
EXTERNAL USE

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V.

ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RES PECTIVE OWNERS. © 2021 NXP B.V.

A P R I L 2 0 2 1

VCNS APPLICATIONS AND SOLUTIONS

S32G2

IPCF Hands On

1EXTERNAL USE

Agenda

• Introduction

• Underlying HW

• IPCF Architecture

• IPCF Shared Memory Driver

• IPCF Use-Cases

• Hands On

2EXTERNAL USE
NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V.

ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RES PECTIVE OWNERS. © 2021 NXP B.V. 2

EXTERNAL USE

INTRODUCTION

3EXTERNAL USE

INTRODUCTION

• Inter-Platform Communication Framework (IPCF) is a

subsystem which enables applications, running on multiple

homogenous or heterogenous processing cores, located on

the same chip or different chips, running on different

operating systems (AUTOSAR® OS, Linux®, FreeRTOS,

etc.), to communicate over various transport interfaces

(Shared Memory, etc.).

• Designed for closely distributed embedded systems with

low-latency and tiny-footprint.

• Exposes a Zero-copy API for maximum performance,

minimum overhead and low CPU load.

• IPCF SW release for S32G2 performs communication over

Shared Memory.

Processor

Transport Interface

OS OS

Core-n Core-m

4EXTERNAL USE
NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V.

ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RES PECTIVE OWNERS. © 2021 NXP B.V. 4

EXTERNAL USE

Underlying HW

5EXTERNAL USE

UNDERLYING HW

• Message-signaled interrupts (MSIs) are interrupts that are indirectly broadcast to a target core by writing

configuration bits in MSCM.

• S32G274A has 3 MSIs for core-to-core interrupts and all the application cores can access these.

6EXTERNAL USE

MSCM – INTER-CORE INTERRUPTS EXAMPLE

• A53_0 transmit notification is interrupt INT0 and receive notification is INT1

A53_0 (CP0) M7_0 (CP4)MSCM

IRCP4IGR0

IRCP4ISR0

IRCP0IGR1

IRCP0ISR1

Tx

Generate interrupt

setting bit INT_EN
Receive interrupt

INT0

Clear pending interrupt

by setting bit CP0_INT
ISR

Rx

Generate interrupt

setting bit INT_EN
Receive interrupt

INT1

Clear pending interrupt

by setting bit CP4_INT
ISR

7EXTERNAL USE
NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V.

ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RES PECTIVE OWNERS. © 2021 NXP B.V. 7

EXTERNAL USE

IPCF Architecture

8EXTERNAL USE

IPCF SYSTEM ARCHITECTURE

IPCF driver contains the following layers:

• Shared memory generic implementation that

is HW and OS agnostic

• Queue component implementation used in

IPCF driver

• HW abstraction component: abstraction over

various HW IP modules (MSCM, INTC …)

• OS abstraction component: OS agnostic API

for common OS services

9EXTERNAL USE
NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V.

ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RES PECTIVE OWNERS. © 2021 NXP B.V. 9

EXTERNAL USE

IPCF
Shared memory driver

1 0EXTERNAL USE

IPCF SHARED MEMORY DRIVER ARCHITECTURE

• Zero-Copy architecture

• Performance

• High throughput

• Low CPU load

• Efficient core utilization

• Freedom from interference

− Memory protection

− Different ASIL partitions

ISO26262

4 x A53 3 x M7

MEMORY

CHANNEL 0

BUF PTR FIFO

BUF PTR FIFO

CHANNEL N

Thread 0

Thread N

Task 0

……

BUFFER POOL

BUFFER POOL

…

Task N

Acquire

BUF

Tx BUF

Acquire

BUF

Rx BUF

Release

BUF

Tx BUF Rx BUF

Release

BUF

1 1EXTERNAL USE

MANAGED CHANNEL DATA FLOW A53 → M7

The diagram shows data flow

from OS1 app to OS2 app, and it

is symmetric in the other direction

1 2EXTERNAL USE

UNMANAGED CHANNEL DATA FLOW A53 → M7

- Similar to POSIX ShM

- Each App owns half of the

channel memory

- Apps responsible for

memory management and

sync

- Can be used for streaming

use-cases

- It is symmetric in the other

direction

1 3EXTERNAL USE
NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V.

ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RES PECTIVE OWNERS. © 2021 NXP B.V. 1 3

EXTERNAL USE

IPCF Use Cases

1 4EXTERNAL USE

IPCF USE CASES

• On Multiple homogenous or heterogenous processing cores

• On Multiple homogenous or heterogenous processing cores with multiple instances.

Note: The MSIs are limited to 3. The below use

case is applicable with polling feature which is

scheduled to be added in the next IPCF SW

release.

1 5EXTERNAL USE

IPCF USE CASES

• Use case in Linux

1 6EXTERNAL USE
NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V.

ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RES PECTIVE OWNERS. © 2021 NXP B.V. 1 6

EXTERNAL USE

IPCF Hands-On

1 7EXTERNAL USE

GETTING THE IPCF SW

• Linux®

o IPCF module is built with Yocto from NXP Auto Linux BSP, but can also be built manually, if needed.

• AUTOSAR®

o On Flexera, Automotive SW – S32G2 Standard Software → Automotive SW - S32G2 - Inter-Platform

Communication Framework

o Open the latest SW release package, currently latest SW version – D2012

o Download the installer IPCF_1.1.0_D2012.exe

o As a prerequisite, the S32XX_AUTOSAR_OS_4_3_106_CODEDROP5_0_8_0 for S32G274A would also be

required.

• FreeRTOS/ Bare-metal

o On Flexera, Automotive SW – S32G2 Standard Software → Automotive SW - S32G2 - Inter-Platform

Communication Framework

o Open the latest SW release package, currently latest SW version – D2012

o Download the installer PCF_1.1.0_D2012_updatesite.zip. This is added as module in the S32DS 3.3.

o For adding FreeRTOS support, install the FreeRTOS version available on Flexera: S32G2 Reference Software →

S32G2 - FreeRTOS for Cortex-M7 → S32G2 FreeRTOS 10.3.1 version 0.9.0 →

SW32G2_FreeRTOS_10_3_1_UOS_0_9_0_DS_updatesite_D2012.zip

1 8EXTERNAL USE

RUNNING THE IPCF SW

1. Flash the SD card with the Auto Linux BSP image.

2. Copy the stripped binary (IPCF_Example_S32G274.bin)

created for CM7 core to the FAT partition on SD-card.

3. Establish a serial connection with the S32G274A board and

power it on.

4. Hit any key to stop in the U-Boot console.

5. Disable Data Cache from U-Boot.
dcache off

6. Zero-set SRAM shared memory used by both sample apps.
initsram 0x34100000 0x700000

7. Load the binary in SRAM to the address specified in the linker

file.
fatload mmc 0:1 0x34300000 /IPCF_Example_S32G274.bin

8. Start the M7_0 core. (The argument is the address of the

Interrupt Vector defined in the Linker file)
startm7 0x34501000

9. Boot Linux.
boot

10. Login with root and run Linux sample application.
insmod /lib/modules/`uname -r`/extra/ipc-shm-dev.ko
insmod /lib/modules/`uname -r`/extra/ipc-shm-sample.ko
echo 10 > /sys/kernel/ipc-shm-sample/ping

Expected Output

1 9EXTERNAL USE

