

Freescale Semiconductor

Using the MQX Timers
By: Technical Information Center

How to use the MQX HWTIMER driver

2 Freescale Semiconductor

System TICK (SysTick)

The RTOS tick is the operating system time unit. MQX measures time in ticks, instead of in seconds and

milliseconds, the features depending on the tick are:

• Time delay

• Timeout while waiting for events, semaphores

• Software timers

• Time-slice scheduling

When MQX RTOS starts, it installs the periodic timer ISR, which sets the time resolution for the hardware. The

periodic timer interrupt is used to keep track of time; the priority of the interrupt is higher than tasks.

The tick service routine is located in the init_bsp.c file, the path of this file is

<freescaleMQXpath>\mqx\source\bsp\<board_name>\

Figure 1 init_bsp.

The resolution defines, how often MQX RTOS updates time, or how often a tick occurs. The resolution is

usually 200 ticks per second = 5 milliseconds. It is defined in <board_name>.h file located at the path:

<freescaleMQXpath>\mqx\source\bsp\<board_name>\

How to use the MQX HWTIMER driver

3 Freescale Semiconductor

Figure 2 twrk64f120m.

If there is no tick, then it is not possible to use the time delay, timeouts, and software timers; so in this case it

is necessary to use hardware timer interrupts or other interrupts to synchronize tasks.

The BSP timer is clocked by system tick; it is possible to edit BSP_ALARM_FREQUENCY in order to have smaller

ticks.

Delays are calculated in the following way:

N_TICKS = Number of ticks

REQ_ms = Number of milliseconds requested

ticks_per_s = Number of ticks per second

For example, if it is used the function _time_delay (55) then it is required a 55ms delay. If

BSP_ALARM_FREQUENCY is set as default 200 then:

We have to also take into consideration inaccuracy due to principle of this timer. Argument of _time_delay()

function is minimum number of milliseconds to suspend the task because time between last tick and call of

_time_delay could vary in range 0..1 tick. It means that jitter in case of small delays could be high.

ms

sperticksmsREQ
TICKSN

1000

_

×
=

11
1000

20055
_ =

×
=

ms

ticksms
TICKSN

How to use the MQX HWTIMER driver

4 Freescale Semiconductor

If the BSP_ALARM_FREQUENCY is modified for example to 1000 then it is possible to get a minimum 1ms

delay.

A task can get the resolution in milliseconds with _time_get_resolution() and in ticks per second with

_time_get_resolution_ticks().

A task can get elapsed time in microsecond resolution by calling _time_get_elapsed(), followed by

_time_get_microseconds(), which gets the number of microseconds since the last periodic timer interrupt.

A task can get elapsed time in nanosecond resolution by calling _time_get_elapsed() followed by

_time_get_nanoseconds(), which gets the number of nanoseconds since the last periodic timer interrupt.

A task can also get the number of hardware ticks since the last interrupt by calling _time_get_hwticks(). A task

can get the resolution of the hardware ticks by calling _time_get_hwticks_per_tick().

Eg.

uint32_t nanoseconds, i, counter = 0;

MQX_TICK_STRUCT ticks1, ticks2;
bool overflow;

 _time_get_ticks(&ticks1); /* get start time */
 for (i = 0; i < 1000; i++)
 {
 counter++;
 }
 _time_get_ticks(&ticks2); /* get end time */
 nanoseconds = _time_diff_nanoseconds (&ticks2, &ticks1, &overflow); /* calculate difference between
start time and end time in nanoseconds*/

Function _time_diff_nanoseconds doesn’t mean that we measure in ns granularity. Granularity is given by

HWTICKS.

In conclusion if you want to have smaller ticks it is necessary to modify the BSP_ALARM_FREQUENCY value,

however it is necessary to remember, we cannot guarantee the correct behavior if you modify original

settings. Some of drivers, for example USB, Ethernet PHY, ESDHC, etc, use commands like _time_delay; if the

resolution is changed then we could get unexpected behavior of these drivers.

Only change this value if you know what you are doing. BSP_ALARM_FREQUENCY higher than 1000 (1ms

tick time) could also affects some of drivers due to rounding in time equation.

If it is required some precise time interrupt without modify the SysTick within the BSP then it is possible to use

MQX hwtimer driver.

ms
ticks

mstick
msREQ 1

_1000

_1000_1
_ =

×
=

How to use the MQX HWTIMER driver

5 Freescale Semiconductor

MQX hwtimer driver

The MQX hwtimer driver provides a C language API for uniform access to the features of various HW timer

modules such as Periodic Interrupt Timer (PIT) and Low-Power Timer (LPT).

The source code for HWTIMER drivers is located in source <freescaleMQXpath>\mqx\source\io\hwtimer\

directory.

The <borad_name>.h file located at the path <freescaleMQXpath>\mqx\source\bsp\<board_name>\

contains the definitions for the HWTIMER driver.

Figure 3 twrk64f120m.

You can modify these definitions and add here your additional timers. Please check MCU reference manual for

available timer resources.

For Kinetis devices, when the LPT module is used with this driver (BSP_HWTIMER2_DEV), the default clock

source is provided by low power oscillator (LPO), the LPO is a 1KHz clock that is enabled in all modes of

operation, including all low power modes. This means that the LPT can be set only times with 1ms granularity.

How to use the MQX HWTIMER driver

6 Freescale Semiconductor

Figure 4 K64F clock sources.

The PIT module is an array of timers (channels). The MQX hwtimer driver access to the PIT module using the

BSP_HWTIMER1_DEV definition, then it is required to select the channel using BSP_HWTIMER1_ID.

#define BSP_HWTIMER1_ID (0) : select the PIT timer 0,

…

#define BSP_HWTIMER1_ID (n) : select the PIT timer n,

Figure 5 Block diagram of the PIT.

How to use the MQX HWTIMER driver

7 Freescale Semiconductor

The number of channels that can be used depends on the device, so it is necessary to check the reference

manual for each device.

The Getting Started with Freescale MQX™ RTOS document provides details about all boards and BSPs

supported, in this document it is possible to find the bus clock value for every board. For example the Bus

Clock for the TWR-K64F120M is 60MHz.

Figure 6 Table from the Getting Started with Freescale MQX™ RTOS.

How to use the MQX HWTIMER driver

8 Freescale Semiconductor

MQX hwtimer driver example

This example has only one task (main_task) in this task are configured the LWGPIO and the HWTIMER drivers

in order to toggle a pin.

The hwtimer_init () function has to be called prior to calling any other API function of the HWTIMER driver.

This function initializes the HWTIMER structure.

The parameters for this function are:

• HWTIMER_PTR: The pointer to the HWTIMER is passed as a handle parameter (HWTIMER_PTR). It is

necessary to have a variable to assign the pointer to the HWTIMER structure, for do that it is required to

add the following line:

HWTIMER hwtimerLPT;

• HWTIMER_DEVIF_STRUCT_PTR: The device interface pointer determines low layer driver to be used (PIT

or LPT). Device interface structure is exported by each low layer driver and is opaque to the applications.

The BSP_HWTIMER1_DEV is for PIT and BSP_HWTIMER2_DEV is for LPT, please check the below image.

Figure 7 twrk64f120m.

• id: The meaning of the numerical identifier varies depending on the low layer driver used. Typically, it

identifies a particular timer channel to initialize. For example the figure 1, shows that it is define

BSP_HWTIMER1_ID (0), so it is used the PIT channel 0.

The following line initializes the hwtimer driver using the LPT.

hwtimer_init(&hwtimerLPT, &BSP_HWTIMER2_DEV, BSP_HWTIMER2_ID,

(BSP_DEFAULT_MQX_HARDWARE_INTERRUPT_LEVEL_MAX + 1))

Once it is initialized, it is necessary to configure the timer. For do that it is possible to use the functions:

• hwtimer_set_freq(): This function configures the timer to tick at a frequency as closely as possible to the

requested one. Actual accuracy depends on the timer module. The function gets the value of the base

How to use the MQX HWTIMER driver

9 Freescale Semiconductor

frequency of the timer via the clock manager, calculates required divider ratio, and calls the low layer

driver to set up the timer accordingly.

• hwtimer_set_period(): This function provides an alternate way to set up the timer to a desired period

specified in microseconds rather than to a frequency in Hertz. The function gets the value of the base

frequency of the timer via the clock manager, calculates required divider ratio, and calls the low layer

driver to set up the timer accordingly.

For this example the hwtimer_set_period() is used, the parameters for this function are:

• Hwtimer: Pointer to hwtimer structure, for this example the pointer was called hwtimerLPT.

• clock_id: Clock identifier used for obtaining timer's source clock. According with the definitions in the

board_name.h file, the source clock used for LPT is LPO and for PIT is BUS CLOCK.

• Period: Required period of the timer in us. For a better organization, in this example there is a definition

for set the period #define HWTIMER2_PERIOD 1000000.

The following line set up the timer.

hwtimer_set_period(&hwtimerLPT, BSP_HWTIMER2_SOURCE_CLK, HWTIMER2_PERIOD)

In order to check if the frequency or period fit what we set, the hwtimer_get_freq(), hwtimer_get_period(),

should be used.
printf("Read period from hwtimerLPT : %d us\n", hwtimer_get_period(&hwtimerLPT));

Then it is necessary to use the function hwtimer_callback_cancel(). This function cancels pending callback, if

any.

hwtimer_callback_cancel(&hwtimerLPT)

The next step is to use the hwtimer_callback_reg() function, this function registers function to be called when

the timer expires. The callback_data is arbitrary pointer passed as parameter to the callback function. This

function must not be called from a callback routine.

The parameters for hwtimer_callback_reg() function are:

• Hwtimer: Pointer to hwtimer structure, for this example the pointer was called hwtimerLPT.

• callback_func: Function pointer to be called when the timer expires. In this example the function that is

called is named hwtimer1_callback.

• callback_data: Arbitrary pointer passed as parameter to the callback function.

The below line is used.

hwtimer_callback_reg(&hwtimerLPT,(HWTIMER_CALLBACK_FPTR)hwtimerLPT_callback, NULL)

Finally it is necessary to enable the timer in order it stars running. For do that the function used is

hwtimer_start(). After this function the timer starts counting and generating interrupts each time it rolls over.

At this point it is possible to build the project, flash it to the board and run the project. For code details, check

the main.c file below.

How to use the MQX HWTIMER driver

10 Freescale Semiconductor

main.c file
/**
*
* This file contains MQX example code.
*

**/
#include "main.h"

#if !BSPCFG_ENABLE_IO_SUBSYSTEM
#error This application requires BSPCFG_ENABLE_IO_SUBSYSTEM defined non-zero in user_config.h. Please recompile
BSP with this option.
#endif

#ifndef BSP_DEFAULT_IO_CHANNEL_DEFINED
#error This application requires BSP_DEFAULT_IO_CHANNEL to be not NULL. Please set corresponding
BSPCFG_ENABLE_TTYx to non-zero in user_config.h and recompile BSP with this option.
#endif

#define HWTIMER_PERIOD 1000000 //period set to 1s to hwtimer

static void hwtimerLPT_callback(void *p);

HWTIMER hwtimerLPT; //hwtimer handle
LWGPIO_STRUCT led1;

TASK_TEMPLATE_STRUCT MQX_template_list[] =
{
/* Task number, Entry point, Stack, Pri, String, Auto? */
 {MAIN_TASK, Main_task, 1500, 9, "main", MQX_AUTO_START_TASK},
 {0, 0, 0, 0, 0, 0, }
};

/*TASK*---
* Task Name : Main_task
* This task enables the LWGPIO and HWTIMER *
END---*/

static void hwtimerLPT_callback(void *p)
{

 lwgpio_toggle_value(&led1); /* toggle pin value */
}

void Main_task(uint32_t initial_data)
{

/**************************LWGPIO DRIVER*****************************/

 lwgpio_init(&led1, BSP_LED1, LWGPIO_DIR_OUTPUT, LWGPIO_VALUE_NOCHANGE); /* initialize lwgpio driver */
 lwgpio_set_functionality(&led1, BSP_LED1_MUX_GPIO); /* swich pin functionality (MUX)
to GPIO mode */

/************************HWTIMER DRIVER**/

 hwtimer_init(&hwtimerLPT, &BSP_HWTIMER2_DEV, BSP_HWTIMER2_ID, (BSP_DEFAULT_MQX_HARDWARE_INTERRUPT_LEVEL_MAX +
1)); /* initialize HWTIMER driver */
 hwtimer_set_period(&hwtimerLPT, BSP_HWTIMER2_SOURCE_CLK, HWTIMER_PERIOD);

/* set up the timer in microseconds */
printf("Read period from hwtimerLPT : %d us\n", hwtimer_get_period(&hwtimerLPT));
 hwtimer_callback_cancel(&hwtimerLPT);
// Clear pending callback for hwtimer1
 hwtimer_callback_reg(&hwtimerLPT,(HWTIMER_CALLBACK_FPTR)hwtimerLPT_callback, NULL);
/* registers function to be called when the timer expires. */
 hwtimer_start(&hwtimerLPT); /* enables the timer and gets it running. The timer starts counting and
generating interrupts each time it rolls over. */

}
/* EOF */

