NXP Semiconductors Document Number: MQXRN
Release Notes Rev. 5.0, 12/2016

NXP MQX™ RTOS 5.0 Release Notes

(Revised Dec 2016)

1 Introduction

Contents

This document is the Release Notes for the MQX™ 2 Introduction |
RTOS version 5.0. The software is built based on the 2 TIOQUCHON e
MQX RTOS version version 4.2. It includes the full set of 3 What IS NeW. .eoiiiiiiiiiiiieiicecee et 3
RTOS services and a standard set of peripheral drivers. 4 Release Content.cceceevveerieenieniieenienieenieeieens 5

™ . . L
NXP MQXT™ RTOS is released for specific NXP Kinetis 5 MQX RTOS Release OVErview........cceeeveeeveeeneeennen. 7
and i.MX processors. Support for other NXP processors
such as Vybrid, ColdFire, and Power Architecture 6 Known Issues and Limitations............ccccceevevenenne. 15

processor families is available upon request.

1.1 Development
Tools
Requirements

NXP MQX RTOS was compiled and tested with these
development tools:

» CodeWarrior Development Studio for
Microcontrollers version 10.6.4
* Support available for Kinetis devices
* See build projects in the cw10gcc
subdirectory
» Makefile build option (Kinetis GCC only):
TOOL=cw10gcc

~ Embedded
Access Inc

|
L |

Introduction

* IAR Embedded Workbench for ARM® Version 7.8
* Support available for Kinetis devices
+ See build projects in iar subdirectories
» Makefile build option: TOOL=iar

* DS-5 Development Studio Version 5.25
* Support available for i.MX devices
+ See build projects in the ds5 subdirectory
» Makefile build option: TOOL=ds5

1.2 System Requirements

System requirements are based on the requirements for the development tools. There are no special host system requirements
for hosting the NXP MQX RTOS distribution itself.

Minimum PC configuration:

* As required by Development and Build Tools

Recommended PC configuration:

* 2 GHz processor — 2 GB RAM - 2 GB free disk space

Software requirements:

¢ OS: Windows® 7 or later

1.3 Target Requirements

This version of NXP MQX RTOS supports the following evaluation boards. There are no special requirements for the target
hardware other than what each board requires for its operation (power supply, cabling, jumper settings, etc.).

Evaluation boards supported:

* Kinetis
+ TWR-K60D100M Development Kit
* TWR-K60F120M Development Kit
+ TWR-K64F120M Development Kit
+ TWR-K70F120M Development Kit

 i.MX
e 1.MX6 Sabre Board
e 1.MX7 Sabre Board

1.4 Set up installation instructions and technical support

Unzip the provided package to your hard drive. There is no prescribed folder to install that package to but all project files
have been set for an installation to the C: \Freescale\Freescale MQOX 5 0 directory. It is recommended to install MQX
RTOS to a path without spaces to avoid build problems with certain tools.

NXP MQX™ RTOS Release Notes, Rev 5.0 12/2016
2 NXP Semiconductors

4
What is New
NOTE
Since version 4.0, the pre-built libraries are not distributed in the MQX RTOS release
package, which makes it necessary to compile MQX RTOS libraries for a particular
board before the first use. For detailed build instructions, see the Building the MQX
RTOS Libraries section in Getting Started with Freescale MOX™ RTOS.

For a description of available support including commercial support options, click here.

For building procedures, see Getting Started with Freescale MOX™ RTOS (document MQXGSRTOS).

2 What Is New

This section describes the changes and new features implemented in this release.

New Features:

2.2 Added in version 5.0

New Features:
* RTCS TCP/IP Stack now includes IPv6 protocols including:
e DHCP Client v6 client
e Telnet Client IPv6
e TFTP Client/Server IPv6

* MQTT protocol has been added

* REST support has been added to HTTP Web Server

* A lightweight JSON Parser has been added

* ¢cJSON Parser / Framer has been ported and added

* A lightweight XML Parser / Framer has been added

+ zIlib Compression / Decompression library has been added.

MISRA Coding Rules:
The MQX kernel code was updated to reflect the following Motor Industry Software Reliability Association (MISRA-C:2012)
rules:

Misra Rule 2.4: A project should not contain unused tag declarations

Misra Rule 2.7: There should be no unused parameters in functions

Misra Rule 3.1: The character sequences /*and // shall not be used within a comment

Misra Rule 4.9: Removed use of obfuscating macros

Misra Rule 5.2: Identifiers declared in the same scope and name space shall be distinct

Misra Rule 5.3: An identifier declared in an inner scope shall not hide an identifier declared in an outer scope
Misra Rule 7.2: A “u” or “U” suffix shall be applied to all integer constants that are represented in an unsigned type
Misra Rule 7.3: The lowercase character “I” shall not be used in a literal suffix

Misra Rule 7.4: Functions that take const pointers have now been declared as such

Misra Rule 8.2: Function types shall be in prototype form with named parameters

Misra Rule 8.4: A compatible declaration shall be visible when an object or function with external linkage is defined
Misra Rule 8.7: Functions and objects should not be defined with external linkage if they are referenced in only one
translation unit

e Misra Rule 8.8: The static storage class specifier shall be used in all declarations of objects and functions that have
internal linkage

NXP MQX™ RTOS Release Notes, Rev 5.0 12/2016
NXP Semiconductors 3

4
What is New

Misra Rule 12.1: The precedence of operators within expressions should be made explicit

Misra Rule 12.3: The comma operator should not be used

Misra Rule 14.3: Controlling expressions shall not be invariant

Misra Rule 15.4: There should be no more than one break or goto statement used to terminate any iteration statement
Misra Rule 15.5: Many functions have been refactored to have a single point of exit at the end

Misra Rule 15.7: Allif ... else if constructs shall be terminated with an else statement

Misra Rule 17.3: A function shall not be declared implicitly

Misra Rule 17.7: The value returned by a function having non-void return type shall be used

Misra Rule 20.1: Modified order of includes where possible per

Misra Rule 20.7: Literals defined in macros are now enclosed in parentheses

General Clean up and Enhancements:
e Added option to run Ethernet driver as a task.
e Added “named” Iwgpio pins. Allows Iwgpio pins to be read/written from the shell.32 bit constants have been suffixed
with ‘L.

e Removed legacy comments from code.

e Applied consistent formatting to code.

e Code has been refactored to change (var == const) to (const == var).

e Refactored gpio_init to consistently return either MQX OK or IO_ERROR.

e Added generic character queue component (_charq_init, charq enqueue, charq enqueue head, charq dequeue,
_charq_dequeue tail, charq get size, charq is empty, charq is not empty, charq is full, charq is not full).
Serial driver now uses character queue component.

e Added /wevent is valid() function.

e Added mutex_is_valid() function.

o Added functions [wmsgq size(), Iwmsgq is_empty(), Iwmsgq is_full().

e Added function time_set hw_reference().

o Added tad time(), tad task _summary() and _tad task() functions.

e Added function _int is_vector valid() to check if interrupt vector can be handled by MQX.

o Added functions _mqx_get kernel _component_handle(), mqx_set _kernel _component handle().

e Refactored MEM driver.

e Refactored LWGPIO driver for Kinetis.

e Refactored event, interrupt, ipc, klog, log, lwmsgq, lwevent, lwsem, Iwtimer components.

e Refactored PIPE driver.

e Refactored RTC driver

e Refactored TFS driver.

e 64 bit constants have been suffixed with ‘LL’.

e Main now returns the result of calling _mgx().

e The options MQX_CHECK_FOR_ERRORS, MQX_CHECK_MEMORY_ ALLOCATION ERRORS, and

MQX CHECK MEMORY ALLOCATION_ ERRORS have been deprecated. MQX now always checks for errors,
etc.
e The option MQX RUN TIME ERR CHECK ENABLE has been deprecated.
e The options MQX USE INLINE MACROS and MQX FORCE USE INLINE MACROS have been removed.
The option to remove the MQX counter (MQX KD HAS COUNTER) has been deprecated. MQX always has a
counter.
The option to remove a task parent (MQX_TD_HAS PARENT) has been deprecated. Tasks always have a parent.
The option MQX_USE 32BIT_TYPES has been deprecated, since only 32-bit processors are supported.
The option MQX GUERRILLA INTERRUPTS EXIST has been removed, as it was not used.
The option to generate a crippled evaluation has been removed.
File system parameters are now configurable
IOCTL codes have been unified.
MQX USE IPC and MQX IS MULTIPROCESSOR have been combined to MQX IS MULTIPROCESSOR.
Removed support for MQX Lite.
Removed support for MQX USE 32BIT MESSAGE QIDS.
Removed mqgx_assert functionality.

NXP MQX™ RTOS Release Notes, Rev 5.0 12/2016
4 NXP Semiconductors

Removed MQX MONITOR_TYPEs and associated variable.

Replaced TRUE and FALSE with true and false.

Simplified TICK _STRUCT, tick struct always has 64 bits.

Removed unnecessary PACKED struct directives from core mutex context structures.
Removed all register keywords.

Bug Fixes

_io_get_handle() function will now always return processor io handles when called from an ISR.

_io_set_handle() function will not allow task io handles to be set when called from an ISR.
MQX did not check result of /wsem_wait() on internal semaphores. It does now.
Resolved issues between include files for legacy and fsl can driver.

Allow fsl can driver to support multiple devices.

Init_task() now checks for errors and will terminate MQX if an error occurs.

10debug driver did not release resources on failed install

10debug driver held semaphore on failed open.

10debug driver did not check return value of _/wsem_wait().

Many ENET functions did not check input parameters for validity.

ENET driver did not check return value of [wsem_wait().

MEM driver waits until no other tasks are accessing the mem driver before it is removed.
Fixed bug in kinetis interrupt driver.

Many drivers did not release resources if driver failed to install

3 Release Content

Table 1 lists the contents of this release:

Table 1. Release Contents

Release Content

Deliverable Location

Configuration Files and Mass-Build Projects <install dir>/config/...
Configuration and mass-build project for all supported boards .../config/<board>

MQX PSP, BSP Source Code, and Examples <install dir>/mgx/...

MQX PSP source code for Kinetis/Vybrid ARM Cortex-M core

./mgx/source/psp/cortex m

MQX PSP source code for Vybrid ARM Cortex-A core

./mgx/source/psp/cortex_a

MQX PSP build projects

./mgx/build/<compiler>/psp <board>

MQ@X BSP source code

./mgx/source/bsp/<board>

MQX BSP build projects

./mgx/build/<compiler>/bsp <board>

RTCS source code and examples <install dir>/rtcs/...

RTCS source code .../rtcs/source

RTCS build projects .../rtcs/build/<compiler>/rtcs_<board>
RTCS example applications .../rtcs/examples

MFS source code and examples <install dir>/mfs/...

MFS source code .../mfs/source

MFS build projects .../mfs/build/<compiler>/mfs <board>

MFS example applications .../mfs/examples

Table continues on the next page...

NXP MQX™ RTOS Release Notes, Rev 5.0 12/2016

NXP Semiconductors

Release Content

Table 1. Release Contents (continued)

USB Host driver source code and examples

<install dir>/usb/host/...

USB Host source code and class drivers

.../usb/host/source

USB Host build projects

.../usb/host/build/<compiler>/

USB Host example applications (HID, MSD, HUB)

.../usb/host/examples

USB Device drivers source code and examples

<install_dir>/usb/device/...

USB Device source code

.../usb/device/source

USB Device build projects

.../usb/device/build/<compiler>/

USB Device example applications (HID, MSD, CDC, PHDC)

.../usb _v2/device/examples

USBv2 Host and Device driver code and examples

<install dir>/usb v2/...

USBV2 Source code

.../usb _v2/usb core

USBv2 example applications

.../usb_v2/example

Shell Library Source Code

<install dir>/shell/...

Shell source code

.../shell/source

Shell build projects

.../shell/build/<compiler>/
shell <board>

Build tools plug-ins

<CodeWarrior dir>/...

MFS on FFS example

ffs/examples/mfs nandflash

IAR Task Aware Debugging plugin (TAD)

.../tools/iar_ extensions/

PC Host tools

<install dir>/tools

BSP cloning wizard

../tools/BSPCloningWizard/
BSPCloningWizard.exe

TFS Make Utility

../tools/mktfs.exe

Check for Latest Version tool

../tools/webchk.exe

AWK interpreter (GNU General Public License)

../tools/gawk.exe

SNMP code generation scripts

../tools/snmp/*.awk

Timing HTML report tool (for mgx/examples/benchmrk/timing)

../tools/timing.exe

Code size HTML report tool (for mgx/examples/benchmrk/codesize)

../tools/codesize.exe

TAD string and configuration files

../tools/tad

Demo Applications

<install dir>/demo

Various demo applications demonstrating complex MQX
RTOS functionalities.

../demo/. ..

Documentation

<install dir>/doc

Drivers, USB etc.

User Guides and Reference Manuals for MQX RTOS, RTCS, MFS, I/O

../doc

<compiler> can be IAR, CodeWarrior GCC or Kinetis Design Studio GCC

NXP MQX™ RTOS Release Notes, Rev 5.0 12/2016

NXP Semiconductors

e
MQX RTOS Release Overview

This figure shows the NXP MQX RTOS directories installed to the user's host computer (subdirectories not shown for
clarity):

4 | magx50
. config
. demo
. doc
. ffs
:lib
. mfs
. mgx
. rtcs
. shell
. tools
. ush
. usb_v2

Figure 1. NXP MQX RTOS Directories

4 MQX RTOS Release Overview

The NXP MQX RTOS is intended for specific Kinetis and i.MX processors. The release consists of the following
libraries:

* MQX RTOS real time kernel and system components
TCP/IP networking stack (RTCS)

* FAT file system (MFS)

+ Shell

* NAND flash file system (FFS)

» USB Host and Device stacks

* Platform and Board support packages

* 1/O drivers

This release contains the following components and I/O drivers, however drivers will only be supported for processors that
have the corresponding circuitry.

» UART Serial driver (polled and interrupt driven version)
» I2C driver (polled and interrupt driven version)
* SPI driver

+ LWGPIO - light weight GPIO

* Audio driver 12S or SAI

* QuadSPI Driver

* FlashX Flash diver

* NAND Flash diver

+ ESDHC driver

* Compact Flash Card driver

* SD Card driver (SPI or SDHC based)

+ RTC/IRTC Real Time Clock driver

* TSS Touch Sensing driver

NXP MQX™ RTOS Release Notes, Rev. 5.0 12/2016

NXP Semiconductors 7

e
MQX RTOS Release Overview

e DCU driver
* FlexCAN, msCAN
e Ethernet Driver

41 MQX RTOS PSP

This release of NXP MQX RTOS contains support for specific ARM Cortex-M Platform Support Packages. Contact
mgxsales@nxp.com for ports to other NXP platforms from the Kinetis, .MX, ColdFire, Power Architecture, Qorivva, and
QorlQ processor families.

The platform-specific code from /mgx/source/psp/<platform> is built together with the generic MQX core files. These
two parts form a static library generally referred to as a Processor Support Packages (PSPs) which enables the target
application to access RTOS features.

4.2 MQX RTOS BSPs

NXP MQX RTOS release includes Board Support Packages (BSPs) for the boards mentioned in Target
Requirements.

The board-specific code from /mgx/source/bsp/<board> is built together with I/O driver files from /mgx/source/io.
These two parts form a static library generally referred as a BSP. The functions included in this library enable the board and
operating system to boot up and use the I/O driver functions.

The following section describes drivers supported by the MQX BSPs.

4.3 1/O drivers supported

The following list describes 1/O drivers available in the latest MQX RTOS release. The drivers are an optional part of the
MQX RTOS and their installation can be enabled or disabled in the BSP startup code. To provide the optimal code and RAM
application size, most of the drivers are disabled by default in the /config/<board>/user config.h file. The drivers
required by demonstration applications (in the /demo folder) are enabled by default.

See MOX™ RTOS 1/O Drivers User's Guide (document MQXIOUG) for details.

NOTE
When BSPCFG _ driver-enabling macros are missing in the /config/<board>/
user config.h file, the default setting is taken from the BSP-specific header file
located in the /mgx/source/bsp/<board>/<board>.h. The user decides whether to
enable the automatic installation of the driver in the BSP startup code (by enabling the
appropriate BSPCFG_ENABLE XXX macro in the user config.h), or manually in
the application code.

TFS - Trivial Filesystem

Trivial Filesystem is used as a simple read-only file repository instead of the fully featured MFS. TFS is not installed in the
BSP startup code. Applications must initialize the TFS and pass a pointer to the filesystem data image. The mktfs tool is
available (both as executable and Perl script) to generate the image from the existing directory structure. The RTCS HTTP
example demonstrates the use of TFS.

12C 1/0O Driver

This driver supports the I12C interface in both master and slave mode. If enabled in user configuration, the I12C driver is
installed during the BSP startup code as the "i2cx" in polled mode and as the "ii2cx" in interrupt mode where "x" stands for a
specified I2C channel number. Example applications are provided in the MQX RTOS source tree for both master and slave
mode.

NXP MQX™ RTOS Release Notes, Rev 5.0 12/2016
8 NXP Semiconductors

e
MQX RTOS Release Overview

12S and SAI 1I/0O Driver

This driver supports an 128 interface in a master mode. If enabled in user configuration, the I12S device driver is installed
during the BSP startup code as “i2s0:”. An example application is provided in the MQX RTOS source tree.

SPI 1/0 Driver

This driver supports the operation master mode. If enabled in user configuration, the SPI device drivers are installed during
the BSP startup code as “spi0:” (or “spiX:” where X is index of the SPI module used). The SPI driver was significantly
rewritten in MQX RTOS 4.0, so that there is no distinct interrupt or polled driver type. See MOQX™ RTOS I/O Drivers User's
Guide (document MQXIOUG) for details. On Kinetis platforms, the driver uses DMA to function.

QuadSPI I/O Driver

This driver provides a C language API to the QuadSPI peripheral module. If enabled in user configuration, the QuadSPI
device drivers are installed during BSP startup code as "qspi0:" (or "gspiX:" where X is index of QSPI module used). See
MQX™ RTOS I/O Drivers User's Guide (document MQXIOUG) for details.

FlexCAN Driver

This driver provides a C language API to the FlexCAN peripheral module. An example application is provided in the MQX
RTOS source tree.

msCAN Driver

This driver provides a C language API to the msCAN peripheral module. An example application is provided in the MQX
RTOS source tree.

RTC Driver

This driver provides a C language API to the Real Time Clock peripheral module and functions, and synchronizes the clock
time between RTC and MQX RTOS systems. If enabled in user configuration, the RTC module is initialized and MQX
RTOS time is renewed automatically during BSP startup.

Serial I/0O Driver

The standard SCI (UART) driver supports both polled and interrupt-driven modes. If enabled in user configuration, the serial
devices are installed as “ttya:”, “ttyb:” and “ttyc:” (polled mode) and “ittya:”, “ittyb:” and “ittyc:” (interrupt mode)
automatically during BSP startup.

LWGPIO I/O Driver

This the light weight GPIO driver which provides a C language API to all GPIO ports available on a particular device.

ADC Driver (obsolete)

This I/O driver provides a uniform interface to ADC channels. This driver has been replaced by LWADC 1/O driver.
LWADC 1/O Driver

This driver provides a C language API to ensure a uniform access to ADC peripheral basic features.

Flash 1/0 Driver

This I/O driver provides a standard interface to either internal or external Flash memory. If enabled in user configuration, the
Flash driver (called FlashX) is installed as “flashx:” device automatically by the BSP startup code. Note that “flash0”,
“flash1” etc. device names are used for FlashX devices installed for external Flash memory. For devices with internal Flash
memory, the FlashX driver depends on several parameters passed in a form of global symbols from an application or from a
Linker Command File. For more information, see driver installation code in the BSP and an example application provided in
the MQX RTOS source tree.

ENET Driver

The low-level Ethernet driver is used by the RTCS TCP/IP software stack. The driver is initialized directly by the application
before RTCS is used for the first time. The RTCS Shell and HTTP examples demonstrate the use of this driver.

NXP MQX™ RTOS Release Notes, Rev. 5.0 12/2016

NXP Semiconductors 9

e
MQX RTOS Release Overview

PCCard 1/0 Driver

This I/O driver provides a low-level access to the PCCard functionality by using Flexbus and CPLD circuit. The CPLD code
can be found in the <install dir>/mgx/source/io/pccard/<card name>. If enabled in the user configuration, the
PCCard device driver is installed as “pccarda:” automatically during the BSP startup.

PCFlash 1/0 Driver

The Compact Flash Card 1/O driver is installed on top of the PCCard low-level driver and enables standard disk drive
operations. The MFS file system can be installed on top of this device. If enabled in user configuration, the PCFlash device
driver is installed as “pcflasha:” automatically during the BSP startup.

SD Card 1/0 Driver

This I/O driver implements a subset of the SD protocol v2.0 (SDHC). The driver can use either the MQX RTOS SPI driver or
the MQX RTOS (e)SDHC driver to communicate with the SD Card device. Install the driver at the application level, and pass
a lower-layer driver handle to it. The MFS file system can be installed on top of this device.

(E)SDHC 1I/O Driver

This I/O driver covers the (¢)SDHC peripheral module and provides low-level communication interface for various types of
cards including SD, SDHC, SDIO, SDCOMBO, SDHCCOMBO, MMC, and CE-ATA.

Resistive Touch-Screen Driver
This I/O driver accesses the ADC and GPIO modules to detect touch events and acquire touch coordinates on a resistive
touch-screen unit.

I/ODebug Driver

This driver redirects 1/O functions, such as printf, to a debug probe-based communication channel. The CodeWarrior 10, IAR
EWARM, or Keil pVision debugger consoles are supported. See Getting Started with Freescale MOX™ RTOS for details
about the setup and use of this feature.

HWTimer Driver

This driver provides a C language API for uniform access to the features of various HW timer modules such as PIT and
SysTick.

DMA Driver
This driver provides the C language API and essential functionality to control the DMA peripheral module.
I/O Expander Driver

This driver controls an off-chip I/O expander device and provides a convenient interface for individual pin handling.
Currently, it only supports the MAX7310 device.

4.4 Default I/O Channel

An I/0O communication device installed by MQX BSP can be used as the standard I/O channel. See Getting Started with
Freescale MOX™ RTOS for the default console setting for each supported development board.

4.5 MQX RTOS PSP and BSP Directory Structure

RTOS files are located in the mgx subdirectory of the NXP MQX RTOS installation. The directory structure is shown in this
image.

NXP MQX™ RTOS Release Notes, Rev 5.0 12/2016
10 NXP Semiconductors

e
MQX RTOS Release Overview

4) mox
4 . build Project files to build BSP and PSP libraries
J bat Post build batch files used to copy header files to the output (/lib) folder
cwllgcc CodeWarrior 10 project files (uses GCC Compiler)
i IAR Embedded Workbench project files
lint
. examples MQX example projects
4 source
bsp BSP source code
fio
, include
io 10 drivers source code
kernel MQX kernel source code - generic to
psp Processor specific source code
, string
tad

Figure 2. MQX PSP and BSP Directory Structure

4.6 MFS for MQX RTOS

MES files from the /mfs/source directory are built into a static library. When linked to the user application, the MFS
library enables the application to access FAT12, FAT16, or FAT32-formatted drives.

4.7 RTCS for MQX RTOS (with optional IPv6 add-in)

RTCS files from the /rtcs/source directory are built into a static library. When linked to the user application, the RTCS
library enables the application to provide and consume network services of the TCP/IP protocol family.

The MQX RTOS RTCS stack is IPv6 ready with respect to IPv6 Ready Logo certification and has passed all required tests.
IPv6 support is available as a separate update package available from Freescale. The IPv6 protocols for RTCS were previously
separately licensed for a fee. However, starting with MQXvS they are included with the MQX package.

4.8 USB Host for MQX RTOS

NXP MQX RTOS release includes the USB Host drivers and USB class drivers. The USB HDK (Host Development Kit)
files from the /usb/host/source directory are built into a static library. When linked to the user application, the USB
HDK library enables the application to communicate with various USB devices attached on the USB bus.

The HDK contains the following USB class drivers:

» USB Hub class used to attach multiple devices to a single host port. If enabled at the application level, the HUB
support is fully transparent. Only the user application needs to be modified to handle multiple USB devices
simultaneously. A Keyboard/Mouse example application is provided.

* Human-interface Class (HID) used to access mouse, keyboard, and similar devices.

* Mass storage device (MSD) Class used to access USB drives.

» Communication Device Class (CDC) used as a serial communication device implementing virtual “tty” ports.

* Audio Class.

* Basic Printer Class.

NXP MQX™ RTOS Release Notes, Rev. 5.0 12/2016

NXP Semiconductors 11

e
MQX RTOS Release Overview

4.9 USB Device for MQX RTOS

NXP MQX RTOS release includes the USB Device drivers and example applications implementing various USB devices.
The USB DDK (Device Development Kit) files from the /usb/device/source directory are built into a static library.
When linked to the user application, the USB DDK library enables the application to act as a USB device supporting one or
more of the following classes:

» HID (mouse functionality demonstrated)

* MSD (internal RAM area accessed as mass storage device)
* CDC COM (virtual serial line implementation)

* CDC NIC (virtual network interface card implementation)
» PHDC (medical applications)

* Audio

410 MQX RTOS Shell

The shell and command-line handling code is implemented as a separate library called Shell.

4.11 Changing the MQX RTOS source files

The NXP MQX RTOS is distributed in source code form. Do not modify any of the source files other than the compile- time
configuration files. This recommendation applies to all files under “source” and “build” sub-directories in all MQX RTOS,
RTCS, MFS, USB, and other core components folders.

If you are creating custom board support packages or adding additional I/O drivers, add the new files and subdirectories to
the following directories:

<install dir>/mgx/source/bsp
<install dir>/mgx/source/io

4.12 Building the MQX RTOS libraries
For more details about building MQX RTOS libraries and applications, see Getting Started with Freescale MOX™ RTOS.

When using MQX RTOS for the first time and making changes to the compile-time user configuration file or MQX kernel
source files, rebuild MQX RTOS libraries to ensure that the changes are propagated to the user applications.

4.13 Example applications

Demo applications are in this directory:

<install dir>/demo
The examples are written to demonstrate the most frequently used features of the NXP MQX RTOS.

In addition to these demo applications, there are simpler example applications available in MQX RTOS, RTCS, MFS, and
USB directories.

The tables summarize all demo and example applications provided in this release.

NXP MQX™ RTOS Release Notes, Rev 5.0 12/2016
12 NXP Semiconductors

MQX RTOS Release Overview

Table 2. MQX Examples

Name Description

benchmrk Contains benchmarks codes for timing and code size for different components.

bootloader Contains basic functions for boot loader application.

can/flexcan Shows usage of FlexCAN API functions to transmit and receive CAN frames.

cplus Shows simple C++ application.

demo Shows MQX RTOS multitasking and inter-process communication using standard objects like
semaphores, events, or messages. See lwdemo for the same example using the lightweight
objects.

event Simple demonstration of MQX RTOS events.

flashx Demonstration of FlashX driver functionality.

flashx_swap A demonstration of FlashX driver's swap and reset functionality.

hello A trivial Hello World application using a single task.

hello2 A trivial Hello World application spread across two tasks.

hwtimer Shows usage of HW timer driver abstraction. Demonstrates how to initialize HW timer for
various modules, set frequency, callback, start, and stop the timer.

i2¢c Shows how to read/write data from/to external EEPROM. Additional HW setup is needed.

i2s_demo Demonstrates use of audio 12S driver. TWR-AUDIO card is needed to run this example.

io Demonstrates use of an alternate UART port as a console output.

isr Shows how to install an interrupt service routine and how to chain it with the previous handler.

klog Shows kernel events being logged and later the log entries dumped on the console.

log Shows the application-specific logging feature.

lowpower Shows how to switch between several predefined low-power operation-modes.

lwadc Shows usage of the ADC driver, sampling analog values from the two ADC channels.

lwdemo Same as the "demo" application, but implemented using lightweight components only.

lwevent Simple demonstration of MQX RTOS lightweight events.

Iwlog Simple demonstration of MQX RTOS lightweight log feature.

lwmsgq Simple demonstration of MQX RTOS lightweight inter-process messaging.

lwsem Simple demonstration of MQX RTOS task synchronization using the lightweight semaphore
object.

msg Simple demonstration of MQX RTOS inter-process message passing.

mutex Simple demonstration of MQX RTOS task synchronization using the mutex object.

nill Even simpler than Hello World. A void application which may be used for copy/paste to start
custom application.

gspi Demonstrates basic operation of QuadSPI driver, interfacing to QSPI flash.

rtc Shows the Real Time Clock module API. Demonstrates how to synchronize RTC and MQX
RTOS time and how to use RTC alarm interrupts.

sem Simple demonstration of MQX RTOS task synchronization using the semaphore object.

taskat Shows how task can be created within statically allocated memory buffer (avoid heap
allocation for task stack and context).

taskq Shows custom task queue and how the queue can be suspended and resumed.

test Shows the self-testing feature of each MQX RTOS component.

Table continues on the next page...

NXP MQX™ RTOS Release Notes, Rev. 5.0 12/2016

NXP Semiconductors

13

e
MQX RTOS Release Overview

tfs Shows the usage of ROM-based Trivial File System in an MQX RTOS application.

timer Simple demonstration of MQX RTOS timer component.

watchdog Simple demonstration of the MQX RTOS task timeout detection using the kernel (not to be
confused with watchdog) component.

Table 3. RTCS Examples

Name Description
eth_to_serial Simple character passing between the UART console and the telnet session. Shows custom
"lightweight" telnet.
httpsrv Simple web server with CGl-like scripts and web pages stored in internal flash.
shell Shell command line providing commands for network management.
snmp SNMP protocol example providing microprocessor state information.

Table 4. MFS Examples

Name Description

cfcard Console shell-based example showing the MFS filesystem used with and CFCard storage.

mfs_ftp RTCS FTP demo accessing the MFS filesystem mounted on the USB mass storage. For an
FTP example without the USB functionality, see the RTCS Shell demo.

mfs_usb Console shell-based example showing how to access MFS filesystem mounted on the USB
mass storage.

ramdisk Shows use of MFS accessing the external RAM (or MRAM).

sdcard Shows use of MFS accessing the SDHC or SPI-connect SD Card.

Table 5. USB v2 Host Examples

Name Description

audio/microphone Enables connecting a USB microphone and record the sound to SD Card (wav formatl).

audio/speaker Enables connecting a USB speaker and play the sound from SD Card (wav format).

cdc/cdc_serial This example demonstrates the virtual serial port capability with abstract control model.
Redirects the communication from CDC device, which is connected to the board, to the
serial port.

hid/keyboard This application echoes keys pressed on the USB keyboard onto the serial console.

hid/mouse Displays USB mouse events on the serial console.

hid/keyboard+mouse Keyboard and mouse demos combined in a single application.

msd/msd_cmd Executes the standard "mass storage device" commands to the USB disk and shows the
response on the serial console (see MFS examples for USB filesystem access).

msd/msd_fatfs Console shell-based example showing how to access an MFS filesystem mounted on the u-
disk memory.

phdc/11073Manager_Demo | This application demonstrates basic host personal healthcare class functionality.

NXP MQX™ RTOS Release Notes, Rev 5.0 12/2016
14 NXP Semiconductors

Known Issues and Limitations

Table 6. USB v2 Device Examples

Name Description
audio/generator Acts as a USB microphone, playing out a short audio loop.
audio/speaker Receives audio stream data from the host (PC) and plays it out through the 12S driver.
cdc/virtual_com Implements a virtual serial line loopback.cdc/virtual_niclmplements a virtual network interface

cards.

cdc/virtual_nic Implements a virtual network interface cards.
composite/hid_audio Shows basic functionality of composite device using hid and audio classes.
composite/msd_cdc Shows basic functionality of composite device using mass storage and CDC classes.
hid/mouse Creates a virtual mouse which keeps moving in a square loop, 100 pixels in size.
hid/hid_keyboard Creates a virtual keyboard which can scroll the screen up and down.
msd Implements small storage device in internal RAM memory.
phdc/weighscale Implements personal healthcare device.
msd/disk Implements small storage device in internal RAM memory.

Table 7. Demo Examples

Name Description
hvac Simple implementation of console-based HVAC with optional USB logging and FTP access.
web_hvac HVAC demo with the HTTP server implementing the GUI. Ajax-based pages demonstrating

the advanced use of the HTTP server.

web_hvac_v2 HVAC demo with the HTTP server implementing the GUI. Ajax-based pages demonstrating
the advanced use of the HTTP server with new usb_v2 stack.

5 Known Issues and Limitations

There are no new issues with MQXv5, but the following issues and limitations from MQX 4.2 still apply.

USB Host HUB Examples

HUB class support is enabled in HID example applications. The applications run correctly with the USB device attached
either directly or through the hub. However, the example code only handles a single device. A combined Mouse+Keyboard
demo handles one mouse and one keyboard simultaneously. The same kind of multiple devices, which are attached through
the hub, cannot be used in the example applications.

Supporting “Hot Device Uninstall” in MQX I/O Subsystem

In the current implementation of the MQX 1/O subsystem, the application is responsible for dealing with application tasks
which have opened file handles while uninstalling a device driver. A typical demonstration of the problem is USB mass
storage handling: When a USB attach event is detected, an application installs the MFS partition manager and MFS file
system "device" on top of the USB driver. The application runs tasks, such as shell, which open and access files provided by
the MFS filesystem device. When the user unplugs the USB mass storage device, the application has a limited way to detect
an opened file before uninstalling the MFS filesystem device. The file I/O functions start reporting errors when accessing the
device after it is physically detached. Design the application code so that the tasks close all files affected by the detach event
before the MFS filesystem driver can be uninstalled. If there is an attempt to close the MFS handle prior to closing all related

NXP MQX™ RTOS Release Notes, Rev. 5.0 12/2016

NXP Semiconductors 15

Known Issues and Limitations

files, a sharing violation error is returned. An example application "mfs usb" demonstrates how to close files by retrying the
closing operation of the MFS handle. If a task keeps one or more files open for an extensive time period, use a suitable
method to notify it about the ongoing filesystem un-installation. This implementation may add additional application
overhead. Work is ongoing on the MQX I/O subsystem to ensure that file operations safely return error states even after the
underlying device driver is uninstalled. This enhancement will simplify the application code error recovery.

Idle Task Required on Kinetis Platforms

The Kinetis kernel, by design, cannot operate without an idle task. The MQX USE IDLE TASK configuration option must
be set to 1.

USB EHCI and KHCI Stack Buffer Restrictions

Align the buffers used by KHCI at 4B. Align the buffers used by EHCI at cache line and the size to cache line boundary in
the cached area. If the goal is to optimize performance, allocate the buffer used by EHCI in the un-cached memory space.
ARP Entries Issue

When the board is put into a busy Ethernet environment with many ARP requests, the ARP entries cause memory
fragmentation, which leads to RTCSERR_TCPIP_NO_ BUFFS when connect() is called.

FlexCan Driver Issues

Several issues are identified during the development of the FlexCAN driver: On TWR-K70F120M board, the TX/RX signals
are not routed to the elevator by default and the FlexCAN example does not work. To enable the FlexCAN operation, solder
the zero-ohm resistors, R22 and R23, on TWR-K70F120M board. The 10-kbit baudrate doesn't generally work. FlexCAN
detects bit0 errors in its own transmitted messages.

Android USB MSD Cannot Be Interfaced

If certain types of Android phones are connected to the system, the attach event is not generated. The issue is currently
investigated and will be fixed in a future MQX RTOS version.

User Mode Functionality in CW10 GCC
The User Mode functionality is not supported in the GCC compiler.
MEFS Does Not Check Validity of Directory Rename

MFS Rename file() function does not check the necessary precondition when renaming a directory. If the directory is
renamed to its own subdirectory, the directory becomes inaccessible and lost cluster chains are created.

EHCI HUB functionality limitation
The HUB functionality of the EHCI is not fully supported (dynamically attach/detach is not supported).
UTF8 support in MFS

The UTF8 support in MFS is limited to read-only access and for long file names. The UTF8 support for write access may be
implemented in a future release.

DSPI issues related to the DMA usage

When the DSPI uses the eDMA, it may transfer data incorrectly or fail when eDMA is used for another purpose. If the DSPI
driver is the only user of eDMA, it should operate correctly. This behavior is a result of the silicon design of the DSPI. DMA
usage can be disabled in the DSPI driver by redefining the macro BSPCFG_DSPIx USE DMA to 0 in user_config.h.

USB Host CDC function works with limited input.

In the USB Host CDC example, no more than 200 characters are allowed in one line when inputting to the terminal and no
more than 160 characters in one line when transferring files. Otherwise, USB Host CDC example may malfunction.

NXP MQX™ RTOS Release Notes, Rev 5.0 12/2016
16 NXP Semiconductors

Known Issues and Limitations

DSPI FIFO length setting

The DSPI driver FIFO length is currently defined as a constant value (DSPI_FIFO DEPTH = 4) and it is used for all SPI
modules on chip. However there exist devices such as K64f and K21F where the FIFO length is different for some SPI
modules. Driver currently does support various length per a module. As a workaround it is suggested to decrease FIFO depth
to 1 in case channels with smaller FIFO length are used.

NXP MQX™ RTOS Release Notes, Rev. 5.0 12/2016
NXP Semiconductors 17

How to Reach Us: Information in this document is provided solely to enable system and software
Home Page: implementers to use NXP products. There are no express or implied copyright
nxp.com licenses granted hereunder to design or fabricate any integrated circuits based

on the information in this document. NXP reserves the right to make changes

MQXv5 Web Page: without further notice to any products herein.

nxp.com/MQXv5
Web Support: NXP makes no warranty, representation, or guarantee regarding the suitability of

nxp.com/support its products for any particular purpose, nor does NXP assume any liability arising
out of the application or use of any product or circuit, and specifically disclaims
any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be
validated for each customer application by customer’s technical experts. NXP
does not convey any license under its patent rights nor the rights of others. NXP
sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER
WORLD, Freescale, the Freescale logo, and Kinetis, are trademarks of NXP
B.V. All other product or service names are the property of their respective
owners. ARM, ARM Powered, Cortex, Keil, and pVision are registered
trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere.
All rights reserved. The Power Architecture and Power.org word marks and
the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© 2016 NXP B.V.

Document Number MQXRN
Revision 5.0, 12/2016

Embedded
Access Inc

-
P |

NXP MQX™ RTOS Release Notes, Rev 5.0 12/2016

