
By Niall Murphy
Author
Front Panel: Designing Software for
Embedded User Interfaces

Making proper use of a watchdog
timer is not as simple as restarting
a counter. If you have a watchdog
timer in your system, you must
choose the timeout period care-
fully, ensure that the watchdog
timer is tested regularly, and, if
you are multi-tasking, monitor
all of the tasks. In addition, the
recovery actions you imple-
ment can have a big impact on
overall system reliability.

A watchdog timer is a piece
of hardware, often built into a
microcontroller that can cause
a processor reset when it judges
that the system has hung, or is
no longer executing the correct
sequence of code. This article
will discuss exactly the sort of
failures a watchdog can detect,
and the decisions that must
be made in the design of your
watchdog system. The first half
of the article will assume that
there is no RTOS present. The
second half covers a scheme for
making use of a watchdog in a
multi-tasking system. The hard-
ware component of a watchdog
is a counter that is set to a
certain value and then counts
down towards zero. It is the
responsibility of the software
to set the count to its original
value often enough to ensure
that it never reaches zero. If it
does reach zero, it is assumed that
the software has failed in some
manner and the CPU is reset.

In other texts you will see vari-
ous terms for restarting the timer:
strobing, stroking or updating
the watchdog. However, in this
article we will use the more
visual metaphor of a man kick-
ing the dog periodically-with
apologies to animal lovers. If the
man stops kicking the dog, the
dog will take advantage of the
hesitation and bite the man.

It is also possible to design
the hardware so that a kick that

occurs too soon will cause a bite,
but in order to use such a system,
very precise knowledge of the
timing characteristics of the main
loop of your program is required.
What errors are caught?

A properly designed watch-
dog mechanism should, at the
very least, catch events that hang
the system. In electrically noisy
environments, a power glitch
may corrupt the program coun-
ter, stack pointer, or data in RAM.
The software would crash almost
immediately, even if the code is
completely bug free. This is ex-
actly the sort of transient failure
that watchdogs will catch.

Bugs in software can also
cause the system to hang, if

they lead to an infinite loop, an
accidental jump out of the code
area of memory, or a dead-lock
condition (in multi-tasking sit-
uations). Obviously, it is prefer-
able to fix the root cause, rather
than getting the watchdog to
pick up the pieces. In a complex
embedded system it may not
be possible to guarantee that
there are no bugs, but by using
a watchdog you can guarantee
that none of those bugs will hang
the system indefinitely.

First aid
Once your watchdog has bitten,
you have to decide what action
to take. The hardware will usu-
ally assert the processor’s reset

line, but other actions are also
possible. For example, when the
watchdog bites it may directly
disable a motor, engage an in-
terlock, or sound an alarm until
the software recovers. Such ac-
tions are especially important to
leave the system in a safe state
if, for some reason, the system’s
software is unable to run at all
(perhaps due to chip death)
after the failure.

A microcontroller with an
internal watchdog will almost
always contain a status bit that
gets set when a bite occurs. By
examining this bit after emerg-
ing from a watchdog-induced
reset, we can decide whether
to continue running, switch to

�EE Times-India | November 2000 | eetindia.com

Watchdog timers
MULTI-TASKING

http://www.eetindia.co.in

a fail-safe state, and/or display
an error message. At the very
least, you should count such
events, so that a persistently
errant application won’t be re-
started indefinitely. A reasonable
approach might be to shut the
system down if three watchdog
bites occur in one day.

If we want the system to
recover quickly, the initialisation
after a watchdog reset should
be much shorter than power-on
initialisation.

A possible shortcut is to skip
some of the device’s self-tests.

On the other hand, in some sys-
tems it is better to do a full set of
self-tests since the root cause of
the watchdog timeout might be
identified by such a test.

In terms of the outside world,
the recovery may be instanta-
neous, and the user may not
even know a reset occurred.
The recovery time will be the
length of the watchdog time-
out plus the time it takes the
system to reset and perform its
initialisation. How well the de-
vice recovers depends on how
much persistent data the device

requires, and whether that data
is stored regularly and read after
the system resets.

Sanity checks
Kicking the dog on a regular
interval proves that the software
is running. It is often a good idea
to kick the dog only if the system
passes some sanity check, as
shown in Figure 1. Stack depth,
number of buffers allocated, or
the status of some mechanical
component may be checked
before deciding to kick the dog.
Good design of such checks will
increase the family of errors that
the watchdog will detect.

One approach is to clear a
number of flags before each loop
is started, as shown in Figure 2.
Each flag is set at a certain point
in the loop. At the bottom of
the loop the dog is kicked, but
first the flags are checked to see
that all of the important points
in the loop have been visited.
The multi-tasking approach
discussed later is based on a
similar set of sanity flags.

For a specific failure, it is often
a good idea to try to record the
cause (possibly in NVRAM), since
it may be difficult to establish
the cause after the reset. If the
watchdog bite is due to a bug
(would that be a bug bite?) then
any other information you can
record about the state of the
system, or the currently active
task will be valuable when try-
ing to diagnose the problem.

Choosing the timeout
interval
Any safety chain is only as good
as its weakest link, and if the
software policy used to decide
when to kick the dog is not
good, then using watchdog
hardware can make your sys-
tem less reliable. If you do not
fully understand the timing
characteristics of your program,
you might pick a timeout inter-
val that is too short. This could
lead to occasional resets of the
system, which may be difficult
to diagnose. The inputs to the
system, and the frequency of
interrupts, can affect the length
of a single loop.

One approach is to pick an
interval which is several seconds
long. Use this approach when
you are only trying to reset a
system that has definitely hung,
but you do not want to do a
detailed study of the timing of
the system. This is a robust ap-
proach. Some systems require
fast recovery, but for others,
the only requirement is that
the system is not left in a hung
state indefinitely. For these
more sluggish systems, there is
no need to do precise measure-
ments of the worst case time of
the program’s main loop to the
nearest millisecond.

When picking the timeout
you may also want to consider
the greatest amount of dam-
age the device can do between
the original fai lure and the
watchdog biting. With a slowly
responding system, such as a
large thermal mass, it may be
acceptable to wait 10 seconds
before resetting. Such a long
time can guarantee that there
will be no false watchdog re-
sets. On a medical ventilator,
10 seconds would have been
far too long to leave the patient
unassisted, but if the device can
recover within a second then
the failure will have minimal
impact, so a choice of a 500ms
timeout might be appropriate.
When making such calculations
be sure to include the time
taken for the device to start up
as well as the timeout time of
the watchdog itself.

One real-life example is the
Space Shuttle’s main engine con-
troller. 1 The watchdog timeout
is set at 18ms, which is shorter
than one major control cycle. The
response to the watchdog biting
is to switch over to the backup
computer. This mechanism al-
lows control to pass from a failed
computer to the backup before
the engine has time to perform
any irreversible actions.

While on the subject of time-
outs, it is worth pointing out
that some watchdog circuits
allow the very first timeout to
be considerably longer than the
timeout used for the rest of the
periodic checks.

� eetindia.com | November 2000 | EE Times-India

http://www.eetindia.co.in

This allows the processor
time to initialise, without having
to worry about the watchdog
biting.

Whi le the watchdog can
often respond fast enough
to halt mechanical systems,
it offers l ittle protection for
damage that can be done
by software alone. Consider
an area of non-volatile RAM
which may be overwr i t ten
with rubbish data if some loop
goes out of control. It is likely
that such an overwrite would
occur far faster than a watch-
dog could detect the fault .
For those situations you need
some other protection such as
a checksum. The watchdog is
really just one layer of protec-
tion, and should form part of a
comprehensive safety net.

Multiplying the interval
If you are not building the
watchdog hardware yourself,
then you may have little say in
determining the longest inter-
val available. On some micro-
controllers the built-in watch-
dog has a maximum timeout
on the order of a few hundred
milliseconds. It you decide that
you want more time, you need
to multiply that in software.

Say the hardware provides a
100ms timeout, but your policy
says that you only want to check
the system for sanity every
300ms. You will have to kick
the dog at an interval shorter
than 100ms, but only do the
sanity check every third time
the kick function is called. This
approach may not be suitable
for a single loop design if the
main loop could take longer
than 100ms to execute.

One possibility is to move the
sanity check out to an interrupt.
The interrupt would be called
every 100ms, and would then kick
the dog. On every third interrupt
the interrupt function would
check a flag that indicates that
the main loop is still spinning.
This flag is set at the end of the
main loop, and cleared by the in-
terrupt as soon as it has read it.

If you take the approach of
kicking the watchdog from an

interrupt, it is vital to have a check
on the main loop, such as the one
described in the previous para-
graph. Otherwise it is possible
to get into a situation where the
main loop has hung, but the in-
terrupt continues to kick the dog,
and the watchdog never gets a
chance to reset the system.

Self-test
Assume that the watchdog hard-
ware fails in such a way that it
never bites. How would you ever
know? When the system works,
such a fault is not apparent. The

fault would only be discovered
when some failure that normally
leads to a reset, instead leads to
a hung system. If such a failure
was acceptable, you would
never have bothered with the
watchdog in the first place.

If you think watchdog failure
is a rare thing, think again. Many
systems contain a means to dis-
able the watchdog, like a jump-
er that connects the watchdog
output to the reset line. This is
necessary for some test modes,
and for debugging with any
tool that can halt the program.

I f the jumper fal ls out, or a
service engineer who removed
the jumper for a test forgets to
replace it, the watchdog will be
rendered toothless.

The simplest way for a device
to do a start-up self-test is to al-
low the watchdog to timeout,
causing a processor reset. To
avoid looping infinitely in this
way, it is necessary to distinguish
the power-on case from the
watchdog reset case. If the reset
was due to a power-on, then
perform this test, but if the reset
was due to a watchdog bite,

�EE Times-India | November 2000 | eetindia.com

http://www.eetindia.co.in

then we may already be running
the test. Usually you will want to
write a value in RAM that will be
preserved through a reset, so
you can check if the reset was
due to a watchdog test or to a
real failure. A counter should be
incremented while waiting for
the reset. After the reset, check
the counter to see how long you
had to wait for the timeout, so
you are sure that the watchdog
bit after the correct interval.

If you are counting the num-
ber of watchdog resets in order
to decide if the system should
give up trying, then be sure
that you do not inadvertently
count the watchdog test reset
as one of those.

Multi-tasking
A watchdog strategy has four
objectives in a multi-tasking
system:
•	 To detect an operating sys-

tem
•	 To detect an infinite loop in

any of the tasks
•	 To detect deadlock involving

two or more tasks
•	 To detect if some lower prior-

ity tasks are not getting to run
because higher priority tasks
are hogging the CPU

Typically, not enough timing
information is available on the
possible paths of any given task
to check for a minimum execu-
tion time or to set the time limit
on a task to be exactly the time
taken for the longest path. There-
fore, while all infinite loops are
detected, an error that causes a
loop to execute a number of extra
iterations may go undetected
by the watchdog mechanism. A
number of other considerations
have to be taken into account to
make any scheme feasible:
•	 The extra code added to the

normal tasks (as distinct from
a task created for monitor-
ing tasks) must be small, to
reduce the likelihood of be-
coming prone to errors itself

•	 The amount of system re-
sources used, especially CPU
cycles, must be reasonable

The solution I will describe

was used on a medical ventilator
running on the RTXC real-time
operating system. The idea was
loosely influenced by Agustus
P. Lowell’s article “The Care and
Feeding of Watchdogs,” which
describes a way to build the
watchdog scheme into the RTOS
itself. 2 Unlike Lowell’s scheme,
however, this scheme can run on
top of any RTOS, without requir-
ing changes to the RTOS code.
This scheme uses a task dedi-
cated to the watchdog. This task
wakes up at a regular interval
and checks the sanity of all oth-
er tasks in the system. If all tasks
pass the test, the watchdog is
kicked. The watchdog monitor
task runs at a higher priority than
the tasks it is monitoring.

The nature of the tasks
Most tasks have some minimum
period during which they are
required to run. A task may run
in reaction to a timer that oc-
curs at a regular interval. These
tasks have a start point through
which they pass in each ex-
ecution loop. These tasks are re-
ferred to as regular tasks. Other
tasks respond to outside events,
the frequency of which cannot
be predicted. These tasks are re-
ferred to as waiting tasks.

First we will discuss how the
scheme will work if all tasks are
regular and then we will explain
what extra work has to be done
for waiting tasks.

The watchdog timeout can
be chosen to be the maximum
time during which all regular
tasks have had a chance to run
from their start point through
one full loop back to their start
point again. Each task has a
flag which can have two values,
ALIVE and UNKNOWN. The flag
is later read and written by the
monitor. The monitor’s job is to
wake up before the watchdog
timeout expires and check the
status of each flag. If all flags
contain the value ALIVE, every
task got its turn to execute and
the watchdog may be kicked.
Some tasks may have executed
several loops and set their flag
to ALIVE several times, which
is acceptable. After kicking the

watchdog, the monitor sets all
of the flags to UNKNOWN. By the
time the monitor task executes
again, all of the UNKNOWN flags
should have been overwritten
with ALIVE. Figure 3 shows an
example with three tasks.

Waiting tasks
Waiting tasks can’t be guaran-
teed to pass through their start
point within any finite amount
of time. These tasks normally
have one or more points at
which they are waiting on an
external event, such as a user
key action or communication
from another processor. At
those points, the flags are set to
the value ASLEEP. After the wait,
the flag is set to ALIVE, and the
process continues as described
above. The monitor changes its
scheme as follows: if the moni-
tor checks the flags and sees the
value ASLEEP, it considers that
state to be valid. So, if all flags are
either ASLEEP or ALIVE then the
watchdog is kicked.

The disadvantage is that if a
task sets a flag to ASLEEP and
never changes it back, it always
passes the test and any deadlock
or infinite loops in that task go
undetected. Therefore, one of
our rules is that the line of code
following the line where the flag
is set to ASLEEP must perform the
wait, normally using one of the
blocking function calls from the
operating system. The instruction
which follows the wait must set
the flag to ALIVE. For example:

myFlag = ASLEEP;
KS_wait(KEY_PRESS_HAP-

PENED);
myFlag = ALIVE;

Because there are no condi-
tions or branches in this se-
quence, no set of circumstances
allow the task to continue with
the flag in the ASLEEP state.

Once the flag has been set to
ALIVE, the task must run to some
point where the flag is again set
to ALIVE or ASLEEP, before the
monitor task has time to clear
the flag to UNKNOWN and wait
one timeout period. Many tasks
have only one place where they
wait on an external event and set

the flag to ASLEEP. Those tasks
must complete one full loop
and be back at the three lines
shown above in less time than
the monitor’s timeout.

Note that this mechanism
is not used on all blocking calls
to the operating system; it is
only used for the waits that are
dependent on events for which
a finite return time cannot be
guaranteed. There are still some
concerns with this scheme. If a
deadlock occurs that involves
waits in a number of waiting
tasks while each of the waiting
tasks has its flag set to ASLEEP,
the monitor cannot detect
the fault. In order to avoid this
pitfall, a graph can be manually
created to show each task with
an arrow to the tasks it waits
on (drawing arrows only for
waits that set the task flag to
ASLEEP). If there is a complete
loop (for example, Task1 waits
on Task2; Task2 waits on Task3;
and Task3 waits on Task1), then
these waits are not genuinely
waiting for external events and
you should consider whether
the task flag should be set to
ASLEEP at all of these points. If
such a loop cannot be avoided,
an extra timeout could be set
on one of the waits (assuming
that your RTOS supports timed
waits), and this timeout would
provide protection against a
deadlock. This timeout could be
far longer than the watchdog
timeout period. In the case of
this extra timer timing out, the
system would be judged to be
in deadlock.

In some cases , you may
choose to assign two flags to
one task. The flags could then be
set to ALIVE at different points
within the task’s main loop. This
would catch a problem where a
task was stuck in a loop that reset
one of the flags but skipped some
vital part of its work. The monitor
would only consider the task to
be healthy if both flags are set to
ALIVE within each period.

For waiting tasks, all of the
tasks’ flags are set to ASLEEP
at the waiting point and all of
them set to ALIVE immediately
afterwards.

� eetindia.com | November 2000 | EE Times-India

http://www.eetindia.co.in

For example if a task was al-
located two flags called myFlag1
and myFlag2 then the sequence
of calls when this task is waiting
is as follows:

myFlag1 = ASLEEP;
myFlag2 = ASLEEP;
KS_wait(KEY_PRESS_HAP-

PENED);
myFlag1 = ALIVE;
myFlag2 = ALIVE;

Concurrent access
Since writes of a single byte are
atomic, it is safe to use a single
byte as a flag for a single task.
No matter when the task switch
occurs, it is impossible to get an
illegal value written to the byte.

In the case of the monitor,
the byte is read and then writ-
ten. Theoretically, a task switch
between the read and the write
could change the state of the
byte, and then that change would
be overwritten by the monitor.
This can never happen if the
monitor is a higher priority task
than the tasks being monitored.
The tasks being monitored never
read the flag. They only write to
it. Monitor interval

As stated, the timeout interval
must be enough for all of the
tasks being monitored to com-
plete at least one loop. If there
is a big difference between the
shortest task loop and the longest
then the tasks with shorter execu-
tion times may only be getting
checked after a few hundred
loops. The list of flags can be
divided into high frequency flags

and low frequency flags. Each
time the monitor is awakened,
the high frequency tasks’ flags are
checked, but the low frequency
tasks’ flags are only checked on
every nth iteration, where n is the
ratio between the high and low
frequency.

Debugging
When testing and debugging the
system, it is a good idea to run
the system with the watchdog
timeout set tighter than it nor-
mally will be in the field. This will
help identify any of the paths in
the code that are borderline.

It is also a good idea to install
the monitor task early in the de-
velopment cycle, since that will
show how the system reacts to
the real bugs in the monitored
tasks during development. Dur-
ing debugging, always place a
breakpoint in the monitor task
at the point where it detects a
failed flag. Then a failed task is
not only detected immediately,
but you can also use the debug-
ger to look at its state and figure
out why it missed its deadline.

Priority of monitoring task
This watchdog scheme is de-
signed on the assumption that
the monitoring task is running at
a higher priority than any of the
tasks that it is monitoring. This
has one drawback. It means that
it may take up CPU cycles at a
time when another task may be
trying to meet some hard real-
time target. If your monitoring

task performs checks other than
the flags described here, and
if those checks consume a lot
of CPU cycles, you may want to
consider altering this scheme to
one where the monitoring task
runs at a lower priority. If you do
this you will have to ensure that
the watchdog task is scheduled
to run more often so that it will
not be deferred for so long by
a high priority task that it does
not strobe the hardware watch-
dog in time. For example you
might schedule it to kick the
dog every 25ms, even though
the hardware watchdog only
requires a kick every 50ms. It will
then survive a 25ms delay caused
at a time when a higher priority
task is running.

the hardware watchdog will
eventually bite.

Using a lower priority task will
improve the ability of high prior-
ity tasks to meet their hard real-
time targets. The disadvantage
of such an approach is that you
lose the opportunity to record the
identity of the task that fails to set
its flag to ALIVE, which is useful
debugging information. I also
believe that it is harder to ensure
that there are no circumstances
where a properly functioning
system will lock out the monitor-
ing task for long enough to get an
unwanted kick.

When the lower priority task is
the monitoring task, you will also
have to address the possibility
that another task may interrupt
the monitoring task while the

flags are being updated. The as-
sumptions made in the “Concur-
rent access” section no longer
hold, and the other task may up-
date the flag that the monitoring
task ahs already read, but before
the monitoring task has a chance
to write to it. One option is to use
a resource lock on the set of flags.
Another option is to ensure that
examining and updating the
flag in the monitoring task is
performed as an atomic read-
and-modify operation, which
may be available as a single
CPU opcode, or your RTOS may
provide a facility to do this.

Conclusion
A good watchdog mechanism
requires careful consideration
of both software and hardware.
It also requires careful consid-
eration of what action to take
when the failure is detected.
When you design with watch-
dog hardware, make sure you
decide early on exactly how
you intend to make best use of
it, and you will reap the benefits
of a more robust system.

References
1 . w w w . h q . n a s a . g o v / o f -

f i c e / p a o / H i s t o r y / c o m -
p u t e r s / C h 4 - 7 . h t m l
2. Lowell, Agustus P., “The Care
and Feeding of Watchdogs,”
Embedded Systems Pro-
gramming, April 1992, p. 38.

Email Send inquiry

�EE Times-India | November 2000 | eetindia.com

http://www.hq.nasa.gov/office/pao/History/computers/Ch4-7.html
http://www.hq.nasa.gov/office/pao/History/computers/Ch4-7.html
http://www.hq.nasa.gov/office/pao/History/computers/Ch4-7.html
http://www.eetindia.co.in/article/email_friend.php3?article_id=8800504557&type=TA&cat_id=1800001&back_url=%2Farticle%2Farticle_content.php3%3Fin_param%3D8800504557_1800001_TA_14df0066%26
http://www.eetindia.co.in/inquiry/send_inquiry.php3?article_id=8800504557&type=TA&title=Watchdog+timers&cat_id=1800001
http://www.eetindia.co.in

