

Freescale Semiconductor

Using the DMA module in Kinetis devices
By: Technical Information Center

1 Introduction

Direct memory access (DMA) allows data transfers

between main memory and a peripheral device (such

as UARTs) without having each word (byte) handled

by the CPU. While the data transfers are being carried

out the CPU is free to perform other operations as

long as these operations do not require any of the

buses used by the DMA controller. Thus DMA

provides a way to optimize overall system

performance, increase data throughput and offload

expensive data operations.

The following example addresses basic DMA

controller usage within the K2xx family of

microcontrollers. The main goal of this example is to

introduce the necessary notions of DMA controlled

data transfers, in order to do so a description of the

main registers is given as well as two implementation

examples.

Contents
Usinf the DMA module in Kinetis devices…………………1

1 Introduction………………………………………………….1

2 eDMA……………………………………………………………2

3 Direct Memory Access Multiplexer……………….2

4 Functional description………..………………………..3

5 DMA initialization example…………………………..8

6 DMA Examples……………………………………………15

7 Appendix…………………………………………………….24

8 References………………………………………………….27

DMA transfer introduction example

2 Freescale Semiconductor

2 eDMA

The eDMA module is partitioned into two major modules: the eDMA engine and the transfer-control

descriptor local memory. The eDMA block diagram is being shown in the following figure.

Figure 1- eDMA block diagram

The TCD contains all the necessary information for the transfer to be successful, e.g. the source- and

destination- address, number of bytes to be transferred, the size of transference per request, number of total

transfers, offset applied to every address read and write and adjustment values for the source- and

destination-address once the transfer has been done. Meanwhile the eDMA engine performs all the necessary

calculations and controls to read/write the required data.

3 Direct Memory Access Multiplexer

The direct memory access multiplexer (DMAMUX) routes DMA sources to any of the 16 DMA channels. This

process is illustrated in the following figure.

DMA transfer introduction example

3 Freescale Semiconductor

Figure 2 - DMAMUX block diagram

The DMA channel MUX provides these features:

• 52 peripheral slots and 10 always-on slots can be routed to 16 channels.

• 16 independently selectable DMA channel routers.

o The first 4 channels additionally provide a trigger functionality.

• Each channel router can be assigned to one of the 52 possible peripheral DMA slots or to one of

the 10 always-on slots.

4 Functional description

The control of the DMA module can be split into three levels:

 Basic transfer

 Minor loop

 Major loop

Basic transfer is the process in which the required source reads and destination writes occur in order to move

the data, as well as source- and destination-address offset adjustments and decreasing of the number of bytes

to be transferred happen. The minor loop is in charge of issuing another basic transfer if the number of bytes

to be transferred have not been accomplished (bytes to be transferred = 0). The major loop contains the

number of minor loops necessary to move the whole data. The number of minor loops in a major loop is

specified by the beginning iteration count (BITER). Every time a minor loop terminates the current major loop

DMA transfer introduction example

4 Freescale Semiconductor

iteration (CITER) decreases by one. Once the CITER reaches a value of 0 the whole data have been successfully

transferred. These levels are illustrated in the following figure.

Figure 3- Example of multiple loop iterations

In this example a peripheral request signal is being used to request service for channel n. When a peripheral

request signal is issued the control module in the eDMA handles it in conjunction with the address path

module in order to get the corresponding TCD descriptor (for the active channel) and load its information to

the address path module. This process is illustrated in the following figure.

DMA transfer introduction example

5 Freescale Semiconductor

Figure 4- eDMA operation, part 1

Once the source- and destination-address, read/write offsets and number of bytes to be transferred have

been successfully loaded into the address path module, the control and data path module perform basic

transfers. The source reads are initiated and the fetched data is temporarily stored in the data path block until

it is gated onto the internal bus during the destination write. This source read/destination write processing

continues until the minor loop terminates. The following figure illustrates this process.

DMA transfer introduction example

6 Freescale Semiconductor

Figure 5- eDMA operation, part 2

Once the minor loop has terminated the address path logic performs the required updates to certain fields in

the appropriate TCD, e.g., source- and destination-address and CITER decrement. This process continues (DMA

request followed by basic transfers until the minor loop is performed) until the CITER equals zero. Once the

CITER equals zero the final phase of the basic data flow is performed. In this segment the following operations

are carried out: final address adjustments, reloading of minor loops register (BITER) into major loops register

(CITER) and assertion of an optional interrupt request if enabled. This process is illustrated in the following

figure.

DMA transfer introduction example

7 Freescale Semiconductor

Figure 6- eDMA operation, part 3

The basic function of eDMA is summarized as follows:

1. The DMA channel with right setting of all parameters, waits for the Start control (DMA_TCDn_CSR field

start) bit to get asserted.

2. When the Start bit is asserted, the eDMA engine starts the initial Major loop.

3. The Major loop starts the first Minor loop. The Minor loop waits for the peripheral request.

4. Peripheral request starts the Minor loop which in turn, starts the Basic transfer.

5. Basic transfer reads and writes from a source address to a destination address.

6. The Minor loop decreases the number of bytes to be transferred. If the number of bytes to be

transferred = 0, the minor loop ends, else the next Basic transfer starts.

7. Minor loop that is finished decreases the CITER counter.

8. If the CITER counter = 0, then the Major loop is finished, otherwise the eDMA waits for asserting the

next Start bit.

DMA transfer introduction example

8 Freescale Semiconductor

5 DMA initialization example

In this section initialization of the eDMA and programming considerations are discussed. The following

initialization example is based upon both of the examples that can be found in the Appendix. The approach

that will be taken may differ from other methods, this is intended as a DMA overview to help the readers

familiarize themselves with the eDMA controller.

1. First of all the clock must be enabled for both the DMA multiplexer and the DMA itself. This is done by

setting the corresponding field in the system clock gating register (SCGC) that contains the DMA and

DMAMUX. The information can be found within the reference manual of the corresponding Kinetis

family. In this example a Kinetis K20 is being used, therefore the corresponding registers are SCGC6 for

DMAMUX and SCGC7 for DMA as can be seen in the following figures.

Figure 7- SIM_SCGC6

Figure 8-SIM_SCGC7

The CodeWarrior code that performs this task is the following:

SIM_SCGC6 |= SIM_SCGC6_DMAMUX_MASK;
SIM_SCGC7 |= SIM_SCGC7_DMA_MASK;

2. Once the clocks have been enabled the channel that will be used must be enabled in the DMAMUX

and a source for this channel must be selected. Each channel has a configuration register that features

an enable field, trigger enable (if the mode is available for the channel) and a source field to specify if

DMA transfer introduction example

9 Freescale Semiconductor

the DMA is routed to a particular source. The channel configuration register is shown in the following

figure.

Figure 9- DMAMUX_CHCFG register fields

In this example channel 0 is used with Port C as source. The source number can be found at the

reference manual of each sub-family in the chip configuration chapter and DMA MUX request sources

section. The corresponding source number for Port C with the K20 is 51 as can be seen in the following

table.

Table 1- DMA request sources

The CodeWarrior that enables channel 0 with Port C as source is the following.

DMAMUX_CHCFG0 |= DMAMUX_CHCFG_ENBL_MASK; //Enable channel 0
DMAMUX_CHCFG0 |= DMAMUX_CHCFG_SOURCE(51); //Select Port C as source

3. In order to be able initiate a DMA transfer when a hardware service request is issued the enable

request register (DMA_ERQ) must be set, it is important to notice that the state of the DMA enable

request flag does not affect a channel service request made explicitly through software or a linked

channel request. The following figure shows the register fields.

Figure 10-DMA_ERQ fields

To enable the request register that corresponds to channel 0 the ERQ0 field must be set to 1, the

CodeWarrior code that does this is the following.

DMA_ERQ = DMA_ERQ_ERQ0_MASK;

DMA transfer introduction example

10 Freescale Semiconductor

4. The source-address and destination-address for the transfer must be specified and set into the

corresponding TCD register. The following figures show the register fields for the source- and

destination-address.

Figure 11- DMA_TCDn_SADDR fields

Figure 12-DMA_TCDn_DADDR fields

SADDR holds the memory address that points to the source data and DADDR holds the memory

address that points to the destination data. The CodeWarrior code that sets the memory addresses for

channel 0 is the following:

 DMA_TCD0_SADDR = &Source_address;
DMA_TCD0_DADDR = &Destination_address;

5. Once the source- and destination-address have been set the source- and destination-address offset

must be specified in the corresponding TCD register. Each address is modified once a basic transfer is

completed. The SADDR is updated once a read is completed in the following way: next state SADDR =

SADDR + Source Offset (SOFF). The DADDR is updated once a write is completed in the following way:

next state DADDR = DADDR + Destination Offset (DOFF). Both registers allow a signed offset in order

to perform diverse data manipulations. For instance with a negative offset a backwards reading of the

source could be performed or setting the SOFF to zero one could copy several instances of the same

byte and so on and so forth. The following figures show the register fields for the source- and

destination-address offsets.

Figure 13-DMA_TCDn_SOFF field

DMA transfer introduction example

11 Freescale Semiconductor

Figure 14--DMA_TCDn_DOFF field

In this example the source-address is being read with 2 bytes intervals meaning that once a byte is

read the next one is skipped and the next byte that will be read and written will be the third in the

sequence. The destination-address offset is set to one byte per write, thus placing each read byte next

to each other. The CodeWarrior code is the following:

DMA_TCD0_SOFF = 0x02;
DMA_TCD0_DOFF = 0x01;

6. The transfer size must be specified for both the source and the destination, this sets the size of the

data to be read and written. The TCD register that keeps this information is the TCD transfer Attributes

register (DMA_TDCn_ATTR). This register also features a source modulo and destination modulo field

which helps in the implementation of circular data queues. The following figure shows the register

fields.

Figure 15- DMA_TCDn_ATTR fields

Figure 16 - SSIZE and DSIZE Field

In this example an 8-bit transfer size for both source and data is being used (see Figure-16). Source-

and destination-address modulo are both disabled. The CodeWarrior code is the following:

DMA_TCD0_ATTR = DMA_ATTR_SSIZE(0) | DMA_ATTR_DSIZE(0);

DMA transfer introduction example

12 Freescale Semiconductor

7. The number of bytes to be transferred in each service request of the channel must be specified. Each

minor loop will terminate until the minor byte transfer count has been reached, several basic transfers

(read and writes) might be necessary in order to achieve this. Because the normal operation mode is

used in this example the corresponding TCD register is the minor byte count (Minor Loop Disabled) or

DMA_TCDn_NBYTES_MLNO. If another configuration was chosen the corresponding register might

change. The following figure shows the register field.

Figure 17- DMA_TCDn_NBYTES_MLNO field

In this example two different configurations can be chosen: 5 bytes per minor loop or 1 byte per minor

loop. They must be selected to initialize properly the DMA controller. The following CodeWarrior code

is being used in each instance:

DMA_TCD0_NBYTES_MLNO = 0x05; // 5 bytes per minor loop

DMA_TCD0_NBYTES_MLNO = 0x01; // 1 byte per minor loop

NOTE:

It is important to notice that each configuration is in a separate function and cannot run in parallel.

8. The current major iteration count (CITER) and the beginning iteration count (BITER) must be initialized

to the same value. Every time a minor loop is completed the CITER is decreased and once it reaches

zero it is reloaded with the value in BITER. If the channel is configured to execute a single service

request (a single minor loop), the initial values of BITER and CITER should be 1.

The corresponding registers are TCD Current Minor Loop Link, Major Loop Count (Channel Linking

Disabled) or DMA_TCDn_CITER_ELINKNO and TCD Beginning Minor Loop Link, Major Loop Count

(Channel Linking Disabled) or DMA_TCDn_BITER_ELINKNO. The following figures show each register

fields.

Figure 18-DMA_TCDn_CITER_ELINKNO fields

DMA transfer introduction example

13 Freescale Semiconductor

Figure 19-DMA_TCDn_BITER_ELINKNO fields

When the channel linking is disabled, both CITER and BITER values are extended to 15 bits.

In this example the CITER and BITER initialization will depend upon the configuration previously

chosen (5 bytes per minor loop or 1 byte per minor loop).

With the 5 bytes configuration a single minor loop is carried out therefore the code used is the

following:

DMA_TCD0_CITER_ELINKNO = DMA_CITER_ELINKNO_CITER(1);
DMA_TCD0_BITER_ELINKNO = DMA_BITER_ELINKNO_BITER(1);

With the single byte configuration 5 minor loops are carried out therefore the code used is the

following:

DMA_TCD0_CITER_ELINKNO = DMA_CITER_ELINKNO_CITER(5);
DMA_TCD0_BITER_ELINKNO = DMA_BITER_ELINKNO_BITER(5);

9. The source- and destination-address adjustment must be specified. These values will be used once the

major loop is completed and their purpose is to restore the addresses to their initial values or set them

to reference the next data structure. The corresponding TCD registers are the Last Source Address

Adjustment register (DMA_TCDn_SLAST) and the Last Destination Address Adjustment/Scatter Gather

Address register (DMA_TCDn_DLASTSGA). The following figures show the register fields for the source-

and destination-address adjustment.

Figure 20-DMA_TCDn_SLAST field

Figure 21-DMA_TCDn_DLASTSGA field

DMA transfer introduction example

14 Freescale Semiconductor

In this example since a source offset of 2 bits is being used and 5 bytes are being transferred (no

matter what configuration was chosen 5 minor loops or 5 basic transfers will be executed) the

required adjustment in order to return to the initial address will be given by SOFF * NBYTES * CITER in

both configuration the answer is 10 bits so this must be subtracted to the current address, thus -10

bits (-0x0A in hexadecimal) will be the adjustment value for the source and doing the same thing for

the destination (DOFF*NBYTES*CITER = 5 bits) gives back an adjustment value of -5. The code that sets

these values is the following:

 DMA_TCD0_SLAST = -0x0A; // Source address adjustment
DMA_TCD0_DLASTSGA = -0x05; // Destination address adjustment

10. Finally the Control and Status register (DMA_TCDn_CSR) must be setup. The following figure shows

the register fields and the following table describes each of the fields.

Figure 22- DMA_TCDn_CSR fields

Field Description

15-14
BWC

Bandwidth control
This field forces the eDMA to stall after the completion of each read/write access to
control the bus request bandwidth.
00 No eDMA engine stalls
01 Reserved
10 eDMA engine stalls for 4 cycles after each r/w
11 eDMA engine stalls for 8 cycles after each r/w

13-12
Reserved

This read-only field is reserved and always has the value 0.

11-8
MAJORLINKCH

Link Channel Number

7
Done

This flag indicates the eDMA has completed the major loop.

6
Active

This flag signals the channel is currently in execution. It is set when channel service begins,
and the eDMA clears it as the minor loop completes or if any error condition is detected.
This bit resets to zero.

5
MAJORELINK

Enable channel-to-channel linking on major loop complete
0 The channel-to-channel linking is disabled
1 The channel-to-channel linking is enabled

DMA transfer introduction example

15 Freescale Semiconductor

4
ESG

Enable Scatter/Gather Processing
0 The current channel’s TCD is normal format.
1 The current channel’s TCD specifies a scatter gather format. The DLASTSGA field
provides a memory pointer to the next TCD to be loaded into this channel after the
major loop completes its execution.

3
DREQ

Disable Request
0 The channel’s ERQ bit is not affected
1 The channel’s ERQ bit is cleared when the major loop is complete

2
INTHALF

Enable an interrupt when major counter is half complete.
0 The half-point interrupt is disabled
1 The half-point interrupt is enabled

1
INTMAJOR

Enable an interrupt when major iteration count completes
0 The end-of-major loop interrupt is disabled
1 The end-of-major loop interrupt is enabled

0
START

Channel Start
0 The channel is not explicitly started
1 The channel is explicitly started via a software initiated service request

Table 2- DMA_TCDn_CSR fields description

This example does not require Bandwidth control, Channel-to-channel linking, scatter/gather

processing, interrupts, disable requests (after the major loop completion the hardware request

remains active) nor software starts (all DMA request are issued via hardware). Therefore all of these

fields must be set to 0. The code that performs this is the following:

DMA_TCD0_CSR = 0;

6 DMA Examples

Within the provided sample code (Appendix) there are two initializations to choose from, the first one

performs a single minor loop with a number of bytes to be transferred of 5 and the second one performs 5

minor loops with a number of bytes to be transferred of 1 per minor loop. From now on the first configuration

(single minor loop) will be referred as “Example 1” and the second configuration (five minor loops) will be

referred as “Example 2”. The following explanation will assume familiarity with the CodeWarrior debug

environment and will rely heavily on it.

Both examples features two toggling LEDs for demonstration’s sake, this task won’t be affected by the DMA

transfer as the CPU does not take part in the transfer.

Two buffers are created to illustrate the data transfer, g8bSource represents the data source and g8bDestiny

the destination buffer. The arrays are initialized as follows:

unsigned char g8bSource[10] = {0,1,2,3,4,5,6,7,8,9};
unsigned char g8bDestiny[10] = {1,0,0,0,0,0,0,0,0,0};

DMA transfer introduction example

16 Freescale Semiconductor

These variables are allocated in a space of memory by the Linker, for this example no considerations were

taken to place the variables in a special memory allocation. If a specific location is desired this must be

specified in the linker file.

The destination array is being initialized so that it will be easier to notice the data movement. Both arrays

values as well as their addresses can be seen in the following figures. The figures were taken from

CodeWarrior’s variables view.

Figure 23-Source array

Figure 24-Destination array

6.1 Example 1
By choosing DMA_ONE_TRANSACTION as the initialization parameter in main.h, init_DMA_1Trans will be called

and the registers initialization for the single minor loop example will proceed.

The registers initialization can be seen in the following figure.

http://mcuoneclipse.com/2012/11/01/defining-variables-at-absolute-addresses-with-gcc/

DMA transfer introduction example

17 Freescale Semiconductor

Figure 25-DMA channel 0 registers

As can be seen in the figure the source address (SADRR) and destination address (DADRR) matches those of

the source and destination buffers, the number of bytes to be transferred is 5 (NBYTES), there is a source

offset address of 2 bits therefore the values that will be read in the array are 0, 2, 4, 6 and 8, this values will be

written with an offset of one byte and only one minor loop will be executed per major loop (CITER = 1).

Once the peripheral request has been activated (SW1 in Port C in this case) the transfer process will begin, the

source address will be read and its contents loaded to the destination address until NBYTES equals 0, CITER will

be decremented and if it equals 0 the major loop will terminate, CITER will be updated with the contents of

BITER, address adjustments will be performed (both addresses back to their initial values) and a flag in the

control and status register will be issued to indicate the completion of the major loop. This process is

illustrated in the following figures.

Figure 26-Destination address after the transfer has been completed

DMA transfer introduction example

18 Freescale Semiconductor

Figure 27-Registers status after the transfer has been completed

By altering certain parameters like address adjustments or offsets the way in which the data will be

transferred will change. For instance if the destination address adjustment (DLASTSGA) happened to be zero,

once the major loop has finished the destination address will remain unaltered and the next peripheral

request will write the following 5 bytes where the previous write left it. This is only for demonstration’s sake,

because if the process continues it might reach a space in memory that is not allocated for data storage and

some data corruptions might occur.

DMA transfer introduction example

19 Freescale Semiconductor

Figure 28-Example 1 with DLASTSGA = 0

6.2 Example 2
By choosing DMA_ONE_ELEMENT as the initialization parameter in main.h, init_DMA_1Elem will be called and

the registers initialization for the single byte 5 minor loops example will proceed.

The registers initialization can be seen in the following figure.

Figure 29-DMA channel 0 registers

As can be seen in the figure the source address (SADRR) and destination address (DADRR) matches those of

the source and destination arrays, the number of bytes to be transferred per minor loop is 1 (NBYTES), there is

a source offset address of 2 bits therefore the values that will be read in the array are 0, 2, 4, 6 and 8, this

values will be written with an offset of one bit and only one minor loop will be executed per major loop (CITER

= 1).

Once the peripheral request has been activated (SW1 in Port C in this case) the transfer process will begin, the

source address will be read and its contents loaded to the destination address until NBYTES equals 0 since

NBYTES equals 1 just one minor loop will be executed and CITER will be decreased as can be seen in figure 30

DMA transfer introduction example

20 Freescale Semiconductor

at the end of the first minor loop (transfer) CITER now holds the value 4, both source- and destination- address

had been updated with their corresponding offsets.

Figure 30-First minor loop

Figure 31-Register status after first minor loop

The process continues for the next 3 elements before CITER reaches 0, as can be seen in the following figures.

DMA transfer introduction example

21 Freescale Semiconductor

Figure 32-Fourth minor loop

Figure 33-Register status after the fourth minor loop

For the last minor loop CITER finally reaches zero, both source- and destination-address have been adjusted

for the following major loop, CITER has been updated with the value in BITER and the done flag in the control

and status register has been activated. This process can be verified in the following figures.

Figure 34-Last minor loop

DMA transfer introduction example

22 Freescale Semiconductor

Figure 35- Register status after last minor loop

If the data transfer is desired to be in a different order, for instance 8, 6, 4, 2 and 0 instead of 0, 2, 4, 6 and 8,

this could be achieved only by modifying the source address in order to start at the address of the desired byte

(8 in this case) and modifying the source address offset sign, so that it diminishes the source address by 2 bits

per basic transfer.

Figure 36-Source array

To achieve this the source-address must match the address of number 8 in the array this can be done by

adding 8 to the source address that is being currently used. The source offset (SOFF) register must be set to -2

bits and the source-address adjustment is set to 10 bits in order to reestablish the initial value of the source

address. This can be verified in the following figure.

DMA transfer introduction example

23 Freescale Semiconductor

Figure 37-Register status for Example 2 modification

The results of this modification are being shown in the following figure.

Figure 38-Descending data movement

DMA transfer introduction example

24 Freescale Semiconductor

7 Appendix

The following appendix contains the code that was used for the implementation example:

main.c

#include "derivative.h" /* include peripheral declarations */
#include "dma.h"
#include "main.h"

int main(void)
{
 int i; // Delay variable

 // Enable clock and MUX for LEDs
 SIM_SCGC5 |= SIM_SCGC5_PORTC_MASK;
 PORTC_PCR9 = PORT_PCR_MUX(1);
 PORTC_PCR10 = PORT_PCR_MUX(1);

 // Set LEDs as outputs
 GPIOC_PDDR |= (1 << 10) | (1 << 9);
 GPIOC_PCOR |= (1 << 9); // Turn off Green LED D9
 GPIOC_PSOR |= (1 << 10); // Turn on Blue LED D10

 // Set SW1 as peripheral for DMA request on falling edge
 PORTC_PCR1 |=PORT_PCR_MUX(0x01) |
PORT_PCR_IRQC(0x02)|PORT_PCR_PE_MASK|PORT_PCR_PS_MASK;

 // Select size of data transfer
 #if (TEST)
 init_DMA_1Elem();
 #else
 init_DMA_1Trans();
 #endif

 while(1)
 {
 // Delay
 for(i = 0; i < 500000; i++)
 asm("nop");

 // Toggle Green LED D9 and Blue LED D10
 GPIOC_PTOR = (1 << 9) | (1 << 10);
 }
}

DMA transfer introduction example

25 Freescale Semiconductor

main.h

#ifndef MAIN_H_
#define MAIN_H_

#define DMA_ONE_TRANSACTION 0 // 5 bytes per DMA request
#define DMA_ONE_ELEMENT 1 // 1 element per DMA request

// Select option
#define TEST DMA_ONE_ELEMENT

#endif /* MAIN_H_ */

dma.c

#include "dma.h"
#include "derivative.h"

unsigned char g8bSource[10] = {0,1,2,3,4,5,6,7,8,9};
unsigned char g8bDestiny[10] = {1,0,0,0,0,0,0,0,0,0};

/* init_DMA_1Trans
 *
 * Initializes channel 0 DMA registers in order to perform 1 data transfer of 5 bytes
 * and sets Port C as DMA request source
 *
 * */
void init_DMA_1Trans(void)
{
 // Enable clock for DMAMUX and DMA
 SIM_SCGC6 |= SIM_SCGC6_DMAMUX_MASK;
 SIM_SCGC7 |= SIM_SCGC7_DMA_MASK;

 // Enable Channel 0 and set Port C as DMA request source
 DMAMUX_CHCFG0 |= DMAMUX_CHCFG_ENBL_MASK | DMAMUX_CHCFG_SOURCE(51);

 // Enable request signal for channel 0
 DMA_ERQ = DMA_ERQ_ERQ0_MASK;

 // Set memory address for source and destination
 DMA_TCD0_SADDR = (uint32_t)&g8bSource;
 DMA_TCD0_DADDR = (uint32_t)&g8bDestiny;

 // Set an offset for source and destination address
 DMA_TCD0_SOFF = 0x02; // Source address offset of 2 bits per transaction
 DMA_TCD0_DOFF = 0x01; // Destination address offset of 1 bit per transaction

 // Set source and destination data transfer size
 DMA_TCD0_ATTR = DMA_ATTR_SSIZE(0) | DMA_ATTR_DSIZE(0);

 // Number of bytes to be transfered in each service request of the channel
 DMA_TCD0_NBYTES_MLNO = 0x05;

DMA transfer introduction example

26 Freescale Semiconductor

 // Current major iteration count (a single iteration of 5 bytes)
 DMA_TCD0_CITER_ELINKNO = DMA_CITER_ELINKNO_CITER(1);
 DMA_TCD0_BITER_ELINKNO = DMA_BITER_ELINKNO_BITER(1);

 // Adjustment value used to restore the source and destiny address to the initial
value
 DMA_TCD0_SLAST = -0x0A; // Source address adjustment
 DMA_TCD0_DLASTSGA = -0x05; // Destination address adjustment

 // Setup control and status register
 DMA_TCD0_CSR = 0;
}

/* init_DMA_1Elem
 *
 * Initializes channel 0 DMA registers in order to perform 5 data transfers of 1 byte
each
 * and sets Port C as DMA request source
 *
 * */
void init_DMA_1Elem(void)
{

 // Enable clock for DMAMUX and DMA
 SIM_SCGC6 |= SIM_SCGC6_DMAMUX_MASK;
 SIM_SCGC7 |= SIM_SCGC7_DMA_MASK;

 // Enable Channel 0 and set Port C as DMA request source
 DMAMUX_CHCFG0 |= DMAMUX_CHCFG_ENBL_MASK | DMAMUX_CHCFG_SOURCE(51);

 // Enable request signal for channel 0
 DMA_ERQ = DMA_ERQ_ERQ0_MASK;

 // Set memory address for source and destination
 DMA_TCD0_SADDR = (uint32_t)&g8bSource;
 DMA_TCD0_DADDR = (uint32_t)&g8bDestiny;

 // Set an offset for source and destination address
 DMA_TCD0_SOFF = 0x02; // Source address offset of 2 bits per transaction
 DMA_TCD0_DOFF = 0x01; // Destination address offset of 1 bit per transaction

 // Set source and destination data transfer size
 DMA_TCD0_ATTR = DMA_ATTR_SSIZE(0) | DMA_ATTR_DSIZE(0);

 // Number of bytes to be transfered in each service request of the channel
 DMA_TCD0_NBYTES_MLNO = 0x01;

 // Current major iteration count (5 iteration of 1 byte each)
 DMA_TCD0_CITER_ELINKNO = DMA_CITER_ELINKNO_CITER(5);
 DMA_TCD0_BITER_ELINKNO = DMA_BITER_ELINKNO_BITER(5);

DMA transfer introduction example

27 Freescale Semiconductor

 // Adjustment value used to restore the source and destiny address to the initial
value
 DMA_TCD0_SLAST = -0x0A; // Source address adjustment
 DMA_TCD0_DLASTSGA = -0x05; // Destination address adjustment

 // Setup control and status register
 DMA_TCD0_CSR = 0;
}

dma.h

#ifndef DMA_H_
#define DMA_H_

/* Prototypes */
void init_DMA_1Trans(void);
void init_DMA_1Elem(void);

#endif /* DMA_H_ */

8 References

 Reference manual K20 sub-family

 For a deeper and more extensive treatise of the topics please refer to Application Note 4522

http://www.freescale.com/files/microcontrollers/doc/ref_manual/K20P120M100SF2RM.pdf
http://cache.freescale.com/files/microcontrollers/doc/app_note/AN4522.pdf

