M10I1R0/Fee/FeeClusterGroup/FeeCluster/FeeSector

4.17 Container FeeGeneral

Container for general parameters. These parameters are not specific to a block.

Included subcontainers:

• None

Property Value
type ECUC-PARAM-CONF-CONTAINER-DEF
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A

NXP Semiconductors
S32K1 FEE Driver

51

Tresos Configuration Plug-in

4.18 Parameter FeeDevErrorDetect

Pre-processor switch to enable and disable development error detection.

true: Development error detection enabled.

false: Development error detection disabled.

Property Value
type ECUC-BOOLEAN-PARAM-DEF
origin AUTOSAR_ECUC
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
defaultValue true

4.19 Parameter FeeEnableUserModeSupport

Fee driver is an independent hardware module, so it can run in user mode without any specific measures.

The parameter is not used in the Fee implementation.

Property Value
type ECUC-BOOLEAN-PARAM-DEF
origin NXP
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
defaultValue false

4.20 Parameter FeeMainFunctionPeriod

The period between successive calls to the main function in seconds.

52
S32K1 FEE Driver

NXP Semiconductors

Tresos Configuration Plug-in

Property Value
type ECUC-FLOAT-PARAM-DEF
origin AUTOSAR_ECUC
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
defaultValue 0.005
max 100000.0
min 1.0E-7

4.21 Parameter FeeNvmJobEndNotification

Mapped to the job end notification routine provided by the upper layer

module (NvM_JobEndNotification).

Note: Disable the end notification to have it set as NULL_PTR.

Property Value
type ECUC-FUNCTION-NAME-DEF
origin AUTOSAR_ECUC
symbolicNameValue false
lowerMultiplicity 0
upperMultiplicity 1
postBuildVariantMultiplicity false
multiplicityConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
defaultValue NvM_JobEndNotification

4.22 Parameter FeeNvmJobErrorNotification

Mapped to the job error notification routine provided by the upper layer

module (NvM_JobErrorNotification).

Note: Disable the error notification to have it set as NULL_PTR.

NXP Semiconductors
S32K1 FEE Driver

53

Tresos Configuration Plug-in

Property Value
type ECUC-FUNCTION-NAME-DEF
origin AUTOSAR_ECUC
symbolicNameValue false
lowerMultiplicity 0
upperMultiplicity 1
postBuildVariantMultiplicity false
multiplicityConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
defaultValue NvM_JobErrorNotification

4.23 Parameter FeeClusterFormatNotification

Fee calls this notification to inform the user in case a cluster erase and write cluster header is performed during
the Fee initialization.

Note: Disable the error notification to have it set as NULL_PTR.

Property Value
type ECUC-FUNCTION-NAME-DEF
origin NXP
symbolicNameValue false
lowerMultiplicity 0
upperMultiplicity 1
postBuildVariantMultiplicity false
multiplicityConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
defaultValue NULL_PTR

4.24 Parameter FeePollingMode

Pre-processor switch to enable and disable the polling mode for this module

Note: This paramater is not utilized in this BSW module implementation

Property Value
type ECUC-BOOLEAN-PARAM-DEF
origin AUTOSAR_ECUC
symbolicNameValue false

54
S32K1 FEE Driver

NXP Semiconductors

Tresos Configuration Plug-in

Property Value
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
defaultValue false

4.25 Parameter FeeSetModeSupported

Compiler switch to enable/disable the SetMode functionality of the

FEE module.

true: SetMode functionality supported / code present,

false: SetMode functionality not supported / code not present.

Note: This configuration setting has to be consistent with that

of all underlying flash device drivers (configuration parameter FlsSetModeApi).

Property Value
type ECUC-BOOLEAN-PARAM-DEF
origin AUTOSAR_ECUC
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
defaultValue true

4.26 Parameter FeeVersionInfoApi

Pre-processor switch to enable/disable the API to read out the module

version information.

true: Version info API enabled.

false: Version info API disabled.

NXP Semiconductors
S32K1 FEE Driver

55

Tresos Configuration Plug-in

Property Value
type ECUC-BOOLEAN-PARAM-DEF
origin AUTOSAR_ECUC
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
defaultValue true

4.27 Parameter FeeVirtualPageSize

The size in bytes to which logical blocks shall be aligned.

Property Value
type ECUC-INTEGER-PARAM-DEF
origin AUTOSAR_ECUC
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
defaultValue 32
max 65535
min 1

4.28 Parameter FeeDataBufferSize

Vendor specific: Size of the data buffer in bytes.

The data buffer is used to buffer data when Fee is copying data

from one cluster to another and when Fee is reading the block header

information on startup.

Size of the data buffer affects number of Fls_MainFunction cycles.

56
S32K1 FEE Driver

NXP Semiconductors

Tresos Configuration Plug-in

Bigger data buffer improves performance of the Fee cluster management

operations and speeds up the startup phase as Fee can read more data

in one cycle of Fls_MainFunction

Note: FeeDataBufferSize must be equal or greater than

FEE_CLUSTER_OVERHEAD. Where FEE_CLUSTER_OVERHEAD is management overhead

per logical cluster in bytes and can be calculated using the following

formula:

 ceiling(16 / FEE_VIRTUAL_PAGE_SIZE + 2) * FEE_VIRTUAL_PAGE_SIZE

Note: In sector management mode, the buffer size will be increased to store sector information in the cluster header.

Property Value
type ECUC-INTEGER-PARAM-DEF
origin NXP
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
defaultValue 96
max 65535
min 0

4.29 Parameter FeeBlockAlwaysAvailable

Vendor specific: According to the AUTOSAR requirements, when the

write operation starts, corresponding block is marked as inconsistent.

It is marked as consistent after successful write.

It means that when write operation is interrupted (cancel, reset)

application cannot access the block data anymore.

Enabling this parameter allows to set the behavior against the AUTOSAR

requirements. In this case, the last valid information is always provided.

NXP Semiconductors
S32K1 FEE Driver

57

Tresos Configuration Plug-in

Valid information means:

FEE_BLOCK_INVALID if the block was invalidated or the block is

not present in the cluster at all.

FEE_BLOCK_VALID in case the previous instance of the block exists and

was not invalidated.

Property Value
type ECUC-BOOLEAN-PARAM-DEF
origin NXP
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
defaultValue false

4.30 Parameter FeeLegacyEraseMode

If enabled, the Fee_EraseImmediateBlock function invalidates the referred

block if it has been already written. Otherwise, the block is left intact.

Property Value
type ECUC-BOOLEAN-PARAM-DEF
origin NXP
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
defaultValue false

4.31 Parameter FeeSwapForeignBlocksEnabled

The recommendation is not to use this mode Enabled for the production phase as it increases the cluster swap

58
S32K1 FEE Driver

NXP Semiconductors

Tresos Configuration Plug-in

overall timing.

This mode may be useful for developement phase if Fee is used in 2 projects running on the same ECU and the
integrator wants

to be able to change configuration for the application project without changing it for the second project.

If disabled,the Fee driver will swap only blocks existing in the current configuration.

If enabled, the Fee driver will swap foreign blocks. This is a limited support when using 2 subprojects with different
Fee configurations

running on the same ECU(example:boot loader and applications projects).For example if this paramters is enabled
and Fee is running in application 1 mode,

it will swap blocks assigned to application 2, even if those blocks are not present in application 1 configuration.This
allow to update the Fee configuration for application 2 without reconfiguring application 1.

Nevertheless, this mode will result in a longer time for cluster swap.

Property Value
type ECUC-BOOLEAN-PARAM-DEF
origin NXP
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
defaultValue false

4.32 Parameter FeeMarkEmptyBlocksInvalid

If the parameter is enabled, Fee will mark the never written blocks as INVALID,

otherwise Fee will mark the never written blocks as INCONSISTENT. Having this define
set as false is compatible with AUTOSAR 4.2.2 version.

Previous AUTOSAR versions do not specify which status must be returned for empty
blocks.

Property Value
type ECUC-BOOLEAN-PARAM-DEF
origin NXP
symbolicNameValue false

NXP Semiconductors
S32K1 FEE Driver

59

Tresos Configuration Plug-in

Property Value
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
defaultValue false

4.33 Parameter FeeConfigAssignment

Choose for which project this Fee configuration is used.

BootLoader - Configuration is used only by the boot loader project

Application - Configuration is used only by the application project

Property Value
type ECUC-ENUMERATION-PARAM-DEF
origin NXP
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
defaultValue APPLICATION
literals ['APPLICATION', 'BOOTLOADER']

4.34 Parameter FeeMaximumNumberBlocks

This must be configured to total number of boot loader, application blocks and also some buffer for blocks added
in the future.

This parameter will be used to statically allocate space for the block runtime information,

so it should be configured to accommodate the total number of blocks running on the ECU in all project versions.

The parameter is used to support Fee Swap Foreign Blocks Feature.

Example of configuration:

60
S32K1 FEE Driver

NXP Semiconductors

Tresos Configuration Plug-in

If application uses 2 blocks, boot loader 1 block and another 1 is shared between application and bootloader then

this parameter must be configured to 2(only appl) + 1(only boot loader) + 1(shared) + X,

where x is the maximum number of blocks we estimate it will be added in future versions.

NXP Semiconductors
S32K1 FEE Driver

61

Tresos Configuration Plug-in

Property Value
type ECUC-INTEGER-PARAM-DEF
origin NXP
symbolicNameValue true
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
defaultValue 1
max 65534
min 1

4.35 Parameter FeeSectorRetirement

Vendor specific: Enables the bad Sector Management and Sector Retirement feature.

Fee driver can have the ability to manage the sectors in each cluster, detect a bad sector and skip it in runtime.

For more information, please refer to the chapter Sector Management and Sector Retirement in the User manual.

Property Value
type ECUC-BOOLEAN-PARAM-DEF
origin NXP
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
defaultValue false

4.36 Parameter FeeSectorEraseRetries

Vendor specific: Number of attempts to erase each sector in the cluster when swapping in sector retirement mode.

A sector will be marked as a bad sector after a number of attemps to erase all have failed.

For more information, please refer to the chapter Sector Management and Sector Retirement in the User manual.

62
S32K1 FEE Driver

NXP Semiconductors

Tresos Configuration Plug-in

Property Value
type ECUC-INTEGER-PARAM-DEF
origin NXP
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PRE-COMPILE
defaultValue 3
max 255
min 0

4.37 Container CommonPublishedInformation

CommonPublishedInformation

Common container, aggregated by all modules. It contains published

information about vendor and versions.

Included subcontainers:

• None

Property Value
type ECUC-PARAM-CONF-CONTAINER-DEF
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A

4.38 Parameter ArReleaseMajorVersion

AUTOSAR Major Version

Vendor specific: Major version number of AUTOSAR specification

on which the appropriate implementation is based on.

NXP Semiconductors
S32K1 FEE Driver

63

Tresos Configuration Plug-in

Property Value
type ECUC-INTEGER-PARAM-DEF
origin NXP
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PUBLISHED-INFORMATION
defaultValue 4
max 4
min 4

4.39 Parameter ArReleaseMinorVersion

AUTOSAR Minor Version

Vendor specific: Minor version number of AUTOSAR specification

on which the appropriate implementation is based on.

Property Value
type ECUC-INTEGER-PARAM-DEF
origin NXP
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PUBLISHED-INFORMATION
defaultValue 4
max 4
min 4

4.40 Parameter ArReleaseRevisionVersion

AUTOSAR Patch Version
Vendor specific: Revision version number of AUTOSAR specification
on which the appropriate implementation is based on.

64
S32K1 FEE Driver

NXP Semiconductors

Tresos Configuration Plug-in

Property Value
type ECUC-INTEGER-PARAM-DEF
origin NXP
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PUBLISHED-INFORMATION
defaultValue 0
max 0
min 0

4.41 Parameter ModuleId

Module ID

Vendor specific: Module ID of this module from Module List.

Property Value
type ECUC-INTEGER-PARAM-DEF
origin NXP
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PUBLISHED-INFORMATION
defaultValue 21
max 21
min 21

4.42 Parameter SwMajorVersion

Software Major Version

Vendor specific: Major version number of the vendor specific

implementation of the module. The numbering is vendor specific.

NXP Semiconductors
S32K1 FEE Driver

65

Tresos Configuration Plug-in

Property Value
type ECUC-INTEGER-PARAM-DEF
origin NXP
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PUBLISHED-INFORMATION
defaultValue 1
max 1
min 1

4.43 Parameter SwMinorVersion

Software Minor Version

Vendor specific: Minor version number of the vendor specific

implementation of the module. The numbering is vendor specific.

Property Value
type ECUC-INTEGER-PARAM-DEF
origin NXP
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PUBLISHED-INFORMATION
defaultValue 0
max 0
min 0

4.44 Parameter SwPatchVersion

Software Patch Version
Vendor specific: Patch level version number of the vendor
specific implementation of the module. The numbering is vendor specific.

66
S32K1 FEE Driver

NXP Semiconductors

Tresos Configuration Plug-in

Property Value
type ECUC-INTEGER-PARAM-DEF
origin NXP
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PUBLISHED-INFORMATION
defaultValue 1
max 1
min 1

4.45 Parameter VendorApiInfix

Vendor Api Infix

Vendor specific: In driver modules which can be instantiated several

times on a single ECU, BSW00347 requires that the name of APIs is extended

by the VendorId and a vendor specific name.

This parameter is used to specify the vendor specific name. In total, the

implementation specific name is generated as follows:

<ModuleName>_<VendorId>_<VendorApiInfix>.

E.g. assuming that the VendorId of the implementor is 123 and the

implementer chose a VendorApiInfix of "v11r456" a API name

Can_Write defined in the SWS will translate to Can_123_v11r456Write.

This parameter is mandatory for all modules with

upper multiplicity > 1.

It shall not be used for modules with upper multiplicity = 1.

Property Value
type ECUC-STRING-PARAM-DEF
origin NXP
symbolicNameValue false
lowerMultiplicity 0
upperMultiplicity 1
postBuildVariantMultiplicity false
multiplicityConfigClasses VARIANT-PRE-COMPILE: PUBLISHED-INFORMATION
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PUBLISHED-INFORMATION
defaultValue

NXP Semiconductors
S32K1 FEE Driver

67

Tresos Configuration Plug-in

4.46 Parameter VendorId

Vendor ID

Vendor specific: Vendor ID of the dedicated implementation of this

module according to the AUTOSAR vendor list.

Property Value
type ECUC-INTEGER-PARAM-DEF
origin NXP
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PUBLISHED-INFORMATION
defaultValue 43
max 43
min 43

4.47 Container FeePublishedInformation

Additional published parameters not covered by CommonPublishedInformation

container.

Note:

That these parameters do not have any configuration class setting, since

they are published information.

Included subcontainers:

• None

Property Value
type ECUC-PARAM-CONF-CONTAINER-DEF
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A

68
S32K1 FEE Driver

NXP Semiconductors

Tresos Configuration Plug-in

4.48 Parameter FeeBlockOverhead

Management overhead per logical block in bytes

Note:

The logical block management overhead depends on FeeVirtualPageSize and can be

calculated using the following formula:

 ceiling(12 / FEE_VIRTUAL_PAGE_SIZE + 2) * FEE_VIRTUAL_PAGE_SIZE

Property Value
type ECUC-INTEGER-PARAM-DEF
origin AUTOSAR_ECUC
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PUBLISHED-INFORMATION
defaultValue 0
max 65535
min 0

4.49 Parameter FeePageOverhead

Management overhead per page in bytes

Note:

The page management overhead is 0 bytes

Property Value
type ECUC-INTEGER-PARAM-DEF
origin AUTOSAR_ECUC
symbolicNameValue false
lowerMultiplicity 1
upperMultiplicity 1
postBuildVariantMultiplicity N/A
multiplicityConfigClasses N/A
postBuildVariantValue false
valueConfigClasses VARIANT-PRE-COMPILE: PUBLISHED-INFORMATION
defaultValue 0
max 65535
min 0

NXP Semiconductors
S32K1 FEE Driver

69

Chapter 5

Module Index

5.1 Software Specification

Here is a list of all modules:

FEE . 71

70
S32K1 FEE Driver

NXP Semiconductors

Chapter 6

Module Documentation

6.1 FEE

6.1.1 Detailed Description

Data Structures

• struct Fee_ClusterGroupInfoType
Fee cluster group run-time status. More...

• struct Fee_BlockInfoType
Fee block run-time status. More...

• struct Fee_SectorRuntimeInfoType
Fee sectors run-time status. More...

• struct Fee_ClusterRuntimeInfoType
Fee clusters run-time status. More...

• struct Fee_ClusterGroupRuntimeInfoType
Fee cluster group run-time Information. More...

• struct Fee_BlockConfigType
Fee block configuration structure. More...

• struct Fee_ClusterType
Fee cluster configuration structure. More...

• struct Fee_ClusterGroupType
Fee cluster group configuration structure. More...

• struct Fee_BlockType
Fee block header configuration structure. This consists of block number and length of block and Type of Fee block.
More...

• struct Fee_ClusterHeaderType
Fee cluster header configuration structure. More...

NXP Semiconductors
S32K1 FEE Driver

71

Module Documentation

Macros

• #define FEE_INIT_ID
service ID of function: Fee_Init. (passed to DET)

• #define FEE_SETMODE_ID
service ID of function: Fee_SetMode. (passed to DET)

• #define FEE_READ_ID
service ID of function: Fee_Read. (passed to DET)

• #define FEE_WRITE_ID
service ID of function: Fee_Write. (passed to DET)

• #define FEE_CANCEL_ID
service ID of function: Fee_Cancel. (passed to DET)

• #define FEE_GETSTATUS_ID
service ID of function: Fee_GetStatus. (passed to DET)

• #define FEE_GETJOBRESULT_ID
service ID of function: Fee_GetJobResult. (passed to DET)

• #define FEE_INVALIDATEBLOCK_ID
service ID of function: Fee_InvalidateBlock. (passed to DET)

• #define FEE_GETVERSIONINFO_ID
service ID of function: Fee_GetVersionInfo. (passed to DET)

• #define FEE_ERASEIMMEDIATEBLOCK_ID
service ID of function: Fee_EraseImmediateBlock. (passed to DET)

• #define FEE_JOBENDNOTIFICATION_ID
service ID of function: Fee_JobEndNotification. (passed to DET)

• #define FEE_JOBERRORNOTIFICATION_ID
service ID of function: Fee_JobErrorNotification.(passed to DET)

• #define FEE_MAINFUNCTION_ID
service ID of function: Fee_MainFunction. (passed to DET)

• #define FEE_GETRUNTIMEINFO_ID
service ID of function: Fee_GetRunTimeInfo. (passed to DET)

• #define FEE_FORCESWAPONNEXTWRITE_ID
service ID of function: Fee_ForceSwapOnNextWrite. (passed to DET)

• #define FEE_E_UNINIT
API called when module was not initialized.

• #define FEE_E_INVALID_BLOCK_NO
API called with invalid block number.

• #define FEE_E_INVALID_BLOCK_OFS
API called with invalid block offset.

• #define FEE_E_PARAM_POINTER
API called with invalid data pointer.

• #define FEE_E_INVALID_BLOCK_LEN
API called with invalid length information.

• #define FEE_E_BUSY
API called while module is busy processing a user request.

• #define FEE_E_INVALID_CANCEL
API called while module is not busy because there is no job to cancel.

• #define FEE_E_INIT_FAILED

72
S32K1 FEE Driver

NXP Semiconductors

Module Documentation

API Fee_init failed.
• #define FEE_E_CLUSTER_GROUP_IDX

API called with invalid cluster group index.
• #define FEE_E_FOREIGN_BLOCKS_OVF

API number of foreign blocks from data flash exceeds the total number of blocks allowed which is FEE_MAX_N←↩

R_OF_BLOCKS.

Types Reference

• typedef Fee_BlockConfigType Fee_ConfigType
Fee Configuration type is a stub type, not used, but required by ASR 4.2.2.

Enum Reference

• enum Fee_BlockStatusType
Status of Fee block header.

• enum Fee_ClusterStatusType
Status of Fee cluster header.

• enum Fee_JobType
Type of job currently executed by Fee_MainFunction.

• enum Fee_TranslationJobType
Type of translation jobs to translate emulation address to logical address.

• enum Fee_BlockAssignmentType
Fee block assignment type.

Function Reference

• void Fee_Init (const Fee_ConfigType ∗ConfigPtr)
Service to initialize the FEE module.

• void Fee_SetMode (MemIf_ModeType Mode)
Set the Fee module' s operation mode to the given Mode.

• Std_ReturnType Fee_Read (uint16 BlockNumber, uint16 BlockOffset, uint8 ∗DataBufferPtr, uint16 Length)
Service to initiate a read job.

• Std_ReturnType Fee_Write (uint16 BlockNumber, const uint8 ∗DataBufferPtr)
Service to initiate a write job.

• void Fee_Cancel (void)
Service to call the cancel function of the underlying flash driver.

• MemIf_StatusType Fee_GetStatus (void)
Return the Fee module state.

• MemIf_JobResultType Fee_GetJobResult (void)
Return the result of the last job.

• Std_ReturnType Fee_InvalidateBlock (uint16 BlockNumber)
Service to invalidate a logical block.

• void Fee_GetVersionInfo (Std_VersionInfoType ∗VersionInfoPtr)

NXP Semiconductors
S32K1 FEE Driver

73

Module Documentation

Return the version information of the Fee module.
• Std_ReturnType Fee_EraseImmediateBlock (uint16 BlockNumber)

Service to erase a logical block.
• void Fee_GetRunTimeInfo (uint8 ClrGrpIndex, Fee_ClusterGroupRuntimeInfoType ∗ClrGrpRTInfo)

Service to read runtime information in the selected cluster.
• Std_ReturnType Fee_ForceSwapOnNextWrite (uint8 ClrGrpIndex)

Service to prepare the driver for a cluster swap in the selected cluster group.

6.1.2 Data Structure Documentation

6.1.2.1 struct Fee_ClusterGroupInfoType

Fee cluster group run-time status.

Definition at line 187 of file Fee_InternalTypes.h.

Data Fields

Type Name Description
Fls_AddressType DataAddrIt Address of current Fee data block in flash.
Fls_AddressType HdrAddrIt Address of current Fee block header in flash.

uint32 ActClrID ID of active cluster.
uint8 ActClr Index of active cluster.

Fee_ClusterRuntimeInfoType ∗ ClrInfo Pointer to array of Fee cluster runtime infomation.

6.1.2.2 struct Fee_BlockInfoType

Fee block run-time status.

Definition at line 202 of file Fee_InternalTypes.h.

Data Fields

Type Name Description
Fls_AddressType DataAddr Address of Fee block data in flash.
Fls_AddressType InvalidAddr Address of Fee block invalidation field in flash.

Fee_BlockStatusType BlockStatus Current status of Fee block.

6.1.2.3 struct Fee_SectorRuntimeInfoType

Fee sectors run-time status.
Definition at line 107 of file Fee_Types.h.

74
S32K1 FEE Driver

NXP Semiconductors

Module Documentation

Data Fields

Type Name Description
Fls_AddressType SectorAddr Logical address of sector on Fls.
Fls_LengthType SectorSize Size of sector in bytes.

6.1.2.4 struct Fee_ClusterRuntimeInfoType

Fee clusters run-time status.

Definition at line 117 of file Fee_Types.h.

Data Fields

Type Name Description
Fls_LengthType Length Size of Fee cluster in bytes.

uint16 SectorCount Number of sector in cluster.
Fee_SectorRuntimeInfoType ∗ SectorList Pointer to array of sector configurations.

6.1.2.5 struct Fee_ClusterGroupRuntimeInfoType

Fee cluster group run-time Information.

Definition at line 143 of file Fee_Types.h.

Data Fields

Type Name Description
Fls_AddressType ClusterTotalSpace Total space in the selected cluster group.
Fls_AddressType ClusterFreeSpace Free space in the selected cluster group.

uint16 BlockHeaderOverhead Block Overhead (header valid and inval flag)
uint16 VirtualPageSize Fee Virtual Page Size.
uint32 NumberOfSwap Number of cluster swap performed in the selected

cluster group.
Fee_SectorRuntimeInfoType ∗ SectorInfo Pointer to the sector runtime information data

structure.

6.1.2.6 struct Fee_BlockConfigType

Fee block configuration structure.

Definition at line 173 of file Fee_Types.h.

NXP Semiconductors
S32K1 FEE Driver

75

Module Documentation

Data Fields
• uint16 BlockNumber

Fee block number.
• uint16 BlockSize

Size of Fee block in bytes.
• uint8 ClrGrp

Index of cluster group the Fee block belongs to.
• boolean ImmediateData

TRUE if immediate data block.
• Fee_BlockAssignmentType BlockAssignment

specifies which project uses this block

6.1.2.6.1 Field Documentation

6.1.2.6.1.1 BlockNumber uint16 BlockNumber

Fee block number.
Definition at line 176 of file Fee_Types.h.

6.1.2.6.1.2 BlockSize uint16 BlockSize

Size of Fee block in bytes.
Definition at line 179 of file Fee_Types.h.

6.1.2.6.1.3 ClrGrp uint8 ClrGrp

Index of cluster group the Fee block belongs to.
Definition at line 180 of file Fee_Types.h.

6.1.2.6.1.4 ImmediateData boolean ImmediateData

TRUE if immediate data block.
Definition at line 183 of file Fee_Types.h.

6.1.2.6.1.5 BlockAssignment Fee_BlockAssignmentType BlockAssignment

specifies which project uses this block
Definition at line 184 of file Fee_Types.h.

6.1.2.7 struct Fee_ClusterType

Fee cluster configuration structure.
Definition at line 191 of file Fee_Types.h.

76
S32K1 FEE Driver

NXP Semiconductors

Module Documentation

Data Fields

Type Name Description
Fls_AddressType StartAddr Address of Fee cluster in flash.

6.1.2.8 struct Fee_ClusterGroupType

Fee cluster group configuration structure.

Definition at line 204 of file Fee_Types.h.

Data Fields

• const Fee_ClusterType ∗const ClrPtr
Pointer to array of Fee cluster configurations.

• uint32 ClrCount
Number of clusters in cluster group.

• Fls_LengthType ReservedSize
Size of reserved area in the given cluster group (memory occupied by immediate blocks)

6.1.2.8.1 Field Documentation

6.1.2.8.1.1 ClrPtr const Fee_ClusterType∗ const ClrPtr

Pointer to array of Fee cluster configurations.

Definition at line 206 of file Fee_Types.h.

6.1.2.8.1.2 ClrCount uint32 ClrCount

Number of clusters in cluster group.

Definition at line 207 of file Fee_Types.h.

6.1.2.8.1.3 ReservedSize Fls_LengthType ReservedSize

Size of reserved area in the given cluster group (memory occupied by immediate blocks)

Definition at line 208 of file Fee_Types.h.

6.1.2.9 struct Fee_BlockType

Fee block header configuration structure. This consists of block number and length of block and Type of Fee block.

Definition at line 222 of file Fee_Types.h.

NXP Semiconductors
S32K1 FEE Driver

77

Module Documentation

Data Fields

Type Name Description
uint16 BlockNumber Number of block.
uint16 Length Length of block.

boolean ImmediateBlock Type of Fee block. Set to TRUE for immediate block.

6.1.2.10 struct Fee_ClusterHeaderType

Fee cluster header configuration structure.

Definition at line 233 of file Fee_Types.h.

Data Fields

Type Name Description
uint32 ClrID 32-bit cluster ID

Fls_AddressType StartAddr Start address of Fee cluster in Fls address space.
Fls_LengthType Length Length of Fee cluster in bytes.

Fee_ClusterRuntimeInfoType ∗ ClrInfo Pointer to the cluster runtime information.

6.1.3 Macro Definition Documentation

6.1.3.1 FEE_INIT_ID

#define FEE_INIT_ID

service ID of function: Fee_Init. (passed to DET)

Definition at line 101 of file Fee.h.

6.1.3.2 FEE_SETMODE_ID

#define FEE_SETMODE_ID

service ID of function: Fee_SetMode. (passed to DET)

Definition at line 106 of file Fee.h.

78
S32K1 FEE Driver

NXP Semiconductors

Module Documentation

6.1.3.3 FEE_READ_ID

#define FEE_READ_ID

service ID of function: Fee_Read. (passed to DET)

Definition at line 111 of file Fee.h.

6.1.3.4 FEE_WRITE_ID

#define FEE_WRITE_ID

service ID of function: Fee_Write. (passed to DET)

Definition at line 116 of file Fee.h.

6.1.3.5 FEE_CANCEL_ID

#define FEE_CANCEL_ID

service ID of function: Fee_Cancel. (passed to DET)

Definition at line 121 of file Fee.h.

6.1.3.6 FEE_GETSTATUS_ID

#define FEE_GETSTATUS_ID

service ID of function: Fee_GetStatus. (passed to DET)

Definition at line 126 of file Fee.h.

6.1.3.7 FEE_GETJOBRESULT_ID

#define FEE_GETJOBRESULT_ID

service ID of function: Fee_GetJobResult. (passed to DET)

Definition at line 131 of file Fee.h.

NXP Semiconductors
S32K1 FEE Driver

79

Module Documentation

6.1.3.8 FEE_INVALIDATEBLOCK_ID

#define FEE_INVALIDATEBLOCK_ID

service ID of function: Fee_InvalidateBlock. (passed to DET)

Definition at line 136 of file Fee.h.

6.1.3.9 FEE_GETVERSIONINFO_ID

#define FEE_GETVERSIONINFO_ID

service ID of function: Fee_GetVersionInfo. (passed to DET)

Definition at line 141 of file Fee.h.

6.1.3.10 FEE_ERASEIMMEDIATEBLOCK_ID

#define FEE_ERASEIMMEDIATEBLOCK_ID

service ID of function: Fee_EraseImmediateBlock. (passed to DET)

Definition at line 146 of file Fee.h.

6.1.3.11 FEE_JOBENDNOTIFICATION_ID

#define FEE_JOBENDNOTIFICATION_ID

service ID of function: Fee_JobEndNotification. (passed to DET)

Definition at line 151 of file Fee.h.

6.1.3.12 FEE_JOBERRORNOTIFICATION_ID

#define FEE_JOBERRORNOTIFICATION_ID

service ID of function: Fee_JobErrorNotification.(passed to DET)

Definition at line 156 of file Fee.h.

80
S32K1 FEE Driver

NXP Semiconductors

Module Documentation

6.1.3.13 FEE_MAINFUNCTION_ID

#define FEE_MAINFUNCTION_ID

service ID of function: Fee_MainFunction. (passed to DET)

Definition at line 161 of file Fee.h.

6.1.3.14 FEE_GETRUNTIMEINFO_ID

#define FEE_GETRUNTIMEINFO_ID

service ID of function: Fee_GetRunTimeInfo. (passed to DET)

Definition at line 168 of file Fee.h.

6.1.3.15 FEE_FORCESWAPONNEXTWRITE_ID

#define FEE_FORCESWAPONNEXTWRITE_ID

service ID of function: Fee_ForceSwapOnNextWrite. (passed to DET)

Definition at line 173 of file Fee.h.

6.1.3.16 FEE_E_UNINIT

#define FEE_E_UNINIT

API called when module was not initialized.

Definition at line 179 of file Fee.h.

6.1.3.17 FEE_E_INVALID_BLOCK_NO

#define FEE_E_INVALID_BLOCK_NO

API called with invalid block number.

Definition at line 182 of file Fee.h.

NXP Semiconductors
S32K1 FEE Driver

81

Module Documentation

6.1.3.18 FEE_E_INVALID_BLOCK_OFS

#define FEE_E_INVALID_BLOCK_OFS

API called with invalid block offset.

Definition at line 185 of file Fee.h.

6.1.3.19 FEE_E_PARAM_POINTER

#define FEE_E_PARAM_POINTER

API called with invalid data pointer.

Definition at line 188 of file Fee.h.

6.1.3.20 FEE_E_INVALID_BLOCK_LEN

#define FEE_E_INVALID_BLOCK_LEN

API called with invalid length information.

Definition at line 191 of file Fee.h.

6.1.3.21 FEE_E_BUSY

#define FEE_E_BUSY

API called while module is busy processing a user request.

Definition at line 194 of file Fee.h.

6.1.3.22 FEE_E_INVALID_CANCEL

#define FEE_E_INVALID_CANCEL

API called while module is not busy because there is no job to cancel.

Definition at line 197 of file Fee.h.

82
S32K1 FEE Driver

NXP Semiconductors

Module Documentation

6.1.3.23 FEE_E_INIT_FAILED

#define FEE_E_INIT_FAILED

API Fee_init failed.

Definition at line 200 of file Fee.h.

6.1.3.24 FEE_E_CLUSTER_GROUP_IDX

#define FEE_E_CLUSTER_GROUP_IDX

API called with invalid cluster group index.

Definition at line 210 of file Fee.h.

6.1.3.25 FEE_E_FOREIGN_BLOCKS_OVF

#define FEE_E_FOREIGN_BLOCKS_OVF

API number of foreign blocks from data flash exceeds the total number of blocks allowed which is FEE_MAX_N←↩

R_OF_BLOCKS.

Definition at line 214 of file Fee.h.

6.1.4 Types Reference

6.1.4.1 Fee_ConfigType

typedef Fee_BlockConfigType Fee_ConfigType

Fee Configuration type is a stub type, not used, but required by ASR 4.2.2.

Definition at line 216 of file Fee_Types.h.

6.1.5 Enum Reference

6.1.5.1 Fee_BlockStatusType

enum Fee_BlockStatusType

Status of Fee block header.

NXP Semiconductors
S32K1 FEE Driver

83

Module Documentation

Enumerator

FEE_BLOCK_VALID Fee block is valid.
FEE_BLOCK_INVALID Fee block is invalid (has been invalidated)

FEE_BLOCK_INCONSISTENT Fee block is inconsistent (contains bogus data)
FEE_BLOCK_HEADER_INVALID Fee block header is garbled.

FEE_BLOCK_INVALIDATED Fee block header is invalidated by
Fee_InvalidateBlock(BlockNumber)(not used when
FEE_BLOCK_ALWAYS_AVAILABLE == STD_OFF)

FEE_BLOCK_HEADER_BLANK Fee block header is blank, it is used to mark the end of Fee block
header list when parsing the memory at initialization.

FEE_BLOCK_INCONSISTENT_COPY FEE data read error during swap (ie data area was allocated)
FEE_BLOCK_NEVER_WRITTEN FEE block was never written in data flash.

Definition at line 90 of file Fee_InternalTypes.h.

6.1.5.2 Fee_ClusterStatusType

enum Fee_ClusterStatusType

Status of Fee cluster header.

Enumerator

FEE_CLUSTER_VALID Fee cluster is valid.
FEE_CLUSTER_INVALID Fee cluster is invalid.

FEE_CLUSTER_INCONSISTENT Fee cluster is inconsistent (contains bogus data)
FEE_CLUSTER_HEADER_INVALID Fee cluster header is garbled.

Definition at line 112 of file Fee_InternalTypes.h.

6.1.5.3 Fee_JobType

enum Fee_JobType

Type of job currently executed by Fee_MainFunction.

Enumerator

FEE_JOB_READ Read Fee block.
FEE_JOB_WRITE Write Fee block to flash.

84
S32K1 FEE Driver

NXP Semiconductors

Module Documentation

Enumerator

FEE_JOB_WRITE_DATA Write Fee block data to flash.
FEE_JOB_WRITE_UNALIGNED_DATA Write unaligned rest of Fee block data to flash.

FEE_JOB_WRITE_VALIDATE Validate Fee block by writing validation flag to flash.
FEE_JOB_WRITE_DONE Finalize validation of Fee block.
FEE_JOB_INVAL_BLOCK Invalidate Fee block by writing the invalidation flag to flash.

FEE_JOB_INVAL_BLOCK_DONE Finalize invalidation of Fee block.
FEE_JOB_ERASE_IMMEDIATE Erase (pre-allocate) immediate Fee block.

FEE_JOB_INT_SCAN Initialize the cluster scan job.
FEE_JOB_INT_SCAN_CLR Scan active cluster of current cluster group.

FEE_JOB_INT_SCAN_CLR_HDR_PARSE Parse Fee cluster header.
FEE_JOB_INT_SCAN_CLR_FMT Format first Fee cluster.

FEE_JOB_INT_SCAN_CLR_FMT_DONE Finalize format of first Fee cluster.
FEE_JOB_INT_SCAN_BLOCK_HDR_PARSE Parse Fee block header.

FEE_JOB_INT_SWAP_CLR_FMT Format current Fee cluster in current Fee cluster group.
FEE_JOB_INT_SWAP_BLOCK Copy next block from source to target cluster.

FEE_JOB_INT_SWAP_DATA_READ Read data from source cluster to internal Fee buffer.
FEE_JOB_INT_SWAP_DATA_WRITE Write data from internal Fee buffer to target cluster.

FEE_JOB_INT_SWAP_CLR_VLD_DONE Finalize cluster validation.
FEE_JOB_DONE No more subsequent jobs to schedule.

FEE_JOB_SETMODE Setmode to fls.

Definition at line 124 of file Fee_InternalTypes.h.

6.1.5.4 Fee_TranslationJobType

enum Fee_TranslationJobType

Type of translation jobs to translate emulation address to logical address.

Enumerator

FEE_TRANS_JOB_READ Translation read data from Fls.
FEE_TRANS_JOB_WRITE Translation write data to Fls.
FEE_TRANS_JOB_ERASE Translation erase Fls sectors.

Definition at line 170 of file Fee_InternalTypes.h.

NXP Semiconductors
S32K1 FEE Driver

85

Module Documentation

6.1.5.5 Fee_BlockAssignmentType

enum Fee_BlockAssignmentType

Fee block assignment type.

Enumerator

FEE_PROJECT_SHARED block is used for all the projects
FEE_PROJECT_APPLICATION block is used for the application project
FEE_PROJECT_BOOTLOADER block is used for the bootloader project

FEE_PROJECT_RESERVED the value is reserved

Definition at line 160 of file Fee_Types.h.

6.1.6 Function Reference

6.1.6.1 Fee_Init()

void Fee_Init (

const Fee_ConfigType ∗ ConfigPtr)

Service to initialize the FEE module.

The function Fee_Init shall initialize the Flash EEPROM Emulation module.

Parameters

in ConfigPtr Pointer to fee driver configuration set.

Precondition

The FEE module' s environment shall not call the function Fee_Init shall during a running operation of the
FEE module.

Note

The function Autosar Service ID[hex]: 0x00.
Asynchronous
Non Reentrant

86
S32K1 FEE Driver

NXP Semiconductors

Module Documentation

6.1.6.2 Fee_SetMode()

void Fee_SetMode (

MemIf_ModeType Mode)

Set the Fee module' s operation mode to the given Mode.

Call the Fls_SetMode function of the underlying flash driver.

Parameters

in Mode (Either MEMIF_MODE_FAST or MEMIF_MODE_SLOW)

Precondition

The module must be initialized and not busy.

Note

The function Autosar Service ID[hex]: 0x01.
Asynchronous
Non Reentrant

6.1.6.3 Fee_Read()

Std_ReturnType Fee_Read (

uint16 BlockNumber,

uint16 BlockOffset,

uint8 ∗ DataBufferPtr,

uint16 Length)

Service to initiate a read job.

The function Fee_Read shall take the block start address and offset and calculate the corresponding memory read
address.

Parameters

in BlockNumber Number of logical block, also denoting start address of that block in flash memory.
in BlockOffset Read address offset inside the block.
out DataBufferPtr Pointer to data buffer.
in Length Number of bytes to read.

NXP Semiconductors
S32K1 FEE Driver

87

Module Documentation

Precondition

The module must be initialized, not busy, uBlockNumber must be valid, uLength != 0, pDataBufferPtr !=
NULL_PTR, uBlockOffset and (uBlockOffset + uLength - 1) must be in range.

Postcondition

changes Fee_eModuleStatus module status and Fee_uJobBlockOffset, Fee_uJobBlockLength, Fee_uJob←↩

BlockIndex, Fee_pJobReadDataDestPtr, Fee_eJob, Fee_eJobResult job control internal variables.

Returns

Std_ReturnType

Return values

E_OK The read job was accepted by the underlying memory driver.
E_NOT_OK The read job has not been accepted by the underlying memory driver.

Note

The function Autosar Service ID[hex]: 0x02.
Asynchronous.
Non Reentrant.

6.1.6.4 Fee_Write()

Std_ReturnType Fee_Write (

uint16 BlockNumber,

const uint8 ∗ DataBufferPtr)

Service to initiate a write job.

The function Fee_Write shall take the block start address and calculate the corresponding memory write address.
The block address offset shall be fixed to zero. The function Fee_Write shall copy the given or computed parameters
to module internal variables, initiate a write job, set the FEE module status to MEMIF_BUSY, set the job result
to MEMIF_JOB_PENDING and return with E_OK.The FEE module shall execute the write job of the function
Fee_Write asynchronously within the FEE module' s main function.

Parameters

in BlockNumber Number of logical block, also denoting start address of that block in emulated EEPROM.
out DataBufferPtr Pointer to data buffer.

88
S32K1 FEE Driver

NXP Semiconductors

Module Documentation

Returns

Std_ReturnType

Return values

E_OK The write job was accepted by the underlying memory driver.
E_NOT_OK The write job has not been accepted by the underlying memory driver.

Precondition

The module must be initialized, not busy, uBlockNumber must be valid, and pDataBufferPtr != NULL_PTR.
Before call the function "Fee_Write" for immediate date must be called the function "Fee_EraseImmediate←↩

Block".

Postcondition

changes Fee_eModuleStatus module status and Fee_uJobBlockIndex, Fee_pJobWriteDataDestPtr, Fee_eJob,
Fee_eJobResult job control internal variables.

Note

The function Autosar Service ID[hex]: 0x03.
Asynchronous.
Non Reentrant.

6.1.6.5 Fee_Cancel()

void Fee_Cancel (

void)

Service to call the cancel function of the underlying flash driver.

The function Fee_Cancel and the cancel function of the underlying flash driver are asynchronous w.r.t. an ongoing
read, erase or write job in the flash memory.

Precondition

The module must be initialized.

Postcondition

Changes Fee_eModuleStatus module status and job result Fee_eJobResult internal variables.

Note

The function Autosar Service ID[hex]: 0x04.
Synchronous.
Non Reentrant.

NXP Semiconductors
S32K1 FEE Driver

89

Module Documentation

6.1.6.6 Fee_GetStatus()

MemIf_StatusType Fee_GetStatus (

void)

Return the Fee module state.

Return the Fee module state synchronously.

Note

The function Autosar Service ID[hex]: 0x05.
Synchronous
Non Reentrant

Returns

Fee_eModuleStatus

Return values

MEMIF_UNINIT Module has not been initialized (yet).
MEMIF_IDLE Module is currently idle.
MEMIF_BUSY Module is currently busy.

MEMIF_BUSY_INTERNAL Module is busy with internal management operations.

6.1.6.7 Fee_GetJobResult()

MemIf_JobResultType Fee_GetJobResult (

void)

Return the result of the last job.

Return the result of the last job synchronously.

Returns

MemIf_JobResultType

Return values

MEMIF_JOB_OK The job has been finished successfully.
MEMIF_JOB_FAILED The job has not been finished successfully.

MEMIF_JOB_PENDING The job has not yet been finished.
MEMIF_JOB_CANCELED The job has been canceled.

MEMIF_BLOCK_INCONSISTENT The requested block is inconsistent, it may contain corrupted data.
MEMIF_BLOCK_INVALID The requested block has been invalidated, the requested read operation

can not be performed.
90

S32K1 FEE Driver
NXP Semiconductors

Module Documentation

Note

The function Autosar Service ID[hex]: 0x06.
Synchronous.
Non Reentrant.

6.1.6.8 Fee_InvalidateBlock()

Std_ReturnType Fee_InvalidateBlock (

uint16 BlockNumber)

Service to invalidate a logical block.

Parameters

in BlockNumber Number of logical block, also denoting start address of that block in flash memory

Returns

Std_ReturnType

Return values

E_OK The job was accepted by the underlying memory driver.
E_NOT_OK The job has not been accepted by the underlying memory driver.

Precondition

The module must be initialized, not busy, and uBlockNumber must be valid

Postcondition

changes Fee_eModuleStatus module status and Fee_uJobBlockIndex, Fee_eJob, and Fee_eJobResult job con-
trol internal variables. EEPROM.

Note

The function Autosar Service ID[hex]: 0x07.
Asynchronous.
Non Reentrant.

NXP Semiconductors
S32K1 FEE Driver

91

Module Documentation

6.1.6.9 Fee_GetVersionInfo()

void Fee_GetVersionInfo (

Std_VersionInfoType ∗ VersionInfoPtr)

Return the version information of the Fee module.

The version information includes: Module Id, Vendor Id, Vendor specific version numbers.

Parameters

out VersionInfoPtr Pointer to where to store the version information of this module .

Precondition

pVersionInfoPtr must not be NULL_PTR.

Note

The function Autosar Service ID[hex]: 0x08.
Synchronous.
Non Reentrant.

6.1.6.10 Fee_EraseImmediateBlock()

Std_ReturnType Fee_EraseImmediateBlock (

uint16 BlockNumber)

Service to erase a logical block.

The function Fee_EraseImmediateBlock shall take the block number and calculate the corresponding memory block
address. The function Fee_EraseImmediateBlock shall ensure that the FEE module can write immediate data.
Whether this involves physically erasing a memory area and therefore calling the erase function of the underlying
driver depends on the implementation. If development error detection for the FEE module is enabled, the function
Fee_EraseImmediateBlock shall check whether the addressed logical block is configured as containing immediate
data (configuration parameter FeeImmediateData == TRUE). If not, the function Fee_EraseImmediateBlock shall
report the error code FEE_E_INVALID_BLOCK_NO.

Parameters

in BlockNumber Number of logical block, also denoting.

92
S32K1 FEE Driver

NXP Semiconductors

Module Documentation

Returns

Std_ReturnType

Return values

E_OK The job was accepted by the underlying memory driver.
E_NOT_OK The job has not been accepted by the underlying memory driver. start address of that block in

emulated EEPROM.

Precondition

The module must be initialized, not busy, uBlockNumber must be valid, and type of Fee block must be
immediate.

Postcondition

changes Fee_eModuleStatus module status and Fee_uJobBlockIndex, Fee_eJob, and Fee_eJobResult job con-
trol internal variables.

Note

The function Autosar Service ID[hex]: 0x09.
Asynchronous.
Non Reentrant.

6.1.6.11 Fee_GetRunTimeInfo()

void Fee_GetRunTimeInfo (

uint8 ClrGrpIndex,

Fee_ClusterGroupRuntimeInfoType ∗ ClrGrpRTInfo)

Service to read runtime information in the selected cluster.

Parameters

in ClrGrpIndex Index of the selected cluster group
in ClrGrpRTInfo Pointer to point Fee cluster group run-time Information

Returns

Fee_ClusterGroupRuntimeInfoType

NXP Semiconductors
S32K1 FEE Driver

93

Module Documentation

Return values

ClusterTotalSpace current cluster total size
ClusterFreeSpace current cluster available space.

BlockHeaderOverhead the block header overhead (blk header, valid flag and inval flag),
VirtualPageSize the virtual page size (the size of an allocation unit)
NumberOfSwap number of cluster swap already performed

SectorInfo sector information from all clusters in the selected cluster group (in sector retirement
mode only)

Precondition

The module must be initialized, not busy and uClrGrpIndex must be valid

6.1.6.12 Fee_ForceSwapOnNextWrite()

Std_ReturnType Fee_ForceSwapOnNextWrite (

uint8 ClrGrpIndex)

Service to prepare the driver for a cluster swap in the selected cluster group.

@detailes While the computed amount of memory is allocated as a result of Fee_Write call for plain data blocks,
for immediate data blocks memory gets completely pre-allocated through Fee_EraseImmediateBlock function (i.e.
Fee_Write does not change the remaining space). As a result, swaps triggered by the planned Fee_ForceSwapOn←↩

NextWrite function behave the same way, or in other words, an operation that really activates the pysical swap must
be either Fee_Write on plain FEE block or Fee_EraseImmediateBlock on immediate data block.

Parameters

in ClrGrpIndex Index of the selected cluster group

Returns

Std_ReturnType

Return values

E_NOT_OK module is not initialized, busy or uClrGrpIndex is not in the valid range.
E_OK No more space available in the selected cluster.

94
S32K1 FEE Driver

NXP Semiconductors

Module Documentation

Precondition

The module must be initialized, not busy and uClrGrpIndex must be valid.

Note

As this API manipulates the internal driver state, it has to be claimed non-reentrant and colliding with other
FEE ASR APIs

NXP Semiconductors
S32K1 FEE Driver

95

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on
the information in this document. NXP reserves the right to make changes
without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of
its products for any particular purpose, nor does NXP assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual
performance may vary over time. All operating parameters, including “typicals,”
must be validated for each customer application by customer’s technical experts.
NXP does not convey any license under its patent rights nor the rights of others.
NXP sells products pursuant to standard terms and conditions of sale, which can
be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER
WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE,
JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE
PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE,
MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C–5,
CodeTEST, CodeWarrior, ColdFire, ColdFire+, C–Ware, the Energy Efficient
Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC,
Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the
SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine,
SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All
other product or service names are the property of their respective
owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore,
Thumb, TrustZone, and Vision are registered trademarks of ARM Limited (or its
subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE,
CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode,
Socrates, ULINK and Versatile are trademarks of ARM Limited (or its
subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java
are registered trademarks of Oracle and/or its affiliates. The Power Architecture
and Power.org word marks and the Power and Power.org logos and related
marks are trademarks and service marks licensed by Power.org.

© 2022 NXP B.V.

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	1 Revision History
	2 Introduction
	2.1 Supported Derivatives
	2.2 Overview
	2.3 About This Manual
	2.4 Acronyms and Definitions
	2.5 Reference List

	3 Driver
	3.1 Requirements
	3.2 Driver Design Summary
	3.3 Hardware Resources
	3.4 Deviations from Requirements
	3.5 Driver Limitations
	3.6 Driver usage and configuration tips
	3.6.1 FEE Data Organization details
	3.6.2 Memory Dump Example
	3.6.3 FEE Block Always Available
	3.6.4 Managing Cluster and Block Consistency
	3.6.5 Cluster Swap
	3.6.6 Block Update
	3.6.7 Immediate Block Update
	3.6.8 Det Errors Description
	3.6.9 Endurance calculation
	3.6.10 Configuration tips
	3.6.11 Sector managerment and sector retirement
	3.6.12 FEE Swap Foreign Blocks feature

	3.7 Runtime errors
	3.8 Symbolic Names Disclaimer

	4 Tresos Configuration Plug-in
	4.1 Module Fee
	4.2 Container FeeClusterGroup
	4.3 Container FeeCluster
	4.4 Container FeeSector
	4.5 Parameter FeeSectorIndex
	4.6 Reference FeeSectorRef
	4.7 Container FeeBlockConfiguration
	4.8 Parameter FeeBlockNumber
	4.9 Parameter FeeBlockSize
	4.10 Parameter FeeImmediateData
	4.11 Parameter FeeNumberOfWriteCycles
	4.12 Parameter FeeBlockAssignment
	4.13 Reference FeeClusterGroupRef
	4.14 Reference FeeDeviceIndex
	4.15 Container FeeSectorToRecover
	4.16 Reference FeeSectorToRecoverRef
	4.17 Container FeeGeneral
	4.18 Parameter FeeDevErrorDetect
	4.19 Parameter FeeEnableUserModeSupport
	4.20 Parameter FeeMainFunctionPeriod
	4.21 Parameter FeeNvmJobEndNotification
	4.22 Parameter FeeNvmJobErrorNotification
	4.23 Parameter FeeClusterFormatNotification
	4.24 Parameter FeePollingMode
	4.25 Parameter FeeSetModeSupported
	4.26 Parameter FeeVersionInfoApi
	4.27 Parameter FeeVirtualPageSize
	4.28 Parameter FeeDataBufferSize
	4.29 Parameter FeeBlockAlwaysAvailable
	4.30 Parameter FeeLegacyEraseMode
	4.31 Parameter FeeSwapForeignBlocksEnabled
	4.32 Parameter FeeMarkEmptyBlocksInvalid
	4.33 Parameter FeeConfigAssignment
	4.34 Parameter FeeMaximumNumberBlocks
	4.35 Parameter FeeSectorRetirement
	4.36 Parameter FeeSectorEraseRetries
	4.37 Container CommonPublishedInformation
	4.38 Parameter ArReleaseMajorVersion
	4.39 Parameter ArReleaseMinorVersion
	4.40 Parameter ArReleaseRevisionVersion
	4.41 Parameter ModuleId
	4.42 Parameter SwMajorVersion
	4.43 Parameter SwMinorVersion
	4.44 Parameter SwPatchVersion
	4.45 Parameter VendorApiInfix
	4.46 Parameter VendorId
	4.47 Container FeePublishedInformation
	4.48 Parameter FeeBlockOverhead
	4.49 Parameter FeePageOverhead

	5 Module Index
	5.1 Software Specification

	6 Module Documentation
	6.1 FEE
	6.1.1 Detailed Description
	6.1.2 Data Structure Documentation
	6.1.3 Macro Definition Documentation
	6.1.4 Types Reference
	6.1.5 Enum Reference
	6.1.6 Function Reference

