S32G2 IPCF Hands On

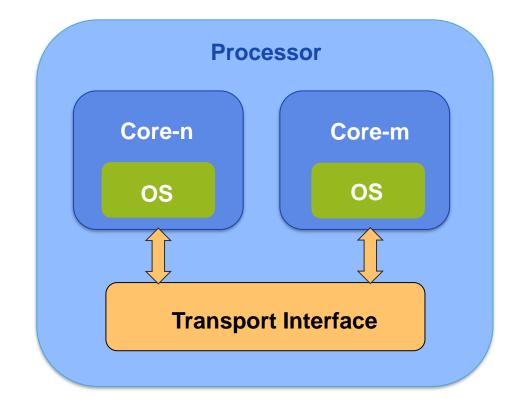
VCNS APPLICATIONS AND SOLUTIONS

APRIL 2021

EXTERNAL USE

Agenda

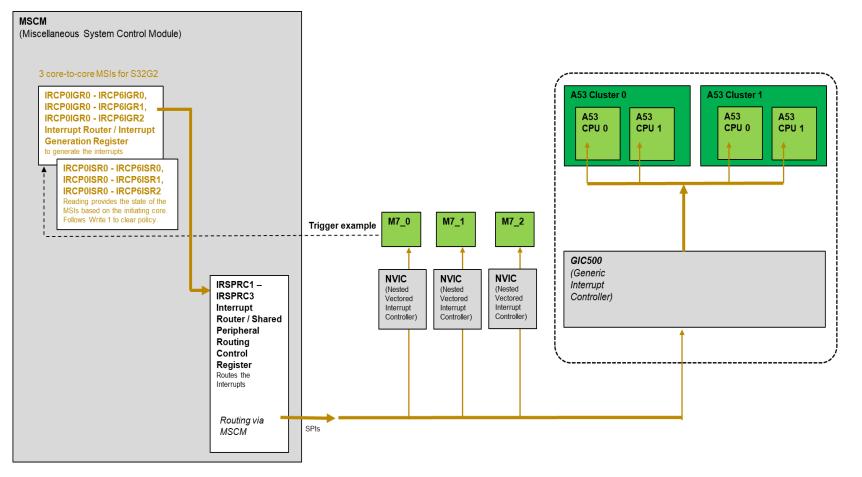
- Introduction
- Underlying HW
- IPCF Architecture
- IPCF Shared Memory Driver
- IPCF Use-Cases
- Hands On


INTRODUCTION

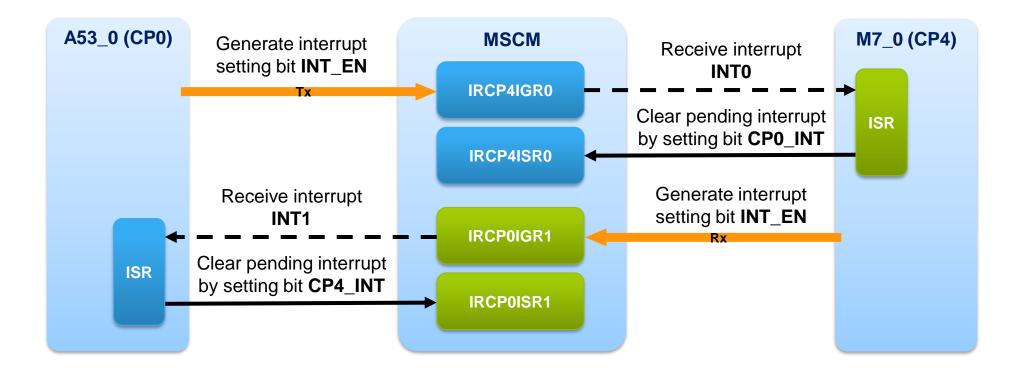
EXTERNAL USE

INTRODUCTION

- Inter-Platform Communication Framework (IPCF) is a subsystem which enables applications, running on multiple homogenous or heterogenous processing cores, located on the same chip or different chips, running on different operating systems (AUTOSAR[®] OS, Linux[®], FreeRTOS, etc.), to communicate over various transport interfaces (Shared Memory, etc.).
- Designed for closely distributed embedded systems with low-latency and tiny-footprint.
- Exposes a Zero-copy API for maximum performance, minimum overhead and low CPU load.
- IPCF SW release for S32G2 performs communication over Shared Memory.


Underlying HW

EXTERNAL USE

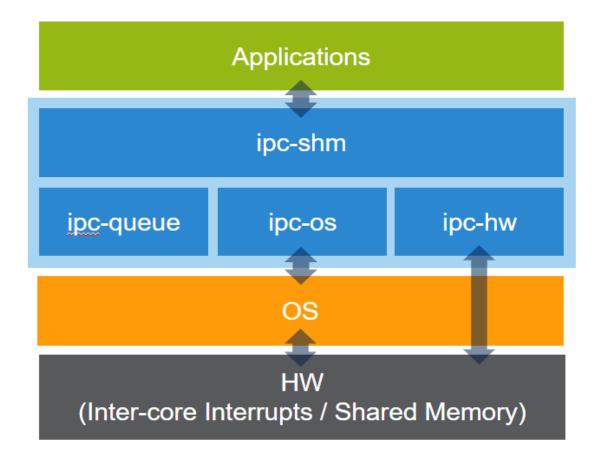

UNDERLYING HW

- Message-signaled interrupts (MSIs) are interrupts that are indirectly broadcast to a target core by writing configuration bits in MSCM.
- S32G274A has 3 MSIs for core-to-core interrupts and all the application cores can access these.

MSCM - INTER-CORE INTERRUPTS EXAMPLE

• A53_0 transmit notification is interrupt INT0 and receive notification is INT1

IPCF Architecture

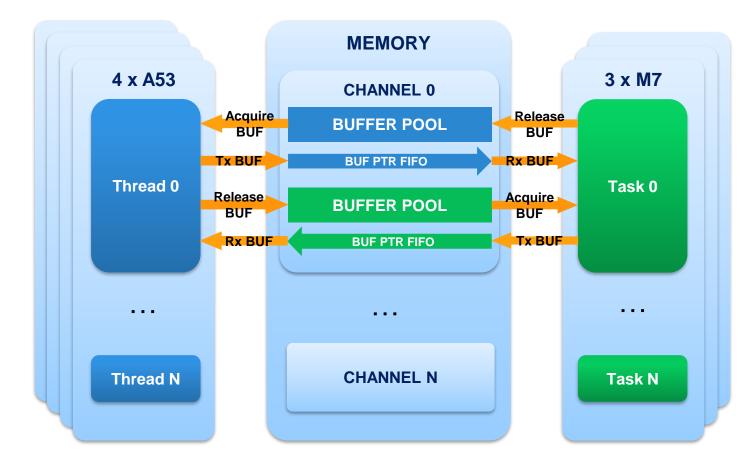


EXTERNAL USE

IPCF SYSTEM ARCHITECTURE

IPCF driver contains the following layers:

- Shared memory generic implementation that is HW and OS agnostic
- Queue component implementation used in IPCF driver
- HW abstraction component: abstraction over various HW IP modules (MSCM, INTC ...)
- OS abstraction component: OS agnostic API for common OS services



IPCF Shared memory driver

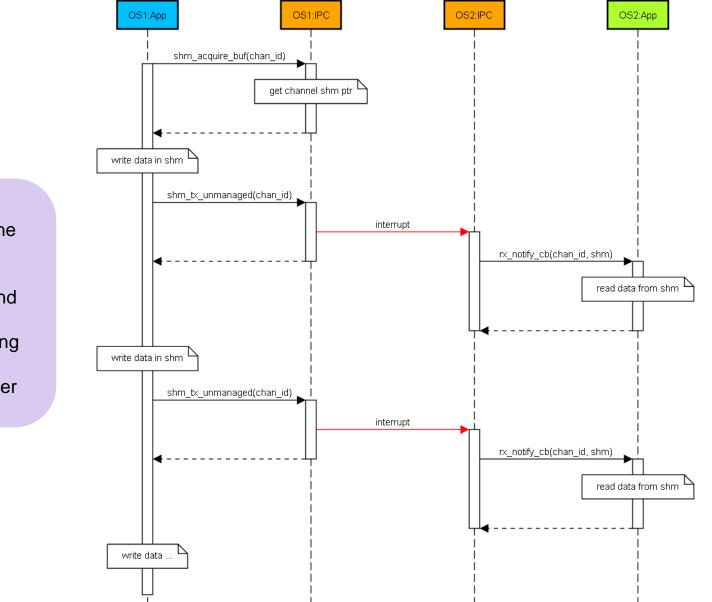
EXTERNAL USE

IPCF SHARED MEMORY DRIVER ARCHITECTURE

• Zero-Copy architecture

Performance

- High throughput
- Low CPU load
- Efficient core utilization
- Freedom from interference
 - Memory protection
 - Different ASIL partitions


MANAGED CHANNEL DATA FLOW A53 \rightarrow M7

OS2:App OS1:App OS1:IPC OS2:IPC shm_acquire_buf(chan_id) get buf from SRAM buf pool return buf shm_tx(chan_id, buf, size) push buf ptr in tx queue interrupt pop buf ptr from rx queue rx_notify_cb(chan_id, buf, size) save buf ptr process buf data shm_release_buf(chan_id, buf) put buf in SRAM buf pool

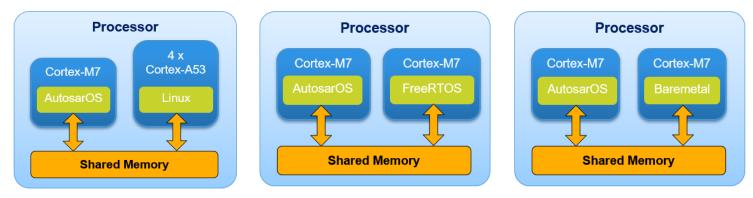
The diagram shows data flow from OS1 app to OS2 app, and it is symmetric in the other direction

NP

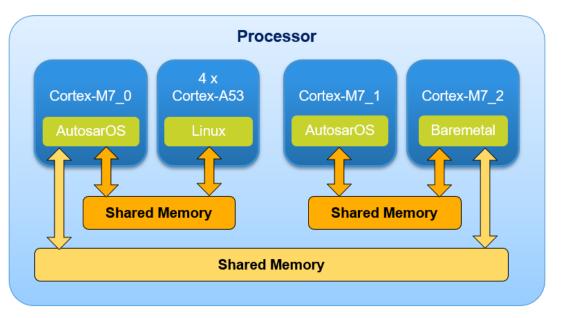
UNMANAGED CHANNEL DATA FLOW A53 \rightarrow M7

- Similar to POSIX ShM
- Each App owns half of the channel memory
- Apps responsible for memory management and sync
- Can be used for streaming use-cases
- It is symmetric in the other direction

IPCF Use Cases

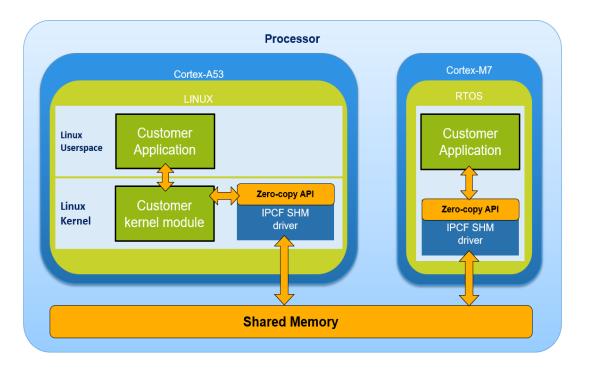

EXTERNAL USE

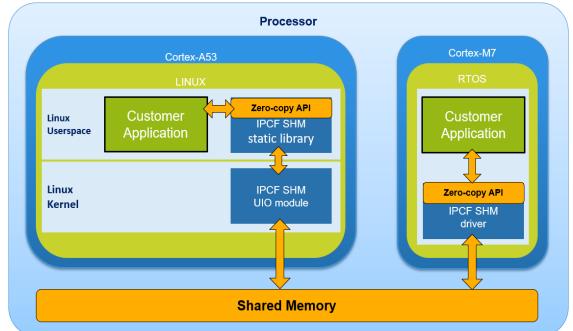
NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2021 NXP B.V.


13

IPCF USE CASES

On Multiple homogenous or heterogenous processing cores


• On Multiple homogenous or heterogenous processing cores with multiple instances.



Note: The MSIs are limited to 3. The below use case is applicable with polling feature which is scheduled to be added in the next IPCF SW release.

IPCF USE CASES

• Use case in Linux

IPCF Hands-On

EXTERNAL USE

GETTING THE IPCF SW

• Linux[®]

• IPCF module is built with Yocto from NXP Auto Linux BSP, but can also be built manually, if needed.

- AUTOSAR®
 - On Flexera, Automotive SW S32G2 Standard Software → Automotive SW S32G2 Inter-Platform Communication Framework
 - Open the latest SW release package, currently latest SW version D2012
 - Download the installer IPCF_1.1.0_D2012.exe
 - As a prerequisite, the S32XX_AUTOSAR_OS_4_3_106_CODEDROP5_0_8_0 for S32G274A would also be required.
- FreeRTOS/ Bare-metal
 - On Flexera, Automotive SW S32G2 Standard Software → Automotive SW S32G2 Inter-Platform Communication Framework
 - Open the latest SW release package, currently latest SW version D2012
 - Download the installer PCF_1.1.0_D2012_updatesite.zip. This is added as module in the S32DS 3.3.
 - For adding FreeRTOS support, install the FreeRTOS version available on Flexera: S32G2 Reference Software → S32G2 - FreeRTOS for Cortex-M7 → S32G2 FreeRTOS 10.3.1 version 0.9.0 → SW32G2_FreeRTOS_10_3_1_UOS_0_9_0_DS_updatesite_D2012.zip

RUNNING THE IPCF SW

- 1. Flash the SD card with the Auto Linux BSP image.
- 2. Copy the stripped binary (IPCF_Example_S32G274.bin) created for CM7 core to the FAT partition on SD-card.
- 3. Establish a serial connection with the S32G274A board and power it on.
- 4. Hit any key to stop in the U-Boot console.
- 5. Disable Data Cache from U-Boot. dcache off
- 6. Zero-set SRAM shared memory used by both sample apps. initsram 0x34100000 0x700000
- 7. Load the binary in SRAM to the address specified in the linker file.

fatload mmc 0:1 0x34300000 /IPCF_Example_S32G274.bin

- Start the M7_0 core. (The argument is the address of the Interrupt Vector defined in the Linker file) startm7 0x34501000
- 9. Boot Linux.

boot

10. Login with root and run Linux sample application. insmod /lib/modules/`uname -r`/extra/ipc-shm-dev.ko insmod /lib/modules/`uname -r`/extra/ipc-shm-sample.ko echo 10 > /sys/kernel/ipc-shm-sample/ping

Expected Output

			-	-	
				kernel/ipc-shm-sample/ping	
roo				002: ipc-shm-sample: starting demo	
[ch 0 >> 20 bytes: SENDING MESSAGES: 10	
[ch 1 >> 16 bytes: #1 Hello world!	
[44.085313]	000:	<pre>ipc-shm-sample:</pre>	ch 1 << 16 bytes: #1 Hello world!	
[44.085343]	002:	<pre>ipc-shm-sample:</pre>	ch 2 >> 16 bytes: #2 Hello world!	
[44.085372]	000:	<pre>ipc-shm-sample:</pre>	ch 2 << 16 bytes: #2 Hello world!	
[44.085394]	002:	<pre>ipc-shm-sample:</pre>	ch 1 >> 16 bytes: #3 Hello world!	
[44.085423]	000:	<pre>ipc-shm-sample:</pre>	ch 1 << 16 bytes: #3 Hello world!	
[44.085444]	002:	<pre>ipc-shm-sample:</pre>	ch 2 >> 16 bytes: #4 Hello world!	
[44.085472]	000:	<pre>ipc-shm-sample:</pre>	ch 2 << 16 bytes: #4 Hello world!	
[44.085492]	002:	<pre>ipc-shm-sample:</pre>	ch 1 >> 16 bytes: #5 Hello world!	
[44.085520]	000:	<pre>ipc-shm-sample:</pre>	ch 1 << 16 bytes: #5 Hello world!	
[ch 2 >> 16 bytes: #6 Hello world!	
[44.085569]	000:	<pre>ipc-shm-sample:</pre>	ch 2 << 16 bytes: #6 Hello world!	
[44.085590]	002:	<pre>ipc-shm-sample:</pre>	ch 1 >> 16 bytes: #7 Hello world!	
[ch 1 << 16 bytes: #7 Hello world!	
[ch 2 >> 16 bytes: #8 Hello world!	
[ch 2 << 16 bytes: #8 Hello world!	
[ch 1 >> 16 bytes: #9 Hello world!	
Ī				ch 1 << 16 bytes: #9 Hello world!	
Ì				ch 2 >> 16 bytes: #10 Hello world	
Î				ch 2 << 16 bytes: #10 Hello world	
í				ch 0 << 20 bytes: REPLIED MESSAGES: 10	
í _			<pre>ipc-shm-sample:</pre>		
	1				

SECURE CONNECTIONS FOR A SMARTER WORLD