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Making proper use of a watchdog 
timer is not as simple as restarting 
a counter. If you have a watchdog 
timer in your system, you must 
choose the timeout period care-
fully, ensure that the watchdog 
timer is tested regularly, and, if 
you are multi-tasking, monitor 
all of the tasks. In addition, the 
recovery actions you imple-
ment can have a big impact on 
overall system reliability. 

A watchdog timer is a piece 
of hardware, often built into a 
microcontroller that can cause 
a processor reset when it judges 
that the system has hung, or is 
no longer executing the correct 
sequence of code. This article 
will discuss exactly the sort of 
failures a watchdog can detect, 
and the decisions that must 
be made in the design of your 
watchdog system. The first half 
of the article will assume that 
there is no RTOS present. The 
second half covers a scheme for 
making use of a watchdog in a 
multi-tasking system. The hard-
ware component of a watchdog 
is a counter that is set to a 
certain value and then counts 
down towards zero. It is the 
responsibility of the software 
to set the count to its original 
value often enough to ensure 
that it never reaches zero. If it 
does reach zero, it is assumed that 
the software has failed in some 
manner and the CPU is reset. 

In other texts you will see vari-
ous terms for restarting the timer: 
strobing, stroking or updating 
the watchdog. However, in this 
article we will  use the more 
visual metaphor of a man kick-
ing the dog periodically-with 
apologies to animal lovers. If the 
man stops kicking the dog, the 
dog will take advantage of the 
hesitation and bite the man. 

It is also possible to design 
the hardware so that a kick that 

occurs too soon will cause a bite, 
but in order to use such a system, 
very precise knowledge of the 
timing characteristics of the main 
loop of your program is required. 
What errors are caught? 

A properly designed watch-
dog mechanism should, at the 
very least, catch events that hang 
the system. In electrically noisy 
environments, a power glitch 
may corrupt the program coun-
ter, stack pointer, or data in RAM. 
The software would crash almost 
immediately, even if the code is 
completely bug free. This is ex-
actly the sort of transient failure 
that watchdogs will catch. 

Bugs in software can also 
cause the system to hang, if 

they lead to an infinite loop, an 
accidental jump out of the code 
area of memory, or a dead-lock 
condition (in multi-tasking sit-
uations). Obviously, it is prefer-
able to fix the root cause, rather 
than getting the watchdog to 
pick up the pieces. In a complex 
embedded system it may not 
be possible to guarantee that 
there are no bugs, but by using 
a watchdog you can guarantee 
that none of those bugs will hang 
the system indefinitely. 

First aid 
Once your watchdog has bitten, 
you have to decide what action 
to take. The hardware will usu-
ally assert the processor’s reset 

line, but other actions are also 
possible. For example, when the 
watchdog bites it may directly 
disable a motor, engage an in-
terlock, or sound an alarm until 
the software recovers. Such ac-
tions are especially important to 
leave the system in a safe state 
if, for some reason, the system’s 
software is unable to run at all 
(perhaps due to chip death) 
after the failure. 

A microcontroller with an 
internal watchdog will almost 
always contain a status bit that 
gets set when a bite occurs. By 
examining this bit after emerg-
ing from a watchdog-induced 
reset, we can decide whether 
to continue running, switch to 
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a fail-safe state, and/or display 
an error message. At the very 
least, you should count such 
events, so that a persistently 
errant application won’t be re-
started indefinitely. A reasonable 
approach might be to shut the 
system down if three watchdog 
bites occur in one day. 

If we want the system to 
recover quickly, the initialisation 
after a watchdog reset should 
be much shorter than power-on 
initialisation. 

A possible shortcut is to skip 
some of the device’s self-tests. 

On the other hand, in some sys-
tems it is better to do a full set of 
self-tests since the root cause of 
the watchdog timeout might be 
identified by such a test. 

In terms of the outside world, 
the recovery may be instanta-
neous, and the user may not 
even know a reset occurred. 
The recovery time will be the 
length of the watchdog time-
out plus the time it takes the 
system to reset and perform its 
initialisation. How well the de-
vice recovers depends on how 
much persistent data the device 

requires, and whether that data 
is stored regularly and read after 
the system resets. 

Sanity checks 
Kicking the dog on a regular 
interval proves that the software 
is running. It is often a good idea 
to kick the dog only if the system 
passes some sanity check, as 
shown in Figure 1. Stack depth, 
number of buffers allocated, or 
the status of some mechanical 
component may be checked 
before deciding to kick the dog. 
Good design of such checks will 
increase the family of errors that 
the watchdog will detect. 

One approach is to clear a 
number of flags before each loop 
is started, as shown in Figure 2. 
Each flag is set at a certain point 
in the loop. At the bottom of 
the loop the dog is kicked, but 
first the flags are checked to see 
that all of the important points 
in the loop have been visited. 
The multi-tasking approach 
discussed later is based on a 
similar set of sanity flags. 

For a specific failure, it is often 
a good idea to try to record the 
cause (possibly in NVRAM), since 
it may be difficult to establish 
the cause after the reset. If the 
watchdog bite is due to a bug 
(would that be a bug bite?) then 
any other information you can 
record about the state of the 
system, or the currently active 
task will be valuable when try-
ing to diagnose the problem. 

Choosing the timeout 
interval 
Any safety chain is only as good 
as its weakest link, and if the 
software policy used to decide 
when to kick the dog is not 
good, then using watchdog 
hardware can make your sys-
tem less reliable. If you do not 
fully understand the timing 
characteristics of your program, 
you might pick a timeout inter-
val that is too short. This could 
lead to occasional resets of the 
system, which may be difficult 
to diagnose. The inputs to the 
system, and the frequency of 
interrupts, can affect the length 
of a single loop. 

One approach is to pick an 
interval which is several seconds 
long. Use this approach when 
you are only trying to reset a 
system that has definitely hung, 
but you do not want to do a 
detailed study of the timing of 
the system. This is a robust ap-
proach. Some systems require 
fast recovery, but for others, 
the only requirement is that 
the system is not left in a hung 
state indefinitely.  For these 
more sluggish systems, there is 
no need to do precise measure-
ments of the worst case time of 
the program’s main loop to the 
nearest millisecond. 

When picking the timeout 
you may also want to consider 
the greatest amount of dam-
age the device can do between 
the original  fai lure and the 
watchdog biting. With a slowly 
responding system, such as a 
large thermal mass, it may be 
acceptable to wait 10 seconds 
before resetting. Such a long 
time can guarantee that there 
will be no false watchdog re-
sets. On a medical ventilator, 
10 seconds would have been 
far too long to leave the patient 
unassisted, but if the device can 
recover within a second then 
the failure will have minimal 
impact, so a choice of a 500ms 
timeout might be appropriate. 
When making such calculations 
be sure to include the time 
taken for the device to start up 
as well as the timeout time of 
the watchdog itself. 

One real-life example is the 
Space Shuttle’s main engine con-
troller. 1 The watchdog timeout 
is set at 18ms, which is shorter 
than one major control cycle. The 
response to the watchdog biting 
is to switch over to the backup 
computer. This mechanism al-
lows control to pass from a failed 
computer to the backup before 
the engine has time to perform 
any irreversible actions. 

While on the subject of time-
outs, it is worth pointing out 
that some watchdog circuits 
allow the very first timeout to 
be considerably longer than the 
timeout used for the rest of the 
periodic checks. 
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This allows the processor 
time to initialise, without having 
to worry about the watchdog 
biting. 

Whi le  the watchdog can 
often respond fast  enough 
to halt mechanical systems, 
it offers l ittle protection for 
damage that  can  be  done 
by software alone. Consider 
an area of non-volatile RAM 
which  may  be  overwr i t ten 
with rubbish data if some loop 
goes out of control. It is likely 
that such an overwrite would 
occur far faster than a watch-
dog could detect the fault . 
For those situations you need 
some other protection such as 
a checksum. The watchdog is 
really just one layer of protec-
tion, and should form part of a 
comprehensive safety net. 

Multiplying the interval 
If you are not building the 
watchdog hardware yourself, 
then you may have little say in 
determining the longest inter-
val available. On some micro-
controllers the built-in watch-
dog has a maximum timeout 
on the order of a few hundred 
milliseconds. It you decide that 
you want more time, you need 
to multiply that in software. 

Say the hardware provides a 
100ms timeout, but your policy 
says that you only want to check 
the system for sanity every 
300ms. You will have to kick 
the dog at an interval shorter 
than 100ms, but only do the 
sanity check every third time 
the kick function is called. This 
approach may not be suitable 
for a single loop design if the 
main loop could take longer 
than 100ms to execute. 

One possibility is to move the 
sanity check out to an interrupt. 
The interrupt would be called 
every 100ms, and would then kick 
the dog. On every third interrupt 
the interrupt function would 
check a flag that indicates that 
the main loop is still spinning. 
This flag is set at the end of the 
main loop, and cleared by the in-
terrupt as soon as it has read it. 

If you take the approach of 
kicking the watchdog from an 

interrupt, it is vital to have a check 
on the main loop, such as the one 
described in the previous para-
graph. Otherwise it is possible 
to get into a situation where the 
main loop has hung, but the in-
terrupt continues to kick the dog, 
and the watchdog never gets a 
chance to reset the system. 

Self-test 
Assume that the watchdog hard-
ware fails in such a way that it 
never bites. How would you ever 
know? When the system works, 
such a fault is not apparent. The 

fault would only be discovered 
when some failure that normally 
leads to a reset, instead leads to 
a hung system. If such a failure 
was acceptable, you would 
never have bothered with the 
watchdog in the first place. 

If you think watchdog failure 
is a rare thing, think again. Many 
systems contain a means to dis-
able the watchdog, like a jump-
er that connects the watchdog 
output to the reset line. This is 
necessary for some test modes, 
and for debugging with any 
tool that can halt the program. 

I f  the jumper fal ls out,  or a 
service engineer who removed 
the jumper for a test forgets to 
replace it, the watchdog will be 
rendered toothless. 

The simplest way for a device 
to do a start-up self-test is to al-
low the watchdog to timeout, 
causing a processor reset. To 
avoid looping infinitely in this 
way, it is necessary to distinguish 
the power-on case from the 
watchdog reset case. If the reset 
was due to a power-on, then 
perform this test, but if the reset 
was due to a watchdog bite, 
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then we may already be running 
the test. Usually you will want to 
write a value in RAM that will be 
preserved through a reset, so 
you can check if the reset was 
due to a watchdog test or to a 
real failure. A counter should be 
incremented while waiting for 
the reset. After the reset, check 
the counter to see how long you 
had to wait for the timeout, so 
you are sure that the watchdog 
bit after the correct interval. 

If you are counting the num-
ber of watchdog resets in order 
to decide if the system should 
give up trying, then be sure 
that you do not inadvertently 
count the watchdog test reset 
as one of those. 

Multi-tasking 
A watchdog strategy has four 
objectives in a multi-tasking 
system: 
•	 To detect an operating sys-

tem 
•	 To detect an infinite loop in 

any of the tasks 
•	 To detect deadlock involving 

two or more tasks 
•	 To detect if some lower prior-

ity tasks are not getting to run 
because higher priority tasks 
are hogging the CPU 

Typically, not enough timing 
information is available on the 
possible paths of any given task 
to check for a minimum execu-
tion time or to set the time limit 
on a task to be exactly the time 
taken for the longest path. There-
fore, while all infinite loops are 
detected, an error that causes a 
loop to execute a number of extra 
iterations may go undetected 
by the watchdog mechanism. A 
number of other considerations 
have to be taken into account to 
make any scheme feasible: 
•	 The extra code added to the 

normal tasks (as distinct from 
a task created for monitor-
ing tasks) must be small, to 
reduce the likelihood of be-
coming prone to errors itself 

•	 The amount of system re-
sources used, especially CPU 
cycles, must be reasonable 

The solution I will describe 

was used on a medical ventilator 
running on the RTXC real-time 
operating system. The idea was 
loosely influenced by Agustus 
P. Lowell’s article “The Care and 
Feeding of Watchdogs,” which 
describes a way to build the 
watchdog scheme into the RTOS 
itself. 2 Unlike Lowell’s scheme, 
however, this scheme can run on 
top of any RTOS, without requir-
ing changes to the RTOS code. 
This scheme uses a task dedi-
cated to the watchdog. This task 
wakes up at a regular interval 
and checks the sanity of all oth-
er tasks in the system. If all tasks 
pass the test, the watchdog is 
kicked. The watchdog monitor 
task runs at a higher priority than 
the tasks it is monitoring. 

The nature of the tasks 
Most tasks have some minimum 
period during which they are 
required to run. A task may run 
in reaction to a timer that oc-
curs at a regular interval. These 
tasks have a start point through 
which they pass in each ex-
ecution loop. These tasks are re-
ferred to as regular tasks. Other 
tasks respond to outside events, 
the frequency of which cannot 
be predicted. These tasks are re-
ferred to as waiting tasks. 

First we will discuss how the 
scheme will work if all tasks are 
regular and then we will explain 
what extra work has to be done 
for waiting tasks. 

The watchdog timeout can 
be chosen to be the maximum 
time during which all regular 
tasks have had a chance to run 
from their start point through 
one full loop back to their start 
point again. Each task has a 
flag which can have two values, 
ALIVE and UNKNOWN. The flag 
is later read and written by the 
monitor. The monitor’s job is to 
wake up before the watchdog 
timeout expires and check the 
status of each flag. If all flags 
contain the value ALIVE, every 
task got its turn to execute and 
the watchdog may be kicked. 
Some tasks may have executed 
several loops and set their flag 
to ALIVE several times, which 
is acceptable. After kicking the 

watchdog, the monitor sets all 
of the flags to UNKNOWN. By the 
time the monitor task executes 
again, all of the UNKNOWN flags 
should have been overwritten 
with ALIVE. Figure 3 shows an 
example with three tasks. 

Waiting tasks 
Waiting tasks can’t be guaran-
teed to pass through their start 
point within any finite amount 
of time. These tasks normally 
have one or more points at 
which they are waiting on an 
external event, such as a user 
key action or communication 
from another processor. At 
those points, the flags are set to 
the value ASLEEP. After the wait, 
the flag is set to ALIVE, and the 
process continues as described 
above. The monitor changes its 
scheme as follows: if the moni-
tor checks the flags and sees the 
value ASLEEP, it considers that 
state to be valid. So, if all flags are 
either ASLEEP or ALIVE then the 
watchdog is kicked. 

The disadvantage is that if a 
task sets a flag to ASLEEP and 
never changes it back, it always 
passes the test and any deadlock 
or infinite loops in that task go 
undetected. Therefore, one of 
our rules is that the line of code 
following the line where the flag 
is set to ASLEEP must perform the 
wait, normally using one of the 
blocking function calls from the 
operating system. The instruction 
which follows the wait must set 
the flag to ALIVE. For example: 

myFlag = ASLEEP;
KS_wait(KEY_PRESS_HAP-

PENED);
myFlag = ALIVE;

Because there are no condi-
tions or branches in this se-
quence, no set of circumstances 
allow the task to continue with 
the flag in the ASLEEP state. 

Once the flag has been set to 
ALIVE, the task must run to some 
point where the flag is again set 
to ALIVE or ASLEEP, before the 
monitor task has time to clear 
the flag to UNKNOWN and wait 
one timeout period. Many tasks 
have only one place where they 
wait on an external event and set 

the flag to ASLEEP. Those tasks 
must complete one full loop 
and be back at the three lines 
shown above in less time than 
the monitor’s timeout. 

Note that this mechanism 
is not used on all blocking calls 
to the operating system; it is 
only used for the waits that are 
dependent on events for which 
a finite return time cannot be 
guaranteed. There are still some 
concerns with this scheme. If a 
deadlock occurs that involves 
waits in a number of waiting 
tasks while each of the waiting 
tasks has its flag set to ASLEEP, 
the monitor  cannot detect 
the fault. In order to avoid this 
pitfall, a graph can be manually 
created to show each task with 
an arrow to the tasks it waits 
on (drawing arrows only for 
waits that set the task flag to 
ASLEEP). If there is a complete 
loop (for example, Task1 waits 
on Task2; Task2 waits on Task3; 
and Task3 waits on Task1), then 
these waits are not genuinely 
waiting for external events and 
you should consider whether 
the task flag should be set to 
ASLEEP at all of these points. If 
such a loop cannot be avoided, 
an extra timeout could be set 
on one of the waits (assuming 
that your RTOS supports timed 
waits), and this timeout would 
provide protection against a 
deadlock. This timeout could be 
far longer than the watchdog 
timeout period. In the case of 
this extra timer timing out, the 
system would be judged to be 
in deadlock. 

In  some cases ,  you may 
choose to assign two flags to 
one task. The flags could then be 
set to ALIVE at different points 
within the task’s main loop. This 
would catch a problem where a 
task was stuck in a loop that reset 
one of the flags but skipped some 
vital part of its work. The monitor 
would only consider the task to 
be healthy if both flags are set to 
ALIVE within each period. 

For waiting tasks, all of the 
tasks’ flags are set to ASLEEP 
at the waiting point and all of 
them set to ALIVE immediately 
afterwards. 
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For example if a task was al-
located two flags called myFlag1 
and myFlag2 then the sequence 
of calls when this task is waiting 
is as follows: 

myFlag1 = ASLEEP;
myFlag2 = ASLEEP;
KS_wait(KEY_PRESS_HAP-

PENED);
myFlag1 = ALIVE;
myFlag2 = ALIVE;

Concurrent access 
Since writes of a single byte are 
atomic, it is safe to use a single 
byte as a flag for a single task. 
No matter when the task switch 
occurs, it is impossible to get an 
illegal value written to the byte. 

In the case of the monitor, 
the byte is read and then writ-
ten. Theoretically, a task switch 
between the read and the write 
could change the state of the 
byte, and then that change would 
be overwritten by the monitor. 
This can never happen if the 
monitor is a higher priority task 
than the tasks being monitored. 
The tasks being monitored never 
read the flag. They only write to 
it. Monitor interval 

As stated, the timeout interval 
must be enough for all of the 
tasks being monitored to com-
plete at least one loop. If there 
is a big difference between the 
shortest task loop and the longest 
then the tasks with shorter execu-
tion times may only be getting 
checked after a few hundred 
loops. The list of flags can be 
divided into high frequency flags 

and low frequency flags. Each 
time the monitor is awakened, 
the high frequency tasks’ flags are 
checked, but the low frequency 
tasks’ flags are only checked on 
every nth iteration, where n is the 
ratio between the high and low 
frequency. 

Debugging 
When testing and debugging the 
system, it is a good idea to run 
the system with the watchdog 
timeout set tighter than it nor-
mally will be in the field. This will 
help identify any of the paths in 
the code that are borderline. 

It is also a good idea to install 
the monitor task early in the de-
velopment cycle, since that will 
show how the system reacts to 
the real bugs in the monitored 
tasks during development. Dur-
ing debugging, always place a 
breakpoint in the monitor task 
at the point where it detects a 
failed flag. Then a failed task is 
not only detected immediately, 
but you can also use the debug-
ger to look at its state and figure 
out why it missed its deadline. 

Priority of monitoring task 
This watchdog scheme is de-
signed on the assumption that 
the monitoring task is running at 
a higher priority than any of the 
tasks that it is monitoring. This 
has one drawback. It means that 
it may take up CPU cycles at a 
time when another task may be 
trying to meet some hard real-
time target. If your monitoring 

task performs checks other than 
the flags described here, and 
if those checks consume a lot 
of CPU cycles, you may want to 
consider altering this scheme to 
one where the monitoring task 
runs at a lower priority. If you do 
this you will have to ensure that 
the watchdog task is scheduled 
to run more often so that it will 
not be deferred for so long by 
a high priority task that it does 
not strobe the hardware watch-
dog in time. For example you 
might schedule it to kick the 
dog every 25ms, even though 
the hardware watchdog only 
requires a kick every 50ms. It will 
then survive a 25ms delay caused 
at a time when a higher priority 
task is running. 

the hardware watchdog will 
eventually bite. 

Using a lower priority task will 
improve the ability of high prior-
ity tasks to meet their hard real-
time targets. The disadvantage 
of such an approach is that you 
lose the opportunity to record the 
identity of the task that fails to set 
its flag to ALIVE, which is useful 
debugging information. I also 
believe that it is harder to ensure 
that there are no circumstances 
where a properly functioning 
system will lock out the monitor-
ing task for long enough to get an 
unwanted kick. 

When the lower priority task is 
the monitoring task, you will also 
have to address the possibility 
that another task may interrupt 
the monitoring task while the 

flags are being updated. The as-
sumptions made in the “Concur-
rent access” section no longer 
hold, and the other task may up-
date the flag that the monitoring 
task ahs already read, but before 
the monitoring task has a chance 
to write to it. One option is to use 
a resource lock on the set of flags. 
Another option is to ensure that 
examining and updating the 
flag in the monitoring task is 
performed as an atomic read-
and-modify operation, which 
may be available as a single 
CPU opcode, or your RTOS may 
provide a facility to do this. 

Conclusion 
A good watchdog mechanism 
requires careful consideration 
of both software and hardware. 
It also requires careful consid-
eration of what action to take 
when the failure is detected. 
When you design with watch-
dog hardware, make sure you 
decide early on exactly how 
you intend to make best use of 
it, and you will reap the benefits 
of a more robust system. 
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