
S32 Design Studio for S32 Platform 3.4
User Guide

Document Number: S32DSUG
Rev. 2.0, 04/2021

Contents

Part I: Quick Start Guide... 6
Starting S32DS 3.4... 7
Creating and building a project..8
Debugging a project... 9
Quick links..11

Part II: Tasks.. 12
Installation management... 13

Overview... 13
Getting product updates..14

Getting updates automatically.. 14
Managing software sites... 15
Downloading updates manually... 16

Installing product updates and packages..16
Installing plug-ins... 18
Viewing all installed software..20
Viewing installed updates and packages..21
Uninstalling packages... 22
Uninstalling plug-ins...23
Uninstalling S32DS 3.4.. 24

License management...25
Overview... 25
Licensing S32DS 3.4.. 25

Applying the license during installation.. 26
Getting the activation code...27

Viewing the license information.. 28
Viewing licenses on the website.. 28
Returning the license.. 29
Relicensing S32DS 3.4...30

Project management..31
Overview... 31
Starting a project...32

Creating a project in the wizard...32
Creating a project from an example...34

Importing a project... 35
Importing a project from a system folder or an archive file..35
Importing a project from a ProjectInfo.xml file.. 36

Adding files and folders to a project... 36
Adding a device configuration... 39

Creating a project with a device configuration..40
Editing a device configuration... 40
Importing a device configuration... 42
Exporting a device configuration... 46

Locating project files and folders in the file system... 47
Renaming a project...48
Duplicating a project.. 48
Saving a project to User Examples..49
Exporting a project... 50

 S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

 2 NXP Semiconductors

Exporting a project to a system folder or an archive file.. 50
Exporting a project to a ProjectInfo.xml file... 51

Closing and reopening a project.. 52
Removing a project...53

Building projects...54
Overview... 54
Using build configurations... 55

Creating a build configuration..56
Setting the active build configuration.. 57
Editing a build configuration..57
Managing project resources in build configurations..61

Building a project... 62
Resolving build problems...63

Adjusting the C/C++ indexer settings for large files... 63
Building projects in non-English versions of Windows.. 66

Using optional tools..67
Generating an image file.. 67
Using output of optional tools in post-build steps...68
Preprocessing source files.. 72
Disassembling binaries and source files.. 73

Using parallel build.. 73
Debugging... 74

Overview... 74
Using the debugger...76
Using launch configurations...77

Creating a launch configuration... 78
Editing a launch configuration... 79
Running a launch configuration... 87

Using launch groups... 88
Creating a launch group... 88
Running a launch group... 90

Debugging on a bare-metal target..90
Selecting a hardware debug probe... 91
Debugging with S32 Debug Probe from RAM... 91
Debugging with S32 Debug Probe from flash for S32V23x targets..95
Debugging with S32 Debug Probe from flash for all other targets... 100
Debugging with a PEMicro probe... 103
Debugging with a Lauterbach probe..105
Viewing Registers...106
Viewing memory.. 115
Managing flash memory...116

Debugging on multiple cores... 120
Debugging on a Linux target... 123
Debugging on a VDK...126
Debugging Linux project on a VDK... 127
Importing an executable... 130

SDK management... 131
Overview... 131
Adding an SDK.. 131

Creating an SDK...132
Loading an SDK... 134
Importing an SDK.. 134
Importing an MCAL SDK..136

Making a local SDK global... 136
Using SDKs in projects..137

Attaching an SDK when creating a project... 137

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 3

Attaching an SDK to an existing project... 138
Upgrading SDK version... 139
Detaching an SDK..139

Editing an SDK...140
Defining symbols.. 142
Exporting an SDK.. 143
Removing an SDK..143

Migration guide...144
Troubleshooting...146

Part III: Reference... 150
User interface..151

Views and editors... 151
Project Explorer view... 151
Problems view...153
Breakpoints view.. 153
Debug view... 154
Disassembly view... 154
Expressions view.. 155
Memory view..155
Memory Browser view... 156
Memory Spaces view... 156
Registers view...158
EmbSys Registers view.. 158
Peripheral Registers view... 160
Arm System Registers view... 161
Watch registers view.. 162
Variables view.. 163
Intrinsics view...165
SDK Explorer view.. 165
Editor area...166

Wizards..167
New SDK wizard..167
Project creation wizards..169
Migrate wizard.. 178

Preferences.. 179
Perspectives...179
Available software sites..180
SDK Management...181

Project properties.. 183
SDKs... 183

Perspectives...184
C/C++ perspective.. 184
Debug perspective...185
VDK Debug perspective...186
Git perspective.. 188

Build configuration... 190
Build Tool Settings...190

Cross Settings... 190
Target Processor..193
Standard S32DS C/C++ Compiler... 195
Standard S32DS C/C++ Linker..202
Standard S32DS Assembler..205
Standard S32DS Archiver.. 206
Standard S32DS Create Flash Image... 207

 S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

 4 NXP Semiconductors

Standard S32DS Create Listing..208
Standard S32DS Print Size...210
Standard S32DS C/C++ Preprocessor..211
Standard S32DS Disassembler... 211

Folders and files... 214
Project structure.. 214
Product directory structure... 216

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 5

Quick Start Guide

Part

I
Quick Start Guide

Topics:

• Starting S32DS 3.4
• Creating and building a project
• Debugging a project
• Quick links

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

6 NXP Semiconductors

Starting S32DS 3.4

Starting S32DS 3.4

To start S32 Design Studio for S32 Platform and begin to work with it:

1. Launch S32 Design Studio for S32 Platform: locate the shortcut depending on your selection during the
installation, and double-click the product icon.
The Eclipse Launcher dialog box appears to let you define the location of your workspace.

Note: A workspace is the folder where S32 Design Studio for S32 Platform stores projects that you create or
import.

2. Select a folder for your workspace. It is recommended to create a new workspace for each product instance.

• To choose the default location, click OK.
• To use a different location, click Browse. In the Select Workspace Directory dialog box, select the

preferred folder or click Make New Folder to create a new folder for storing your projects. Click OK.

3. S32 Design Studio for S32 Platform is launched. Browse through the Getting Started tab and close it. The
workbench appears:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 7

Creating and building a project

Creating and building a project

To create and build a project:

1. Click File > New > S32DS Application Project or S32DS Library Project on the menu bar. The first page of
the wizard appears.

2. Specify the name of the new project in the Project name text box.

Note: The Location field shows the default project location. If you want to change this location, clear the Use
default location check box, click Browse and specify a different location. Click OK.

3. Select the target processor from the Processors panel.

4. Click Next. The second page of the wizard appears.

5. Check the project settings, select the cores and parameters. Click Finish.
The new project appears in the Project Explorer view.

Note: The wizard creates one or multiple projects, depending on the number of selected cores.

6. To build your project, do any of the following:

• Right-click the project in the Project Explorer view and click Build Project
• Select the project in the Project Explorer view, then click Project > Build Project on the menu
• Select the project in the Project Explorer view and click on the toolbar

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

8 NXP Semiconductors

Debugging a project

The build process starts.

7. If a build generates any errors or warnings, you can see them in the Problems view. Read through the build
messages in the Console view to make sure that the project is built successfully.

Debugging a project

To debug a project:

1. Set the debug configuration for your project.

a) Select the project in the Project Explorer view.
b) Open the debug configuration in any of these ways:

• Right-click the project and select Debug as > Debug Configurations… from the context menu.
• Choose Run > Debug Configurations… from the menu bar.
• Click an arrow next to on the toolbar and select Debug Configurations….

c) In the Debug Configurations dialog box, select the required debug configuration. The name of the debug
configuration is composed of the project name, debugging interface and build configuration. The configuration
settings appear on the tabs.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 9

Quick Start Guide

d) Modify the configuration settings where required and click Apply to save the changes.

2. Click Debug. The debugger downloads the program to the memory of the target processor. The Debug
perspective is displayed. The execution halts at the first statement of the main() function. The program counter
icon on the marker bar points the next statement to be executed.

3. To set and run to a breakpoint:

a) Double-click on the marker bar next to a statement. The breakpoint indicator (blue dot) appears next to the
statement.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

10 NXP Semiconductors

Quick links

b) From the Debug view, select Run > Resume on the menu bar. The debugger executes all statements up to (but
not including) the breakpoint statement.

4. To control the program:

a) From the Debug view, select Run > Step Over from the menu bar. The debugger executes the breakpoint
statement and halts at the next statement.

b) From the Debug view, select Run > Resume from the menu bar. The debugger resumes the program
execution.

c) From the Debug view, select Run > Terminate. The debug session ends.

Quick links

• S32 Design Studio page
(overview, downloads)

https://www.nxp.com/S32DS

• S32 Design Studio
community (for publicly
shared cases)

https://community.nxp.com/community/s32/s32ds

• Technical support (for
confidential issues)

https://www.nxp.com/support

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 11

https://www.nxp.com/S32DS
https://community.nxp.com/community/s32/s32ds
https://www.nxp.com/support

Tasks

Part

II
Tasks

Topics:

• Installation management
• License management
• Project management
• Building projects
• Debugging
• SDK management
• Migration guide
• Troubleshooting

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

12 NXP Semiconductors

Installation management

Installation management

Overview
S32 Design Studio for S32 Platform has a package based structure and is initially installed with the base packages that
provide the minimum of libraries and tools.

Base packages

• The S32 Design Studio Platform package provides the basic functionality of the product such as Eclipse
bundles and integration mechanisms.

• The S32 Design Studio Platform Tools package includes the basic libraries and tools required by all supported
devices.

• The NXP GCC for Arm Embedded Processors package includes the GNU tools.

With the basic installation, the user can launch S32 Design Studio for S32 Platform, open all perspectives and views,
create and configure workspaces, and open and build device-specific projects that were imported or created earlier.
New projects for devices cannot be created, and the compiled code cannot be debugged.

Development packages

To support software design for a given family of devices in S32 Design Studio for S32 Platform, you need to install
the respective development package. Each new package brings its libraries, tools, SDKs, project examples, and
documentation. Once the required package is installed to S32 Design Studio for S32 Platform, you get the tools for
creating application projects and library projects for the newly supported devices, and you gain the missing resources
for debugging the device-specific code.

Extension and Add-On packages

To further extend support for the selected device, you can additionally install the extension or add-on package with
the accelerator support. Each extension package brings its SDKs (or separate SDK package), compiler and assembler
tools, or even visual programming tools for you to enhance your solution with code to be executed on the accelerator
processor module.

S32DS Extensions and Updates tool

Installing packages and updates to S32 Design Studio for S32 Platform is performed by means of the S32DS
Extensions and Updates tool. This wizard communicates with the product's website and displays the most actual
information about updates and packages available for installation. Additionally, the user is notified about the latest
installation candidates with a pop-up box displayed on the desktop.

The user can pick the required updates and packages in the wizard and have them installed in S32 Design Studio for
S32 Platform with a couple of clicks. Besides, the wizard displays all installed packages and enables uninstalling of
any selected package.

Plug-in products

In addition to device support, the functionality of S32 Design Studio for S32 Platform can be extended with support
for new debugging instruments such as hardware debugging interfaces and simulators. Integration of third-party
products with S32 Design Studio for S32 Platform is implemented through plug-ins.

Though the S32DS Extensions and Updates wizard can be configured for software lookup on any site, installation
of plug-ins into S32 Design Studio for S32 Platform using this tool is not supported. To install a plug-in, use the
functionality provided by the Eclipse platform.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 13

Tasks

Getting product updates
S32 Design Studio for S32 Platform patches and service packs come as updates. S32 Design Studio for S32 Platform
implements the logic to find updates on the specified sites, load them to your computer, and notify you about updates
available for installation. To be in sync with the latest updates available for your product, do the following:

1. Create the list of sites where S32 Design Studio for S32 Platform would look for updates. Find the details in topic
Managing software sites.

2. Configure S32 Design Studio for S32 Platform to look for the latest updates automatically. Find the details in
topic Getting updates automatically.

3. Install the latest updates when notified. Find the details in topic Installing product updates and packages.

In addition, you can download the latest product updates on your computer from the website manually. Find the
details in topic Downloading updates manually.

Getting updates automatically

S32 Design Studio for S32 Platform can be configured to look for updates automatically at every startup or by
schedule. The search is performed across the sites that you need to specify in the product preferences. Find the details
in topic Managing software sites.

To enable automatic lookup for updates, click Window > Preferences on the menu and go to S32 Design Studio
for S32 Platform > S32DS Extensions and Updates. To activate automatic lookup for updates, select the
Automatically find new updates and notify me option. Select the preferred time for lookup and click Apply.

When automatic lookup finds available updates, you get a notification:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

14 NXP Semiconductors

Tasks

Click the notification box to launch the S32DS Extensions and Updates wizard. Install the update as described in
topic Installing product updates and packages.

Managing software sites

S32 Design Studio for S32 Platform looks for updates and software packages across the specified software sites.
To view and edit these sites, click Manage Sites in the S32DS Extensions and Updates wizard. Alternatively,
you can click Window > Preferences on the main menu and go to S32 Design Studio for S32 Platform > S32DS
Extensions and Updates on the left pane of the Preferences window.

The right pane of the Preferences window displays all registered software sites added by default.

To manage the list of software sites, use the buttons located at the right side of the window.

Table 1: Managing software sites

Purpose Action

Add a software site to
the list

1. Click Add.
2. In the Add Site dialog box, specify the location of the site:

• To add a local or network folder for the lookup, click Local. Browse to the
required folder and click OK.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 15

Tasks

Purpose Action

• To add an archived file (JAR or ZIP) for the lookup, click Archive. Browse to
the required file (local or network) and click Open.

• To add a web page for the lookup, type the required URL to the Location
field.

3. Specify the name of the new site and click OK.

Add several archived
files

1. Click Add All.
2. Browse to the required files (local or network), select them and click Open.

Edit the name or
location of the site

Click Edit and type the preferred name and location in the dialog box. Click OK.

Permanently remove a
site from the list

Select the site in the list and click Remove.

Click Apply before closing the Preferences dialog box for the latest updates to take effect.

Note: If you added a software site or archive file incompatible with the current product version, you get the
"Unsuitable Package for Platform" notification in the S32 Extensions and Updates wizard, and new software does
not appear in the list of available packages. If you don't want to see these notifications, disable the Show Unsuitable
Package Dialog option at the top of the Preferences window.

Downloading updates manually

You can download updates and patches for S32 Design Studio for S32 Platform directly from the NXP website and
install them offline.

To download updates from the site:

1. Go to the nxp.com/S32DS web page and click S32 Design Studio for S32 Platform.

2. On the product page, go to the Downloads tab and find the Updates and Patches section on the menu (if
available).

3. To download an update or a patch, click Download and save the archive file in a local folder.

To install the downloaded software, add the archive file to the list of lookup sites as described in topic Managing
software sites. After that, the update becomes available in the S32DS Extensions and Updates wizard.

Installing product updates and packages

S32 Design Studio for S32 Platform provides a tool to help you find and install the latest product updates and optional
software packages. The lookup is performed across the sites that are specified in the product preferences. To learn
how to preview and edit these sites, refer to topic Managing software sites.

To install updates and additional packages to S32 Design Studio for S32 Platform:

1. From the menu, click Help > S32DS Extensions and Updates.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

16 NXP Semiconductors

http://www.nxp.com/products/automotive-products/microcontrollers-and-processors/arm-mcus-and-mpus/ea-series-automotive-m0-plus/s32-design-studio-ide:S32DS

Tasks

2. In the left pane of the S32DS Extensions and Updates wizard, find all software packages already installed and
ready to be installed.

• Use the All, Available/Update and Installed tabs to show and hide packages of a respective type.
• Use the filter buttons to show packages of the required hardware type or category. Removing the filter

clears the package selection.

Click a package in the left pane. The right pane loads the description of the package.

3. Check the box on each package that you need to install or update. Click Install/Update.

4. On the next page, verify the selected packages and click Next.

5. Accept the license terms. Click Finish.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 17

Tasks

6. After the installation is complete, restart S32 Design Studio for S32 Platform.

Installing plug-ins

To perform particular tasks, you may need to install plug-ins of third-party software vendors on S32 Design Studio
for S32 Platform. For example, to support Lauterbach hardware debug interfaces, S32 Design Studio for S32 Platform
requires special plug-ins installed from the manufacturer website.

To install new software to S32 Design Studio for S32 Platform:

1. On the main menu, click Help > Install New Software.

2. In the Install wizard, open the Work with list and check if the required website is available.

3. If the required site is not in the Work with list, click Manage. On page Available software sites of the
Preferences dialog box, select the required sites and click Apply and Close.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

18 NXP Semiconductors

Tasks

4. In the Work with list, select the required site, or select All available sites to install new software from all sites.

5. The plug-ins of the selected vendors appear in the list below. Select the software components to be installed. Click
Next and again Next.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 19

Tasks

6. On the next wizard page, accept the license terms and click Finish.

The selected software is now installed. If prompted, restart S32 Design Studio for S32 Platform to make the new
functionality available in dialog boxes and menus of S32 Design Studio for S32 Platform.

Viewing all installed software
The Installed Software tab of the S32 Design Studio for S32 Platform Installation Details dialog box displays the
S32 Design Studio for S32 Platform installation and all installed plug-ins and software packages.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

20 NXP Semiconductors

Tasks

To view the list of plug-ins and software packages installed on S32 Design Studio for S32 Platform, click Help >
Installation Details on the main menu.

To manage a selected installation, use the buttons located at the bottom of the S32 Design Studio for S32 Platform
Installation Details dialog box:

• Update: Click to apply updates (if any found on the lookup sites) to the selected installation.
• Uninstall: Click to uninstall the selected installation. Find the details in topic Uninstalling plug-ins.
• Properties: Click to view the summary and the license information for the selected installation.

Viewing installed updates and packages

The S32DS Extensions and Updates wizard displays all S32 Design Studio for S32 Platform updates and software
packages already installed and ready to be installed.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 21

Tasks

To view the list of installed product updates and packages:

1. On the main menu, click Help > S32DS Extensions and Updates.

2. In the S32DS Extensions and Updates wizard, click Installed for the left pane to display the installed software
only and hide all other kinds of software.

Alternatively, you can click Installation details to view a list of installed software. The list includes each
package's name and version. Click Copy to Clipboard to share your configuration.

Get more information about the installed packages on page Getting Started of the S32 Design Studio for S32
Platform. To open this page, click Help > Getting Started from the menu.

The Extensions tab displays all recently installed packages. Each package appears on the tab as a box with the More
button. Click it to open the overview page with links to all available documentation.

Uninstalling packages

To uninstall a software package:

1. On the main menu, click Help > S32DS Extensions and Updates.

2. In the S32DS Extensions and Updates wizard, click Installed for the left pane to display the installed software
only and hide all other kinds of software.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

22 NXP Semiconductors

Tasks

3. Check the box on each package that you need to uninstall. Click Uninstall.

4. After the uninstall operation is finished, restart S32 Design Studio for S32 Platform.

Uninstalling plug-ins

To uninstall a third-party plug-in:

1. On the main menu, click Help > Installation Details.

2. In the S32 Design Studio for S32 Platform Installation Details dialog box, open the Installed Software tab.
Select the software to be removed and click Uninstall.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 23

Tasks

3. In the message box, click Yes to confirm the review of components to be uninstalled from S32 Design Studio for
S32 Platform. Click Finish to complete the operation.

4. When the uninstall operation is done, restart S32 Design Studio for S32 Platform.

Uninstalling S32DS 3.4

To uninstall S32 Design Studio for S32 Platform:

1. If you have installed any third-party plug-ins on S32 Design Studio for S32 Platform, uninstall them as described
in Uninstalling plug-ins.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

24 NXP Semiconductors

License management

2. Close all applications that use resources of S32 Design Studio for S32 Platform.

3. Run the uninstaller:

• On Windows, go to the product installation directory, open the _S32 Design Studio for S32 Platform
3.4_installation folder, and run the uninstaller. Or, use Control Panel > Uninstall a program.

• On Windows 10, go to Settings > System > Apps & features > S32 Design Studio 3.4 > Uninstall.
• On Linux, open the terminal, go to the directory with the installed product, type ./Uninstall and press

Enter.

4. In the wizard, pass through all steps and click Finish.

5. When done, the wizard displays the Uninstall complete page. Close the wizard.

License management

Overview
S32 Design Studio for S32 Platform runs on basis of a free software license. The product is ready for use once the
license is activated in the Flexera license management center. The validity period of the license is four years long.

Getting the activation key

After getting S32 Design Studio for S32 Platform from the product's website, the user receives the activation key to
the specified email address. Also, the activation key can be obtained from the user's account on the product website.

License activation

Activation of the license can be done when installing the product. The license can be activated online or offline.

• Online activation means that S32 Design Studio for S32 Platform holds the entire conversation with the
license management service over the Internet automatically. The user only enters the activation key when
requested.

• Offline activation requires more user effort and serves when online activation cannot be applied, for instance,
when the host machine cannot access Internet services. The user generates the activation request and places
it to a location that can be accessed from the Internet. Then the user visits the user account on the product's
website, uploads the activation request, generates the activation response, and submits it to S32 Design Studio
for S32 Platform.

License status

The status of the license (activated or not) can be learnt from the user account on the product's website. The license
information is also available in the Product Licenses window of S32 Design Studio for S32 Platform.

Returning the license

If you decide to uninstall S32 Design Studio for S32 Platform or reinstall it to a different workstation, the best
approach is to return the license and thus keep it for future use. The license can be returned online or offline, similar
to the activation procedure.

When reinstalled, S32 Design Studio for S32 Platform can be activated with the returned license. The license can
be reused with the same product version only. If the product was upgraded to the higher version, the new license is
required.

Licensing S32DS 3.4
To activate the license for your S32 Design Studio for S32 Platform, you need to submit the activation code when
installing the product. For the detailed instructions, refer to the following topics:

• Applying the license during installation

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 25

Tasks

• Getting the activation code

Applying the license during installation

To apply the license when installing S32 Design Studio for S32 Platform:

1. Get the activation code as described in topic Getting the activation code.

2. When requested, enter the activation code and click OK.

If you click Cancel, the licensing is skipped and the installation continues.

3. After the code is entered, choose the activation type. Click Online for the installer to complete the activation
without your interference.

Click Offline to submit the activation files manually. This option may be useful if you are not connected to the
Internet.

4. If you click Offline, the installer generates the activation request. Perform the following steps:

a) Save the request.xml file in a local folder.
b) Browse to www.nxp.com and log in with your registered member credentials.
c) On the web page, go to Offline Activation. Browse to the request.xml file that you saved recently and

click Process. Then save the generated activation.xml file in a local folder.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

26 NXP Semiconductors

http://www.nxp.com/

Tasks

d) Get back to the installer. In the Activation response dialog box, browse to the activation.xml file and
click Load.

Once done, the activation step is passed and the installation continues.

Getting the activation code

When you agree to the license terms before downloading the S32 Design Studio for S32 Platform installer, you get a
message with the activation code to the email address specified in your NXP account. Or, you can get the activation
code directly from your account on the website.

To get the activation code on the NXP website:

1. Browse to www.nxp.com.

2. Click Account and log in to the site using your registered member ID and password.

3. Click your login name on top of the page, then click My account and Software Licensing and Support.

4. Click Product List under Software&Support. Click your product in the list.

5. Click I Agree to accept the terms and conditions.

6. On the Product Download page, go to License Keys. The license information for your product includes the
activation code.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 27

http://www.nxp.com/

Tasks

Viewing the license information

To view the license information for S32 Design Studio for S32 Platform:

1. On the main menu, go to Help > NXP Licenses.

2. In the Product Licenses dialog box, find the list of licenses related to the product.

3. Select the product and click Details to see more information about the license.

Viewing licenses on the website

Your NXP account keeps the information about all requested product licenses. To view this information:

1. Browse to www.nxp.com.

2. Click Account and log in to the site using your registered member ID and password.

3. Click your login name on top of the page, then click My account and Software Licensing and Support.

4. To see all products for which you have a license, click Product List under Software&Support.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

28 NXP Semiconductors

http://www.nxp.com/

Tasks

To view the detailed license information, click the product and go to the License Keys tab.

5. To see all activated licenses, click License Lists under Licensing. To view the detailed license information for a
product, click Additional Details or Details.

Returning the license
Before reinstalling or migrating your S32 Design Studio for S32 Platform 3.4 to a different computer, you need to
return the license. Later, you can activate this license again for a different installation of the product.

To return the license:

1. Go to www.nxp.com.

2. Click Account and log in to the site using your registered member ID and password.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 29

http://www.nxp.com/

Tasks

3. Click your login name on top of the page, then click My account and Software Licensing and Support.

4. To see all activated licenses, click License Lists under Licensing.

5. In the product entry, click Return.

Another option to return the license is available from the Help > NXP Licences menu of S32 Design Studio for S32
Platform 3.4.

In the Product Licenses dialog box, click Open.

• To return the license online, click Return license in the popup dialog box.
• When not connected to the Internet, return the license offline. Select the Generate offline request option and

click Return license. Save the deactivation request (request.xml) and submit it in your NXP account as
described in topic Applying the license during installation. Save the activation file to be able to activate the
license in the future.

Now the S32 Design Studio for S32 Platform 3.4 license is excluded from the list of active licenses in your NXP
account (Licensing > License Lists).

Note: When you return a license, it affects all component and product instances that depend on this license.

Relicensing S32DS 3.4

If the product license was returned by mistake or with the purpose of using a different license, activate the license as
described below.

To relicense the product:

1. Launch S32 Design Studio for S32 Platform 3.4.

2. In the Product Licenses dialog box, the product entry appears with the “License missing” status. Click Activate.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

30 NXP Semiconductors

Project management

3. In the Activate S32 Design Studio for S32 Platform 3.4 dialog box, do the following:

• For online activation, enter the activation code and click Activate. Learn how to get the activation code in
topic Getting the activation code.

• When not connected to the Internet, activate the license offline. Select the Generate offline
request option and click Activate. Then submit the generated request.xml file and get the
activation.xml response as described in topic Applying the license during installation. Click Load
offline response, browse to the activation.xml file and click Load.

Once the license is activated, the Product Licenses dialog box displays the number of days before expiration in the
Status field.

Project management

Overview
In S32 Design Studio for S32 Platform, you start a new project for every embedded application or a library you are
about to design. A project serves as a container, keeping the source code, configuration files, and resources of your
program arranged in folders within your workspace.

Starting a project

There are several ways how you can start a project in S32 Design Studio for S32 Platform. To design a project from
scratch, use a project creation wizard. The wizard guides you through a series of steps, helping you to name the
project, to specify the target hardware and to select the appropriate programming language (C or C++), toolchains,
SDKs, and the debugger.

The other ways to start a project are importing an existing project to your workspace and reusing a project example,
either installed with S32 Design Studio for S32 Platform or created manually.

Project folders and files

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 31

Tasks

Once created or copied to the workspace, a project is stored in the project's root folder named similarly. The project
files inside the root folder are arranged in the hierarchy of folders with the predefined names and locations. You can
extend your project with custom folders and files added under the root folder whenever necessary. In addition, a
project can link files and folders located outside the projects' root folder.

Device configuration

Projects for particular processor families can include device configuration files. To design a device configuration,
you create a project with enabled support for the S32 Configuration tool. The default device configuration is
generated within the project and can be edited in special perspectives, including in the graphics mode. All updates are
transformed to the XML format and code and saved to the configuration files.

Project properties

Every project includes a collection of properties that configure the build process. You can open and edit the project
properties in a dialog box. This dialog is the place where you specify the project variables, choose optional builders,
update the build configuration settings and do adjustments in the selected toolchain, reference other projects and
SDKs, and create and edit launch configurations.

Visibility and operations

At design time, all operations with projects are performed in the Project Explorer view. The Project Explorer
shows the file and folder structure of all opened projects available in the workspace. The context menu called on the
project's root folder or on its nested folder enables you to perform the following actions:

• Opening and closing projects
• Adding and linking files and folders to projects
• Building projects or paths
• Exporting projects or particular folders
• Removing projects or particular folders from the workspace
• Accessing the project or folder properties

The topics included in this chapter provide more information on how to manage projects in S32 Design Studio for
S32 Platform.

Starting a project

Creating a project in the wizard

To develop an embedded application or a library, you generally start with creating a new project in the project
creation wizard. There are several project creation wizards available from the File > New menu:

• S32DS Application Project: Creates an application project for a certain processor, core, language, and
toolchain.

• S32DS Library Project: Creates a library project for a certain processor, core, language, and toolchain.
• S32DS Project from Example: Helps you quickly create an application project that copies all source files

and project settings from a project example. This option is described in topic Creating a project from an
example.

The high-level steps for creating a project are as follows:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

32 NXP Semiconductors

Tasks

1. Launch the project creation wizard for your type of project.
2. On the first page of the wizard, specify the project name and location, the processor, and the toolchain for each

core.

3. Click Next.
4. On the second page of the wizard, select the required cores and specify the settings for each core.
5. Click Finish.

Note: Learn about all wizard fields in the Project creation wizards section of this documentation (Reference >
User interface > Wizards).

The wizard creates all project folders and files and displays the new project in the Project Explorer:

If the target processor has multiple cores, the wizard generates a dedicated project for each core that you have
selected on the second page.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 33

Tasks

Creating a project from an example

You can create a new project on the basis of a sample project. The new project includes all files of the sample project.

To create a new project from an example project:

1. Launch the S32DS Project from Example wizard by clicking File > New > S32DS Project from Example on
the menu.

2. The wizard displays all sample projects in the Examples pane. Click a project that fits best. To find a certain
project, start typing the project name in the search box above the Examples pane.

3. In the Project name field, specify a unique name of the new project. Use alphanumeric characters (A-Z, a-z, 0-9)
and underscores ('_'). Do not start the project name with a digit.

4. Click Finish. The new project appears in the Project Explorer.

If system generates any errors or warnings, you can see them in the Problems view. You can use the Quick Fix
option if possible:

• Right-click an error message and select Quick Fix option from the context menu,
• Select errors to fix,
• Click Finish.

Errors will disappear and project will be available for build and debug.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

34 NXP Semiconductors

Tasks

Importing a project
You can add an existing project to your workspace by importing it from:

• a system folder,
• an archive file,
• a ProjectInfo.xml file.

Importing a project from a system folder or an archive file

To import a project into the workspace:

1. Click File > Import... > General > Existing Projects into Workspace on the main menu, then click Next.

2. In the Import Projects dialog box, browse to the projects' root folder or archive file.

3. In the list of folders, select the projects to be imported.

4. Select the Copy projects into workspace option to not affect the original project.

5. Click Finish.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 35

Tasks

Importing a project from a ProjectInfo.xml file

To import a project into the workspace:

1. Click File > Import... on the main menu.

2. In the Import dialog click S32 Design Studio for S32 Platform > ProjectInfo XML as S32DS Project, then
click Next

3. Browse to the ProjectInfo.xml file.

4. Specify the project name.

5. In the Project type list select the toolchain available for the core.

Note: Be careful to select the appropriate core type toolchain, f.e.: if importing project with linux core type, select
the linux configuration. Selecting the wrong toolchain during import may lead to unavailability to compile the
project.

6. In the Build configuration list select the configuration available for the project type and core.

7. If you need a new launch configuration for debugging enable the Create launch configuration option, select the
debug configuration type from the list.

8. Click Finish.

If imported with the Create launch configuration option enabled, the Debug Configurations dialog will appear
with a new configuration created and the Debugger tab displayed. For debugger settings details refer to topic
Debugger tab.

Adding files and folders to a project
To add files and folders to a project in the Project Explorer, use any of these options:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

36 NXP Semiconductors

Tasks

Table 2: Adding files and folders to a project

To do this... ... take the following steps:

Drag and drop a file or a
folder from the file system

1. Select a file or a folder in the system window and drag it to the Project
Explorer.

2. Drop the file or the folder to the destination project folder.

Copy and paste a file or a
folder from the file system or
from the Project Explorer

1. Select a file or a folder in the system window or in the Project Explorer and
copy it to the clipboard using CTRL+C.

2. In the Project Explorer, select the destination project folder and paste the
copied file or folder using CTRL+V. The copied objects are placed inside the
selected project folder.

Import files from the file
system

1. Click File > Import on the main menu.
2. In the Import wizard, go to General > File System. Click Next.
3. Specify the settings for import:

• In the From directory field, browse to the folder where the files for
import are located.

• Flag files for import in the right pane, or flag the parent folder in the left
pane to import all included files.

• Specify the target folder for import in the Into folder field.
• To import files with their parent folder, select the Create top-level

folder option.
4. Click Finish.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 37

Tasks

To do this... ... take the following steps:

Add a new folder to a project 1. In the Project Explorer, click the project folder where you need to nest a new
folder.

2. Click File > New > Folder on the main menu.
3. In the New Folder dialog box, enter the name of the new folder.

4. Click Finish.

Add a new file to a project 1. In the Project Explorer, click the project folder where you need to add a new
file.

2. On the main menu, click File > New and the option required - Source File,
Header File, or File from Template (a TXT file).

3. In the New File dialog box, point the source (parent) folder where the new file
will be added, enter the file name, and select the file template from the list.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

38 NXP Semiconductors

Tasks

To do this... ... take the following steps:

4. Click Finish.

Adding a device configuration
The integrated S32 Configuration Tool enables you to create and develop a device configuration within a project.

A device configuration sets up interconnections between the device’s pins and clocks and connected peripherals. A
typical configuration specifies pin electrical features, signal routing from pins to peripherals, muxing, clock element
settings, and clock output frequencies.

To store a device configuration, the S32 Configuration Tool generates a MEX configuration file and the empty
board folder for the source files.

The topics in this section describe how to work with a device configuration in a project:

• Creating a project with a device configuration
• Editing a device configuration
• Importing a device configuration
• Exporting a device configuration

To learn more about the S32 Configuration Tool, refer to the S32 Configuration Tool Getting Started guide. This
document can be reached from the Help > Help Contents menu.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 39

Tasks

Creating a project with a device configuration

To create a project with a device configuration:

1. On the main menu, click File > New > S32DS Application Project.

2. In the project creation wizard, select the processor family and the core and specify a unique project name. Use
alphanumerics (A-Z, a-z, 0-9) and underscores ('_'). Do not start the project name with a digit.

3. Click Next.

4. On the next page, define the required cores and parameters. Select an SDK to be used.

Note: The S32 Configuration Tool is enabled by default when an SDK is selected for the project. If SDK is not
selected the S32 Configuration Tool is not accessible for the project.

5. Click Finish. The new project appears in the Project Explorer.

Editing a device configuration

To let you edit a device configuration, S32 Design Studio provides perspectives named Pins, Clocks, Peripherals,
DCD (Device Configuration Data), IVT (Image Vector Table), QuadSPI and DDR. The settings that you edit and
save in these perspectives are automatically stored in the configuration file of the currently used project.

To edit a device configuration in a perspective, do any of the following:

• Double-click the MEX file in the Project Explorer. By default, you will get to the Pins tool.
•

Select the project in the Project Explorer and click the (Open S32 Configuration) button on the
toolbar. Click to open the required perspective.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

40 NXP Semiconductors

Tasks

• Right-click the project in the Project Explorer pane. On the drop-down context menu, click S32
Configuration Tool and the required option.

The use of settings in the perspectives is beyond the scope of this document. You can read more about the subject in
the S32 Configuration Tool Getting Started guide. To open this guide, click Help > Help Contents on the menu.

While configuring your processor, you can switch between the perspectives using the (Open S32
Configuration) toolbar button.

To save the changes to the project, use the Update Project toolbar button. A click on this button either saves the
latest device configuration silently, or opens the Update Project Files dialog box.

When saving the changes for the first time, clickUpdate Project > Open Update Project Dialog.

In the Update Project Files dialog box, select the device configuration files to be created in the project and updated
with the latest pin, clock, and peripheral settings:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 41

Tasks

When you click OK, the project will be updated as follows:

• If a file is labeled “create”, it will be created in the project's board folder.
• If a file is labeled “no change”, there are no updates to be saved to this file.
• If a file is labeled “change”, the existing file will be updated in the board folder. Click the “change” label to

compare the file before and after update.
• If a file is not selected, it will be skipped from update, or not created.

You can configure the Update Project button to always open the Update Project Files dialog box. To do it, select
the Always show details before Update Project option in the Update Project Files dialog box, then click OK.

Importing a device configuration

A device configuration includes a MEX file and source code files that specify interconnections between the device’s
pins and clocks and connected peripherals. You can create these files within your project, or you can import external
configuration files into your project.

To import device configuration files:

1. Create or open a project that includes a device configuration (MEX file).

2. Select the project in the Project Explorer and click File > Import on the main menu.

3. In the Import dialog box, double-click S32 Configuration Tool. Click to import a MEX file, registers, or source
files, then click Next.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

42 NXP Semiconductors

Tasks

4. Specify the settings for import:

• If you import a MEX configuration, browse to the existing MEX file, specify the target project for import,
and select tool-specific data to be imported:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 43

Tasks

• If you import registers, browse to the registers configuration (for instance, to a CSV file), and specify the
functional group under which the registers will be added:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

44 NXP Semiconductors

Tasks

Note: To learn how to get a CSV file with registers configuration, refer to Exporting a device
configuration.

• If you import a source file, browse to it. Then select functional groups to be imported.

If the source file already exists in the target project, specify how to handle the existing functions when
their names match the names of functions to be imported:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 45

Tasks

• Select overwrite to replace the existing function with the imported one.
• Select rename to keep in the destination source file both the existing function and the imported

function under different names.

5. Click Finish.

Exporting a device configuration

To export device configuration files:

1. Open a project with the implemented device configuration.

2. Select the project in the Project Explorer and click File > Export on the main menu.

3. In the Export dialog box, double-click S32 Configuration Tool. Click to export the MEX file, or expand the tool
folder and click to export an HTML report, registers, pins, or source files. Click Next.

4. If you export an HTML report, registers, or pins, browse to the destination folder. For the MEX file, specify the
file name and the destination path.

If you export the source files, click the cores which files you need to export. For each core, specify the destination
folder (for instance, the board folder in a different project):

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

46 NXP Semiconductors

Tasks

5. Click Finish.

Locating project files and folders in the file system
To locate a project file or folder in the file system, right-click it in the Project Explorer and click Properties. Click
Resource in the Properties dialog box. The absolute path of the selected file or folder is provided in the Location
field:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 47

Tasks

Click the (Show In System Explorer) button to open the selected folder in the system dialog box. If you selected a
file, this button opens the parent folder containing this file.

Renaming a project

To rename a project, open it in the Project Explorer. Before you proceed with renaming, make sure to resolve all the
project-related issues reported in the Problems view. Also, clean the project from any artifacts belonging to previous
builds:

• Right-click the project in the Project Explorer and click Clean Project on the context menu.
• Delete the Debug folder and other folders with the build output (if any available).

To rename a project:

1. Select the project in the Project Explorer and click File > Rename on the menu or press F2.

2. Specify the new project name in the Rename Project dialog box. The project name must be unique across the
workspace. The allowed characters are alphanumerics (A-Z, a-z, 0-9) and underscores ('_'). Project names starting
with a digit are not allowed.

3. Click OK.

The project is displayed in the Project Explorer with the new name and with the project files, functions, and other
resources renamed accordingly.

Duplicating a project

If necessary, you can save a copy of an existing project in the workspace under a different name. The duplicated
project includes all files, folders and resources of the original project renamed accordingly.

To duplicate a project in the workspace:

1. Select the original project in the Project Explorer and press CTRL+C.

2. Press CTRL+V to paste the copied project to the workspace. Rename the duplicated project and click OK.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

48 NXP Semiconductors

Tasks

The new project appears in the Project Explorer.

Saving a project to User Examples

S32 Design Studio for S32 Platform is installed with a collection of project examples that demonstrate programming
concepts and use of SDKs. A project example can be copied to the workspace and reused as described in topic
Creating a project from an example.

All project examples are available for use in the S32DS Project from Example wizard. To open the wizard, click File
> New > S32DS Project from Example.

The User Examples section of the S32DS Project from Example wizard is reserved for project examples added by
the user. To add a project to User Examples, copy the project folder from your workspace to the {S32 Design
Studio for S32 Platform 3.4 installation path}/S32DS/examples folder.

An example can include several projects. For instance, when you design an application for a multi-core processor,
you use a separate application project for each core. You can pack all these projects into one example. When someone
decides to use your example, they install all included projects to the workspace.

To add a multi-project example to User Examples:

1. In the Project Explorer, click an application or library project that you want to add to user examples. Click
Project > Properties on the main menu.

2. In the Properties dialog box, click Project References in the left pane. Make sure that all other projects that you
want to include in your example are referenced.

3. In the Properties dialog box, click Resource in the left pane. In the right pane, click the Show in System
Explorer button to open the project folder.

4. In the workspace, all projects of a multi-core solution are located in the upper-level folder named similarly. The
folder was added by the project creation wizard. Copy and paste this folder to the following location: {S32DS
3.4 installation folder}/S32DS/examples/.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 49

Tasks

Note: If the common folder for your projects is missing in the workspace, create a folder with a proper name in /
S32DS/examples/ and copy all projects of your example to this folder.

Now the S32DS Project from Example wizard displays your example under User Examples.

The example is located in the upper-level folder that you copied or created in the /S32DS/examples folder.

Exporting a project
You can export an S32DS project to:

• a system folder,
• an archive file - ZIP or TAR,
• a ProjectInfo.xml file.

Exporting a project to a system folder or an archive file

To export a project to a system folder or to a ZIP or TAR archive file:

1. Right-click the project in the Project Explorer and click Export on the context menu.

2. In the Export wizard, go to General and select Archive File or File System as the destination for export. Click
Next.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

50 NXP Semiconductors

Tasks

3. On the next wizard page, do the following:

• In the left pane, remove flags from the project folders that you want to be excluded from export. Click a
folder in the left pane to see all included files in the right pane. Remove flags from the project files to be
excluded from export.

• Browse to the destination folder or archive file, or enter the path manually. If the specified folder or
archive file does not exist, it will be created during export.

• Specify the options for export.

4. Click Finish.

Exporting a project to a ProjectInfo.xml file

To export a project to a system folder or to a ZIP or TAR archive file:

1. Right-click the project in the Project Explorer and click Export on the context menu.

2. In the Export wizard, click S32 Design Studio for S32 Platform > S32DS Project as ProjectInfo XML and
click Next.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 51

Tasks

3. Select the configuration to export.

4. Choose to use default or absolute paths.

5. Click Finish.

The data is exported to the ProjectInfo.xml file in the project tree and its contents are shown in the editor area.

Closing and reopening a project
If no activity is happening in a project for a while, you may prefer to close it. A closed project still displays the root
folder in the Project Explorer, but you cannot expand it to see the project files and folders. A closed project cannot
be modified, corrupted, or involved in group operations such as building all projects.

To close a project, select it in the Project Explorer and click Project > Close Project on the menu. To close all
projects except the selected one and its related projects, right-click the selected project and click Close Unrelated
Projects on the context menu.

To reopen a closed project, select it in the Project Explorer and click Project > Open Project on the menu.

If necessary, the Project Explorer can be customized to hide closed projects:

1. Click the View Menu toolbar button and click Filters and Customization on the context menu or simply push

 toolbar button.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

52 NXP Semiconductors

Tasks

2. In the Filters and Customization dialog box, go to the Pre-set filters tab and flag the Closed projects option.
Click OK.

To reopen a closed project hidden from the Project Explorer, customize the Project Explorer settings to show
closed projects. Then reopen the closed project as described above.

Removing a project

When a project is finished and saved to a storage, you may prefer to remove it from the workspace and permanently
delete it from the disk.

To remove a project:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 53

Building projects

1. Right-click the project in the Project Explorer and click Delete on the context menu.

2. In the Delete Resources dialog box, select the Delete project contents... option if you prefer to permanently
delete the project files from the disk. Click OK.

If you have removed the project with the Delete project contents... option not selected, the project can be restored in
the workspace as described in topic Importing a project. Otherwise, the removal cannot be reverted.

Building projects

Overview
Building code in S32 Design Studio for S32 Platform is highly configurable and provides many flexibilities. In the
simplest case, you just click the menu button and get the compiled file for debugging in a couple of moments. This
scenario uses the default build settings specific to your project.

To have a deeper view and a better command of the build process, learn about the basic concepts described below.

Build targets

The build target is an output file compiled from the project code at build time. Depending on the project type, the
build generates an executable file or a library file ready for execution. In addition, you can generate secondary output
such as an image file, a disassembly file, or other.

Build configuration

The settings that configure the build process are collected in a build configuration - a special section of the project
properties. A build configuration specifies the builder to be used, the prioritized list of build tools available to the
builder, and the tool settings. Also, a build configuration determines the project folders and files participating in the
build, and enables build logging.

A project in S32 Design Studio for S32 Platform can have multiple build configurations. When just created, a project
gets several default configurations for building the debug and release versions of the code. You can create more
configurations for a project, adjust the settings in any build configuration, rename the build configurations, and delete
any configuration from the project.

One of the project’s build configurations is selected to be active. The active build configuration is the one to be used
at build time.

Builder

The builder is a component that calls the build tools to generate the intermediate build files and the build target. In the
build configuration, you select the internal CDT builder or an external builder supported in S32 Design Studio for S32
Platform. The internal builder does not create a makefile, while the external builders do.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

54 NXP Semiconductors

Tasks

This chapter focuses on building by means of an external builder.

Toolchains

S32 Design Studio for S32 Platform comes with a collection of toolchains targeted at different project types. Most
of the supported toolchains are based on the standard GCC tools and implement extensions to comply with a target
hardware architecture.

When you create a project, you specify the toolchain that matches the project’s target MCU and the core. After that,
you should not select a different toolchain for the project.

The tools included in the toolchain are set up by default and can be fine-tuned in the build configuration.

Build tools

The build tools included in a toolchain will be called by the builder to produce the build output:

• The basic tools are called when the build is started. These tools are used to generate the build target. The call
order (the compiler, the assembler, and the linker) is predefined and cannot be altered; no tool in this sequence
can be skipped.

• The secondary (or optional) tools are executed after the build target has been generated. These tools are used
to create secondary build output such as the flash image of the application, the disassembly listing, and so
on. To be called at build time, each secondary tool needs to be enabled and configured in the active build
configuration.

Besides, a toolchain can include the disassembler tool and the preprocessor tool that are never called at build time.
You can call these tools from the menu, without starting the build, to look into the assembler instructions, string
substitutions and other conversions that will take place later when you build the project.

Using build configurations
Any project in S32 Design Studio has at least one build configuration. To view all build configurations belonging to a
given project, open the Manage Configurations dialog box in any of these ways:

• Click the project name in the Project Explorer, then click Project > Build Configurations > Manage from
the main menu.

• Right-click the project name and click Build Configurations > Manage from the context menu.
• Right-click the project name and click Properties from the context menu. In the project properties, click C/C

++ Build in the left pane, then click the Manage Configurations button in the right pane.

To perform an action from the Manage Configurations dialog box, select a build configuration from the list and
click the respective button:

• Set Active: Make the selected build configuration active, that is, used in project builds by default. Find the
details in Setting the active build configuration.

• New: Create a new configuration for the project. Find the details in Creating a build configuration.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 55

Tasks

• Delete: Delete the selected configuration from the project. If you delete the active configuration, the “active”
status is automatically assigned to the top configuration in the list. When there is one build configuration in
the list, the Delete button is disabled.

• Rename: Rename the selected build configuration.

To learn how to view and edit the settings in a particular build configuration, refer to Editing a build configuration.

To learn how to view and manage the project files and folders in all build configurations, refer to Managing project
resources in build configurations.

Creating a build configuration

You can create as many build configurations for a project as required.

To create a new build configuration:

1. Click the project name in the Project Explorer, then click Project > Build Configurations > Manage on the
main menu.

2. In the Manage Configurations dialog box, click New.

3. In the Create New Configuration dialog box, specify the name for the new configuration.

Select the original build configuration whose settings will be copied to the new build configuration:

• Existing configuration: Click this option to select a build configuration belonging to the project.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

56 NXP Semiconductors

Tasks

• Default configuration: Click this option to select a default build configuration generated for the project
by project creation wizard.

• Import from projects: Click this option to select a build configuration belonging to any project available
in the workspace.

• Import predefined: Click this option to select a build configuration predefined in a CDT toolchain.

Then expand the drop-down menu next to the selected option and pick the build configuration.

4. Click OK and again OK.

If required, edit the new build configuration settings as described in Editing a build configuration.

Setting the active build configuration

One of the project's build configurations is active, that is, used by default in the project builds. The active build
configuration appears in the Project Explorer next to the project name:

To select a different active configuration, open the Manage Configurations dialog box (Project > Build
configurations > Manage on the menu), click the configuration to be active, and click the Set Active button.

Another option is, right-click the project name in the Project Explorer and click Build configurations > Set Active
and the required configuration from the context menu.

Editing a build configuration

To open a build configuration for editing, go to the project properties (Project > Properties on the menu) and then to
the C/C++ Build section in the left pane.

Expand the Configuration menu to view all build configurations available for the project. Select the build
configuration to be viewed and edited:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 57

Tasks

The build configuration settings are arranged in groups and are available from the C/C++ Build section in the left
pane:

Table 3: Build configuration settings

Settings Description Refer to:

Builder Settings tab: Click to select the builder
type and to configure the builder settings.

Configuring the builder

Behavior tab: Click to configure the build flow. Configuring the build behavior

C/C++ Build page

Refresh Policy tab: Click to configure the list
of resources to be refreshed after each build.
Applies to the external builder only.

Build Variables page Click to view and edit the list of build variables
to be used by the external builder for string
substitution.

Environment page Click to view and edit the list of environment
variables available to the builder.

Logging page Click to enable and configure build logging.

Tool Settings tab: Click to configure the tool
settings.

Tool settings section (Reference)Settings page

Build Steps tab: Click to add optional pre-built
and post-build steps.

Adding the pre-build and post-build
steps

Tool Chain Editor
page

Click to select a different builder for the project.
Also, you can select the tools in the current
toolchain to be called at build time.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

58 NXP Semiconductors

Tasks

Note: Click Apply to save the latest changes to the build configuration. If you just close the Properties dialog box,
your updates will be lost.

Configuring the builder

To edit the builder settings, open the project properties and click C/C++ Build in the left pane and the Builder
Settings tab in the right pane.

Table 4: C/C++ Build: Builder Settings

Settings Description

Builder Specify the builder settings:

• Builder type: Select “External builder” if you need a makefile to be generated.
Otherwise, select “Internal builder”, in which case all the remaining settings on the tab
become disabled.

• Use default build command: Enable this option to use the default build command
(shown in the Build command field). Remove the flag to edit the build command.

• Build command: Specify the build command.

Makefile
generation

Generate makefiles automatically: Enable this option to generate a makefile with each build.

Remove the flag if you have edited the makefile manually and need to keep these changes in the
next builds. If required, specify a different folder for build output in the Build directory field.

Build location Build directory: Specify the path of the build folder.

Configuring the build behavior

To edit the build behavior, open the project properties and click C/C++ Build in the left pane and the Behavior tab in
the right pane.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 59

Tasks

Table 5: C/C++ Build: Behavior settings

Settings Description

Build settings Specify the build options:

• Stop on first build error: This option stops the build at the first encountered error. The
option is enabled by default and read-only.

• Enable parallel build: Keep this option enabled to speed up the compilation by using
parallel jobs. Configure the number of parallel jobs:

• Use optimal jobs (4): Use the default number of four jobs.
• Use parallel jobs: Specify the number of parallel jobs by the number of CPU on

your machine.
• Use unlimited jobs: Enable the builder to produce as many jobs as required by

the build.

Workbench
Build Behavior

Specify the settings to be used by the builder when instructed to build, rebuild, or clean the
project.

• Build on resource save (Auto build): Enable this option to rebuild the project
whenever the project resources are saved. Click Variables to specify the path of the
build target.

• Build (incremental build): Enable this option to create incremental builds. Click
Variables to specify the path of the build target to be incremented.

• Clean: Enable this option to clean the project before rebuilding it. Click Variables to
specify the path of the build target.

Adding the pre-build and post-build steps

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

60 NXP Semiconductors

Tasks

A build configuration can optionally execute pre-build steps and post-build steps. If you specify a pre-build
command, it will be executed before the build tools are called. A post-build command will be executed right after the
ELF file is created.

To add a post-build step to the build configuration:

1. In the project properties, go to C/C++ Build > Settings and open the Build Steps tab.

2. Select the build configuration in the Configuration field and specify the post-build command under Post-build
steps:

3. Click Apply and close the dialog box.

4. Build the project with the updated configuration. The Console view reports the execution of the post-build
command.

Adding a pre-build step to a build configuration is similar, except you add your command under Pre-build steps.

Managing project resources in build configurations

To have a view of all project resources and of their use in each build configuration, right-click the project in the
Project Explorer and click Build Configurations Explorer on the context menu.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 61

Tasks

The Build configurations dialog box shows the data arranged in a pivot table. The tree of project folders and files is
displayed in the left column of the table. The project's build configurations are represented by the columns located to
the right from the tree.

If a particular folder or a file is included in a build configuration, the table shows the sign at the intersection of the
respective column and the raw. An excluded resource is marked with the sign.

You can modify the availability of the project resources in the Build configurations dialog box. To change the status
of a certain resource to the opposite one, click the icon at the intersection of the respective column and the raw.

Building a project
Before building a project, ensure that the project uses the right build configuration. The name of the active
configuration is appended to the project name in the Project Explorer view:

If required, set a different active build configuration. Find the details in Setting the active build configuration.

To build the project, click the project name in the Project Explorer view and do any of the following:

•
Click the (Build) button on the toolbar.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

62 NXP Semiconductors

Tasks

• Click Project > Build Project on the menu.
• Right-click the project name and click Build Project on the context menu.

When the build starts, all steps and the final status are reported in the Console view. To resolve possible build errors,
refer to Resolving build problems.

Resolving build problems
When the project build fails, the Project Explorer displays the “error” sign over the project's root folder and over
the folders and files where the issues were detected. The Problems view reports about the issues that have caused the
build failure:

Click an entry in the Problems view. If the issue is detected in code, the editor area displays the problem file and
marks the line of code where the error is found.

Besides the syntax errors, build failures can be caused by invalid characters in the resolved paths. Such errors are
reported without a particular location. If you get such an error in the Problems view, make sure that all of your
variables hold paths with only ASCII characters ('A-Z', 'a-z'), digits ('0-9'), underscores ('_'), dash characters ('-'),
periods ('.'), and slash characters ('/').

Note: Backslash ('\') is not allowed in paths.

Find an example of such an error in Building projects in non-English versions of Windows.

Build failures with multiple unresolved symbols in code can be caused by the incorrect C/C++ indexer settings. Find
the details in Adjusting the C/C++ indexer settings for large files.

If system generates any warnings, you can also see them in the Problems view. You can use the Quick Fix option if
possible:

• Right-click an error message and select Quick Fix option from the context menu,
• Select errors to fix,
• Click Finish.

After resolving all build issues, right-click the project in the Project Explorer and click Clean Project on the context
menu.

Adjusting the C/C++ indexer settings for large files

The C/C++ indexer is an optional component that builds a database of project source and header files to provide C
and C++ search, navigation features, and parts of content assist. If enabled, the C/C++ indexer updates the database
every time you import, create, edit or delete a project file.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 63

Tasks

Indexing can be restricted by file size or by cache size, in which case the indexer may not update the database after
some action was performed with a project file, for instance, because the file was too large. An attempt to build a
project after that may fail with unresolved symbol claims, as displayed in the figure below:

In the above example, the project was imported from a Git server to an S32 Design Studio for S32 Platform
workspace. The user was able to build the project without errors until the source file with the included large header
file was opened. Now, at the attempt to rebuild the project the editor area flags errors on every single line that uses a
symbol from that header file. The header file is included properly and is located at the include path, the compiler does
not show any complains. Clicking an unresolved symbol with the CTRL key pressed leads straightly to the header file,
but S32 Design Studio for S32 Platform still claims it cannot resolve the symbols.

The issue occurs because the size of the header file is more than 17 MB, while the C/C++ indexer is configured by
default to skip files larger than 8 MB from indexing. To resolve the issue, click Window > Preferences and go to C/
C++ > Indexer:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

64 NXP Semiconductors

Tasks

On the Indexer page, adjust the C/C++ indexer settings as follows:

• Enable the indexer (if disabled).
• Enable the Index all header variants option.
• Modify the Skip files larger than and Skip included files larger than settings so that no files in your project

are skipped from indexing.
• Select Use active build configuration.
• Under Cache limits, raise the value of the Absolute Limit setting for the header file cache to 256 MB.

Click Apply and Close, clean and rebuild the project. If the errors still occur, restart S32 Design Studio for S32
Platform.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 65

Tasks

Note: The indexer settings adjusted in the Preferences dialog box apply to all projects in the workspace. To specify
the indexer settings for a particular project only, open the project properties and go to C/C++ General > Indexer.
Enable the project-specific settings and update the indexer settings as described above.

Building projects in non-English versions of Windows

Project builds may fail on a non-English version of Windows. The error occurs if the path to the linker file includes
non-ASCII characters. The allowed characters are: A-z, 0-9, '-' (dash), _(underscore), '/' (slash), '.' (period).

Open the project properties and go to the C/C++ Build > Settings > Tool Settings > Standard S32DS C/C++
Linker > General page. In the Script files (-T) field, ensure that the path to the linker file uses the allowed characters
and that all included variables are resolved to ASCII strings:

If necessary, relocate the linker file to a folder whose path includes the allowed characters, or rename the folders
properly.

If the issue is caused by a variable, consider using the relative path that excludes the use of the variable. For example,
the Script files (-T) field contains the following path:

${ProjDirPath}/Project_Settings/Linker_Files/<project_name>.ld

If the ${ProjDirPath} variable holds the string with invalid characters, replace the value in the Script files (-T) field
with the relative path that does not use the ${ProjDirPath} variable:

../Project_Settings/Linker_Files/<project_name>.ld

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

66 NXP Semiconductors

Tasks

The update takes effect after you click Apply.

If the errors still occur, go to the C/C++ Build > Settings > Tool Settings > Standard S32DS C/C++ Compiler >
Includes page and replace "${ProjDirPath}/include" with "../include".

Using optional tools
A build configuration can include optional tools such as:

• Standard S32DS Create Flash Image: This tool generates a flash image of the build target.
• Standard S32DS Create Listing: This tool generates the disassembly listing of the build target.
• Standard S32DS Print Size: This tool prints the size of the produced application to the console.

To be executed at build time, these tools need to be enabled and set up in the build configuration. Find an example in
topic Generating an image file.

Also, a build configuration includes tools that are never called at build time:

• Standard S32DS C/C++ Preprocessor
• Standard S32DS Disassembler

You can call these tools from the menu for the selected project files. Find the details in topics Preprocessing source
files and Disassembling binaries and source files.

Generating an image file

When building a project, you can optionally generate a flash image from the executable file.

To generate an image file:

1. In the project properties, go to C/C++ Build > Settings > Cross Settings and enable the Create flash image
option.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 67

Tasks

2. Click Apply. The left pane of the dialog box now shows the Standard S32DS Create Flash Image section.

3. In the Settings page, go to Standard S32DS Create Flash Image > General. Select the required image format
and specify other options. Find the details in the Standard S32DS Create Flash Image section (Reference) of this
documentation.

Click Apply and Close.

4. Build the project.

5. In the Project Explorer, open the folder with the build output (Debug or other) and find the required image file.

Using output of optional tools in post-build steps

When specified in a build configuration, the post-build command will be executed after generating the ELF file and
before calling the optional tools (for example, generating the SREC file). For this reason, when you try to use a file
produced by an optional tool in a post-build command, you get the error message “No such file or directory”.

To use secondary outputs in a post-build command, you can do one of the following:

• Move your post-build commands to the custom makefile. It will build your project as usual and then execute
the post-build command right after the secondary output is produced.

• Create and launch a sequence of two build configurations. The first configuration will produce secondary
output (SREC, HEX and LST files), and the second configuration will execute the post-build commands for
these files.

Using a custom makefile

1. Create the makefile.targets file in the project root.

2. Open this file in the editor and specify the target name, for example, user_all. It should build the default all
target and then execute your post build commands.

user_all: all post_buid_step

3. Create the post_build_step rule. It should be executed only if the optional tool output exists. In case of the
SREC file, makefile defines the SECONDARY_FLASH variable for the output:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

68 NXP Semiconductors

Tasks

post_build_step: $(SECONDARY_FLASH)

4. Add the post-build commands.

5. In the project properties, click C/C++ Build and open the Behavior tab.

6. In the Build (Incremental build) field, specify your custom target instead of the default one.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 69

Tasks

Using a sequence of two build configurations

1. In the project properties, go to C/C++ Build > Settings. Select the first build configuration, click Cross Settings,
and select optional tools to be used for building the project.

For instance, select the Create flash image option to use the Standard S32DS Create Flash Image tool. Then go to
Standard S32DS Create Flash Image > General and configure the tool.

2. To create the second configuration, click Manage Configurations in the project properties, then click New in
the pop-up dialog box. Specify the name of the second configuration. Choose to copy settings from the existing
configuration and select the first configuration from the Existing configuration list. Click OK.

Then select the just created configuration in the pop-up dialog box and click Set Active. Click OK.

3. In the project properties, go to C/C++ General > Path and Symbols. Make sure the second configuration is
selected in the Configuration field. On the Reference tab, expand the <project_name> list and flag the first
configuration.

When you run the second configuration, this reference will call the first configuration prior to the second one.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

70 NXP Semiconductors

Tasks

4. In the project properties, go to C/C++ Build > Settings > Build Steps. Select the second configuration in
the Configuration field and specify the post-build command that uses secondary output created by the first
configuration.

For instance, save a copy of the SREC file in the project folder where output of the second configuration is stored:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 71

Tasks

5. Run the second configuration.

This command launches the first build configuration that creates all specified build targets, including secondary
output. Then the second configuration executes the post-build command.

Preprocessing source files

The Standard S32DS C/C++ Preprocessor tool enables you to evaluate the results of preprocessing of any C or CPP
source file without starting the project build. The tool generates a text file in which all macros are resolved to their
values.

To preprocess a source file, do any of the following:

• In the Project Explorer, go to the src folder, right-click the C or CPP file and click Preprocess Selected
File(s) on the context menu.

• Right-click the open source file in the editor area and click Preprocess Selected File(s) on the context menu.

Note: Files that are not included in the current build configuration cannot be preprocessed.

When done, the text file with the preprocessor output appears in the Project Explorer and in the editor area. If the
resulting file exceeds 1 Mb in size, choose a file editor in the Editor Selection dialog box.

Each time the tool saves output to a new file with a unique name, allowing you to preprocess a source file many
times, keeping the earlier results of preprocessing. To compare the output files, select them in the Project Explorer,
right-click the selection, and click Compare With > Each Other on the context menu.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

72 NXP Semiconductors

Tasks

The tool is called with the “preprocess only” option (-E) by default. To enable additional options, refer to Standard
S32DS C/C++ Preprocessor in the project properties (C/C++ Build > Settings) .

Disassembling binaries and source files

The Standard S32DS Disassembler tool enables you to get disassembly of a binary or a source file without starting the
project build. The disassembly code can be used to reveal the logical flaws or vulnerabilities.

To disassemble a file, do any of the following:

• In the Project Explorer, go to the src folder and right-click the C or CPP file, or right-click the binary file in
the build output folder. Click Disassemble Selected File(s) on the context menu.

• Right-click the open source file in the editor area and click Disassemble Selected File(s) on the context
menu.

Note: Files that are not included in the current build configuration cannot be disassembled.

When done, the text file with disassembly appears in the Project Explorer and in the editor area. If the resulting file
exceeds 1 Mb in size, choose the file editor in the Editor Selection dialog box.

Each time the tool generates a file with a unique name, allowing you to disassemble different versions of the same
project file and to compare the results. To compare two or more disassembly files, select them in the Project
Explorer, right-click the selection, and click Compare With > Each Other on the context menu.

By default, the tool is configured to generate the following output:

• The assembler mnemonics for the machine instructions (-d option)
• The source code intermixed with disassembly (-S option)
• All available header information, including the symbol table and relocation entries (-x option)

To enable additional options, refer to Standard S32DS Disassembler in the project properties (C/C++ Build >
Settings).

Using parallel build
When you compile a large project, using the parallel build option can reduce the needed time by factors (typically,
three to five times). The improvement depends on the number of cores and on the speed of your machine.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 73

Debugging

Parallel build means that the builder does not compile one file after each other, but instead runs a set of parallel
builds. This is especially useful for host machines having multiple cores or CPU. Each CPU can do a compilation and
balance the build load across all available CPU to cut the build time.

To speed up the build time, go to the project settings and click C/C++Build in the left pane. Go to the Behavior tab
in the right pane:

The parallel build option is enabled by default. Select the number of “parallel jobs” depending on the number of CPU
on your machine. Click Apply to save the changes and continue or Aplly and Close to save the changes and quit the
Properties dialog.

The possible disadvantage of the parallel build is, the compilation errors from all jobs are reported in the same
Problems view in parallel. If the project has many errors in many files, consider turning parallel build off during the
error fixing.

Debugging

Overview
One of the key features of S32 Design Studio for S32 Platform is its great support for debugging embedded C and C
++ applications for S32 devices, both created in the wizard and imported to the workspace. Debugging is performed
by means of the GDB tools supplemented with extra code (scripts, libraries, SDKs) to provide support for the target
device, virtualization, and other options.

Support for each family of devices is brought to the debugging process with a respective software package or several
packages that have to be installed into S32 Design Studio for S32 Platform.

Debugging environment

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

74 NXP Semiconductors

Tasks

S32 Design Studio for S32 Platform allows debugging on a connected target, on a remote Linux system, and in the
simulation mode. The availability of each option depends on the target device.

• To enable debugging on the target, S32 Design Studio for S32 Platform supports several evaluation boards
with embedded devices as well as JTAG hardware debuggers from several manufacturers. S32 Design Studio
for S32 Platform supports communication with a connected board via the USB and Ethernet interfaces.

• To enable debugging in the simulation mode, S32 Design Studio for S32 Platform implements integration
with the Synopsys and VLAB tools. Debugging on a simulator is started and performed in special
perspectives provided by S32 Design Studio for S32 Platform.

User interface

Debugging can be started and managed from the GDB command line and from the user graphical interface of S32
Design Studio for S32 Platform. When using the graphical interface, the developer is switched to the Debug or VDK
Debug perspective that includes customizable views for inspecting values and managing the debugging process. The
views available to the developer are Memory, Registers, EmbSys Registers, Breakpoints, Expressions, Variables,
and other. The information about the debugging status appears in the Console, Debugger Console, and Problems
views. The debug sessions with the included processes and threads can be managed in the Debug view.

Debug configuration

In S32 Design Studio for S32 Platform, a project is created with a collection of out-of-the-box debug configurations.
A debug configuration consolidates all project specific debugging information. This includes the paths of the
executable file and of the project, the settings responsible for the project rebuild, for connection and initialization of
the board, for starting debuggers, and for file lookup. A debug configuration is the place to specify the first breakpoint
and additional GDB commands. Optionally, a debug configuration can reference external symbols and an image file
not included in the project.

The set of debug configurations created for a project includes at least one “debug” configuration and one “release”
configuration. These configurations have similar settings and only differ in meta information. For projects created
for debugging on a bare-metal target, S32 Design Studio for S32 Platform generates configurations for debugging a
program from RAM and from flash.

Loading a program to the device

The simplest way to load a program to RAM or flash memory of the device is by running the respective debug
configuration. The selected configuration already includes all settings and requires only a couple of final clicks from
the developer.

While debugging from flash, the developer can use the command line interface to read flash memory and to reload a
program to flash. This option is provided by the flash programmer tool for advanced debugging scenarios.

Another way to load a program directly to flash memory is by using the S32 Flash tool. This tool is installed with S32
Design Studio for S32 Platform but is run as a standalone application. Learn more in S32 Flash Tool User Guide.

Debugging

To start debugging, the developer runs one of the debug configurations available for the project. This event initializes
the board and prepares the target cores (if applies), and executes the GDB commands specified in the configuration.
Once done, a debug session is started. The GDB client and GDB server processes and the application process are
executed in the context of the debug session.

If specified in the debug configuration, the debug session halts at the first breakpoint. The user releases the program
execution and starts stepping though the code. During debugging, the user can set breakpoints, inspect and edit
memory registers and peripheral registers, create variables and expressions, debug the source code or step through
instructions.

Multi-core debugging

In S32 Design Studio for S32 Platform, the developer can start several concurrent debug sessions on different cores of
the device and switch between them. Concurrent debug sessions can be started manually or using a launch group.

Launch group

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 75

Tasks

S32 Design Studio for S32 Platform provides launch groups for running several executable files on a multi-core
device with a single click. A launch group includes multiple debug configurations ranged the order of launching.
When a developer runs a launch group, the included debug configurations are executed one after another.

A separate debug session is created for each launched configuration. The first (“boot”) debug session has to initialize
the board, run and load the boot core, prepare the secondary cores, and start the GDB processes. The remaining
(“secondary”) debug sessions load the code to the other cores. The debug sessions created by the launch group are
managed and terminated independently.

Semihosting

Semihosting is an option that allows user input and output of the debugging information in the console during
debugging. Semihosting can be enabled in the debug configuration.

Code trace

Code trace collection is available for on-chip debugging with S32 Debug Probe. S32 Design Studio for S32 Platform
integrates the tools for collecting code trace, for managing this process during debugging, and for analysis of the
collected data. Learn more in S32DS Software Analysis Documentation available in the help system of S32 Design
Studio for S32 Platform.

Using the debugger
The Debug perspective of S32 Design Studio for S32 Platform provides several toolbar buttons to let you manage
active debug sessions. These buttons are available when a debug session is on.

Also, some debugging options are available from the editor area.

The following table describes all debugging options available to you when a debug session is on:

Table 6: Debugging options

Action Button Steps

Skip all breakpoints (Skip All
Breakpoints)

Click Run > Skip All Breakpoints or click (Skip All
Breakpoints) on the toolbar.

Resume execution
of the currently
suspended thread

 (Resume) Click Run > Resume or click (Resume) on the toolbar.

Suspend execution of
the currently selected
thread

 (Suspend) Click Run > Suspend or click (Suspend) on the toolbar.

Stop execution of the
currently selected
debug session and/or
process

 (Terminate) Click Run > Terminate or click (Terminate) on the toolbar.

Break the GDB
connection

 (Disconnect) Click Run > Disconnect or click (Disconnect) on the toolbar.

Step into the routine
call

 (Step Into) Click Run > Step Into, or click (Step Into) on the toolbar.

The current statement is executed; then the current statement arrow
moves to the next statement and stops. If the routine call is executed,
then execution jumps to the first statement in that routine. It the last

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

76 NXP Semiconductors

Tasks

Action Button Steps

statement in the routine call is executed, then execution jumps to the
next statement in the calling routine.

Step over the routine
call

 (Step Over) Click Run > Step Over, or click (Step Over) on the toolbar.

The current statement or routine executes; then program execution
stops. If the current statement is a routine call, execution stops at
the next breakpoint (watchpoint, eventpoint) or when the routine is
finished.

Step out of the
routine call

 (Step Return) Click Run > Step Return, or click (Step Return) on the toolbar.

The rest of the current routine executes; then execution returns up
the call chain and stops.

Enable/disable the
Instruction Stepping
mode

 (Instruction
Stepping Mode)

Use the Instruction Stepping mode to step through instructions in the
Disassembly view rather than through the source code in the editor.

To enable/disable the Instruction Stepping mode, toggle the
(Instruction Stepping Mode) button on the toolbar.

Set a breakpoint ()
at the line of code

To halt execution of a statement, double-click the marker bar (the
vertical ruler in the editor) in front of the statement. Or, right-click
the marker bar and click Toggle Breakpoint.

Note: The "No source file named..." warning appears in the
Debugger Console view when you set breakpoints at similar
function names in different projects. This is a known issue of
Eclipse. This issue has no impact on the debug session and can be
ignored.

Enable/disable a
breakpoint

Right-click an active breakpoint () and click Disable Breakpoint
from the context menu, or right-click a disabled breakpoint () and
click Enable Breakpoint.

Remove a breakpoint Double-click the breakpoint (or).

Set the program
counter

To continue execution from a certain line of code, right-click that
line in the editor, then click Move To Line from the context menu.

Note: Changing the program counter may cause your program to
malfunction.

Restart execution of
the program

Right-click the thread in the Debug view and click Relaunch from
the context menu.

Note: Relaunch is considerably faster to restart a debug session as it
skips over loading debug information and register descriptors.

Using launch configurations
A launch configuration (or a debug configuration) is a collection of settings that describe how to launch a program.
To run a program from S32 Design Studio for S32 Platform for debugging or for execution, you actually run a launch
configuration with the respective settings.

A project can have as many launch configurations as required. When you create an application project in S32 Design
Studio for S32 Platform, the wizard generates several launch configurations by default. Later on, you can create new
launch configurations, delete the existing ones, and edit the configuration settings to better serve your needs.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 77

Tasks

The following topics describe how to manage launch configurations in S32 Design Studio for S32 Platform:

• Creating a launch configuration
• Editing a launch configuration
• Running a launch configuration

Note: Launching in Eclipse is closely tied to the infrastructure of debugging, so you can often meet the term
“debug configuration” as well, meaning that the launch configuration is going to be used to interactively debug
an application. Another term “run configuration” can be met in the context of the Run command applied to an
application.

Creating a launch configuration

To create a launch configuration:

1. Right-click a project in the Project Explorer. Click Debug As > Debug Configurations on the context menu.

2. In the Debug Configurations dialog box, do any of the following:

• In the left pane, click the debugging interface that fits your purpose:

• C/C++ Remote Application: Select for debugging on a remote Linux system.
• GDB Hardware Debugging: Select for debugging on Synopsys VDK (simulation).
• GDB PEMicro Interface Debugging: Select for debugging on a board connected to the PEMicro

probe.
• Lauterbach TRACE32 Debugger: Select for debugging on a board connected to the Lauterbach

probe.
• S32 Debugger: Select for debugging on a board connected to S32 Debug Probe.
• S32 Debugger Flash Programmer: Select for debugging on a board connected to S32 Debug

Probe; the program is loaded to flash memory.
• VLAB Simulator Debugging: Select for debugging on VLAB (simulation).

Then click the New launch configuration toolbar button.

• In the left pane, double-click the required debugging interface and click a launch configuration inside.
Then click the Duplicate toolbar button.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

78 NXP Semiconductors

Tasks

3. In the right pane, specify the name of the new configuration. The recommended format of a configuration name is
{project name}_{build configuration}_{target or debugger}.

4. Specify the settings as described in topic Editing a launch configuration. Click Apply to save the settings.

5. Click Debug to start debugging, or close the Debug Configurations dialog box.

Editing a launch configuration

To edit a launch configuration:

1. Open the launch configuration by right-clicking the project name in the Project Explorer and clicking Debug As
> Debug Configurations on the context menu.

2. In the left pane of the Debug Configurations dialog box, expand the debugging interface specified in the project
settings and click the required launch configuration.

For instance, if your project is created for debugging on a board using the S32 Debug Probe, expand the S32
Debugger interface and find the configuration starting with your project's name.

3. After you click the configuration in the left pane, the configuration settings appear in the right pane grouped in
tabs. Open the required tab and modify the settings.

To learn about the settings in each group, refer to the respective topic:

• Main tab
• Debugger tab
• Startup tab
• Source tab
• Common tab
• SVD Support tab
• OS Awareness tab
• Trace and Profile tab

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 79

Tasks

4. Click Apply to save the recent updates to the configuration. To discard the latest updates, click Revert.

Main tab

The Main tab of a launch configuration references the project and the executable file for debugging, and specifies the
settings for automatic project builds.

Table 7: Debug Configurations - Main tab (Generic settings)

Setting Description

Project Specify the project for which the launch configuration is created.

C/C++ Application Specify the application (ELF file) to be launched.

Build (if required) before
launching

Specify whether the application can be built automatically before launching. Select
one of these options:

• Build configuration: Specify the build configuration for automatic build.
• Enable auto build: Enable automatic build if required. Selecting this option

may cause the application to launch slower.
• Disable auto build: Disable automatic build.
• Use workspace settings: Use the option specified in the preferences of the

current workspace. Click Configure Workspace Settings to view and edit
the preferences.

If the launch configuration is specific for the C/C++ Remote Application debugging interface, the Main tab
additionally configures the serial or TCP connection between the GDB host machine and the remote target:

Table 8: Debug Configurations - Main tab (C/C++ Remote Application settings)

Setting Description

Connection Select the connection between the target machine and the GDB host. Default: Local.

If required, click New to create a new connection. Select the connection type (Serial
Port, Telnet, or SSH) and specify the connection settings.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

80 NXP Semiconductors

Tasks

Setting Description

Remote Absolute File Path
for C/C++ Application

Specify the absolute path to the ELF file on the target machine.

Commands to execute
before application

Specify commands to be executed on the target host before the debug session starts.

Skip download to target
path

Enable this option to not download the program to the target machine.

Debugger tab

The Debugger tab configures the debug session. The Debugger tab displays specific settings for debugging on a
bare-metal target and on a Linux target, for debugging with a probe, and for debugging in the simulation environment.
To learn about the required debugger settings in each case, refer to the following topics:

• Debugging with S32 Debug Probe
• Debugging with S32 Debug Probe from flash for S32V23x targets
• Debugging with S32 Debug Probe from flash for other targets
• Debugging with a PEMicro probe
• Debugging with a Lauterbach probe
• Debugging on a Linux target
• Debugging on a VDK

Startup tab

The Startup tab specifies the first commands for the GDB client to execute at startup. Commands are executed in the
order of appearance on the tab, after which debugging of the code becomes available to the user.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 81

Tasks

The following table describes all settings that can appear on the Startup tab. Some settings described below are
particular to the selected debugging interface and are hidden from the tab for other interfaces.

Table 9: Debug Configurations - Startup settings

Setting Description

Initialization Commands

(apply to GDB Hardware
Debugging only)

Specify the initialization commands to be executed before the debug session is
started. Configure the following related options:

• Reset and Delay (seconds): Select this option to reset the target after
programming and to delay the debug session. Specify the number of
seconds for the delay.

• Halt: Select this option to halt the target at startup.

Load Image and Symbols Specify the file that contains the code for debugging:

• Load image: Select this option to point the binary file for debugging. This
file will be downloaded to the target:

• Use project binary: Select this option to debug the project's
executable.

• Use file: Select this option to point a different ELF file for
debugging. Click Workspace or File System to browse to the file.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

82 NXP Semiconductors

Tasks

Setting Description

• Image offset (hex): Specify offset of the file section where the code
starts. Leave this field empty if the code will be loaded from the project's
executable.

Specify the source of the debugging information (“symbols”) to be passed to
the debugger. The debugging information will be kept on the host rather than
downloaded to the target.

Typically, the debugging information (DWARF) is embedded in the ELF file
generated from the project.

• Load symbols: Enable this option to point the file with symbols:

• Use project binary: Select this option to use symbols from the
project's executable.

• Use file: Select this option to use symbols from a different ELF file.
Click Workspace or File System to browse to the file.

• Symbols offset (hex): Specify offset of the .text section in the file where
the table of symbols starts. Leave this field empty if symbols will be
fetched from the project's executable.

Runtime Options Specify the runtime settings for the debugger. Options:

• Set program counter at (hex): Select this option to set the program
counter.

• Set breakpoint at: Set the first breakpoint at the specified function.
• Resume: Select this option to continue execution after the breakpoint.

Run Commands Commands to be executed by the GDB client after all above options are done. After
that, the user can interact with the debugger.

Source tab

The Source tab specifies the source lookup paths for the debugger.

A launch configuration created by the project creation wizard includes the default lookup paths. These default paths
are specified in the preferences (Window > Preferences > C/C++ > Debug > Source Lookup Path) and apply to all
projects created in the given workspace:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 83

Tasks

To modify the paths and their order in the scope of a given launch configuration, use the buttons located at the right
side. When defining and prioritizing the file paths in the list, comply with the algorithm that the GDB debugger
applies to find source files:

• The debugger starts looking for the file in the mapped directory (if any).
• If failed to find a readable file, the debugger searches the absolute path.
• If the previous step failed, the debugger searches the relative paths (program and project ones).

If the debugger fails to locate a readable file in all above paths, the debug session shows the “No source found for
file” error message. To continue debugging, the user needs to locate the file manually.

By default, the debugger uses the first-found readable file as the source file. For the debugger to continue search on
the path, select the Search for duplicate source files ... option.

Common tab

The Common tab allows you to specify the location of your configuration, input and output options, and launch
options.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

84 NXP Semiconductors

Tasks

Table 10: Debug Configurations - Common settings

Setting Description

Save as Specify where to save the launch configuration you are editing. Select the
required option:

• Local file: Select this option to store the launch configuration file in
a local system folder.

• Shared file: Select this option to store the launch configuration
file in the project structure. Click Browse and browse to the exact
location. The LAUNCH file will appear in the specified project
folder in the Project Explorer.

Display in favorites menu Select the menu (Debug or Run, or both) in which your launch configuration
will be displayed as the menu option.

Encoding Select the encoding for output to be displayed in the Console view.

Standard Input and Output Specify whether the debugger can receive input and display and save output.
Select the required settings:

• Allocate console (necessary for input): Select this option for the
Console view to receive output for the debug session.

• Input File: Select this option for the debugger to read input from a
TXT file. Click Workspace or File System and browse to the file.

• Output File: Select this option to save output from the Console view
to a TXT file. Click Workspace or File System and browse to the
file.

• Append: If saving to the output file is selected, enable this option to
append output to the end of the existing file rather than to rewrite the
file.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 85

Tasks

Setting Description

• Launch in background: Select this option to launch the
configuration in the background mode.

SVD Support tab

The SVD Support tab allows you to configure SVD files. This tab appears in debug configurations intended for
debugging with PEMicro and S32 Debug Probes.

Table 11: Debug Configurations - SVD Support tab

Setting Description

Clear content of Watch Registers
view

Enable if you want an automatic clearing of all info about registers used in
the Watch registers view in previous debug session with the same SVD
files. If you want system to ask confirmation for any clear, enable the Ask
before clear checkbox. Default: Disabled.

Note: If the option is enabled, registers info will be cleared for all
configurations that use the same SVD files.

SVD source Specify the SVD file to be used. Default: Use default SVD file.

If required, uncheck the Use default SVD file checkbox and select one of
these options:

• Specify the path manually: Type in a path to the location of the SVD
file,

• Select Device: Specify the path via specifying the device,
• Browse Workspace: Specify the path browsing the workspace,
• Browse File System: Specify the path browsing the file system,
• Variables: Specify the path via setting the variable.

The new path to the SVD file appears in the SVD source field.

Support Arm Core registers Arm SVD sourse to be used. Default: Enabled (if available).

OS Awareness tab

The OS Awareness tab allows you to inform the debugger about the operating system (OS) running on the target
hardware: FreeRTOS or OSEK. The debugger provides additional functionality specific to the selected operating
system.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

86 NXP Semiconductors

Tasks

After the operating system is selected, the Debug perspective starts to display the OS Resources view.

Trace and Profile tab

The Trace and Profile tab allows you to configure collection of code trace information. This tab appears in debug
configurations intended for debugging with S32 Debug Probe.

Table 12: Debug Configurations - Trace and Profile settings

Setting Description

Overview Click this page to view the flow chart for collecting code trace. The
information on this page is read-only.

Basic Click this page and expand the list to select a configuration file for trace
collection. You can click New and create a new file, or you can select an
existing configuration file.

To learn more, go to Help > Help Contents > S32DS Software Analysis
Documentation. The PDF version of this documentation is available in
folder <S32DS install path>/S32DS/help/pdf.

Running a launch configuration

To start debugging an application in S32 Design Studio for S32 Platform, run the appropriate launch configuration
belonging to the application project.

To run a launch configuration:

1. Right-click the project in the Project Explorer and click Debug As > Debug Configurations on the context
menu.

2. In the left pane of the Debug Configurations dialog box, expand the debugging interface to be used in the debug
session.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 87

Tasks

3. Below the selected debugging interface, click the launch configuration intended for your project and serving your
task. The selected configuration appears in the right pane.

4. Update the debug configuration settings as required. For details, refer to the Editing a launch configuration
section.

5. Click Apply to save the recent updates to the configuration.

6. Click Debug to start a debug session.

Using launch groups
A launch group is a collection of debug configurations. To debug software on a multi-core target, you need to launch
several debug configurations, each starting a debug session for one core. Launch groups automate this task by
launching all included debug configurations one after another with the predefined conditions.

When you create an application project for a multi-core target in S32 Design Studio for S32 Platform, the required
launch groups are generated automatically and are available in the Debug Configurations dialog box:

The name of a generated launch group has the following format: “<project_name>_<build
configuration>_<debugger>_group”.

A click on a launch group in the left pane displays its structure in the right pane:

• The top configuration is launched first. This configuration initializes the boot core and requires a post-
launch delay. This configuration can load the code to flash memory (“Debug_FLASH”) or to RAM
(“Debug_RAM”).

• The next configurations are ranged in the order of launching and can be run one after another without a delay,
starting debug sessions for the cores in the order of indexing. These configurations load the code to RAM.

To learn more about using launch groups, refer to the following topics:

• Creating a launch group
• Running a launch group

Creating a launch group

To create a launch group:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

88 NXP Semiconductors

Tasks

1.
Click the (Debug As) button on the toolbar, then click Debug Configurations from the drop-down menu.

2. In the Debug Configurations dialog box, click Launch Group or Launch Group for S32 Debugger in the left

pane. Click the (New launch configuration) toolbar button in the left pane.

A new launch group configuration appears in the left pane:

3. Click the new launch group in the left pane. Specify the name of the new launch group in the right pane and click
Apply.

4. In the right pane, go to the Launches tab and click Add.

5. In the Add Launch Configuration dialog box, click the debug configuration to be added to the launch group. To
add several configurations, click them, keeping the Ctrl key pressed.

6. Expand the Post launch action menu and specify the action to be taken before the next configuration is launched:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 89

Tasks

• None: The next configuration will be launched after the current one without a delay.
• Wait until terminated: The next configuration will be launched right after termination of the debug

session spawned by the current configuration.
• Wait for stop on breakpoint: The next configuration will be launched right after the breakpoint is hit,

for example, at the end of initialization section. This option is available for Launch Group for S32
Debugger only.

• Delay: The next configuration will be launched after the current one with the delay specified in seconds.

7. Click OK. The launch group now includes the selected debug configurations. Click Apply.

8. To edit any entry in the launch group, click that entry and click Edit. Make your updates in the Edit Launch
Configuration dialog box and click OK.

9. Click Apply in the Debug Configurations dialog box when your launch group is finished.

Running a launch group

To run a launch group, open it in the Debug Configurations dialog box and click the Debug button.

• S32 Design Studio for S32 Platform loads the Debug perspective.
• The debugger initiates the debug session for the boot core and sends the status of the operation to the Console

view. If the operation is successful, the started debug session appears in the Debug view.
• After the post-launch action, the debugger runs the remaining debug configurations in the launch group and

initiates the debug sessions for the remaining cores. If started successfully, the secondary debug sessions
appear in the Debug view.

To continue debugging, refer to Debugging on multiple cores.

Debugging on a bare-metal target
In S32 Design Studio for S32 Platform, you can debug embedded applications on the chip. The evaluation board with
the built-in MCU (target) is connected to the developer's workstation over USB or Ethernet using a JTAG compatible
hardware debug probe. The supported probes are listed in topic Selecting a hardware debug probe.

Debugging on a bare-metal target can be performed from RAM and from flash. When you create an application
project in S32 Design Studio for S32 Platform, the project creation wizard generates configurations for debugging
from both these types of on-chip memory. To choose the right memory type for debugging, take into account memory
size and the application size. To start a debug session from the preferred memory type, just launch the appropriate
debug configuration as described in the following topics:

• Debugging with S32 Debug Probe from RAM
• Debugging with S32 Debug Probe from flash for S32V23x targets
• Debugging with S32 Debug Probe from flash for other targets
• Debugging with a PEMicro probe
• Debugging with a Lauterbach probe

The on-chip debugging techniques available to you are those supported by the hardware debugger. In the common
case, you can use hardware breakpoints and do step-by-step execution in the code and in the disassembler
instructions.

In addition, you can view and edit the contents of the registers and memory sections. These techniques are described
in the following topics:

• Viewing Registers
• Viewing memory

When debugging a program from flash, you have an option to manage flash memory from the command line. To learn
more, refer to section Managing flash memory.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

90 NXP Semiconductors

Tasks

When running a program on the target connected with S32 Debug Probe, you can collect code trace information.
Trace collection can be configured and the collected results analyzed in S32 Design Studio for S32 Platform as
described in Help > Help Contents > S32DS Software Analysis Documentation.

Selecting a hardware debug probe

To debug an application on a bare-metal target, you need to connect the evaluation board with the target to a
computer running S32 Design Studio for S32 Platform. For this purpose, you can use one of the following JTAG
compliant hardware debug interfaces:

Table 13: Supported hardware debug probes

Manufacturer Hardware debug interface (probe) Details

NXP • S32 Debug Probe www.nxp.com

PEMicro • USB Multilink Universal
• USB Multilink Universal FX
• OSBDM/OSJTAG
• Cyclone
• TraceLink
• OpenSDA

www.pemicro.com

Lauterbach • PowerDebug USB 3
• PowerDebug Pro
• µTrace for Cortex-M

www.lauterbach.com

Note: The scope of supported MCU families and cores differs for each model and shall be checked on the
manufacturer's website.

Debugging with S32 Debug Probe from RAM

This topic describes how to debug a bare-metal application on the board connected to the computer with the S32
Debug Probe. The application is loaded by S32 Debugger to RAM memory of the target.

To debug an application with the S32 Debug Probe from RAM:

1. Create an application project in the wizard and specify “S32 Debugger” as the debugger.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 91

http://www.nxp.com
http://www.pemicro.com/hardware/kinetis.cfm
http://www.lauterbach.com/frames.html?home.html

Tasks

2. Connect the board to your computer. To learn the details about S32 Debug Probe, refer to the S32 Debug
Probe User Guide. The PDF version of this document is located in the /S32DS/tools/S32Debugger/
Debugger/docs/ folder.

3. Build the project.

4. Open the Debug Configurations dialog and go to the S32 Debugger group of configurations. Click the debug
configuration for debugging from RAM generated for your project.

5. On the Main tab, verify the following settings:

• Project: The path of the application project.
• Application: The path of the executable (ELF) built from the application project.
• Build Configuration: The build configuration for debugging from RAM. If you activate the Enable auto

build option, this build configuration will be used to rebuild the application before each debug session.

6. On the Debugger tab, specify the following settings:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

92 NXP Semiconductors

Tasks

Table 14: Debugger tab: Settings for debugging with S32 Debug Probe

Setting Description

Hardware Specify the settings related to the target:

• Select device and core: Click this button and pick the target processor
and the core from the list. The data appears in the Device and Core
fields.

• Initialization script: The path of the generic initialization script
generated automatically.

To specify the script particular to your evaluation board, go to the
following folder:

<S32 Design Studio for S32 Platform
installation folder>/S32DS/tools/S32Debugger/
Debugger/scripts/s32xxxx

The last folder in the path is named as your target processor, for
instance, /s32v234. Find the information about the available script
files in the readme file located in this folder.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 93

Tasks

Setting Description

• Initial core: Enable this option if the debug configuration will start
the first debug session in a launch group or the only debug session in
single-core debugging. When enabled, this option indicates that the
evaluation board needs to be initialized.

In multi-core debugging, make sure to disable this option in all debug
configurations that start the second and all later debug sessions in a
launch group.

Note: When disabled, the Initial core option makes the probe
connection settings, JTAG settings, and GDB server settings (below)
unavailable.

Debug Probe Connection Configure the connection between the board and the computer.

• Interface: Specify the connection interface.
• USB device: For the USB connection, specify the COM port to which

the board is connected.

If the board is not connected with the USB cable, connect it and wait
for the probe's TX/RX indicator to get green. Then click Refresh for
the connected COM port to appear on the Port menu.

If you have a problem with the USB connection:

• On Windows, install the S32 Debug Probe driver manually.
For details, refer to readme.txt in S32DS/tools/
S32Debugger/Debugger/drivers/usb/.

• On Linux, install the udevadm utility, this tool detects the used
port.

• Hostname or IP: For the Ethernet connection, specify the host name
or IP address of the probe network adapter.

Note: To learn the host name of the probe, refer to the documentation
provided with the delivery kit. For the static IP address assigned to the
probe, consult your network administrator.

• Test connection: click the button to check the connection.

JTAG Communication Speed Specify the JTAG communication settings.

• JTAG Speed (KHz): Specify the JTAG speed.
• Timeout: Specify the JTAG timeout.
• Delay after reset: Enable this option to perform software reset on

the device at the beginning of the debug session. Specify the board
initialization delay (in milliseconds).

GDB server Specify the GDB server settings.

• Launch server: This option launches the GDB server. Keep it
enabled unless the GDB server is started from the command line.

• Server port number: Specify the GDB server port. When debugging
multiple cores of a single processor, specify the same port in all debug
configurations. Default: 45000.

• Enable log: Enable this option to log the GDB server output. This
option is disabled by default.

Note: Logging may greatly reduce the speed of the debugging
process.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

94 NXP Semiconductors

Tasks

Setting Description

GDB Client Specify the GDB client settings:

• Executable: The path of the GDB client. This path is generated
automatically when you click the Select device and core button and
select the target device and the core.

• Commands: If required, specify commands to be executed after
the GDB client is started. These commands are executed next to the
commands specified on the Startup tab.

• Force thread list update on suspend: Enable this option for the
thread list to be updated forcedly if the debug session is suspended.

Semihosting Configure semihosting, that is, the ability of the debug session to send output
to the Console view.

• Enable semihosting: Enable semihosting.
• Port: The port for semihosting. Read-only. The port number is

defined as (GDB server port +1). Default: 45001.

Note: If semihosting is enabled, the semihosting console needs to be opened
in the Console view once the debug session is started.

Secure debugging Configure settings for secured chips.

• Enable secure debugging: Enable this option to start a debug session
on locked chip.

• Debugging type: Select the authentication method. Options:
Password, Challenge & Response.

• Clear data stored: Click the button to delete any data from secure
storage.

Note: The availability and support of the option depends on the target device.

Note: If the chip is unlocked, enabling secure debuging is meaningless.

7. On the Startup tab, specify the place in code where the first breakpoint will be set (main by default). Leave the
remaining settings with their default values.

8. Click Apply, then click Debug. The debug session is started and stopped at the first breakpoint.

9. Debug the application as usual.

Debugging with S32 Debug Probe from flash for S32V23x targets

Note: This section applies only to S32V23x targets.

This topic describes how to debug a bare-metal application on the board connected to the computer with the S32
Debug Probe. The application is loaded by S32 Flash Programmer to flash memory external to the target. The
application is launched by the S32 Debugger.

To debug an application with the S32 Debug Probe from flash:

1. Create an application project and specify “S32 Debugger” as the debugger.

2. Build the project.

If you have selected multiple cores when creating your project, build the project for each selected core.

3. Right-click the project in the Project Explorer and click Debug As > Debug Configurations on the context
menu.

4. In the Debug Configurations dialog box, go to the Launch Group section in the left pane.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 95

Tasks

The project creation wizard has generated several launch groups for your application. In the left pane, click the
launch group intended for debugging from flash:

The right pane displays the debug configurations in the order of execution. The top configuration is intended for
loading the executable code to flash memory of the target. The “Wait until terminated” action indicates that the
next debug configuration will be run only after the flash loading session has finished. To learn more about using
launch groups, refer to Creating a launch group.

5. Expand the S32 Debugger Flash Programmer interface in the left pane and click the debug configuration that is
located on top in the launch group.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

96 NXP Semiconductors

Tasks

6. On the Main tab you can add, remove, edit and change order of binary elf-files.

To add new binary file press Add button. Add binary application dilog will appear. Specify the details and press
OK.

7. Enable the Erase all flash memory option to apply the respective action before writing data to flash.

Note: In order to write a new flash image or debug a new application the board should be placed in serial boot
mode.

8. Go to the Debugger tab and make sure that the following settings are defined properly:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 97

Tasks

Table 15: Debugger tab: Settings for debugging with S32 Debug Probe

Setting Description

Hardware Specify the settings related to the target:

• Device: This field is populated automatically from the project settings.
If correction is needed, use the Select device button to choose the
right device.

• Initialization script: The initialization script is populated
automatically based on the device information. All configurations in
the launch group use the same script file.

To specify the script particular to your evaluation board, go to the
following folder:

<S32 Design Studio for S32 Platform
installation folder>/S32DS/tools/S32Debugger/
Debugger/scripts/s32xxxx

The last folder in the path is named as your target processor, for
instance, /s32v234. Find the information about the available script
files in the README file located in this folder.

• Flash name and Flash type: Expand the menus and select the flash
device and the type.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

98 NXP Semiconductors

Tasks

Setting Description

Debug Probe Connection Configure the connection between the board and the computer:

• Interface: Specify the connection interface.
• USB device: For the USB connection, specify the COM port to which

the board is connected.

If the board is not connected with the USB cable, connect it and wait
for the probe's TX/RX indicator to get green. Then click Refresh for
the connected COM port to appear on the Port menu.

If you have a problem with the USB connection:

• On Windows, install the S32 Debug Probe driver manually.
For details, refer to readme.txt in S32DS/tools/
S32Debugger/Debugger/drivers/usb/.

• On Linux, install the udevadm utility, this tool detects the used
port.

• Hostname or IP: For the Ethernet connection, specify the host name
or IP address of the probe network adapter.

Note: To learn the host name of the probe, refer to the documentation
provided with the delivery kit. For the static IP address assigned to the
probe, consult your network administrator.

• Test connection: click the button to check the connection.

Target Communication Speed Specify the JTAG communication settings:

• JTAG Speed (KHz): Specify the JTAG speed.
• Timeout: Specify the JTAG timeout.
• Delay after reset: Enable this option to perform software reset on

the device at the beginning of the debug session. Specify the board
initialization delay (in milliseconds).

GDB server Specify the GDB server settings:

• Launch server: This option launches the GDB server. Always
enabled.

• Server port number: Specify the GDB server port. When debugging
multiple cores of a single processor, specify the same port in all debug
configurations. Default: 45000.

• Enable log: Enable this option to log the GDB server output. This
option is disabled by default.

Note: Logging may greatly reduce the speed of the debugging
process.

GDB Client Specify the GDB client settings:

• Executable: The path of the GDB client. This path is generated
automatically. And can be changed automatically when you click the
Select device button and select the target device.

• Commands: If required, specify commands to be executed after
the GDB client is started. These commands are executed next to the
commands specified on the Startup tab.

Secure debugging Configure settings for secured chips:

• Enable secure debugging: Enable this option to start a debug session
on locked chip.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 99

Tasks

Setting Description

• Debugging type: Select the authentication method. Options:
Password, Challenge & Response.

• Clear data stored: Click the button to delete any data from secure
storage.

Note: The availability and support of the option depends on the target device.

Note: If the chip is unlocked, enabling secure debuging is meaningless.

9. Click Apply to save your updates to the debug configuration.

10. Expand the S32 Debugger interface in the left pane and click the debug configuration that follows the top one in
the launch group. Specify the settings as described in the above step.

The following settings are required if the debug configuration is the first one to be executed after the flash loading
session:

• Initial core: Keep this option enabled for the evaluation board to be initialized.
• Launch server: Keep this option enabled for the GDB server to be started. Remove this flag only if you

are going to run the GDB server from the command line.

11. If the launch group includes more debug configurations for other cores, open them from the left pane under S32
Debugger as described above. Make sure that all these configurations have the Initial core option not selected.

12. Go back to the launch group and click Debug.

13. When the debug session is started, the execution stops at the first software breakpoint (typically, at main) that is
specified on the Startup tab in the Set breakpoint at field. Step over and continue debugging your program on
the target as you always do.

Debugging with S32 Debug Probe from flash for all other targets

This topic describes how to debug a bare-metal application on the board connected to the computer with the S32
Debug Probe. The application is loaded by S32 Flash Programmer to flash memory external to the target. The
application is loaded from flash memory by the target to RAM memory of the target and launched. The S32 Debugger
connects to the running application by Attach method.

To debug an application with the S32 Debug Probe from flash:

1. Create an application project in the wizard and specify “S32 Debugger” as the debugger.

2. Generate S-Record/Intel HEX/ Binary file selecting the Raw Binary option.

• Right click on the Project name in Project Explorer.
• Select Properties > C/C++ Build > Settings > Cross Settings.
• Check the Create flash image checkbox.
• Click Apply and Close button.
• Reopen project settings and go to the Standard S32DS Create Flash Image > General.
• Select Raw binary option for Output file format.
• Click Apply and Close button.

3. Connect the board to your computer. To learn the details about S32 Debug Probe, refer to the S32 Debug
Probe User Guide. The PDF version of this document is located in the /S32DS/tools/S32Debugger/
Debugger/docs/ folder.

4. Build the project generating the binary executable.

This will be your application binary input to the IVT Tool.

5. Generate the BLOB image which can be programmed to flash memory device and loaded to the RAM by the
BootROM using the IVT Tool.

Note: S32 Flash Programmer supports only IVT image binaries. For help on obtaining IVT image for your
project refer to IVT Tool section in Help > Help Contents > S32 Configuration Tool Getting Started.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

100 NXP Semiconductors

Tasks

The resulting BLOB image file is what can be flashed to the device.

6. Open the Debug Configurations dialog and double-click the S32 Debugger Flash Programmer.

7. Specify the new configuration name.

8. On the Main tab press Add button to add new binary file. Add binary application dilog will appear.

a) Click Browse button.
b) Select the project from the workspace where the application binary is located.
c) Click OK button.

By default, the ELF file is found.
d) Click Search in project button
e) Select the binary file (IVT image obtained at step 5).
f) Click OK button.
g) Enter the base address to the Set base address field.

Note: Typically, this could be 0, but you may have other requirements
h) Click OK button.

9. Check the Erase all flash memory checkbox if needed.

Note: Just the memory required by the new image needs to be cleared.

10. On the Debugger tab specify the following settings:

Table 16: Debugger tab: Settings for debugging with S32 Debug Probe from flash

Setting Description

Hardware Specify the settings related to the target:

• Device: This field is populated automatically from the project settings.
If correction is needed, use the Select device button to choose the
right device.

• Initialization script: The path of the generic initialization script is
generated automatically.

To specify the script particular to your evaluation board, go to the
following folder:

<S32 Design Studio for S32 Platform
installation folder>/S32DS/tools/S32Debugger/
Debugger/scripts/s32xxxx

The last folder in the path is named as your target processor. Find the
information about the available script files in the README file located
in the folder.

• Flash name and Flash type: The flash device and the type will
automatically be set.

Debug Probe Connection Configure the connection between the board and the computer to match your
setup.

• Interface: Specify the connection interface.
• USB device: For the USB connection, specify the COM port to which

the board is connected.

If the board is not connected with the USB cable, connect it and wait
for the probe's TX/RX indicator to get green. Then click Refresh for
the connected COM port to appear on the Port menu.

If you have a problem with the USB connection:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 101

Tasks

Setting Description

• On Windows, install the S32 Debug Probe driver manually.
For details, refer to readme.txt in S32DS/tools/
S32Debugger/Debugger/drivers/usb/.

• On Linux, install the udevadm utility, this tool detects the used
port.

• Hostname or IP: For the Ethernet connection, specify the host name
or IP address of the probe network adapter.

Note: To learn the host name of the probe, refer to the documentation
provided with the delivery kit. For the static IP address assigned to the
probe, consult your network administrator.

• Test connection: click the button to check the connection.

Target Communication Speed Specify the JTAG communication settings.

• JTAG Speed (KHz): Specify the JTAG speed.
• Timeout: Specify the JTAG timeout.
• Delay after reset: Enable this option to perform software reset on

the device at the beginning of the debug session. Specify the board
initialization delay (in milliseconds).

GDB server Specify the GDB server settings.

• Launch server: This option launches the GDB server. Keep it
enabled unless the GDB server is started from the command line.

• Server port number: Specify the GDB server port. When debugging
multiple cores of a single processor, specify the same port in all debug
configurations. Default: 45000.

• Enable log: Enable this option to log the GDB server output. This
option is disabled by default.

Note: Logging may greatly reduce the speed of the debugging
process.

GDB Client Specify the GDB client settings:

• Executable: The path of the GDB client. This path is generated
automatically when you click the Select device button and select the
target device.

• Commands: If required, specify commands to be executed after
the GDB client is started. These commands are executed next to the
commands specified on the Startup tab.

Secure debugging Configure settings for secured chips.

• Enable secure debugging: Enable this option to start a debug session
on locked chip.

• Debugging type: Select the authentication method. Options:
Password, Challenge & Response.

• Clear data stored: Click the button to delete any data from secure
storage.

Note: The availability and support of the option depends on the target device.

Note: If the chip is unlocked, enabling secure debuging is meaningless.

11. Click Apply to save your updates to the debug configuration.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

102 NXP Semiconductors

Tasks

12. Expand the S32 Debugger interface in the left pane and click the debug configuration corresponding to your
application project since it will be subsequently started by the BootROM.

13. On the Debugger tab specify the <device>_attach.py script in the Initialization script field.

Note: For all other Debugger tab setting refer to the Debugging with S32 Debug Probe from RAM topic.

14. On the Startup tab specify the following settings:

• Uncheck the Load image checkbox.
• Check the Set program counter at checkbox and enter the value “Reset_Handler”.

15. Click Apply to save your updates to the debug configuration.

16. Click Debug. The debug session is started.

17. When completed, the terminated thread will be shown in the Debug perspective.

18. Continue debugging.

Debugging with a PEMicro probe

Debugging on a bare-metal target with a PEMicro probe requires the PEMicro GDB server (Eclipse plug-in) to be
installed on S32 Design Studio for S32 Platform. Find the details in topic Installing plug-ins.

To debug a bare-metal application on the board connected to the computer with a PEMicro probe:

1. Create an application project in the wizard and specify “GDB PEMicro Debugging Interface” as the debugger.

2. Build the application.

3. Open the Debug Configurations dialog and go to the GDB PEMicro Interface Debugging group of
configurations. Click the debug configuration for debugging from RAM of from flash generated for your project.

4. On the Debugger tab, specify the following mandatory settings:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 103

Tasks

• Interface: Select the PEMicro debug interface connected to the target device. Click Compatible
Hardware to open the PEMicro Web page and view the list of targets supported by the selected debug
interface.

• Port: If the debug interface uses a USB connection, select the COM port labeled with the device name
from the Port menu. Click Refresh to update the list of connected ports.

• Target: Click Select Device and select the target device. The vendor, family, and type of the device
appear in the respective fields.

• Core: Expand the Core list and select the target core.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

104 NXP Semiconductors

Tasks

• Executable: Select or enter the path to the GDB client.

Leave the remaining settings with their default values.

Note: To set up your configuration for a special debugging scenario, consult the P&E GDB Server Plug-In debug
configuration user guide. This document is available in the <S32 Design Studio for S32 Platform
installation path>/S32DS/help/pdf/ folder.

5. Click Apply, then click Debug. The debug session is started and stopped at the first breakpoint (typically, at
main) that is specified on the Startup tab in the Set breakpoint at field.

6. To use real-time printf with Instrumentation Trace Macrocell (supported for particular devices), click Window >
Show View > Other... > PEmicro > SWO Printf. In the SWO Printf console, click the Start Trace () button.

7. Click Resume and debug the application as you always do.

Note: When you use the GDB console commands to control the program, views are not updated instantly. Use the
step command to see the refreshed views.

Debugging with a Lauterbach probe

Debugging on a bare-metal target with a Lauterbach probe requires the Lauterbach software to be installed on S32
Design Studio for S32 Platform. Click Help > Install New Software... to install the Lauterbach TRACE32 Eclipse
plug-in. For details, refer to Installing plug-ins.

Note: If you changed the default memory configuration in the linker script, make sure to update the CMM file
accordingly. In the project folder, go to Project Settings > Debugger and open the <device>.cmm file. This file
contains the cores initialization, update the boot address line:

Data.Set SD:0x4008814C %Long 0x38000000 ; Write boot address to
 MC_ME.PRTN0_CORE0_ADDR.R

To debug a bare-metal application on the board connected to the computer with a Lauterbach probe:

1. Create an application project in the wizard and specify “Lauterbach TRACE32 Debugger” as the debugger.

2. Build your project.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 105

Tasks

3. Open the Debug Configurations dialog and go to the Lauterbach TRACE32 Debugger group of configurations.
Click the debug configuration for debugging from RAM or from flash generated for your project.

4. On the Trace32 Debugger tab, specify the connection parameters. The configuration settings are described in
www2.lauterbach.com/pdf/int_eclipse.pdf.

5. Click Apply, then click Debug.

When you launch the debug configuration, S32 Design Studio for S32 Platform redirects you to the Lauterbach
TRACE32 debugging tool. Debugging in the Lauterbach environment is described in www2.lauterbach.com/pdf/
int_eclipse.pdf. When the debug session is terminated, you get back to S32 Design Studio for S32 Platform.

Viewing Registers

There are three types of registers available the S32 Design Studio for S32 Platform:

• processor registers,
• memory mapped registers: peripheral and Arm core (if available for your target),
• Arm system registers (if available for your target).

When in a debug session, use:

• The Registers view to display and modify the processor registers values of the connected target. Find the
details in the Viewing processor registers topic.

• The Peripheral Registers view to see all the memory mapped registers of the connected target.

Note: You can also use the EmbSys Registers view - single-view option to display and modify all peripheral
registers listed in the view. Find the details in the Viewing peripheral registers in EmbSys Registers topic.

Note: S32 Debugger implements different mechanisms for Peripheral Registers and EmbSys Registers
views when accessing SoC memory mapped registers. Peripheral Registers view is a preferred option since

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

106 NXP Semiconductors

http://www2.lauterbach.com/pdf/int_eclipse.pdf
http://www2.lauterbach.com/pdf/int_eclipse.pdf
http://www2.lauterbach.com/pdf/int_eclipse.pdf

Tasks

S32 Debugger is accessing these registers directly via the system bus, bypassing caches and MMU (if present
in the core being debugged).

• The Arm System Registers view to see all the Arm system registers of the connected target.

To access data in the selected memory mapped or Arm system registers use the Watch registers view. Find the details
in the following topics:

• Reading values from registers
• Setting values to registers
• Exporting register values
• Importing register values

Viewing processor registers

When in a debug session, use the Registers view to display and modify the register values on the connected target. To
display the Registers view in the Debug perspective, click Window > Show View > Registers on the menu.

The Registers view displays the MCU registers arranged in categories. To display the values of a particular category
of registers, expand the respective tree node in the view.

To change the format of the register value, right-click the register in the view and click Number format and the
preferred format on the context menu. You can choose between the hex, octal, decimal, or binary format.

Reading values from registers

To enable reading of registers when in a debug session use one of the options:

• Import a saved set of registers. For detailed information on exporting and importing registers refer to
Exporting register values and Importing register values topics.

• Manually crate a set of registers to interact with:

1. Open the Peripheral Registers view or the Arm System Registers view.
2. Select registers to be watched. A category, a group of registers, a peripheral, a cluster (if set), a register, a

field (sequential bits within a register) can be selected. A minimal unit to be watched is a register - if you
select a field the whole register will be added.

3. Press Enter or right-click the selection and click Watch Register(s) on the context menu or double-click
the item.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 107

Tasks

4. The registers selected for reading appear in the Watch registers view.

The data are read from the registers of the RO (read-only) and RW (read-write) types at each debug action like a step,
a resume, a stop, or a breakpoint. When the Hex and Binary cells are updated with the actual values of the registers,
these values are displayed in yellow background.

Note: The Read on demand registers provide no values by default and display the “?” character on the initial
appearance. To read a Read on demand register, select a register(s), right-click and select Read on the context menu.

To remove selected registers from the Watch registers view press Delete or right-click the selection and click
Remove Register(s) on the context menu.

Setting values to registers

To set a value to RW or WO (write-only) register when in a debug session in the Watch registers view use one of the
options:

• Click a field's/register's Hex cell and start typing. If an enumerated value is set for a field/register you can
select a value from the drop-down list with the decsriptions shown.

Note: If a field's read/set value is included in the enumerated values, the Description cell is replaced with a

description of that value from the enumerated values and marked with a symbol.

• Click a field's/register's Binary cell, set value and click the Set button.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

108 NXP Semiconductors

Tasks

• Import a saved set of registers with values. For detailed information on exporting and importing registers
refer to Exporting register values and Importing register values topics.

Exporting register values
When in a debug session, you can export values from registers to an XML-formatted file.

To export register values:

1.
In the Watch registers view, click the (Export registers to file) toolbar button on top of the Watch registers
view or select registers, right-click and click Export on the context menu.

2. In the Export Registers dialog box, specify the full path of the file (TXT, XML, or other) for data export. If the
file does not exist, it will be created during export.

3. Under Registers, choose to export all registers or leave the selected registers.

4. Click Finish.

The data is exported to the specified file in the XML format:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 109

Tasks

The register value is not exported to the file if:

• register is write-only,
• register marked Read on demand and value is not read,
• user terminated reading before export and value is not read.

Importing register values
While in a debug session, you can import values to the Watch registers view from an XML-formatted file.

To learn how to get a file with register values for import, refer to topic Exporting register values.

To import values to registers:

1. Open the Watch registers view.

2.
Click the (Import registers from file) toolbar button on top of the Watch registers view.

3. In the Import Registers dialog box, specify the full path to the file containing the registers to be imported.

4. Click Next.

5. Choose to import only registers or registers with values.

6. Under Registers, choose to import all registers or leave the selected ones.

7. Click Finish.

If imported with values, the values are loaded to the registers. The Watch registers view displays the imported
registers.

The value is not imported if:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

110 NXP Semiconductors

Tasks

• register is read-only,
• register is write-once or read-write-once and value is already set.

Such registers are skipped rather than updated.

For registers marked Read on demand import gives the following results:

• if the Watch registers view was clear before import, it displays the “?” as value for the registers,
• if that same registers were added to the Watch registers view earlier (before import), it will display:

• the previously read value,
• the “?” as value if the Read was not performed for that register.

Viewing peripheral registers in EmbSys Registers

When in a debug session, use the EmbSys Registers view to access data in the peripheral registers of the connected
target. Find the details in the following topics:

• Reading values from peripheral registers
• Exporting peripheral register values
• Importing peripheral register values

When out of a debug session, the EmbSys Registers view displays the information about the peripheral registers
from the project settings. If the debug session was terminated, the EmbSys Registers view displays the last received
register values.

The EmbSys Registers view can be shared by multiple projects. Each time you click a project in any view of S32
Design Studio for S32 Platform, the EmbSys Registers view switches to the context of the selected project and
updates the information accordingly. To learn the details, refer to topic Switching to a different context.

Reading values from peripheral registers

During debugging the EmbSys Registers view can read and display the actual values from the peripheral registers of
the connected device. The data can be read from the registers of the RO (read-only) and WR (read-write) types. Only
one register can be read at each debug action like a step, a resume, a stop, or a breakpoint.

To start reading a register, double-click the register name in the EmbSys Registers view. The registers selected for
reading are marked with the “blue arrow” sign and with the register names displayed in green font.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 111

Tasks

To read the entire group of registers, double-click the group name. Similarly, double-click a register or a group of
registers to stop reading their values.

Note: Be careful when selecting a register group with a large number of registers for reading as it might slow down
the debugging. Also, you may encounter a problem with an abrupt disconnect occurring at the attempt of the client
to access the selected group of registers. If this be the case, try to close the EmbSys Registers view and start a new
debug session without this view.

When the Hex and Bin fields are updated with the actual values of the registers, these values are displayed in red font.

The “not read” message displayed in the Hex field means that the register value cannot be read. Make sure that
the EmbSys Registers view uses the context of the project you are debugging. Learn more in topic Switching to a
different context.

If the “not read” issue occurs in the right context, it can indicate a register not initialized properly. To learn more,
refer to the respective hardware manual. The manuals are available in folder <S32 Design Studio for S32
Platform installation path>/S32DS/help/resources/hardware.

Exporting peripheral register values

When in a debug session, you can export values from peripheral registers to an XML-formatted file.

To export peripheral register values:

1. In the EmbSys Register view, expand the required group of registers and double-click registers to start reading
their values.

The registers selected for reading are marked with the “blue arrow” sign.

2.
Click the (Export selection to file) toolbar button on top of the EmbSys Registers view.

3. In the Export registers dialog box, specify the full path of the file (TXT, XML, or other) for data export. If the
file does not exist, it will be created during export.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

112 NXP Semiconductors

Tasks

4. Under Registers, choose to export all registers or only selected registers. A register or a group of registers is
selected when clicked and highlighted in the EmbSys Registers view.

5. Click OK.

The data is exported to the specified file in the XML format:

If a register is read-only or not marked for reading, the register value is not exported to the file. Instead, the “value”
XML element shows the “?” character for each byte.

Importing peripheral register values

While in a debug session, you can import values to peripheral registers from an XML-formatted file. To learn how to
get a file with peripheral register values for import, refer to topic Exporting peripheral register values.

To import values to peripheral registers:

1. Open the EmbSys Registers view.

2.
Click the (Import from file) toolbar button on top of the EmbSys Registers view.

3. In the Import registers dialog box, specify the full path of the file containing the register values to be imported.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 113

Tasks

4. Click OK.

The imported values are loaded to the peripheral registers. The EmbSys Registers view displays the updated register
values in red font.

The values are imported to read-write registers only. Other registers are skipped rather than updated. You get a
notification about all skipped registers:

Switching to a different context

The EmbSys Registers view displays the data from the context of a project that you are using at the moment. The
name of this project and the related hardware information are displayed in the line above the data grid.

Note: If the line on top of the EmbSys Registers view shows the message “EmbSys Properties not set”, specify the
required information in the project properties as described in topic Setting up EmbSys properties for a project.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

114 NXP Semiconductors

Tasks

When a debug session is on, the EmbSys Registers view displays the registers of the project that you are debugging
in the Debug view. If you switch to a different project, for instance, by clicking it in the Project Explorer view, then
the EmbSys Registers view automatically loads the data from this last selected project. To get back to the context of
the project you are debugging, click the main() node of the project in the Debug view.

Note: The registers may not be read after a single click at main() if you get back to the Debug view from a different
view. Click the main() node once again to start reading the registers.

Switching between the nodes in the Debug view also results in the loss of context in the EmbSys Registers view.
If you switch from the thread of a running program to a different node such as the GDB client or other, the EmbSys
Registers view stops reading the registers from the connected device. The Hex field starts displaying the “not read”
message rather then the register values.

To restore the debug context, click the main() node of the project.

Setting up EmbSys properties for a project

If the EmbSys Registers view cannot receive information about the chip from the selected project, the line above the
data grid displays the respective message:

The required settings can be specified in the EmbSys Register view section of the project properties.

The view responds to the changes in the project properties, including when the debug session is on.

Viewing memory

When in a debug session, you can monitor and modify your process memory in the Memory view. For this purpose,
you can create memory monitors to view particular memory sections. A monitor is defined by a specific address (base
address) or by an expression. By default, a monitor includes one memory rendering pane where you can examine the

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 115

Tasks

contents of the memory section that starts from the base address. The rendered memory is displayed in one of the
predefined formats: Floating Point, Traditional, Hex, ASCII, Signed Integer, Unsigned Integer, or Hex Integer.

If required, you can add more memory renderings to a memory monitor. Rendering can start with any valid address.
Memory renderings are read-only.

Table 17: Actions allowed in the Memory view

Action Steps

Add a memory monitor 1. Right-click the Monitors pane and select Add Memory Monitor from the
context menu.

2. Enter an address or an expression in the decimal or hexadecimal format. You
can use the drop-down menu to select the previously specified expression.

3. Click OK.

Add rendering 1. In the Monitors pane, select the memory monitor to which you want to add
rendering.

2. Go to the New Renderings tab and click New Renderings.
3. Select a rendering type from the Select rendering(s) to create menu and click

Add Rendering(s).

Remove rendering In the Renderings pane, right-click the rendering pane and click Remove
Rendering on the context menu. Or, click in the Renderings pane and then click
the cross-sign icon on the toolbar in the Renderings pane.

Go to a specific address in a
rendered memory section

1. In the Renderings pane, right-click the rendering pane and click Go
to Address… on the context menu. A group of controls appears in the
Renderings pane.

2. Enter the required address in the blank edit box.
3. Click OK. The tab scrolls to the specified address.

Reset rendering to the base
address

In the Renderings pane, right-click the rendering pane and click Reset to Base
Address on the context menu. The tab scrolls to the base address.

Managing flash memory

If you need to take control of operations with flash memory during debugging, you can do it using the flash
programmer tool delivered with S32 Design Studio for S32 Platform. This tool enables read-write access to QSPI
flash memory of the connected target. All operations are performed from the command line.

To use the flash programmer:

1. Connect the target to your computer via USB or Ethernet.
2. Update the tool's configuration file as described in Configuring a device connection.
3. Run the flash programmer from the console. Find the details in Running the flash programmer.
4. Work with flash memory of the connected target as described in Using commands.

Configuring a device connection

To configure a connection between the flash programmer and your flash device, open the s32flash.py script from
the following location:

<S32DS 3.4 installation path>/S32DS/tools/S32Debugger/Debugger/scripts/
gdb_extensions/flash/

Configure the following connection parameters, then save the file:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

116 NXP Semiconductors

Tasks

Table 18: Flash device connection parameters

Parameter Description

_FLASH_TYPE The type of flash memory.

_PROBE_IP The connection with the debug probe. Options:

• “”: The probe is connected to the computer through USB.
• “<serial_number>”: Multiple probes are connected to the

computer through USB, each identified by its serial number.
• “<IP> | <host_name>”: The probe is connected to the

computer using the Ethernet cable.

_INIT_SCRIPT The script file used to initialize the target.

_RESET_DELAY The delay at the beginning of the debug session.

_FLASH_NAME The flash device name.

Running the flash programmer

Before you start, specify the python environment variable:

PYTHONPATH=<S32DS_install_dir>/S32DS/build_tools/msys32/mingw32/lib/
python2.7

To run the flash programmer:

1. Navigate to /S32DS/tools/S32Debugger/Debugger/Server/gta and launch gta.exe.
2. Open the command prompt and run the file according to the device type:

Toolchain Architecture File Location

GCC 6.3 32-bit Arm® arm-none-eabi-gdb-py.exe /S32DS/build_tools/gcc_b1620/
gcc-6.3-arm32-eabi/bin/

GCC 9.2 32-bit Arm® arm-none-eabi-gdb-py.exe /S32DS/build_tools/gcc_v9.2/
gcc-9.2-arm32-eabi/bin/

3. In the GDB window, execute the following commands:

source <S32DS>/S32DS/tools/S32Debugger/Debugger/scripts/gdb_extensions/
flash/s32flash.py
py flash()

Using commands

The manage flash memory, type the following commands in the command prompt. To get help on a certain command,
type that command with the –h or --help parameter, for example, fl_blankcheck –h.

Table 19: Flash programmer - commands

Command Description

fl_blankcheck To check if flash memory is blank, use the following command:

fl_blankcheck [-n {NUMBER | all}] offset size

where:

• offset: Specifies the offset in the device's address range.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 117

Tasks

Command Description

• size: Specifies the size of flash memory (in bytes) to be checked.
• -n: Specifies the number of mismatches to be shown in the console.

fl_dump Flash memory can be written to a binary file or output to the console. To dump a flash device,
use the following command:

fl_dump offset size [-c {1, 2, 4, 8, 16} | –f [FILE]]

where:

• offset: Specifies the offset in the device's address range.
• size: Specifies the size of flash memory (in bytes) to be dumped.
• -f [FILE] (--file [FILE]): Specifies the path of the binary file where the

dump will be saved. The file path must not contain spaces.
• -c {1, 2, 4, 8, 16} (--cell {1, 2, 4, 8, 16}): Specifies the

number of bytes per cell. This option applies when the –f option is not used and the
output is shown in the console.

For example, to dump flash memory to a binary file:

fl_dump 0x40000 0x20000 –f dump.bin

If the –f option is not used, the dump is displayed in the console. For example:

fl_dump 0x40000 0x20000

fl_erase To erase flash, use the following command:

fl_erase offset size

where:

• offset: Specifies the offset in the device's address range.
• size: Specifies the size of flash memory (in bytes) to be erased.

For example:

fl_erase 0x40000 0x100

fl_erase_all To erase all flash memory, use the following command:

fl_erase_all

fl_protect To protect flash from erasing or reprogramming, use the following command:

fl_protect offset size

where:

• offset: Specifies the offset in the device's address range.
• size: Specifies the size of flash memory (in bytes) to be protected.

For example:

fl_protect 0x100000 0x100

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

118 NXP Semiconductors

Tasks

Command Description

fl_current If multiple flash devices are connected to your computer, select a certain device using the
following command:

fl_current dev

where dev specifies the name of the current device.

fl_unprotect To make protected flash ready for erasing or reprogramming, remove protection using the
following command:

fl_unprotect offset size

where:

• offset: Specifies the offset in the device's address range.
• size: Specifies the size of flash memory (in bytes) from which protection will be

removed.

For example:

fl_unprotect 0x100000 0x100

fl_info To view the details about the selected flash device, use the following command:

fl_info

fl_write To write a binary file or a hex value to flash memory, use the following command:

fl_write [-s [SIZE]] [-–erase] offset data [--verify]

where:

• offset: Specifies the offset in the device's address range.
• data: Specifies a hex value or a binary file that will be written to flash. The file path

must not contain spaces.
• -s [SIZE], --size [SIZE]: Specifies the size of flash memory (in bytes) to

be written.
• -e, --erase: Erases flash before writing new data.
• -v, --verify: Verifies data written to flash. The data is compared with the file or

value specified in the data parameter.

For example:

fl_write –-erase 0x40000 u-boot.bin --verify

fl_write_elf To write an ELF file to flash memory, use the following command:

fl_write_elf [--erase][--verify][--base address] filename

where:

• -e, --erase: Erases flash before writing new data.
• -v, --verify: Verifies data written to flash. The result is “OK” or “ERROR”.
• -b, --base: Specifies the base address of the ELF file in flash memory. This

option is required if the ELF file is built for the aliased region of flash memory.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 119

Tasks

Command Description

• filename: Specifies the file name and the path at which the ELF file is located.
Spaces are not allowed.

For example:

fl_write_elf –-erase --verify –-base 0x10000000 f:\test.elf

Debugging on multiple cores

This topic describes concurrent debugging of multiple applications running on different cores of the target and
interacting with each other.

Designing embedded software for a multi-core target includes several steps as follows:

• Step 1: Create an application project for a multi-core target in S32 Design Studio. The project creation wizard
generates several application projects, one per core.

• Step 2: Add custom code and compile each application project into an executable (ELF file). The executables
are indexed for use on a particular core of the target. One of the executables (indexed “0”, or “0_0”, or
“boot”) is intended for the boot core.

• Step 3: Debug the executables on the target. You can debug each executable as a standalone application, or
you can load all executables to the intended cores and debug them in parallel.

Note: Debugging on multiple cores in the simulation mode is not supported. Though you can run multiple debug
sessions concurrently and switch between them, the simulator executes each application as a standalone process.

Loading executables for debugging on the target can be done manually or using a launch group. To load the code
manually, run the first debug session for the boot core. If successful, add debug sessions for the remaining cores. Find
the details in Debugging on a bare-metal target.

When using a launch group, just run it. The settings inside the launch group specify the order of launching for the
debug sessions and the time intervals between the launches. For details, refer to Using launch groups.

To start debugging on multiple cores using a launch group:

1.
Click the (Debug As) button on the toolbar, then click Debug Configurations from the drop-down menu.

2. In the Debug Configurations dialog box, expand Launch Group in the left pane and find the launch groups
named as your project. Click the launch group created for debugging from FLASH or from RAM.

The right pane displays the included debug configurations in the order of launching. The top configuration will
initialize the boot core and run the debug session for it.

3. In the left pane, expand the debugging interface (S32 Debugger or other) used by the board. Find inside the debug
configuration intended for the boot core, and click it.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

120 NXP Semiconductors

Tasks

On the Debugger tab of the debug configuration, specify the board connection settings and make sure that the
Initial core option is flagged. Click Apply.

4. Open the launch group again and click Debug. Wait for the debug sessions to be started. If prompted, confirm
switching to the Debug perspective.

5. When all debug sessions are started, they appear in the Debug view. If you did not modify the breakpoints in the
debug configurations, all debug sessions are started and stopped at the first breakpoint (main).

To start debugging on the boot core, select the respective thread in the Debug view and click the (Resume)
button on the toolbar, or press F8.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 121

Tasks

You can use debugging techniques such as stepping, breakpoints, stops, resumes, monitoring registers and
memory, and other. To learn more, refer to Using the debugger and Debugging on a bare-metal target.

6. To continue debugging on a different core, switch to the respective thread in the Debug view. Click the
(Resume) button or press F8.

The other cores are up and running, executing their code and interacting with each other.

7. When debugging is done, terminate the debug sessions. To terminate a debug session, select the respective thread
in the Debug view, then click (Terminate).

Termination of any debug session (primary or secondary) does not terminate the remaining debug sessions in a
group. To terminate all debug sessions in a group at once, click the launch group, then click (Terminate).

Running a launch group may sometimes end with unexpected termination of the secondary debug sessions. This may
be caused by an attempt to launch the secondary debug sessions too early, when the boot core initialization is still on
and the secondary cores are not up and ready yet. To solve this problem, open the launch group and click Edit for the
first configuration.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

122 NXP Semiconductors

Tasks

In the Edit Launch Configuration dialog box and increase the delay. Alternatively, set the breakpoint right after the
initialization section and select the Wait for stop on breakpoint post launch action. Click OK and Apply. Then try
to run the launch group again.

Debugging on a Linux target

To debug an application on a target running Linux, you need an evaluation board with the target set up properly. Find
the details in the documentation for the respective development package that you have installed on S32 Design Studio
for S32 Platform in order to support the target.

Note: The user documentation is available in the help system of S32 Design Studio for S32 Platform. The PDF
versions of the guides are located in folder <S32DS_install_path>/S32DS/help/pdf.

To debug an application on a target running Linux:

1. Connect the board to a USB port of your computer. Power up the board.

2. Build the application project.

3. Open the Debug Configurations dialog and go to the C/C++ Remote Application group of configurations. Click
the launch configuration generated for your Linux application project.

4. On the Main tab, expand the Connection menu and select the connection to the Linux target. If you have not
created this connection before, do it as follows:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 123

Tasks

a. With the Linux running on the board, start a terminal program (for example, PuTTY) on your PC computer:

Set the connection type to “Serial”. Set the speed to “115200”, data bits to “8”, stop bits to “1”, and parity to
“None”.

Then specify the destination you want the terminal to connect to, for instance, the USB port on your computer
to which the board is connected.

b. Start the terminal session and log into Linux (for example, use the “root” login name).
c. To get the IP address of the Linux target, enter the following command:

ifconfig

The output includes the section for Ethernet link. For example, this section can look as follows:

root@s32v234evb:~# ifconfig
eth0 Link encap:Ethernet HWaddr 00:1b:c3:12:34:22
 inet addr:10.222.24.206 Bcast:10.222.24.255
 Mask:255.255.255.0
 inet6 addr: fe80::21b:c3ff:fe12:3422/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:709 errors:0 dropped:1 overruns:0 frame:0
 TX packets:12 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:91479 (89.3 KiB) TX bytes:1512 (1.4 KiB)

The inet addr parameter in this section is the IP address of the target.
d. On the Main tab of the Debug Configurations dialog, click the New button next to the Connection field.
e. In the Create a new connection dialog box, select SSH and click OK.

f. In the New connection dialog box, specify the following settings:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

124 NXP Semiconductors

Tasks

• Connection name: Specify the preferred connection name.
• Host: Enter the IP address of the target that you have obtained in the Linux terminal.
• User: Enter the Linux user name (“root”).
• Password based authentication: If required, enable authentication and enter the Linux user password.

g. Click Finish.

5. On the Debugger tab, specify the following settings for GDB remote debugging:

Table 20: Debugger tab: Settings for remote debugging

Setting Description

Stop on startup at Specify the location in code where the debugger will place the first breakpoint
and stop. Default: main.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 125

Tasks

Setting Description

Debugger Options: Main tab Specify the GDB debugger settings.

• GDB debugger: Specify the path of the GDB executable.
• GDB command file: Specify the path of the GDBINIT file with the

GDB commands to be executed at startup.
• Non-stop mode: Select this option to enable non-stop debugging

of multi-threaded programs. This mode enables the user to examine
stopped program threads in the debugger while other threads continue
to execute freely.

• Enable Reverse Debugging at startup using: Select this option to
start a debug session in the reverse debugging mode. Expand the menu
and select hardware or software reverse debugging.

• Force thread list update on suspend: Select this option for the
thread list to be updated forcedly if the debug session is suspended.

• Automatically debug forked processes: Select this option for the
debugger to automatically debug child processes created with the fork
function.

• Tracepoint mode: Select the tracepoint mode. Options: Normal, Fast,
Automatic.

Debugger Options: Shared
Libraries tab

Specify the paths on the target host where the GDB debugger will search for
shared libraries with symbols. To adjust the priority of a search path, use the
Up and Down buttons.

Load shared library symbols automatically: Select this option to enable the
GDB debugger to automatically find the local copy of the library and load its
symbols unless the remote path of the respective library is specified in the list.

Debugger Options: Gdbserver
settings tab

Specify the settings of the gdbserver program running on the target host.

• Gdbserver path: The gdbserver path on the target host.
• Port number: The port for listening commands from the GDB host.
• Gdbserver options: The command line options with which gdbserver

is started.

6. Click Apply, then click Debug. The debug session is started and stopped at the first breakpoint.

7. Click Resume and debug the application.

Debugging on a VDK

This topic describes how to start a debug session in the simulation environment.

Before you proceed, make sure that you have installed the simulation software and performed the required
configuration settings. For details, refer to S32DS Installation Guide > Installing Synopsys tools .

When using a certain VDK for the first time, add the VDK configuration files to the Synopsys workspace:

• In the S32 Design Studio installation directory, go to /S32DS/config/vpconfigs/. Copy the required
S32x folder to the clipboard.

• In your Synopsys workspace directory, browse to /NXP_S32xxxx_ECU/vpconfigs/ where the VDK
configurations for the required target processor are located. Drop the copied S32x folder inside.

To run a debug session:

1. In S32 Design Studio, click VDK Debug > Launch Simulation using VP Config on the menu.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

126 NXP Semiconductors

Tasks

2. In the Open VP Config dialog box, specify the following settings:

• VP Project: Locate the snps.vpproject file from the <Synopsys_workspace_path>/
NXP_S32xxxx_ECU folder.

• VP Config: Select the VDK configuration that you have copied to the Synopsys workspace.

Make sure that option Launch simulation after opening VP Config is selected.

3. Click OK to start simulation. This procedure may take a few minutes.

4. When the simulator has started, build the project.

5. To start a debug session, click Debug As > Debug Configurations. In the Debug Configurations dialog box, go
to GDB Hardware Debugging section in the left pane. Click the launch configuration generated for your project
and click Debug.

6. By default, simulation is suspended. To resume it, press F8 or click VDK Debug > Resume Suspended
Simulation on the menu.

If you need to debug a multi-core program, run launch configurations for all cores before clicking Resume
Suspended Simulation. Notice that you can suspend execution of only one thread at a time during debugging.

Debugging Linux project on a VDK

This topic describes how to start a debug session for a Linux project in the simulation environment. Before you
proceed, make sure that you have downloaded VDK , installed the simulation software and set the required
environment variables. For details, refer to S32DS Installation Guide > Installing Synopsys tools.

When using a certain VDK for the first time, add the VDK configuration files to the Synopsys workspace: launch
Virtualizer Studio with the Run as administrator option and select your target from the Fixed VDKs list on the
Welcome page.

1. Before simulating debug session on a Linux target for the first time, setup your environment:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 127

Tasks

a) Download Linux BSP from the Automotive SW - Linux product list on the nxp.com website.
b) Copy the following files from the s32<mcu>sim folder to vdk_workspace/NXP_S32<mcu>_ECU/

software/s32xxxx_gen1/output:

• fsl-image-auto-s32<mcu>sim.cpio.gz
• Image
• Image-s32<mcu>-simulator.dtb
• u-boot-s32<mcu>sim.bin

c) Open the vdk_workspace/NXP_S32<mcu>_ECU/vpconfigs/s32<mcu>_linux/
s32<mcu>_linux.vpcfg file and edit the last paramOverrides value to use fsl-image-auto-
s32<mcu>xsim.cpio.gz:

value="{../../software/s32xxxx_gen1/output/fsl-image-auto-
s32<mcu>xsim.cpio.gz,0x4000000,,image,} {../../software/s32xxxx_gen1/
output/Image,0x80000,,image,} {../../software/s32xxxx_gen1/output/Image-
s32<mcu>-simulator.dtb,0x2000000,,image,}

d) Install the VHub utility to support Real World I/O for Synopsys Ethernet models. The installer is located in the
vdk_workspace/NXP_S32<mcu>_ECU/bin/VirtualAndRealWorldIO/VHub folder.

e) Install the VHub Protocol driver. For details, refer to VHub User Guide > Installing VHub on
Windows (vdk_workspace/NXP_S32<mcu>_ECU/bin/Documentation/IPDocs/
DESIGNWARE_ETHERNET/IP_VHubUserGuide.pdf).

Now the environment is ready for debugging Linux project on a VDK.

2. Launch VHub with the Run as administrator option.

3. In Virtualizer Studio, click VDK Debug > Launch Simulation using VP Config on the menu bar.

4. In the Open VP Config dialog box, specify the following settings:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

128 NXP Semiconductors

http://www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=SW32XX-LINUXBSP01D

Tasks

• VP Project: Locate the snps.vpproject file from the vdk_workspace/NXP_S32<mcu>_ECU
folder.

• VP Config: Select the s32<mcu>_linux configuration.

Make sure that option Launch simulation after opening VP Config is selected.

5. Click OK to start simulation. This procedure may take a few minutes.

6. (Optional) When the simulator has stopped at the initial_crunch breakpoint, check the Vhub Port status:

7. By default, simulation is suspended. Click (Resume suspended simulation) on the toolbar.

8. Go to the LIN_MONITOR_0_B terminal view and login as root. You can use the U-boot run bootcmd
command.

9. Load the GMAC driver and obtain dynamic address:

modprobe dwmac-s32cc
udhcpc -i eth0 -n -q

You can see the IP address in the Linux terminal and the VHub registration MAC addresses in Simulation Output.

10. Start the SSH server with the following commands:

/usr/bin/ssh-keygen -A
mkdir -p /var/run/sshd
/usr/sbin/sshd

11. In , use the project wizard to create a new project for a Linux target.

12. Build the project.

13. Open the Debug Configurations dialog and go to the C/C++ Remote Application group of configurations. Click
the debug configuration for debugging remote Linux generated for your project.

14. On the Main tab, click the New button next to the Connection field to create a new remote connection. Then select
the SSH connection type.

15. In the New connection dialog box, specify the following settings:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 129

Tasks

• Connection name: Specify the preferred connection name.
• Host: Enter the VDK IP address that you have obtained in the Linux terminal.
• User: Enter the Linux user name (root).
• Authentication: If required, enable authentication and enter the passphrase or password.

Then click Finish.

16. Click Apply, then click Debug.

Importing an executable
To debug a standalone executable file, you need to import it to a new or existing project in your workspace. This
guide walks you through the process of importing an ELF file into a local project.

1. Launch the Import Executable wizard: go to File > Import... on the menu. In the Import dialog, click S32 Design
Studio for S32 Platform > C/C++ Executable as S32DS Project, then click Next.

2. Choose the ELF file for import:

a) Click the Browse button to browse to the ELF file.
The Select executable field displays the full path of the ELF file. The gray field next to the Browse button
displays the processor architecture recognized from the ELF file.

b) In the tree of processors, point the processor and the core that are being target in the selected ELF file.
The Description field displays the information about the selected processor and core.

c) Click Next.

3. Choose the project for import:

a) Click the New Project Name option to create a new project for import, specify the project name.
Alternatively, click the Existing project option to use an existing project for import, then click Search... and
pick the project for import from the list.

b) Configure the creation of a launch configuration. If you do not need a new launch configuration for debugging,
remove the Create Launch Configuration flag. Otherwise, select the debug configuration type from the list
and specify the new configuration name.

c) Select from the list (if possible) the compiler to be used in the project.
The Toolchain Name field displays the selected compiler to be used in the project. Availability of toolchains
depends on device and launch configuration selected.

d) (Optional) Click Browse and browse to a folder with the source code associated with the ELF file.
The folder will be included into the Source Lookup Paths list in the new launch configuration.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

130 NXP Semiconductors

SDK management

4. Click Finish.

SDK management

Overview
In addition to predefined (contributed or external) SDKs that are shipped with S32 Design Studio for S32 Platform,
you can add custom SDKs and use them in projects. You can create an SDK from the existing C/C++ source files,
import an SDK from an external storage, or load an SDK using its descriptor. Also, you have an option to export a
custom SDK to an archive and make it available for import on other workstations.

Location and visibility

In S32 Design Studio for S32 Platform, you add a custom SDK to a particular workspace or to a certain project
directly. When added to a workspace, the custom SDK becomes global, that is, available for use in all projects that
use the compatible language, MCU, core, and toolchain. Global custom SDKs appear in the project creation wizard
along with the predefined SDKs. The list of SDKs can be viewed in the user preferences and in the project settings of
projects that are compatible with this SDK.

When added to a project rather than to a workspace, the SDK is local, that is, visible in this project only. SDKs added
to a project are displayed in the project properties. If necessary, you can make a local SDK global at any moment.

When you add an SDK, it gets to the collection of SDKs available to a given scope of projects. An added SDK then
needs to be attached to a project, after which the SDK files and resources become part of the project and can be
included in the build.

SDK descriptor

S32 Design Studio for S32 Platform learns the details about an SDK from the SDK descriptor provided in the XML
format. The SDK descriptor defines all information about the SDK such as its name and version, supported cores and
toolchains, included source files and resources.

When you create an SDK, its descriptor is generated automatically and stored in the preferences (if the SDK is global)
or in the project properties (if the SDK is local). When you export an SDK, the sources.xml file with the SDK
descriptor is generated automatically and included in the archive. When you import or load an external SDK, this file
is expected to be in the SDK root folder.

Using SDKs in a project

To use an SDK in a project, you need to attach it at the project creation or later. A project can use multiple SDKs,
each attached to particular or all build configurations. The SDK configuration specifies which SDK files will be
linked or copied to the project structure. Some SDKs are provided in the form of modules. Each module includes the
SDK files specific for the particular project type or build configuration. So you do not need to attach the entire SDK
and can select the required SDK modules only.

When you detach an SDK, copied files are not removed from the project's build configurations. You can detach one
or multiple SDKs from a particular or all project build configurations.

The reason for detaching may be the necessity of editing the SDK structure, properties, or files. An SDK cannot be
edited until detached from all projects.

Adding an SDK
This section describes the ways to add an SDK to S32 Design Studio for S32 Platform:

• If you have a C/C++ code, you can make it an SDK. For details, refer to Creating an SDK.
• You can load an SDK using XML descriptor. For details, refer to Loading an SDK.
• You can import an SDK from an external storage. For details, refer to Importing an SDK.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 131

Tasks

• You can create a new SDK on the basis of the MCAL SDK. For details, refer to Importing MCAL SDK.

Then, you can export your custom SDK to an archive to be reused in a different workspace. For details, refer to
Exporting an SDK.

Creating an SDK

In S32 Design Studio for S32 Platform, you can create an SDK from the C/C++ source files and resource files. The
resulting SDK can be stored in the workspace and be available for use in many application projects. Or, the created
SDK can be stored in a particular project and be available in the scope of this project only.

To create an SDK:

1. Open the location where the SDK will be stored:

• To add the SDK to the workspace, click Window > Preferences on the main menu. In the Preferences
dialog box, go to S32 Design Studio for S32 Platform > SDK Management.

• To add the SDK to a particular project, right-click the project in the Project Explorer and click
Properties on the context menu. In the Properties dialog box, go to SDKs.

Note: If you choose to add your SDK to a project, the generated SDK descriptor includes the language, MCU,
core, and toolchain properties that are specified in the project. When made global later, this SDK will be
compatible with projects that have similar properties. When created global, an SDK does not specify the above
properties and can be used in a project.

2. Click the Add... button.

3. In the New SDK dialog box, specify the SDK properties:

• Name: Enter a valid name that starts with a letter. Use letters, digits, and underscores.
• Version: Enter a string in the format “major.minor.micro.qualifier”. The “major” is mandatory, other parts

can be skipped. The “qualifier” can include letters, digits and underscores, other parts can only use digits.
• Target folder name: Enter a valid folder name that starts with a letter. After you attach the SDK to your

project, the SDK files appear in the Project Explorer in the specified folder. Leave this field blank to use
the SDK name for the project folder. This field is optional.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

132 NXP Semiconductors

Tasks

• Description: Enter a brief description of your SDK. This field is optional.

Note: The combination of the name and version must be unique in the workspace. This combination gives the
name to the environment variable that is generated for the SDK automatically.

4. To set up the location of the SDK folder, click Change....

5. In the Change SDK Location dialog box, select the variable where the path of the SDK folder will be specified:

• Define new variable: Click to use a new variable for the SDK. To use the variable generated
automatically, click Browse and browse to the SDK folder. Or, click Variable and select the environment
variable that holds the path to the SDK folder.

Note: Use an environment variable to be able to share your SDK with other people or distribute it widely.
If necessary, define a new environment variable and assign it with the SDK folder path in Preferences >
Run/Debug > String Substitution.

• Select system variable: Click to use a system environment variable. Select the required variable in the
drop-down list.

Once done, you can see the resolved location of the SDK folder.

6. Click OK. In the New SDK dialog box, select the files (source files, headers, binaries, resources, linker ID files)
to be included in the SDK:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 133

Tasks

• In the Select column, mark the files with to be linked to a destination project.
• In the Copy column, mark the files with to be copied to a destination project.

By default, files are marked with (not selected).

7. Add compiler and preprocessor symbols on the Symbols tab.

8. Click OK.

Once done, the new SDK appears on the SDK Management page of the user preferences. If added to a project, the
SDK also appears on the SDKs page of the project properties.

Loading an SDK
You can add an external SDK to your workspace using the SDK descriptor provided in the XML format. When added
to a workspace, the loaded SDK becomes available for use in all projects with the compatible settings. The SDK
source files are not copied to the product or workspace directory.

To load an SDK to your workspace:

1. Click Window > Preferences on the main menu. Then go to S32 Design Studio for S32 Platform > SDK
Management.

2. Click the Load... button.

3. Browse to the folder where the SDK is located and select the XML descriptor.

4. Click Open to confirm the loading.
Once done, the loaded SDK appears on the SDK Management page.

If there are some changes in original SDK after the loading, you can click the Reload button to be in sync with the
latest updates. Alternatively, click Remove and use the Load button to add the updated version.

Importing an SDK

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

134 NXP Semiconductors

Tasks

You can import an SDK to the preferred location (a workspace or a project) from an external storage such as a ZIP
archive or a directory.

To import an SDK:

1. Open the location where to import the SDK:

• To import the SDK to the workspace, click Window > Preferences on the main menu. In the Preferences
dialog box, go to S32 Design Studio for S32 Platform > SDK Management.

• To import the SDK to a particular project, right-click the project in the Project Explorer and click
Properties on the context menu. In the Properties dialog box, go to SDKs.

2. Click the Import button.

3. In the Import an SDK wizard, click the source - a ZIP file or a directory.

4. Specify the import settings and confirm the operation:

• To import from a ZIP file, browse to the archive file, then browse to the destination folder where the
zipped files will be extracted. Click OK.

• To import from a directory:

a. Browse to the folder where the SDK is located. Click OK.

b. On the next wizard page, select the destination to which the SDK will be imported:

• Default (SDK folder): The folder where the SDK is stored.
• SDK Base Path: The standard base path to SDK files defined in the SDK descriptor.

c. Click OK.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 135

Tasks

5. (Optional) If an SDK with the same name and version already exists, specify different SDK properties in the
Change SDK name/version dialog box and click OK.

Once done, the imported SDK appears on the SDK Management page of the user preferences. If imported to a
project, the SDK also appears on the SDKs page of the project properties.

Note: If an SDK imported to a project does not appear on the SDKs page, this may be caused by incompatible
properties or by unexpected or missing files in the SDK or project structure. Select the Show All SDKs option on the
SDKs page and check if the imported SDK is marked accordingly. To learn more, refer to SDKs.

Importing an MCAL SDK

Microcontroller Abstraction Layer (MCAL) is a software that provides direct access to the MCU modules and
includes the microcontroller, memory, communication and I/O drivers. To use an MCAL SDK with device-specific
tools in a project, import a respective MCAL configuration into a new SDK and attach it to the project.

To add an MCAL SDK:

1. Click Window > Preferences on the main menu. In the Preferences dialog box, go to S32 Design Studio for S32
Platform > SDK Management.

2. Click the Import MCAL SDK button.

3. Select the descriptor from the MCAL SDK descriptor drop-down menu.

4. Specify the location of the MCAL configuration files.

5. Specify a unique SDK name that starts with a letter. Use letters, digits, and underscores.

6. Specify the SDK version in the “major.minor.micro.qualifier” format. The “major” is mandatory, other parts can
be skipped. The “qualifier” can include letters, digits and underscores, other parts can only use digits.

7. Click OK.

The new SDK based on the selected MCAL configuration appears in the list of available SDKs. It is global and can
be attached to any application project that uses the compatible language, MCU, core, and toolchain.

Making a local SDK global

An SDK added to a particular project can be used but locally. You can add a local SDK to the workspace and thus
make it global.

When you add a local SDK to the workspace, the SDK becomes global but its descriptor still keeps the project's
language, MCU, core, and toolchain. This global SDK can be used with projects that have similar properties.

To make a local SDK global:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

136 NXP Semiconductors

Tasks

1. Open the project properties by right-clicking the project in the Project Explorer and clicking Properties on the
context menu.

2. In the Properties dialog box, go to SDKs.

3. Select the SDKs that you need to add to the workspace. Click Make global, then click OK.

The SDK becomes available on the SDK Management page of user preferences. Within the workspace, this SDK
can be attached to any application project that uses the compatible language, MCU, core, and toolchain.

Using SDKs in projects
This section describes how to use an SDK in an application project. Find the details in the following topics:

• Attaching an SDK when creating a project
• Attaching an SDK to an existing project
• Upgrading an SDK version
• Detaching an SDK

Attaching an SDK when creating a project

When creating a new project, you have an option to add an SDK on the second page of the wizard. Click the ellipsis
button in the SDKs field. In the Select SDK dialog box, flag SDKs to be selected from the list and click OK.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 137

Tasks

The Select SDK dialog box displays both predefined and custom SDKs that are compatible with the project's
language, target processor, toolchain, and core.

Attaching an SDK to an existing project

You can attach an SDK to an existing application project in the project properties. When attaching an SDK, you can
choose the build configuration in which the SDK will be used.

To attach an SDK to an existing application project:

1. Open the project properties by right-clicking the project in the Project Explorer and clicking Properties on the
context menu.

2. In the Properties dialog box, go to SDKs.

3. Select one or several SDKs from the list and click Attach/Detach....

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

138 NXP Semiconductors

Tasks

4. For each selected SDK, choose the build configurations to which it will be attached. Click OK.

5. To complete the operation, click OK on the SDKs page of the project properties.

Upgrading SDK version

If the SDK you use in your project has a new version, you can migrate the project to use the latest available SDK.

To upgrade an attached SDK use the Migrate wizard.

To learn the details, refer to topic Migration guide.

Detaching an SDK

An SDK can be detached from a particular project's configuration or from all project build configurations.

To detach an SDK:

1. Right-click the project in the Project Explorer and click Properties on the context menu. In the Properties
dialog box, go to the SDKs page.

2. Select one or several SDKs to be detached and click the Attach/Detach button.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 139

Tasks

3. Remove the mark from the project build configurations from which the selected SDKs will be detached.

4. Click OK. The detached build configurations are displayed without the mark in the list.

5. To complete the operation, click OK on the SDKs page of the project properties.

Editing an SDK

You can edit the properties and structure of a custom SDK that is not attached to any project.

To edit an SDK:

1. Go to the location where the SDK is available:

• To open the list of SDKs in the workspace, click Window > Preferences on the main menu. In the
Preferences dialog box, go to S32 Design Studio for S32 Platform > SDK Management.

• To open the list of SDKs in the project, right-click the project in the Project Explorer and click
Properties on the context menu. In the Properties dialog box, go to SDKs.

2. Before editing an SDK, ensure that it is not attached to any project:

• In the project properties, make sure that the SDKs page displays the local SDK without the marks in all
build configurations.

• In the preferences, select the SDK on the SDK Management page and click Show Attached.

In the Show attached dialog box, select your SDK from the SDK drop-down menu and view all project
build configurations to which the SDK is currently attached. Click OK.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

140 NXP Semiconductors

Tasks

3. If applies, detach the SDK from all project build configurations. For details, refer to topic Detaching an SDK.

4. Get back to the location where the SDK is available. Click Edit/Show info.

5. In the Edit SDK dialog box, edit the SDK properties, linked and copied files, and defined symbols. For details,
refer to topic Creating an SDK.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 141

Tasks

6. Click OK.

Defining symbols
SDK provides ability to define symbols as macros with the -D option. These defined symbols will be added for the
preprocessing tools after attaching SDK to the project.

• External (Contributed) SDK: the defined symbols list is read-only. Select SDK from the list on the SDK
Management page, click Edit/Show info... and open the Symbols tab.

• Custom SDK: you can define symbols while creating a new SDK. If you need to specify the symbol type, edit
the SDK descriptor. When you export an SDK, the sources.xml file with the SDK descriptor is generated
automatically and included in the archive. Open this file, make changes and import the updated version.

There are four types of symbols:

• Common symbols. This type of symbols is declared for both the C/C++ Compiler and Assembler tools.
Common symbols can be defined in two ways:

• as comma-separated list in the symbols attribute of the sdk element

<sdk ... symbols="CPU_S32K144HFT0VLLT1, CPU_S32K144HFT0VLLT2"/>

• as comma-separated list in the value attribute of the commonSymbols element

<sdk ...>
 <commonSymbols value="CPU_S32K144HFT0VLLT1,
 CPU_S32K144HFT0VLLT2"/>
 ...
</sdk>

You can choose the most convenient way or use both, because the resulting list of the defined symbols will
include all of them except duplicates.

• Symbols for the C Compiler tool. This type of symbols is declared only for the C Compiler tool as comma-
separated list in the value attribute of the cCompilerSymbols element

<sdk ...>
 <cCompilerSymbols value="CPU_S32K144HFT0VLLT3, CPU_S32K144HFT0VLLT4"/
>
 ...
</sdk>

• Symbols for the C++ Compiler tool. This type of symbols is declared only for the C++ Compiler tool as
comma-separated list in the value attribute of the cppCompilerSymbols element

<sdk ...>

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

142 NXP Semiconductors

Tasks

 <cppCompilerSymbols value="CPU_S32K144HFT0VLLT5"/>
 ...
</sdk>

• Symbols for the Assembler tool. This type of symbols is declared only for the Assembler tool as comma-
separated list in the value attribute of the assemblerSymbols element

<sdk ...>
 <assemblerSymbols value="CPU_S32K144HFT0VLLT6, CPU_S32K144HFT0VLLT7"/
>
 ...
</sdk>

Exporting an SDK

You can export an SDK from the specified location (a workspace or a project) to a ZIP file. The resulting archive
file will include all SDK files and the generated sources.xml file with the SDK descriptor. You have an option to
export the sources.xml file alone, without the SDK files. For instance, you may find it useful if the SDK files are
stored in a shared repository.

Note: You cannot export predefined SDKs and custom SDKs that were imported before.

To export an SDK:

1. Open the location where the SDK is available:

• To export the SDK from the workspace, click Window > Preferences on the main menu. In the
Preferences dialog box, go to S32 Design Studio for S32 Platform > SDK Management.

• To export the SDK from a particular project, right-click the project in the Project Explorer and click
Properties on the context menu. In the Properties dialog box, go to SDKs.

2. Click Export.

3. In the Export SDK dialog box, click Browse and browse to the folder where the ZIP file with the SDK name will
be stored.

4. To export the sources.xml file only, select the Export only SDK descriptor option. The generated file will
contain no references to the SDK files.

5. Click OK.

Removing an SDK

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 143

Migration guide

You can permanently delete one or multiple custom SDKs from the workspace. When you delete a custom SDK, it is
automatically detached from all projects where it was used.

To delete a custom SDK:

1. Open the location where the SDK is available:

• To open the list of SDKs in the workspace, click Window > Preferences on the main menu. In the
Preferences dialog box, go to S32 Design Studio for S32 Platform > SDK Management.

• To open the list of SDKs in the project, right-click the project in the Project Explorer and click
Properties on the context menu. In the Properties dialog box, go to SDKs.

2. Select one or several SDKs and click Remove.

3. In the Remove SDK confirmation dialog box, click OK to confirm the removal.

Migration guide

You can use the Migrate wizard to convert SDK or GCC based tolchain for your project.

Note: Generally the SDK migration contains a toolchain migration in it.

Note: For toolchain migration refer steps 1-5 only.

The following explains how to migrate your project:

1. To open the Migrate wizard use one of the options:

• Right click your project in the Project Explorer view and click Migrate on the context menu.
• Click File > Migrate

The Migrate wizard appears.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

144 NXP Semiconductors

Tasks

2. Check that correct project is selected in the Projects tree.

3. Select migration type.

4. Check the Create backup checkbox and click Browse button to select the backup destination file.

Note: You can also select Backup linked resourses and change the backup archive type.

5. Click Finish to confirm migration. System automatically creates new project with new SDK or toolchain and
backups the original project.

Note: In case of conflicted files, all matched original files will be backupped and new project will contain the
new ones.

Note: If some files were modified before the migration the Save Resources dialog will appear.

6. If the Check conflicted files dialog appears, click OK to confirm replacement of files with corresponding ones
from new SDK.
The migration_output.txt file indicates the PE migrations fulfilled.

If the selected toolchain is not supported in the New Project wizard for the processor type of the original project, the
migrated project may contain some errors.

If system generates any errors or warnings, you can see them in the Problems view. You can use the Quick Fix
option if possible.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 145

Troubleshooting

Troubleshooting

This section contains a series of tables that describe possible solutions to problems that may occur when using S32
Design Studio for S32 Platform. Each table contains:

• Symptoms that describe the sign or warning message for the type of problem.
• Possible solutions that describe what you should do to try to solve the problem.

The troubleshooting tables appear in the following order:

• Licensing
• Installation
• Internet Access
• Project Files
• Building
• Debugging

If your problem is not described below, check the list of known issues and workarounds in Release Notes, then refer
to the S32 Design Studio for S32 Platform community or submit a technical support request.

For additional information about problems presumably relating to your device or included tools, refer to the following
documentation:

Table 21: Related Documentation

Documentation for: Location

S32 Debugger Release Notes: /S32DS/tools/S32Debugger/Debugger/

S32 Configuration Tool Release Notes: /Release_Notes/

S32 Configuration Tool Getting Started: Help > Help Contents

S32 Flash Tool Release Notes and User Guide: /S32DS/tools/S32FlashTool/doc/

S32 Trace Tool S32DS Software Analysis Documentation: Help > Help Contents, the pdf
version is available in /S32DS/help/pdf/

S32 Debug Probe User Guide: /S32DS/tools/S32Debugger/Debugger/Docs/

GNU Bare-Metal Targeted Tools for
Arm 32-bit Embedded Processors

Release Notes:

• GCC 6.3 - /S32DS/build_tools/gcc_b1620/gcc-6.3-
arm32-eabi/

• GCC 9.2 - /S32DS/build_tools/gcc_v9.2/gcc-9.2-
arm32-eabi/

• GDB - /S32DS/tools/gdb_arm/arm32-eabi/

GNU Bare-Metal Targeted Tools for
Arm 64-bit Embedded Processors

Release Notes:

• GCC 6.3 - /S32DS/build_tools/gcc_b1620/gcc-6.3-
arm64-eabi/

• GCC 9.2 - /S32DS/build_tools/gcc_v9.2/gcc-9.2-
arm64-eabi/

• GDB - /S32DS/tools/gdb_arm/arm64-eabi/

GNU Linux Targeted Tools for Arm
64-bit Embedded Processors

Release Notes:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

146 NXP Semiconductors

https://community.nxp.com/community/s32/s32ds
https://www.nxp.com/support

Tasks

Documentation for: Location

• GCC 6.3 - /S32DS/build_tools/gcc_b1620/gcc-6.3-
arm64-linux/

• GCC 9.2 - /S32DS/build_tools/gcc_v9.2/gcc-9.2-
arm64-linux/

• GDB - /S32DS/tools/gdb_arm/arm64-linux/

SDK Refer to the corresponding folder in /S32DS/software/

P&E GDB Server Plug-In User Guide: /S32DS/help/pdf/

Hardware Some software packages provide data sheets and reference manuals, refer
to the corresponding folder in /S32DS/help/resources/manuals/
and /S32DS/help/resources/hardware/

Table 22: Licensing

Symptom Possible solution

The product license cannot
be activated

Ensure the Flexera server can be accessed from your workstation. Consult the network
administrator of your company.

Table 23: Installation

Symptom Possible solution

The "Insert New Media"
message appears when
installing S32DS 3.4

Make sure there is enough disk space for the product and temporary files. Free up disk
space or click the Browse button to select a new location.

Toggle the New button in the S32DS Extensions and Updates window. This toggles
off other filters that may block the new packages from being displayed.

Check the Internet connection on your workstation. Reconnect if required.

Ensure the path of the network repository is specified in the user preferences correctly:

1. Click Help > S32DS Extensions and Updates from the menu.
2. Click Manage Sites.
3. Ensure the list of available software sites includes the following location:

http://www.nxp.com/lgfiles/updates/Eclipse/S32DS_3.4

Ensure the network repository can be accessed from your workstation. Consult the
network administrator of your company.

New packages and updates
are not displayed in the
S32DS Extensions and
Updates tool

Download the new packages and updates manually. Find the details in Downloading
updates manually.

Table 24: Internet Access

Symptom Possible solution

Ask the network administrator to allow simultaneous domain and non-domain
connections for the user account.

Use a wired Ethernet connection to the domain network.

Wireless Internet
permanently fails when
debugging with S32 Debug
Probe (USB) on a PC
connected to Wi-Fi Connect to an external wireless network, then connect to the domain through a VPN

client.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 147

Tasks

Table 25: Project Files

Symptom Possible solution

The source (header)
files do not appear in the
project's board folder
after saving the device
configuration to the project

Open the Pins, Clocks, or Peripherals perspective. Click Update Project > Open
Update Project Dialog, select the files expected in the project's board folder, and
click OK. Find the details in Editing a device configuration.

Table 26: Building

Symptom Possible solution

The toolchain settings
display the "Orphaned
configuration" warning

The "Orphaned configuration. No base extension cfg exists..." message can be caused
by missing toolchain. Make sure you installed the package that includes the tools
necessary to build this type of project.

Build fails after updating
the product version

The "Cannot run program: Launching failed. Error: Program not found in PATH"
error can be caused by unresolved environment variables for the new product in old
workspace. Create a new workspace and import the existing project.

Build fails with multiple
unresolved symbols

The build failure can be caused by the incorrect C/C++ indexer settings. Indexing can
be restricted by file size or by cache size, in which case the indexer may not update the
database after some action was performed with a project file, for instance, because the
file was too large. Find the details in Adjusting the C/C++ indexer settings for large
files.

Build errors are reported
without a particular
location

The build failure can be caused by invalid characters in the resolved paths. Make sure
that all your paths use the allowed characters only. Or, refer to Building projects in
non-English versions of Windows.

Table 27: Debugging

Symptom Possible solution

Debugging with
Lauterbach TRACE32 fails
in Linux

If the path to the debugged executable is too long, this may cause the TRACE32
debugger failure. Consider using a shorter path. As part of the solution, assign a
shorter name to the project, recompile it, and start debugging anew.

Open the PROFILE file located in your home directory and add the following entry:

export PATH="$PATH:/opt/t32/bin/pc_linux64"

where /opt/t32 is your Lauterbach installation directory.

Lauterbach TRACE32
running in Linux cannot
find t32marm64,
t32marm, t32mipu,
t32mapex

Modify the CM4.cmm file to use the absolute paths to the reported executables
(t32marm64, t32marm, and so on), for instance:

os /opt/t32/bin/pc_linux64/t32marm64 -c ./
Project_Settings/Debugger/CA53.t32

os /opt/t32/bin/pc_linux64/t32mapex -c ./Project_Settings/
Debugger/APU0.t32

Running a launch group
results in unexpected
termination of the
secondary debug sessions

Open the launch group and increase the post-launch delay for the initial debug session.
Find the details in Debugging on multiple cores.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

148 NXP Semiconductors

Tasks

Symptom Possible solution

Debugging of multicore
project fails

Previously created functional breakpoints (e.g. "main") are kept in the Breakpoints
view. So the execution of <init> launch configuration tries to stop on it. All temporary
functional breakpoints should be removed from the Breakpoints view (or disabled)
before starting of a debug session.

Connecting to vpsession
failed

The "com.synopsys.sls.core.CmdException: No session, operation cannot be
completed" error can be caused by invalid environment variable value. If you have
several Synopsys® Virtualizer Runtime versions, make sure the SNPS_VP_HOME
value is set for the currently used version.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 149

Reference

Part

III
Reference

Topics:

• User interface
• Build configuration
• Folders and files

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

150 NXP Semiconductors

User interface

User interface

Views and editors

Project Explorer view

The Project Explorer view displays a hierarchical view of all projects and their resources available in the current
workspace.

The hierarchy includes the following levels (from top to bottom):

• Project names, each followed by the build configuration to be
used.

On the image, the “Debug” build configuration will be applied to
the project.

• Standard project folders (Includes, src, other).

Learn more about standard project folders in Project folders and
files.

• Nested folders, source files, and resources.

Note: Folders and files with crossed icons and faded font are
excluded from the build.

• #include directives and definitions in code (see nested elements
under main.c on the image)

The toolbar of the Project Explorer view includes the following buttons (from left to right):

(Collapse All) Click to collapse all nodes in the Project Explorer.

(Link with
Editor)

Click for the file currently opened in the editor to be highlighted in the Project
Explorer.

(Select and
deselect filters
to apply to the
content in the
tree)

Click to open the Filters and Customization dialog box.

(View Menu) Click to open the standard menu customizing the view.

(Minimize)
Click to minimize the Project Explorer view. The Project Explorer icon appears at the
left border of the main application window, next to the Restore icon.

(Maximize)
Click to maximize the Project Explorer view. All other views are minimized and
their icons appear at the right border of the main application window, each next to the
dedicated Restore icon.

You can perform the following actions in the Project Explorer view:

• To expand or collapse a node in the hierarchy, double-click it.
• To collapse all nodes in the Project Explorer, click the Collapse All toolbar button located in the view.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 151

Reference

• To open a source file in the editor, double-click it in the Project Explorer, or drag and drop the file from the
Project Explorer to the editor area.

• To close a project, select it in the Project Explorer and click Project > Close Project on the menu.
• To reopen a closed project, click the project name in the Project Explorer and use the Project > Open

Project menu command.
• To permanently delete a project from the Project Explorer and workspace, and physically from the disc, use

the Edit > Delete menu command.

To configure the Project Explorer to hide or display particular elements (closed projects, files types, definitions, and
other):

1. Click the View Menu toolbar button and click Customize View on the context menu.

2. In the Available Customizations dialog box, go to the Filters tab. Select the options to be hidden.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

152 NXP Semiconductors

Reference

3. Click OK.

Problems view

The Problems view displays build errors, warnings, and information messages in a grid control. The detailed
information about each issue includes a description, the resource, the path of the problem file, the location and the
type of the issue. To jump to the location where a particular issue has been detected, double-click that issue in the
grid.

Right-click an issue in the grid and click Properties on the context menu. The Properties dialog box appears to
display the detailed description of the issue:

Breakpoints view

The Breakpoints view lists all the breakpoints set in the workbench projects. This view also allows breakpoints to
be grouped by type, project, file, or working sets, and supports nested groupings. If you double-click a breakpoint
displayed by this view, the source code editor displays the source code statement on which this breakpoint is set.

To open the Breakpoints view, click Window > Show View > Breakpoints on the menu. Or, click Window > Show
View > Other and find Breakpoints in the Show View dialog box.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 153

Reference

Debug view

The Debug view shows the information about current debug sessions in a tree hierarchy.

To display the Debug view, click Window > Show View > Other... > Debug > Debug on the menu:

Use the Debug view to perform the following tasks:

• Clear all terminated processes
• Start a new debug session for the selected process
• Resume execution of the currently suspended debug target
• Halt execution of the currently selected thread in a debug target
• Terminate the selected debug session and/or process
• Detach the debugger from the selected process
• Execute the current line, including any routines, and proceed to the next statement
• Execute the current line, following execution inside a routine
• Re-enter the selected stack frame
• Examine a program as it steps into disassembled code

Disassembly view

The Disassembly view shows the loaded program as assembly language instructions mixed with source code for
comparison. The next instruction to be executed is indicated by an arrow marker and highlighted in the view.

To display the Disassembly view, click Window > Show View > Other... > Debug > Disassembly on the menu.

You can perform the following tasks in the Disassembly view:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

154 NXP Semiconductors

Reference

• Set breakpoints at the start of any assembly language instruction
• Enable and disable breakpoints and set their properties
• Step through the disassembled instructions of your program
• Jump to specific instructions in the program

Expressions view

The Expressions view helps you inspect data from a stack frame of a suspended thread. In contrast to the Variables
view that shows variables in the current scope, the Expressions view can monitor the values of static and global
variables and executed statements that you add to the view.

To open the Expressions view in the current perspective, click Window > Show View > Other > Debug >
Variables on the menu:

To open additional Expressions views, click (Open New View) on the toolbar above the view.

To add an expression to the Expressions view, do any of the following:

• Copy an expression (a variable name or a statement) from the file opened in the editor area, click

 in the grid, and paste the expression to the new grid line.
• Select an expression in the opened file, right-click and click Add Watch Expression on the context menu.
•

Click (Create a new watch expression) on the toolbar above the view and enter an expression in the Add
Watch Expression dialog box.

When added to the Expressions view at debug time, expressions are displayed in the grid with their data types and
actual values that are updated in real time. Click an expression in the grid to view more detailed information about it
in the Detail pane below the grid.

When the debug session is terminated, the expression names remain until deleted manually. To delete all expressions,

click (Remove All Expressions) on the toolbar above the view.

Memory view

The Memory view allows you to monitor and modify your process memory. The process memory is presented as a
list of memory monitors. Each monitor represents a section of memory specified by its location called base address.
Each memory monitor can be displayed in one of the predefined data formats.

To open the Memory view, click Window > Show View > Other... > Debug > Memory on the menu:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 155

Reference

By default, the Memory view displays the layout and formats that were set in the previous debug session.

• Add your memory monitors in the Monitors pane. The default rendering pane without addresses is displayed
automatically. The addresses become visible after the first step in the debugger.

• Add more rendering panes for a monitor. For each rendering pane, specify the rendering type from the list:

• Floating Point
• Traditional
• Hex
• ASCII
• Signed Integer
• Unsigned Integer
• Hex Integer

Warning: Expressions with the unary increment, decrement and assignment operators used in the Memory and
Expressions views modify memory and may cause side effects.

Memory Browser view

The Memory Browser view serves for monitoring particular locations in process memory.

To display the Memory Browser view, click Window > Show View > Other... > Debug > Memory Browser on the
menu.

To browse to a desired memory location, type the memory address in the memory address box and click Go. The
memory location is displayed in the tab of the Memory Browser view. You can add more tabs by clicking New Tab.

Memory Spaces view

The Memory Spaces view enables access to the selected memory spaces on the target device.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

156 NXP Semiconductors

Reference

Note: Memory spaces are available only during a debug session supporting memory space operating by the S32
Debugger.

The Memory Spaces view is included in the Debug perspective by default. If the view was closed, reopen it from the
menu by selecting Window > Show View > Other > Debug > Memory Spaces.

The memory spaces are presented as a list of memory spaces in the left part of the view. Each space represents a
section of memory specified by its location called address.

The color indicates the state:

• Gray - initial state,
• Black - data was read,
• Red - data changed since first-time read.

The "?" mark indicates that memory can't be read (write-only, restricted, etc.).

The toolbar of the Memory Spaces view includes the following buttons (from left to right):

(Add memory
space)

Click to add a memory space to the list in the Memory Spaces view.

(Minimize) Click to minimize the Memory Spaces view.

(Maximize)
Click to maximize the Memory Spaces view. All other views are minimized and
their icons appear at the right border of the main application window, each next to the
dedicated Restore icon.

(Restore) Click to restore the Memory Spaces view from minimal or maximal state.

During debugging you can perform the following actions in the Memory Spaces view:

•
To add new memory space, click the button on the toolbar or right-click Memory Spaces column
and select Add from context menu. This action opens the Add memory space dialog. Type the memory
address in the Address (HEX) field (HEX value can be set both with or without "0x" prefix), select available
Memory space from the drop-down menu and click Select. The memory space will be added to the list in the
left pane.

• To write data, double-click the cell in the view, type in data and press Enter or continue typing - when the
available amount of symbols is reached, the system will automatically write the data and move to the next
cell.

• To delete a memory space, select the space in the list, right-click on it and select Remove from context menu.

The Memory Spaces view remembers the list of added spaces for each running launch configuration (until the list is
cleared or debug session is terminated).

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 157

Reference

Registers view

The Registers view lists information about the registers in a selected stack frame. Values that have changed are
highlighted in the Registers view when your program stops. You can use the Registers view to look into register
details and change register values.

To display the Registers view, switch to the Debug perspective and click Window > Show View > Other... > Debug
> Registers on the menu.

You can change the positional numeral system in which the debugger displays register values. The following numeral
systems are supported:

• Default
• Decimal
• Hexadecimal
• Octal
• Binary

Note: Casting a register to a type requires the size of the register to match the size of the type, otherwise the cast
will fail. Therefore, if the type is a complex one (for example, structure, union), it should be declared first to avoid
padding done by compilers.

EmbSys Registers view

The Embedded Systems Registers view enables access to the peripheral registers of the target hardware.

• When a debug session is on, the EmbSys Registers view can read and display the actual values of the
selected registers. The displayed register values can be exported and imported to/from a text file.

• When not in a debug session, the EmbSys Registers panel provides the structured view of the peripheral
registers on the target device.

Note: S32 Debugger implements different mechanisms for Peripheral Registers and EmbSys Registers views
when accessing SoC memory mapped registers. Peripheral Registers view is a preferred option since S32 Debugger
is accessing these registers directly via the system bus, bypassing caches and MMU (if present in the core being
debugged).

The EmbSys Registers view is included in the Debug perspective by default. If the view was closed, reopen it from
the menu by selecting Window > Show View > Other > Debug > EmbSys Registers.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

158 NXP Semiconductors

Reference

The EmbSys Registers view presents the information about the peripheral registers in a tabular format. The Register
field displays the peripheral registers arranged in a hierarchy with the following levels (from top to bottom): a
category, a group of registers, a register, a bit (bit number). Any node in the hierarchy can be expanded or collapsed
with a double click.

The Description field provides the information about the object shown in the Register field.

The remaining fields are populated for the “register” nodes:

• Hex: Displays the value read from the register in the hexadecimal format.
• Bin: Displays the same register value in the binary format.
• Reset: Displays the reset value of the register in the hexadecimal format, for instance, 0x00000000. A mouse

cursor moved over the hex value displays a tooltip with the binary equivalent.

Note: A “zero” value is displayed if the reset value is either set to 0x00000000 or not defined for the register.
• Access: Displays access to the register (Read-only, Read-Write, Write-only).
• Address: Displays the register address in memory.

Some registers are displayed in the Register field with the “+” sign preceding the register name. These register names
are aliases of one register showing the same address in the Address field:

The toolbar of the EmbSys Registers view includes the following buttons (from left to right):

(EmbSysRegView
Project
Properties)

Click to open the configuration settings of the EmbSys Registers view in the
properties of a project selected in the Project Explorer.

(Copy selection to
clipboard)

Click to copy the Register, Hex, and Address fields from the selected row(s) to the
clipboard.

(Export selection
to file)

Click to export values of the selected or all peripheral registers to an XML file. Learn
more in Exporting peripheral register values.

(Import from file)
Click to import values from an XML file and write them to peripheral registers. Learn
more in Importing peripheral register values.

(Collapse All) Click to collapse all nodes in the EmbSys Registers view.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 159

Reference

(Minimize) Click to minimize the EmbSys Registers view.

(Maximize)
Click to maximize the EmbSys Registers view. All other views are minimized and
their icons appear at the right border of the main application window, each next to the
dedicated Restore icon.

Peripheral Registers view

The Peripheral Registers view provides the structured view of the peripheral registers on the target hardware. If
Arm® core registers are defined for the target device they are also present in this view.

The Peripheral Registers view is included in the Debug perspective by default. If the view was closed, reopen it
from the menu by selecting Window > Show View > Other > Debug > Peripheral Registers.

The Peripheral Registers view presents the information about the peripheral registers in a tabular format. The
Peripherals column displays the registers arranged in a hierarchy with the following levels (from top to bottom): a
group of registers, a peripheral, a cluster (if set), a register, a field (sequential bits within a register). Any node in the
hierarchy can be expanded or collapsed with a click.

The Description column provides the information about the object shown in the Peripherals column.

The remaining columns are populated for the “register” nodes:

• Reset: Displays the reset value of the register in the hexadecimal format, for instance, 0x00000000. A mouse
cursor moved over the hex value displays a tooltip with the binary equivalent.

Note: A “zero” value is displayed if the reset value is either set to 0x00000000 or not defined for the register.
• Access: Displays the register access type (Read-Only, Read-Write, Write-Only).
• Address: Displays the register address in memory.

The toolbar of the Peripheral Registers view includes the following buttons (from left to right):

(Show structure)
Toggle for the Peripheral Registers view to show peripheral registers combined in
categories.

(View Menu)

Click to open the menu customizing the layout of the Peripheral Registers view.
Options:

• Restore table layout: Sets the layout to its default.

(Minimize) Click to minimize the Peripheral Registers view.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

160 NXP Semiconductors

Reference

(Maximize)
Click to maximize the Peripheral Registers view. All other views are minimized and
their icons appear at the right border of the main application window, each next to the
dedicated Restore icon.

(Restore) Click to restore the Peripheral Registers view from minimal or maximal state.

The Peripheral Registers view context menu has the following options:

• Find: Click to open the Find Element dialog. Search is available by register name, description or address.
• Copy: Click to copy the selected registers text info to a system clipboard.
• Watch Register(s): Click to send the selected registers to appear in the Watch registers view.

Arm System Registers view

The Arm System Registers view provides the structured view of the Arm System registers (if available) of the target
hardware.

The Arm System Registers view is included in the Debug perspective by default. If the view was closed, reopen it
from the menu by selecting Window > Show View > Other > Debug > Arm System Registers.

The Arm System Registers view presents the information about the Arm System registers in a tabular format. The
Peripherals column displays the registers arranged in a hierarchy with the following levels (from top to bottom): a
group of registers, a peripheral, a cluster (if set), a register, a field (sequential bits within a register). Any node in the
hierarchy can be expanded or collapsed with a click.

The Description column provides the information about the object shown in the Registers column.

The remaining columns are populated for the “register” nodes:

• Reset: Displays the reset value of the register in the hexadecimal format, for instance, 0x00000000. A mouse
cursor moved over the hex value displays a tooltip with the binary equivalent.

Note: A “zero” value is displayed if the reset value is either set to 0x00000000 or not defined for the register.
• Access: Displays the register access type (Read-Only, Read-Write, Write-Only).

The toolbar of the Arm System Registers view includes the following buttons (from left to right):

(Show structure) Toggle for the Arm System Registers view to show registers combined in categories.

(View Menu)

Click to open the menu customizing the layout of the Arm System Registers view.
Options:

• Restore table layout: Sets the layout to its default.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 161

Reference

(Minimize) Click to minimize the Arm System Registers view.

(Maximize)
Click to maximize the Arm System Registers view. All other views are minimized
and their icons appear at the right border of the main application window, each next to
the dedicated Restore icon.

(Restore) Click to restore the Arm System Registers view from minimal or maximal state.

The Arm System Registers view context menu has the following options:

• Find: Click to open the Find Element dialog. Search is available by register name or description.
• Copy: Click to copy the selected registers text info to a system clipboard.
• Watch Register(s): Click to send the selected registers to appear in the Watch registers view.

Watch registers view

The Watch registers view enables access to the selected registers on the target device added from the Peripheral
Registers view or the Arm System Registers view.

The Watch registers view is included in the Debug perspective by default. If the view was closed, reopen it from the
menu by selecting Window > Show View > Other > Debug > Watch registers.

The Watch registers view presents the information about the selected registers in a tabular format. The Peripherals
column displays the registers arranged in a hierarchy with the following levels (from top to bottom): a group of
registers, a peripheral, a cluster (if set), a register, a field (sequential bits within a register). A minimal unit to be
watched is a register. Any node in the hierarchy can be expanded or collapsed with a double click.

The Description column provides the information about the object shown in the Peripherals column.

The remaining columns are populated for the “register” nodes:

• Hex: Displays the value read from the register in the hexadecimal format. If the register is not readable the
field shows the access info (write-only).

• Binary: Displays the same register value in the binary format. If the register is not readable the field shows
the access info (write-only).

• Address: Displays the register address in memory.

Note: For Arm System registers the field is empty.

The color indicates the access type:

• Black - Read-Only
• Green - Read-Write,

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

162 NXP Semiconductors

Reference

• Blue - Write-Only.

The italics font indicates the Read on demand state of a register.

The toolbar of the Watch registers view includes the following buttons (from left to right):

(Show structure)
Toggle for the Watch registers view to show peripheral registers combined in
categories.

(Import registers
from file)

Click to import registers from an XML file and write them to target registers. Learn
more in Importing registers values.

(Export registers
to file)

Click to export values of the selected registers to an XML file. Learn more in
Exporting registers values.

(View Menu)

Click to open the menu customizing the layout of the Watch registers view. Options:

• Restore table layout: Sets the layout to its default.
• Show Full Path: Displays registers in path mode (group/register).

(Minimize) Click to minimize the Watch registers view.

(Maximize)
Click to maximize the Watch registers view. All other views are minimized and
their icons appear at the right border of the main application window, each next to the
dedicated Restore icon.

(Restore) Click to restore the Watch registers view from minimal or maximal state.

The Watch registers view context menu has the following options:

• Find: Click to open the Find Element dialog. Search is available by register name, description or address (if
available for a register).

• Copy: Click to copy the selected registers text info to a system clipboard.
• Remove Register(s): Click to remove the selected registers from the Watch registers view.
• Import: Click to import registers from an XML file.
• Export: Click to export the selected registers values to an XML file.
• Read always: Click to enable reading of the selected registers.

Note: Registers with side effects (readAction) are always kept in the Read on demand state and can't be
reset to the Read always.

• Read on demand: Click to mark the selected registers be read only on demand.
• Read: Click to read values of the selected registers.

During debugging the Watch registers view can read, display and write the values of the registers.

Switching between the nodes in the Debug view also results in the loss of context in the Watch registers view. If you
switch from the thread of a running program to a different node such as the GDB client or other, the Watch registers
view stops reading the registers from the connected device. To restore the debug context, click the main() node of the
project.

The Watch registers view remembers the state and apply it to any other launch configuration with the same SVD
source.

Variables view

The Variables view shows all static variables for each process that you debug (global variables are displayed in
the Expression view). Use the view to observe changes in variable values as the program executes in the currently
selected stack frame.

To open the Variables view, click Window > Show View > Other... > Debug > Variables on the menu:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 163

Reference

The toolbar of the Variables view includes the following buttons (from left to right):

(Show Type
Names)

Toggle for the Variables view to show type names when the view is configured not to
show columns.

(Show Logical
Structure)

Toggle for the Variables view to show the logical structure of variables.

(Collapse All) Click to collapse all nodes in the Variables view.

(Open New
View)

Click to open one more Variables view next to the existing one.

(Pin to Debug
Context)

Click to pin the Variables view next to the Debug view.

(View Menu) Click to open the menu customizing the layout of the Variables view.

(Minimize) Click to minimize the Variables view.

(Maximize) Click to maximize the Variables view.

To configure the Variables view, click the View Menu toolbar button. Use the Layout menu commands to configure
the look of the Variables view:

• Vertical: Click to display the detail pane at the bottom of the view, aligning the parts of the view vertically.
The detail pane displays the detailed information about a selection.

• Horizontal: Click to display the detail pane at the right side of the view, aligning the parts of the view
horizontally.

• Automatic: Click for the view to set the layout automatically.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

164 NXP Semiconductors

Reference

• Variables View Only: Click to hide the detail pane.
• Show Columns: Toggle to show columns in the view.
• Select Columns: Click to open the Select Columns dialog box and select the columns to be displayed. This

option appears on the menu if the Show Columns option is toggled.

Intrinsics view

The Intrinsics view displays the GCC functions that are built into the S32 Design Studio compiler. These built-in
functions are referred to as intrinsic functions or intrinsics. If a C/C++ project includes the Standard S32DS toolchain,
the supported intrinsics can be used in that project’s code for optimization.

To open the Intrinsics view, click Window > Show View > Other on the menu. In the Show View dialog box,
expand the Other section and select Intrinsics. Click OK.

For the Intrinsics view to display data, click any project file or folder in the Project Explorer view. If the intrinsics
are supported in the project, the Intrinsics view displays the list of built-in functions.

To add an intrinsic to your code, drag and drop it from the Intrinsics view to a proper place in the opened source file.
This action adds the function call to the selected place in the file.

SDK Explorer view

The SDK Explorer view displays the structure of SDKs belonging to the active project.

To open the SDK Explorer view, click Window > Show View > Other. In the Show View dialog box, expand the
Other section and select SDK Explorer . Click OK .

Select any project file or folder in Project Explorer. The SDK Explorer displays the include folder for each SDK
attached to the project, with nested folders and header files inside:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 165

Reference

You can perform the following actions in the SDK Explorer view:

• To expand or collapse a folder, click the "arrow" button near the folder.
• To see all definitions and declarations of a header file (such as macros, functions, namespaces, enumerations,

and other), click the "arrow" button near the file. If a file does not display the "arrow" button, it does not
include any definitions and declarations.

• To see all files, definitions, and declarations that include a particular string pattern, type the string in the filter
box.

• To open a header file in the file editor, double-click it.
• To see a particular definition or declaration in the code, double-click it in the view. This action opens the

header file in the file editor and highlights the respective line.
• To hide from the view active macros, inactive macros, active functions, and inactive functions, toggle the

respective buttons on the top:

Note: Inactive macros and functions are those located inside the #if defined and #endif constructs
intended for a different type of a compiler. These sections are grayed out in the file editor.

• To add an SDK function to your code, drag and drop it from the SDK Explorer view to a proper place in the
opened source file. This action inserts the #include statement for the corresponding header file and adds
the function call to the selected place in the file.

Editor area

The editor area can be used to open text editors associated with different types of files. When you double-click
a source file in the Project Explorer view, the associated editor opens the selected file. The following elements
indicate modifications that took place in the file:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

166 NXP Semiconductors

Reference

1. Tabs in the editor area indicate the names of resources that are currently open for editing. An asterisk (*) indicates
that an editor has unsaved changes.

2. The Quick Diff feature displays color-coded indication for additions, deletions, or changes made to the contents of
a file.

3. The marker bar displays:

• Breakpoints (Auto, Hardware, Software, Disabled).
• Markers (bookmarks, warnings, tasks, indexers, errors).

4. Icons flag error, warning, task and bookmark markers. You can view extra information by placing the mouse
cursor over the marker.

Tips and Tricks:

• To open the list of all open editors and quickly switch between them, press Ctrl+E.
• You can open a file in the editor area by dragging it from the Project Explorer view and dropping it over the

editor area.
• To activate single-click opening for editors, use the Open mode options on the Window > Preferences >

General page. In single-click mode, a single-click on a file selects and immediately opens the file.
• Double-clicking on the marker bar sets or removes breakpoints.
• To move lines up and down in the editor, press Alt+Arrow Up and Alt+Arrow Down.
• To activate code completion, press Ctrl+Space.
• To activate Quick Diff, right-click the marker bar and select Show Quick Diff from the context menu.
• To configure Quick Diff to use a different color code, click Window > Preferences on the menu and go to

General > Editors > Text Editors > Quick Diff in the Preferences dialog box.
• When the mouse cursor is placed over a change in Quick Diff, a hover displays the original content, which

can be restored using the marker bar context menu.

Wizards

New SDK wizard

The New SDK wizard serves for adding a third-party SDK to the workspace or to a project directly.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 167

Reference

The following table describes the SDK properties:

Table 28: New SDK wizard properties

Property Description

Name The SDK name. Specify a valid name starting with a letter. Allowed characters: letters, numbers and
underscores.

Version The SDK version. Format: <major>.<minor>.<micro>.<qualifier>. “Major” is mandatory, other
parts are optional. Allowed characters: digits (all parts), Latin letters and underscores (“major” only).

Target
folder name

The SDK folder name in the project structure. After you attach the SDK to your project, the SDK
files appear in the Project Explorer in the specified folder. Leave this field blank to use the SDK
name for the project folder. Optional.

Description A brief description of the SDK. Optional.

Variable The environment variable that points the location of the SDK folder. By default, the variable is
generated automatically from Name and Version.

Location The path to the SDK folder stored in the variable. Click Change... to change the location of the SDK
folder. Specify the path or point a different variable holding the path.

SDK files The SDK files available in the SDK folder. Categories: Sources, Headers, Binaries, Resources and
Linker LD files.

In each category, click SDK files to be used in destination projects. These files get a green “cross”
mark.

• Files marked in the Select column will be linked to the destination project.
• Files marked in the Copy column will be copied to the destination project.

The Symbols tab allows you to define or suppress the compiler and preprocessor symbols.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

168 NXP Semiconductors

Reference

Project creation wizards

Project creation wizards create a specific type of C or C++ project based on a project template for the chosen type.
A project template contains factory settings and adds your project with default project files such as build scripts,
launch configurations, and base implementations specific for the target hardware, source language, and type of target
application (also known as build artifact).

A build artifact is the file produced as a result of a build. Each wizard sets the build artifact type based on the wizard
type. For example, the application wizard configures the build artifact as ARM32 Executable. The library wizard that
creates a project for a static library sets the build artifact as ARM32 Library.

Note: Changing the build artifact type after the project is created is not supported. Always use the proper project
creation wizard to create the desired project.

Factory settings defined by project template configure toolchains for building and compiling code and define
other metadata such as core preferences for the IDE. These settings include default configurations for the target
processor core, source language, and debugger. For example, instead of configuring make files for the target C or
C++ language, you can select the language in the project wizard, and the wizard will automatically fill MK files
with necessary settings at build time. Settings available in project properties are defined by the project template and
selected in the wizard.

The following project creation wizards are available:

• S32DS Application Project wizard - creates a project for a non-hosted C/C++ application.
• S32DS Library Project wizard - creates a project for a C/C++ non-hosted static library.
• S32DS Project from Example wizard - creates a project for based on a project example.

Wizards provide factory default settings and allow you to customize the settings by specifying project name, target
processor family and making other changes specific to the target application or processor.

Default settings will be used in the created project if you leave their values intact and proceed with the wizard
by clicking Next on its page. These settings can be further configured after creating the project by using project
properties, see section C/C++ Build Tool Settings.

S32DS Application Project wizard

The S32DS Application Project wizard assists you in creating a new application project.

The availability of processors and cores depends on the installed packages.

Projects for non-hosted applications use Arm binary interfaces that allow your application to be compiled for SoC
systems without an operating system on them. Such applications run standalone without using resources provided
by the operating system layer. By default, the project wizard provides a minimum set of startup files, allowing the
application to run on the target hardware without the OS layer.

General properties

The Create a S32 Design Studio Project page allows you to configure general properties of your project: the project
name, the location where you want the project files to be stored, and the target processor and core on which you want
the application to run.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 169

Reference

The following table describes the settings that you can configure on this page.

Table 29: S32DS Application Project wizard: General properties

Option Description

Project name The project name. Allowed characters: Latin letters (A-Z, a-z), digits (0-9),
underscores. Do not start a project name with a digit.

The project name is used at build time and must comply with standard C
identifiers, symbols that you use in variables, function names, type definitions,
and other namings in your application. If you create multiple projects within
the same workspace, make sure to give unique names to projects that you
include in this workspace.

Use default location This option enables you to use the default workspace to store the project. By
default, S32 Design Studio for S32 Platform stores project files in the current
workspace. This location is displayed in the Location field.

To specify a custom location, clear the check box and click Browse… to select
a new location.

Location The location where the project files will be stored.

If Use default location is selected, this field is inactive and displays the
default location. The Browse button is inactive.

Processors The project type specific to target processor family and MCU where you want
to use your application.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

170 NXP Semiconductors

Reference

Option Description

ToolChain Selection Details on the selected processor: core kind, core name, and GCC toolchain
that will be used to build the project.

Toolchain options can be further configured after creating the project, see the
Build Tool Settings section.

Description Brief information on the selected processor family or toolchain to be used.

Core customizations

The New S32DS Project for <processor> page allows you to customize the project properties so that the project
could be built properly for the selected processor and core. You can specify the programming language, the I/O to be
used, and the floating point support (hardware or software) to be used by the toolchain.

Note: The availability of properties depends on the selected processor. Some processors may not support certain
properties.

The following table describes the settings that you can configure on this wizard page.

Table 30: S32DS Application Project wizard: Core customization settings

Option Description

Project Name The name assigned to the project on the General properties page of the wizard.

Note: This name cannot be edited in-place. Click Back to specify a different name on
the General properties page.

Core The Arm® core used in the selected processor.

Note: This check box cannot be cleared. Click Back to select a different processor on
the General properties page.

RAM Start Address The RAM Start Address values for each core. The values depend on the selected RAM
Size.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 171

Reference

Option Description

RAM Size, KB Specify the RAM Size value: from 0 to 1024 with step 32. The minimum size is 192 KB.

Unused RAM, KB The Unused RAM value for the core. The value depends on the selected RAM Size.

Library The library to be linked to the application.

Options:

• EWL - Embedded Warrior Library.
• EWL Nano - a lightweight version of Embedded Warrior Library.
• NewLib - standard C/C++ library.
• NewLib Nano - a lightweight version of the NewLib library for minimalistic

embedded applications that can dramatically reduce the size of your application.

I/O Support This setting enables the semihosting support and configures I/O to print information to
the console. Options:

• No I/O - no printing will be done.
• Debugger Console - the output will be printed out to the console provided by the

debugger specified in the Debugger setting below.

FPU Support This setting enables GCC to build a project with the floating point support provided
either by the processor or by a software library.

The availability of options depends on the core used in the selected processor.

Options:

• Toolchain Default - generation of floating-point instructions is defined by the
FPU support in the selected processor.

• Software: No FPU (-mfloat-abi=soft) - causes GCC to generate output
containing library calls for floating-point operations.

• Hardware: -mfloat-abi=hard - allows generation of floating-point instructions
and uses FPU-specific calling conventions.

• Hardware: -mfloat-abi=softfp - allows the generation of code using hardware
floating-point instructions, but still uses the soft-float calling conventions.

• Toolchain Default (hard) - generation of floating-point instructions is defined
by the FPU support in the selected processor. If the FPU is enabled in the core,
floating-point instructions are generated by the core and the hard-float calling
conventions are used.

• None - forces GCC to skip use of the FPU.
• (not set)
• No Floating-Point
• Hardware Coprocessor
• Hardware Single, Software Double
• Software Emulation

Note: Find more information about Arm options in the GCC toolchain documentation on
the web.

Language This setting sets up the default compiler, linker, and preprocessor options for the
toolchain, and configures other project files, such as main, for the target language.

Note: The selected programming language defines the toolchain settings for the linker
and compiler that will be available in the properties for the created project. Selecting C
limits the toolchain options to this specific language. If you select C++, you will be able
to configure settings for the C and C++ compiler, linker, and preprocessor. The toolchain

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

172 NXP Semiconductors

Reference

Option Description

settings can be further configured after creating the project. For details, see section "C/C+
+ Build Tool Settings".

Options:

• C - sets up your project for the ANSI C-compliant startup code and initializes
global variables.

• C++ - sets up your project for the ANSI C++ startup code and performs the
global class object initialization.

SDKs This setting allows you to select an SDK to be added to the project. Click the search
button (...) to select an SDK from the list.

Note: The Select SDK window lists the SDKs available in S32 Design Studio for S32
Platform. If you do not see your SDK, add it on the SDK Management page. Find the
details in Adding an SDK.

Default: SDK is not selected.

Debugger The debugger client to be used. Options:

• S32 Debugger
• GDB PEMicro Debugging Interface
• Lauterbach T32 Debugging Interface
• GDB Remote C/C++ Application Debugger
• VDK Debugging Interface
• VLAB Simulator
• Segger Debugging Interface
• iSystem Debugging Interface
• IAR Debugging Interface

S32DS Library Project wizard

The S32DS Library Project wizard assists you in creating a new library project.

The availability of processors and cores depends on the installed packages.

Projects for libraries for non-hosted applications allow your library to be statically linked to application compiled
for SoC systems that do not have any operating system on them. Such applications run standalone without using
resources provided by operating system layer. Because there are no file system and operating system on the target
SoC system, libraries for non-hosted applications are loaded into SoC memory and are statically linked to the
standalone application.

General properties

The Create a S32 Design Studio Project page allows you to configure general properties of your project: the project
name, the location where you want the project files to be stored, and the target processor and core on which the
library will be linked by an embedded program.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 173

Reference

The following table describes the settings that you can configure on this page.

Table 31: S32DS Library Project wizard: General properties

Option Description

Project name The project name. Allowed characters: Latin letters (A-Z, a-z), digits (0-9),
underscores. Do not start a project name with a digit.

The project name is used at build time and must comply with standard C
identifiers, symbols that you use in variables, function names, type definitions,
and other namings in your library. If you create multiple projects within the
same workspace, make sure to give unique names to projects that you include
in this workspace.

Use default location This option enables you to use the default workspace to store the project. By
default, S32 Design Studio for S32 Platform stores project files in the current
workspace. This location is displayed in the Location field.

To specify a custom location, clear the check box and click Browse… to select
a new location.

Location The location where the project files will be stored.

If Use default location is selected, this field is inactive and displays the
default location. The Browse button is inactive.

Processors The project type specific to target processor family and MCU where you want
to use your library.

ToolChain Selection Details on the selected processor: core kind, core name, and GCC toolchain
that will be used to build the project.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

174 NXP Semiconductors

Reference

Option Description

Toolchain options can be further configured after creating the project, see the
Build Tool Settings section.

Description Brief information on the selected processor family or toolchain to be used.

Core customizations

The New S32DS Project for <processor> page allows you to customize the project properties so that the project
could be built properly for the selected processor and core. You can specify the programming language, the I/O to be
used, and the floating point support (hardware or software) to be used by the toolchain.

Note: The availability of properties depends on the selected processor. Some processors may not support certain
properties.

The following table describes the settings that you can configure on this page.

Table 32: S32DS Library Project wizard: Core customization settings

Option Description

Project Name The name assigned to the project on the General properties wizard page.

Note: This name cannot be edited in-place. Click Back to specify a different name on
the General properties page.

Core The Arm® core used in the selected processor.

Note: This check box cannot be cleared. Click Back to select a different processor on
the General properties page.

FPU Support This setting enables GCC to build a project with the floating point support provided
either by the processor or by a software library.

The availability of options depends on the core used in the selected processor.

Options :

• Toolchain Default - generation of floating-point instructions is defined by the
FPU support in the selected processor.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 175

Reference

Option Description

• Software: No FPU (-mfloat-abi=soft) - causes GCC to generate output
containing library calls for floating-point operations.

• Hardware: -mfloat-abi=hard - allows generation of floating-point instructions
and uses FPU-specific calling conventions.

• Hardware: -mfloat-abi=softfp - allows the generation of code using hardware
floating-point instructions, but still uses the soft-float calling conventions.

• Toolchain Default (hard) - generation of floating-point instructions is defined
by the FPU support in the selected processor. If the FPU is enabled in the core,
floating-point instructions are generated by the core and the hard-float calling
conventions are used.

• None - forces GCC to skip use of the FPU.

Note: Find more information about Arm options in the GCC toolchain documentation on
the web.

Language This setting sets up the default compiler, linker, and preprocessor options for the
toolchain and configures other project files, such as main, for the target language.

Note: The selected programming language defines the toolchain settings for the linker
and compiler that will be available in the properties for the created project. Selecting C
limits the toolchain options to this specific language. If you select C++, you will be able
to configure settings for the C and C++ compiler, linker, and preprocessor. The toolchain
settings can be further configured after creating the project. For details, see section "C/C+
+ Build Tool Settings".

Options:

• C - sets up your project for the ANSI C-compliant startup code and initializes
global variables.

• C++ - sets up your project for the ANSI C++ startup code and performs the
global class object initialization.

SDKs This setting allows you to select an SDK to be added to the project. Click the search
button (...) to select an SDK from the list.

Note: The Select SDK window lists the SDKs available in S32 Design Studio for S32
Platform. If you do not see your SDK, add it on the SDK Management page. Find the
details in Adding an SDK.

Default: SDK is not selected.

S32DS Project from Example wizard

The S32DS Project from Example wizard creates a new project on the basis of a project sample. The new project
includes all files of the sample project.

To launch the S32DS Project from Example wizard, click File > New > S32DS Project from Example on the
menu bar.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

176 NXP Semiconductors

Reference

UI control Description

Examples pane Displays sample projects arranged in sections.

The User Examples section is empty by default. This section is reserved for sample
projects created by the user. Find the details in Saving a project to User Examples.

Projects in the remaining sections are installed with S32 Design Studio for S32
Platform.

Description pane Displays the information about the project currently selected in the Examples pane.
This information may be missing.

Search box Serves for quick search in the Examples pane.

Project name field Automatically displays the name of the selected sample project. The displayed name
can be edited.

Note: The field is empty and cannot be edited until a sample project is selected in
the Examples pane.

Finish button Saves a copy of the selected project with the specified project name. The new project
is displayed in the workspace for editing and debugging.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 177

Reference

Migrate wizard

The Migrate wizard assists you in migrating projects to new SDK or toolchain available.

The availability of migrations depends on the installed packages.

The following table describes the settings that you can configure.

Table 33: Migrate wizard properties

Option Description

Migration filter Allows to sort out projects from the workspace with the selected migration available.
Options:

• <all>
• Migrate SDK for <processor> from [X.X.X] to [Y.Y.Y]
• Migrate toolchain armXX NXP GCC 6.3 to NXP GCC 9.2 for bareboard

Projects Shows the available projects depending on migration type selected.

Available migrations The availability of migrations depends on Projects selection (project type based) and
Migration filter selection.

Details Brief information on the selected migration to be performed.

Create backup Enable this option to create a backup of your project.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

178 NXP Semiconductors

Reference

Option Description

File The location where the project backup will be stored. Click Browse button to select
location and filename.

If Create backup checkbox is clear, this field is inactive. The Browse button and backup
properties selection are inactive.

Backup format Backup archive type selection. Options:

• Use zip format
• Use tar format

Compress the content Enable this option to compresses the contents in the archive that is created.

Backup linked
resources

Enable this option to backup project with all linked resources.

Preferences

Perspectives

To configure the behavior of perspectives in the workbench, click Window > Preferences on the menu. In the
Preferences dialog box, click General and Perspectives.

The Perspectives page allows you to define how perspectives will be opened in the workbench:

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 179

Reference

If the In the same window option is set, the selected perspective appears in the main window, hiding the previously
displayed perspective. If the In a new window option is set, a new window is created for each opened perspective.

The Available perspectives list displays all perspectives, both predefined and created by the user, that can be opened
in the workbench. Select a perspective from the list and manage it using the buttons located at the right border of the
dialog box:

• Make Default: Click to use the selected perspective by default.
• Revert: Click to restore the initial layout and configuration settings for the selected perspective. This action is

applicable to perspectives added by the user.
• Delete: Click to delete the selected perspective from the list. This action is applicable to perspectives added

by the user.

Available software sites

S32 Design Studio for S32 Platform provides a tool to help you find and install the latest product updates and
additional software packages. The lookup is performed across the sites that are specified in the user preferences.

To preview and edit the list of software sites, click Window > Preferences on the menu. In the Preferences dialog
box, click Install/Update and Available Software Sites.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

180 NXP Semiconductors

Reference

The right pane displays the list of software sites that are scanned for available updates automatically. You can manage
the software sites using the buttons located at the right border of the dialog box:

• Add: Click to add a new site. Specify a custom name of the site and the location - a URL, a local directory, or
a locally stored archive file.

• Edit: Click to modify the name and location of the selected site. To select a site, click it in the list. The
selected site is highlighted.

• Remove: Click to remove the selected site from the list.
• Reload: Click to load the information about available updates from the selected site.
• Enable/Disable: Click to flag the selected site, or to remove the flag from the selected site.
• Import: Click to add sites from the specified XML file.
• Export: Click to export flagged sites to an XML file.

SDK Management

The SDK Management page in Windows > Preferences > S32 Design Studio for S32 Platform allows you to
manage SDKs. SDK Management contains the list of all available SDKs except local ones, created using the SDKs
page in the project properties.

Note: Some columns may appear or disappear depending on defined fields in all SDKs available (e.g. the Core(s)
column appears only if some SDK has that field defined).

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 181

Reference

The following table lists options available on the SDK Management page. Some buttons can be disabled depending
on the selected SDK type.

Table 34: Preferences: SDK Management

Option Result

Add... Creates a new SDK.

Edit/show info... Modifies the properties of the existing SDK (only when the SDK is not attached to any
project) or displays the properties if the selected SDK is read-only.

Remove Removes the selected SDK.

Clone from git Clones the SDK content from Git. The repository must have the SDK descriptor (the
sources.xml file) in the root.

Reload Updates the SDK content according to the latest changes in the SDK descriptor.

Load... Adds the SDK using the XML descriptor.

Show Attached Shows the list of projects to which the SDK is attached.

Import... Imports the SDK from an archive file or from a directory.

Export... Exports the selected SDK to an archive file.

Import MCAL SDK Creates a new SDK on the basis of the MCAL SDK.

Show only latest
versions

Select this check box to see only the latest versions.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

182 NXP Semiconductors

Reference

Project properties

SDKs

The SDKs page of the project properties displays information about available SDKs that are compatible with the
project by the following criteria:

• supported compiler(s)
• supported language (C only or C/C++)
• supported architecture/core – if the software module is independent from peripherals and depends only on the

core type
• supported operating system
• supported target device (core) – if the software module uses some hardware modules then it could be used

only for a certain device (or core in case of a multi-core device).

Note: Some columns may appear or disappear depending on defined fields in all SDKs available (e.g. the Core(s)
column appears only if some SDK has that field defined).

If a given SDK is attached to a project build configuration, the mark is displayed in the respective column.

By default, the page displays SDKs that are attached or can be attached to the project. If you select the Show all
SDKs option, the incompatible SDKs may be displayed as well (if such exist in the workspace). The following marks
in the build configuration columns indicate the problem:

The toolchains of the project and SDK are incompatible

The processor or core of the project and SDK are incompatible

The languages of the project and SDK are incompatible

The project root folder contains the file with the name matching the SDK name

The SDK folder cannot be found (renamed or deleted)

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 183

Reference

The host operating system and SDK are incompatible

The project root folder contains the folder with the name matching the SDK name. The comparison is
case-insensitive.

The following buttons and options are available for managing SDKs in a project:

Table 35: Project properties: SDKs

Button/Option Result

Add... Creates a new local SDK. The SDK will be available only for the current project.

Edit/Show info... Modifies properties of the existing SDK (when the SDK is not attached to any project) or
displays the properties if the selected SDK is read-only.

Remove Removes the selected SDK.

Clone from git Clones the SDK content from Git. The repository must have the SDK descriptor (the
sources.xml file) in the root.

Reload Updates the SDK content according to the latest changes in the SDK descriptor.

Attach/Detach Attaches/detaches the SDK to/from the project and uses it in the specified build configuration.

Make global Makes the selected local SDK global. The SDK will be available in the SDK Management list.

Import... Imports the SDK from an archive file or from a directory.

Export... Exports the selected SDK to an archive file.

Show only latest
versions

Select this option to see only the latest version of each SDK.

Show all SDKs Select this option to see all global SDKs that cannot be attached to the project.

Perspectives

C/C++ perspective

The C/C++ perspective is used for designing C and C++ projects.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

184 NXP Semiconductors

Reference

• The Project Explorer view provides the hierarchical view of project resources.

• To open a source file for editing, double-click it in the Project Explorer view.
• Right-click any resource in the Project Explorer view to open the context menu that allows you to

perform operations such as copying, moving, creating new resources, comparing resources with each
other, or performing team operations.

• To quickly import files and folders to your project, drag them from the system folder to the Project
Explorer view.

• Similarly, to export files and folders, drag them from the Project Explorer view to the system folder.
• The Dashboard view provides quick access to some basic features and frequently used functions.
• The editor area enables you to open and modify project files. For details, see Editor area.
• The Outline view displays the outline of the file opened in the editor area.
• The Problems view lists the compilation errors and the files where these errors have occurred. Click an error

in the Problems view to open the associated file in the editor. The cursor and the highlighted text indicate the
line of code where the error has been encountered.

Debug perspective

The Debug perspective enables you to manage the debugging or running of a program. You can control the execution
of your program by setting breakpoints, suspending threads, stepping through the code, and examining the values of
variables.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 185

Reference

• The Debug view displays the hierarchy of debug instances and allows you to manage the debugging or
running of a program.

• The root node of the hierarchy is the process on the target on which you are debugging.
• The nested nodes below the root represent the threads in the program.
• If a thread is suspended, the stack frame appears in the nested nodes below the thread node.

• The editor area allows you to modify the contents of files. For more details, see Editor area.
• The Dashboard view provides quick access to some basic features and frequently used functions.
• The Variables view shows all static variables for each process that you debug. Use the view to observe

changes in the variables values as the program executes in the selected stack frame.
• The Disassembly view the loaded program as assembly language instructions mixed with source code for

comparison.
• The Console view displays the output of the process and allows you to provide keyboard input to the process.

There are numerous consoles that can be opened in the Console view. On the toolbar view, click the Display
Selected Console and Open Console buttons to see all consoles available to you.

VDK Debug perspective

The VDK Debug perspective becomes available after the Synopsys simulation tools are installed. This perspective
presents the user interface of the Synopsys VP Explorer tool.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

186 NXP Semiconductors

Reference

The Design Browser view displays the hierarchy of module instances and tracks the state of a running simulation.
The view communicates directly with the simulator when updating the states of modules, ports, and signals.
Whenever the simulation is suspended, the view displays the actual values of ports, signals, and variables in a tree
structure.

• The left pane of the view displays all module instances in the current simulation.
• The right pane of the view displays all members of the module instance selected in the left pane:

• Ports and exports
• Memories and registers
• Signals and other primitive channels
• Processes (SystemC methods and threads)
• Member variables
• Other SystemC objects
• Monitors that have been attached to the design

The Breakpoints view tracks the list of breakpoints set by the user:

• The State column allows you to enable or disable the selected breakpoint. The context menu opened on the
selected row offers options to manage the state of the selected breakpoint or all breakpoints.

• The Type column describes the type of the selected breakpoint. This type is also shown in the simulation
location of the status bar when the breakpoint is hit. The tooltip on the column header shows the summary of
all supported types of breakpoints.

• The Location column displays the full path of the object for which the breakpoint is defined. Global
breakpoints show "/" (slash) as the path. The location is also shown in the simulation location of the status bar
when the breakpoint is hit.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 187

Reference

• The Hit Count column displays the number of breakpoint hits since the creation of the breakpoint.
• The Ignore count column displays the number of remaining hits after which execution will be stopped. The

value can be adjusted. The value of zero is used by default and means that execution will stop next time the
breakpoint is hit.

• The TCL callback column displays the Tcl command that will be executed when the simulation is stopped
because of this breakpoint. The value can be entered and should be a valid Tcl expression. The default is no
Tcl command executed for the breakpoint.

The VP Disassembly view displays the program currently executed on a virtual prototype representing the
target processor. If the virtual prototype contains the model of the processor that has been instrumented, the VP
Disassembly view shows the instructions being executed, with the associated disassembled code and symbols, and
enables you to set breakpoints on the running program.

• The Address field indicates the value of the program counter in the selected core. The value is put in braces to
indicate that it depends on the register.

• The Core field indicates the currently selected core.
• In the BP (“breakpoint”) column, the green arrow indicates the program counter.
• The Symbol column displays software labels (if any).
• The Address column displays addresses of the instructions.
• The Instruction column displays the hexadecimal version of the instructions.
• The Disassembly column displays the disassembled instructions.
• The status bar at the bottom of the view displays the simulation time for the core and the current context

(process or thread) that runs on the core. The status of the core is shown by the icon at the right of the status
bar.

The Simulation Output view displays the output of the running simulation. You can copy, paste and find strings in
the output. By default, this view is cleared each time a new simulation is started. This behavior can be toggled off
using the Clear Simulation Output on simulation start option.

Git perspective

The Git perspective provides the interface to Git operations.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

188 NXP Semiconductors

Reference

The Git Repositories view displays the connected Git repository as a tree structure:

• The root node represents the repository itself. The node text indicates the name of the repository and its
location in the local file system.

• The Branches node serves for browsing and manipulating tags.
• The Tags node serves for browsing and manipulating tags and branches.
• The References node lists references other than branches and tags, most notably the "HEAD" and

"FETCH_HEAD" symbolic references.
• The Remotes node serves for browsing and manipulating remote configurations used for Fetch and Push.
• The Working Tree node displays the location and structure of the working directory in the local file system

(only in case of a development, or non-bare repository; this node is always a leaf for bare repositories).

The editor area allows you to modify the contents of files. For details, see Editor area.

The History view displays commits to the repository in the following panes:

• Commit Graph (upper pane): Displays the commit history in the reverse chronological order, with the newest
commit displayed on top.

• Revision Comment area (left pane): Displays the commit message and a textual Diff of the file or files in the
commit.

• Revision Detail area (right pane): Displays the table of files that were changed by the commit.

The Git Staging view displays the interface for staging and committing changes to the repository:

• Unstaged Changes pane: Displays the unstaged changes.
• Staged Changes pane: Displays the changes that have already been added (“staged”) to the Git index.
• Commit message editor: Allows you to edit the commit message.
• Commit and Commit and Push buttons: Commit the staged changes.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 189

Build configuration

Build configuration

Build Tool Settings
This section describes a collection of tool settings included in the build configuration. These tool settings are used
by S32 Design Studio for S32 Platform when building projects. The tools are supplied in the GCC toolchain that you
select when creating a new project.

To edit the tool settings, select a project in the Project Explorer and click Project > Properties on the main menu.
In the Properties dialog box, click C/C++ Build > Settings on the left pane.

The Tool Settings tab on the right pane displays the tools that are described in this documentation section. To open
the settings of a certain tool, click that tool in the tree view.

Cross Settings

The Cross Settings page displays the build configuration settings that apply to multiple or all tools in the toolchain.

The following table describes the cross settings available for application projects.

Table 36: Application Project Properties: Cross Settings

Setting Description

Prefix The toolchain prefix used to resolve names of the called tool.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

190 NXP Semiconductors

Reference

Setting Description

Default: arm-none-eabi-, aarch64-none-elf- or aarch64-linux-
gnu-.

Path The location of the toolchain. Options:

• ${S32DS_<device>_ARM32_TOOLCHAIN_DIR}

• ${S32DS_<device>_ARM64_TOOLCHAIN_DIR}

• ${S32DS_<device>_ARM64_LINUX_TOOLCHAIN_DIR}

• ${S32DS_<device>_ARM32_GNU_9_2_TOOLCHAIN_DIR}

• ${S32DS_<device>_ARM64_GNU_9_2_TOOLCHAIN_DIR}

• ${S32DS_<device>_ARM64_GNU_9_2_LINUX_TOOLCHAIN_DIR}

Note: The build variables used in paths are available in the Preferences dialog
box (section C/C++ > Build > Build Variables, the Show system variables
option enabled).

Suffix The toolchain suffix used to resolve names of the called tool. Blank by default.

C compiler The C compiler executable.

Default: gcc.

The full name is resolved by adding the toolchain prefix.

C++ compiler The C++ compiler executable.

Default: g++.

The full name is resolved by adding the toolchain prefix.

Hex/Bin converter The HEX/BIN converter tool that copies and translates object files.

Default: objcopy.

This tool is used by the Standard S32DS Create Flash Image virtual tool.

Listing generator The tool that displays information about object files.

Default: objdump.

This tool is used by the Standard S32DS Disassembler and Standard S32DS
Create Listing virtual tools.

Size command The tool that calculates (in bytes) the size of text, data and uninitialized sections in
the ELF file, and their total.

Default: size.

Build command The tool that automatically builds executable programs and libraries from the
project source code.

Default: make.

Remove command The tool and command parameters to remove the built executable programs,
libraries, and object files.

Default: rm -rf.

Create flash image Select to enable the creation of a flash image at build time.

The flash image is created from the built ELF file by the tool specified in the
Hex/Bin converter setting. The <project_name>.srec file appears in the
Project Explorer in the project's Debug folder. The SREC file includes binary

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 191

Reference

Setting Description

code in Motorola SREC text format that represents binary data as a hexadecimal
text in ASCII format. You can flash this file to the target MCU.

Enabling this option shows the Standard S32DS Create Flash Image tool in the list
of tools.

Create extended listing Select to enable the creation of extended listing at build time.

The file is generated at build time by the tool specified in the Listing generator
setting. The <project_name>.lst file appears in the Project Explorer in the
project's Debug folder. The LST file contains the disassembly of the built ELF file
and gives a bit more details on functions than the Standard S32DS Disassembler.

Enabling this option shows the Standard S32DS Create Listing tool in the list of
tools.

Print size Select to call the size tool after the project is built. The tool outputs details to the
Console view.

The following table describes the cross settings available for library projects.

Table 37: Library Project Properties: Cross Settings

Setting Description

Prefix The prefix used to call the tools. Default: arm-none-eabi-, aarch64-
none-elf- or aarch64-linux-gnu-.

Path The location of the toolchain. Options:

• ${S32DS_<device>_ARM32_TOOLCHAIN_DIR}

• ${S32DS_<device>_ARM64_TOOLCHAIN_DIR}

• ${S32DS_<device>_ARM64_LINUX_TOOLCHAIN_DIR}

• ${S32DS_<device>_ARM32_GNU_9_2_TOOLCHAIN_DIR}

• ${S32DS_<device>_ARM64_GNU_9_2_TOOLCHAIN_DIR}

• ${S32DS_<device>_ARM64_GNU_9_2_LINUX_TOOLCHAIN_DIR}

Suffix The suffix used to call the tools. Blank by default.

C compiler The C compiler executable.

Default: gcc.

The full name is resolved by adding the prefix.

C++ compiler The C++ compiler executable.

Default: g++.

The full name is resolved by adding the prefix.

Archiver The archiver tool.

Default: ar.

After you build a static library, the tool automatically archives the object file. The
archive file appears in the Project Explorer in the project's Archives folder.

Build command The tool that automatically builds executable programs and libraries from the
project source code.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

192 NXP Semiconductors

Reference

Setting Description

Default: make.

Remove command The tool and command parameters to remove built executable programs, libraries,
and object files.

Default: rm -rf.

Target Processor

The Target Processor page displays the build configuration settings that apply to the target processor specified in an
application project or in a library project.

In the following table, the Setting column lists the settings and the related GCC compiler options. If a setting has
the “Toolchain default” option, this stands for the default (“factory”) GCC configuration setting. The availability of
properties depends on the selected processor.

Table 38: Application and Library Project Properties: Target Processor

Setting Description

Other target flags Additional compiler options not included in the project properties. You can
specify any required options supported by the compiler. Consult the compiler
documentation.

Important: For this setting to take effect, specify “Toolchain default” in the
Target processor field.

Arm family The target Arm® processor. GCC uses this name to derive the target Arm®

architecture and the Arm® processor type to tune it for performance. Where
this option is used in conjunction with -march or -mtune, those options take
precedence over the appropriate part of this option.

By default, the core specified in the project creation wizard is selected.

Recommendations:

• Do not use options other than “cortex-m7”, “cortex-r52”, “cortex-m33”
and “cortex-m4”. Other cores, though displayed, are not supported by
the project creation wizard. If you select an unsupported core, you will
have to manually recreate the project structure, the startup code and other
metadata in the project.

• When you use the “Toolchain default” option, no core-specific options
are passed to the compiler. Using this option is not recommended as the
default option set may change without further notice.

Architecture

-march=name

The target Arm® architecture. GCC uses this name to determine what kind of
instructions it can emit when generating assembly code.

Target processor

-mcpu={cortex-a53,
cortex-a53+nofp}

The target processor that will execute the code. Options:

• Toolchain default: Compiles the code by using the default core that was
used to build GCC.

• cortex-a53: Compiles the code for Cortex-A53 with hardware support for
floating-point instructions that will be performed by the integrated FPU.

• cortex-a53+nofp: Compiles the code for Cortex-A53 with no support for
floating-point instructions.

Optimize The target host processor for which you want to run code optimizations.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 193

Reference

Setting Description

-mtune=name

Instruction set

-marm, -mthumb

The assembler instruction set for generating code that executes in the Arm or
Thumb state.

Options: Toolchain default, Thumb (-mthumb), Arm (-marm).

Thumb interwork

-mthumb-interwork

This option enables GCC to generate code that supports calls between the Arm
and Thumb instruction sets.

Endianness

-mlittle-endian

This setting enables you to generate code for a processor running in the little-
endian mode.

Options: Toolchain default, Little endian.

Default: Toolchain default.

Note: By default, GCC is configured to generate code for a processor running in
the little-endian mode.

Float ABI

-mfloat-abi={hard,
soft,softfp}

The floating-point application binary interface (ABI) that the GCC will use
when compiling the code. Notice that hard-float and soft-float ABIs are not link-
compatible; you must compile your entire program with the same ABI, and link
with a compatible set of libraries.

Options:

• Toolchain default: Compiles your code by using the default (specified in
the GCC) ABI for the target processor. The GCC will detect the floating-
point operations support based on the support for FPU in the selected
processor. On Cortex-A53 based processors, this defaults to -mfloat-
abi=hard so that the core is responsible for floating-point operations
and the FPU-specific calling conventions are used.

• Library (soft): Enables GCC to generate code with library calls so that
floating-point operations are emulated by the compiler and not the FPU on
the processor.

• Library with FP (softfp): Enables GCC to generate code with support for
hardware floating-point instructions provided by the processor while using
soft floating-point ABI calling conventions.

• FP instructions (hard): Enables GCC to generate code with support for
hardware floating-point instructions provided by the processor, and uses
the ABI calling convention specific to the FPU on the processor.

Default: Toolchain default.

FPU Type

-mfpu=name

The floating-point unit (FPU) or hardware emulation available on the target
processor.

This setting is only available if hardware or hardware emulated ABI option (FP
instructions (hard) or Library with FP (softfp) respectively) is selected in Float
ABI and is currently locked to the fpv5-sp-d16 architecture for handling floating-
point operations. This architecture includes support for FP registers that can be
used by your application as 32 single-precision floating point registers or as 16
double-precision floating point registers.

Options: Toolchain default, fpv5-sp-d16.

Default: Toolchain default. The GCC will select the floating-point instructions
based on the settings specified in the Architecture and Target processor settings.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

194 NXP Semiconductors

Reference

Setting Description

Unaligned access

-munaligned-access, -
mno-unaligned-access

This option enables or disables access to addresses not aligned to 16 or 32 bits. If
unaligned access is disabled, words in packed data structures are accessed a byte
at a time.

Options: Toolchain default, Enabled (-munaligned-access), Disabled (-mno-
unaligned-access)

Default: Toolchain default.

Note: By default, unaligned access is enabled on all Arm® architectures, except
for all pre-Arm®v6, all Arm®v6-M, and all Arm®v8-M.

Libraries support The standard library and the I/O mode to be used for the application. Options:

• none: (Not recommended) Do not link the standard C/C++ library and
disable support for console I/O.

• newlib_nano no I/O: Link the lightweight NewLib and disable
semihosting.

• newlib_nano Debugger Console I/O: Link the lightweight NewLib and
enable semihosting.

• newlib no I/O: Link the standard NewLib with system C/C++ functions
and disable semihosting.

• newlib Debugger Console I/O: Link the standard NewLib with system C/
C++ functions and use semihosting.

• ewl_c no I/O: Link the standard Embedded Warrior Library (EWL) and
disable semihosting.

• ewl_c Debugger Console: Link the standard EWL and enable
semihosting.

• ewl_nano_c no I/O: Link the lightweight EWL and disable semihosting.
• ewl_nano_c Debugger Console: Link the lightweight EWL and enable

semihosting.

Sysroot The logical root location of headers and libraries.

Standard S32DS C/C++ Compiler

This Standard S32DS C/C++ Compiler page displays the build configuration settings that apply to the set up the
Standard S32DS C/C++ Compiler tool .

Table 39: Application and Library Project Properties: Standard S32DS C/C++ Compiler

Setting Description

Command The command pattern for the ${COMMAND} variable. This variable is used in the
Command line pattern field (below). Default patterns:

• C compiler: ${cross_prefix}${cross_c}${cross_suffix}
• C++ compiler:

${cross_prefix}${cross_cpp}${cross_suffix}

The patterns use the build variables specified on the Cross Settings page.

All options This read-only field aggregates all flags specified across all pages inside the
compiler settings. The compiler will be called with these flags during the build
process.

Command line pattern The command line pattern to call the compiler.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 195

Reference

Setting Description

Default:

${COMMAND} ${FLAGS} ${OUTPUT_FLAG}
${OUTPUT_PREFIX}${OUTPUT} ${INPUTS}

Dialect

The Dialect page specifies the programming language standard and options to which the Standard S32DS C/C++
Compiler will conform.

Table 40: Application and Library Project Properties: Standard S32DS C/C++ Compiler > Dialect

Setting Description

Language standard The language standard to which the code should conform. The compiler accepts
all programs that follow the specified standard plus GNU extensions that do not
contradict it. Options:

• C language: ISO C90/ANSI C89 (-std=c90), ISO C99 (-std=c99), ISO
C11 (-std=c11), ISO C17 (-std=c17)

• C++ language: ISO C++98 (-std=c++98), ISO C++11 (-std=c++11), ISO
C++14 (-std=c++14), ISO C++17 (-std=c++17)

Default: no option selected (the factory GCC standard applies).

For more information, consult the GCC documentation at gcc.gnu.org.

Other dialect flags Additional dialect options. You can specify any language options supported by
GCC. Consult the GCC documentation.

Preprocessor

The Preprocessor page specifies the settings required by the GCC compiler for preprocessing source files.

Table 41: Application and Library Project Properties: Standard S32DS C/C++ Compiler >
Preprocessor

Setting Description

Do not search system
directories (-nostdinc)

This option instructs the compiler to not search the system locations for header
files. Only the locations specified on the Includes page will be searched.

Preprocess only (-E) This option instructs the compiler to preprocess source files without doing the
compilation step.

Note: Selecting this option causes the linker to throw an error at build time. The
linker expects an object file which is not created by the compiler.

Defined symbols (-D) The prioritized list of symbols defined as macros.

This option is similar to the #define directive but applies to all assembly-language
modules in a build target.

Undefined symbols (-U) The prioritized list of canceled symbols, both built-in and defined with the -D
option.

Do not search system C++
directories (#nostdinc++)

This option instructs the C++ compiler to not search the system locations for
header files.

This option is only available for C++ projects.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

196 NXP Semiconductors

http://gcc.gnu.org/c99status.html

Reference

Includes

The Includes page specifies header files to be used during compilation and the file paths to be searched for header
files.

Table 42: Application and Library Project Properties: Standard S32DS C/C++ Compiler > Includes

Setting Description

Include paths (-I) The prioritized list of directories to be searched for header files. These directories
are searched before the standard system include directories.

Default paths: "${ProjDirPath}/include"

Include files (-include) The prioritized list of header files to be included.

Optimization

The Optimization page specifies optimizations run by the Standard S32DS C/C++ Compiler tool during the
compilation of a program. Turning on optimization flags makes the C/C++ compiler attempt to improve the
performance and code size at the expense of the compilation time and the ability to debug the program.

Table 43: Application and Library Project Properties: Standard S32DS C/C++ Compiler >
Optimization

Setting Description

Optimization level The level of optimization assigned for the compiler. Options:

• None (-O0): Disables optimization. This option instructs the compiler to
generate unoptimized, linear assembly-language code. This reduces the
compilation time.

• Optimize (-O1): The compiler performs all target-independent (non-
parallelized) optimizations such as function inlining, omits all target-
specific optimizations, and generates linear assembly-language code.
Optimizing takes somewhat more time, and a lot more memory for a large
function.

• Optimize more (-O2): The compiler performs all optimizations, target-
independent and target-specific, and outputs optimized, non-linear,
parallelized assembly-language code. This option increases both the
compilation time and the performance of the generated code.

• Optimize most (-O3): The compiler performs all -O2 optimizations,
after which the low-level optimizer performs global-algorithm register
allocation. At this optimization level, the compiler generates code that is
usually faster than the code generated from -O2 optimizations.

• Optimize size (-Os): The compiler performs further optimizations
designed to reduce the code size. At this optimization level, the compiler
performs all -O2 optimizations that do not typically increase the code size.
The resulting binary file has a smaller executable code size, as opposed to
a faster execution speed.

Other optimization flags Additional optimization flags supported by GCC and not otherwise available on
this page. Consult the GCC documentation at gcc.gnu.org.

'char' is signed (--fsigned-
char)

This option instructs the compiler to treat char strings as signed char
strings.

'bitfield' is unsigned (-
funsigned-bitfields)

This option instructs the compiler to treat bit fields as unsigned.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 197

http://gcc.gnu.org

Reference

Setting Description

Function sections (-ffunction-
sections)

This option instructs the compiler to place each function into a separate section
in the binary artifact. Each function section will be given the name of the specific
function placed in the section.

Note: This option makes the assembler and linker create larger object and
executable files and work slower.

Data sections (-fdata-sections) This option instructs the compiler to place each data item into its own section in
the output file. The name of the data item determines the section's name in the
output file.

Note: This option makes the assembler and linker create larger object and
executable files and work slower.

No common uninitialized (-
fno-common)

This option instructs the compiler to place uninitialized global variables in the
data section of the object file rather than generating them as common blocks.

This has the effect that if the same variable is declared (without extern) in two
different compilations, you get a multiple-definition error when you link them.
In this case, you must compile with -fcommon instead. Compiling with -fno-
common is useful on targets for which it provides better performance, or if you
wish to verify that the program will work on other systems that always treat
uninitialized variable declarations this way.

Do not inline functions (-fno-
inline-functions)

This option instructs the compiler to not consider any functions for inlining, even
if they are not declared inline.

Assume freestanding
environment (-ffreestanding)

This option instructs the compiler to assert that compilation targets a freestanding
environment.

This implies the use of the Disable builtin option (below). A freestanding
environment is one in which the standard library may not exist, and the program
startup may not necessarily be at main.

Disable builtin (-fno-builtin) This option instructs the compiler to not recognize built-in functions that do not
begin with the __builtin_ as prefix.

Single precision constants (-
fsingle-precision-constant)

This option instructs the compiler to treat floating-point constants as single-
precision instead of implicitly converting them to double-precision constants.

Link-time optimizer (-flto) This option instructs the compiler to run the standard link-time optimizer.
When invoked with source code, it generates GIMPLE (one of GCC's internal
representations) and writes it to special ELF sections in the object file. When the
object files are linked together, all the function bodies are read from these ELF
sections and instantiated as if they had been part of the same translation unit.

Disable loop invariant move
(-fno-move-loop-invariants)

This option instructs the compiler to disable the loop invariant motion pass in the
RTL loop optimizer.

This option is available at optimization level “-O1”.

Debugging

The Debugging page specifies the debugging parameters to be used by the Standard S32DS C/C++ Compiler tool.
The specified parameters affect the debugging information that will be available in the resulting build target: ELF
executable file or A library file.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

198 NXP Semiconductors

Reference

Table 44: Application and Library Project Properties: Standard S32DS C/C++ Compiler > Debugging

Setting Description

Debug Level The debugging level assigned to the compiler. Options:

• None: Disables output of debugging information to the build artifact.
• Minimal (-g1): Enables the generation of minimum debugging

information. This includes descriptions of functions and external variables
and line number tables, but no information about local variables.

• Default (-g): Enables the generation of DWARF 1.x conforming
debugging information.

• Maximum (-g3): Enables the generation of extra debugging information
(such as all macro definitions) for the compiler to provide maximum
debugging support.

Other debugging flags Additional debugging flags supported by GCC and not otherwise available on this
page. Consult the GCC documentation at gcc.gnu.org.

Generate gcov information (-
ftest-coverage -fprofile-arcs)

This option tells the compiler to generate additional information (basically a
flow graph of the program) and to include additional code in the object files for
generating the extra profiling information. These additional files are placed in the
directory where the object file is located.

The gcov code-coverage utility can use these additional files to test coverage of
the program.

Debug format The debug information format to be used by the compiler when writing debug info
to the produced ELF file. Options: Toolchain default, gdb, stabs, stabs+, dwarf-2,
dwarf-3, dwarf-4.

Default: Toolchain default.

Warnings

The Warnings page specifies options used by the compiler to display warning messages during the compilation.
These options specify what types of warning messages will be output in the console during the compilation.

Table 45: Application and Library Project Properties: Standard S32DS C/C++ Compiler > Warnings

Setting Description

Check syntax only (-fsyntax-
only)

This option instructs the compiler to only check the code for syntax errors.

Pedantic (-pedantic) This option instructs the compiler to issue warnings when a program is rejected
because of forbidden extensions or non-conformance to ISO C and ISO C++
standards.

Not all non-ISO constructs get warnings. To learn more, consult the GCC
documentation at gcc.gnu.org.

Pedantic warnings as errors
(-pedantic-errors)

This option instructs the compiler to issue errors rather than warnings in cases
described in the Pedantic option (above).

Inhibit all warnings (-w) This option instructs the compiler to inhibit all warning messages.

All warnings (-Wall) This options enables a group of GCC warning options on the compiler.
This includes all the warnings about constructions that some users consider
questionable, and that are easy to avoid (or modify to prevent the warning), even

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 199

http://gcc.gnu.org
http://gcc.gnu.org

Reference

Setting Description

in conjunction with macros. This also enables some language-specific warnings.
To learn more, consult the GCC documentation at gcc.gnu.org.

Extra warnings (-Wextra) This option instructs the compiler to enable some extra GCC warning options
that are not enabled by All warnings (above). For details, consult the GCC
documentation at gcc.gnu.org.

Warnings as errors (-Werror) This option instructs the compiler to turn all warnings into hard errors.

The source code which triggers warnings will be rejected. The specifier for a
warning is appended.

Implicit conversions
warnings (-Wconversion)

This option instructs the compiler to issue warnings for implicit conversions that
may alter a value.

This includes conversions between real and integer, between signed and unsigned,
and conversions to smaller types. No warning will be issued for explicit casts like
abs ((int)x) and ui=(unsigned)-1, or if the value is not changed by the
conversion.

Warn on uninitialized
variables (-Wuninitialized)

This option instructs the compiler to issue a warning if an automatic variable is
used without first being initialized or if a variable may be clobbered by a setjmp
call.

Warn on various unused
elements (-Wunused)

This option instructs the compiler to issue warnings if constructs are unused.

Warn if padding is included
(-Wpadded)

This option instructs the compiler to issue a warning if padding is included in a
structure, either to align an element of the structure or to align the whole structure.

Warn if floats are compared
as equal (-Wfloat-equal)

This option instructs the compiler to issue warnings if floating-point values are
used in equality comparisons.

Warn if shadowed variable (-
Wshadow)

This option instructs the compiler to issue a warning whenever a local variable or
type declaration shadows another variable, parameter, type, or class member (in C
++), or whenever a built-in function is shadowed.

Note: In C++, the compiler warns if a local variable shadows an explicit typedef,
but not struct, or class, or enum.

Warn if pointer arithmetic (-
Wpointer-arith)

This option instructs the compiler to issue a warning about anything that depends
on the size of a function type or of void.

GNU C assigns these types a size of 1, for convenience in calculations with void
* pointers and pointers to functions.

Warn if suspicious logical ops
(-Wlogical-op)

This option instructs the compiler to issue warnings about suspicious uses of
logical operators in expressions.

This includes using logical operators in contexts where a bit-wise operator is
likely to be expected.

Warn if struct is returned (-
Wagreggate-return)

This option instructs the compiler to issue a warning if any functions that return
structures or unions are defined or called.

Warn on undeclared global
function (-Wmissing-
declaration)

This option instructs the compiler to issue a warning if a global function is defined
without a previous declaration.

Use this option to detect global functions that are not declared in header files.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

200 NXP Semiconductors

http://gcc.gnu.org
http://gcc.gnu.org

Reference

Setting Description

Other warning flags Additional command line options. Specify any options that control warning output
in GCC and not otherwise available on this page. Consult the GCC documentation
at gcc.gnu.org.

Miscellaneous

The Miscellaneous page specifies auxiliary compiler options not otherwise available on other pages of the Standard
S32DS C/C++ Compiler settings.

Table 46: Application and Library Project Properties: Standard S32DS C/C++ Compiler >
Miscellaneous

Setting Description

Other flags Additional command line options. Specify compiler options supported by GCC
and not otherwise available on this page. Consult the GCC documentation at
gcc.gnu.org.

Default flags: -c -fmessage-length=0.

Verbose (-v) This option enables verbose output during the compilation and instructs the
compiler to display detailed information about the exact sequence of commands
used to compile the program.

Note: S32 Design Studio supports output of error messages only. Warning
messages and other informational messages will not be output to the console.

Support ANSI programs (-
ansi)

This option configures the compiler to operate in strict ANSI mode. This option is
only available for the Standard S32DS C Compiler.

This option turns off certain features of GCC that are incompatible with ISO C90
(when compiling C code), or of standard C++ (when compiling C++ code), such
as the asm and typeof keywords, and predefined macros such as unix and
vax that identify the type of system you are using. It also enables the undesirable
and rarely used ISO trigraph feature. For the C compiler, it disables recognition of
C++ style “//” comments as well as the inline keyword.

The macro __STRICT_ANSI__ is predefined when this option is used. Some
header files may notice this macro and refrain from declaring certain functions or
defining certain macros that the ISO standard does not call for.

Functions that are normally built in but do not have semantics defined by ISO C
(such as alloca and ffs) are not built-in functions when this option is used.

Position Independent Code (-
fPIC)

This option instructs the compiler to generate position-independent code (PIC), if
supported by the target processor.

Save temporary files (--save-
temps)

This option instructs the compiler to save the result of preprocessing in a
temporary I file and the result of assembling in a S file. The compiler places the
files in the Debug folder of the project and names them based on the source file.

Generate assembler listing (-
Wa, -adhlns="$@.lst")

This option enables the compiler to output assembly listing to an LST file.

Assume aligned memory
references only (-mstrict-
align)

This option enables the compiler to access addresses not aligned to 16 or 32 bits.

Note: This setting applies to projects created for Cortex-A53.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 201

http://gcc.gnu.org
http://gcc.gnu.org

Reference

Standard S32DS C/C++ Linker

The Standard S32DS C/C++ Linker page displays the build configuration settings that apply to the C/C++ linker
tool.

Table 47: Application Project Properties: Standard S32DS C/C++ Linker

Setting Description

Command The command pattern for the ${COMMAND} variable. This variable is used in the
Command line pattern field (below). Default patterns:

• C linker: ${cross_prefix}${cross_c}${cross_suffix}
• C++ linker:

${cross_prefix}${cross_cpp}${cross_suffix}

The pattern uses the build variables specified on the Cross Settings page.

All options This read-only field shows all flags specified on all pages of the C/C++ linker tool
settings. The C/C++ linker will be called with these flags at build time.

Command line pattern The command line pattern to call the C/C++ linker tool.

Default:

${COMMAND} ${FLAGS} ${OUTPUT_FLAG}
${OUTPUT_PREFIX}${OUTPUT} ${INPUTS}

General

The General page specifies the general properties of the Standard S32DS C/C++ Linker tool.

Table 48: Application Project Properties: Standard S32DS C/C++ Linker > General

Setting Description

Do not use standard start files
(-nostartfiles)

This option configures the linker to not use the standard system startup files when
linking.

Do not use default libraries (-
nodefaultlibs)

This option configures the linker to not use the standard system libraries (such as
newlib) when linking. Only the customer-specified libraries can be passed to the
linker.

No startup or default libs (-
nostdlib)

This option configures the linker to not use the standard system startup files and
libraries when linking. Only the customer-specified libraries can be passed to the
linker.

Omit all symbols information
(-s)

This option configures the linker to remove all symbol table and relocation table
information from the executable.

No shared libraries (-static) This option prevents linking with the shared libraries. This option makes sense on
systems that support dynamic linking.

Note: The current version of S32 Design Studio supports linking with the static
libraries only.

Script files (-T) The linker script.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

202 NXP Semiconductors

Reference

Libraries

The Libraries page specifies custom libraries and their locations to be used by the Standard S32DS C/C++ Linker
tool during compilation.

Table 49: Application and Library Project Properties: Standard S32DS Assembler > Libraries

Setting Description

Libraries (-l) The custom libraries to be linked to the application. The libraries will be linked in
the top-down order they follow in the list.

Library search path (-L) The file paths where the linker looks for custom libraries specified in the
Libraries (-l) field. The linker searches the paths in the order they follow in the
list.

Miscellaneous

The Miscellaneous page specifies additional linker-specific flags and options not directly related to linking.

Table 50: Application Project Properties: Standard S32DS C/C++ Linker > Miscellaneous

Settings Description

Linker flags Additional command line options (flags). You can specify any required options
supported by the GNU linker and not otherwise available on this page. Consult the
documentation at the GNU Binutils site.

Other options (-Xlinker
[option])

System-specific linker options that GCC does not recognize. You can specify any
options supported by the GNU linker and not otherwise available on this page.

To specify options that take their arguments after the equal sign, specify the
option and its argument as a single item. For example, to compress the debug
section, add --compress-debug-sections=zlib.

To specify options that take arguments after the space, add the option first, and
then add the argument as an item that follows the option in the list. For example,
to specify that armelfd emulation mode to be used, add -m as a single item, and
then add armelfd as the item that follows.

Other objects The prioritized list of object file paths to be used when linking. The added paths
are stores in the {application}.args file located in the Debug folder of the
project.

If you add a relative path that starts with a period, put the path string in quotes.

Generate map The name of the MAP file to be generated by the linker. The generated MAP file
lists the resource data in the ELF file. The MAP file is located in the Debug folder
of the project structure.

To instruct the linker to not generate the MAP file but print the resource
information to the console, leave this setting blank.

Default: $ {BuildArtifactFileBaseName}.map

Cross reference (-Xlinker --
cref)

This option instructs the linker to print the cross reference table. If the Generate
map setting (above) specifies the file name, the table is printed to the specified
MAP file. Otherwise, the table is printed to the console.

This cross reference table includes the “symbol - files” pairs. The symbols are
sorted in alphabetical order, each followed by the file paths where this symbol is
defined.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 203

https://sourceware.org/binutils/docs/ld/Options.html

Reference

Settings Description

Print link map (-Xlinker --
printf-map)

This option instructs the linker to print the resource map to the console if the
Generate map setting (above) is blank.

If the Generate map setting specifies the MAP file name, the linker ignores this
option and prints the resource information to the MAP file.

Remove unused sections (-
Xlinker --gc-sections)

This option removes unused sections of code and data from the binary artifact.

Print removed sections (-
Xlinker --print-gc-sections)

This option instructs the linker to print the removed sections to the Console view.

This option makes sense if the Remove unused sections option (above) is
enabled.

Support print float format
for newlib_nano library (-
u_printf_float)

This option enables printing of floating-point formatted numbers to the console.
This option assumes that semihosting is enabled and the system write function is
provided by the debugger.

This option is grayed out by default. To make it available, set Library support to
newlib_nano Debugger Console on the Target processor page.

When enabled, this option increases the heap and stack size.

Support scan float format
for newlib_nano library (-
u_printf_float)

This option enables scanning of floating-point formatted numbers from the
console. This option assumes that semihosting is enabled and the system read
function is provided by the debugger.

This option is grayed out by default. To make it available, set Library support to
newlib_nano Debugger Console on the Target processor page.

When enabled, this option increases the heap and stack size.

EWL print formats Not used in the current version of the product.

This option specifies the print format for numbers. Options: none, int, int_FP,
int_LL_FP.

Default: none.

This option is grayed out by default. To make it available, set Library support
to ewl_nano_c Debugger Console/newlib_nano_c++ Debugger Console on the
Target processor page.

EWL scan formats Not used in the current version of the product.

This option specifies the scan format for numbers. Options: none, int, int_FP,
int_LL_FP.

Default: none.

This option is grayed out by default. To make it available, set Library support
to ewl_nano_c Debugger Console/newlib_nano_c++ Debugger Console on the
Target processor page.

Shared Library Settings

The properties on the Shared Library Settings page are not supported by the current version of S32 Design Studio.

Link Order

The Link Order page specifies the order in which input files are passed to the linker.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

204 NXP Semiconductors

Reference

Table 51: Application Project Properties: Standard S32DS C/C++ Linker > Link Order

Setting Description

Customize linker input order This option enables you to reorder files in the list (below).

Link Order The prioritized list of files that are passed to the linker as inputs.

Standard S32DS Assembler

The Standard S32DS Assembler page displays the build configuration settings that apply to the GNU assembler
tool.

Table 52: Application and Library Project Properties: Standard S32DS Assembler

Setting Description

Command The command pattern for the ${COMMAND} variable. This variable is used in the
Command line pattern field (below).

Default: ${cross_prefix}${cross_c}${cross_suffix}

The pattern uses the build variables specified on the Cross Settings page.

All options This read-only field shows all flags specified on all pages of the assembler tool
settings. The assembler will be called with these flags at build time.

Command line pattern The command line pattern to call the assembler tool.

Default:

${COMMAND} ${FLAGS} ${OUTPUT_FLAG}
${OUTPUT_PREFIX}${OUTPUT} ${INPUTS}

General

The General page specifies the general properties used by the Standard S32DS assembler tool.

Table 53: Application and Library Project Properties: Standard S32DS Assembler > General

Setting Description

Assembler flags Additional command line options supported by the GNU assembler and not
otherwise available on this page. Consult the GNU documentation at GNU
Binutils.

Default flags: -c (runs the assembler without linking).

Include paths (-I) The prioritized list of paths for include files lookup.

Default: "${ProjDirPath}/include" for applications; no path for libraries.

Suppress warnings (-W) This option suppresses output of assembler-generated warning messages to the
console.

Announce version (-v) This option enables the assembler tool to show extended information about
the assembly progress, including the GCC version, variables being used, and
informational messages returned while assembling the code.

Preprocessor

The Preprocessor page configures the assembly preprocessor that is run on each S file before assembling it.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 205

https://sourceware.org/binutils/docs/as/index.html
https://sourceware.org/binutils/docs/as/index.html

Reference

Table 54: Application and Library Project Properties: Standard S32DS Assembler > Preprocessor

Setting Description

Use preprocessor This option enables the preprocessor.

Do not search system
directories (-nostdinc)

This option configures the preprocessor to not search the system locations for
header files. Only the locations specified on the General page will be searched.

Preprocess only (-E) This option tells the preprocessor to handle source files and stop. The compiler
will not be run.

Note: Enabling this option will cause the linker to throw an error at build time.
This happens because the linker expects an object file which is not created
because no compilation is done.

Symbols

The Symbols page defines the assembly symbols for the Standard S32DS Assembler tool.

Table 55: Application and Library Project Properties: Standard S32DS Assembler > Symbols

Setting Description

Defined symbols (-D) The prioritized list of substitution strings that the assembler applies to all
assembly-language modules in the build target.

Note: The -D token is added automatically to each string that you enter. For
example, entering “opt1 x” results in the “-Dopt1 x” list entry.

Undefined symbols (-U) The list of the built-in assembler symbols to be suppressed.

Debugging

The Debugging page specifies the debugging options used by the Standard S32DS Assembler tool.

Table 56: Application and Library Project Properties: Standard S32DS Assembler > Debugging

Setting Description

Debug Level The debugging level assigned to the assembler. Options:

• None: Disables output of debugging information to the build artifact.
• Minimal (-g1): Enables the generation of minimum debugging

information. This includes descriptions of functions and external variables
and line number tables, but no information about local variables.

• Default (-g): Enables the generation of DWARF 1.x conforming
debugging information.

• Maximum (-g3): Enables the generation of extra debugging information
for the compiler to provide maximum debugging support.

Other debugging flags Additional debugging flags supported by the GNU assembler and not otherwise
available on this page.

Standard S32DS Archiver

The Standard S32DS Archiver page displays the build configuration settings that apply to the archiver tool. This
page is only available for library projects.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

206 NXP Semiconductors

Reference

Table 57: Library Project Properties: Standard S32DS Archiver

Setting Description

Command The command pattern for the ${COMMAND} variable. This variable is used in the
Command line pattern field (below).

Default: ${cross_prefix}${cross_ar}${cross_suffix}

The pattern uses the build variables specified on the Cross Settings page.

All options This read-only field shows all flags specified on the General page of the archiver
tool settings. The archiver tool will be called with these flags.

Default flags: -r

Command line pattern The command line pattern to call the archiver tool.

Default:

${COMMAND} ${FLAGS} ${OUTPUT_FLAG}
${OUTPUT_PREFIX}${OUTPUT} ${INPUTS}

General

The General page specifies the general properties used by the Standard S32DS Archiver virtual tool.

Table 58: Library Project Properties: Standard S32DS Archiver > General

Setting Description

Archiver flags Additional archiver tool options not included in the project properties. You can
specify any required options supported by the archiver tool. Consult the GCC
documentation at gcc.gnu.org.

Default: -r (add and replace).

Standard S32DS Create Flash Image

The Standard S32DS Create Flash Image page displays the build configuration settings that apply to the Standard
S32DS Create Flash Image virtual tool. This tool calls the HEX/BIN converter tool to create a flash image from an
application's executable.

This page is only available for application projects. To make this page available, enable the Create flash image
option on the Cross Settings page.

Table 59: Application Project Properties: Standard S32DS Create Flash Image

Setting Description

Command The command pattern for the ${COMMAND} variable. This variable is used in the
Command line pattern field (below).

Default: ${cross_prefix}${cross_objcopy}${cross_suffix}

The pattern uses the build variables specified on the Cross Settings page.

All options This read-only field shows all flags specified on the General page of the Standard
S32DS Create Flash Image tool settings. The HEX/BIN converter tool will be
called with these flags.

Default flags: -O srec $(EXECUTABLES)

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 207

http://gcc.gnu.org

Reference

Setting Description

Command line pattern The command line pattern to run the HEX/BIN converter tool.

Default: ${COMMAND} ${FLAGS} ${OUTPUT_FLAG}
${OUTPUT_PREFIX}${OUTPUT}

General

The General page specifies the general properties of the Standard S32DS Create Flash Image virtual tool. This tool
calls the HEX/BIN converter tool to generate an image file in the selected binary format from the produced binary
ELF artifact.

Table 60: Application Project Properties: Standard S32DS Create Flash Image > General

Setting Description

Output file format (#O) The binary format of the flash image. Options: Intel HEX, Motorola S-record,
Motorola S-record (symbols), RAW binary.

The generated image file is added to the Debug folder of the project. The file
name matches the project name, the file extension depends on the selected format
and can be .hex (Intel HEX), .srec (Motorola S-record), .symbolsrec or
.bin.

Default: Motorola S-record.

Section: -j .text This option configures the HEX/BIN converter tool to include only the TEXT
section of the ELF file into the flash image. Other file sections will not be
included unless specified explicitly in the Other sections (-j) list.

Section: -j .data This option configures the HEX/BIN converter tool to include only the DATA
section of the ELF file into the flash image. Other file sections will not be
included unless specified explicitly in the Other sections (-j) list.

Other sections (-j) Specify other sections of the ELF file to be included in the flash image file.

Note: To add both the TEXT section and the DATA section to the image, select
any of the respective options above and add the other file section here.

Other flags Additional flags supported by the HEX/BIN converter tool and not otherwise
available on this page. Consult the GCC documentation at gcc.gnu.org.

To specify additional flags, use the following pattern:

--set-section-flags sectionpattern=flags

Example: --set-section-flags .text=alloc

Standard S32DS Create Listing

The Standard S32DS Create Listing page displays the build configuration settings that apply to the Standard S32DS
Create Listing virtual tool. This tool calls the listing generator tool to disassemble the application's ELF binary and to
generate the disassembly listing for the build target of the current project. The generated .lst file with the project
name can be found in the Debug folder of the project.

This page is only available for application projects. To make this page available, enable the Create extended listing
option on the Cross Settings page.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

208 NXP Semiconductors

http://gcc.gnu.org

Reference

Table 61: Application Project Properties: Standard S32DS Create Listing

Setting Description

Command The command pattern for the ${COMMAND} variable. This variable is used in the
Command line pattern field (below).

Default: ${cross_prefix}${cross_objdump}${cross_suffix}

The pattern uses the build variables specified on the Cross Settings page.

All options This read-only field shows all flags specified on the General page of the Standard
S32DS Create Listing tool settings. The listing generator tool will be called with
these flags.

Default flags: --source --all-headers --demangle --line-
numbers --wide $(EXECUTABLES)

Command line pattern The command line pattern to run the listing generator tool.

Default: ${COMMAND} ${FLAGS} ${OUTPUT_FLAG}
${OUTPUT_PREFIX}${OUTPUT}

General

The General page configures the general properties of the Standard S32DS Create Listing virtual tool. The tool calls
the listing generator tool to generate the LST file with a disassembly of the produced binary artifact.

The following flags configure the listing generator tool to include particular information in the generated disassembly
file.

Table 62: Application Project Properties: Standard S32DS Create Listing > General

Setting Description

Display source (--source|-S) Includes the source code intermixed with disassembly.

Display all headers (--all-
headers|-x)

Shows all available header information, including the symbol table and relocation
entries.

Demangle names (--
demangle|-C)

Makes the disassembled function names more user-friendly and legible by
decoding mangling styles used by the compiler.

Display debugging info (--
debugging|-g)

Includes debugging information obtained from the artifact file.

Note: For the application's ELF file to contain debugging information, configure
the compiler to use the STABS or DWARF format. You can do it on the
Debugging page of the Standard S32DS C/C++ Compiler tool settings.

Disassemble (--disassemble|-
d)

Includes assembler mnemonics for the machine instructions from the object file.
The tool disassembles only those sections in the ELF file that are expected to
contain instructions.

Display file headers (--file-
headers|-f)

Includes summary information from the overall header of each of the object files.

Display line numbers (--line-
numbers|-l)

Includes the file name and path, the line numbers corresponding to the object code
or relocation entries.

This option requires the Disassemble (--disassemble|-d) or Display relocation
info (--reloc|-r) option to be enabled.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 209

Reference

Setting Description

Display relocation info (--
reloc|-r)

Includes entries from the relocation table.

Note: To add disassembly information to the output relocation data, enable the
Disassemble (--disassemble|-d) option.

Display symbols (--syms|-t) Includes entries from the symbol table.

Wide lines (--wide|-w) Formats lines for output devices that have more than 80 columns. Use this option
to avoid truncation of symbol names.

Other flags Additional options supported by the listing generator (objdump) tool in GCC
and not otherwise available on this page. Consult the GCC documentation at
gcc.gnu.org.

Standard S32DS Print Size

The Standard S32DS Print Size page displays the build configuration settings that apply to the size tool. This tool
prints the size of the produced application.

This page is only available for application projects.

Table 63: Application Project Properties: Standard S32DS Print Size

Setting Description

Command The command pattern for the ${COMMAND} variable. This variable is used in the
Command line pattern field (below).

Default: ${cross_prefix}${cross_size}${cross_suffix}

The pattern uses the build variables specified on the Cross Settings page.

All options This read-only field shows all flags specified on the General page of the size tool
settings. The tool will be called with these flags.

Default flags: --format=berkeley $(EXECUTABLES)

Command line pattern The command line pattern to run the size tool.

Default: ${COMMAND} ${FLAGS}

General

The General page configures the general properties of the size tool. The tool prints the size of the built application.

Table 64: Application Project Properties: Standard S32DS Print Size > General

Setting Description

Size format The output format. Options: Berkeley, SysV.

Default: Berkeley.

Hex Enables the tool to show the size of each section in hexadecimal format.

Default: disabled (decimal format is used).

Show totals Enables the tool to show totals of all objects listed. This option applies to the
Berkeley output format only.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

210 NXP Semiconductors

http://gcc.gnu.org

Reference

Setting Description

Other flags Additional flags supported by the size tool in GCC and not otherwise available on
this page. Consult the GCC documentation at gcc.gnu.org.

Standard S32DS C/C++ Preprocessor

The Standard S32DS C/C++ Preprocessor page describes the build configuration settings that apply to the
preprocessor tool.

Note: When you build a project, this tool is not called. Use it at any time as a standalone tool to preprocess the
selected source files and to preview the output. Find the details in topic Preprocessing source files.

Table 65: Application Project and Library Properties: Standard S32DS C/C++ Preprocessor

Setting Description

Command The command pattern for the ${COMMAND} variable. This variable is used in the
Command line pattern field (below). Default patterns:

• C preprocessor:
${cross_prefix}${cross_c}${cross_suffix}

• C++ preprocessor:
${cross_prefix}${cross_cpp}${cross_suffix}

The pattern uses the build variables specified on the Cross Settings page.

All options This read-only field shows all flags specified on the Settings page of the Standard
S32DS C/C++ preprocessor tool settings. The preprocessor will be called with
these flags.

Default flags: -E

Command line pattern The command line pattern to call the preprocessor tool.

Default: ${COMMAND} ${FLAGS} ${INPUTS}

Settings

The Settings page configures the general properties of the Standard S32DS C/C++ Preprocessor virtual tools. These
tools perform preprocessing of the selected C or C++ source files without building the project.

Table 66: Application Project and Library Properties: Standard S32DS C/C++ Preprocessor >
Settings

Setting Description

Handle Directives Only
(fdirectives-only)

Enables preprocessing of directives such as #define, #ifdef, and #error
without expanding macros.

Note: The -E flag automatically enabled in the command line of the preprocessor
limits preprocessing to handling only the compiler directives. Expansion of
macros and conversion of trigraphs are not performed.

Print Header File Names (-H) Enables the preprocessor to scan include directories and output name of every
header file included in your code. The output is redirected to the console.

Standard S32DS Disassembler

The Standard S32DS Disassembler page describes the build configuration settings that apply to the disassembler
tool. This tool calls the listing generator tool to generate disassembly of a binary or source file.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 211

http://gcc.gnu.org

Reference

Note: When you build a project, the disassembler tool is not called. Use it at any time as a standalone tool to generate
the disassembly listings for the selected binary and source files and to preview the output. Find the details in topic
Disassembling source files.

Table 67: Application Project and Library Properties: Standard S32DS Disassembler

Setting Description

Command The command pattern for the ${COMMAND} variable. This variable is used in the
Command line pattern field (below).

Default: ${cross_prefix}${cross_objdump}${cross_suffix}

The pattern uses the build variables specified on the Cross Settings page.

All options This read-only field shows all flags specified for the Standard S32DS
Disassembler tool on the Settings page. The disassembler will be called with
these flags.

Default flags: -d -S -x

Command line pattern The command line pattern to call the listing generator tool.

Default:

${COMMAND} ${FLAGS} ${INPUTS}

Settings

The Settings page configures the general properties of the Standard S32DS Disassembler virtual tool. This tool
generates and outputs the disassembly listing for any selected binary and C/C++ source files without building the
project.

The following flags configure the tool to include particular information in the generated disassembly output.

Table 68: Application Project and Library Properties: Standard S32DS Disassembler > Settings

Setting Description

Disassemble All Section
Content (including debug
information) (-D)

This option configures the tool to disassemble across all sections of the file. The
tool decodes pieces of data found in code sections as if they were instructions.

Disassemble Executable
Section Content (-d)

This option configures the tool to show the assembler mnemonics for machine
instructions in sections that are known to contain instructions. Other sections are
skipped.

Intermix Source Code With
Disassembly (-S)

This option configures the tool to add the source code to the disassembled code
where possible.

Display All Header Content (-
x)

This option configures the tool to show full information about headers, including
symbol table and relocation entries.

Display Archive Header
Information (-a)

This option configures the tool to extract information from the header of the A
archive that wraps the O file of your library. Additionally, this option enables the
tool to display the format of O files contained within the archive.

This option can be configured when option Display All Header Content (-x) is
not selected (see above).

Display Overall File Header
Content (-f)

This option configures the tool to extract information from the overall header of
the file.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

212 NXP Semiconductors

Reference

Setting Description

This option can be configured when option Display All Header Content (-x) is
not selected (see above).

Display Object Format
Specific File Header Contents
(-p)

This option configures the tool to output information specific to the header format
of the file being disassembled. Availability of this information depends on the file
format. Some formats may not contain this information, and no detail is output in
the disassembly.

This option can be configured when option Display All Header Content (-x) is
not selected (see above).

Display Section Header
Content (-h)

This option configures the tool to show file sections such as .TEXT, .DATA in the
disassembly.

This option can be configured when option Display All Header Content (-x) is
not selected (see above).

Display Full Section Content
(-s)

This option configures the tool to show all data contained within file sections,
including zero data in empty sections.

Display Debug Information (-
g)

This option configures the tool to obtain debugging information stored in the
artifact file and print it out using a C-like syntax.

The tool parses STABS and IEEE debugging format information stored in the
produced file. If neither of these formats are found in the ELF file, the tool will
attempt to print DWARF information available in the file.

Note: If you want the ELF file of your application to contain debugging
information, make sure to configure the compiler to use STABS or DWARF
formats. You can specify the format on the Debugging page under of the Standard
S32DS C/C++ Compiler settings.

Display Debug Information
Using ctag Style (-e)

This option configures the tool to display information about the TAG file created
by the ctags tool. Output may contain information from the disassembler tool
itself.

Display STABS Information
(-G)

This option configures the tool to display debugging contents of the .STABS
section in the file being disassembled.

Display DWARF Information
(-W)

This option configures the tool to display debugging contents of debug sections
such as .DEBUG_INFO, .DEBUG_FRAME, if present in the file being
disassembled.

Display Symbol Table
Content (-t)

This option configures the tool to show entries from the symbol table.

Display Dynamic Symbol
Table Content (-T)

This option configures the tool to show entries from the dynamic table of symbols
(.DYNSYM) that are added to the ELF file at runtime.

Display Relocation Entries (-
r)

This option configures the tool to show entries from the relocation table created
by assembler.

Display Dynamic Relocation
Entries (-R)

This option configures the tool to show entries from the dynamic relocation table
created by assembler.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 213

Folders and files

Folders and files

Project structure
The following table describes the standard set of folders and files generated for an application project and displayed
in the Project Explorer view. All folders and files are located inside the project's root folder.

Table 69: S32DS Application Project: Folders and files

Folder/file Description

Binaries This virtual folder appears after the project build and references the
generated executable file (<project_name>.elf).

Includes This virtual source folder contains the list of all discovered header files,
including the header files used in the project directly.

Project_Settings This folder includes the lower-level folders:

• Startup_Code: Includes the initialization scripts generated by
the project creation wizard.

• Debugger: Includes the launch configurations (LAUNCH files)
generated by the wizard.

• Linker_Files: Includes the linker files generated by the
wizard.

SDK (Optional) This folder is available if the SDK is attached to project. The
SDK descriptor specifies which files will be copied to this project folder.

board (Optional) This folder is available if the project uses the device
configuration feature. The folder has no content when created. When
the user configures MCU pins and clocks, the source files with code are
generated and placed in this folder.

include This folder includes the toolchain header files.

src This folder includes the source files. The main.c or main.cpp file is
included by default, other files can be added by the user.

<build_configuration_name> This folder appears after the project build. The name of the folder
matches the name of the build configuration used for the build (Debug or
Release, or a custom configuration).

The following lower-level folders are generated inside:

• board: Includes the O, D, ARG files and the
makefile generated from the source files located in the
<project_root_folder>/board folder.

• Project_Settings/Startup_Code: Includes the O, D,
ARG files and the makefile generated from the initialization
scripts located in the <project_root_folder>/
Project_Settings/Startup_Code folder.

• SDK: Includes the O, D, ARG files and the makefile
generated from the source files located in the
<project_root_folder>/SDK folder.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

214 NXP Semiconductors

Reference

Folder/file Description

• src: Includes the O, D, ARG files and the makefile
generated from the source files located in the
<project_root_folder>/src folder.

The folder also includes files <project_name>.elf (executable),
<project_name>.arg, <project_name>.map and makefiles generated for
the project.

description.txt This file includes a brief description of the project. The text is entered by
the user in the project creation wizard.

<processor_family>.mex (Optional) This file stores the device configuration in the XML format.
The file is available if the project supports the device configuration
feature.

The following table describes the standard set of folders and files generated for a library project and displayed in the
Project Explorer view. All folders and files are located inside the project's root folder.

Table 70: S32DS Library Project: Folders and files

Folder/file Description

Archives This virtual folder appears after the project build and references the
generated archive file (lib<project_name>.a) with the project's
object file inside.

Includes This virtual source folder contains the list of all discovered header files,
including the header files used in the project directly.

SDK (Optional) This folder is available if the SDK is attached to project. The
SDK descriptor specifies which files will be copied to this project folder.

include This folder includes the toolchain header files.

src This folder includes the source files. The mylibrary.c or
mylibrary.cpp file is included by default, other files can be added
by the user.

<build_configuration_name> This folder appears after the project build. The name of the folder
matches the name of the build configuration used for the build (Debug or
Release, or a custom configuration).

The following lower-level folders are generated inside:

• board: Includes the O, D, ARG files and the
makefile generated from the source files located in the
<project_root_folder>/board folder.

• SDK: Includes the O, D, ARG files and the makefile
generated from the source files located in the
<project_root_folder>/SDK folder.

• src: Includes the O, D, ARG files and the makefile
generated from the source files located in the
<project_root_folder>/src folder.

The folder also includes the lib<project_name>.a archive file
(containing the project's object file) and makefiles generated for the
project.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 215

Reference

Product directory structure
The following table describes the standard set of folders and files located inside the product installation directory.

Table 71: S32 Design Studio: folders and files

Folder/file Description

_S32 Design Studio
for S32 Platform
3.4_installation

This folder contains the following:

• the installation log
• the uninstaller
• other files related to the installation and uninstallation processes

Drivers This folder contains the installation wizard of P&E Device Drivers.

eclipse This folder contains eclipse features, plugins, configuration files, etc.

jre This folder contains Java Runtime Environment which provides complete
runtime support. This feature is included in the installation package for Windows
only. For Linux platform, JRE must be installed separately.

Release_Notes This folder contains product related Release Notes.

S32DS This folder includes all tools and resources specific for S32 Design Studio for
S32 Platform.

The following lower-level folders can be found inside:

• build_tools: compiler and assembler tools necessary to build various
types of projects

• cll: license components
• config: configuration and extension files
• examples: example projects added by user
• help: product documentation, including user guides, hardware manuals,

tutorials and the 'Getting Started' video
• integration: software manifest files
• software: integrated SDKs and libraries
• tools: debugger, flash, software analysis tools; accelerator specific

tools (contributed with the respective package), gdb

SCR This folder contains the Software Content Register files.

s32ds.bat/s32ds.sh This file sets environment variables and starts S32 Design Studio for S32
Platform.

Welcome.txt This file includes a brief introduction.

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

216 NXP Semiconductors

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrate circuits based on the information
in this document. NXP reserves the right to make changes without further notice to any
products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its
products for any particular purpose, nor does NXP assume any liability arising out of
the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation consequential or incidental damages. “Typical”
parameters that may be provided in NXP data sheets and/or specifications can and do
vary in different applications, and actual performance may vary over time. All operating
parameters, including “typicals”, must be validated for each customer application by
customer's technical experts. NXP does not convey any license under its patent rights nor
the rights of others. NXP sells products pursuant to standard terms and conditions of sale,
which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP Semiconductors has implemented advanced security features, all products may
be subject to unidentified vulnerabilities. Customers are responsible for the design and
operation of their applications and products to reduce the effect of these vulnerabilities on
customer’s applications and products, and NXP Semiconductors accepts no liability for
any vulnerability that is discovered. Customers should implement appropriate design and
operating safeguards to minimize the risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,
Airfast, Altivec, CodeWarrior, ColdFire, ColdFire+, CoolFlux, CoolFluxDSP, the CoolFlux
logo, EdgeLock, EdgeScale, EdgeVerse, eIQ, Embrace, Freescale, the Freescale logo,
GreenChip, the GreenChip logo, HITAG, ICODE, I - CODE, Immersiv3D, JCOP, Kinetis,
Layerscape, MagniV, Mantis, MIFARE, the MIFARE logo, MIFARE CLASSIC, MIFARE
DESFire, MIFARE FleX, MIFARE Plus, MIFARE Ultralight, MIFARE 4Mobile, the
MIFARE4Mobile logo, MiGLO, mobileGT, NTAG, the NTAG logo, PEG, Plus X,
PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Qorivva, RoadLINK, the
RoadLINK logo, SafeAss ure, SmartM X, StarCore, Symphony, Tower, TriMedia,
UCODE, the UCODE DNA logo, VortiQa and Vybrid are trademarks of NXP B.V. All
other product or service names are the property of their respective owners. AMBA, Arm,
Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,
Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,
RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME,
ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks
of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology
may be protected by any or all of patents, copyrights, designs and trade secrets. All rights
reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and
related marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2017-2021 All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision: 2.0, April 2021

S32 Design Studio for S32 Platform 3.4, User Guide, Rev. 2.0, 04/2021

NXP Semiconductors 217

http://www.nxp.com
http://www.nxp.com/support/sales-and-support:SUPPORTHOME
http://www.nxp.com/about/our-terms-and-conditions-of-commercial-sale:TERMSCONDITIONSSALE

	Contents
	Quick Start Guide
	Starting S32DS 3.4
	Creating and building a project
	Debugging a project
	Quick links

	Tasks
	Installation management
	Overview
	Getting product updates
	Getting updates automatically
	Managing software sites
	Downloading updates manually

	Installing product updates and packages
	Installing plug-ins
	Viewing all installed software
	Viewing installed updates and packages
	Uninstalling packages
	Uninstalling plug-ins
	Uninstalling S32DS 3.4

	License management
	Overview
	Licensing S32DS 3.4
	Applying the license during installation
	Getting the activation code

	Viewing the license information
	Viewing licenses on the website
	Returning the license
	Relicensing S32DS 3.4

	Project management
	Overview
	Starting a project
	Creating a project in the wizard
	Creating a project from an example

	Importing a project
	Importing a project from a system folder or an archive file
	Importing a project from a ProjectInfo.xml file

	Adding files and folders to a project
	Adding a device configuration
	Creating a project with a device configuration
	Editing a device configuration
	Importing a device configuration
	Exporting a device configuration

	Locating project files and folders in the file system
	Renaming a project
	Duplicating a project
	Saving a project to User Examples
	Exporting a project
	Exporting a project to a system folder or an archive file
	Exporting a project to a ProjectInfo.xml file

	Closing and reopening a project
	Removing a project

	Building projects
	Overview
	Using build configurations
	Creating a build configuration
	Setting the active build configuration
	Editing a build configuration
	Configuring the builder
	Configuring the build behavior
	Adding the pre-build and post-build steps

	Managing project resources in build configurations

	Building a project
	Resolving build problems
	Adjusting the C/C++ indexer settings for large files
	Building projects in non-English versions of Windows

	Using optional tools
	Generating an image file
	Using output of optional tools in post-build steps
	Using a custom makefile
	Using a sequence of two build configurations

	Preprocessing source files
	Disassembling binaries and source files

	Using parallel build

	Debugging
	Overview
	Using the debugger
	Using launch configurations
	Creating a launch configuration
	Editing a launch configuration
	Main tab
	Debugger tab
	Startup tab
	Source tab
	Common tab
	SVD Support tab
	OS Awareness tab
	Trace and Profile tab

	Running a launch configuration

	Using launch groups
	Creating a launch group
	Running a launch group

	Debugging on a bare-metal target
	Selecting a hardware debug probe
	Debugging with S32 Debug Probe from RAM
	Debugging with S32 Debug Probe from flash for S32V23x targets
	Debugging with S32 Debug Probe from flash for all other targets
	Debugging with a PEMicro probe
	Debugging with a Lauterbach probe
	Viewing Registers
	Viewing processor registers
	Reading values from registers
	Setting values to registers
	Exporting register values
	Importing register values
	Viewing peripheral registers in EmbSys Registers
	Reading values from peripheral registers
	Exporting peripheral register values
	Importing peripheral register values
	Switching to a different context
	Setting up EmbSys properties for a project

	Viewing memory
	Managing flash memory
	Configuring a device connection
	Running the flash programmer
	Using commands

	Debugging on multiple cores
	Debugging on a Linux target
	Debugging on a VDK
	Debugging Linux project on a VDK
	Importing an executable

	SDK management
	Overview
	Adding an SDK
	Creating an SDK
	Loading an SDK
	Importing an SDK
	Importing an MCAL SDK

	Making a local SDK global
	Using SDKs in projects
	Attaching an SDK when creating a project
	Attaching an SDK to an existing project
	Upgrading SDK version
	Detaching an SDK

	Editing an SDK
	Defining symbols
	Exporting an SDK
	Removing an SDK

	Migration guide
	Troubleshooting

	Reference
	User interface
	Views and editors
	Project Explorer view
	Problems view
	Breakpoints view
	Debug view
	Disassembly view
	Expressions view
	Memory view
	Memory Browser view
	Memory Spaces view
	Registers view
	EmbSys Registers view
	Peripheral Registers view
	Arm System Registers view
	Watch registers view
	Variables view
	Intrinsics view
	SDK Explorer view
	Editor area

	Wizards
	New SDK wizard
	Project creation wizards
	S32DS Application Project wizard
	General properties
	Core customizations

	S32DS Library Project wizard
	General properties
	Core customizations

	S32DS Project from Example wizard

	Migrate wizard

	Preferences
	Perspectives
	Available software sites
	SDK Management

	Project properties
	SDKs

	Perspectives
	C/C++ perspective
	Debug perspective
	VDK Debug perspective
	Git perspective

	Build configuration
	Build Tool Settings
	Cross Settings
	Target Processor
	Standard S32DS C/C++ Compiler
	Dialect
	Preprocessor
	Includes
	Optimization
	Debugging
	Warnings
	Miscellaneous

	Standard S32DS C/C++ Linker
	General
	Libraries
	Miscellaneous
	Shared Library Settings
	Link Order

	Standard S32DS Assembler
	General
	Preprocessor
	Symbols
	Debugging

	Standard S32DS Archiver
	General

	Standard S32DS Create Flash Image
	General

	Standard S32DS Create Listing
	General

	Standard S32DS Print Size
	General

	Standard S32DS C/C++ Preprocessor
	Settings

	Standard S32DS Disassembler
	Settings

	Folders and files
	Project structure
	Product directory structure

