
Enabling Multicore Application on S32G2

using S32G2 Platform Software Integration

by: NXP Semiconductors

1. Introduction

This application note is a step-by-step guide you to

build a multicore IPC (Inter-Processor Communication)

application on NXP S32G2 processor using the NXP

software Bundle-2022.07. You can follow this guide as

an example to enable all application cores of S32G274A

processor.

The guide does not target optimization of the booting

time. The SD-Card is used for booting and root file

system media for Linux OS running on ARM® Cortex-

A53® cores.

The secure boot in example only supports verification of

the bootloader image using HSE SMR (Secure Memory

Region) service. The bootloader is not configured to

perform verifications on subsequent images.

The following sections are covered in the document.

• Multicore IPC application description

• Hardware and software prerequisites

• Prepare images for Cortex-A53 cores

• Prepare images for Cortex-M7® cores

• Configure and build the bootloader

• Deployment on S32G2-VNP-RDB2

NXP Semiconductors Document Number: AN13750

Application Notes Rev. 0 , 11/2022

Contents

1. Introduction .. 1

2. Multicore IPC application description 2

2.1. S32G2 Boot flow .. 2

3. Hardware and software prerequisites 4

4. Prepare images for Cortex-A53 cores 4

5. Prepare images for Cortex-M7 cores.................................. 7

5.1. Building ipc application using S32DS 7

5.2. Configure the bootloader .. 8

5.3. Build The Bootloader .. 15

5.4. Generate S32G Boot Image Using S32DS

IVT_TOOL ... 16

6. Deployment on s32g-vnp-rdb2 .. 20

7. Run the application on S32G-VNP-RDB2 22

Multicore IPC application description

Enabling Multicore Application on S32G2 using S32G2 Platform Software Integration, Rev. 0, 11/2022

2 NXP Semiconductors

• Run the applications on S32G2-VNP-RDB2

2. Multicore IPC application description

After booting up, the bootloader loads the IPC application for each Cortex-M7 core. It also gets

application to run a sample application on Linux to send “Hello world!” messages to Cortex-M7 cores

via IPC channel. On receiving the message, the IPC application on Cortex-M7 core responds with an

echo message.

Figure 1. Sample application

2.1. S32G2 Boot flow

The secure boot is enabled in the default configuration of the Bootloader. For the First time boot after

image deployment on RDB2, the secure boot is not enabled, it means, the BOOT_SEQ in the IVT is set

to zero. When the bootloader runs for the first time, it detect this condition and configures the HSE for

secure boot and then set BOOT_SEQ=1. After setting BOOT_SEQ=1, the bootloader issues a functional

reset. For every following boot, secure boot is enabled.

You can disable the secure boot in the EB Tresos configuration. For detail, please refer to the section

‘7.2.2 Secure boot configuration’ of the Bootloader User Manual.

The following figures show S32G2 boot flow examples for both non-secure and secure boot.

Multicore IPC application description

Enabling Multicore Application on S32G2 using S32G2 Platform Software Integration, Rev. 0, 11/2022

NXP Semiconductors 3

Figure 2. Non-secure boot flow

Figure 3. Secure boot flow

NOTE

For definition of BL2/BL31/BL33, refer to the section “25 ARM Trusted

Firmware” in the “Linux BSP 33.0 User Manual for S32G2 platforms”.

Prepare images for Cortex-A53 cores

Enabling Multicore Application on S32G2 using S32G2 Platform Software Integration, Rev. 0, 11/2022

4 NXP Semiconductors

3. Hardware and software prerequisites

The following table shows the hardware and software prerequisites.

Table 1. Harware and software prequisites

Item Description Note

S32G-VNP-RDB2 Hardware board with the
processor S32G274A

S32 Design Studio 3.4
with the update 3
(3.4.3_D2112)

IDE with S32 Configuration Tool
and S32 Flash Tool.

EB Tresos Studio 27.1 AUTOSAR configuration tool. It is required to modify AUTOSAR
configuration of the bootloader.

S32G2 Standard &
Reference Software

NXP released software. Below
items are required:
S32G2 Platform Software
Integration 2022.06
HSE Standard Firmware 0.1.0.5
Inter-Platform Communication
Framework 4.6.0
Linux BSP 33.0.0
Real-Time Drivers 3.0.2 HF01
FreeRTOS 3.0.2
SDHC Stack 1.0.1 HF1

Please download each software in your NXP
software account or use the Automotive
Software Package Manager.

Cygwin A large collection of GNU and
Open Source tools which provide
functionality similar to a Linux
distribution on Windows.

It is used to run the make tool and to deploy
images on SD-Card.

Putty Serial terminal

4. Prepare images for Cortex-A53 cores

Follow the user guide of Linux BSP 33 to build the u-boot and ATF

1. Download the GCC 10.2.0 toolchain for ARM 64-bit (download link).

https://www.nxp.com/app-autopackagemgr/software-package-manager:AUTO-SW-PACKAGE-MANAGER
https://www.nxp.com/app-autopackagemgr/software-package-manager:AUTO-SW-PACKAGE-MANAGER
https://developer.arm.com/-/media/Files/downloads/gnu-a/10.2-2020.11/binrel/gcc-arm-10.2-2020.11-x86_64-aarch64-none-linux-gnu.tar.xz?revision=972019b5-912f-4ae6-864a-f61f570e2e7e&la=en&hash=B8618949E6095C87E4C9FFA1648CAA67D4997D88

Prepare images for Cortex-A53 cores

Enabling Multicore Application on S32G2 using S32G2 Platform Software Integration, Rev. 0, 11/2022

NXP Semiconductors 5

2. Once you have downloaded the toolchain package, in order to install it, you just need to unzip it

in a directory of your choice.

$tar -xf gcc-arm-10.2-2020.11-x86_64-aarch64-none-linux-gnu.tar.xz

3. Clone the GIT repository

$export HOME=/path/to/your/workspace
$cd $HOME
$git clone https://source.codeaurora.org/external/autobsps32/u-boot
$cd u-boot
$git checkout release/bsp33.0-2020.04

4. Build the U-Boot bootloader

$export CROSS_COMPILE=$HOME/gcc-arm-10.2-2020.11-x86_64-aarch64-none-linux-
gnu/bin/aarch64-none-linux-gnu-
$make s32g274ardb2_defconfig
$make

To build the Arm-trusted-firmware the steps needs to be followed:

1. Install libssl-dev and openssl for headers required by fiptool. This is a one-time operation.
$sudo apt-get install libssl-dev openssl

2. Check your host dtc version.
$dtc --version

3. If your dtc is older or you do not have it installed, install/upgrade to dtc version 1.4.6 or above:
$sudo apt-get install device-tree-compiler

4. Clone the GIT repository
$cd $HOME
$git clone https://source.codeaurora.org/external/autobsps32/arm-trusted-firmware
$cd arm-trusted-firmware
$git checkout release/bsp33.0-2.5

5. Apply the patch to modify the alignment of ATF. Please find the patch in accompanying

software package of this application note.

The bootloader expects a 64-bytes-aligned image. Thus, the ATF makefile arm-trusted-

firmware/plat/nxp/s32/s32_common.mk needs the parameter `FIP_ALIGN := 16` change it to

`FIP_ALIGN := 64` before you start the build.

$git am < /path/to/0001-fip-align-and-mmc-init.patch

6. Build the ATF

$make ARCH=aarch64 PLAT=s32g274ardb2 BL33=$HOME/u-boot/u-boot-nodtb.bin

7. After build is complete, the generated images are in the directory: arm-trusted-

firmware/build/s32g274ardb2/release. The log shows load address and entry point of the

generated FIP image, like below:

IVT Location: SD/eMMC
Load address: 0x342fc580
Entry point: 0x34302000

The following steps shows how to build an IPC multiple instance example on Linux:

1. Build the kernel using the following command

$cd $HOME

https://source.codeaurora.org/external/autobsps32/u-boot
https://source.codeaurora.org/external/autobsps32/arm-trusted-firmware

Prepare images for Cortex-A53 cores

Enabling Multicore Application on S32G2 using S32G2 Platform Software Integration, Rev. 0, 11/2022

6 NXP Semiconductors

$git clone https://source.codeaurora.org/external/autobsps32/linux
$cd linux
$git checkout release/bsp33.0-5.10.109-rt
$make ARCH=arm64 s32gen1_defconfig
$make ARCH=arm64

The command generates the kernel binary (Image) in arch/arm64/boot and the board device tree

blobs in arch/arm64/boot/dts/freescale.

2. Build the IPCF modules.

$cd $HOME
$git clone https://source.codeaurora.org/external/autobsps32/ipcf/ipc-shm
$cd ipc-shm
$git checkout release/SW32G_IPCF_4.6.0_D2205

Apply the patch to enable three IPC instances. Please find the patch in accompanying software

package of this application note.

$git am < /path/to/0001-ipc-multi-instances.patch

Build IPCF driver and sample modules providing kernel source location

$cd $HOME
$make -C ./ipc-shm/sample_multi_instance KERNELDIR=$PWD/linux modules

To deploy the built image to a SD card the steps needs to be followed:

1. Download the pre-built images of Linux BSP 32 from nxp.com:

binaries_auto_linux_bsp33.0_s32g2_pfe.tgz

2. Extract the package to your local folder.

3. Deploy images on SD-Card (On Windows)

• Insert the SD-Card to your PC

• Launch the Cygwin (run as administrator) and run the following commands to write bsp

image to SD-Card

NOTE

/dev/sdb is the device node for the SD-Card.

$cd binaries_auto_linux_bsp33.0_s32g2_pfe/s32g274ardb2/
$dd if=/dev/zero of=/dev/sdb bs=512 count=1 && sync
$dd if=fsl-image-auto-s32g274ardb2.sdcard of=/dev/sdb bs=1M skip=4 seek=4
$dd if=fsl-image-auto-s32g274ardb2.sdcard of=/dev/sdb bs=1M count=4 && sync

• Copy the fip.bin and fip.s32 from the directory `arm-trusted-

firmware/build/s32g274ardb2/release` to the current folder. Use the newly built FIP

image to replace the one from pre-built images:

$dd if=fip.s32 of=/dev/sdb skip=512 seek=512 iflag=skip_bytes oflag=seek_bytes
conv=fsync,notrunc

NOTE

fip.bin will be deployed on Nor-Flash.

• Copy the below images to FAT32 partition (boot_s32g27) of SD-Card

https://source.codeaurora.org/external/autobsps32/linux
https://source.codeaurora.org/external/autobsps32/ipcf/ipc-shm

Prepare images for Cortex-M7 cores

Enabling Multicore Application on S32G2 using S32G2 Platform Software Integration, Rev. 0, 11/2022

NXP Semiconductors 7

▪ Copy the kernel image (linux/arch/arm64/boot/Image) and replace the one on SD-

Card.

▪ Copy the dtb image (linux/arch/arm64/boot/dts/freescale/s32g274a-rdb2.dtb) and

replace the one on SD-Card.

▪ Copy the ipc image (ipc-shm/ipc-shm-dev.ko, ipc-

shm/sample_multi_instance/ipc-shm-sample_multi-instance.ko).

5. Prepare images for Cortex-M7 cores

5.1. Building ipc application using S32DS

To install the S32 Design studio, follow these steps:

1. Download the S32 Design Studio 3.4 and complete installation

• Download the installer file: S32DS.3.4_b201217_win32.x86_64.exe, finish installation

following the S32DS Installation Guide.

• Download the offline package includes Update 3 for S32 Design Studio v.3.4 and S32G

development package: SW32G_S32DS_3.4.3_D2112.zip. Follow the release note to install

it.

Follow the steps to install RTD and IPCF package for S32DS:

1. Download the RTD release: SW32G_RTD_4.4_3.0.2_HF01_DS_updatesite_D2204.zip.

2. Launch the S32DS. Go to Help > `Install New Software…`. In the Install window, click `Add…`

> `Archive…` to open the SW32G_RTD_4.4_3.0.2_HF01_DS_updatesite_D2204.zip. Click

Add to close the window.

3. In the Install window, select all items, click `Next >` to finish installation.

4. Download the below IPCF, FreeRTOS and SDHC release. Follow similar steps to finish

installation

• SW32G_IPCF_4.6.0_D2205_updatesite.zip

• SW32_FreeRTOS_10_4_6_UOS_3_0_2_DS_updatesite_D2204.zip

• S32G_SDHC_RTM_1_0_1_HF1_D2207_updatesite.zip

Prepare images for Cortex-M7 cores

Enabling Multicore Application on S32G2 using S32G2 Platform Software Integration, Rev. 0, 11/2022

8 NXP Semiconductors

Follow the steps to build ipc application using S32DS:

1. Find the example used as an accompanying software package of this application note. Extract the

package to your local folder.

2. Launch the S32 Design Studio.

3. Import the three projects into S32DS:

• IPCF_Example_multi_instance_S32G274_M7_0,

• IPCF_Example_multi_instance_S32G274_M7_1,

• IPCF_Example_multi_instance_S32G274_M7_2.

4. For each project, double click the mex file, open the S32 Configuration Tool. Then click the

`Update Code` button to generate the source code.

5. Build projects to get elf and binary image. The outputs are in the Debug_RAM folder.

5.2. Configure the bootloader

Follow the steps to install RTD and Platform Software Integration package for EB tresos:

1. Download and install the RTD software

• Download the installer `SW32G_RTD_4.4_3.0.2_HF01_D2204.exe`, double-click to

install it.

• After installation, you will get the folder `SW32G_RTD_4.4_3.0.2_HF01` at your

installation directory.

• Copy all plugins of RTD to the EB directory: copy all items at the directory

`SW32G_RTD_4.4_3.0.2_HF01\eclipse\plugins` to `C:\EB\tresos\plugins`

2. Download and install the platform software integration software

`Platform_Software_Integration_S32G2_2022_06.exe`

Prepare images for Cortex-M7 cores

Enabling Multicore Application on S32G2 using S32G2 Platform Software Integration, Rev. 0, 11/2022

NXP Semiconductors 9

• Download the installer `Platform_Software_Integration_S32G2_2022_06.exe`, double-

click to install it. In this example, we install it to the default directory:

C:\NXP\Integration_Reference_Examples_S32G2_2022_06.

Follow the steps to import the bootloader project:

1. Launch the EB tresos 27.1.0

2. Follow the menu File > Import to open the Import window. Select General > `Existing Projects

into Workspace`, then click Next.

3. Click `Browse…` and in the `Brower For Folder` window navigate to the installation directory

of `Integration_Reference_Examples_S32G2_2022_06`. Then click Ok.

4. It will show all projects in the selected directory. Uncheck the lighting projects. In the Options

section, select `Copy projects into workspace`, then click Finish.

Figure 4. Project import

Follow the steps to Configure the bootloader:

1. In the `Project Explorer` view, right click the Ecuc item, and select the menu `Load

Configuration`.

Prepare images for Cortex-M7 cores

Enabling Multicore Application on S32G2 using S32G2 Platform Software Integration, Rev. 0, 11/2022

10 NXP Semiconductors

2. In order to make it simple, we will disable the XRDC in this example. Follow below steps to

disable XRDC

• Right click the Rm plugin and select the menu Disable to disable the RM plugin

• Navigate to the SysDal plugin configuration, select SysDalBswConfig > PowerUp >

DeinitList. In the list, remove the item Rm_Init.

Prepare images for Cortex-M7 cores

Enabling Multicore Application on S32G2 using S32G2 Platform Software Integration, Rev. 0, 11/2022

NXP Semiconductors 11

3. Navigate to the configuration of Bootloader plugin. Select the `Core Configuration` and it lists

all boot targets and boot sources that will be loaded by the bootloader. This example uses the

bootloader to bring up Linux BSP on A53 cores and IPC example on each M7 core. So, you need

to configure the four elements in this list:

• 1x for Cortex-A53 cores: Uses the images from Linux BSP 33

• 3x for the three Cortex-M7 cores: Use the images of IPC application built by the S32

Design Studio

These list will be edited later.

4. Navigate to the Bootloader plugin configuration. Select the ‘Boot Source’ configuration.

Remove all elements in the boot source list.

Prepare images for Cortex-M7 cores

Enabling Multicore Application on S32G2 using S32G2 Platform Software Integration, Rev. 0, 11/2022

12 NXP Semiconductors

5. Add Boot source for the ATF FIP image

• Click the button `add new element with default values`, and edit it as below:

• Navigate to `Boot Sources` > `linux_bsp_atf` > `Boot image fragments` and configure

the `Boot image fragments` of the `linux_bsp_atf` as below:

NOTE

• The `Reset handler address` and `Load image address` are from the log

of building the ATF. The example:

IVT Location: SD/eMMC

Load address: 0x342fc580

Entry point: 0x34302000

• The image size was set to 256KB. It should be larger than the size of

BL2. Find the value from the log of building ATF. The example:

Image Layout

DCD: Offset: 0x200 Size: 0x1c

IVT: Offset: 0x1000 Size: 0x100

AppBootCode Header: Offset: 0x1200 Size: 0x40

Application: Offset: 0x1240 Size: 0x2ec00

6. Add a Boot source for IPC application on Cortex-M7_0 core

Prepare images for Cortex-M7 cores

Enabling Multicore Application on S32G2 using S32G2 Platform Software Integration, Rev. 0, 11/2022

NXP Semiconductors 13

• Click the button `add new element with default values`, and edit as shown below:

• Navigate to `Boot Sources` > `ipc_app_m7_0` > `Boot image fragments` and

configure the `Boot image fragments` of the `ipc_app_m7_0` as shown below:

NOTE

The M7_0 core is the core running the bootloader. It will jump to the

application by setting the PC to the reset exception handler address.

The `Reset handler address` and `Load image address` are indicated in the

map file:

- Search the key word Reset_Handler in the map file to get the value

of `Reset handler address`,

- Search the key word int_sram_c0 in the map file to get the value of

`Load image address`.

7. Add a Boot source for IPC application on Cortex-M7_1 core.

• Click the button `add new element with default values`, and edit as shown

in the figure below.

• Navigate to `Boot_Sources` > `ipc_app_m7_1` > `Boot image fragments`

and configure the `Boot image fragments` of the `ipc_app_m7_1` as

below:

NOTE

The `Reset handler address` and `Load image address` are indicated in the

map file:

• Search the key word intc_vector in the map file to get the value of

`Reset handler address`.

• Search the key word int_sram_c1 in the map file to get the value of

`Load image address’.

Prepare images for Cortex-M7 cores

Enabling Multicore Application on S32G2 using S32G2 Platform Software Integration, Rev. 0, 11/2022

14 NXP Semiconductors

8. Add a Boot source for IPC application on Cortex-M7_2 core.

• Click the button `add new element with default values`, and edit as shown

in the figure below:

Navigate to `Boot Sources` > `ipc_app_m7_2` > `Boot image fragments` and

configurethe `Boot image fragments` of the `ipc_app_m7_2` as below:

NOTE

The `Reset handler address` and `Load image address` are indicated in the

map file:

- Search the key word intc_vector in the map file to get the value of `Reset

handler address`,

- Search the key word int_sram_c2 in the map file to get the value of

`Load image address`.

9. Navigate to Bootloader > `Core Configuration`, clear the core configuration list.

10. Add elements for each core with below configuration to the list as shown in the

figure below.

11. Right click the EcuC and select `Generate Project`. After successfully generated,

click OK to finish it.

Prepare images for Cortex-M7 cores

Enabling Multicore Application on S32G2 using S32G2 Platform Software Integration, Rev. 0, 11/2022

NXP Semiconductors 15

5.3. Build The Bootloader

Before compile the code, implement the below change to the file

C:\NXP\Integration_Reference_Examples_S32G2_2022_06\code\framework\realtime\swc\bootloader\g

eneric\src\ Bootloader.c:
 #if (STD_ON == BL_CRYPTO_USED)

#include "CryptoDal.h"
+ #include "Hse_Ip.h"

- static volatile uint32 ENABLE_BREAKPOINT_AT_MAIN = 0U;

+ static volatile uint32 ENABLE_BREAKPOINT_AT_MAIN = 1U;

int main(void)

{

#if (BL_USE_BREAKPOINT == STD_ON)

while (0U == ENABLE_BREAKPOINT_AT_MAIN) continue;

#endif /* BL_USE_BREAKPOINT == STD_ON */

+ while (1) {
+ if ((Hse_Ip_GetHseStatus(0) & (HSE_STATUS_INIT_OK | HSE_STATUS_RNG_INIT_OK)) ==
+ (HSE_STATUS_INIT_OK | HSE_STATUS_RNG_INIT_OK))

+ break;

+ }

NOTE

The above code is in the patch format:

• `+` means inserting the line while `-` means deleting the line.

• The above changes disable the breakpoint by

ENABLE_BREAKPOINT_AT_MAIN. Add the code to wait for

completion of HSE firmware initialization, which avoids the

conflict with HSE when initializing QuadSPI.

1. Navigate to installation directory

`Integration_Reference_Examples_S32G2_2022_06`:

C:\NXP\Integration_Reference_Examples_S32G2_2022_06\code\framework\real

time\swc\bootloader\platforms\S32G2XX\build

2. Edit the file launch.bat to set build parameters, below is an example:
SET TRESOS_DIR=C:/EB/tresos

SET MAKE_DIR=C:/cygwin64

SET GCC_DIR=C:/NXP/S32DS.3.4/S32DS/build_tools/gcc_v9.2

Prepare images for Cortex-M7 cores

Enabling Multicore Application on S32G2 using S32G2 Platform Software Integration, Rev. 0, 11/2022

16 NXP Semiconductors

SET TOOLCHAIN=gcc
SET CORE=m7
SET SRC_PATH_DRIVERS=

C:/NXP/S32DS.3.4/S32DS/software/PlatformSDK_S32XX_2022_03/SW32_RTD_4_4_3_0_2_D2203
SET SDHC_STACK_PATH= C:/NXP/S32DS.3.4/S32DS/software/PlatformSDK_S32XX_2022_03/stacks/sdhc
SET TRESOS_WORKSPACE_DIR=C:/EB/tresos/workspace/Bootloader_S32G2XX_ASR_4.4_M7/output
SET HSE_FIRMWARE_DIR=C:/NXP/HSE_FW_S32G2_0_1_0_5

3. Launch cmd.exe, execute the launch.bat. After it finishes, find the output in the folder:

build/bin_bootloader
$cd

C:\NXP\Integration_Reference_Examples_S32G2_2022_06\code\framework\realtime\swc\bootloader\platforms\S32

G2XX\build

$launch.bat

5.4. Generate S32G Boot Image Using S32DS IVT_TOOL

1. Open S32 Design Studio and click New -> S32DS Application Project.

2. In the dialog, select `S32G274A_Rev 2 Cortex-M7` (on the left-hand side), and on

the right-hand side, select the Cortex-M7_0 boot target.

3. Click Next, uncheck Cortex-M7_1 and Cortex-M7_2, then click Finish.

4. Click the button `S32 Configuration Tools` and select `Open IVT`.

Prepare images for Cortex-M7 cores

Enabling Multicore Application on S32G2 using S32G2 Platform Software Integration, Rev. 0, 11/2022

NXP Semiconductors 17

5. In the Window `Create a new configuration`, select the processor

S32G274A_Rev2.

6. Select SDK version and Core as below, then click Finish.

7. In the IVT view, set `Boot Target` to M7_0.

8. Boot device type select `QSPI Serial Flash`, and the QuadSPI parameters set to

the file:

Prepare images for Cortex-M7 cores

Enabling Multicore Application on S32G2 using S32G2 Platform Software Integration, Rev. 0, 11/2022

18 NXP Semiconductors

Integration_Reference_Examples_S32G2_2022_06\code\framework\realtime\swc\bootloader\platforms\S32G2XX\res\fl

ash\S32G274_QuadSPI_133MHz_DDR_configuration.bin

9. Configure the DCD image. This is used to initialize SRAM on boot stage. The

image file is at:

Integration_Reference_Examples_S32G2_2022_06\code\framework\realtime\swc\bootloader\platforms\S32G2XX\res\fl

ash\S32G274_DCD_InitSRAM.bin

10. Configure the HSE images. Select the HSE firmware image, see the figure for the

example.

For `HSE firmware configuration`, set the `SYS-IMG pointer` to the address

0xC0000, then lock the address by clicking the lock.

11. Configure the application bootloader image. Select the binary file Bootloader.bin

in the folder: build\bin_bootloader.

Prepare images for Cortex-M7 cores

Enabling Multicore Application on S32G2 using S32G2 Platform Software Integration, Rev. 0, 11/2022

NXP Semiconductors 19

The RAM start pointer and RAM entry pointer set to 0x34700000.

Set `Automatic Align Start Address` to 0x100 and click Align. If the start address

of item is not aligned as expected, please manually adjust for that.

In the `application bootloader`, click `Export Image` and save it to local folder. In

the example, we use bt_m7_app.bin as the file name.

12. Uncheck other images that are not used.

Deployment on s32g-vnp-rdb2

Enabling Multicore Application on S32G2 using S32G2 Platform Software Integration, Rev. 0, 11/2022

20 NXP Semiconductors

13. Click `Export Blob Image` and save the boot image to local folder. In the

example, we use bt_m7_blob.bin as the file name.

6. Deployment on s32g-vnp-rdb2

The following are the steps to program the Nor-flash using the S32 flash tool.

1. Launch S32 Flash tool at the directory:

C:\NXP\S32DS.3.4\S32DS\tools\S32FlashTool\GUI\s32ft.exe

2. Set the Target and Algorithm as the figure.

3. Connect RDB2 UART0 to your PC USB port

4. Set the COM port name, for example, COM4

5. Set the RDB2 to Serial boot mode: SW10-1=OFF,SW10-2=OFF

6. Power on the RDB2.

7. Click `Upload target and algorithm to hardware…`, then the tool will start to load the algorithm

image and configure the target.

8. Click `Erase memory range…` and erase the memory range 0x0 - 0x500000.

9. Click `Upload file to device…` and select the bt_m7_blob.bin to write it to the address 0x0.

10. Click `Upload file to device…` and select the fip.bin to write it to the address 0x100000.

11. Click `Upload file to device…` and select the

IPCF_Example_multi_instance_S32G274_M7_0.bin to write it to the address 0x200000.

12. Click `Upload file to device…` and select the

IPCF_Example_multi_instance_S32G274_M7_1.bin to write it to the address 0x300000.

Run the application on S32G-VNP-RDB2

Enabling Multicore Application on S32G2 using S32G2 Platform Software Integration, Rev. 0, 11/2022

NXP Semiconductors 21

13. Click `Upload file to device…` and select the

IPCF_Example_multi_instance_S32G274_M7_2.bin to write it to the address 0x400000.

Run the application on S32G-VNP-RDB2

Enabling Multicore Application on S32G2 using S32G2 Platform Software Integration, Rev. 0, 11/2022

22 NXP Semiconductors

7. Run the application on S32G-VNP-RDB2

The following are the steps to run the application on the S32G2 RDB2 board.

1. Insert the SD-Card to the slot on RDB2

2. Set RDB2 boot from external NOR-Flash

SW10-1=ON,SW10-2=OFF

SW4 all OFF

3. Connect RDB2 UART0 to PC USB port

4. Launch a Serial terminal on PC, setup the serial port with baudrate 115200, format 8-n-1

5. Power on the RDB2. If everything is ok, you will get the A53 booting log on the terminal.

6. After Kernel is up, enter root to login.

7. Copy the IPC module files. The following commands needs to be entered in the terminal.

$mkdir ipc

$mount /dev/mmcblk0p1 ./ipc

$cp ./ipc/ipc-shm-* ~

$umount ./ipc

8. Insert IPC modules
$insmod ipc-shm-dev.ko

$insmod ipc-shm-sample_multi-instance.ko

9. Run the IPC example. You will see logs showing IPC message between Linux Kernel and

Cortex-M7 cores.

NOTE

CORE4, CORE5, CORE6 are the core ID for Cortex-M7_0, Cortex-M7_1

and Cortex-M7_2.

$echo 1 > /sys/kernel/ipc-shm-sample-instance0/ping
$echo 1 > /sys/kernel/ipc-shm-sample-instance1/ping
$echo 1 > /sys/kernel/ipc-shm-sample-instance2/ping
$dmesg | grep ipc-shm-sample_multi-instance
[462.703716] ipc-shm-sample_multi-instance: starting demo on instance 0...
[462.703739] ipc-shm-sample_multi-instance: INST0 ch 0 >> 19 bytes: SENDING MESSAGES: 1
[462.703753] ipc-shm-sample_multi-instance: INST0 ch 1 >> 32 bytes: #0 HELLO WORLD! from KERNEL
[462.703797] ipc-shm-sample_multi-instance: ch 0 << 19 bytes: REPLIED MESSAGES: 1
[462.703818] ipc-shm-sample_multi-instance: ch 1 << 32 bytes: #0 HELLO WORLD! from CORE 4
[462.703850] ipc-shm-sample_multi-instance: exit demo for instance 0

[470.935633] ipc-shm-sample_multi-instance: starting demo on instance 1...
[470.935653] ipc-shm-sample_multi-instance: INST1 ch 0 >> 19 bytes: SENDING MESSAGES: 1
[470.935667] ipc-shm-sample_multi-instance: INST1 ch 1 >> 32 bytes: #0 HELLO WORLD! from KERNEL
[470.935712] ipc-shm-sample_multi-instance: ch 0 << 19 bytes: REPLIED MESSAGES: 1
[470.935732] ipc-shm-sample_multi-instance: ch 1 << 32 bytes: #0 HELLO WORLD! from CORE 5
[470.935763] ipc-shm-sample_multi-instance: exit demo for instance 1

Run the application on S32G-VNP-RDB2

Enabling Multicore Application on S32G2 using S32G2 Platform Software Integration, Rev. 0, 11/2022

NXP Semiconductors 23

[476.639610] ipc-shm-sample_multi-instance: starting demo on instance 2...
[476.639630] ipc-shm-sample_multi-instance: INST2 ch 0 >> 19 bytes: SENDING MESSAGES: 1
[476.639644] ipc-shm-sample_multi-instance: INST2 ch 1 >> 32 bytes: #0 HELLO WORLD! from KERNEL
[476.639691] ipc-shm-sample_multi-instance: ch 0 << 19 bytes: REPLIED MESSAGES: 1
[476.639709] ipc-shm-sample_multi-instance: ch 1 << 32 bytes: #0 HELLO WORLD! from CORE 6
[476.639740] ipc-shm-sample_multi-instance: exit demo for instance 2

Legal information
Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages
are based on tort (including negligence), warranty, breach of contract or any
other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance with
the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without limitation
specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the
publication hereof.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of customer’s
third party customer(s). Customers should provide appropriate design and
operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary testing
for the customer’s applications and products using NXP Semiconductors
products in order to avoid a default of the applications and the products or of the
application or use by customer’s third party customer(s). NXP does not accept
any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products
are sold subject to the general terms and conditions of commercial sale,
as published at http://www.nxp.com/profile/terms, unless otherwise agreed
in a valid written individual agreement. In case an individual agreement
is concluded only the terms and conditions of the respective agreement
shall apply. NXP Semiconductors hereby expressly objects to applying the
customer’s general terms and conditions with regard to the purchase of NXP
Semiconductors products by customer.

Suitability for use in automotive applications — This NXP product has been
qualified for use in automotive applications. If this product is used by customer
in the development of, or for incorporation into, products or services (a)
used in safety critical applications or (b) in which failure could lead to death,
personal injury, or severe physical or environmental damage (such products
and services hereinafter referred to as “Critical Applications”), then customer
makes the ultimate design decisions regarding its products and is solely
responsible for compliance with all legal, regulatory, safety, and security
related requirements concerning its products, regardless of any information
or support that may be provided by NXP. As such, customer assumes all risk
related to use of any products in Critical Applications and NXP and its suppliers
shall not be liable for any such use by customer. Accordingly, customer will
indemnify and hold NXP harmless from any claims, liabilities, damages and
associated costs and expenses (including attorneys’ fees) that NXP may incur
related to customer’s incorporation of any product in a Critical Application.

Export control — This document as well as the item(s) described herein may be
subject to export control regulations. Export might require a prior authorization
from competent authorities.

NXP Semiconductors
Legal information

Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio,
CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, μVision,
Versatile — are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be
protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved.

Airfast — is a trademark of NXP B.V.

Altivec — is a trademark of NXP B.V.

CodeWarrior — is a trademark of NXP B.V.

ColdFire — is a trademark of NXP B.V.

ColdFire+ — is a trademark of NXP B.V.

CoolFlux — is a trademark of NXP B.V.

CoolFlux DSP — is a trademark of NXP B.V.

DESFire — is a trademark of NXP B.V.

EdgeLock — is a trademark of NXP B.V.

EdgeScale — is a trademark of NXP B.V.

EdgeVerse — is a trademark of NXP B.V.

elQ — is a trademark of NXP B.V.

Embrace — is a trademark of NXP B.V.

Freescale — is a trademark of NXP B.V.

GreenChip — is a trademark of NXP B.V.

HITAG — is a trademark of NXP B.V.

ICODE and I-CODE — are trademarks of NXP B.V.

Immersiv3D — is a trademark of NXP B.V.

I2C-bus — logo is a trademark of NXP B.V.

JCOP — is a trademark of NXP B.V.

Kinetis — is a trademark of NXP B.V.

Layerscape — is a trademark of NXP B.V.

MagniV — is a trademark of NXP B.V.

Mantis — is a trademark of NXP B.V.

MCCI — is a trademark of NXP B.V.

MIFARE — is a trademark of NXP B.V.

MIFARE Classic — is a trademark of NXP B.V.

MIFARE FleX — is a trademark of NXP B.V.

MIFARE4Mobile — is a trademark of NXP B.V.

MIFARE Plus — is a trademark of NXP B.V.

MIFARE Ultralight — is a trademark of NXP B.V.

MiGLO — is a trademark of NXP B.V.

MOBILEGT — is a trademark of NXP B.V.

NTAG — is a trademark of NXP B.V.

NXP SECURE CONNECTIONS FOR A SMARTER WORLD — is a trademark
of NXP B.V.

PEG — is a trademark of NXP B.V.

Plus X — is a trademark of NXP B.V.

POR — is a trademark of NXP B.V.

PowerQUICC — is a trademark of NXP B.V.

Processor Expert — is a trademark of NXP B.V.

QorIQ — is a trademark of NXP B.V.

QorIQ Qonverge — is a trademark of NXP B.V.

RoadLink — wordmark and logo are trademarks of NXP B.V.

SafeAssure — is a trademark of NXP B.V.

SafeAssure — logo is a trademark of NXP B.V.

SmartLX — is a trademark of NXP B.V.

SmartMX — is a trademark of NXP B.V.

StarCore — is a trademark of NXP B.V.

Symphony — is a trademark of NXP B.V.

Synopsys & Designware — are registered trademarks of Synopsys, Inc.

Synopsys — Portions Copyright © 2021 Synopsys, Inc. Used with permission.
All rights reserved.

Tower — is a trademark of NXP B.V.

NXP Semiconductors
Legal information

mailto:PSIRT@nxp.com

TriMedia — is a trademark of NXP B.V.

UCODE — is a trademark of NXP B.V.

VortiQa — is a trademark of NXP B.V.

Vybrid — is a trademark of NXP B.V.

NXP Semiconductors
Legal information

Please be aware that important notices concerning this document and the product(s) described
herein, have been included in section 'Legal information'.

© NXP B.V. 2022. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 11/2022
Document identifier: AN13750

	1. Introduction
	2. Multicore IPC application description
	2.1. S32G2 Boot flow

	3. Hardware and software prerequisites
	4. Prepare images for Cortex-A53 cores
	5. Prepare images for Cortex-M7 cores
	5.1. Building ipc application using S32DS
	5.2. Configure the bootloader
	5.3. Build The Bootloader
	5.4. Generate S32G Boot Image Using S32DS IVT_TOOL

	6. Deployment on s32g-vnp-rdb2
	7. Run the application on S32G-VNP-RDB2

