Freescale MQX™ RTOS
Flash File System User’s Guide

MQXFFSUG
Rev. 1.5
08/2014

S £

> freescale

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Document Number: MQXFFSUG
Rev. 1.5, 08/2014

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.

Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant
to standard terms and conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, Kinetis, and ColdFire are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Vybrid and Tower are trademarks of
Freescale Semiconductor, Inc. All other product or service names are the property of
their respective owners.

© 2014 Freescale Semiconductor, Inc.

2 £

Z“ freescale"

Paragraph
Number

11
1.2
1.3
14

2.1
2.2

3.1
3.2

4.1
4.2
421
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9
4.2.10
4.3
43.1
4.3.2
4.3.3
4.3.4
435
4.3.6
4.3.7
4.3.8
4.3.9

Contents

Page
Title Number
Chapter 1 Introduction
PUIPOSE. ..ttt nnne e nnaes 1-1
Wearout Problem on FIash IMemOrYccocviiiiicie e 1-1
Solution t0 AVOId WEAIOUL ISSUESccueerieiieriieiesieesie e siee ettt sre e enee e 1-1
OULINE et b bbbt b bt bt et et ettt enbe bt be et 1-2
Chapter 2 Abbreviations, Acronyms, and References
ADDIeVIationS, ACIONYIMScuiiiiiieiieiee it eee e ste s ste et e s e st e e e ste e besraesteessesreenseaneesreens 2-1
RETEIBINCES ...ttt et b e e bt b e e e 2-2
Chapter 3 Architecture Overview

Old NAND Flash ArChitECUIEocviiieieiie et 3-1
New Architecture with Wear Leveling — WL Capabilityccooevvviiiniiiiiiine, 3-3

Chapter 4 Using MQX NAND Flash Wear Leveling Module
Configure Pre-defined Data Drive LayOUL............ccovevveiieiieiie i 4-1
NAND FIaSH WL APttt sttt 4-3
_10_nandflash_ WI_INStall............cooieiiie e 4-3
_io_nandflash_ Wl _uninstall..............cccoooiiiiiiii e 4-4
_10_NaNdflash_WI_OPENcoiie s 4-5
_10_NANAFIASN_WI_ClOSE........eeiieiieciee e 4-6
_10_Nandflash W read..........covoiiiiiiice e 4-7
_10_NaNdFlash_ W WIITE........ooiii e 4-8
_10_Nnandflash_ W TOCH..........oouiiiee e 4-9
_io_nandflash_wl_internal_read_metadata.............ccccceevveviriieiiiiciiece e 4-10
_io_nandflash_wl_internal_read_with_metadata............cccccooveriinninniiiiccee 4-11
_io_nandflash_wl_internal_write_with_metadata..........c..cccocerivrrrriieriviinniieiesn 4-12
NFC Physical Media ClaSsccciiiieiiiiiiie et 4-13
NFCNandMedia::NFCNaNAMEIa.........ccoiiirieiieiieieie et 4-13
NFCNandMedia:: initChipParam ..o 4-14
NFCNandMedia::reatPage.........c.ccveiuiiieiieie ettt 4-15
NFCNaNAMedia::WITEPAGE.eeieiieiierieeie ettt s 4-16
NFCNandMedia::eraseBIOCK.coiviiieiiiieieee e 4-17
NFCNandMedia::eraseMultipleBIOCKScccoveiiiiiiiiiccccec e 4-18
NFCNaNdMedia::COPYPAGEScoivirieiieiieie et sttt s ee e 4-19
NFCNandMedia::iSBIOCKBAU............ccooiiiiiiiiiiiiicee s 4-20
NFCNandMedia::markBIOCKBadcccocviiiiiiiiiieeeese s 4-21

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor iii

Paragraph
Number

4.4
44.1
4.4.2
4.5

4.6
46.1
4.6.2
46.2.1
4.6.2.2
4.6.2.3
4.6.2.4
4.6.2.5

5.1
5.2
5.3

6.1
6.2

6.3

6.4

6.5
6.5.1
6.5.1.1
6.5.1.2
6.5.2
6.5.3
6.5.3.1

Contents

Page
Title Number
MemOry ManagEMENT..........ooiieieiie e 4-22
0] 1T 11 o oSSR 4-22
L]0 (T =TSPTSRO PR 4-23
WL DUt b e 4-24
MFES Example USer ManUAlc.coovoiiiiiiieic s 4-25
USEE INTEITACE ... ettt bbbt 4-25
NEeW Shell COMMANGScooiiiieie e 4-25
“FSOPEN” COMMEANGocvviiieiece et e esre e 4-26
“FSCI0SE™ COMMANT ...t 4-27
“nanderase” COMMEANGooouiiieiiiieseee e se e sre e e nre e 4-27
“nandrepair” COMMANGcccooviiieie i raenae s 4-27
“nanderasechip” COMMANTcooiiiriiiieiie e e 4-27
Chapter 5 MQX Wear Leveling Internal Functionality
Role of WL Module in NAND DIIVETc.iiieiiiieiieie s sie e 5-1
Input and Output OFf WL MOAUIEcoovreieciece e 5-1
Internal Mechanism inside WL MOGUIEcccoviiiiiiiiiee e 5-2
Chapter 6 MQX Wear Leveling Internal Software Flow
INEIATIZE FIOW ..ottt sttt ae e 6-1
REA SECION FIOWeiiiiiiice ettt esne e 6-2
WWIIE SECTON FIOW ..ottt b 6-3
SNULAOWN FIOW ...ttt 6-5
Zone Map, Physical Map, and Non-sequential Sector Map Structure.............ccoceecvrvnnene 6-5
o 020 1Y, - o USSR 6-7
Phy Map INTAlIZAION........ooiieeee s 6-9
Phy Map PreSEIVALIONoouiiiiiiiiieiieiee ettt 6-9
pA 010 L AV T o T PRSPPI 6-9
Non-sequential SECTOr MAPooviiiiieiie e e 6-11
Prevent thrashing when switching from primary block to backup block.............. 6-13

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor

Chapter 1 Introduction

1.1 Purpose

This document describes the architecture of the MQX Wear Leveling module and its interface for the upper
layer such as MFS and Read/Write raw operations.

As a result of significant differences between NAND flash memory and NAND controller in Freescale
CPUs, this document only addresses a Wear Leveling solution for the CPU that is compatible with the
NAND flash memory (NFC hardware).

The MQX Wear Leveling module currently supports all platforms on MQX RTOS that have the NAND
flash device.

1.2 Wearout Problem on Flash Memory

Flash memory is a non-volatile memory that can be easily erased and reprogrammed when compared to
some predecessor memories such as EEPROM. Flash memory is popular as a result of its small physical
size, light weight, low power consumption, high shock resistance, and fast read performance. Currently
there are two types of flash memory: NAND flash memory and NOR flash memory.

NAND flash memory is organized as an array of blocks. Each block contains 32 to 64 pages, where a page
is the smallest unit for read and write operation. On the other hand, to erase, the input must be a block rather
than a pages.

On the other hand, NAND flash memory has a limited number of program/erase cycles (typically known
as P/E cycles). Today the most available flash products in the market are designed to endure around
100,000 P/E cycles before the cells become unreliable. This phenomenon is called memory wear or
wearout.

1.3 Solution to Avoid Wearout Issues

To control the wear-out problem and to extend NAND flash lifetime, a method named wear leveling is
used. Wear leveling tries to distribute every program/erase operations equally on each block in the flash
drive. The equal distribution is done by an internal re-mapping mechanism between logical/physical block
address and writing strategy. The wear leveling writes all new or updated data to a free block, which is
picked from a head of the free block FIFO, then erases the old data block and eventually puts this erased
block to the end of the free block FIFO. This process is done in the background and, for that reason, is
completely transparent to the host system.

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor 1

Introduction

1.4 Outline

The outline of this document is as follows:

» Section 1 - Introduces the purpose of this project and the brief overview of NAND flash memory
and wear leveling.

» Section 2 — Abbreviations and acronyms and reference are used in this document.
e Section 3 — Architecture overview.

» Section 4 — Using MQX NAND Flash Wear Leveling module.

» Section 5 — Functionalities of Wear Leveling module in this project.

» Section 6 — Internal software flow for Wear Leveling module.

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

2 Freescale Semiconductor

2.1

Chapter 2 Abbreviations, Acronyms, and References

Abbreviations, Acronyms

Table 2-1. Acronyms and Abbreviations

Acronym Description
API Application Programming Interface.
BM Bare Metal.
HW Hardware.
IF Interface.
App Application.
NAND In NAND flash memory, users access (read/write) through each page as a minimum unit and erase on
each blocks.
NOR NOR flash memory lets users be able to random-access in every bytes in flash memory.
Block A smallest erasable unit in NAND device.
Page A smallest programmable unit in NAND device.
PhysicalBlock | The address of physical block in memory.
Address
(PBA)
Virtual Block |Since we used entire flash memory for wear leveling, the VBA is same as LBA. This address points to a
Address logical address, which are mapped to specific PBA.
(VBA)/Logical
Block Address
(LBA)
Wearout A circumstance occurs when a block is uneraseable or a page cannot be written.

Wear leveling

Wear leveling is a process that helps reduce premature wear in NAND flash devices.

Bad Block | A block resist in NAND flash memories, that cannot be erase or write any more.
Metadata | Data is used by NAND driver to carry a specific information.
Sparedata | An area is typically used for ECC, wear leveling, and other software overhead functions.
NFC NAND Flash Controller.
NAND driver |A driver which is responsible for initializing and handling read/write/erase through NAND memories.
ONFI Open NAND Flash Interface.
Error A code or checksum for automatically correcting purpose. An ECC stores in Metadata/sparedata of each
Correcting | pages.
Code —ECC

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor

Abbreviations, Acronyms, and References

Table 2-1. Acronyms and Abbreviations

Acronym Description

M53015_Lon | Evaluation Board for ColdFire MCF5301X CPU. This board contains 8M x 16 bit NOR flahs memory.

gjiing
M54455_Red | Evaluation Board for ColdFire MCF5445X CPU. This board contains 02 NOR flash memories (16 MB,
strip 512 KB).

M54418_Mod | Evaluation Board for ColdFire MCF5441X CPU. FSOFT uses TWR-MCF5441X for testing purpose, this
elo board also contains 2Gb NAND flash memory.

2.2 References

Table 2-2. References

Serial No Document Name Version
1 MQX RTOS Source Code 4.0.2
2 Freescale MQX™ RTOS I/O Drivers User Guide Rev. 9
3 MCF5441x Reference Manual Rev. 4
4 K70P256M150SF3RM Reference Manual Rev. 2
5 K60P144M150SF3RM Reference Manual Rev. 2
6 Datasheet for 2Gb NAND Flash: 29F2G16AABWP
7 Vybrid Reference Manual

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

2 Freescale Semiconductor

http://www.freescale.com/webapp/sps/site/homepage.jsp?code=MQX_HOME
http://cache.freescale.com/files/32bit/doc/user_guide/MQXIOUG.pdf?fsrch=1&sr=1
http://cache.freescale.com/files/32bit/doc/ref_manual/MCF54418RM.pdf?fsrch=1&sr=1
http://cache.freescale.com/files/microcontrollers/doc/ref_manual/K70P256M150SF3RM.pdf?fsrch=1&sr=1
http://cache.freescale.com/files/microcontrollers/doc/ref_manual/K60P144M150SF3RM.pdf?fsrch=1&sr=1
http://www.micron.com/parts/nand-flash/mass-storage/mt29f2g16aabwp?source=ps

Chapter 3 Architecture Overview

3.1 Old NAND Flash Architecture
The current Freescale MQX NAND flash architecture contains two key components: NAND driver and
NAND Flash Controller — NFC.

* NAND driver: Generally, this driver offers functions such as read, write, erase, raw and IOCTL
operations for upper layer.

* NAND Flash Controller — NFC: This layer providers the NAND HW abstraction, which allows the
hardware independent implementation of higher layers, that is, NAND driver.

The architecture of NAND flash driver in MQX RTOS can be seen in the figure below:

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor 1

Architecture Overview

App with Filesystem access capability

<_-

Old NAND Apps MES
(MQX File System)

Partition Manager
Device Driver

- X %

NAND Flash Driver

NAND Read/Write RAW Function IOCTL

| L

Read/Write/Erase/IOCTL operation

NAND Flash Controller

NAND Flash Controller Hardware

NAND Physical

SoC CPU

Figure 3-1. Old NAND Architecture

All NAND applications could be interactive with NAND flash driver through 1/0 driver with signature
“nandflash:.” The smallest unit that NAND apps can read/write is Virtual Page Address — VPA. The VPA
points to exactly one physical address on NAND memory. However, a size of each page in NAND
Apps/NAND driver is not the same as a page in NAND physical memory. The difference is a result of a
divider in the NFC hardware. For example:

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

2 Freescale Semiconductor

Architecture Overview

TWR-MCF54418 board uses MT29F2G16AABWP as NAND physical memory. The organization of
NAND in this instance is as follows:

» Device size: 2Gb = 256 MB

» Page size: 2112 bytes (2048 bytes for user’s data + 64 bytes for spare data)

» Block size: 64 pages (135,168 bytes = 132KB)

By setting up the NFC HW register, the user can logically split the physical page size to a smaller one. This
configuration can be done by modifying NFC_CFG[PAGECNT] register. For example: if we set
NFC_CFG[PAGECNT] to 4, a physical page size will be divided into 4 virtual pages with size 2112B/4 =
528B in each. By doing so, user applications can handle smaller page size easily.

L 5 5
® S| =
v g ¥
Physical Page Spare data Physical Page 1
Size = 2048B Size = 64B

40
a175—
<g/¥0¢—
|
9T+8.102

NFQ divide by setting
NFC_CFG[PAGECNT]=4
Spare | Spare | Spare | Spare

Virtual Page 1 Virtual Page 2 Virtual Page 3 Virtual Page 4 || Virtual | Virtual | Virtual | Virtual
page 1 | page 2 | page 3 | page 4

Figure 3-2. Difference between NAND Physical Organization and Virtual Organization

NAND driver currently does not support MQX MFS because of the follwing:
» Getting Block Size in IO_IOCTL_GET_BLOCK_SIZE command: NAND driver does not return
a correct block size in bytes (MQX MFS needs a block size in bytes, which can be used for
read/write operations).
» Identifying a total sector of storage devices through an IOCTL command
(10_IOCTL_GET_NUM_SECTORS): Currently, NAND driver does not implement this IOCTL
command.

3.2 New Architecture with Wear Leveling — WL Capability

This solution focuses on a few modifications about MQX NAND flash driver and NAND Flash Controller.
It helps MFS (MQX File System) to run on top of NAND flash memory device and makes NAND flash
memory device not wear out too quickly. This solution also allows the new applications to run along with
the old ones, which are used to access raw data on NAND physical.

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor 3

Architecture Overview

App with Filesystem access capability
nandflash_wil:

Old NAND Apps MES
(MQX File System)

Partition Manager
Device Driver

L LL L

NAND Flash Drivers

‘ Media manager ‘

| Mapper manager |

Old Nandflash
driver with RAW | NandFlash HAL |

operations

| NFC Nand Physical Media |

New NandFlash driver with
Wear-Leveling (WL) functions

< = 4L

Old Read/Write/Erase/ ReadPage/Write SMszRa(teZ/ d
IOCTL operation Page with metadata b .
operation

NAND Flash Controller

NAND Flash Controller Hardware

NAND Physical

SoC CPU

Legend
‘ Add new ‘

| Modified |

‘ No modification ‘

Figure 3-3. New NAND Architecture with Wear Leveling Capability

In this figure:

NAND flash driver

— OlIld NAND flash driver: provides read/write raw function for all legacy applications.

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor

Architecture Overview

— New NAND flash driver with Wear Leveling: supplies read/write with wear-leveling capability
for upper layers such as MFS.

— Wear Leveling functions: this module contains all mapping mechanisms between Virtual
Page Address and Physical Page Address. It also maintains mapping tables on flash memory
and RAM.

* NAND Flash Controller (NFC)
— Read/Write/Erase/IOCTL operation: old NFC’s function for read/write/erase directly with

NFC hardware. These functions work only with Virtual Page data.

— ReadPage/WritePage with metadata: add new function for read/write page’s data and metadata.

— Metadata/Spare Read/Write operation: add new functions for handling spare data, which is
used on Wear Leveling module. These functions simply read/write metadata of each pages
from spare area.

— In this new architecture, organization of virtual pages in physical pages is different with the old
architecture.

| s !
& & =
v g 7
Physical Page Spare data Physical Page 1
Size = 2048B Size = 64B
‘ c\n \U_I NFC divide by setting
S 5 % E NFC_CFG[PAGECNT]=4
v v v
Spare Spare Spare Spare
Virtual Page 4 | Virtual | Virtual Page 3 | Virtual | Virtual Page 2 | Virtual | Virtual Page 1 | Virtual
page 4 page 3 page 2 page 1

Factory Bad Marking at
2048 (Physical Page size)

Figure 3-4. New Organization of Each Virtual Page in Physical Pages

By comparing Figure 3-2 and Figure 3-4, all virtual pages are placed in the reserved order. By doing so,
we can preserve the location of Factory Bad Marking byte of NAND flash.

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor 5

Architecture Overview

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

6 Freescale Semiconductor

Chapter 4 Using MQX NAND Flash Wear Leveling Module

This chapter explains how a developer can initialize and work with MQX NAND Flash WL module:

» A pre-defined data driver layout must be declared in MQX NAND Flash WL module code before
this module can initialize and start read/write on NAND physical device. The pre-defined layout is
discussed in detail in section “4.1 Configure pre-defined data drive layout”.

o After MQX NAND Flash WL is initialized successfully; upper layer can issue read/write operation
by using standard FIO function such as read(), write(), seek(), and others. Section “4.6 MFS
example user manual” demonstrates how to cooperate MFS with MQX NAND Flash WL module,
which allows FAT file system to access on top of NAND Flash Wear Leveling module.

» Section “4.3 NFC Physical media” discusses a functionality of the NFC Physical Media class,
which is a hardware dependent code in WL module.

4.1 Configure Pre-defined Data Drive Layout

One data drive is defined by default in the file given below:
<mgx>/source/io/nandflash_wl/nandflash_wl .h>.

Developer can use two macros, as shown below, to configure the start location and size for the first data
drive.

#define NANDFLASH_1ST DATA_DRIVE_SIZE_IN_BLOCK
#define NANDFLASH_1ST DATA_DRIVE_START_BLOCK

For example:

#define NANDFLASH_1ST DATA DRIVE_SIZE_IN_BLOCK 90
#define NANDFLASH_1ST DATA_DRIVE_START_BLOCK 110

In this example, the data drive size, in blocks, is 90. This data driver is expanded from 110th to 199th
block.

If a developer wants to define data drivers manually (that is some data drivers are not placed continuously
in NAND physical device), these data drivers can be declared in g_nandZipConfigBlockInfo variable in
the file given below:

<mgx>/source/io/nandflash_wl/wearleveling/hal/ddi_nand_media_defination.cpp.-

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor 1

4
Using MQX NAND Flash Wear Leveling Module

nand: iNandzZipConfigElockInfo_t g nandZipConfigElockInfo =

{

3, <
{

{

kEDriwveTypelata,
DRIVE TAC DATA,

10,
a
o

L

kEDriveTypelnknown,

DRIVE_TAG DATA,
10,

0 -

10

kEDriveTypelata,
DRIVE TAC DATA,

g0, <
]

zo <

}i

Number of drives

Size of drive

Start block of drive

In this sample, there are three drives, two are data type, one is unknown. It means the follwing:

10 19

1 drive
Data type
(Use to hold data)

3" drive
Data type

(Use to hold data)

0 9 20

Figure 4-1. Manually Pre-defined 03 data Drivers

Drives could be the following types:

99

Enum LogicalDriveType_t Description
kDriveTypeData Public data drive
kDriveTypeSystem System data drive
kDriveTypeHidden Hidden data drive
kDriveTypeUnknown Unknown data drive

In the current WL version, the WL only supports kDriveTypeData type. Other types with its block range

are ignored.

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor

Using MQX NAND Flash Wear Leveling Module

4.2 NAND Flash WL API

NAND Flash WL driver provides an interface for upper layer such as MFS and read/write raw operations.
Its prototypes are described as shown below.

4.2.1 _io_nandflash_wl_install

Description | This function is responsible for installing the main functions of nandflash memory.
_io_nandflash_wl_open

_io_nandflash_wl_close

_io_nandflash_wl_read

_io_nandflash_wl_write

_io_nandflash_wl_ioctl

_io_nandflash_wl_uninstall

Prototype _mgx_uint _io_nandflash_wl_install

(

/* [IN] The initialization structure for the device */
NANDFLASH_INIT_STRUCT _PTR_ init_ptr

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

3 Freescale Semiconductor

Using MQX NAND Flash Wear Leveling Module

4.2.2 _io_nandflash_wlI_uninstall
Description | This function is used to uninstall the nandflash memory and free all unused allocated
memory.
Prototype _mgx_int _io_nandflash_wl_uninstall
(

/* [IN] The 10 device structure for the device */
I0_DEVICE_STRUCT_PTR io_dev_ptr

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5
Freescale Semiconductor

Using MQX NAND Flash Wear Leveling Module

4.2.3 _io_nandflash_wl_open

Description | This function is used to open and initialize nand flash driver supported wear leveling
feature. Depending on the input argument, the core of the driver is either built or
ignored.

Prototype _magx_int _io_nandflash_wl_open

(
/* [IN] the file handle for the device being opened */
MQX_FILE_PTR fd_ptr,

/* [IN] the remaining portion of the name of the device */

char_ptr open_name_ptr,

/* [IN] the flags to be used during operation: */
char_ptr flags

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

5 Freescale Semiconductor

Using MQX NAND Flash Wear Leveling Module
4.2.4 _io_nandflash_wl_close

Description | This function is used to close nand flash driver.
Prototype _mgx_int _io_nandflash_wl_close

(

/* [IN] the file handle for the device being closed */
MQX_FILE_PTR fd_ptr

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5
Freescale Semiconductor

Using MQX NAND Flash Wear Leveling Module

4.2.5 _io_nandflash_wl _read

Description |Modules of upper layers use this function to read a logical sector from nand flash
memory device via core and NFC Physical media.

Prototype _mgx_int _io_nandflash_wl_read

(
/* [IN] the file handle for the device */
MQX_FILE_PTR fd_ptr,

/* [IN] where the data is to be stored */
char_ptr data_ptr,

/* [IN] the number of pages to input */

_mgx_int num

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

7 Freescale Semiconductor

Using MQX NAND Flash Wear Leveling Module

4.2.6 _io_nandflash_wl_write

Description |Modules of the upper layers use this function to write a logical sector from nand flash
memory device via core and NFC Physical media.

Prototype _mgx_int _io_nandflash_wl_write

(
/* [IN] the file handle for the device */
MQX_FILE_PTR fd_ptr,

/* [IN] where the data is stored */
char_ptr data_ptr,

/* [IN] the number of pages to output */

_mgx_int num

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor 8

A
Using MQX NAND Flash Wear Leveling Module

4.2.7 _io_nandflash_wl _ioctl

Description | This function contains a useful control command to communicate with low layer
hardware.

Prototype _mgx_int _io_nandflash_wl ioctl

(
/* [IN] the file handle for the device */

MQX_FILE_PTR fd_ptr,

/* [IN] the ioctl command */

_mgx_uint cmd,

/* [IN/OUT] the ioctl parameters */

pointer param_ptr

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

9 Freescale Semiconductor

Using MQX NAND Flash Wear Leveling Module

4.2.8 _io_nandflash_wl_internal_read_metadata

Description | This function is responsible to read only data of the spare area. It’s called from
_io_nandflash_wl_ioctl function by the input command.

Prototype _mgx_int _io_nandflash_wl_internal_read_metadata

(
/* [IN] the file handle for the device */

MQX_FILE_PTR fd_ptr,

/* [IN] where the data is to be stored */
char_ptr data_ptr,

[* [OUT] the error is returned */

uint_32_ptr ret_err

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor 10

Using MQX NAND Flash Wear Leveling Module

4.2.9

_io_nandflash_wl_internal_read_with_metadata

Description

This function is used to read all data in a sector. It’s called from
_io_nandflash_wl_ioctl function by the input command.

Prototype

_mgx_int _io_nandflash_wl_internal_read_with_metadata

(
/* [IN] the file handle for the device */

MQX_FILE_PTR fd_ptr,

/* [IN] where the data is to be stored */
char_ptr page_struct_ptr,

/* [IN] the number of pages to input */

_mgx_int num,

[* [OUT] the error is returned */

uint_32_ptrret_err

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

11

Freescale Semiconductor

Using MQX NAND Flash Wear Leveling Module

4.2.10 _io _nandflash_wl_internal_write with_metadata

Description | This function is used to write data to a sector, and metadata in the spare area.

Prototype _mgx_int _io_nandflash_wl_internal_write_with_metadata

(
/* [IN] the file handle for the device */

MQX_FILE_PTR fd_ptr,

/* [IN] where the data is stored */
char_ptr page_buff_struct,

/* [IN] the number of pages to output */

_mgx_int num,

[* [OUT] the error is returned */

uint_32_ptr ret_err

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor 12

Using MQX NAND Flash Wear Leveling Module

4.3 NFC Physical Media Class

* NFC Physical Media class, which is a subclass of the NandPhysicalMedia abstract class, is a
hardware dependent code that is responsible for bridging between WL module and specific
hardware NAND Flash Controller (NFC). This class prototype is discussed in detail in subsequent
section.

NOTE

WL can support a new NAND Flash Controller (that is CPU does not have NFC hardware) by simply
creating a new class, which is based on NandPhysicalMedia, and initializing it properly in NandHal class.

NFC physical media is located as shown below:

<mgx>/source/io/nandflash_wl/wearleveling/hal/ddi_nand_hal_nfcphymedia.cpp.

4.3.1 NFCNandMedia::NFCNandMedia

Description | This is a constructor of the NFC Physical media module.
Prototype NFCNandMedia::NFCNandMedia

(
/* [IN] chip number for enabling */

uint32_t chipNumber
)

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

13 Freescale Semiconductor

Using MQX NAND Flash Wear Leveling Module

4.3.2 NFCNandMedia::initChipParam

Description

This function initializes all chip parameters such as pages per block, page size, etc.

Prototype

void NFCNandMedia::initChipParam()

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor

14

Using MQX NAND Flash Wear Leveling Module

4.3.3

NFCNandMedia::readPage

Description

This function reads data and its metadata on a given physical sector number# from a

physical sector in nand flash memory device.

Prototype

RtStatus_t NFCNandMedia::readPage
(

/* [IN] Sector number for reading */

uint32_t uSectorNumber,

/* [OUT] Return read data buffer */
SECTOR_BUFFER * pBuffer,

/* [OUT] Return read auxiliary(metadata) buffer */
SECTOR_BUFFER * pAuxiliary

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

15

Freescale Semiconductor

Using MQX NAND Flash Wear Leveling Module

4.3.4 NFCNandMedia::writePage

Description | This function reads data and its metadata on given physical sector number# from a
physical sector in the nand flash memory device.

Prototype RtStatus_t NFCNandMedia::readPage
(

/* [IN] Sector number for reading */

uint32_t uSectorNumber,

/* [OUT] Return read data buffer */
SECTOR_BUFFER * pBuffer,

/* [OUT] Return read auxiliary(metadata) buffer */
SECTOR_BUFFER * pAuxiliary

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor 16

Using MQX NAND Flash Wear Leveling Module

4.3.5 NFCNandMedia::eraseBlock
Description | This function is used to erase a given physical block number#.
Prototype RtStatus_t NFCNandMedia::eraseBlock
(
/* [IN] Given block for erase request */
uint32_t uBlockNumber
)
Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5
17

Freescale Semiconductor

Using MQX NAND Flash Wear Leveling Module

4.3.6 NFCNandMedia::eraseMultipleBlocks

Description

This function is used to erase a range of physical blocks.

Prototype

RtStatus_t NFCNandMedia::eraseMultipleBlocks

(

/* [IN] Start block No# for erase request */
uint32_t startBlockNumber,

/* [IN] Number of block for erase request */

uint32_t requestedBlockCount,

[* [OUT] Actual erased block */
uint32_t * actualBlockCount

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor

18

Using MQX NAND Flash Wear Leveling Module

4.3.7

NFCNandMedia::copyPages

Description

This function is used to copy data of multiple physical sectors (data and metadata)

from a source device to a target device.

Prototype

RtStatus_t NFCNandMedia::copyPages

(

/* [IN] Target Nand is request for copy to */
NandPhysicalMedia * targetNand,

/* [IN] Start from sector No# */

uint32_t wSourceStartSectorNum,

/* [IN] Copy to target's sector No# */
uint32_t wTargetStartSectorNum,

/* [IN] Number of sector for copying */

uint32_t wNumSectors,

/* [IN] The temporary sector buffer */
SECTOR_BUFFER * sectorBuffer,

/* [IN] The temporary auxilary buffer */
SECTOR_BUFFER * auxBuffer,

/* [IN] For copy filtering purpose */
NandCopyPagesFilter * filter,

[* [OUT] Actual number of copied pages */

uint32_t * successfulPages

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

19

Freescale Semiconductor

Using MQX NAND Flash Wear Leveling Module

4.3.8 NFCNandMedia::isBlockBad

Description | This function checks whether a given block is bad.
Prototype bool NFCNandMedia::isBlockBad

(

/* [IN] Given block No# */
uint32_t blockAddress,

/* [IN] The temporary sector buffer */
SECTOR_BUFFER * auxBuffer,

/* [IN] Indicate whether we should check the factory marking position,
** NFCNandMedia currently does implement in lower layer

*/

bool checkFactoryMarkings,

/* [OUT] Read status */
RtStatus _t * readStatus

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor 20

Using MQX NAND Flash Wear Leveling Module

4.3.9

NFCNandMedia::markBlockBad

Description

This function is used to mark a block as bad.

Prototype

RtStatus_t NFCNandMedia::markBlockBad

(
/* [IN] Given block No# */

uint32_t blockAddress,

/* [IN] The temporary sector buffer */
SECTOR_BUFFER * pageBuffer,

/* [IN] The temporary sector auxiliary buffer */
SECTOR_BUFFER * auxBuffer

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

21

Freescale Semiconductor

Using MQX NAND Flash Wear Leveling Module

44 Memory Management

Memory management is a useful module to manage/profile allocated memory. It enables both the
developer and the user to know the amount of allocated/free and leaked memory.

This module can be easily turned off by changing the definition: NANDWL_MEM_LEAK_DETECTION
to zero. When the definition is zero, the NAND Flash WL module uses the MQX software standard
allocator/free memory — mem_alloc()/free() function instead of NAND Flash WL’s function —
mm_alloc()/mm_free().

This memory management module is located as shown below:

<mgx>/source/io/nandflash_wl/wearlevel ing/rtos/mgx/mem_management.cpp-

4.4.1 mm_alloc

Description | This function allocates a buffer with a given size. Each buffer includes two
signatures, at head and tail, to trace their status. To manage memory, it’s better to
implement this function, in place of using standard functions.

Prototype pointer mm_alloc

(
I* [IN] size of requested buffer */

_mem_size request_size,

/* [IN] file name which requests buffer */

const char™ file_name,

/* [IN] Location in file_name */

int file_loc,

/* [IN] Should zero buffer after allocated */

boolean isZero,

/* [IN] Is this buffer requested from new operator */

boolean is_from_operator

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

22 Freescale Semiconductor

Using MQX NAND Flash Wear Leveling Module

4.4.2 mm_free

Description

This function is used to free allocated memory. It will check the signature included
and alert invalid allocated buffer.

Prototype

_mgx_uint mm_free

(
/* [IN] pointer to head of allocated buffer */

pointer buf

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor

23

Using MQX NAND Flash Wear Leveling Module

45 WL Debug

WL Debug is designed to support developers to debug each sub module or all sub modules of the NAND
Flash WL core. If a debug module is enabled, all messages of verbose module will be printed out by using

WL_LOG statement. The syntax is shown below:
WL_LOG(<WL_Module>, <Log_type>, <Message>);

£* Try to load the zone and phy maps from media, */
WL LOG(WL_MODULE MAPPEER, WL _LOG INFO, "Loading maps from mediai\n"):

#if | (WL_LEEUG))
uint_ 32 g wl_ log module attributez =
WL _MODULE GENEERAL
A*] WL _MODULE_HAL*S < Disabled debug module
| WL_MODULE MAPPER
| WL _MODULE_MEDIA
| WL_MODULE_LOGICALDERIVE
| WL MODULE DEFEERREDTASE «—— Enabled debug modules
|
|
|

WL _MODULE MELIABUFFER
WL_MODULE HNANDWL
WL_MODULE NAWDWL TESTING

This module is located as shown below:

<mgx>/source/io/nandflash_wl/wearleveling/wl_common.cpp.

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

24

Freescale Semiconductor

46 MFS Example User Manual

4.6.1 User Interface

Using MQX NAND Flash Wear Leveling Module

B COM1:57600baud - Tera Term ¥T i] 4|
File Edit Setup Contral Window Help
[°NAND Flash demo -]

Shell <build: Jan 9 2812>
Copyright (c> 2888 Freescale Semiconductor;:
shell>
=hell> help
Available commands:
cd <directory’
copy <source?> <{dest>
create {filename> [<mode>]
del <file>
disect <{sector}> [{device>]
dir [<{filespec>] [{attr>1]
di {sector> [{dewvice>]
exit
format {drive:}> [{volume lahel>]
help [{command?>]
mnkdir <{directory>

purd

read <filename> <bytes> [<seek_mode>] [{offset>]
ren 4oldname? {newname>

rmdir {directory>

sh {filename>

type <filename>

write <filename> <{bytes?> [{seek_mode>] [{offset>]
fsopen

fsclose

nanderase

nandrepair

ganderasechip

chell> W

If this is the first time you use the demo. you should run “nanderasechip' first.

Figure 4-2. MFS example user interface

4.6.2 New Shell Commands

This example is based on existing MFS SD Card example. Therefore, it has common shell commands and

some new commands, which are only used for FFS.

New shell commands are:
» fsopen
» fsclose
e nanderase
* nandrepair
* nanderasechip

These commands are shown in the diagram below:

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor

25

Using MQX NAND Flash Wear Leveling Module

4.6.2.1

WL Cpen

Erase

=
Fn’i

Try again

fes—m

Repair

{ Unknew | MF3 Open ot

Mot DOS
DISK

Yes
Format
/EF{ROH f+—Ho Success

f

)

N-:—-I Ready to USE

N4

Yes

N4

“fsopen” Command

This command is used to open NAND flash memory with wear leveling. Each sub module (Media,
DataDrive, Mapper...) is initialized in order.

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

26

Freescale Semiconductor

Using MQX NAND Flash Wear Leveling Module

4.6.2.2 “fsclose” Command

This command is used to close NAND flash memory and shutdown initialized wear leveling module.

4.6.2.3 “nanderase” Command

This command is used to erase all blocks, which are defined as Data drive. These blocks are erased by wear
leveling module, not NFC directly.

4.6.2.4 “nandrepair” Command

This command is used to repair all blocks in defined Data drive. Random data will be written to these
blocks (included the spare area) and their status is also checked. The wear leveling module will rebuild
necessary maps because they were erased while the Data drive is being repaired.

4.6.2.5 “nanderasechip” Command

This command is used to erase all blocks in NAND flash memory. These blocks are erased directly by the
NFS ioctl. The wear leveling module is not installed.

NOTE

» First time users of the MFS NAND Flash example, should run “nanderasechip” command first. If
the data in the spare area, which holds metadata of each sector, is cluttered, it will cause the core
to malfunction. With incorrect data, the core will build incorrect maps and critical errors may occur.

* To change the size of the default data drive or the structure of the NAND media, please make sure
they were declared in g_nandZipConfigBlockInfo variable.

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor 27

Using MQX NAND Flash Wear Leveling Module

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

28 Freescale Semiconductor

MQX Wear Leveling Internal Functionality

Chapter 5 MQX Wear Leveling Internal Functionality

This section describes the functionalities of Wear Leveling module in NAND flash driver.

5.1 Role of WL Module in NAND Driver

This module is mainly responsible for mapping from a virtual page address to a physical page address. By
doing so, the wear leveling works transparently with the upper layer such as MQX MFS. Applications in
the upper layer pass a logical sector (or virtual page address) to WL’s module resists inside NAND driver.
After that, the WL mechanism searches its internal mapping table on RAM or flash memory to find the
desired physical page address.

There are a few existing mapping tables, namely PhyMap, ZoneMap, and NonSequentialSectorMap,
maintained in the WL module. In the initialization step, WL tries to build up the PhyMap and ZoneMap
by scanning all blocks in the reserved area on NAND physical to find the suitable map structure.
NonSequentialSectorMap is built from metadata in every physical page.

If NAND memory is fresh or does not contain WL information, these maps will initialize with default
parameters. On each read/write operation from the upper layer, these maps will update by getting rid of a
non-existing entry and fetching a new one from the flash memory. Finally, when upper layer closes the
flash driver, all map data will be flushed to the physical pages encapsulated in a special structure.

In addition, WL map retains all good blocks and bad blocks on NAND flash memory. If WL catches an
error related to the writing or erasing operation on a specific block, it marks the block as bad and avoids it
in the future allocation.

5.2 Input and Output of WL Module

The following figure depicts WL input and output parameters that are passed between each module and
function.

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor 1

MQX Wear Leveling Internal Functionality

Application/Upper layer

Read/Write on specific
Logical Sector Address
used on file system

Call NAND Read/Write raw on
NAND Read/Write Acalculated Physical Page Address

raw functions

Get Metadata from page’s Spare area

Read/Write raw

> NFC

Figure 5-1. Input/Ouput Parameters of WL Module

5.3 Internal Mechanism inside WL Module

The most important task for WL module is to get essential information from maps or flash memory and
calculate the physical page address from Logical Sector/Page Address to Physical Page Address. To do so,
WL must cooperate with maps as shown in the figure below:

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

2 Freescale Semiconductor

In this figure:
Phy Map: holds a bitmap table that indicates the status of each block in the flash memory.
Zone Map: stores a look up table for mapping the Vritual Block Address to the Physical Block

MQX Wear Leveling Internal Functionality

return FREE block——»

NAND Read/
MFS/Upper layer Write raw
Read/Write raw
A logical sector address
used on file system
v
Get metadata
L » NFC
WL Module

Not found on Map
Get FREE block

Zone map

Logical sector
address

Mathematical convert

Virtual sector
address

Virtual sector
offset

Look up_|
block

Virtual block
address

Non-
Look up .
age sequential
P Sector Map

Physical block
address

Physical sector
offset

L

Physical sector
address

— |

Figure 5-2. Internal Mechanism inside WL Module

Non-Sequential Sector Map (NSSM): supplies a map to convert the logical sector offset to the
physical sector offset in a Virtual Block. One important aspect of the NSSM is that each NSSM is
associated with a virtual block number, not with a physical block. This allows the data associated
with the virtual block to move around the media as necessary.

As mentioned in the previous section, the three maps (Phy map, Zone map, and Non-sequential sector
map) are both stored in RAM and preserved on flash memory for future re-building purpose.

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor

MQX Wear Leveling Internal Functionality

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

4 Freescale Semiconductor

Chapter 6 MQX Wear Leveling Internal Software Flow

This section describes software flow inside the WL Module.

6.1 Initialize Flow

Initialization steps are as shown below:

NAND WL IF NSSM Manager Mapper Zone Map Phy Map
| | | | |
L | | |
Initializ | | |
o | | |
4—Initialize successfully: | | |
(| |
K ¢ — — — -Initialize failed- — — — — | | |
| | |
| — | |
Initializ |
|_Load or scan and build from NAND |
| Flash memory device |
| |¢———Load/Build successfull |
| |
| |
: ¢ ¢ — — —Load/Build failed— — — :
| | |
: Load or scan and build fromlNAND Flash memory device———————)
[}
1
: ¢——————— L oad/Build successfull
1
|
! He——————————— Load/Build failed — — — — — — — — — — —|
e———————————— Initialize failed— — — — — — — — — — — — — |
| | |

! ! ! ! !
Figure 6-1. WL Initialization Sequence Diagram

In this sequence diagram:

* NAND WL IF : is an interface for WL module. It is responsible for initializing all maps and for
interacting with upper layers.

* NSSM Manager: manages all Non-sequential Sector maps in the Red Black tree structure and LRU
list.

* Mapper: manages Zone Map and Phy Map.

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor 1

MQX Wear Leveling Internal Software Flow

6.2 Read Sector Flow

Relative Physical

Virtual Block Number)} Zone Map + Phy Map Block Number

Logical Sector \| Mathematical Physical Sector
Number Converter Number

Non-sequential Sector
Map of the virtual
block

Virtual Block Number
Virtual Sector Offset

Relative Physical
Sector Offset

Figure 6-2. WL Read Sector Flow

NAND WL IF Zone Map Phy Map Non-sequential Sector Map
| | |

| | |

I I |

Lanites) Sesir Get relative Physical Block Number |

gNumber — of Virtual Block Number —

of Logical Sector Number | Assign a new free physical block

if does not find out

g - Return OxFF buffer when can'tget_ _ _ _ _|
relative Physical Block
Return a new free

Physical Block Number

Return the relative
Physical Block Number |
| |

—

|
Get Physical Sector Offset of Virtual Sector Number
of Logical Sector Number within the relative Physical Block Number

'
- There is somethingwrong— ————-—-—————————————— — — — —
|

1
Return relative Physical Sector Offset:
|

Physical
Sector Number

Figure 6-3. WL Read Sector Sequence Diagram

In this sequence diagram:

» Step 1: If MFS wants to read data from a logical sector, it passes a logical sector address to the
NAND WL IF of the NAND driver. WL needs to make sure that a given logical sector is not out
of bounds.

e Step 2: The NAND WL IF converts the input logical sector number mathematically into a virtual
block number and a virtual block offset.

» Step 3: If the Zone map object is loaded or built from the initialization phase, the NAND WL IF
searches the map to figure out a relative physical block of this virtual block. If the physical block
cannot be found, that means that no physical block was assigned to this virtual block, and that a

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

2 Freescale Semiconductor

MQX Wear Leveling Internal Software Flow

free physical block that is available in Phy map is assigned and a buffer filled with OXFF sent back
to MFS.

o Step 4: The NAND WL IF scans all entries in Non-sequential Sector Map of the virtual block to
get location (offset) of the virtual sector in the block which it belongs to. If the Non-sequential
Sector Map was not loaded to SDRAM, each sector of the relative physical sector is scanned to
read metadata and Non-sequential Sector Map is built.

» Step 5: If WL has the physical sector number and the physical sector offset number, it knows
exactly which physical sector must be sent to the NFC. However, WL also needs to confirm
whether the sector is written or not. If it is not written, it returns an OxFF buffer.

6.3 Write Sector Flow

Relative Physical

Virtual Block Number)} Zone Map + Phy Map Block Number

Logical Sector \| Mathematical Available Physical
Number Converter Sector Number

Virtual Sector Offset p Y

block Sector Offset

Figure 6-4. WL Write Sector Flow

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

3 Freescale Semiconductor

MQX Wear Leveling Internal Software Flow

NAND WL IF Zone Map Phy Map Non-sequential Sector Map
| | | |
| | | |

]] | |
Logical Sector Get relative Physical Block Number | |
gNumber — of Virtual Block Number —) |
of Logical Sector Number | Assign a new free physical block :
if does not find out |
Py — Return OxFF buffer when can'tget _ _ | |
relative Physical Block :
Return a new free
Physical Block Number :
Return the relative |
 S— . —_—
Physical Block Number | |
L | .
1 |
Get the next available Physical Sector Offset of Virtual Sector Number
of Logical Sector Number within the relative Physical Block Number
| |
x et) There is something wrong — — — — — — — — F—————ee e =
| |
1
Return suitable Physical Sector Offset: :
| |
| |
Physical | |
Sector Number : :
| |
| |
| |
'
Update Non-sequential Sector Map: :
| |
| |
| |
| |
| |
T | | T
| |

Figure 6-5. WL Write Sector Sequence Diagram

In this sequence diagram:

Step 1: If the MFS wants to write data to a logical sector, it transfers a logical sector address to the
NAND WL IF of the NAND driver. WL needs to make sure that a given logical sector is not out
of bounds.

Step 2: The NAND WL IF converts the input logical sector number mathematically into a virtual
block number and a virtual block offset.

Step 3: If the Zone map object is loaded or built from the initialization phase, the NAND WL IF
searches the map to figure out the relative physical block of this virtual block. If the physical block
cannot be found, that means that no physical block is assigned to this virtual block, and that a free
physical block, which is available in Phy map, is assigned.

Step 4: The NAND WL IF scans all entries in the Non-sequential Sector Map of the virtual block
to get location (offset) of the next available virtual sector in the block to which it belongs. If the
Non-sequential Sector Map was not loaded to SDRAM, each sector of the relative physical sector
is scanned to read metadata and Non-sequential Sector Map is built later.

If the next available virtual sector is out of bounds because the physical block is full, WL marks
that physical block as a backup block and gets a new free block to write data. Old backup block
needs to be erased and marked as free.

Step 5: If WL has the physical sector number and the physical sector offset number, WL knows
exactly which physical sector must be sent to the NFC. However, if an error occurs when writing
and the NFC cannot fix that error, WL has to copy content of the physical block to another free
block and mark the previous block as bad. The NFC continues writing on the new block.

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor

MQX Wear Leveling Internal Software Flow

o Step 6: After the NFC writes successfully, the Non-sequential Sector Map of the physical block
needs to be updated.

6.4 Shutdown Flow

MAMD WLIF MNS5M Manager Mapper ZoneMap FPhy Map
1 1

[}
Initialize #| I
+—nitizlize successilly— :
¢ b — — —-hitialz e filed— — — — | 1
|
Initializ : _—
— 4 .
K p——— CEP R ——

|.________

S —

PO ——— Intidize faled —— — ————— — —— —]

i o

] 1

,5 { ‘

-

Figure 6-6. WL Shutdown/Flush Sequence Diagram

Before releasing all variable that is allocated on memory, WL needs to flush all Non-sequential Sector
Maps by merging the backup block and the primary block to free the unused block, and write Zone map
and Phy map on NAND flash memory device if they are not saved.

6.5 Zone Map, Physical Map, and Non-sequential Sector Map
Structure

Zone Map and Physical Map are organized inside the flash memory as shown in the figure below:

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

5 Freescale Semiconductor

MQX Wear Leveling Internal Software Flow

Reserved Block Area

Zone Map Block All data & spare are OxFF
X /| indicate this page is FREE
Persistent Phy Map Block
FREE r First LBA
Page 0 FREE
FREE P 1 FREE
age Header contains
FREE Page 2 Section 1 Signature, Entry Entry Entry =ity SPEIe=
} totalEn | generally
: totalEntries, 1st 2nd 3rd .
User Block Page 3 Section 2 firstLBA tries-th | unused
User Block age 4 Sesion &
Page 5 Section 4 %, A Page (or Section)
User Block D B organization
top section page Idx
User Block A Map Block
Organization
User Block

User Block

User Block

NAND Flash memory

Figure 6-7. Zone Map and Phy Map Organization in Flash Memory

Maps are located in a Reserved Area Block that the user’s data cannot touch. Each map occupies one block
and the others are backups. One map block contains multiple sections that are spread continuously in
virtual pages on the flash memory. To slow down the premature wear-out on this map block, whenever WL
adds new section number to flash memory, it always writes to the first available virtual page (indicated by
top section page index). By using this strategy, WL regularly touches all virtual pages in this block.
Every section contains a header on the first page data. The most important fields in each header are:
» Signature: for identifying a Zone Map or Phy Map
o firstLBA: Logical Block Address of first entry
 totalEntries: total number of entries in this section
The assumption is that, with one physical block (64*4 virtual pages, 512 byte in each page), it is possible
to preserve all mapping information for physical NAND memory. For example:
* For storing Phy Map:
— Virtual page size = 512 bytes and a block contains 64*4 virtual pages
— Section header = 24 bytes
— 02 bits are used for indicating a block’s status

— A block can present status of maximum ((512 bytes-24 bytes)*8bit)/(2 bit) * 64*4 pages =
499,712 blocks (~ 499,712 * 128KB in each block = 61GB NAND flash device)

» For storing Zone Map:
— Virtual page size = 512 bytes and a block contains 64*4 virtual pages
— Section header = 24 bytes
— Each entries contain a 24-bit physical block address

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

6 Freescale Semiconductor

MQX Wear Leveling Internal Software Flow

— A block can hold a maximum of ((512 bytes-24 bytes)*8bit)/(24 bit) * 64*4 pages = 41,642
physical block address (~ 41,642 * 128KB in each block = 5GB NAND flash device)

NOTE

When the top section page index reaches the total virtual page in a block
(64*4), it means that this map block is completely full. WL relocates this
block to the new one (still in reserved area block). This process is called

consolidation.

Compared to the Zone and Phy Map, a Non-sequential Sector map is distributed in every virtual page spare

area.

In case NFC_CFG[PAGECNT]=4, we have 64*4 virtual
pages in one block

Virtual Page S| SRETE aF:SJf;
Virtual Page 0 Virtual Page 0 Virtual | Virtual
63*4 page
page O | page 1
63
Flags In case ECC uses 8 bytes
Reserved indicates /| for O4bits auto correctiion
Block . . .
—usein Logical Logical that all
status B
(Non-Oxff case Block Sector pages in ECC p
- BAD) (1 16bit Address Index (2 | the block (8bytes)
- byte) Nandflas | (3 bytes) bytes) are sorted
h (1 byte) logically(1
byte)

Figure 6-8. Organization of Non-sequential Sector Map in Virtual Page Spare Area

NOTE

Generally, the reserved block area (RBA) is expandable if there are bad blocks inside this area. In this
instance, the reserved block area moves toward the higher block address and relocates any non-map blocks

which reside in RBA.

6.5.1 Phy Map

Phy map is responsible to get/set a status of the specific physical block. It stores the status of each block
in the flash memory by using a bitmap entry. Each entry in this map uses 01 bit to represent three different

states of a block:

* Block is used (occupied or bad)

* Block is free

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor

MQX Wear Leveling Internal Software Flow

These entries are encapsulated with a
header and write to NEXT available
| virtual page in specific PhyMap block.
Used 01 bit for || Each Virtual page (section) will store
each entries. | /| MAX_ENTRIES_PER_PAGE entries.
(used/free and [
bad/good block) | |

top section page ldx
-

Current I[dx Pos++

Block stores PhyMap
FREE lash
Blocks NAND Flash memory
Index of Section contains entry for LBAi =
Phy bitmap LBAIi / Total Entries Per Section
entries

Figure 6-9. Phy Map Organization in Memory and Flash

In this figure:

» Each Physical Virtual Page stores a maximum of MAX_ENTRIES_PER_PAGE entries. WL
encapsulates these entries into a section by padding a header before flushing to flash memory.

» Current index position indicates that the next free non-map block can be allocated. This position is
helpful whenever a user wants to request a new block for writing.

» Top section page index indicates the section of the next free virtual page that can be stored. This
index continuously increments toward the higher address; when it reaches a total page number, WL
will consolidate all sections of this map into the next free block in RBA.

NOTE

A trust number (TN), informs that all maps have been flushed into the flash memory successfully. It is
located in the last two bytes of metadata (byte 7 and byte 8) of every map block. Normally, the TN in Zone
and Phy maps should be as follows:

* TNzonemap = 16 bit random number
* TNphymap = TNzonemap +1 (the Phy Map is always written to NAND flash before ZoneMap)

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

8 Freescale Semiconductor

MQX Wear Leveling Internal Software Flow

6.5.1.1 Phy Map initialization

Normally, WL checks the trust number to find out whether all maps have been flushed. If so, WL will scan
all blocks in RBA in flash memory to locate the block that holds the PhyMap table during initialization
phase. A valid PhyMap Block should have a valid signature and a consistent structure on each page. If WL
does not find a good Phy Map block, it scans all blocks to build a new one.

6.5.1.2 Phy Map preservation
Whenever the Phy Map changes, (it is dirty), WL flushes it to the flash memory.

6.5.2 Zone Map

Zone map contains a mapping table between Logical Block Address and Physical Block Address.

Logical Block 1 Physical Block 1
Logical Block 2 Physical Block 2
Logical Block 3 Physical Block 3
Logical Block N Physical Block N
Logical NAND Flash Physical NAND Flash
memory memory

Figure 6-10. Zone Map - Mapping Table between Logical Block Address and Physical Block Address

WL splits this map into many sections and writes to flash memory. Each section contains entries whereby
each entry stores 16 or 24 bits physical block address.

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

9 Freescale Semiconductor

MQX Wear Leveling Internal Software Flow

PBA of

PEA of

PEA of

PEBA of
LBA
hAX

Zone entries

LBAT [

PBAOf | |

PBAOf | /

header and write to NEXT available

1| Each Wirtual page (section) will store
r| MAX_ENTRIES_PER_PAGE entries,

Block stores ZoneMap

NAND Flash memong

These entries are encapsulated with a

virtual page in specific ZoneMap block.

Section 0 with header:
- startlLBA=LBA1
A |- totalEntries

top section page ldx
-~

Index of Section contains entry for LBAi =

LB Ai/ Total Entries Per Section

Figure 6-11. Zone Map Organization In memory and Flash

WL maintains this map in flash memory the same way as it does the Phy Map. However, it is difficult to
load the entire Zone Map to memory beacause of the limited RAM . As a result, only some sections of the
zone map are loaded into a cache array for fast look up. If the cache array is full, WL uses the Least
Recently Used (LRU) strategy to remove and fetch a new one from flash memory.

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor

MQX Wear Leveling Internal Software Flow

Cache Array which stores n Section of Zone
map wil be filled until it is full.

Section 1
Newer MRU section <
Section 2
(The 1% used section) Most Recently Used
(MRU) section in
Section 3 SDRAM
(et Other section in 3. update to new MRU section
SDRAM

Cache miss -> 1. evict

Section N-1
(The 2" used section) | 5 tetch

— N (LRU) section in ||
SDRAM

Section N
RAM

Zone Map in Flash
memory

Figure 6-12. Cache Array for Zone Map

6.5.3 Non-sequential Sector Map

The Non-sequential sector map (NSSM) is responsible for tracking the block's logical sectors within the
physical location of a block. It also manages the mechanism which updates the block contents in an
efficient manner. All upper layer sectors reading and writing must utilize a non-sequential sector map to
either find the physical location of a logical sector, or to get the page where a new sector should be written.

The NSSM is composed of two key components. First, it has a map which explains the relationship of the
logical sector to a physical page within a block. This allows logical sectors to be written to the block in
any order, which is important for ensuring that pages are only written sequentially within the block as
required by NAND. The map also enables logical sectors to be written to the block more than once, with
the most recent copy taking precedence.

The second element is a backup block. The backup block contains previous contents of the block and
allows only new sectors to be written to the primary block. If a logical sector is not present in the primary
block, it can be read from the backup block. When the primary block becomes full, the primary and backup
are merged into a new block. Merging takes the most recent version of each logical sector from either the
primary or backup and writes it to the new block.

Another important aspect of the NSSM is that each NSSM is associated with a virtual block number, not
a physical block. This allows the data associated with the virtual block to move around on the media as
necessary.

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

11 Freescale Semiconductor

MQX Wear Leveling Internal Software Flow

Logical Sector 1

Physical Sector 1

Logical Sector 2

Physical Sector 2

Logical Sector 3

Physical Sector 3

Logical Sector N

Physical Sector N

Logical Block

Physical Block

Figure 6-13. Mapping between Logical Sector <-> Physical Sector

Each block holds a non-sequential map in the spare area of every page. Whenever upper layer requests to
read or write on a given sector, WL will calculate a virtual block that contains a sector. After that, WL
scans the spare area of all pages of this virtual block to build up a non-sequential sector map.

To boost performance, WL uses specific caching mechanism to improve speed when looking up a logical
sector in one block. Similar to Zone Map, only a few maps are loaded into memory. WL uses LRU strategy
for every cache-missed map. In addition, to enhance the search time, a Red-black tree is used to hold the
non-sequential maps. Each node of the tree is a non-sequential map whereby the key is related to the
Virtual Block Address (VBA) of that map. Since a Red-black tree is a self-balancing binary search tree,

searching-time is optimized.

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

12

Freescale Semiconductor

MQX Wear Leveling Internal Software Flow

ROOT
NSSMap for
VBA 13

NSSMap
for VBA 8

NSSMap INSSIVETY) INSSIVETY)
for VBA for VBA for VBA
11 15 25

NSSMap
for VBA 1

NSSMap

for VBA 6 NILL NILL NILL

NILL NILL

NILL NILL NILL

Figure 6-14. Non-sequential Map in Red Black Tree Structure

6.5.3.1 Prevent thrashing when switching from primary block to backup block

Since NSSM uses a backup block that contains the previous contents of the block (primary one), when the
primary block becomes full, the primary and backup are merged into a new block. There are a few existing
merge strategies as described below:

» shortCircuitMerge: When the primary block is full, WL requests a new free physical block from
the PhyMap and assigns it as a new primary block. The backup block is erased and freed. At this
time, the backup block points to the previous primary block.

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

13 Freescale Semiconductor

MQX Wear Leveling Internal Software Flow

Mapped to X

|

Physical Backup Physical Primary
‘Mapped to™ Block Block A. Before &
<
S
&g
S Q°
FQ
5 ¢
The same logical &F
block (VBA) ©
Erased and /
Set free i
v Y
B. After
When
Free Block New Backup Block New Primary Block EE)TE?S/ full
completely

Mapped to

Mapped to

Figure 6-15. ShortCircuitMerge for Non-sequential Sector Map

e quickMerge: occurs if the system requests WL to flush all data to memory. Merge happens when
the primary block is not yet full, but the number of sectors in backup is fitted to the primary only.
In this case, WL will copy all remaining sectors in the backup block to the primary block. After
that, the backup block is erased and freed.

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

14 Freescale Semiconductor

MQX Wear Leveling Internal Software Flow

F’hy(Sg?If;' O'S;:;W 1 Phy(ﬁg:/' ggg)or 4 Physical Sector 1
F’hy(Sg?If;' O'S;:;W 2 Phy(ﬁg:/' ggg)or z Physical Sector 2
PhY(S(i;IZ' dsaet;;or 3 Phy(ﬁg:/' iaeg)or & Physical Sector 3
PhySi(gLiS(j(z;r N-2 Phys(ig::NSg;:ttg)r N2 Physical Sector N-2
PhySi(‘é;'(de(zg N-1 Phys?j:\fgg;? N Physical Sector N-1
Phyféfﬁ' gaetf;t)of N Phys(tﬁhz’gdc;or i Physical Sector N
Backup Block Primary Block Primary Block
[—— T vepnedto
\‘\v/ Mapped to
v

The same logical
block (VBA)

Figure 6-16. QuickMerge for Non-sequential Sector Map

mergeBlocksCore: When the upper layer is writing to a sector, if any error occurs, that means that
the block, to which the sector belongs, is bad, so WL has to merge the backup block and primary
block into a new block. Finally, the backup block is erased and the previous primary block is
marked as bad.

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

15

Freescale Semiconductor

MQX Wear Leveling Internal Software Flow

Physical Sector 1
(Old data)

Physical Sector 2
(Old data)

Physical Sector 3
(Old data)

Physical Sector N-2
(Old data)

Physical Sector N-1
(Old data)

Physical Sector N
(Old data)

Backup Block

Mapped to

Physical Sector 1
(new data)

Physical Sector 2
(new data)

Physical Sector 3
(new data)

Physical Sector N-1
(Unused)

Physical Sector N
(Unused)

Primary Block

Y Mapped to
A 4

The same logical
block (VBA)

Physical Sector 1

Physical Sector 2

Physical Sector 3

Physical Sector N-2
(ready to write data)

Physical Sector N-1

Physical Sector N

NEW Primary Block

Mapped to

Request new
block |
from PhyMap

Figure 6-17. MergeBlocksCore for Non-sequential Sector

NOTE

Occasionally, because of power-loss, the backup block and the primary block are not merged together. In
this situation, two physical blocks are assigned to only one logical block. When the conflict occurs, WL

needs to re-merge the blocks.

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

16

Freescale Semiconductor

MQX Wear Leveling Internal Software Flow

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor 17

MQX Wear Leveling Internal Software Flow

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

18 Freescale Semiconductor

Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web will
be the most current. Your printed copy may be an earlier revision. To verify you have the latest information
available, see freescale.com/mgx.

This revision history table summarizes changes in this document.

ﬁi‘ﬁég? R%/;iieon Description of Changes

Rev. 1.0 04/2012 Initial Release coming with MQX software version 3.8.0.
Rev. 1.1 07/2012 Update document for MQX software version 3.8.1.

Rev. 1.2 12/2012 Update document for MQX software version 4.0.0.

Update documents for MQX softwre version 4.0.2.

Rev. 1.3 06/2013 :
Language improvements.

Rev. 1.4 12/2013 Updates specific to MQX softwre version 4.1.0-beta release.

Rev. 1.5 08/2014 Updated images in Chapter 4.

Freescale MQX™ RTOS Flash File System User’s Guide, Rev. 1.5

Freescale Semiconductor 1

http://www.freescale.com

	Freescale MQX™ RTOS Flash File System User’s Guide
	Chapter 1 Introduction
	1.1 Purpose
	1.2 Wearout Problem on Flash Memory
	1.3 Solution to Avoid Wearout Issues
	1.4 Outline

	Chapter 2 Abbreviations, Acronyms, and References
	2.1 Abbreviations, Acronyms
	2.2 References

	Chapter 3 Architecture Overview
	3.1 Old NAND Flash Architecture
	3.2 New Architecture with Wear Leveling - WL Capability

	Chapter 4 Using MQX NAND Flash Wear Leveling Module
	4.1 Configure Pre-defined Data Drive Layout
	4.2 NAND Flash WL API
	4.2.1 _io_nandflash_wl_install
	4.2.2 _io_nandflash_wl_uninstall
	4.2.3 _io_nandflash_wl_open
	4.2.4 _io_nandflash_wl_close
	4.2.5 _io_nandflash_wl_read
	4.2.6 _io_nandflash_wl_write
	4.2.7 _io_nandflash_wl_ioctl
	4.2.8 _io_nandflash_wl_internal_read_metadata
	4.2.9 _io_nandflash_wl_internal_read_with_metadata
	4.2.10 _io_nandflash_wl_internal_write_with_metadata

	4.3 NFC Physical Media Class
	4.3.1 NFCNandMedia::NFCNandMedia
	4.3.2 NFCNandMedia::initChipParam
	4.3.3 NFCNandMedia::readPage
	4.3.4 NFCNandMedia::writePage
	4.3.5 NFCNandMedia::eraseBlock
	4.3.6 NFCNandMedia::eraseMultipleBlocks
	4.3.7 NFCNandMedia::copyPages
	4.3.8 NFCNandMedia::isBlockBad
	4.3.9 NFCNandMedia::markBlockBad

	4.4 Memory Management
	4.4.1 mm_alloc
	4.4.2 mm_free

	4.5 WL Debug
	4.6 MFS Example User Manual
	4.6.1 User Interface
	4.6.2 New Shell Commands

	Chapter 5 MQX Wear Leveling Internal Functionality
	5.1 Role of WL Module in NAND Driver
	5.2 Input and Output of WL Module
	5.3 Internal Mechanism inside WL Module

	Chapter 6 MQX Wear Leveling Internal Software Flow
	6.1 Initialize Flow
	6.2 Read Sector Flow
	6.3 Write Sector Flow
	6.4 Shutdown Flow
	6.5 Zone Map, Physical Map, and Non-sequential Sector Map Structure
	6.5.1 Phy Map
	6.5.2 Zone Map
	6.5.3 Non-sequential Sector Map

